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Summary Introduction

The research consists of two parts. The first is related to the stock market liquidity,

clarifies difference between liquidity risk and liquidity level, and studies relationship

among them. Further, relation of liquidity and the investment holding horizon is studied.

Specifically, I investigate the liquidity preferences of long- and short term investors. The

second part, considers the question of the shape of the pricing kernel. The empirical

pricing kernel is estimated and compared to its theoretical counterpart. The following

three chapters will be part of the thesis.

Liquidity and Liquidity Risk in a Cross-Section of Stock Returns

Finance literature advocates the importance of liquidity in both dimensions: as a char-

acteristic (trading cost, trading activity, price impacts etc.) and as a separate pricing

factor. Liquidity is the degree to which an asset or security can be traded in the market

without affecting the prices of assets or how quickly an asset can be converted to cash

without loss of its value. In academia, liquidity risk is understood as the sensitivity of the

stock return to the aggregate market liquidity. Investors should consider both liquidity

level and liquidity risk when analyzing stock returns and asset pricing. The importance

of discriminating between liquidity level and liquidity risk is emphasized by Lou/Sadka

(2011). One question I answer in my thesis is relative impact of liquidity and liquidity

risk on the stock returns.

In this paper I investigate which dimension of liquidity is more helpful in explaining stock

returns. I use a portfolio approach to analyze impacts of liquidity risk and liquidity level

on stock returns, both separately and jointly. This is widely used in asset pricing litera-

ture; papers on liquidity and liquidity risk include Pástor/Stambaugh (2003) and Lou/

Sadka (2011). I create liquidity variable as in Amihud (2002) and liquidity risk variable

as liquidity betas in Acharya/Pedersen (2005); Pástor/Stambaugh (2003); Watanabe/

Watanabe (2008) and Sadka (2006). Then, by creating portfolios sorted on these vari-

ables, I investigate joint effects of liquidity level and liquidity risk. Portfolios based on

Amihud’s liquidity measure and different types of liquidity risk are formed, when alphas

of these portfolios are estimated for three pricing models and significance of alphas are

used for making judgments about explanatory power of each indicator.

1



I find that liquidity level has greater impact on common stock returns than liquidity risk

does. Results are somewhat stronger for the early subsample, though they are also valid

for more recent data. This finding is of particular importance for investors who might

consider taking into account the liquidity level variables for portfolio allocation, asset

pricing and risk management.

Liquidity and Investment Horizon

Researchers agree that less liquid stocks grant higher returns, the so called liquidity

premium and that there is a strong commonality in liquidity. Further, understanding

this results leads to necessity to acknowledge their importance and use them in practice.

One of the questions following liquidity matters is the question of relationship of liquidity

of a stock and the investment horizon of its typical holder (Amihud/Mendelson, 1986).

Long term investors, who trade very infrequently, and by doing so, can get profits holding

illiquid stocks. The second chapter of my thesis is devoted to relationships between

liquidity of a stock (both liquidity and liquidity risk) and the holding horizon of the

average investor holding this stock in his portfolio.

This chapter deals with relationship between liquidity and investment horizon. The

question has two fairly independent tasks, which are natural outcomes of the previous

article, the first, relating holding horizon with trading cost, price impact of trade and

trading activity, and the second, investigation of linkages between holding horizon and

liquidity risk. The theoretical background for the former question is provided in Amihud/

Mendelson (1986). In their framework the authors prove that assets with higher spreads

are held by long term investors in equilibrium. My paper implements empirical test of

this statement for a few liquidity measures and its idea is similar to the paper of Atkins/

Dyl (1997). Motivation for the second question comes from the paper by Beber et al.

(2011), whose finding suggest existence of linkages between liquidity risk and holding

horizon.

The analysis is conducted with cross-sectional regressions. The holding horizon is mea-

sured as the turnover of institutional investors holding particular stock (so called “churn

ratio”, see for example Cella et al., 2013). This measure is considered as a good proxy for



the investment horizon. To overcome possible endogeneity issues I propose the dividend-

to-price ratio as an instrument for the holding horizon. Results are robust to this and

other specifications and tests.

This research finds the following: concerning the relationship between liquidity and hold-

ing horizon I find that illiquidity (relative spread, Amihud measure) is positively related

to the investment holding horizon. More liquid stocks are traded more often, by the

short term investors. Secondly, liquidity risk is negatively related to the holding horizon.

Specifically, I find that stocks that are held by the short term investors are, in general,

more disposed to aggregate liquidity shocks. Short term investors are willing to take on

liquidity risk, which might be in line with liquidity provision by hedge funds.

Is the Price Kernel Monotone?

The last chapter of the thesis (which was written earlier than two previous) deals with

the shape of the pricing kernel and the pricing kernel puzzle. According to economic

theory, the shape of the state price density (SPD) per unit probability (also known as

the asset pricing kernel, Rosenberg/Engle (2002) or stochastic discount factor (SDF),

Campbell et al. (1997)) is a decreasing function in wealth. There is a number of papers

trying to support or reject this statement. We estimate and show that the pricing kernel

is monotonically decreasing.

In this paper we compute the kernel price both in a single day and as an average of

kernel prices over a period of time, holding maturity constant. In order to do so one

needs to estimate the risk neutral and physical distribution of the price changes. In

order to estimate the risk neutral distribution, we use the well-known result in Breeden/

Litzenberger (1978). The difference with previous works is in the options we use. Instead

of creating option prices through nonparametric or parametric models (all the previous

research use artificial price of options and this could introduce a bias in the methodology),

we use only the options available on the market.

We then construct the historical density using the GJR GARCH model with Filtered

Historical Simulation already presented in Barone-Adesi et al. (2008). As discussed in

Rosenberg/Engle (2002), among the several GARCH models, the GJR GARCH with

FHS has the flexibility to capture the leverage effect and the ability to fit daily S&P500



index returns. Then, the set of innovations estimated from historical returns and scaled

by their volatility gives an empirical density function that incorporates excess skewness,

kurtosis, and other extreme return behavior that is not captured in a normal density

function. These features avoid several problems in the estimation of the kernel price.

For example, using a simple GARCH model where the innovations are standard normal

(0; 1) leads to a misspecification of the return distribution of the underlying index.

Once we have the two probabilities, we take the ratio between the two densities, dis-

counted by the risk-free rate, in a particular day, to compute the kernel price for a fixed

maturity. We repeat the same procedure for all the days in the time series which have

options with the same maturity and then we take the average of the kernel price through

the sample. At the same time we apply kernel smoothing on the estimated values of the

price kernel to confirm our result. We take our estimated average price kernel, consider

its monotone version and then compare the monotone version with the estimated version

by means of Kolmogorov-Smirnov test.

Our tests support the pricing kernel monotonicity. We show that the ratio between the

two probabilities, is monotonically decreasing in agreement with economic theory.



Chapter 1.
Liquidity and Liquidity Risk in the
Cross-Section of Stock Returns

—by Volodymyr Vovchak—

1.1 Introduction

There is extensive literature concerning liquidity impact on asset prices. Early

literature takes a closer look at liquidity as a stock characteristic which matters

for pricing (Amihud/Mendelson, 1986; Cooper et al., 1985; Datar et al., 1998).

More recent papers concentrate on liquidity as a risk factor (Pástor/Stambaugh,

2003; Sadka, 2006) or as a risk factor in the CAPM framework (Acharya/Pedersen,

2005; Holmström/Tirole, 2001; Liu, 2006). Although researchers acknowledge the

importance of liquidity risk, liquidity level is still used to explain asset prices. For

example, Amihud (2002) shows that liquidity level is important for both cross-

section and time series of stock prices. The importance of liquidity for explaining

expected returns in emerging markets has been studied by Bekaert et al. (2007)

and Jun et al. (2003) among others. Jun et al. (2003) find that stock returns

in emerging countries are positively correlated with aggregate market liquidity.

Overall, there is a clear recognition of the importance of liquidity for asset pricing

models, but there is no clear understanding about what is more important for an

investor while making investment decisions: the liquidity level or the liquidity risk.

Two aspects of liquidity can be distinguished, one related to market ability to

operate despite of trading frictions and cost, and the second connected to the fact

that liquidity is a priced factor. Chordia et al. (2000, p. 6) presume that liquidity

5



1.1. Introduction 6

potentially has two channels to influence asset prices. They attribute liquidity level

to a static channel, while liquidity risk impacts asset prices through a dynamic

channel. Therefore, investors should consider both liquidity level and liquidity risk

when analyzing stock returns and asset pricing. The importance of discriminating

between liquidity level and liquidity risk is emphasized by Lou/Sadka (2011). They

find that during the 2008 crisis, liquid stocks suffered as much as or sometimes

even more than illiquid, and stocks with low liquidity risk performed better than

those with high liquidity risk, irrespective of the liquidity level. That is, if both

liquidity level and liquidity risk matter for asset returns, then liquidity risk tends

to lower or change direction of the liquidity effect on asset returns. Liquidity level

alone has been proven in the literature to have a negative impact on stock returns,

i.e. investors require higher returns to invest into illiquid stock. However, once

liquidity risk is taken into account, it might be the case that the impact of liquidity

switches to positive (this partially is shown in Lou/Sadka (2011)). This may be

due to links between liquidity level and liquidity risk. For example more liquid

stocks may carry less liquidity risk or vice versa.

All the above considerations bring forward the interesting task of disentangling liq-

uidity level and liquidity risk impacts on the stock returns. This problem was par-

tially addressed by Acharya/Pedersen (2005). In their liquidity adjusted CAPM,

they use expected liquidity in their pricing equation, and find that the level effect

is rather weak in comparison with liquidity betas1. One explanation for their re-

sult may be that liquidity betas are estimated using the liquidity level, or another

explanation might be that betas are estimated with noise. Furthermore betas in

their paper are highly correlated which could explain their findings.

In this paper I investigate which dimension of liquidity is more helpful in explaining

stock returns. It may seem that liquidity risk has much importance, but for

investors, estimating liquidity risk factor may be time consuming, complicated or

imprecise, while liquidity level is relatively easy to estimate, and thus, easier to

use for investment purposes. My research question may somewhat resemble that

of Acharya/Pedersen (2005), although there are a few distinctions. First, this is
1They find liquidity level to be significant only when regressed together with “net beta”. “Net beta”

is the sum of different liquidity betas and market beta.
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entirely empirical work and, second, Acharya/Pedersen conclude more importance

of liquidity risk “over and above [...] the level of liquidity” while results reported

here suggest that liquidity risk impact vanishes when liquidity level is taken into

account. Further, the Acharya/Pedersen paper is more about commonality in

liquidity than liquidity risk.

I use a portfolio approach to analyze impacts of liquidity risk and liquidity level

on stock returns, both separately and jointly. This is widely used in asset pric-

ing literature; papers on liquidity and liquidity risk include Pástor/Stambaugh

(2003) and Lou/Sadka (2011). I create liquidity variable as in Amihud (2002) and

liquidity risk variable as liquidity betas in Acharya/Pedersen (2005); Pástor/Stam-

baugh (2003); Watanabe/Watanabe (2008) and Sadka (2006). Then, by creating

portfolios sorted on these variables, I investigate joint effects of liquidity level and

liquidity risk. Portfolios based on Amihud’s liquidity measure and different types

of liquidity risk are formed, when alphas of these portfolios are estimated for three

pricing models and significance of alphas are used for making judgments about

explanatory power of each indicator. I find that liquidity level has greater impact

on common stock returns than liquidity risk does. Results are somewhat stronger

for the early subsample, though they are also valid for more recent data. This

finding is of particular importance for investors who might consider taking into

account the liquidity level variables for portfolio allocation, asset pricing and risk

management.

The paper is organized as follows. Section 1.2 provides a brief overview of the asset

pricing literature devoted to liquidity. In section 1.3, variables which are used for

analysis are presented. The data and methodology is discussed in section 1.4. In

section 1.5, the main results are presented and discussed. Further, section 1.6

conducts robustness checks, presents results for alternative measures of liquidity

risk, and describes results of subsample analysis. Section 1.7 offers concluding

remarks.
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1.2 Literature review

Liquidity is an important indicator in modern financial markets. There is a grow-

ing body of literature on the impact of liquidity on assets’ returns, market returns,

returns volatility, etc. There is documented evidences on importance of different

liquidity dimensions: trading cost dimension (bid-ask spread – Amihud/Mendel-

son, 1986, 1989; Jones, 2002), trading quantity dimension (volume – Campbell

et al., 1993; Llorente et al., 2002, turnover – Datar et al. 1998, trading activity

– Avramov et al., 2006a; Chordia et al., 2001a), price reaction to trading volume

(illiquidity measure introduced in Amihud, 2002) and trading speed dimension

(Liu, 2006). Baker/Stein (2004) have found that liquidity is the outcome of in-

vestors’ sentiment. Liquidity become so important that there are papers discussing

different properties of liquidity, for example commonality in liquidity studied by

Chordia et al., 2000; Mancini et al., 2013, or intraday patterns of liquidity Ranaldo,

2001.Amihud et al. (2005) give an extensive overview of theoretical and empirical

literature concerning liquidity implications for asset pricing.

There are two streams of literature on liquidity, one is concerned with ability

of liquidity to influence financial indicators of stocks, while another stream of

literature looks into systematic properties of liquidity, and advocates the existence

of liquidity risk factors. The first branch of the liquidity literature includes papers

by Amihud (2002); Amihud/Mendelson (1986); Brennan/Subrahmanyam (1996);

Brennan et al. (1998); Chordia et al. (2001b) and many others.

These studies consider liquidity and related indicators as variables which can ex-

plain time series variability of the stock return and/or return volatility. Brennan/

Subrahmanyam (1996) find significant relations between several of intra day liq-

uidity measures and required rate of returns. These relations hold even after

controlling for Fama/French’s risk factors. Chordia et al. (2001b) report nega-

tive cross-sectional relationship between stock returns and the second moment of

trading volume and stock turnover. Campbell/Grossman/Wang (1993) find that,

for stock indexes and individual large stocks, daily return autocorrelation declines

with trading volume. Avramov/Chordia/Goyal (2006a) show that liquidity has an
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impact on return autocorrelation even after controlling for trading volume. In an-

other paper Avramov/Chordia/Goyal (2006b) show how trading activity explains

the asymmetric effect in daily volatility of individual stock return. Jones (2002)

shows that liquidity is a good stock return predictor for low frequency market re-

turn data (he uses annual data from 1900 through 2000). He finds that the quoted

spread and the turnover of Dow Jones stocks predicts market return even after

controlling for the dividend price ratio, a well-known returns predictor. Brennan

et al. (1998) examine relationships between stock return, measures of risk and

some non-risk characteristics. The authors find that trading volume negatively

affects returns and this relation is stable in the principal component as well as in

the Fama/French (1993) framework.

Another stream of literature treats liquidity as a pricing factor in the CAPM

framework. Pástor/Stambaugh (2003) find that market wide liquidity is a pricing

factor for common stocks. Acharya/Pedersen (2005) introduce the liquidity ad-

justed CAPM with three types of liquidity betas and show that liquidity is a priced

factor in a cross-section of stock returns. Yet another paper, by Liu (2006), consid-

ers a similar model with a new liquidity measure addressing another dimension of

liquidity – the speed of trading. Support of liquidity as a pricing factor rather than

as a characteristic is confirmed in Jones (2002). He tests if return predictability

by liquidity is due to pure transaction cost effects or to liquidity being the priced

factor. Jones finds the pricing factor story to be more plausible. Mancini et al.

(2013) develop a liquidity measure tailored to foreign exchange market and show

that liquidity risk based on this measure is heavily priced.

This paper is aimed to bring together all the literature discussed above. It enhances

understanding of liquidity for the asset pricing, specifies and clarifies channels,

through which liquidity is influencing stock prices. I find which type of liquidity

is of more use for assessing and predicting the asset prices. In this respect this

work is similar to that of Lou/Sadka (2011) and Acharya/Pedersen (2005). Lou/

Sadka (2011) show that for the financial crisis of 2008, seemingly safe liquid stocks

underperformed illiquid stocks. They show that liquidity beta, the correlation of

the stock return with unexpected changes in aggregate market liquidity, is able to

explain asset prices better than liquidity level. Here I do the same analysis for the
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longer time period, and find that result of their analysis does not hold for bigger

sample. Another work akin to this paper is Acharya/Pedersen (2005). The authors

consider the liquidity adjusted CAPM, where liquidity is represented at both level

and risk dimensions. Their findings also support liquidity risk, although they have

some problems with correlation of different types of liquidity risk. To overcome this

weaknesses I implement portfolio approach and use simpler definition of liquidity

risk.

1.3 Constructing variables

As mentioned above, liquidity has several different channels to influence asset

prices. These may include price impact (price pressures), as in micro structure

literature, or trading costs, or an asset’s return sensitivity to liquidity. When

considering the liquidity level dimension, I concentrate on the price impact measure

of Amihud. This measure is widely used because of its simplicity and its ability

to explain stock returns adequately as a liquidity measure. I construct liquidity

as follows

Illiqim =
1

Dim

Dim∑
t=1

|ritm|
DV olitm

(1.1)

where ritm and DV olitm are return and dollar volume traded of the stock i on

day t of month m. Because illiquidity is changing considerably over time, I scale

Illiq by the average market illiquidity in a given month, i.e. as the liquidity of an

individual stock I use

IlliqSim =
Illiqim
IlliqMm

(1.2)
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where Illiqim is from equation (1.1) and

IlliqMm =
1

Nm

Nm∑
i=1

Illiqim, (1.3)

here Nm – is the number of stocks in month m.

Amihud (2002) argues that this variable is positively correlated to other liquidity

variables, such as Kyle’s price impact measure λ, and fixed-cost measure, ψ, con-

nected to bid-ask spread2. Further, he shows that his variable does a good job of

explaining stock returns both cross-sectionally and over time.

Next, I describe the construction of the liquidity risk variable. Liquidity risk is

estimated as beta from the time-series regression3:

reit = β0
i + βMi ·mktt + βSi · smbt + βBMi · hmlt + βLi ·Mliqt + εit, (1.4)

where reit is an excess return of stock i (stock return minus the risk-free rate),

mkt is the excess return of the market index and smb and hmb are returns of

long-short spreads obtained by sorting stocks according to their market value and

book-to-market ratio. More details can be found in Fama/French (1993). Mliq

is a measure of aggregate market liquidity. Its construction is discussed below.

Liquidity beta obtained in this way captures an asset’s co-movement with market

wide liquidity. Including other Fama-French factors assures that βL measures only

market liquidity effects, not size or book-to-market effects. βL is allowed to vary

over time.

Now, I describe the construction of market liquidity,Mliq. Similarly to Watanabe/

Watanabe (2008) and Acharya/Pedersen (2005). Equation (1.3) defines the average

market illiquidity. Further, I construct innovations in IlliqM to avoid problems

which can arise from strong persistence in the market illiquidity4. To do so I

estimate a modified AR(2) model on the whole sample of the average market
2Both measures were used in Brennan/Subrahmanyam (1996) to investigate relations between return

premium and different components of cost.
3The equation (1.4) is estimated on monthly data with a moving window of three years.
4The autocorrelation of the monthly market illiquidity is over 86%.
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Figure 1.1: Aggregate Market Liquidity Shocks.
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illiquidity. The model is

MkCapt−1
MkCap1

IlliqMt = α + β1
MkCapt−1
MkCap1

IlliqMt−1 + β2
MkCapt−1
MkCap1

IlliqMt−2 + εt, (1.5)

where MkCapt−1 is the market capitalization on month t − 1 (stocks used to

calculate MkCapt−1 are those admitted in month t), and MkCap1 is the market

capitalization at the beginning of my sample. Ratio MkCapt−1

MkCap1
is included as a

detrending factor which controls for the time trend in IlliqM . This factor is the

same for contemporaneous and lagged IlliqM in order to obtain innovations in

illiquidity only. Including a different time factor may cause the innovations to

contain changes streaming from a change in market capitalization. For further

discussion see Acharya/Pedersen (2005); Watanabe/Watanabe (2008), and Pástor/

Stambaugh (2003).

The unexpected illiquidity shocks are errors from equation (1.5). In fact I use

−ε̂t as the innovation of expected liquidity, because it is better to have Mliq

reflecting innovations in liquidity and ε̂t represent illiquidity innovations. Figure

1.1 shows a graph of the market liquidity innovations series from January 1960

through December 2010. It is noticeable that plunges of Mliq match with major

economic crashes.



1.4. Data and empirical methodology 13

Table 1.1: Summary Statistics of Liquidity Risk and Liquidity Level Port-
folios

The table reports summary statistics of value weighted portfolios. Summary statistics is provided for the
following variables average logarithm of the stock capitalization (Ln(size)), average of the ratio of the
book value to the market value (Book-to-Market), average of the dividend to price ratio (Dividend-Price
ratio), and average (minimum and maximum) number of stocks in a given portfolio. Portfolios are sorted
on the basis of liquidity level (Panel A), and liquidity risk (Panel B).

1 2 3 4 5

Panel A. Liquidity level portfolios
Ln(size) 16.301 14.066 13.181 12.395 11.444
Book-to-Market .48435 .51459 .54611 .60347 .607
Dividend-Price ratio .032281 .029734 .027874 .02718 .025968
Average number of stocks 272 266 260 251 231
Minimum number of stocks 196 190 190 188 149
Maximum number of stocks 338 326 321 320 304

Panel B. Liquidity risk portfolios
Ln(size) 15.172 15.841 15.992 15.769 15.014
Book-to-Market .50083 .47353 .50292 .49763 .48537
Dividend-Price ratio .025572 .031599 .035184 .033359 .02417
Average number of stocks 250 261 261 259 249
Minimum number of stocks 187 187 188 188 178
Maximum number of stocks 314 321 326 323 311

This section described the construction of the main sorting variables: liquidity risk

and liquidity level. The next section discusses data used in this paper, portfolio

construction and portfolio characteristics, such as size, book-to-market etc.

1.4 Data and empirical methodology

The data used in this paper includes returns on NYSE and AMEX common stocks

(CRSP share codes 10 and 11) from CRSP, from 1964 through 2010. The daily

CRSP datafile is used to calculate liquidity variables described in Section 1.3 for

each month. The monthly CRSP datafile is used to calculate size and the dividend-

price ratio. To calculate liquidity beta, βL, using equation (1.4) series smb, hml

and mkt are retrieved from Kenneth French’s web page5.

To implement my analysis, I form 5 portfolios on liquidity level, 5 portfolios on

liquidity risk and 9 independently double sorted portfolios (3 on liquidity level and

3 on liquidity risk), along with spread portfolios. As noted the liquidity level is
5Kenneth French’s Data library is here: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/

data_library.html



1.5. Empirical results 14

measured with (1.2) and liquidity risk is βLi from equation (1.4). Portfolios are

formed as follows. For each stock I estimate IlliqSi and/or βLi for the year t − 1

and calculate returns of each portfolio in a year t. Stocks used in constructing

portfolios are those satisfying the following conditions: (i) the average price of the

stock in a month t− 1 is higher than $5 and lower than $1,000, and (ii) the stock

has at least 200 days of data in year y− 1. These conditions are imposed in order

to make estimations more reliable and also allow me to avoid the problem of the

minimum tick of $1/8 for the low-price stocks.

Summary statistics of portfolios are provided in Table 1.1 and Table 1.2. Table 1.1

reports average log of size, average book-to-market, average dividend-price ratio

and average number of stocks in each portfolio for liquidity level sorted (Panel A)

and liquidity risk sorted (Panel B) portfolios. On average, there are 250 stocks in

each liquidity risk sorted portfolio. The number of stocks in risk sorted portfolios

is never less than 179, while the maximum is 326. For level sorted portfolios, the

numbers are: the average 253, the minimum is 150 and the maximum is 338. For

double sorted portfolios (see Table 1.2), the average number of stocks is 140, the

lowest number of stocks in portfolio is 78, the highest 230. The liquidity risk sorted

portfolios have a fairly even distribution of parameters. Only slightly lower size

and dividend-price ratios for extreme portfolios can be noticed. In contrast, for

liquidity level sorted portfolios some monotonic patterns can be observed; stocks

with lower liquidity are small and value stocks. This is in line with the well-

known fact that liquidity is negatively correlated with size. Similar patterns are

conspicuous in double sorted portfolios.

1.5 Empirical results

In this section I present the results of the portfolio analysis. As mentioned above,

I form 5 portfolios on liquidity level and on liquidity risk, and for testing joint

impact 9 (3 × 3) double sort portfolios, and consider spread portfolios. When

returns of each portfolio are regressed on different pricing factors, the significance

of alphas is then analyzed. Results reported here are for value weighted returns,

but they also hold for equally weighted returns.
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Table 1.2: Summary Statistics of Double-Sorted Portfolios

The table reports summary statistics of value weighted independently double sorted portfolios. Summary
statistics is provided for the following variables average logarithm of the stock capitalization (Ln(size)),
average of the ratio of the book value to the market value (Book-to-Market), average of the dividend to
price ratio (Dividend-Price ratio). For each row liquidity level is fixed, while for each column liquidity
risk is fixed.

1 2 3 1 2 3

Average number of stocks Ln(size)
1 144 177 129 15.927 16.204 15.86
2 141 144 148 13.191 13.381 13.243
3 138 114 145 11.873 12.064 11.917

Book-to-Market Dividend-Price ratio
1 .48127 .48926 .4881 .028899 .034843 .030358
2 .53681 .55034 .5455 .026407 .031952 .026752
3 .60727 .60659 .61177 .022079 .029364 .026949

1.5.1 Single sorted portfolios

Liquidity level sorted portfolios I start by analyzing the level impact on stock

excess returns. Five level sorted portfolios are created and portfolios consisting of

long position in illiquid portfolio and short in liquid portfolio6. To obtain the liq-

uidity impact, I run regressions of excess returns of each portfolio on excess market

return (CAPM setup), on the three Fama-French factors, and on the Fama-French

factors plus momentum factor (the four factor model, see Carhart, 1997). If the

liquidity level has some impact on excess returns then alphas of these regressions

must be different from zero.

Panel A of Table 1.3 reports the alphas of regressions along with t-statistics. One

can see from the table that alphas of liquidity portfolios change significance con-

siderably. For the CAPM regression, significance and magnitude of alphas increase

with illiquidity. The portfolio of liquid stocks has alpha of only 0.05% and it is

insignificant, with its t-statistic being below one. Further, alphas increase up to

0.79% for the most illiquid portfolio and is highly significant with a t-statistic equal

to 5.83. The “5-1” spread portfolio produces an alpha of 0.74% and a t-statistic

above 5. These numbers confirm results broadly documented in the literature,

that liquidity level has negative impact on returns (see Amihud, 2002; Jones, 2002

or Amihud et al.’s (2005) survey). When controlling for size and book-to-market
6Note that level measure given in equation (1.2) measures illiquidity not liquidity.
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Table 1.3: Alphas of Liquidity Risk and Liquidity Level Portfolios

The table reports the alphas the quintile portfolios, in percentages per month. The alphas are estimated
as intercepts from the regressions of excess portfolio returns on excess market returns (CAPM alpha), on
the Fama-French factor returns (Fama-French alpha), and on the Fama-French and momentum factor
returns (four-factor alphas). Portfolios are sorted on the basis of liquidity level (Panel A), and liquidity
risk (Panel B). The t-statistics are in parentheses.

1 2 3 4 5 5-1

Panel A. Liquidity level sorts

CAPM alpha 0.0500 0.1902 0.3162 0.4887 0.7918 0.7417
(0.8321) (2.2503) (3.0777) (3.9713) (5.8299) (5.5776)

Fama-French alpha -0.0439 -0.0407 0.0100 0.0960 0.3809 0.4248
(-0.8079) (-0.5832) (0.1389) (1.4178) (4.7620) (5.6832)

Four-factor alpha 0.0358 0.0496 0.0975 0.1642 0.4312 0.3954
(0.6714) (0.6847) (1.3687) (2.3139) (5.2135) (4.9263)

Panel B. Liquidity risk sorts

CAPM alpha 0.3804 0.3584 0.3300 0.3236 0.3707 -0.0097
(3.5187) (4.1954) (3.9366) (3.8125) (3.5428) (-0.1504)

Fama-French alpha 0.0658 0.0938 0.0664 0.0628 0.0651 -0.0008
(0.9081) (1.5400) (1.0697) (1.0351) (0.9178) (-0.0119)

Four-factor alpha 0.1272 0.1633 0.1355 0.1318 0.1800 0.0528
(1.6643) (2.6197) (2.1485) (2.1784) (2.6418) (0.7404)

effects (Fama-French setup), individual portfolios produce lower alphas, ranging

from insignificant −0.04% for a portfolio of liquid stocks to significant 0.38% for a

portfolio of illiquid stocks (t-statistics are −0.81 and 4.76 respectively). Although

the “5-1” spread alpha drops in magnitude to 0.425%, its significance remains high.

Adding the momentum factor does not change results; the “5-1” spread portfolio

has almost 0.4% alpha, which is still highly significant with a t-statistic equal to

4.93.

Overall, results obtained from level sorted portfolio supports the idea that investors

require additional returns in order to hold illiquid stocks.

Liquidity risk sorted portfolios Now consider portfolios sorted by liquidity risk.

The methodology is the same as above. Results are reported in Panel B of Table

1.3. The CAPM alphas of quintile portfolios are significant, with t-statistics higher

than 3.5. The alphas are higher at extremes, 0.38% for portfolio with the lowest

risk and 0.37% for the portfolio which carries the most of liquidity risk. The “5-1”

spread portfolio has a negative alpha which is essentially zero, both statistically

and economically. The negative sign might be attributed to CAPM inability to



1.5. Empirical results 17

Table 1.4: Alphas of Liquidity Risk-Level Sorted Portfolios

The table reports the alphas the independently double sorted portfolios, in percentages per month. The
alphas are estimated as intercepts from the regressions of excess portfolio returns on excess market
returns (CAPM alpha), on the Fama-French factor returns (Fama-French alpha), and on the Fama-
French and momentum factor returns (four-factor alphas). For each row liquidity level is fixed, while
for each column liquidity risk is fixed. The t-statistics are in parentheses.

1 2 3 Level Controlled

Panel A. CAPM
1 0.1274 0.1027 0.0735 -0.0539

(1.6181) (1.4361) (1.0289) (-0.7427)
2 0.3186 0.3276 0.2834 -0.0352

(2.8998) (3.3200) (2.5762) (-0.5564)
3 0.7161 0.6405 0.6757 -0.0403

(5.2618) (5.0551) (4.9563) (-0.6391)

Risk Controlled 0.5887 0.5378 0.6022
(4.8529) (4.4688) (4.9840)

Panel B. Fama-French
1 -0.0341 -0.0442 -0.0485 -0.0144

(-0.4910) (-0.7131) (-0.6901) (-0.1949)
2 0.0051 0.0289 -0.0276 -0.0328

(0.0660) (0.3966) (-0.3461) (-0.5070)
3 0.3030 0.2442 0.2633 -0.0397

(4.0890) (3.2317) (3.2967) (-0.6443)

Risk Controlled 0.3372 0.2884 0.3118
(4.4175) (3.9805) (3.8556)

Panel C. Four-factor
1 0.0341 0.0384 0.0633 0.0292

(0.4777) (0.6005) (0.9167) (0.3550)
2 0.0777 0.0997 0.0690 -0.0087

(0.9481) (1.3252) (0.8763) (-0.1293)
3 0.3499 0.2957 0.3473 -0.0027

(4.4910) (3.7220) (4.1804) (-0.0405)

Risk Controlled 0.3158 0.2573 0.2840
(3.9167) (3.2767) (3.2427)

price stocks adequately. The Fama-French alphas drop significantly in magnitude

and lose significance; the highest t-statistic is around 1.5. Alphas range from

0.06% to 0.09%. The “5-1” spread portfolio alpha is virtually zero and insignificant.

The four factor alphas increase with respect to the Fama-French alphas both in

magnitude and in significance. They do not exhibit any patterns and range from

0.12% for portfolio with the lowest liquidity risk to 0.18% for the highest liquidity

risk portfolio. They are all significant except the lowest liquidity risk portfolio

alpha which has a t-statistic equal to 1.6. However, the “5-1” spread portfolio has

an alpha of 0.05% with a low t-statistic of 0.76.

We can take from this analysis that liquidity risk does not have the same effect
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as liquidity level during the time span from 1964 through 2010. This contradicts

results reported in Lou/Sadka (2011). However, one should remember that they

analyzed only the 2008 financial crisis, which is reputed to have been caused by

liquidity issues. Looking into the past, one should admit that there was not much

evidence of liquidity problems, thus liquidity risk is not better than liquidity itself

when it comes to pricing stocks.

1.5.2 Double-sorted portfolios

This section reports results for double-sorted portfolios, and answers the main

question of the paper: Is it liquidity risk or liquidity level which matters for asset

pricing? Here I again report results for value-weighted portfolio returns. Results

with equally weighted portfolio returns are a bit weaker but they are in line with

those reported here.

In the Table 1.4 results of the double sort portfolio analysis are presented. Results

shown include alphas and their t-statistics from regressions of the portfolio excess

returns on the market excess return (Panel A, the CAPM setup), on the Fama-

French factors (Panel B), and on the Fama-French factors and momentum factor

(Panel C, the four factor setup). Sorting is done independently on liquidity risk

and level. The horizontal sorting in the table is on the basis of liquidity risk, the

vertical sorting is on the basis of liquidity level.

Individual portfolios’ alphas in the CAPM setup range from 0.07% for the liquid-

high liquidity risk portfolio to 0.72% for the illiquid low liquidity risk portfolio.

Alphas increase in magnitude and in significance with illiquidity for all liquidity

risk levels. For low liquidity risk portfolios they are higher than for high liquidity

risk portfolios. Further consider liquidity risk controlled spread portfolios, which

are given below individual alphas. For low liquidity risk spread portfolio alpha

is equal to 0.59% and is significant with t-statistic equal to 4.85. For the high

liquidity risk portfolio, alpha is equal to 0.6% and its t-statistic is equal to 4.98.

Liquidity level controlled portfolios have alphas which are insignificant, negative,

and close to zero. They range in magnitude from −0.054% to −0.035%, and have

t-statistics which never exceed 0.075 in absolute value.
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Panel B of Table 1.4 reports Fama-French alphas and their t-statistics. In this case,

alphas drop in magnitude significantly, although their significance remains about

the same as in case of the CAPM framework. The alphas of individual portfolios

now range from−0.03% for the liquid-low liquidity risk portfolio to 0.3% for illiquid

low liquidity risk portfolio. Patterns are similar to those in CAPM, i.e. alphas

increase in significance and magnitude with illiquidity for every liquidity risk level.

The only difference now is that they are significant only for illiquid portfolios.

Spread portfolios controlled for liquidity risk have significant alphas which are,

nevertheless, lower than they are in the CAPM case. The alpha for the low

liquidity risk spread portfolio is 0.34% and its t-statistic is 4.42. The alpha for the

medium risk portfolio is 0.29% with t-statistic 3.98. For high liquidity risk spread

portfolio, alpha is significant (t-statistic is 3.86) and is equal to 0.31%. Liquidity

level controlled spread portfolios are still insignificant and negative. Liquid spread

portfolio alpha is −0.01% and is highly insignificant. Medium liquidity spread

portfolio has alpha −0.03% (t-statistic is -0.51), and illiquid spread portfolio alpha

is −0.04% and is insignificant.

Results reported for the Fama-French setup hold also for the four factor setup.

Magnitudes and t-statistics are very close to that of Fama-French alphas and t-

statistics.

In summary, the results presented in this section suggest that liquidity level in-

fluences asset prices more than liquidity risk. This means that investors are more

concerned with costs of trading than with exposures to the market-wide liquid-

ity. My result is opposite to that of Lou/Sadka (2011). This may be attributed

to high trading costs and frictions from 1964 to 2010. During the 2008 financial

crisis the market was highly sensitive to liquidity, giving more explanatory power

to liquidity risk.

1.6 Robustness checks

One may argue that liquidity risk used in previous sections7 is not a priced factor,

and it is quite noisy. That is why liquidity risk defined this way cannot be a fair
7It is liquidity risk which is defined as in Acharya/Pedersen (2005).
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Table 1.5: Alphas of Liquidity Risk Portfolios

The table reports the alphas of the quintile portfolios, in percentages per month. The alphas are
estimated as intercepts from the regressions of excess portfolio returns on excess market returns (CAPM
alpha), on the Fama-French factor returns (Fama-French alpha), and on the Fama-French and momentum
factor returns (four-factor alphas). Portfolios are sorted on the basis of Pastor and Stambaugh liquidity
risk (Panel A), and Sadka liquidity risk (Panel B). The t-statistics are in parentheses.

1 2 3 4 5 5-1

Panel A. Pastor and Stambaugh liquidity risk sorts

CAPM alpha -0.1288 0.0920 0.0164 0.0792 0.1458 0.2746
(-1.5780) (1.3267) (0.2488) (1.4042) (2.0530) (2.5601)

Fama-French alpha -0.1549 0.0959 -0.0431 0.0439 0.0606 0.2156
(-1.8222) (1.6337) (-0.8693) (0.8643) (0.8294) (1.8809)

Four-factor alpha -0.1592 0.0544 -0.0311 0.0407 0.1317 0.2908
(-1.8420) (0.8714) (-0.5845) (0.7550) (1.8238) (2.4882)

Panel B. Sadka liquidity risk sorts

CAPM alpha -0.0164 0.0426 0.1787 0.0723 0.0880 0.1044
(-0.1216) (0.3573) (1.6841) (0.7088) (0.8573) (0.6962)

Fama-French alpha -0.1289 -0.0236 0.1181 0.0021 0.0250 0.1539
(-1.1304) (-0.2321) (1.3825) (0.0270) (0.2729) (1.0240)

Four-factor alpha -0.1663 0.0400 0.1159 -0.0213 0.1056 0.2719
(-1.4295) (0.3746) (1.2463) (-0.2534) (1.1847) (1.8403)

alternative for liquidity level. This section presents results for alternative liquidity

risk measures. I present Pástor/Stambaugh’s liquidity risk and Sadka’s variable

component of liquidity risk. Both are confirmed to be priced factors, which make

them good competitors for liquidity level. Results for subsample analysis are also

reported.

1.6.1 Alternative liquidity risk measures

Pástor/Stambaugh’s liquidity risk Pástor/Stambaugh (2003) introduce a liq-

uidity risk factor based on the following principle: order flow induces greater return

reversals when liquidity is low. They calculate the market liquidity measure, then

liquidity risk is measured as individual stock return’s sensitivity to this market

liquidity, i.e. they estimate liquidity betas, controlling for other factors (size and

book-to-market). Pástor/Stambaugh find that returns of stocks with high liquidity

betas are about 7.5% higher than returns of stocks with low liquidity beta.
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I calculate liquidity risk as in equation (1.4) except in place of Mliqt I use Pástor/

Stambaugh’s innovation in liquidity, Lt8. The next five portfolios are formed as

above and alphas of these portfolios are analyzed. Panel A of Table 1.5 reports

results of the estimation. CAPM alphas are monotonically increasing from −0.13%

for the lowest liquidity risk portfolio to 0.15% for high liquidity risk portfolio.

Only the highest risk portfolio alpha is significant. The “5-1” spread portfolio

alpha is equal to 0.27% and is significant with t-statistic equal to 2.56. When

the Fama-French setup is used, alphas of individual portfolios are still increasing

monotonically, but only the lowest portfolio alpha is significant at 10% confidence

level. The “5-1” spread portfolio alpha is equal to 0.21% and has t-statistic 1.88

(i.e. it is significant at 10% confidence level). Alphas from the four factor setup

are similar to those from the Fama-French model, and range from -0.16% for the

lowest liquidity risk portfolio to 0.13% for the highest liquidity risk portfolio. The

spread portfolio alpha is equal to 0.29% and is significant at the 2.5% confidence

level (t-statistic is 2.48).

Clearly, Pástor/Stambaugh’s liquidity risk performs much better than the liquidity

risk measure from Section 1.5. Next I check how Pástor/Stambaugh’s liquidity risk

compares to liquidity level. As before, 9 independently double sorted portfolios

are created, and Table 1.6 reports their alphas and t-statistics.

Panel A of Table 1.6 presents CAPM alphas of double sorted portfolios. Individ-

ual portfolio alphas change from -0.06% for liquid low liquidity risk portfolio to

0.57% for illiquid medium liquidity risk portfolio. They are significant for medium

liquidity and illiquid portfolios. Risk controlled portfolios have alphas of 0.52%,

0.55% and 0.42% for low, medium and high liquidity risk portfolios, and are all

significant at 1% confidence level. Level controlled portfolios are insignificant (the

highest t-statistic is 1.19). This agrees with results from Section 1.5.

Panel B of Table 1.6 reports Fama-French alphas, which for individual portfolios

change from -0.033% for medium liquidity level medium liquidity risk portfolio to

0.24% for illiquid medium liquidity risk portfolio, most of this alphas are insignifi-

cant. Risk controlled spread portfolios have returns of 0.15%, 0.24% and 0.09% for
8See Pástor/Stambaugh (2003) for details on construction of Lt. I download Lt series from Lubos

Pastor’s web page: http://www.chicagobooth.edu/faculty/directory/p/lubos-pastor.
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Table 1.6: Alphas of Pastor and Stambaugh Liquidity Risk and Liquidity
Level Sorted Portfolios

The table reports the alphas of the independently double sorted portfolios, in percentages per month.
The alphas are estimated as intercepts from the regressions of excess portfolio returns on excess market
returns (CAPM alpha), on the Fama-French factor returns (Fama-French alpha), and on the Fama-
French and momentum factor returns (four-factor alphas). For each row liquidity level is fixed, while
for each column Pastor and Stambaugh liquidity risk is fixed. The t-statistics are in parentheses.

1 2 3 Level Controlled

Panel A. CAPM
1 -0.0606 0.0221 0.0510 0.1116

(-0.8208) (0.3682) (0.8534) (1.1902)
2 0.2641 0.2134 0.2493 -0.0148

(2.6861) (2.3800) (2.6063) (-0.2067)
3 0.4582 0.5701 0.4706 0.0124

(3.5747) (4.7296) (3.6554) (0.1460)

Risk Controlled 0.5188 0.5480 0.4197
(3.4231) (4.0582) (2.9212)

Panel B. Fama-French
1 -0.0307 -0.0017 0.0250 0.0558

(-0.4366) (-0.0410) (0.4462) (0.5686)
2 0.0487 -0.0330 0.0076 -0.0411

(0.6105) (-0.4635) (0.1012) (-0.5759)
3 0.1191 0.2395 0.1177 -0.0015

(1.3949) (2.8731) (1.5402) (-0.0177)

Risk Controlled 0.1499 0.2412 0.0926
(1.5944) (2.9988) (1.0817)

Panel C. Four-factor
1 -0.0538 -0.0073 0.0535 0.1073

(-0.7515) (-0.1577) (0.9360) (1.0668)
2 0.0208 -0.0100 0.0494 0.0286

(0.2485) (-0.1340) (0.6331) (0.3820)
3 0.0981 0.2665 0.1199 0.0218

(1.1306) (3.1799) (1.5351) (0.2441)

Risk Controlled 0.1519 0.2738 0.0664
(1.5743) (3.3508) (0.7187)

low, medium and high liquidity risk portfolios. Only the medium risk spread port-

folio is significant. Level controlled spread portfolios have alphas of 0.06%, -0.04%

and -0.001% for liquid, medium liquidity and illiquid portfolios. All are insignif-

icant with very low t-statistics. It is important to note that t-statistics of level

controled portfolios are lower than t-statistics of risk controlled spread portfolios.

The results of the four factor model are similar to those from the Fama-French

model. Supporting the fact that t-statistics from risk controlled spread portfolios

are higher than liquidity controlled ones.

Summarizing, this section provides further evidence of liquidity level being more

reliable pricing variable than liquidity risk. Next I move to Sadka’s liquidity risk.
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Sadka’s liquidity risk In his paper, Sadka (2006) shows that unexpected market-

wide changes of the variable component of liquidity rather than fixed component

are priced. In this section, Sadka’s variable component of liquidity risk is compared

with to liquidity level. I retrieve Sadka’s variable component of liquidity from

Wharton Research Data Services (WRDS). Data is available from 1983 through

2008. Further, Sadka’s liquidity beta is estimated from a 3 year rolling window

regression of equation (1.4), with Sadka’s variable component of liquidity in place

of Mliqt. Next, portfolio analysis is conducted.

Panel B of Table 1.5 reports results of portfolios sorted according to Sadka’s liq-

uidity risk. Alphas for the CAPM model range from -0.02% for the least risky, to

0.18% for medium risk portfolio. Only the medium risk portfolio alpha is signif-

icant at the 10% confidence level. The “5-1” spread portfolio alpha has an alpha

of 0.1%, which however is insignificant with t-statistic of only 0.7. Fama-French

alphas demonstrate similar patterns. They are negative for low risk portfolios,

positive high for medium risk portfolios and positive low (almost zero) for high

risk portfolios. The “5-1” spread portfolio alpha increases in magnitude and sig-

nificance with respect to the CAPM spread alpha. It is 0.15% and its t-statistic is

1.02. Portfolio alphas within the four factor setup range from -0.16% for the lowest

risk portfolio to 0.11% for medium risk portfolio. None of them is significant. The

“5-1” spread portfolio has alpha 0.27%, which is significant at the 10% confidence

level.

Table 1.7 presents alphas of independently double sorted portfolios. Panel A

reports CAPM alphas. They range from 0.06% to 0.4%, and are significant only

for illiquid portfolios. Spread portfolio alphas, controlled for liquidity risk, are

quite close to each other and have t-statistics a little below the 10% critical value.

Liquidity level controlled spread portfolio alphas are insignificant, with t-statistics

below 1.

Panel B reports Fama-French alphas, which range from -0.08% to 0.16% for in-

dividual portfolios and are insignificant. Analyzing risk controlled and level con-

trolled spread portfolio alphas, one can infer that spread portfolios controlled for

risk have on average higher alphas and t-statistics, although all are insignificant
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Table 1.7: Alphas of Sadka Liquidity Risk and Liquidity Level Sorted Port-
folios

The table reports the alphas the independently double sorted portfolios, in percentages per month. The
alphas are estimated as intercepts from the regressions of excess portfolio returns on excess market
returns (CAPM alpha), on the Fama-French factor returns (Fama-French alpha), and on the Fama-
French and momentum factor returns (four-factor alphas). For each row liquidity level is fixed, while
for each column Sadka liquidity risk is fixed. The t-statistics are in parentheses.

1 2 3 Level Controlled

Panel A. CAPM
1 0.0059 0.1340 0.0583 0.0524

(0.0504) (1.3819) (0.6122) (0.4278)
2 0.1340 0.1746 0.2069 0.0729

(0.8047) (1.2463) (1.4632) (0.7413)
3 0.3007 0.4001 0.3931 0.0923

(1.6200) (2.2262) (2.0811) (0.7416)

Risk Controlled 0.2948 0.2662 0.3348
(1.5007) (1.3667) (1.5719)

Panel B. Fama-French
1 -0.0768 0.0935 0.0012 0.0781

(-0.8159) (1.3495) (0.0179) (0.6272)
2 -0.0761 -0.0190 0.0191 0.0953

(-0.5687) (-0.1736) (0.1766) (0.9559)
3 0.0641 0.1691 0.1445 0.0804

(0.5218) (1.2315) (1.1697) (0.6228)

Risk Controlled 0.1409 0.0756 0.1433
(1.1745) (0.5962) (1.0938)

Panel C. Four-factor
1 -0.0860 0.1049 0.0529 0.1389

(-0.8745) (1.3956) (0.7504) (1.0947)
2 -0.0813 -0.0138 0.0572 0.1386

(-0.5534) (-0.1246) (0.4961) (1.3249)
3 0.0454 0.1965 0.1421 0.0967

(0.3621) (1.3778) (1.1347) (0.7799)

Risk Controlled 0.1314 0.0916 0.0891
(1.1267) (0.7206) (0.6813)

both for individual and spread portfolios. Four factor alphas results are similar to

those of Fama-French.

In summary, analysis of portfolios created on the basis of the variable component of

liquidity overall supports findings from earlier sections: liquidity as a characteristic

has more power in explaining asset returns for the time period from 1965 through

2010 than liquidity as a risk, as measured by different liquidity risk measures.
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Table 1.8: Alphas of Liquidity Risk and Liquidity Level Portfolios for the
1964-1986 Subsample

The table reports the alphas quintile portfolios, in percentages per month for the 1964-1986 subsample.
The alphas are estimated as intercepts from the regressions of excess portfolio returns on excess market
returns (CAPM alpha), on the Fama-French factor returns (Fama-French alpha), and on the Fama-
French and momentum factor returns (four-factor alphas). Portfolios are sorted on the basis of liquidity
level (Panel A), and liquidity risk (Panel B). The t-statistics are in parentheses.

1 2 3 4 5 5-1

Panel A. Liquidity risk

CAPM alpha -0.0666 0.1383 -0.0566 -0.0260 0.0754 0.1420
(-0.6889) (2.0896) (-0.8632) (-0.3952) (0.8334) (0.9891)

Fama-French alpha -0.0089 0.2435 -0.0592 -0.0489 -0.0269 -0.0180
(-0.0965) (4.0831) (-1.0488) (-0.7367) (-0.3034) (-0.1269)

Four-factor alpha -0.0575 0.1710 -0.0346 0.0208 0.0424 0.0999
(-0.5783) (2.7163) (-0.5670) (0.3061) (0.4490) (0.6608)

Panel B. Liquidity level

CAPM alpha -0.0760 0.1633 0.3657 0.5314 0.7537 0.8297
(-1.7360) (2.1793) (3.2834) (3.7127) (4.0689) (3.7495)

Fama-French alpha 0.0071 0.0072 0.1042 0.1610 0.3006 0.2936
(0.3109) (0.1224) (1.5046) (2.5451) (3.5379) (3.1986)

Four-factor alpha 0.0129 0.0489 0.1331 0.1745 0.2603 0.2474
(0.5268) (0.8016) (1.8419) (2.5589) (2.9767) (2.5946)

1.6.2 Time subsamples

Up to this point, my results have been in contrast to those found in Lou/Sadka

(2011). This section aims to explain such contradictory findings as a consequence

of changes in pricing over time. The important thing here is that the 2008 financial

crisis was a liquidity crisis and hence, during the 2008 financial crisis and after,

liquidity risk became important. This may explain the findings in Lou/Sadka

(2011). In financial history, liquidity crises are rare, though the one of 2008 was

not unique. Thus, liquidity risk has no such a great impact on returns over the

1965-2010 sample. To determine if this explanation is indeed correct, I divide my

sample into two subsamples and compare performance of liquidity risk and level

in these two subsamples. It turns out that liquidity risk gains more importance in

the later subsample, supporting the hypothesis proposed above.

Results of the portfolio analysis are provided in Tables 1.8-1.10. The original

sample is split into two: 1964-1986 and 1987-2010. Table 1.8 reports single sort

portfolios for the 1964-1986 subsample. Sorts are done as before, on the basis of

liquidity risk and liquidity level. From t-statistics of “5-1” spread portfolio alphas,
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Table 1.9: Alphas of Liquidity Risk and Liquidity Level Portfolios for the
1987-2010 Subsample

The table reports the alphas quintile portfolios, in percentages per month for the 1987-2010 subsample.
The alphas are estimated as intercepts from the regressions of excess portfolio returns on excess market
returns (CAPM alpha), on the Fama-French factor returns (Fama-French alpha), and on the Fama-
French and momentum factor returns (four-factor alphas). Portfolios are sorted on the basis of liquidity
level (Panel A), and liquidity risk (Panel B). The t-statistics are in parentheses.

1 2 3 4 5 5-1

Panel A. Liquidity risk

CAPM alpha -0.1555 0.0736 0.0907 0.1776 0.2171 0.3726
(-1.2769) (0.6453) (0.8270) (1.9949) (2.0352) (2.3932)

Fama-French alpha -0.2164 0.0259 0.0047 0.1352 0.1476 0.3639
(-1.8246) (0.3050) (0.0624) (1.8020) (1.3824) (2.1907)

Four-factor alpha -0.1988 0.0038 0.0125 0.1034 0.2143 0.4131
(-1.6250) (0.0422) (0.1556) (1.3154) (2.0191) (2.4628)

Panel B. Liquidity level

CAPM alpha 0.0310 0.1889 0.2283 0.2932 0.4651 0.4341
(0.3810) (1.6067) (1.6452) (1.7894) (2.6021) (2.2421)

Fama-French alpha 0.0009 0.0304 0.0280 0.0440 0.2136 0.2126
(0.0195) (0.3345) (0.2718) (0.4250) (1.8328) (2.0651)

Four-factor alpha 0.0006 0.0323 0.0316 0.0219 0.2267 0.2261
(0.0124) (0.3369) (0.3014) (0.2052) (1.8197) (2.0525)

one can see that liquidity risk has little impact on the profitability of stocks.

On the other hand, liquidity level sorted spread portfolios have highly significant

alphas, proving liquidity level impact on stock returns.

Inspecting results for the later sample (see Table 1.9), one can see that spread

portfolio alphas sorted by liquidity risk become significant and stable over models

(alphas for CAPM, Fama-French, and four factor models are almost the same).

The alphas of spread portfolio sorted by liquidity level are still significant, although

their t-statistics decrease to little above 2. Also, the alphas of the Fama-French

and the four factor models are twice as low as the CAPM alphas. Results discussed

here indeed support the hypothesis that liquidity risk is much more important in

recent years. Notice that the liquidity level remains significant across the recent

time period.

Table 1.10 reports the results of double sorting portfolio analysis for both sub-

samples. Results for liquidity risk and level controlled portfolios confirm the con-

clusions made for single sort portfolios. Risk controlled alphas are above 0.6%

and highly significant for the 1964-1986 sample, while for the 1987-2010 sample



1.6. Robustness checks 27

Table 1.10: Alphas of Liquidity Risk-Level Sorted Portfolios

The table reports the alphas the independently double sorted portfolios, in percentages per month for
both subsamples. Left panel reports the 1964-1986 subsample, right – the 1987-2010 subsample. The
alphas are estimated as intercepts from the regressions of excess portfolio returns on excess market
returns (CAPM alpha), on the Fama-French factor returns (Fama-French alpha), and on the Fama-
French and momentum factor returns (four-factor alphas). For each row liquidity level is fixed, while
for each column liquidity risk is fixed. The t-statistics are in parentheses.

1 2 3 Level 1 2 3 Level
Controlled Controlled

The 1964-1986 subsample The 1987-2010 subsample

Panel A. CAPM alphas

1 -0.0087 -0.0304 -0.1044 -0.0957 -0.0832 0.0793 0.1924 0.2755
(-0.1042) (-0.5034) (-1.3771) (-0.7286) (-0.7248) (0.7971) (2.1461) (2.1054)

2 0.2980 0.2957 0.3595 0.0615 0.2649 0.1573 0.1702 -0.0947
(2.4112) (2.7182) (3.0161) (0.6228) (1.8323) (1.1223) (1.1613) (-0.9329)

3 0.5998 0.6818 0.6341 0.0343 0.3600 0.4970 0.3417 -0.0183
(3.2864) (4.1020) (3.6630) (0.2973) (2.0104) (2.8407) (1.7906) (-0.1470)

Risk 0.6085 0.7122 0.7385 0.4432 0.4177 0.1493
Controlled (2.7034) (3.5733) (3.6469) (2.1361) (2.2567) (0.7343)

Panel B. Fama-French alphas

1 0.1459 0.0020 -0.1129 -0.2589 -0.1176 0.0250 0.1550 0.2726
(1.9123) (0.0444) (-1.5033) (-1.9581) (-1.1818) (0.3876) (1.9358) (2.0182)

2 0.0801 0.0255 0.0851 0.0050 0.0821 -0.0460 -0.0213 -0.1033
(0.9974) (0.3077) (1.1411) (0.0521) (0.7221) (-0.4365) (-0.1812) (-1.0210)

3 0.1815 0.2691 0.2189 0.0374 0.1110 0.2549 0.0742 -0.0367
(2.0162) (2.8539) (2.5627) (0.3228) (0.9001) (2.0395) (0.6421) (-0.3079)

Risk 0.0355 0.2670 0.3318 0.2286 0.2299 -0.0807
Controlled (0.3196) (2.5084) (2.7577) (1.6061) (1.9881) (-0.6866)

Panel C. Four-factor alphas

1 0.0778 0.0208 -0.0467 -0.1245 -0.1163 0.0130 0.1668 0.2831
(0.9794) (0.4440) (-0.5819) (-0.8796) (-1.1181) (0.1863) (2.0464) (2.0493)

2 0.0678 0.0768 0.1427 0.0749 0.0477 -0.0367 0.0108 -0.0369
(0.8304) (0.8738) (1.8230) (0.7342) (0.4030) (-0.3311) (0.0883) (-0.3534)

3 0.1971 0.3106 0.1801 -0.0169 0.0709 0.2748 0.0869 0.0160
(2.1358) (3.1323) (1.9671) (-0.1415) (0.5684) (2.1183) (0.7326) (0.1302)

Risk 0.1193 0.2897 0.2269 0.1872 0.2618 -0.0799
Controlled (1.0420) (2.6501) (1.7074) (1.2905) (2.1824) (-0.6425)

alphas decline to 0.44%, 0.42% and 0.15% for low, medium and high liquidity risk

portfolios and the alpha of the spread portfolio with high liquidity risk actually

becomes insignificant. This implies that liquidity level has lost some explanatory

power in a later sample. Level controlled spread portfolios support the hypothesis

of enhancement of liquidity risk explanatory power in recent times. Videlicet, for

the early subsample, none of the alphas is significant, and for the 1987-2010 sub-

sample one can see that the alpha becomes significant and increases in magnitude

for the liquid spread portfolio.

In the Fama-French framework, the difference is even more evident. Spread portfo-

lio controlled for liquidity risk alphas turn from significant to marginally significant

for medium risk portfolio only. The alphas of spread portfolios, controlled for the

level, have high t-statistics. For the 1987-2010 subsample, alphas are 0.27%, -0.1%

and -0.04% for liquid, medium liquidity and illiquid spread portfolios. Only the
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alpha of liquid spread portfolio is significant at a 10% confidence level. Alphas

obtained from the four factor model are similar to those from the Fama-French

model. It is worth noting that in the later subsample alphas are stable across

models, especially for the liquid spread portfolio. This is a good signal for the

robustness of results.

Overall, findings of this section help to contextualize our findings with findings of

the other authors, and elicit a more general story of liquidity in asset pricing. My

analysis finds that, in general, liquidity level or/and trading cost have stronger

effect on stock returns, and systematic patterns streaming from liquidity may

emerge due to special market conditions, such as conditions of the 2008 financial

crisis.

1.6.2.1 Analyzing recent data in detail

From the subsample analysis it must be admitted that although liquidity level is of

higher importance for the cross-section of common stocks, the impact of liquidity

become stronger in more recent times. There are two possible explanations for

this fact, which are not exclusive nor exhaustive. The first is connected to the

special market condition of the 2008 financial crisis, which could have been strong

enough to drive results for the later subsample, due to the crucial role of liquidity

in the 2008 crisis. The market was suffering severely from the luck of liquidity and

thus stocks with higher sensitivity to the aggregate liquidity did perform poorly.

This led to liquidity betas becoming crucial for stock prices and is confirmed by

findings of Lou/Sadka (2011). An alternative explanation may be that liquidity

risk and liquidity level represent the same general concept – liquidity. It might

be the case that liquidity risk measures the second moment of liquidity, while

liquidity level captures the first moment of the liquidity. Up to recent times,

trading costs (liquidity level) were high, implying dominance of the first moment

effects, but after decrease of the minimum tick from $1/8 to $0.01, the second order

approximation may come to stage (See Chordia et al., 2001a for more details on

the minimum tick).
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Table 1.11: Comparing the Spread Portfolio Alphas for 2000-2010 and 2008
Subsamples.

The table reports the alphas thespread portfolios, in percentage points per month. The alphas are
estimated as intercepts from theregressions of spread portfolio returns on excess market returns (CAPM
alpha), on the Fama-French factor returns (Fama-French alpha), and on the Fama-French and momentum
factor returns (four-factor alphas). Spread portfolios are sorted on the basis of liquidity level, Acharya
and Pedersen (AP), Pastor and Stambaugh (PS) and Sadka (S) liquidity risk. The t-statistics are in
parentheses.

The 2000-2010 subsample The 2008 subsample

Level AP Risk PS Risk S Risk Level AP Risk PS Risk S Risk

CAPM 1.0377 -0.2404 0.8073 0.2616 1.0320 -0.1657 1.7293 0.3171
alpha ( 3.5055) (-0.6258) ( 2.9164) ( 1.0475) ( 1.3608) (-0.1495) ( 2.1104) ( 0.3904)
Fama-French 0.4430 -0.0730 0.7754 0.4836 0.5127 -0.9779 1.6035 0.0132
alpha ( 2.5083) (-0.1804) ( 2.3794) ( 1.9396) ( 1.0591) (-1.1849) ( 2.0870) ( 0.0155)
Four-factor 0.4429 -0.0122 0.7884 0.5118 0.5166 0.0055 1.6201 0.5844
alpha ( 2.4772) (-0.0332) ( 2.4527) ( 2.1627) ( 1.0243) ( 0.0086) ( 1.9583) ( 0.7482)

To test which explanation is more plausible, I estimate spread portfolio alphas for

the 2000 through 2010 subsample and for the crisis subsample9.

Table 1.11 reports the alphas of the spread portfolios formed on liquidity level

and liquidity risk (Acharya and Pedersen – AP, Pastor and Stambaugh – PS and

Sadka – S) for both subsamples. Alphas of spread portfolios formed on the basis

of liquidity level are highly significant for the 2000-2010 subsample (the lowest

t-statistic is 2.47). For the crisis subsample, magnitude of alphas does not change

much, but they become insignificant. Alphas of the spread portfolios formed on the

basis of the AP liquidity risk are insignificant and negative in both subsamples, and

thus, can not tell anything about tested hypotheses. For the Sadka liquidity factor,

the significance of spread alphas drops, meaning that Sadka’s variable component

of the liquidity loses its explanatory power during the crisis. Hence, results on the

Acharya and Pedersen’s and Sadka’s liquidity risk do not provide any insights into

the relative importance of level vs risk during recent sample.

An interesting result is produced by Pastor and Stambaugh’s liquidity risk sorted

portfolios. From Table 1.11, it is evident that the alphas of spread portfolios

during the crisis double in magnitude, and more importantly, they stay statistically

significant, although at a higher confidence level. This finding is in line with Lou/

Sadka (2011) and supports the idea that the 2008 crisis impacts results obtained

for the later subsample. First, the alphas of Pastor and Stambaugh’s liquidity risk
9I estimate portfolio alphas for time span from August of 2007 through March of 2009. This is

generally accepted time period of the crisis.
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sorted spread portfolios are higher during the crisis (compared to the 2000-2010

subsample and to the whole sample; see table 1.5), meaning that liquidity risk

gains more explanatory power during the crisis, and the second significance of

liquidity level declines dramatically in the same period.

Overall, analysis in this section supports the hypothesis of the impact of the crisis

on the results of the later subsample. Indeed, stock sensitivity to the aggregate

liquidity has become crucial over the past five years mostly due to severe market

conditions, and specifically, to low market liquidity during the 2008 crisis.

1.7 Conclusion

This paper investigates the relative importance of liquidity risk as compared to

liquidity level for the 1964-2010 sample of NYSE and AMEX common stock re-

turns. I find that the liquidity level explains the cross-section of stock returns

better than liquidity risk. The analysis suggests that results are much stronger for

the early subsample. In the more recent subsample, the importance of liquidity

risk increases, substituting part of the liquidity level component. This is in line

with the findings of Lou/Sadka (2011), who find that during the 2008 crisis liq-

uidity risk is more important than liquidity level for explaining returns. For the

1987-2010 subsample, liquidity level still remains a better explanatory variable

than liquidity risk. This implies that trading cost and market friction maintain

their role in financial markets.

Nevertheless, one need to keep in mind that liquidity level and liquidity risk are

components of one general concept: the liquidity. It might be the case that liquid-

ity risk measures the second moment of the liquidity while liquidity level captures

the first moment of liquidity. Up to recent times, trading costs (liquidity level)

were high, implying dominance of the first moment effects, but after the decrease

of the minimum tick from $1/8 to $0.01, the second order approximation may come

to stage. The analysis carried in previous section though discard this explanation

in favor of stringent market conditions observed during the 2008 financial crisis.
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The results of this paper are of particular importance for asset pricing, portfolio

allocation and risk management, and suggest that investors still need to take

liquidity into account more than sensitivity to aggregate liquidity.



Chapter 2.
Liquidity and Investment Horizon

—by Volodymyr Vovchak—

2.1 Introduction

The importance of the investment horizon has been acknowledged since the late

1970s. Levhari/Levy (1977) argue that taking wrong investment horizon in em-

pirical tests of asset pricing models causes bias in the systematic risk and other

econometric issues. Levy (1984) shows that estimation of the market beta changes

with the length of the horizon. Later, the investment horizon was examined in

the stream of liquidity literature. The importance of the investment horizon arises

from the importance of liquidity, which has received renewed attention in recent

years.

Finance literature advocates the importance of liquidity in both dimensions: as a

characteristic (trading cost, trading activity, price impacts etc.) and as a separate

pricing factor. It is worth noting the difference between liquidity and liquidity risk.

Liquidity is the degree to which an asset or security can be traded in the market

without affecting the prices of assets or how quickly an asset can be converted

to cash without loss of its value. In academia, liquidity risk is referred to as the

sensitivity of the stock return to the aggregate market liquidity. Researchers agree

that less liquid stocks grant higher returns, the so called liquidity premium and

that there is a strong commonality in liquidity. A question, following all universe

of liquidity results, is: do these results help to make profit? At first glance,

the answer appears to be no, since higher returns are observed for less liquid

32
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stocks, i.e. stocks with high transaction costs. These costs restrict investors from

achieving the profits promised by theoretic conclusions. Thus, transaction costs

serve to limit arbitrages established due to liquidity matters. But what about long

term investors, who trade very infrequently, and by doing so they can get profits

holding illiquid stocks. This raises a question about interaction between liquidity

and investment horizon, which is a main focus of this paper. To be more specific,

I will study a direct relationship between liquidity and investment horizon, and

pricing abilities of liquidity once controlled for investment horizon for both cases:

liquidity characteristic and liquidity pricing factor.

To better understand this research questions I will start from the link between

liquidity and investment horizon. There are few previous papers investigating

horizon-liquidity correspondence. In their paper Amihud/Mendelson (1986) prove

that assets with higher spreads are held by long term investors in equilibrium1, but

they do not test this proposition empirically. An empirical test of the proposition

was done by Atkins/Dyl (1997), who find strong evidence in favor of the statement.

They find that a longer investment horizon is associated with higher transaction

cost. The result is much stronger for NASDAQ stocks. Here I am going to test

the same hypothesis for broader spectrum of liquidity measures over a longer time

span. The results of this exercise will enable a better understanding of the relation

between liquidity and holding horizon.

Kamara et al. (2012) test a different kind of commonly used systematic factors

across different investment horizons. They show that some factors behave differ-

ently in long and short holding periods. They also document that factors may

vary in behavior at one month and one year investment horizons. For example,

value and return on equity behave like characteristics in short horizons, while with

long horizons, they behave like systematic risk factors. Taking into consideration

all of the above, it is interesting to test the pricing ability of liquidity, controlling

for investment horizons. Amihud (2002) shows that market illiquidity (measured

by the ratio of the absolute value of returns to dollar traded volume) positively

affects ex ante stock excess returns.
1Amihud/Mendelson (1986) in fact state that “assets with higher spreads are allocated in equilibrium

to portfolios with longer expected holding horizons”, but one can equate long term investors and portfolio
with longer horizon.
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Beber et al. (2011) investigate an impact of investment horizon on the liquidity

adjusted asset pricing model. The authors find that allowing for heterogeneity

of investment horizon reduces liquidity risk relative to standard CAPM market

risk. That is similar to the question in the previous paragraph and is going to

be considered in this paper as well. The objective of this research is a broad

investigation of the relationships between the investment horizon and liquidity.

This research finds the following: concerning the relationship between liquidity

and holding horizon I find that illiquidity (relative spread, Amihud measure) is

positively related to the investment holding horizon. More liquid stocks are traded

more often, by the short term investors. Secondly, liquidity risk is negatively

related to the holding horizon. Specifically, I find that stocks that are held by the

short term investors are, in general, more disposed to aggregate liquidity shocks.

Short term investors are willing to take on liquidity risk, which might be in line

with liquidity provision by hedge funds.

The rest of the paper is organized as follows. Section 2.2 provides relevant litera-

ture review and aims to establish connections between liquidity and the investment

holding horizon literature. In section 2.3, objectives, methodology and variables

are highlighted. Data is discussed briefly in section 2.4. Results of estimation

are presented in section 2.5. I provide results for liquidity characteristics of the

stock (relative spread, price impact measure, turnover etc.) and liquidity risk (we

propose three definitions of liquidity risk). In section 2.6, robustness checks of my

findings are proposed. Section 2.7 concludes with a summary of findings.

2.2 Literature review

There is a large amount of literature on liquidity in financial markets. It covers

both idiosyncratic and systematic aspects of liquidity. One of the attributes of

liquid asset is how often this asset is traded. This property is partially determined

by the investment policy of the holder of a given asset. If an asset holder is a

short term investor, it is the case that stock is traded more often. If the investor

is a long term investor, the stock is traded more rarely. Literature on investment
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horizon is not as abundant as liquidity literature, which might be attributed to

data scarcity and the difficulty of measuring investment horizon.

It is widely acknowledged that less liquid stocks have higher returns (Amihud,

2002; Amihud/Mendelson, 1986; Brennan et al., 1998; Jones, 2002). Chordia et

al. (2001a) make a broad study of liquidity and trading activity. Other papers

(Acharya/Pedersen, 2005; Pástor/Stambaugh, 2003; Sadka, 2006) based on a dif-

ferent measure of aggregate liquidity, show that liquidity is priced in a cross-section

of stocks. Watanabe/Watanabe (2008) show that liquidity premium is time vary-

ing and in general correlates with market cycles. The liquidity risk in the cross-

section of hedge funds is investigated in two more recent papers. Sadka (2010)

shows that liquidity risk based on his liquidity factor is an important determinant

in the cross-section of hedge fund returns. Teo (2011) demonstrates that in the

group of liquid hedge funds, those loading on liquidity risk earn almost 5% higher

annual returns than those shunning liquidity risk. He also argues that, taking

this into account, hedge funds often have much higher exposures to liquidity risk

than is necessary. Further, a strong relation between stock market liquidity and

business cycles is reported by Næs et al. (2011). There are also papers showing

importance of liquidity risk in foreign exchange markets (see Mancini et al. (2013))

Some of these and other results concerning liquidity are discussed in a survey by

Amihud et al. (2005).

Considering institutional investor results, Sias/Starks (1997) report that institu-

tional ownership and returns autocorrelation are positively related, implying that

institutiona ownership has an impact on returns behavior. Boehmer/Kelley (2009)

argue that stocks with greater institutional ownership are priced more efficiently.

Another branch of investment horizon literature considers the impact of short- ver-

sus long-term investors on the financial market and individual stocks. Yan/Zhang

(2009) show that short term investors are better informed and thus, they trade

more often to exploit this informational advantage. A corporate finance paper

by Gaspar et al. (2005) concludes that firms held by short term investors have

weaker bargaining position in acquisitions. In addition, Attig et al. (2012) argue

that institutional investors with longer investment horizon have greater incentives

to establish effective monitoring. This mitigates the principal agent problem and
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improves the funding ability of a firm (Lei, 2009). On the other hand, if a stock is

held by short-term investors, its price reflects fundamental value better than the

price of a stock held by long-term investors. Thereby one may distinguish two dif-

ferent functions of the length of investment horizon of prevailing investors. First,

for corporate governance reasons, long-term investors are preferred, and second,

for more efficient pricing short-term investors do a better job.

Further, there are papers analyzing connections between transaction costs and

investment horizon. The first paper in this stream of literature is by Amihud/

Mendelson (1986). The authors provide formal proof of the statement “Asset with

higher spreads are allocated in equilibrium to portfolios with longer horizon”. Em-

pirical confirmation of this proposition is made by Atkins/Dyl (1997), who also

find that this relation is stronger for NASDAQ stocks than for NYSE stocks. Im-

portance of this type of “clientele effect” for the financial policy is discussed in

Amihud/Mendelson (1991).

Beber et al. (2011) propose an equilibrium model with short and long term in-

vestors. They show that liquidity risk effects decrease if heterogeneous investment

horizons are allowed. Kamara et al. (2012) analyze different pricing factor behav-

ior for short and long horizon. The authors analyze the nature of the factor at

monthly and yearly horizon. They find that liquidity has a systematic nature at

the short horizon. Other factors (market, value and return to equity) demonstrate

systematic patterns at the long horizon. Book-to-market behaves as a character-

istic at the short term scale.

Cella et al. (2013) study the trading behavior of short and long term investors

around the 2008 financial crisis. Their intuition is that, during market declines,

institutional investors with short trading horizon are forced to sell their holdings

much more often than long term institutional investors. The outcome of such

behavior translates into poor performance of stocks held by short term investors.

Such stocks experience more severe price drops and larger reversals than stocks

held by long term investors. Cella et al. (2013) summarize by stating that short

term investment holding horizons amplify negative market-wide effects. A result

of this paper is in line with the result of Lou/Sadka (2011), who report that
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during the 2008 financial crisis, liquid stocks experienced stronger drop in price

than less liquid stocks. Given that liquid stocks are held by short term investors,

both papers point in the same direction and support the idea of tight relationship

between the holding horizon and liquidity.

2.3 Methodology and Variables

This section introduces methodology and variables used in the paper, starting from

the liquidity-investment horizon relationship.

Relating liquidity and investment horizon. The theory underlying the relation

of liquidity with the holding horizon is Proposition 1 from Amihud/Mendelson

(1986), which states the following:

Proposition 1. Assets with higher spreads are allocated in equilibrium to portfolios

with (the same or) longer expected holding periods.

I use a methodology that is similar to Atkins/Dyl (1997), in order to investigate

question of this Proposition. The authors use two stage instrumental variables

regression of holding period on lagged quoted spread. I test reverse relationship

and regress different liquidity measures on investment horizon. To avoid a two

step procedure I run liquidity on lagged average investment horizon of the stock.

Estimation of my panel is done by two-way clustering, as suggested in Petersen

(2009). I chose this approach because data on liquidity has two sources of potential

dependencies: firm effects (large firms may be more liquid and thus, have shorter

holding horizons) and time effects (liquidity and holding policies may change over

time). Using usual panel approaches such as Fama/MacBeth or one dimensional

clustering produces too high t statistics, which may signal some dependencies in

the data and biases in coefficient estimates. Double clustering is an effective way

to make estimated standard errors close to true ones2. To estimate the relation

between liquidity and holding horizon, I estimate coefficients of the following equa-

tion:
2For more on the firm and time effects and best estimation procedures see in Petersen, 2009. I use

cluster2 Stata procedure proposed by Petersen on his web page: http://www.kellogg.northwestern.edu/
faculty/petersen/htm/papers/se/se_programming.htm.
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Liqi t+1 = α + β1 ·Horizoni t +
∑
j

γj · Controlji t (2.1)

where Liqi t+1 is one of five liquidity measures, Horizoni t is a proxy of the invest-

ment holding horizon presented in Cella et al. (2013) or in Yan/Zhang (2009), and

is discussed in details below. One of the control variables is a percentage of the

stock which is held by institutional investors filing their holdings to SEC. Another

two variables represented Controlji t are: stock returns volatility and the market

cap of the stock.

I consider five liquidity measures: Amihud liquidity ratio, quoted spread, relative

spread (these are measures of illiquidity), volume traded and turnover (these vari-

ables measure liquidity). Amihud liquidity measure is an averaged over a month

ratio of the absolute return of a stock to its dollar volume traded. This measure is

widely used because of its simplicity and its ability to explain stock returns ade-

quately as a liquidity measure (for more information on this measure see Amihud,

2002). Liquidity is constructed as follows:

Illiqi,m =
1

Di,m

Di,m∑
t=1

|ri,t,m|
DV oli,t,m

(2.2)

where ri,t,m and DV oli,t,m are return and dollar volume traded of the stock i on

day t of month m. Because illiquidity changes considerably over time, I scale Illiq

by the average market illiquidity in a given month; i.e. as the liquidity of an

individual stock, I use

IlliqSi,m =
Illiqi,m
IlliqMm

(2.3)
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where Illiqi,m is from equation (2.2) and average market illiquidity is

IlliqMm =
1

Nm

Nm∑
i=1

Illiqi,m,

where Nm – is the number of stocks in month m.

Amihud (2002) argues that this variable is positively correlated to other liquidity

variables, such as Kyle’s price impact measure λ, and fixed-cost measure, ψ, con-

nected to bid-ask spread3. Further, he shows that his variable does a good job in

explaining stock returns both cross-sectionally and over time.

The quoted spread is a difference between ask and bid prices, both are reported

in CRSP. The quoted spread captures the trading costs investor must incur while

trading the stock. The relative or percentage spread is the quoted spread divided

by price of the stock, or average of bid and ask prices if price is unavailable. The

relative spread is less noisy than the quoted spread and shows the percentage cost

for trading particular stock. Volume traded is the sum of the trading volumes

during that month. It is a measure of trading activity for a given stock. The

turnover is a ratio of the traded volume and total shares outstanding. This measure

indicates the activity of a given stock as a fraction of total shares outstanding.

Liquidity and investment horizon of the stock are determined to a great extent

by the breadth of ownership and its structure. Chen et al. (2002) argue that

if institutional investors have low share of a given stock and only few investors

have long positions, then short-sales constraint is binding. This has an impact on

the liquidity of the stock and on its ownership structure. Thus, the percentage

held by institutional investors is an important indicator for both liquidity and

holding horizon, and must be taken into account when analyzing liquidity-horizon

interplay.

Atkins/Dyl (1997) used two other controls which I utilize as well; standard devia-

tion of returns and the stock size. Standard deviation of returns is a consequence of

frequent trading, thus, one would expect to observe a negative (positive) relation-

ship between illiquidity (liquidity) variables and variability of the stock returns.
3Both measures were used in Brennan/Subrahmanyam (1996) to investigate relations between return

premium and different components of cost.
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Market value is included because the stock size is related to liquidity; larger stocks

are more liquid. Hence, one would expect size to reduce the impact of investment

horizon on liquidity.

Liquidity risk. Liquidity risk is an important issue in financial market, together

with other systematic risk factors. As mentioned, liquidity risk is priced at both

the stock and institutional levels. Teo (2011) shows that hedge funds often load

relatively heavy on liquidity risk. I extend this result by looking at the relation

between liquidity risk, as measured by the liquidity beta, and investment holding

horizon. Because I use all institutional investors reporting to SEC, my analysis

also provides results for long term investors, i.e. mutual and pension funds.

I estimate equation (2.1) with the dependent variable being the liquidity beta. In

this case, control variables are added to control for some non-horizon related fac-

tors. They include size, book-to-market, momentum, short interest and liquidity.

The estimation is carried out similarly to the to analysis for the liquidity level.

I use three types of the liquidity beta, depending on the aggregate market liquidity

measure; the aggregate liquidity measure proposed by Pástor/Stambaugh (2003),

Sadka’s (2006) permanent-variable component and the aggregate liquidity measure

used in Acharya/Pedersen (2005). Liquidity risk is estimated as beta from the

time-series regression4:

reit = β0
i + βMi ·mktt + βSi · smbt + βBMi · hmlt + βLi ·Mliqt + εit, (2.4)

where reit is an excess return of stock i (stock return minus the risk-free rate),

mkt is the excess return of the market index and smb and hmb are returns of

long-short spreads obtained by sorting stocks according to their market value and

book-to-market ratio5. Mliq is one of the aggregate market liquidity mentioned

above.
4The equation (2.4) is estimated on monthly data with three years moving window.
5More details on smb and hmb portfolios can be found in Fama/French (1993).
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Liquidity betas are estimated with a 36 month rolling window, which causes them

to be persistent. Given this and the fact that the holding horizon is highly persis-

tent, one has to take into account biases in parameters estimation. To tackle this

problem I am going to use a fixed effects model with standard errors clustered by

time. For more robustness, double clustering is conducted as well.

Investment holding horizon variable. To define the holding horizon of an insti-

tutional investor, I utilize the methodology proposed in Gaspar et al. (2005). Their

measure is based on the frequency with which an institutional investor changes

its portfolio, the so called “churn ratio”. It is based on the idea that short-term

investors buy and sell stocks more often than long-term investors, who keep their

positions unchanged for long time periods. This is captured by the investor’s

portfolio turnover. More specifically, we start by calculating the churn ratio of

institutional investor i holding a set of stocks Qi at quarter t as:

CRi,t =

∑
j∈Qi

|Si,j,tPj,t − Si,j,t−1Pj,t−1 − Si,j,t−1∆Pi,j|∑
j∈Qi

Si,j,tPj,t+Si,j,t−1Pj,t−1

2

(2.5)

where Si,j,t is the number of firm j’s shares held by institutional investor i at

quarter t, and Pj,t is firm j share price at quarter t.

One should think of the investment horizon as a permanent characteristic of an

investor’s strategy, reflecting its preferences, objectives or funding structure. To

account for this, I further compute the average churn ratio for institutional investor

i over the past four quarters:

aCRi,t =
1

4

4∑
l=1

CRi,t−l+1.

The measure obtained above characterizes the investor’s investment policy with

respect to the time an investor holds the average stock in her portfolio. A value

of the churn ratio ranges from 0 to 2. An institutional investor who has low churn

ratio has a low portfolio turnover, and is a long-term investor, while an investor
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with high churn ratio is a short term investor. Now I am able to calculate the churn

ratio of the stock, given the churn ratios of the investors holding this particular

stock.

fCRj,t = Horizonj,t =
∑
i∈I

wj,i,t · aCRi,t (2.6)

where I is the set of all institutional investors, wj,i,t is the share of the stock j

held by the investor i at quarter t. This variable measures how often on average

the stock is traded. High Horizon means that stock is mostly held by short-term

investors, low Horizon indicates that stock is preferred by long term investors.

For robustness, I also use two alternative proxies for the investment horizon.

These alternative measures are taken from Ben-David et al. (2012) and Yan/Zhang

(2009).

2.4 Data

There are three main data sources for this study. The quarterly institutional in-

vestors holdings data for common stocks traded on NYSE, AMEX and NASDAQ

come from Thompson Reuters. Thompson Reuters Institutional Holdings (13f)

Database provides institutional common stock holdings and transactions as re-

ported on the Form 13f filed with Securities and Exchanges Commission (SEC).

This database contains ownership information by institutional managers with as-

sets under management exceeding $100 million and reports all equity positions

greater than 10,000 shares or $200,000. Information is reported at the end of each

quarter to the SEC. The data contained in the 13f datafile is used to calculate the

churn ratio for each institutional investor, associate it with a particular stock as

a proxy for the holding horizon of an average stock, and to calculate institutional

investors ownership for each stock.

The stock characteristics are retrieved from two main sources: The Center for

Research in Security Prices (CRSP) and COMPUSTAT. We obtain stock returns,
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prices, bid and ask prices, spreads, traded volumes, shares outstanding and divi-

dend to price ratio from the CRSP monthly and daily (to estimate Amihud liquid-

ity ratio) tapes for all NYSE, AMEX and NASDAQ common stocks. Book values

used to obtain book-to-market ratio is obtained from COMPUSTAT.

The aggregate liquidity measures (Pástor/Stambaugh and Sadka) and the Fama-

French portfolios (mkt, smb and hmb) are downloaded from the Wharton Research

Data Services (WRDS) web page.

All the data sources provide data for time period from the beginning of 1990

through the end of 2011. Stocks with price lower than 1$ are excluded from the

analysis, since they are generally considered to be highly speculative. Table 2.1

displays summary statistics of all the variables. Investment horizon variables as

required ranges from 0 to 2, and have averages 0.105, 0.0292 and 0.107. These

variables do not have high variation and are slightly positively skewed (means are

higher than medians). Table 2.2 provides correlation of dependent and indepen-

dent variables. Correlation between holding horizon variables is quite high; for

example, my measure has correlation of 0.93 with measure from Ben-David et al.

(2012). From Panel B one can see that indeed liquidity risk variables have small

correlation with liquidity variables.

2.5 Main results

In this section I present my empirical findings. The order is the same as in section

2.3. I start from the results on holding-horizon-liquidity relation and further move

to the relationship between liquidity risk and investment horizon.

2.5.1 Liquidity and investment horizon

Results of the double clustered regressions (2.1) are presented in Tables 2.3-2.7.

The tables present results of the regression of liquidity characteristics on lagged

holding horizon, lagged size, and lagged standard deviation of the returns. The

percentage held by institutional investors is added to control for possible effects of
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institutional ownership. Since lower values of the horizon variable corresponds to

long term investment horizon, one should expect a negative sign of Horizon when

regressing illiquidity measures, and a positive sign when regressing volume and

turnover – measures of liquidity.

The results of regressing the Amuhud liquidity measure onto the holding horizon

are presented in the Table 2.3. When the holding horizon is the only explanatory

variable, it is significant at the 1% confidence level. The coefficient is negative, con-

firming that indeed stocks held by short (long) term investors have lower (higher)

price impact of trading volume. In other words, short term investors prefer more

liquid stocks. The result holds after controlling for different variables. Controlling

for size (column 2 of Table 2.3) does not impair the significance of the Horizon

coefficient, though it decreases in absolute value from -0.64 to -0.15. The reduc-

tion of the coefficient reflects the relationship between holding horizon and the

stock size. Controlling for standard deviation of the returns (column 3) has mild

impact on the Horizon coefficient. It remains highly significant and is equal to

-0.44, implying that the holding horizon does not reflect a variability of the stock

returns in its liquidity. Column 4 presents the result of the regression with size

and volatility as control variables. The t-statistics of the Horizon coefficient drops

to 2.76 (which is still significant at the 1% confidence level) and the coefficient is

compatible with the one from the regression in the column 2. Further, I control for

the percentage held by institutional investors (column 5). The Horizon coefficient

is highly significant and is equal to -0.183. Column 6 reports results of the regres-

sion with the volatility and institutional ownership as controls. The coefficient for

the holding horizon is highly significant, with the t-statistics -3.55, and is equal to

-0.16. The control variables in all regressions are of expected sign and are highly

significant.

Summarizing findings on the relation between the Amihud liquidity measure and

holding horizon, I can confirm that liquidity of the stock and the investment

strategy of the investors holding this stock are connected. Effectively, the Horizon

coefficient is close to -0.15. This means that an increase in the holding horizon by

one standard deviation leads to 0.15 times the standard deviation of the Amihud

ratio decrease in the Amihud liquidity measure for the stock.
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Table 2.4 reports results for the quoted spread. The general conclusion one can

draw from the table is that the holding horizon does not influence the quoted

spread. In addition, the sign of the horizon coefficient alters. For regressions

in columns 1 to 4, it is negative as one should expect, but once the percentage

held by the institutional investors is included in the regression, the sign changes

to positive. Such ambiguity might be a consequence of the noise in the quoted

spread.

In Table 2.5, results for the relative spread and the holding horizon are presented.

There the holding horizon is the only explanatory variable (column 1), it is sig-

nificant, and is equal to -0.02. Controlling for the size and standard deviation of

the returns in general confirms Atkins/Dyl’s (1997) results. The significance of

the Horizon coefficient decreases. Then, controlled for the volatility, the coeffi-

cient (see column 3) decreases slightly but remains significant at the 1% confidence

level. Controlling for the stock size takes some explanatory power from holding

horizon. In the regression reported in column 2, t-statistics of the Horizon coeffi-

cient drops to -2.01 and its value shrinks to -0.002. In the regression from column

4, the Horizon coefficient is significant at the 10% confidence level. Columns 5

and 6 add the percentage held by institutions as a control. This is not done in

Atkins/Dyl (1997). Results indicate that the holding horizon does not have ex-

planatory power to explain variation in the relative spread once controlled for the

percentage held. The sign of the coefficient is still negative but very low. Control

variables are highly significant and have the expected signs.

In summary, the results in Table 2.5 confirm the results of Atkins/Dyl (1997),

and expand them in a sense that I demonstrate that relation between the relative

spread and the holding horizon streams from the institutional ownership.

A relationship between the volume traded and investment horizon is reported in

Table 2.6. It is evident from the table that the impact of the holding horizon

on the traded volume is, to some extent, due to the size. In the regressions 2

and 4, the size is a control variable, the Horizon coefficient is insignificant and

has a negative sign. The holding horizon is highly significant, when used as the

only regressor, and then regressed together with the volatility. Controlling for the
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percentage held by the institutions makes the Horizon coefficient only marginally

significant and decrease it by a factor of 10. Overall, the holding horizon has an

impact on the trading volume, but it is not robust. In fact, including the size into

the regression wipes out all explanatory power of the holding horizon.

Table 2.7 reports the results of the regression for the turnover rate. Holding

horizon has an impact on turnover. TheHorizon coefficient is significant at the 1%

confidence level in all regressions. Then, regressed as the only explanatory variable,

the holding horizon is highly significant and is positive as expected. Controlling

for the size and volatility of the returns alters the coefficient, but significance and

the sign of the coefficient remains unchanged. Then, when the percentage held

by institutional investors is included, the Horizon coefficient decreases to 0.4, but

its t-statistics even goes up. Overall, the holding horizon has an impact on the

turnover rate. An average value of the Horizon coefficient is 0.63, and in every

regression it is significant at the 1% confidence level. However, this result might

be attributed to the way we constructed our horizon proxy. The point is that

the Horizon variable is constructed as average investor’s turnover and investor’s

turnover is the part of a stock turnover. Thus, results for the turnover rate may

reflect a pure mechanical relation. It is worth mentioning that the correlation

between the Horizon variable and turnover in our panel is only 0.14.

In general, this subsection confirms earlier results on the relationship between

liquidity level and the investment holding horizon, and expands them for other

measures of the liquidity. My study confirms the findings of Atkins/Dyl (1997)

that holding horizon is positively related to the relative spread. In addition, I

find that the relation is true for the Amihud liquidity measure, turnover rate, and

partially, for the trading volume, although I cannot exclude that results for the

turnover might be purely the mechanic effect of variables construction.
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2.5.2 The holding horizon and liquidity risk

To analyze the impact of the holding horizon on the liquidity risk of the stock, I

estimate the following regression:

LiqBetat = α + β ·Horizont−1 + γ′ · Controlst−1, (2.7)

where LiqBeta is one of three possible liquidity betas measuring liquidity risk,

Controls is a vector of control variables composed of systematic characteristics

(book-to-market, size, momentum) to control for possible indirect impacts of the

holding horizon onto liquidity betas through these systematic channels. Another

control variable is short interest, which is an important indicator of the sentiments

of investors toward a given stock, and influences investment policy with respect

to a given stock (see Asquith et al., 2005). Liquidity measures are also included,

since they are tightly related to both indicators analyzed here.

Results of the regression (2.7) are presented in Table 2.8. Overall the coefficient

on the holding horizon is positive and significant. Columns denoted P&S report

regressions for the Pástor/Stambaugh liquidity risk. One can see that a coefficient

at holding horizon is highly significant and positive, ranging from 1.98 to 2.93.

For the Sadka liquidity risk coefficients are much higher in magnitude (from 10.65

to 13.94) but they are less significant. Nevertheless, they are significant at the

5% significance level. Acharya/Pedersen’s liquidity betas are positively related

to holding horizon as well. Thought the relationship is not very strong statisti-

cally; only in the column (3) the coefficient on Horizon is significant at the 10%

significance level.

A positive coefficient on the holding horizon implies that a stock with higher

average churn ratio (and thus, shorter investment horizons of the majority of its

investors) has higher exposure to the liquidity risk. In other words, a stock held

by short term investors is exposed to the aggregate market liquidity more than one

held by long term investors. This is consistent with Teo (2011), who argues that

hedge funds, which happen to be mostly short term investors, take on a greater

amount of liquidity risk than it is optimal for them. Our finding is an extension of
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this result, indicating that, in general, short term investors prefer more liquidity

risk.

Control variables have the following patterns. The book-to-market coefficient has a

positive sign for the Pástor/Stambaugh and the Acharya/Pedersen liquidity betas.

It varies in significance from insignificant for the model in column (3) to strongly

significant, for the model (7). The sign of the coefficients indicates that value

stocks carry more liquidity risk. This finding is consistent with the fact that

value stocks are in general more risky. Their price is below its book value, and

a shock to the aggregate liquidity puts them into an even worse conditions. In

the regression of the Sadka liquidity beta, the coefficient on the book-to-market is

negative and strongly significant. This is most probably attributed to the nature

of the variable component of liquidity risk. Sadka (2006) relates this variable

component of liquidity to private information and information asymmetry. Given

the value of the stock, private information allows one to disentangle good and

bad stocks, thus, making value stocks an attractive targets for investors exploiting

informational asymmetries.

The effect of the size is negative for the Pastor and Stambaugh and the Sadka

liquidity risk. The latter relationship is much stronger. The negative coefficient

for the size agrees with common wisdom that bigger stocks are safer, here in a sense

of the liquidity risk. In the Acharya and Pedersen regression, the size coefficient

is positive and this is in conflict with findings of Acharya/Pedersen (2005).

Momentum does not have an impact on the Acharya and Pedersen liquidity beta.

Coefficients are low in their magnitude and insignificant. For Sadka and Pastor

and Stambaugh liquidity risk measures, momentum has a pronounced positive

impact, implying that stocks with stronger tendency to persist are more likely to

have higher liquidity risk. Liquidity level variables take the part of size effects and

attempts to compensate each other.
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2.6 Robustness

In this section I present robustness checks of my results. I start from the results

for liquidity measures and then move to liquidity risk variables.

2.6.1 Alternative investment horizon measures

To check results of the regression (2.1), reported in tables 2.3-2.7, I repeat estima-

tion with other proxies of the investment horizon. As mentioned in section 2.3, I

use alternative churn ratios from Yan/Zhang (2009) and Ben-David et al. (2012).

The churn ratio in Yan/Zhang differs from the one used above in a way that the

authors use minimum among the aggregate purchase and the aggregate sale for an

institution’s churn ratio, while here I use a sum of both. This variable minimizes

the impact of investors’ cash flow on portfolio turnover. A summary of the results

is presented in Table 2.9, and results are in line with findings reported in Section

2.5.

Another proxy for investment horizon is the one used in Ben-David et al. (2012).

The difference between their variable and the one used here is that the churn ratio

of institutional investors are not averaged over the previous year. This might be

justified by the fact that churn ratios are stable over time, thus, there is no need

to smooth them even more. This measure reflects the most recent churn ratio, but

not the previous year average. A summary of the regressions using this variable as

proxy for the investment horizon is provided in Table 2.10. Results are consistent

with the results reported for other proxies of the investment horizon.

2.6.2 Results by year

In this subsection I present results by year, to see how the relationship reported

above changes through time.

For the liquidity level variables, results are identical to the results reported in

Section 2.5. Coefficients vary in their values, but are of the same sign and are
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significant. I do not report these results here due to the lack of space; they are

available upon request. The analysis of the relationship between liquidity risk and

investment horizon is more interesting. Table 2.11 reports results of the estimation

of the regression (2.7) implemented year by year for the Pastor and Stambaugh

liquidity betas as a dependent variable6. One can see that most of the significant

coefficients are positive, as was for the whole sample. There are, though, years in

the middle of the sample (1999, 2000, 2001) where the sign is negative. For these

years, stocks held by short term investors also have low liquidity risk. This means

that during this period, short term investors abstained from carrying liquidity

risk in their portfolios. Stocks with returns tightly connected with the marked

liquidity were too risky to hold because of movements in the market liquidity,

possibly caused by market turmoils of these years (LTCM, Russian and Argentine

debt crises and dot-com bubble burst). This may be one of the reasons for adopting

a decimal trading format.

2.6.3 Instrumenting churn ratio

So far have I assumed implicitly that churn ratio variables, which are a proxy

for the institutional investors holding horizon, are exogenous with respect to the

liquidity variables. It is natural to question whether the churn ratio, measured as

investor’s flows, may determine liquidity characteristics of the stock. It is hard

to argue what comes first: is it that long term investors choose illiquid stocks,

or stocks become illiquid because they are held by institutions with long term

investment horizon and thus, these stocks are traded infrequently? The results I

reported earlier are for lagged churn ratios, but since churn ratio is very persistent

it might not resolve the problem. In this section, I introduce an instrument for

the stock’s investment holding horizon and report results obtained utilizing this

instrument.

Firstly, I try to answer the question what is a main clause of the profit of long- and

short term investors. Obviously a main source of short term investors’ profit is a

capital gain from trading, while for the long term investors profits mainly come
6Results for other liquidity betas are similar.
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from dividend payments. This difference is important, but it does not help in

disentangling stocks preferred by long term investors and those held by short term

investors. What is crucial here is taxation, or so called tax clienteles. Poterba/

Summers (1985) and Pérez-González (2003) analyze the impact of tax changes,

and argue that a change in taxation affects dividend payouts. Pérez-González

concludes that dividend payouts increased in years when dividends were more

tax-advantaged relative to capital gains7.

More systematic description of the theory of tax clienteles is described in Allen

et al. (2000). In this paper, the authors aim to explain why some firms prefer to

pay dividends rather than repurchase shares. They find that the decision to pay

out dividends is based on the preferences of main stockholders, on their taxation8.

Together with stated above difference in the preferences of long and short term

investors, it is reasonable to propose dividends as a good instrument for measur-

ing the holding horizon. The simplest measure, which I am going to use is the

dividend-price ratio.

The dividend-price ratio is calculated from the CRSP monthly datafile. We must

check if the dividend-price ratio satisfies the conditions of a good instrumental

variable. Changes in the instrument should be associated with changes in the

instrumented variable, but must not cause changes in the dependent variable.

This means, firstly, dividend-price ratio must be correlated with the instrumented

variable; holding horizon in my case. Table 2.2 reports correlations of the dividend-

price ratio with three holding horizon variables. One can see that correlation varies

from -3.6% to -3.9%. This correlation is significant at the 0.1% confidence level.

The correlation between dividend-price ratio and Pastor and Stambaugh liquidity

beta is 0.01% and insignificant, which makes dividend-price ratio an admissible

instrument. Correlations of our instrument with Sadka and Acharya and Pedersen

liquidity betas are -0.45% and -0.61% respectively.
7He also gives a brief analysis of tax reforms and how they have influenced a relative position of

dividends with respect to capital gains.
8A similar idea of catering firm’s dividend policy towards its main investors is proposed by Bak-

er/Wurgler (2004), although they do not discuss determinants of investors demand for stocks paying
dividends. They do not mention tax as a determinant for the purchase of paying or nonpaying stocks,
arguing that for either psychological or institutional reasons, some investors have an uninformed and
perhaps time-varying demand for dividend-paying stocks.
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Second, dividend-price ratio must be conditionally uncorrelated with dependent

variable; liquidity beta in this case. This assumption cannot be tested. The

numbers above allow us to consider dividend-price ratio as a valid instrument. In

addition, I will report statistics for verification of the instrument quality.

Results. Now, after finding and justifying the instrument, I discuss an estimation

procedure and results. I reestimate equation (2.7), utilizing dividend-price ratio

as an instrument for the holding horizon. Variables for controlling other effects

are the same as in section 2.5.2. I control for systematic characteristic (BM, size,

momentum), short interest and liquidity. As before, a variable of interest is the

holding horizon, which is instrumented by the dividend-price ratio.

Equation (2.7) is estimated by means of the two-step feasible GMM estimation

with time fixed effects and Eicker-Huber-White sandwich estimator of variance-

covariance matrix. This variance-covariance matrix is robust to arbitrary het-

eroscedasticity.

Table 2.12 reports the results of the estimation. Before analyzing each model sep-

arately, a few general comments should be noted. The coefficients in the regression

models are much higher in magnitude than the coefficients in Table 2.8, which is

probably an outcome of low average values of dividend-price ratios. Next, results

for Sadka liquidity betas are insignificant and have negative signs. Further, results

for Pastor and Stambaugh and Acharya and Pedersen confirm findings from Sec-

tion 2.5.2. Weak identification F -statistics are higher than 20 and t-statistics of

the instrument in the first stage is higher than 2.5 in absolute value. These statis-

tics support dividend-price ratio as a valid instrumental variable for the holding

horizon.

In Table 2.12, results for Pastor and Stambaugh are denoted P&S. In column

1, the horizon coefficient is positive and highly significant with t-statistic 3.06.

Book-to-market impact is insignificant. Size, as in section 2.5.2, has a significant

negative sign, meaning that high cap stocks are safer, in the sense that they are

less sensitive to aggregate liquidity shocks. Momentum is also consistent with the

previous results: a positive sign implies that stocks with performance persistence
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are more (liquidity) risky. In column (4) model, short interest is added. Its

coefficient is negative and significant, which means stocks about which investors

are bearish have lower liquidity risk. In the model from column (7), the Amihud

liquidity measure is added. It is negatively related to liquidity risk, implying

that illiquid stock carries less liquidity risk. For Sadka liquidity beta the Horizon

coefficient is insignificant with low t-statistics. Results for Acharya and Pedersen

liquidity risk are essentially the same as results for Pastor and Stambaugh liquidity

risk.

In this section, I tested the robustness of my findings. I used alternative measures

of the holding horizon, and show that the results do not change depending on the

churn ratio used. Further, I demonstrated results by year. This analysis confirms

our findings for separate time spans, with the exception of the late 1990s. Such a

breakdown may be caused by macroeconomic and liquidity problems the financial

market experienced during this period. Both robustness checks were implemented

for the liquidity level and liquidity risk results. Finally, I propose an admissible

instrument for my holding horizon measure, and show that my results are robust

to possible endogeneity issues.

2.7 Concluding remarks

This paper investigates the relationship between investment holding horizon and

liquidity. I show that the theoretical statement of Amihud/Mendelson (1986) holds

for the US stock market data. The proposition is true for a broad range of liquidity

measures. The strongest relation is observed for Amihud’s price impact measure.

I find that stocks with higher (lower) values of Amihud ratio have shorter (longer)

holding horizon. Similar results are observed for the relative spread, confirming

that stocks with lower liquidity (higher spreads and price impact of trading) are

allocated to portfolios with longer expected holding horizon. The same is true for

trading frequency measures of liquidity. For stocks with higher turnover, I find

that investors are mainly short term investors. Similarly, although statistically

weaker, the result is reported for the trading volume. My conclusions remain valid

after conducting a number of robustness checks.
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Another interesting result is obtained for liquidity risk. I find that stocks with

higher (lower) liquidity risk are held by investors with shorter (longer) investment

horizon. Given that the market is driven mostly by short term investors, liquidity

risk must be overseen and controlled thoroughly. The reason is, that short term

investors seem to take more liquidity risk than its optimal for them (Teo, 2011),

which together with the fact that shocks to short term investors’ factors tend to

propagate. This may put financial markets into big problems, one example the

2008 financial crisis (Cella et al., 2013).

Findings of this paper enhance understanding of liquidity and its relation to in-

vestment policies. Investment horizon is shown to have an impact on liquidity and

riskiness of stocks.
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Table 2.1: Summary Statistics

The table displays descriptive statistics of variables. Most of the variables cover the time period
from 1990 through 2011. Obs. denotes the number of stock-month observation. Liquidity betas
are winsorized on both sides at 1%.

Obs. Mean Std. Dev. Min Median Max

Investment horizon:

Holding horizon 977750 0.105 0.100 0 0.0827 2
Investment horizon (Yan Zhang) 977750 0.0292 0.0278 0 0.0242 2
Investment horizon (Ben-David et al.) 977750 0.107 0.108 0 0.0835 2

Liquidity measures:

Amihud measure 975733 0.333 3.386 0 0.00668 861.5
Quoted Spread 905326 0.269 0.540 0 0.125 172.5
Relative spread 905326 0.0247 0.0374 0 0.0123 1.980
Volume 975766 0.124 0.905 0 0.0133 201.2
Turnover 975766 1.287 2.452 0 0.687 368.7

Liquidity betas:

Pastor and Stambaugh 976426 0.963 55.19 -213.3 0.357 218.1
Sadka 976112 5.895 732.8 -3025.9 1.209 2886.5
Acharya and Pedersen 976112 0.0296 13.10 -49.52 0.136 50.96

Control variables:

Book-to-Market 882024 0.727 0.850 0 0.554 40.58
Log(size) 974595 12.44 1.997 4.820 12.26 20.22
Momentum 971079 0.142 0.695 -0.998 0.0526 81.80
Standard Deviation of Returns 975670 0.0335 0.0265 0 0.0267 2.533
Short Interest ratio 872596 0.0265 0.0458 0 0.00855 0.973
Institutional Ownership 977750 0.435 0.294 0 0.408 1

Instrument:

Dividends-price ratio 974233 0.00104 0.0176 0 0 8.333



2.7. Concluding remarks 56

T
a
bl

e
2.

2:
C
or
re
la
ti
on

M
at
ri
x

P
an

el
A

of
th
e
ta
bl
e
pr
ov
id
es

pa
ir
w
is
e
co
rr
el
at
io
n
of

al
le
xp

la
na

to
ry

va
ri
ab

le
s.

P
an

el
B
re
po

rt
s
pa

ir
w
is
e
co
rr
el
at
io
n
of

al
ld

ep
en
de
nt

va
ri
ab

le
s.

T
he

co
rr
el
at
io
ns

ar
e
re
po

rt
ed

ov
er

th
e
19
90
-2
01
1
sa
m
pl
e
pe

ri
od

fo
r
ea
ch

pa
ir

of
va
ri
ab

le
s,

ex
ce
pt
S
h
or
tI
n
te
re
st

w
hi
ch

is
av
ai
la
bl
e
on

ly
up

to
Ju

ne
,2

01
0.

P
an

el
A

.C
or

re
la

ti
on

m
at

ri
x

of
ex

pl
an

at
or

y
va

ri
ab

le
s

H
ol

di
ng

In
v.

ho
ri

zo
n,

In
v.

ho
ri

zo
n,

B
oo

k-
to

-
L
og

(s
iz

e)
M

om
en

tu
m

St
d.

D
ev

Sh
or

t
In

st
it

ut
io

na
l

ho
ri

zo
n

Y
an

Z
ha

ng
B

en
-D

av
id

et
al

.
M

ar
ke

t
of

R
et

ur
ns

In
te

re
st

O
w

ne
rs

hi
p

In
v.

ho
ri

zo
n

(Y
an

Z
ha

ng
)

0.
68

5
In

v.
ho

ri
zo

n
(B

en
-D

av
id

et
al

.)
0.

93
0

0.
65

1
B

oo
k-

to
-M

ar
ke

t
-0

.1
28

-0
.1

13
-0

.1
19

L
og

(s
iz

e)
0.

47
4

0.
45

3
0.

44
8

-0
.2

51
M

om
en

tu
m

0.
04

35
0.

05
79

0.
05

26
-0

.0
16

1
0.

07
01

St
.

D
ev

.
of

R
et

ur
ns

-0
.1

77
-0

.1
28

-0
.1

73
0.

09
99

-0
.3

93
-0

.0
59

4
Sh

or
t

In
te

re
st

0.
43

9
0.

32
7

0.
40

6
-0

.0
84

9
0.

21
7

-0
.0

12
5

0.
01

84
In

st
.

O
w

ne
rs

hi
p

0.
78

4
0.

72
3

0.
74

3
-0

.1
20

0.
65

0
0.

00
29

6
-0

.2
56

0.
40

6
D

P
-0

.0
36

-0
.0

38
5

-0
.0

39
2

0.
00

60
9

0.
01

13
-0

.0
04

71
-0

.0
18

9
-0

.0
09

72
-0

.0
05

24

P
an

el
B

.C
or

re
la

ti
on

m
at

ri
x

of
de

pe
nd

en
t

va
ri

ab
le

s

A
m

ih
ud

m
ea

su
re

Q
uo

te
d

Sp
re

ad
R

el
at

iv
e

sp
re

ad
V
ol

um
e

T
ur

no
ve

r
P

&
S

be
ta

Sa
dk

a
be

ta

Q
uo

te
d

Sp
re

ad
0.

00
81

9
R

el
at

iv
e

Sp
re

ad
0.

13
5

0.
36

3
V
ol

um
e

-0
.0

13
2

-0
.0

45
8

-0
.0

75
2

T
ur

no
ve

r
-0

.0
38

8
-0

.1
09

-0
.1

57
0.

15
8

P
&

S
be

ta
-0

.0
03

83
-0

.0
01

92
0.

03
15

-0
.0

08
42

0.
01

18
Sa

dk
a

be
ta

0.
01

73
0.

00
62

8
0.

03
61

-0
.0

18
0

-0
.0

10
8

0.
11

8
A

&
P

be
ta

0.
00

15
4

0.
00

43
4

0.
02

11
-0

.0
00

47
2

0.
00

27
5

0.
02

35
0.

09
38



2.7. Concluding remarks 57

Table 2.3: Cross-Sectional Regressions of the Amihud Liquidity Measure

Cross-section regressions of the Amihud liquidity measure on the lagged holding horizon and
the other lagged stock characteristics. The table reports results of the regression analysis of the
equation

Amihi t+1 = α+ β1 ·Horizoni t +
∑
j

γj · Controlji t,

where Amih is taken to be the Amihud liquidity measure (2.3). Controls are logarithm of the
stock size (Ln(size)), standard deviation of the stock returns (RetStdev), and institutional in-
vestor ownership in a given stock (%hold). Estimation is made using two dimensional clustering
procedure, which takes into account between firm and year effects and produces unbiased stan-
dard errors. t statistics are provided in parentheses, significance levels are marked as follows:
* coefficient is significant at the 10% level, ** coefficient is significant at the 5% level, and ***
coefficient is significant at the 1% level.

(1) (2) (3) (4) (5) (6)

Horizon -0.637*** -0.150*** -0.437*** -0.138*** -0.183*** -0.160***
(-3.68) (-3.58) (-3.25) (-2.76) (-4.24) (-3.55)

Ln(size) -0.394*** -0.282***
(-16.02) (-8.68)

RetStdev 23.72*** 16.93*** 21.01***
(10.76) (6.99) (8.84)

% hold -1.818*** -1.156***
(-24.55) (-8.06)

Constant 0.654*** 5.339*** -0.273*** 3.347*** 1.299*** 0.242
(15.37) (16.81) (-2.70) (6.95) (16.21) (1.54)



2.7. Concluding remarks 58

Table 2.4: Cross-Sectional Regressions of the Quoted Spread

Cross-section regressions of the quoted spread on the lagged holding horizon and the other lagged
stock characteristics. The table reports results of the regression analysis of the equation

spreadi t+1 = α+ β1 ·Horizoni t +
∑
j

γj · Controlji t,

where spread is taken to be the Quoted Spread. Controls are logarithm of the stock size
(Ln(size)), standard deviation of the stock returns (RetStdev), and institutional investor own-
ership in a given stock (%hold). Estimation is made using two dimensional clustering procedure,
which takes into account between firm and year effects and produces unbiased standard errors.
t statistics are provided in parentheses, significance levels are marked as follows: * coefficient
is significant at the 10% level, ** coefficient is significant at the 5% level, and *** coefficient is
significant at the 1% level.

(1) (2) (3) (4) (5) (6)

Horizon -0.0533 -0.0299 -0.0649* -0.0339 0.00818 0.00580
(-1.49) (-1.19) (-1.74) (-1.30) (0.62) (0.41)

Ln(size) -0.0197** -0.0302***
(-1.98) (-2.73)

RetStdev -0.923*** -1.651*** -1.660***
(-2.88) (-4.01) (-5.45)

% hold -0.256*** -0.307***
(-2.86) (-3.59)

Constant 0.290*** 0.524*** 0.326*** 0.714*** 0.381*** 0.464***
(5.85) (3.56) (5.64) (4.08) (5.55) (6.21)
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Table 2.5: Cross-Sectional Regressions of the Relative Spread

Cross-section regressions of the relative spread on the lagged holding horizon and the other
lagged stock characteristics. The table reports results of the regression analysis of the equation

rspreadi t+1 = α+ β1 ·Horizoni t +
∑
j

γj · Controlji t,

where rspread is taken to be the Relative Spread. Controls are logarithm of the stock size
(Ln(size)), standard deviation of the stock returns (RetStdev), and institutional investor own-
ership in a given stock (%hold). Estimation is made using two dimensional clustering procedure,
which takes into account between firm and year effects and produces unbiased standard errors.
t statistics are provided in parentheses, significance levels are marked as follows: * coefficient
is significant at the 10% level, ** coefficient is significant at the 5% level, and *** coefficient is
significant at the 1% level.

(1) (2) (3) (4) (5) (6)

Horizon -0.0208*** -0.00237** -0.0154*** -0.00204* -0.00150 -0.000665
(-3.80) (-2.01) (-3.55) (-1.85) (-1.09) (-0.53)

Ln(size) -0.0155*** -0.0130***
(-8.07) (-7.22)

RetStdev 0.697*** 0.383*** 0.543***
(6.78) (4.90) (5.46)

% hold -0.0805*** -0.0640***
(-8.23) (-7.92)

Constant 0.0379*** 0.222*** 0.0106*** 0.178*** 0.0666*** 0.0394***
(8.59) (8.72) (3.82) (7.46) (9.10) (6.96)
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Table 2.6: Cross-Sectional Regressions of the Volume Traded

Cross-section regressions of the volume traded on lagged holding horizon and other lagged stock
characteristics. The table reports results of the regression analysis of the equation

V olTri t+1 = α+ β1 ·Horizoni t +
∑
j

γj · Controlji t,

where V olTr is taken to be the Relative Spread. Controls are logarithm of the stock size
(Ln(size)), standard deviation of the stock returns (RetStdev), and institutional investor own-
ership in a given stock (%hold). Estimation is made using two dimensional clustering procedure,
which takes into account between firm and year effects and produces unbiased standard errors.
t statistics are provided in parentheses, significance levels are marked as follows: * coefficient
is significant at the 10% level, ** coefficient is significant at the 5% level, and *** coefficient is
significant at the 1% level.

(1) (2) (3) (4) (5) (6)

Horizon 0.0722*** -0.00340 0.0732*** -0.00197 0.00729* 0.00780*
(2.65) (-0.33) (2.67) (-0.20) (1.69) (1.72)

Ln(size) 0.0612*** 0.0707***
(6.38) (6.69)

RetStdev -0.250 1.439*** 0.382***
(-1.48) (6.27) (4.09)

% hold 0.260*** 0.272***
(8.06) (8.34)

Constant 0.0772*** -0.651*** 0.0867*** -0.820*** -0.0150** -0.0343***
(5.64) (-6.20) (4.76) (-6.55) (-2.49) (-4.23)
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Table 2.7: Cross-Sectional Regressions of the Turnover

Cross-section regressions of the turnover on lagged holding horizon and other lagged stock char-
acteristics. The table reports results of the regression analysis of the equation

Turnovi t+1 = α+ β1 ·Horizoni t +
∑
j

γj · Controlji t,

where Turnov is taken to be the stock Turnover. Controls are logarithm of the stock size
(Ln(size)), standard deviation of the stock returns (RetStdev), and institutional investor own-
ership in a given stock (%hold). Estimation is made using two dimensional clustering procedure,
which takes into account between firm and year effects and produces unbiased standard errors.
t statistics are provided in parentheses, significance levels are marked as follows: * coefficient
is significant at the 10% level, ** coefficient is significant at the 5% level, and *** coefficient is
significant at the 1% level.

(1) (2) (3) (4) (5) (6)

Horizon 0.831*** 0.597*** 0.905*** 0.623*** 0.397*** 0.412***
(3.53) (3.92) (3.48) (3.92) (6.92) (6.92)

Ln(size) 0.190*** 0.266***
(6.05) (7.88)

RetStdev 5.187*** 11.56*** 9.952***
(3.58) (8.35) (7.69)

% hold 1.741*** 2.056***
(9.44) (12.94)

Constant 1.113*** -1.146*** 0.906*** -2.504*** 0.496*** -0.00713
(8.23) (-3.80) (6.15) (-7.13) (3.77) (-0.08)
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Table 2.9: Cross-sectional Regressions of Liquidity on the Alternative Hold-
ing Horizon

regressions of liquidity on the alternative lagged holding horizon and other lagged stock charac-
teristics. Holding horizon is estimated as in Yan/Zhang (2009). The table reports results of the
regression analysis of the equation

(Il)Liqi t+1 = α+ β1 ·Horizoni t +
∑
j

γj · Controlji t,

where (Il)Liq is one of the five (il)liquidity measures: Amihud liquidity ratio (Amihud), quoted
spread (Spread), relative spread (%spread), volume traded (V olume) and turnover. Controls
are logarithm of the stock size (Ln(size)) and standard deviation of the stock returns (RetStdev).
Holding horizon is estimated as in Yan/Zhang (2009). Estimation is made using two dimensional
clustering procedure, which takes into account between firm and year effects and produces unbi-
ased standard errors. t statistics are provided in parentheses, significance levels are marked as
follows: * coefficient is significant at the 10% level, ** coefficient is significant at the 5% level,
and *** coefficient is significant at the 1% level.

Amihud Spread % spread Volume Turnover

Horizon -0.666*** 0.0318 -0.00350 -0.0404 1.767***
(-3.43) (0.62) (-1.11) (-1.21) (3.42)

Ln(size) -0.281*** -0.0311*** -0.0131*** 0.0709*** 0.269***
(-8.76) (-2.82) (-7.26) (6.70) (7.82)

RetStdev 16.95*** -1.648*** 0.383*** 1.439*** 11.51***
(7.01) (-3.98) (4.91) (6.26) (8.41)

Constant 3.341*** 0.720*** 0.178*** -0.822*** -2.525***
(6.98) (4.12) (7.48) (-6.56) (-7.09)
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Table 2.10: Cross-sectional Regressions of Liquidity on the Alternative
Holding Horizon

Cross-section regressions of liquidity on lagged holding horizon and other lagged stock charac-
teristics. Holding horizon is estimated as in Ben-David et al. (2012). The table reports results
of the regression analysis of the equation

(Il)Liqi t+1 = α+ β1 ·Horizoni t +
∑
j

γj · Controlji t,

where (Il)Liq is one of the five (il)liquidity measures: Amihud liquidity ratio (Amihud), quoted
spread (Spread), relative spread (%spread), volume traded (V olume) and turnover. Controls
are logarithm of the stock size (Ln(size)) and standard deviation of the stock returns (RetStdev).
Holding horizon is estimated as in Ben-David et al. (2012). Estimation is made using two dimen-
sional clustering procedure, which takes into account between firm and year effects and produces
unbiased standard errors. t statistics are provided in parentheses, significance levels are marked
as follows: * coefficient is significant at the 10% level, ** coefficient is significant at the 5% level,
and *** coefficient is significant at the 1% level.

Amihud Spread % spread Volume Turnover

Horizon -0.137*** -0.0315 -0.00204* -0.00397 0.591***
(-3.14) (-1.17) (-1.80) (-0.44) (3.73)

Ln(size) -0.282*** -0.0303*** -0.0130*** 0.0707*** 0.266***
(-8.70) (-2.73) (-7.22) (6.69) (7.86)

RetStdev 16.93*** -1.652*** 0.383*** 1.438*** 11.57***
(6.99) (-4.01) (4.90) (6.27) (8.35)

Constant 3.347*** 0.715*** 0.178*** -0.821*** -2.511***
(6.95) (4.08) (7.46) (-6.55) (-7.10)
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Table 2.11: Cross-Sectional Regressions of Pastor and Stambaugh Liquidity
Risk by Years

Cross-section regressions of Pastor and Stambaugh liquidity risk (beta) on lagged holding horizon
and other lagged stock characteristics by years. The table reports results of the regression analysis
of the equation

LiqBetat = α+ β ·Horizont−1 + γ′ · Controlst−1,

where Amih is taken to be the Amihud liquidity measure (2.3). Controls are logarithm of
the stock size (Ln(size)), ratio of book value of the stock to its market value (Book − to −
Market), cumulated previous 9 month returns excluding month t − 1 (Momentum), investors
short interest toward a given stock (Short Int), and liquidity measures (Amihud measure
and Relative spread). In each raw there are presented coefficient estimates for a given year
(1990,1991, etc.). Estimation is made using fixed effects with time clustered variance covariance
matrix estimated using Huber-White sandwich VCE estimator. t statistics are provided in
parentheses, significance levels are marked as follows: * coefficient is significant at the 10% level,
** coefficient is significant at the 5% level, and *** coefficient is significant at the 1% level.

Horizon Ln(size) Momentum Amihud % spread Const

1990 -87.020 -3.230 27.085 .951 17.106 30.125
(-5.059)∗∗∗ (-3.265)∗∗∗ (5.748)∗∗∗ (.571) (1.331) (2.749)∗∗∗

1991 28.148 -3.636 4.681 -.085 -16.777 37.293
(1.151) (-2.913)∗∗∗ (1.348) (-.085) (-.474) (2.499)∗∗

1992 20.384 -1.790 -15.995 -.679 -12.997 24.094
(3.325)∗∗∗ (-1.687)∗ (-4.307)∗∗∗ (-.332) (-.404) (1.802)∗

1993 12.074 .451 12.504 -1.386 54.782 -9.274
(.501) (.451) (2.168)∗∗ (-.745) (1.617) (-.667)

1994 .341 -1.867 19.051 -1.317 66.382 20.293
(.017) (-2.066)∗∗ (2.864)∗∗∗ (-.770) (1.921)∗ (1.453)

1995 5.144 -5.880 -1.255 .211 58.851 80.634
(2.368)∗∗ (-5.297)∗∗∗ (-.217) (.151) (1.147) (4.448)∗∗∗

1996 9.443 -2.496 -9.851 -.225 4.860 39.579
(.687) (-4.102)∗∗∗ (-2.462)∗∗ (-.293) (.116) (4.193)∗∗∗

1997 -5.652 -.981 -3.333 .066 -12.089 16.119
(-.328) (-1.935)∗ (-.889) (.091) (-.619) (2.340)∗∗

1998 10.517 .876 -10.362 -.419 -40.645 -10.490
(.791) (1.538) (-2.702)∗∗∗ (-2.110)∗∗ (-1.753)∗ (-1.424)

1999 -18.460 -2.073 13.600 -.041 8.992 26.629
(-.827) (-4.700)∗∗∗ (6.767)∗∗∗ (-.173) (.309) (3.820)∗∗∗

2000 -34.062 -1.479 1.482 .034 12.667 20.553
(-1.334) (-3.118)∗∗∗ (.739) (.235) (.875) (3.192)∗∗∗

2001 -31.425 -.944 3.771 -.523 12.254 13.138
(-1.891)∗ (-2.040)∗∗ (1.132) (-1.290) (8.192)∗∗∗ (2.278)∗∗

2002 -.275 .492 9.169 .716 51.591 -3.317
(-.024) (.843) (3.396)∗∗∗ (2.214)∗∗ (2.095)∗∗ (-.426)

2003 33.877 .762 -16.684 -1.209 .355 -5.104
(3.031)∗∗∗ (1.997)∗∗ (-6.899)∗∗∗ (-2.852)∗∗∗ (.014) (-.998)

2004 38.467 .236 4.948 -.001 -52.914 -2.388
(2.224)∗∗ (.423) (1.196) (-.011) (-.936) (-.336)

2005 29.187 1.852 16.425 -.024 -93.021 -29.228
(2.317)∗∗ (2.705)∗∗∗ (4.147)∗∗∗ (-.764) (-1.892)∗ (-2.929)∗∗∗

2006 16.451 3.046 .589 .080 -171.065 -45.472
(1.274) (4.744)∗∗∗ (.142) (2.703)∗∗∗ (-4.102)∗∗∗ (-4.422)∗∗∗

2007 3.033 1.062 6.196 .017 3.286 -16.983
(3.385)∗∗∗ (2.370)∗∗ (1.886)∗ (.472) (.077) (-2.375)∗∗

2008 34.935 -.951 -4.883 .112 30.593 11.298
(2.802)∗∗∗ (-2.823)∗∗∗ (-1.762)∗ (1.811)∗ (5.539)∗∗∗ (2.798)∗∗∗

2009 6.515 .453 -1.550 .089 13.843 -9.317
(.501) (1.384) (-1.073) (2.550)∗∗ (.654) (-2.026)∗∗

2010 -7.317 -.154 5.393 .042 14.174 -2.591
(-.538) (-.391) (3.339)∗∗∗ (.741) (.803) (-.504)
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Chapter 3.
Is the Price Kernel Monotone?

—by Giovanni BARONE-ADESI, Hakim DALL’O and

Volodymyr Vovchak—

3.1 Introduction

According to economic theory, the shape of the state price density (SPD) per unit

probability (also known as the asset pricing kernel, Rosenberg/Engle (2002) or

stochastic discount factor (SDF), Campbell et al. (1997)) is a decreasing function

in wealth.

Jackwerth (2000) finds a kernel price before the crash of 1987 in agreement with

economic theory, but a discordant result for the post-crash period. After his work,

a number of papers have been written on this topic trying to explain the reason

for this puzzle. Rosenberg/Engle (2002), Detlefsen et al. (2007) and Jackwerth

(2004) are among the most interesting papers on this subject. Unfortunately,

none of them found an answer to this puzzle. In all of these papers the authors

found problems in the methodology employed by previous papers and tried to

improve them, but the result was the same: the puzzle remained.

An answer to this puzzle has been given in Chabi-Yo et al. (2005), where they

argue that the main problem is the regime shifts in fundamentals: when volatility

changes, the kernel price is no longer monotonically decreasing. In each regime

they prove that the kernel price is consistent with economic theory, but when

there is a shift in regime the kernel price changes in its shape and it is no longer

consistent with economic theory.

67
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In a recent paper, Barone-Adesi et al. (2008) compute again the kernel price and

find kernel prices consistent with economic theory. In particular they find ker-

nel price consistency for fixed maturities. They do not pool different maturities

as Aït-Sahalia/Lo (1998) and therefore they avoid the problem that arises when

maturities are different, but they do not consider the change in fundamentals as

a relevant aspect of their computation. Their result can be explained by the fact

that the sample they use is very short (3 years) and that throughout this period

(2002 - 2004) the volatility does not change much.

In this paper we compute the kernel price both in a single day and as an average

of kernel prices over a period of time, holding maturity constant. We want to

understand the implication of the changing regime using two measures of money-

ness: in the first case we consider the kernel price as a function of two parameters,

the underlying and the interest rate (we do not take into consideration the chang-

ing regime) and then we add third parameter – the volatility of the underlying.

As argued in Brown/Gibbons (1985), under some general assumptions one may

substitute (in estimation) consumption with the market index while working with

asset pricing models1. Thats why in order to evaluate the kernel price we need to

take a broad index which attempts to cover the entire economy. As it is common

in this kind of literature to use S&P500 index, we also use data on S&P500 index

prices and options on the S&P500 index over a period of 12 years (from the 2nd

of January 1996 to the 31st December 2007).

Evaluating the kernel price in a period of time, without taking into consideration

the change in volatility, should lead to a kernel not consistent with economic theory.

Surprising, when we compute the kernel price considering only two parameters

(the underlying and the interest rate), the average kernel price is consistent with

economic theory, with the exceptions of a few dates.

To check our result we also do kernel smoothing which is similar to averaging, but

it has the advantage of producing smooth price kernel without the spikes one might

get from simple averaging. Another robustness check for our results is the testing

of monotonicity of the obtained kernel price. We take our estimated average price
1The aggregated consumption is inconvenient in two ways: (1) it is hard to measure, and (2) no

options on aggregate consumption are traded.
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kernel, consider its monotone version and then compare the monotone version with

the estimated version by means of Kolmogorov-Smirnov test.

In order to estimate the risk neutral distribution, we use the well-known result in

Breeden/Litzenberger (1978). The difference with previous works is in the options

we use. Instead of creating option prices through nonparametric or parametric

models (all the previous research use artificial price of options and this could

introduce a bias in the methodology), we use only the options available on the

market. We then construct the historical density using the GJR GARCH model

with Filtered Historical Simulation already presented in Barone-Adesi et al. (2008).

As discussed in Rosenberg/Engle (2002), among the several GARCH models, the

GJR GARCH with FHS has the flexibility to capture the leverage effect and the

ability to fit daily S&P500 index returns. Then, the set of innovations estimated

from historical returns and scaled by their volatility gives an empirical density

function that incorporates excess skewness, kurtosis, and other extreme return

behavior that is not captured in a normal density function. These features avoid

several problems in the estimation of the kernel price. For example, using a sim-

ple GARCH model where the innovations are standard normal (0; 1) leads to a

misspecification of the return distribution of the underlying index.

Once we have the two probabilities, under the pricing and the objective measures,

we take the ratio between the two densities, discounted by the risk-free rate, in

a particular day, to compute the kernel price for a fixed maturity. We repeat

the same procedure for all the days in the time series which have options with

the same maturity and then we take the average of the kernel price through the

sample. At the same time we apply kernel smoothing on the estimated values of

the price kernel to confirm our result.

We also evaluate how the shape of the price kernel changes before and during a

crisis (the 2008 crisis). We notice that the three periods before the crisis (2005,

2006 and 2007) exhibit fairly monotonically decreasing paths, while during the

crisis, the kernel price remains monotonically decreasing, but has higher values.

this is consistent with the idea that during a crisis investors increase the risk

aversion.
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In order to evaluate the impact of the shifting regime, we repeat the computation

of the different kernel prices considering the volatility as a parameter of the kernel

function. As expected, results improve, but they are still quite similar, supporting

our first intuition that the changing regime is relevant, but our methodological

choices have a strong impact on the final result.

The remainder of this paper is organized as follows. In section 2, we present a

review of the literature and we define the “pricing kernel puzzle”. In section 3, we

define our method to estimate the kernel price. We explain our application of the

result of Breeden/Litzenberger (1978) and we derive the risk neutral distribution.

We then estimate the historical density using a GJR GARCH method with FHS

and we take the kernel price from a particular day as well as the kernel price

over the time series of our sample. In the last part of the section we conduct two

statistical tests. Namely, we use two Kolmogorov type tests of the monotonicity

of the estimated pricing kernels. In section 4, we provide further evidence of our

results. First we plot kernel price with different maturities to prove the robustness

of our methodology, then we take the average of these different kernel prices and

we show that the average of SPD per unit probabilities with close maturities have

a monotonically decreasing path. In section 5, we present the change in the kernel

price shape before and during the recent crisis. In section 6, we extend our model,

using a kernel price with three parameters (underlying, volatility and risk-free),

and in section 7 we offer conclusions.

3.2 Review of the Literature

In this section we derive the price kernel as in macroeconomic theory and also

as in probability theory. We then present some methods, parametric and non

parametric, to derive the kernel price.

3.2.1 Price kernel and investor preference

The ratio between the risk neutral density and the historical density is known as

the price kernel or state price density per unit probability. In order to explain the
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relationship between the risk-neutral distribution and the historical distribution we

need to introduce some basic concepts from macroeconomic theory. In particular,

we use a representative agent with a utility function U(·). According to economic

theory (the classical von Neumann and Morgenstern economic theory), we have

three types of investors: risk averse, risk neutral and risk lover. The utility function

U(·) of these investors is a twice differentiable function of consumption c: U(c).

The common property for the three investors is the non-satiation property: the

utility increase with consumption, e.g. more consumption is preferred to less

consumption, and the investor is never satisfied - he never has so much wealth

that getting more would not be at least a little bit desirable. This condition

means that the first derivative of the utility function is always positive. On the

other hand, the second derivative changes according to the attitude the investor

has toward risk.

If the investor is risk averse, his utility function is an increasing concave utility

function. The risk neutral investor has a second derivative equal to zero, while the

risk seeker - a convex utility function.

Defining u(·) as the single period utility function and β as the subjective discount

factor, we can write the intertemporal two-period utility function as

U(ct; ct+1) = u(ct) + βu(ct+1).

We introduce ξ as the amount of an asset the agent chooses to buy at time t, e

as the original endowment of the agent, Pt as the price of the asset at time t and

xt+1 as the future payoff of the asset. The optimization problem is:

max
ξ
{u(ct) + βEt[u(ct+1)]} ;

subject to

ct = et − Ptξ;

ct+1 = et+1 + xt+1ξ.
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The first constraint is the budget constraint at time 1, while the second constraint

is the Walrasian property, e.g. the agent will consume all of his endowment and

asset’s payoff at the last period. Substituting the constrains into the objective and

setting the derivative with respect to ξ equal to zero we get:

Pt = Et

[
β
u′(ct+1)

u′(ct)
xt+1

]
.

We define

βEt

[
u′(ct+1)

u′(ct)

]
= mt,t+1 = MRS, (3.1)

as the marginal rate of substitution at time t. The MRS is also known as the

Stochastic Discount Factor (SDF) or the price kernel. Therefore the price of any

asset can be expressed as

Pt = Et[mt,t+1xt+1].

In a continuous case, the price of any asset can be written as

P p
t =

∫
R

mt,T (ST )xT (ST )pt,T (ST )dST (3.2)

where pt,T (ST ) is the physical probability of state ST (for the rest of the paper we

refer to this probability as the historical probability) and xT (ST ) is the payoff of

an asset.

To define the price of an asset at time t, under the risk neutral measure, we can

write equation (3.2) as:

P q
t = e−rt

∫
R

xT (ST )qt,T (ST )dST (3.3)

where qt,T (ST ) is the state price density (for the rest of the paper we refer to this

probability as the risk neutral probability). At this point, combining equation
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(3.2) and (3.3) we can derive the SDF as:

mt,T (ST ) = e−rt
qt(ST )

pt(ST )
(3.4)

In this case we consider a two period model where the price kernel is a function

only of the underlying, ST , and the risk free rate, r. In the following part we will

see how to have a kernel price with more parameters.

In their papers Arrow (1964) and Pratt (1964) find a connection between the

kernel price and the measure of risk aversion of a representative agent. Arrow-

Pratt measure of absolute risk-aversion (ARA) is defined as:

At(ST ) = −u
′′(ST )

u′(St)

The absolute risk aversion is an indicator of willingness to expose some amount of

wealth to risk as a function of wealth. An agent’s utility function demonstrating

decreasing (constant or increasing) absolute risk aversion implies that her willing-

ness to take risk increases (does not change or decreases) as the agent becomes

wealthier.

Classic economic theory assumes risk averse economy agents, i.e. the utility func-

tion of the economy is concave (mathematically u′′(ST ) ≤ 0). The following argu-

ment should unveil an impact of this basic property of pricing kernel behavior.

From (3.1), the pricing kernel can be written as function of the marginal utility

as:

mt,T (ST ) = β
u′(ST )

u′(St)
,

and its first derivative is:

m′t,T (ST ) = β
u′′(ST )

u′(St)
= −βAt(ST ),

which (remember u′′(ST ) ≤ 0 and u′(St) > 0 ∀t) implies m′t,T (ST ) ≤ 0, or in

words, the pricing kernel is decreasing as a function of the wealth. We are aiming

to check if the pricing kernel is decreasing and, as a consequence, if agents in the

economy are risk averse.
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3.2.2 Nonparametric and parametric estimation

There are several methods to derive the kernel price. There are both parametric

models and nonparametric models. In this section we give a review of the most

well-known methods used in literature. We focus particularly on the nonparamet-

ric models because they do not assume any particular form for the risk neutral

and historical density and also for the kernel price.

One of the first papers to recover the price kernel in a nonparametric way is

Aït-Sahalia/Lo (1998). In their work they derive the option price function by

nonparametric kernel regression and then, applying the result in Breeden/Litzen-

berger (1978), they compute the risk neutral distribution. Their findings are not

consistent with economic theory. Because they look at the time continuity of mt,T

across time, one may understand their results as estimates of the average kernel

price over the sample period, rather than as conditional estimates.

Other problems in their article are discussed in Rosenberg/Engle (2002). In par-

ticular they suggest that the non specification of the investors beliefs about future

return probabilities could be a problem in the evaluation of the kernel price. Also

they use of a very short period of time, 4 years, to estimate the state probabilities.

Moreover, they depart from the literature on stochastic volatility, which suggests

that future state probabilities depend more on recent events than past events. In

fact, past events remain useful for prediction of future state probabilities. In order

to take this into account we use a dataset of 12 years of option prices.

A work close in spirit to Aït-Sahalia/Lo (1998) is Jackwerth (2000). His article is

one of the most interesting pertaining to this literature. Beyond the estimation

technique used, his paper is noteworthy because it also opened up the well-known

"pricing-kernel puzzle". In his nonparametric estimation of the kernel price, Jack-

werth finds that the shape of this function is in accordance with economic theory

before the crash of 1987, but not after the crash. He concludes that the reason is

the mispricing of options after the crash.
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Both articles could incur some problems that cause the kernel price and the relative

risk aversion function (RRA) to be not consistent with economic theory. In Aït-

Sahalia/Lo (1998), we see that, if the bandwidth changes, the RRA changes as

well and this means that the bandwidth chosen influences the shape of the RRA;

on the other hand, in Jackwerth (2000), the use of option prices after the crisis

period could influence the shape of the kernel price if volatility is misspecified.

Another nonparametric estimation model for the kernel price is given by Barone-

Adesi et al. (2008), where they use a procedure similar to the one used by Rosen-

berg/Engle (2002), but with a nonparametric estimation of the ratio qt,t+τ/pt,t+τ .

While in the papers by Aït-Sahalia/Lo (2000) and Jackwerth (2000) results are in

contrast with the economic theory, Barone-Adesi et al. (2008) find a kernel price

which exhibits a fairly monotonically decreasing shape.

Parametric methods to estimate the kernel price are often used in literature. Jack-

werth (2004) provides a general review on this topic, but for the purpose of our

work we do not go into much detail on parametric estimation. As pointed out by

Birke/Pilz (2009) there are no generally accepted parametric forms for asset price

dynamics, for volatility surfaces or for call and put functions and therefore the use

of parametric method may introduce systematic errors.

Our goal is to test whether a different nonparametric method, starting from option

pricing observed in the market, respects the conditions of no-arbitrage present in

Birke/Pilz (2009). In particular, we test if the first derivative of the call price

function is decreasing in the strike and the second derivative is positive. These

conditions should guarantee a kernel price monotonically decreasing in wealth.

It is important to stress that our kernel price is a function of three variables: the

underlying price, the risk-free rate and volatility. In the first part, we use only two

factors: the underlying and the risk-free rate. In last sections we introduce also

volatility.
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3.3 Empirical kernel price

In this section we compute the kernel price as the ratio of the risk-neutral and

the historical density, discounted by the risk-free interest rate. First we describe

how we compute the risk-neutral density. Then, we explain our computation of

the historical density. In each part we describe the dataset we use and our filter

for cleaning it.

3.3.1 Theoretical backgrounds of risk-neutral density

Breeden/Litzenberger (1978) shows how to derive the risk-neutral density from a

set of call options with fixed maturity. The formula for risk-neutral density is (see

Appendix A for derivation):

f(K) = erT
∂2C(St, K, T )

∂K2

∣∣∣∣
ST=K

(3.5)

We can approximate this result for the discrete case as:

f(Ki) ≈ erT
Ci+1(St, K, T )− 2Ci(St, K, T ) + Ci−1(St, K, T )

(Ki+1 −Ki)(Ki −Ki−1)

∣∣∣∣
ST=K

(3.6)

and for puts

f(Ki) ≈ erT
Pi+1(St, K, T )− 2Pi(St, K, T ) + Pi−1(St, K, T )

(Ki+1 −Ki)(Ki −Ki−1)

∣∣∣∣
ST=K

(3.7)

Note that in equations (3.6) and (3.7) we wrote numerical derivatives for values

of Ki−1 and Ki+1 which are not symmetric around Ki. Breeden/Litzenberger

(1978) used symmetric strikes while deriving (3.5). But having non symmetric

strikes does not hurt our estimation in any sense, to the contrary it gives us more

observations and as a result may improve our estimation.

Now we discuss some other methods of deriving the risk neutral density and com-

pare it to the one we use.
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A recent paper by Figlewski (2008) is very close in spirit to our work. In his

paper he derives the risk neutral distribution using the same result in Breeden/

Litzenberger (1978). We differ from him in some aspects. First, we use the bid and

ask prices that are given on the market to construct butterfly spreads. e.g. for the

long position the ask price is used and for the short position the bid price. Our

choice removes negative values in the risk-neutral distribution and we therefore

find that the no-arbitrage condition described in Birke/Pilz (2009) holds. Second,

we do not need to convert the bid, ask, or mid-prices into implied volatility to

smooth the transition from call to put because we take the average of butterfly

prices from several days with equal maturities and this improves the precisionof

our result. Other similar works are discussed in Bahra (1997), Pirkner et al. (1999)

and Jackwerth (2004).

In Bahra (1997), the author proposes several techniques to estimate the risk neutral

density. For every method he explains the pros and the cons. He then assumes

that the options prices can be derived either using a parametric method, by solving

a least squares problem, or nonparametric only, using kernel regression. In our

work, using a time series of options over a sample of 12 years and taking averages

we avoid the parametric or nonparametric pricing step and therefore we rely only

on pricing available on the market.

In Pirkner et al. (1999), they use a combination approach to derive the risk neutral

distribution. They combine the implied binomial tree and the mixture distribu-

tions to get the approach called “Mixture Binomial Tree”. Our work differs from

their work due to our use of European options. In their work, they use American

options and therefore they could have the problem of the early exercise. In our

sample, we consider only European options to be sure to have the risk neutral

density for that expiration time only.

Jackwerth (2004) may be considered as a general review of different methods and

problems. He concentrates in particular on nonparametric estimation, but he gives

a general overview also on parametric works, sorting parametric works into classes

and explaining the positive and negative aspects of each one.
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3.3.2 Historical density

To obtain historical probability density we need to account for features of the

empirical returns of S&P500 index. There are lots of evidence suggesting that

return innovations are (i) not normal, (ii) volatility is stochastic and, (iii) that

positive and negative shocks to return have diverse effect on returns’ volatility

(see for example Ghysels et al. (1996)). That’s why we are going to use a GARCH

model together with the filtered historical simulation (FHS) approach used by

Barone-Adesi et al. (1998). FHS approach allows to model volatility of returns

without specifying any assumption on return innovations.

Among variety of GARCH models we are going to use Glosten et al. (1993) (GJR

GARCH) model. The choice of the GJR model relies on two properties: 1) its

ability to capture an asymmetry of positive and negative returns effect on return

volatility and, 2) its fitting ability (Rosenberg/Engle (2002) document that GJR

GARCH model fits S&P500 returns data better than other GARCH models).

Under the historical measure, the asymmetric GJR GARCH model is

log
St
St−1

= µ+ εt,

σ2
t = ω + βσ2

t−1 + αε2t−1 + γIt−1ε
2
t−1,

where St – the underlying price, εt = σtzt, and zt ∼ f(0, 1), and It−1 = 1 when

εt−1 < 0, and It−1 = 0 otherwise. The scaled return innovation, zt, is drawn from

the empirical density function f(·), which is obtained by dividing each estimated

return innovation, ε̂t, by its estimated conditional volatility σ̂t. This set of es-

timated scaled innovations gives an empirical density function that incorporates

excess skewness, kurtosis, and other extreme return behavior that is not captured

in a normal density function.

The methodology we use to estimate the historical density is as follows. We have a

set of risk neutral densities, f(Ki), for each day over 12 years. They are calculated

from S&P500 index options with constant maturities. Our f(Ki) are prices of
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hypothetical butterfly strategies constructed from two (call or put) options with

strike Ki and two long options of the same type with strikes Ki−1 and Ki+1. Our

triplets Ki−1, Ki and Ki+1 are not necessary symmetric. For each day, we estimate

the parameters of the GJR GARCH using a time series of 3500 returns from the

S&P500. Once we have the estimated parameters for each day, we simulate 35000

paths of S&P500 index using as a distribution of zt the empirical distribution of

the normalized innovation (FHS). We estimate the probability that at maturity

we exercise the butterfly, e.g. we count the fractions of paths that at maturity are

in the range [Ki−1, Ki+1]2:

p(Ki) =

#of paths in the interval [Ki−1,Ki+1]
total number of paths

Ki+1 −Ki−1
. (3.8)

Once we have computed the probability for each day, we can apply the same

methodology we use for the risk-neutral distribution. We round the butterfly

moneyness to the second digit after the decimal point and we take the average

over the sample period.

We use the mid-strike for the butterfly and we round the moneyness to two decimal

places. We take the average throughout the time series and we plot the resulting

distribution as a function of moneyness. The historical density is drawn for one

day at figure 3.1, and averaged at figure 3.2.

In subsection 3.3.3 we explain the estimation method we use for the risk neutral

distribution.

3.3.3 Risk-neutral estimation

We use European options on the S&P 500 index (symbol: SPX) to implement our

model. We consider the closing prices of the out-of-the-money (OTM) put and

call SPX options from 2nd January 1996 to 29th December 2007. It is known that

OTM options are more actively traded than in-the-money options and by using
2In our sample we use intervals with different lengths: most of them are intervals with a length of 10

index points, but we also have some intervals with 25 or 50 points, and these intervals are in some cases
overlapping.
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Figure 3.1: Risk-Neutral and Historical Distributions

Left: Risk-neutral distribution (red line) and the historical distribution (blue line). We
take one day at random from our sample (11 August 2005) with maturity equal to 37
days. Right: Price kernel for this particular day (11 August 2005).

only OTM options one can avoid the potential issues associated with liquidity

problems.

Option data and all the other necessary data are downloaded from OptionMetrics.

We compute the risk-neutral density at two different maturities: 37, 46, 57 and 72

days3. The choice of maturities is random and the same procedure can be applied

for all other maturities. We download all the options from our dataset with the

same maturities (we provide analysis and graphs for four maturities: 37, 46, 57

and 72 days; for other maturities results are similar) and we discard the options

with an implied volatility larger than 75%, an average price lower than 0.05 or a

volume equal to 0. In table 3.1 we summarized the number of options available

for each maturity.

We construct then butterfly spreads using the bid-ask prices of the options. The

butterfly spread is formed by two short call options with strike Ki and long two

call with strikes Ki+1 and Ki−1, the same for puts. We divide the dataset and we

construct a butterfly spread for every day. We try to use the smallest distance

possible in the strikes to construct the butterfly spread. Following the quotation

for the SPX we use a difference of 5 basis points. However, for the deep-out-of-

the-money options we need to take into consideration a larger distance because
3We work with this four maturities through the paper, although we provide sometimes graphs and

p-values for more maturities.
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Table 3.1: The Options Number for All Maturities

Table reports number of options used for estimations. Panel A reports number of call and
put options used for main calculation. Panel B reports number of call and put options
used for subsamples around crisis.

Panel A. Main sample (1996-2007)

Maturity 36 37 38 39 43 44 45 46

Calls 2753 2789 2667 2537 2424 2321 2318 2171
Puts 3406 3421 3308 3217 3112 3057 3026 2870

Maturity 54 57 58 59 71 72 73 74

Calls 1879 1873 1853 1934 1460 1466 1414 1281
Puts 2469 2488 2497 2569 1976 1985 1966 1837

Panel B. Around a crisis samples

Maturity 37 46 57 72

Aug 12, 2004 to Sep 15, 2005
Calls 340 250 207 147
Puts 385 297 217 179

Nov 10, 2005 to Oct 10, 2006
Calls 364 280 256 172
Puts 424 329 303 199

Jun 14, 2006 to Jun 14, 2007
Calls 486 355 325 187
Puts 608 441 386 250

Oct 11, 2007 to Aug 14, 2008
Calls 607 505 403 271
Puts 727 609 478 301

there are less options traded. In that case, we arrive to have spreads of 10 to 50

points. We download option prices, order by strike, from smallest to largest. We

take the second difference of option prices using formulas (3.6) and (3.7), for calls

and puts separately, and then combine them. We do it for each day available in

our dataset.

In figure 3.1 we take a day at random from our sample and we show the risk-neutral

distribution, the historical distribution and their ratio as the price kernel. As an

example, we take 11 August 2005, and we look at options with a maturity equal

to 37 days. We see that for this choice, the kernel price shows a monotonically

decreasing path in ST , with some jumps because we do not smooth the curve.
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Figure 3.2: Average Risk Neutral and Historical Distribution

Risk neutral and historical distribution as the 12 year average of risk neutral and histor-
ical distributions for a fixed number of days to maturity.
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At this point, we take into consideration the moneyness of each butterfly. As

reference moneyness of the butterfly spread, we use the moneyness of the middle

strike. We round all the butterfly moneyness to the second decimal digit and

we take the average of all the butterfly prices with equal moneyness4. We can

now plot the risk-neutral distribution as an average of the butterfly prices for a

fixed maturity over a twelve year period. Figure 3.2 draws the risk-neutral and

historical (physical) distributions of the underlying index. As expected, the risk

neutral distribution is shifted to the left with respect to the historical distribution.

3.3.4 Kernel price

We apply the definition given in equation (3.4) in order to get the kernel price.

From previous calculations we obtain the average risk-neutral distribution for the

fixed maturity and also the average historical density. In order to get the average
4In order to find an equal moneyness it is necessary to round the moneyness values to the second

decimal digit. Otherwise we cannot average and we are left with a lower number of points.
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Figure 3.3: SPD Per Unit Probability Averaged Over 12 Years

SPD per unit probability as the average of the SPD per unit probability throughout the
time series of 12 years and with equal maturity. It is important to keep in mind that this
SPD per unit probability is not derived from the two distributions given in figure 3.2.
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kernel price we take the kernel price of each day and then we compute the average

from all the days in our time series. Averaging across time allows us to increase

the otherwise small number of data points.

It is important to recall that our kernel price is the average of the kernel prices

estimated each day. In another words, we estimate the risk neutral and the histor-

ical densities for each day, calculate the price kernel and then average these daily

kernels, rather than calculate average densities over the entire sample.

Generally, for all different maturities we get a monotonically decreasing path for

the kernel price and all of these are in accordance with economic theory.

We also obtain a kernel-smoothed version of the price kernel by applying to our

unaveraged pricing kernel the kernel smoothing. Our smoothed pricing kernels are

also monotonic decreasing (see figure 3.3).
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Table 3.2: Test of Monotonicity of the Pricing
Kernel

Maturity, Intuitive test Durot test

days H0
a P-value H0

b P-value

36 Not rej. 0.3213∗ Not rej. 0.2398

37 Not rej. 0.0221∗∗ Not rej. 0.2138

38 Not rej. 0.0259∗∗ Not rej. 0.4809

39 Not rej. 0.3420∗ Not rej. 0.3338

43 Not rej. 0.1088∗ Not rej. 0.3535

44 Not rej. 0.6976∗ Not rej. 0.1824

45 Not rej. 0.1088∗ Not rej. 0.4186

46 Not rej. 0.0259∗ Not rej. 0.1046

54 Not rej. 0.1844∗ Not rej. 0.2855

57 Not rej. 0.0259∗∗ Not rej. 0.2079

58 Not rej. 0.1088∗ Not rej. 0.4088

59 Not rej. 0.0343∗∗ Not rej. 0.1097

71 Not rej. 0.1315∗ Not rej. 0.1021

72 Not rej. 0.0244∗∗ Not rej. 0.1034

73 Rej. 0.0082 Rej. 0.0493

74 Rej. 0.00013 Not rej. 0.5114
a In the intuitive test we use 1% confidence interval. Starred
numbers denote that in this case H0 is not rejected for the
5% confidence level, double starred – for the 1%.

b While using the Durot testing procedure we use 5%
confidence level.

3.3.5 Monotonicity testing

In this section we introduce some monotonicity testing. We do two kinds of mono-

tonicity tests. Both of them, as many nonparametric tests, involve the notion of

Kolmogorov distance. The first one is very simple, may be not completely justified

by theory but it is very intuitive. The second one is more thorough and is more

sound statistically proves and results.
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Simple test Our first test (call it simple), considers a monotonized version of

the price kernel obtained earlier. We test that the estimated and monotonized

versions are equal.

We create our monotonized version, m̂(x), as follows. From estimation of the

pricing kernel, xi → m(xi), we inspect each point m(xi) for monotonicity. If it

is between its adjacent points, the monotonized version is defined to be equal to

estimated one, otherwise – the monotonized version is defined to be constant and

equal to previous value. More precisely, the monotone version is given as:

m̂(x1) = m(x1)

m̂(xi+1) =

 m(xi+1), if m(xi+1) ≤ m(xi)

m̂(xi), if m(xi+1) ≥ m(xi)

where m(x) – the estimated price kernel. After getting the monotone version

we compare it with the estimated price kernel, m(x), by means of Kolmogorov-

Smirnov test5.

Results Results of testing are given in the table 3.2, test result in “Not rej.” if

H0 : m̂ ≡ m is not rejected and in “Rej.” – if it was rejected at the 1% significance

level. Also one can observe p-values of H0 and that comes from the table is that

we are not able to reject null hypothesis of monotonicity of the price kernel at the

confidence level 1% (for some maturities it is 10%). Only for maturities of 73 and

74 days we reject monotonicity, possibly because of discretization errors. In any

case this test is rather weak. Thus we are going to introduce a more powerful test.

Sophisticated test To test monotonicity of the pricing kernel more thoroughly

we use a Kolmogorov-type test for monotonicity of a regression function described

in Durot (2003). Hypothesis testing is performed within the following regression

model

yi = f(xi) + εi,

5One can do it using MatLab standard function kstest2.
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where, in our case xi is the moneyness of the option, yi is the price kernel, and εi

– random errors with mean 0. Our second test is based on the fact that f is non-

increasing (decreasing) if and only if F̂ ≡ F , here F (t) =
t∫
0

f(s)ds, t ∈ [0, 1], and

F̂ is the least concave majorant (lcm) of F . One should reject H0 about monotonic

decrease of pricing kernel in case the difference between F and F̂ corresponding

to our price kernel is too large.

Test construction From sections 3.3.2 - 3.3.4 we can obtain the pricing kernel,

so we have function f given as

moneyness (xi)
f−−→ pricing kernel (yi)

As mentioned above f is non-increasing on [0, 1] if and only if F is concave on

[0, 1]. Denote it integer part of nt and define

Fn(t) =
1

n

∑
j≤it

yi + (t− xit)yit , t ∈ [0, 1]

Fn is approximation of F , thus we consider Kolmogorov-type test statistic

Sn =

√
n

σ̂n
sup
t∈[0,1]

∣∣∣F̂n(t)− Fn(t)
∣∣∣ (3.9)

where F̂n is lcm of Fn and σ̂n consistent estimator of σn6. Durot (2003) proves that

under H0 Sn converges in distribution to Z =
∥∥∥Ŵ −W∥∥∥, where W is standard

Brownian motion, Ŵ its lcm and ‖·‖ – supremum distance.

Results In Table 3.2 results of described testing procedure are presented on the

right. We can see that all p-values support our hypothesis, namely we can not

reject H0 for 5% confidence level (except for the price kernel obtained from 73

days maturity options where p-value is 0.0493. Even for the 10% confidence level

most of the samples would not contradict monotonicity of pricing kernels.

6We use the one provided in Durot paper: σ̂2
n = 1

2(n−1)

n−1∑
i=1

(yi − yi+1)
2.
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Figure 3.4: Averaged SPD per Unit Probability

SPD per unit probability over time. It is averaged over close maturities.
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3.4 Averaging price kernel over time

In this section we check the robustness of our methodology and we try to find

a smoothness criteria for smoothing our price kernels. First of all, we show dif-

ferent price kernels with maturities close to those we showed before. According

to economic theory, price kernels with close maturities should have similar shape.

Different price kernels with close maturity should be similar to each other. In

order to check this, we create four samples: the first one has maturities ranging

36 - 39 days, the second – 43 - 46 days, the third – 54, 57-59 days7, and the last

one consists of 71 - 74 days maturities.

We use the approach explained in previous section. By this method we derive the

price kernels for the maturities in all four samples and in Figure 3.5 we plot the

results of our estimations. The unsmoothed kernel prices show a clearly monoton-
7There are no options for 55 and 56 days to maturity in OptionMetrix.



3.4. Averaging price kernel over time 88

Figure 3.5: SPD per Unit Probability for Different Maturities

Figure shows SPD per unit probability for different maturities. Maturities are written
above each figure.
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ically decreasing path, except in some points that may be due to the discretization

of the data. Our smoothed pricing kernels are all smoothly decreasing. In order

to verify that the price kernels are monotonous over time, we plot the kernel price

as the average of different maturities (see figure 3.4). In particular, referring to

our four samples (the first one is for maturities 36 - 39 days, the second – 43 - 46

days, the third – 54, 57 - 59, and the last – 71 - 74 days), we take the average over

the 4 different maturities. We expect to find a kernel price that is monotonically

decreasing in wealth, because of the fact that we average over close maturities in

our sample.

As we see in figure 3.5, the kernel prices close in maturity, have similar path,

supporting the robustness of our methodology. Test statistics for monotonicity of

these price kernels are presented in table 3.2.

In figure 3.4, we plot the average for each sample. We find decreasing kernel prices

for smoothed estimation, and mainly decreasing kernel prices for unsmoothed es-

timation, although 50th and 70th samples have some jumps. In this way we were

able to have some sort of smoothing criteria without using a method which biases

our findings.

3.5 Price Kernel around a crisis

In this section we evaluate the change of kernel price during the crisis. In particu-

lar, we look at kernel prices before and during the recent financial crisis. We divide

our sample in 4 periods. Every period is from 9 to 12 months and we take periods

which show a similar range in volatility according to the VIX index (Figure 3.6).

3.5.1 Estimates of pricing kernels in different periods

We identify four different periods between August 2004 and August 2008. The first

period goes from of August 2004 to the 15th of September 2005. In this period

volatility is between 10 and 20 points. The second period is between 10 November

2005 to 10 October 2006. In this second period the volatility is again in a fixed
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range between 10 to 20 points. The third period, which is before the crisis period,

is between 14 June 2006 and 14 June 2007. Even here the volatility is in a range

of 10 to 20 points. The last period, the period of the beginning of the crisis is

between 11 October 2007 and 14 August 2008. In this period the volatility is much

higher and it is in a range between 10 and 30 points.

Figure 3.6: Four Subsamples of The VIX index

The four samples we use to compute the different SPD per unit probabilities over different
years.
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For each period, we compute the price kernel by the methodology presented in

section 3.3. We fix a maturity (in this case we look at maturities of 37, 46, 57 and

72 days) and we plot the kernel price of each period.
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As expected, for the three periods before the crisis we get price kernels monoton-

ically decreasing and very similar in shape one each other. For the kernel price

of the crisis period, we have a different shape. It is higher for moneyness smaller

than 1 and constant for moneyness larger than 1. For the value smaller then 1,

this is exactly what we expected to obtain. The probability of negative outcome

is higher therefore we give more weight of negative outcomes. On the other hand,

we do not expect to have a constant kernel price for moneyness values larger than

1.

In the subsection 3.5.2, we focus only on the kernel price of the crisis period and

we try to solve it.

3.5.2 Kernel Price in crisis time

In the previous subsection we show kernel prices for different periods (see Fig 3.7).

We see in figure 3.7 that the kernel prices in period where the volatility is stable (it

remains in a determinate range of 10 to 20 points) the SPD per unit probabilities

exhibit a monotonically decreasing shape.

When we enter in a period of crisis volatility changes dramatically. In this case,

we observe a kernel price that is no more monotonically decreasing, but decreasing

on the left, with constant value after the moneyness equal to 1.

However, it is interesting to notice that the method we use to derive kernel prices

is sufficiently robust to guarantee that even in a crisis we get kernel prices in

agreement (in part of the graph) with economic theory.

3.6 Kernel price as a function of volatility

In this section we would like to extend our model and consider the kernel price

as a function of more variables. In fact, as explained in Chabi-Yo et al. (2005),

one possible explanation for the non-monotonicity of the price kernel is volatility.

In a previous section we compute the price kernel as a function of one variable:

the underlying, mt,T (ST ). We know from Pliska (1986), Karatzas et al. (1987),
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Figure 3.7: The Kernel Prices for Different Levels of VIX

The kernel prices for four samples we create looking at different levels of volatility index.
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and Cox/fu Huang (1989) that the kernel price is characterized by at least two

factors: the risk-free rate and the market price of risk. In our analysis we would

like to consider the kernel price as a function of three different factors: the risk-

free rate, the underlying price and the volatility. We have already introduced

the underlying price and the risk free-rate. Now we want to introduce also the

volatility, so mt,T (ST , rf , σ).

We saw that the risk-free rate is a parameter that does not enter in our analysis

for as a decisive factor. Both probabilities are forward looking. In fact, the

historical probability is seen as the probability to exercise a butterfly spread at

maturity, while the risk-neutral is seen as the probability of a particular state.

The moneyness is nothing else than the K/St. In order to introduce the volatility

we take as a reference the idea by Carr/Wu (2003). They use a moneyness defined

as:

moneyness =
log(K/F )

σ
√
T

,
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Figure 3.8: The Kernel Prices with a Moneyness Corrected for Volatility

The Kernel prices when we use a moneyness factor that take into consideration underlying
price and volatility. See text, in particular equation 3.10.
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where F is the futures contract price, T is the maturity time and σ is the average

volatility of the index.

For our propose, we can change this formula to look:

moneyness =
K

St ∗ σ
, (3.10)

In fact the futures price is already considered for the above explanation of the

forward looking probabilities, while the time to maturity is constant over the

sample we consider. In our case the volatility is not anymore the average volatility,

but the implied volatility of each option.

The procedure to derive the kernel price is again the same we have seen in the

previous sections8 and therefore our result for maturities equal to 37, 46, 57 and

72 are as at the figure 3.8.
8There is only a small difference when we round the new moneyness in order to average different

periods. We do not take the second digit after the point, but we arrive only at the first one.
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Table 3.3: Test of Monotonicity of the Pricing Kernel with Modified Mon-
eyness

The pricing kernel monotonicity testing in case of volatility being additional parameter
for moneyness. Table provides p-values for monotonicity tests.

Maturity Intuitive Durot Maturity Intuitive Durot

36 0.7651 1.0000 54 0.1489 1.0000
37 0.2951 1.0000 57 0.4075 0.5313
38 0.2823 0.9401 58 0.5480 0.9037
39 0.0569 1.0000 59 0.2436 0.0058

43 0.1078 0.9715 71 0.0042 0.0000
44 0.0372 0.5398 72 0.0042 0.0000
45 0.2823 0.9363 73 0.6403 0.1268
46 0.0569 0.8069 74 0.0000 0.0446

At figure 3.8 we plotted pricing kernels with volatility accounted in the moneyness

parameter. In this case the results are consistent with the economic theory. In

table 3.3 we give p-values for all maturities we have seen above. One can see that

these p-values confirm our graph, namely for smooth pricing kernels p-values are

high in both test. Only for maturities equal to 71, 72 p-values suggest that pricing

kernels are not monotone which one can also notice at the graph.

3.7 Conclusion

We propose a method to evaluate the kernel price in a specific day for a fixed

maturity as well as the average of different kernel prices in a time series of 12

years for a fixed maturity. Using option prices on the S&P 500, we derive the

risk-neutral distribution through the well-known result in Breeden/Litzenberger

(1978).

We compute the risk neutral distribution in each day where we have options with

a fixed maturity. Then, we compute the historical density, for the same maturity,

in each day, using a GARCH method, based on the filter historical simulation

technique. We then compute the ratio between the two probabilities in order to

derive the kernel price for that given day. We show that in a fixed day (chosen at

random in our sample) the risk-neutral distribution implied in the option prices

satisfies the no-arbitrage condition.
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We provide a smoothed version of the pricing kernel, to test its monotonicity.

Our tests support the pricing kernel monotonicity. Therefore, we show that the

ratio between the two probabilities, is monotonically decreasing in agreement with

economic theory (see figure 3.1). We then show how the average of the different

kernel prices across 12 years display the same monotonically decreasing path (see

figure 3.3 and p-values in table 3.2).

We also prove that average price kernels over time, if we take close maturities,

exhibit a monotonically decreasing path in agreement with economic theory.

Furthermore, we try to explain the reason why with different methods it could be

possible to incur into the "pricing kernel puzzle" and have a different shapes for

the kernel price. We can conclude that in most cases the model used to estimate

the kernel price or the sample taken into consideration could introduce some errors

in the estimation of the kernel price.

In the last part, we show the changing in shape of different price kernels before

and during the recent crisis. We see that before the crisis the price kernels are

monotonically decreasing while during the crisis it becomes decreasing in a part

and then constant for moneyness value higher than 1. We understand this result

in a very simple way: the risk neutral probability changes faster with respect to

the historical one and therefore the ratio between the two remain constant.
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Chapter A.
Derivation of risk-neutral density

——

We start from a portfolio with two short call options with strike K and long two

call with strikes K−ε and K+ε and they consider 1
2ε

shares of this portfolio. The

result is a butterfly spread which pays nothing outside the interval [K−ε, K+ε].

Letting ε tend to zero, the payoff function of the butterfly tends to a Dirac delta

function with mass at K1, i.e. this is nothing else than an Arrow-Debreu security

paying $1 if ST = K and nothing otherwise (see Arrow, 1964). In this case, define

K as the strike price, St the value of the underlying today, r as the interest rate,

and T as the maturity time, the butterfly price is given by

Pbutterfly(ST ) =
1

2ε
[2C(St, K, T, r)− C(St, K − ε, T, r)− C(St, K + ε, T, r)]

taking limit of this expression as ε → 0 we get

lim
ε→0

Pbutterfly(ST ) =
∂2C(St, K, T )

∂K2
(A.1)

Now substitute the butterfly payoff, xbutterfly(ST ) = I[K−ε, K+ε](ST ), into equation

(3.3) we get that the price of the butterfly is:

Pbutterfly = e−rT
∫ K+ε

K+ε

qt(ST )dST .

1More formally, payoff of the butterfly is xbutterfly(ST ) = I[K−ε, K+ε](ST ), or when ε → 0 is
lim
ε→0

xbutterfly(ST ) = δK(ST ).
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If we take limit as ε→ 0 and calculate this integral using properties of Dirac delta

function, we get that

lim
ε→0

Pbutterfly = e−rT qt(ST )
∣∣∣
ST=K

. (A.2)

Rearranging equations (A.1) and (A.2) we can have that

lim
ε→0

Pbutterfly = e−rT qt(ST ) =
∂2C(St, K, T )

∂K2

∣∣∣∣
ST=K

(A.3)

This result suggests that the second derivative of a call price (we will see that it

is also true for a put price) with respect to the strike price gives the risk neutral

distribution2

qt(ST ) = erT
∂2C(St, K, T )

∂K2

∣∣∣∣
ST=K

In the next part of this section we see how to apply this result in the discrete case.

In the following, we consider three call options with strikes Ki, Ki−1, Ki+1, where

Ki+1 > Ki > Ki−1. We have seen that the price of a call option can be written as:

C(St, K, T ) =

∫ ∞
K

e−rT (ST −K)f(ST )dST .

We define F (x) as the cumulative distribution function, f(x) as the probability

density, C(St, K, T ) as the price of a European call option, P (St, K, T ) as the

price of a European put option, and K as the strike price of the reference option.

According to the result in Breeden/Litzenberger, 1978 taking the first derivative
2This can also be obtained by differentiating C(St,K, T ) =

∫∞
K
e−rT (ST −K)f(ST )dST w.r.t. ST as

in Birke/Pilz, 2009



Bibliography 99

with respect to the strike price, we get:

∂C(St, K, T )

∂K
=

∂

∂K

[∫ ∞
K

e−rT (ST −K)f(ST )dST

]
=

= e−rT
[
−(K −K)f(K) +

∫ ∞
K

−f(ST )dST

]
=

= e−rT
∫ ∞
K

−f(ST )dST = −e−rT [1− F (K)]

Solving for F (K) one gets:

F (K) = erT
∂C(St, K, T )

∂K
+ 1 (A.4)

Now, taking the second derivative, we have equation (3.5).
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