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Abstract

In finite element simulations, the handling of geometrical objects and their dis-
crete representation is a critical aspect in both serial and parallel scientific soft-
ware environments. The development of codes targeting such envinronments is
subject to great development effort and man-hours invested. In this thesis we
approach these issues from three fronts.

First, stable and efficient techniques for the transfer of discrete fields between
non matching volume or surface meshes are an essential ingredient for the dis-
cretization and numerical solution of coupled multi-physics and multi-scale prob-
lems. In particular L2-projections allow for the transfer of discrete fields between
unstructured meshes, both in the volume and on the surface. We present an algo-
rithm for parallelizing the assembly of the L?-transfer operator for unstructured
meshes which are arbitrarily distributed among different processes. The algo-
rithm requires no a priori information on the geometrical relationship between
the different meshes.

Second, the geometric representation is often a limiting factor which imposes
a trade-off between how accurately the shape is described, and what methods
can be employed for solving a system of differential equations. Parametric finite-
elements and bijective mappings between polygons or polyhedra allow us to flex-
ibly construct finite element discretizations with arbitrary resolutions without
sacrificing the accuracy of the shape description. Such flexibility allows employ-
ing state-of-the-art techniques, such as geometric multigrid methods, on meshes
with almost any shape.

Last, the way numerical techniques are represented in software libraries and
approached from a development perspective affect both usability and maintain-
ability of such libraries. Completely separating the intent of high-level routines
from the actual implementation and technologies allows for portable and main-
tainable performance. We provide an overview on current trends in the develop-
ment of scientific software and showcase our open-source library UTOPIA.
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Chapter 1

Introduction

The finite element method [17; 44; 108] is a well established and known tech-
nique for the solution of partial differential equations. A great effort is invested
in the development of software libraries implementing finite element assembly
procedures and related solution algorithms. In fact, the development of such
software libraries has several challenges.

The first challenge is dealing with complex mathematical models and simulat-
ing multiple physical phenomena simultaneously. This typically involves solving
coupled systems of differential equations which might even require different dis-
cretizations (e.g., molecular dynamics). The complexity of solving this problems
rises when we introduce complex geometries having non-trivial interactions with
each other, for instance contact between solids.

The second challenge is taking advantage of the concurrency within com-
putational problems and taking advantage of the hardware resources available
in modern super-computers. A significant amount of effort is invested in the
development of parallel codes, and in new numerical methods/algorithms for
optimally exploiting the available parallelism. As a consequence, scientific soft-
ware becomes ever more complex and hard to reuse, re-purpose, maintain and
extend.

The third challenge is the handling of geometric descriptions and the accu-
racy of their discrete representations. Embodying accurate representations with
optimal and completely automatic black-box usage of state-of-the-art solvers is a
non-trivial task.

The last challenge is modularity and usability of scientific software libraries.
A reusable implementation of very complex algorithms is an important factor.
The costs and effort of developing even only one such functionality might be
significant. Hence, proper use of software design patterns and abstractions is
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relevant for users at any level of involvement in the development of scientific
codes. For instance, for solving a PDE with standard methods, users need only a
minimal set of abstractions without having to deal with low level implementation
details. Users that are researching new methods may however require access to
specialized lower level abstractions. This aspects are strictly related to the issue
of usability. It is often the case that scientific software imposes high barriers to
entry for newcomers or inexperienced users. The presence of such high barriers
is translated to poor productivity for new library adopters. For circumventing
these challenges, a current trend in scientific software development is to strive
for higher level abstractions.

This thesis is an attempt to contributing in dealing with the aforementioned
challenges by covering three topics.

Parallel transfer of discrete fields for arbitrarily distributed unstructured finite
element meshes

We present and investigate a new and completely parallel approach for the trans-
fer of discrete fields between non-matching volume or surface meshes, arbitrarily
distributed among different processors. No a priori information on the relation
between the different meshes is required. Our inherently parallel approach is
general in the sense that it can deal with both classical interpolation and vari-
ational transfer operators, e.g., the L2-projection and the pseudo-L?2-projection.
It includes a parallel search strategy, output dependent load balancing, and the
computation of element intersections, as well as the parallel assembling of the
algebraic representation of the respective transfer operator. We describe our al-
gorithmic framework and its implementation in the library MOONOLITH. Fur-
thermore, we investigate the efficiency and parallel scalability of our new ap-
proach using different examples in 3D. This includes the computation of a vol-
ume transfer operator between 2 meshes with 2 billion elements in total and
the computation of a surface transfer operator between 14 different meshes with
5.9 billion elements in total. The experiments have been performed with up to
12288 cores.

Parametric finite elements with bijective mappings

We present a novel approach which combines parametric finite elements with
smooth bijective mappings which allows to decouple the choice of approxima-
tion spaces from the geometric shape. Our approach allows to represent arbi-
trarily complex geometries on coarse meshes with curved edges, regardless of



the domain boundary complexity. The main idea is to use a bijective mapping
for automatically warping the volume of a simple parameterization domain to
the complex computational domain, thus creating a curved mesh of the latter.
The numerical examples confirm that our method has lower approximation er-
ror than the standard finite element method, because we are able to solve the
problem directly on the exact shape of domain without having to approximate
it. In other words our method allows solving the model problem on the exact
geometry with the freedom of choosing the discretization independently. This
freedom enables to employ state-of-the-art solution strategies such as the multi-
grid method. Our discretization allows to automatically generate the meshes
of a multigrid hierarchy just by refining a coarse mesh in the parameterization
domain. This contribution is the result of a joint project and work with Teseo
Schneider and Kai Hormann.

Utopia: a C+ + embedded domain specific language for scientific computing

We present UTOPIA, a C++ embedded domain specific language designed for par-
allel non-linear solution strategies and finite element analysis. The rise of new
computing hardware and the continuous development of numerical methods
and programming technologies/languages/paradigms are drivers for changes in
scientific-computing software libraries. However, such changes affect both the
computing libraries and their dependencies, inducing unwanted modifications to
high-level code. For avoiding these unwanted modifications, state-of-the-art soft-
ware mainly relies on high-level programming interfaces or scripting languages.
UToPIA combines advantages of high-level programming interfaces with the ad-
vantages of scripting languages. On the one hand, it allows using high-level
abstractions while providing access to the native low-level data-structures. On
the other hand, it facilitates expressing complex numerical procedures by means
of few lines of code. This is achieved by separating the model from the compu-
tation, thus allowing to keep the implementation details hidden from the code
of applications such as non-linear solution algorithms and finite element assem-
bly. We achieve this separation by using C++ meta-programming and particu-
lar evaluation strategies which allow mapping an abstract representation of the
computation to the actual code computing the result. The linear algebra and
finite element assembly codes snippets provides examples of the expressiveness
of UTOPIA.



4 1.1 Thesis structure

1.1 Thesis structure

In Chapter 2 we introduce the related work which includes mortar projection
methods, parametric finite elements, and state of the art scientific software li-
braries. In Chapter 3 we described in detail a novel parallel algorithm for the
transfer of discrete fields between arbitrarily distributed unstructured finite ele-
ment meshes. In Chapter 4 we introduce a novel discretization based on para-
metric finite elements. In Chapter 5 we showcase the UTOPIA domain specific
language and software library. In Chapter 6 we illustrate the performance studies
of our parallel transfer algorithm and numerical experiments of our parametric
finite element discretization. In Chapter 7 we briefly discuss general aspects of
this thesis and its contributions.



Chapter 2

Geometry based techniques and
abstraction tools in scientific
software

In this chapter we introduce the related work. We describe the existing mathe-
matical methods for exchanging information between finite element spaces (Sec-
tion 2.1 and Section 2.2) and we provide a detailed introduction of the proce-
dures (Section 2.3) and the geometric tools (Section 2.4) necessary to implement
such methods. We briefly introduce existing methods for working with different
geometric representations, and our method of choice for creating volume pa-
rameterizations (Section 2.5). We provide an overview of available open-source
finite element software libraries from a software design/development perspec-
tive (Section 2.6).

2.1 Weak transfer between discrete spaces

The ever increasing computational power of modern super-computers allows,
nowadays, for the numerical simulation of complex and coupled large scale prob-
lems, as arising from contact or fracture mechanics, fluid-structure interaction,
computational geo-science, computational medicine, or, more general, multi-
physics and multi-scale problems. Common to all these coupled and complex
problems is the need for the transfer of data or information between the differ-
ent models, meshes, or approximation spaces. The transfer of discrete fields as
stresses, pressure, displacements, or velocities might be required along surfaces,
e.g., in the case of contact mechanics or fluid structure interaction, or within
volumes, e.g., in the case of transient simulations or multi-scale simulations. Ad-
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6 2.1 Weak transfer between discrete spaces

ditionally, the transfer of discrete fields might also play an important role on the
level of the discretization, e.g., within non-conforming domain decomposition or
mortar methods for the transfer along surfaces, or on the level of the solution
method, e.g., within multigrid or multi-level methods for the transfer between
different volume meshes.

Clearly, the way transfer operators are constructed affects the quality of the
used methods in terms of convergence, accuracy, and efficiency [53]. Thus, be-
sides classical interpolation, more recently transfer operators based on varia-
tional approaches, such as (pseudo-) L2-projections, have been developed. Here,
in particular the mortar method [13] has to be mentioned, which has given rise
to a huge number of new algorithmic developments during the last decades.

Despite these advances, deploying these approaches in a parallel high per-
formance computing environment, the actual computation of such a volume or
surface transfer operator turns out to be far from trivial. Different unstructured
meshes might be arbitrarily distributed in a possibly unrelated manner, lead-
ing to many possible data distribution scenarios, which have to be handled in a
transparent and efficient way. Additionally, the issues of scalability, usability and
flexibility arise.

In our discussion we consider the general parallel case where we do not have
any prior assumption on the spatial and memory location of the geometric ob-
jects. We focus our attention on the transfer of information of functional quanti-
ties from one mesh — or approximation space connected to a mesh — to another.
Note that the actual choice of the approximation space may arise from finite el-
ements, finite volumes or spectral methods. Here, we mainly consider the finite
element method, as it is well known for dealing efficiently with complex unstruc-
tured geometries. For a more specific scenario we refer to [79], where the au-
thors describe a technique for the parallel coupling between finite elements and
molecular dynamics in a multi-scale method using a variational scale transfer.

In a parallel environment, the main challenges are identifying and handling
relationships between geometric objects of interest based on spatial informa-
tion, the used discretization and the application requirements. Given that a high
degree of flexibility and generality is sought, the technical ingredients neces-
sary for the realization of such strategies originates from different disciplines
such as applied mathematics, geometric algorithms, software design, and high-
performance computing.

There is a large number of different applications that might profit from a
scalable parallel information transfer as presented herein:

* Complex parallel multi-physics problems. The handling of multiple types of
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non-conformities in complex simulation scenarios with multiple geometries
is usually done ad-hoc. A completely automated online strategy might al-
low more complex transient scenarios [63]. A common scenario, illustrated
in the diagram in Figure 2.1(a), would be fluid-structure interaction and
structure-structure interaction, where the fluid mesh is unstructured [64].
See [30; 94] for a comprehensive review of coupling methods in the con-
text of fluid-structure interaction.

* Coupling of distributed meshes in non-conforming overlapping domain de-
composition methods such as additive Schwarz [109], as illustrated by the
diagram in Figure 2.1(b).

* Handling of non-penetration conditions in parallel contact problem simula-
tions [138]. The contact surfaces between bodies are not always known
a priori and they are in general geometrically non-conforming.

* Parallel remeshing in transient simulations, such as large deformations in
computational mechanics. Local remeshing without having to ensure con-
formity at the subdomain interface allows for complete parallelization.

* Handling of distributed multigrid hierarchies. The coarse meshes can be se-
lected without the restriction of requiring the same shape of the geometry
or nested elements. The freedom to handle the various levels of refinement
in a completely arbitrary way makes it possible to easily provide better bal-
anced computations. For instance, as shown in Figure 2.1(c), cases where
the hierarchy is generated by refining a coarse mesh into finer levels with-
out balancing the computational load might lead to bad scaling. The ap-
proach we present in Chapter 3 allows constructing prolongation/restric-
tion operators without requiring the additional programming of complex
parallel code.

* Multi-scale simulations, e.g., the coupling of molecular dynamics and finite
elements as in [78; 139].

Additionally, numerical non-linear solution method can profit from non-conforming
domain decomposition strategies such as in [54]. Extensive coverage of related
matters, such as Galerkin projection methods, and intersection reporting can be
found in [45; 46].

Let us comment on already existing approaches and their respective imple-
mentations. The question of variational information transfer has been addressed
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(a)  Fluid-structure interaction,
where Q; is the fluid domain, and
for i € {1,2}, we have Q; and
I, s which are respectively struc-
ture domains, and fluid-structure
interfaces.

(b) Overlapping decompo- (¢) 1D Multigrid hierarchy,

sition, with two domains With unbalanced load at

Q, and Q,. the fine levels, where p,
and p, are processes, and
J,, is the mesh at level i.

Figure 2.1. Simple example scenarios where our parallel approach can be ap-
plied.

in different numerical software, and software packages, such as DUNE, MOER-
TEL (TRILINOS package [59]), FENICS [89] project, OPENFOAM [135], and com-
mercial software such as MPCCI [72], and COMSOL [86]. An abstract program-
ming interface within the DUNE software for geometric coupling of finite element
meshes is presented in [9]. The authors also bring to our attention the central
problem of finding the geometric correspondences between meshes, and how in
general it is solved by ad-hoc software solutions, with little chance of code reuse,
of [9].

The next three sections provide a detailed introduction to the necessary tools
that are the foundations of our parallel approach presented in Chapter 3. In Sec-
tion 2.2, we summarize the main ideas of variational transfer. In Section 2.3, we
illustrate how to assemble the local element-wise contributions to the resulting
transfer operator both for volume transfer and contact problems. The assem-
bly of such transfer operators require the computation of intersections between
meshes. Thus, in Section 2.4, we introduce the most commonly adopted accel-
eration data-structures and algorithms for intersection detection.

2.2 Formulation

In the context of non-conforming domain decomposition methods, approaches
using (pseudo-) L2-projections, such as mortar methods [13; 137; 82] and their
extensions for contact problems [34] and the literature cited therein, provide
highly flexible ways for coupling possibly different discretizations across non-
matching meshes. In our presentation, we focus on transferring discrete fields
between finite element spaces associated with different unstructured meshes. We
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(a) Source mesh. (b) Source mesh cut. (c) Target mesh.

Figure 2.2. Example of volume information transfer between different meshes.
A given finite-element function on a cube (a) and (b), is transferred to a more
complex geometry, i.e., a hand (c).

note, however, that the techniques described herein are rather general and can
be also applied to other types of discretizations, such as finite volume or spectral
methods. Similar efforts for similar purpose include the Arlequin method [12].

2.2.1 Mortar projection

We start our discussion with a short introduction of the mortar projection, which
will be used in our numerical experiments. For a comparison of different pro-
jection operators and their quantitative properties we refer the interested reader
to [36].

For a (bounded) domain Q c R? with Lipschitz boundary, let L?(Q) be, as
usual, the Hilbert space of square integrable functions on 2 with inner product
(v, W)i2q) = fﬂ vwdx and norm ||| 2y = (-, ')ié?n)' Let Q,.,Q, € R be bounded
(Lipschitz) domains. Let the intersection I = Q,, N Q, of the two domains and
the spaces V = L%(Q,,), W = L*(Q,) be given.

We assume that 2,, and €, can be approximated, respectively, by the discrete
domains " and Q". Let the mesh J; = {E, € Q' | | JE, = Q!'}, with k € {m,s},
be a finite set, where its elements E; form a partition, hence if E 1,E,f Cc Qz and
E. # E} then E; N E} = (. For simplicity we consider J;, k € {m,s} to be
conforming, though our approach is also applicable to the non-conforming case.

We denote the associated finite element spaces by V;, = V,(Z,,) and W, =
W, (Z,). For non-matching meshes Z,, and 7, also the approximation spaces V,
and W, differ. We define the intersection of the two discrete domains as I;, =
Q" NQ", and assume that I, # @. Furthermore, with .4}, and .4 we denote the
respective set of nodes of the meshes.
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h h
The case Q' C Q"

For simplicity, we now assume Qf - Q’; . For this case, the projection has been
shown to be stable [137]. We consider the case Q? g ng in Section 2.2.1. For the
definition of the projection operator, we also need to define a suitable discrete
space of Lagrange multipliers M;. We here set M;, = M,,(Z,), i.e., M,, is a discrete
space based on the same mesh as W;,. The association of M, with either ,, or
7, is arbitrary but fixed. Following the naming convention in the literature on
mortar methods, the space associated with M,, that is W), is often referred to
as slave, or non-mortar, and the other one, that is V},, as master, or mortar. The
mortar projection maps a function from the mortar space, i.e., Vj, in our case, to
the non-mortar space, i.e., W,,.

Now we proceed to the definition of the projection operator P : V;, — W,. For
a function v, € V,, we want to find w, = P(v,) € W,, such that

(POVi)s iz = Vs Midraqr,y Vit € M. (2.1)

Reformulating Equation (2.1), ¢f. [13], we get the “weak equality” condition
J (v — P(vi )y dx = J (v —wpupdx=0 Vu, €M, (2.2)
Iy Iy

Let {¢;};c;, be abasis of Vi, {6,};c;, of Wy, and {¢; },c;, of My, where J,, J,,, and
J, C N are index sets. Now writing the functions v, € V;, and w;, € W, in terms
of the respective bases, we get v, = >.._,, v;¢;, and w), = Zjejw w;0;, where
{vi}ies, and {Wj}je 5, are real coefficients. This allows us to write the point-wise

contributions to Equation (2.2) as

Zvif qﬁiwkdx:ijJ 0,y dx forkeJ,. (2.3)
I In

ieJ, JjEJ,

We rewrite Equation (2.3) as a matrix equation using the matrices B and D with
respective entries by ; = Lh Y dx, and d; ; = flh Oprdx,i€J,,jE€J,, kEJ,:

Bv =Dw. (2.4

Here, v and w are vectors of coefficients with respective entries v; and w;. From
now on assume that the matrix D is square, that is |J,,| = |Ju| and thus W, and
M;, have the same dimension. Additionally, we assume that D is invertible and
thus we define the algebraic representation of the discrete (mortar) projection
operator as T = D™'B and rewrite Equation (2.4) as

w=D'Bv="Tv.
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Depending on the choice of M), we obtain different transfer operators T. For
instance, using what is known as the dual basis for M, the matrix D becomes
diagonal (or possibly block-diagonal for systems of equations). For details on
this choice of M;, see Section 2.2.2.

h h
The case Q' Z Q"

For this case we do not provide stability guarantee on the projections. Due to
Q" ¢ Q" we need to consider the extension to Q! U Q" of the functions v, € Vj,
by means of an extension operator. For Lipschitz domains, the existence of a
continuous extension operator can be guaranteed [136, Theorem 5.3, Page 95].
In practice, different extension operators could be chosen, for example extension
by zero, harmonic extension, or constant in the direction of the outer surface
normal [75]. Eventually, this choice depends on the application.

Let J! = {i €J,|supp(¢;)NI,#0}, J. = {jeJ,l supp(Gj) NI, # 0}, and
J‘i = {k € J,|supp (Y ) NI, # 0} be the index sets of the basis functions of V,,,
W, and M, respectively, with support in the intersection region I;,. By restricting
the spaces V, and W, to I;,, we have the following new spaces

Xp=VWulp, = span{cj)i . th}> Y, =Wy, = span{Gj-xlh},
ieJ] jeJt
where y; is the characteristic function on I, defined as

lifx €1,

xX)=

71,(x) {O else.

In order to adapt the definition of the projection operator to this case, we also

define a modified version M, = span,., {wk} of the multiplier space M; =
u

spanc; {1y}, where

G {wkllh AfSUpPI Sy 2.5)

7x :if supp (Y, ) € I,

Here y, is a function defined on the intersection I,. The functions y, are not
necessarily the restrictions v,[, of Y to the intersection region I, but their
definition depends on the choice of the multiplier space M. As M, so far is a
generic space, we here do not define y,. For an example construction in the case
of the pseudo-L2-projection see Section 2.2.2.
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We can now adapt the definition of the projection operator P to the case
Q" ¢ Q" . For a function v, € X, we hence want to find w, = P(v,) € Y;, such
S m
that

(P(vh): .ah)LZ(Ih) = (Vh; ‘ah)LZ(Ih) V.ah € Mh-

We can then derive the discrete projection operator T as in Section 2.2.1 under
the assumption that W, and M, have the same dimension. As a final remark,
we note that with this definition of the spaces X;, and Y}, the projected function
wy, = P(v,) €Y, is by definition zero in Q! \ I,. Other extensions to Q" \ I, are
possible.

2.2.2 L2-projection and pseudo-L>2-projection

In the preceding definition of the projection operator T, we are still free to choose
the multiplier space M,. Different choices of M, will lead to different projec-
tion operators. Setting for example M, = W;, T is the discrete representation
of the L2-projection. In this case, even though the mass matrix D is typically
well-conditioned, the evaluation of T = D™'B might become computationally ex-
pensive, or not convenient. It might be expensive because the inverse of D is
dense. Hence, instead of storing T, keeping D and B as separate matrices might
be a better solution. However, this implies that each time we apply the transfer
operator we solve a linear system. This is less convenient than storing only one
matrix that can be applied directly.

We therefore consider mainly the case of choosing dual basis functions as a
basis for M, as presented originally in [137]. In this case, the multiplier space
M,, is spanned by a set of functions which are biorthogonal to the basis functions
of W, with respect to the L?-inner product. This makes the matrix D diagonal,
and computing its inverse cheap. In practice the matrix D is a lumped mass-
matrix.

Since the vector space W, is finite-dimensional, the dual basis exists, and the
dimension of the dual space is the same as the one of the original space. In
general, the dual basis functions 1y, k € J, = J,,, might have global support.
Under certain assumptions on the space W,, they can however be constructed
elementwise in such a way that

supp (YY) S supp(6;) =: 0, Yk eJ, (2.6)

holds, i.e., that their support is restricted to one finite element patch w;. This is
for example possible assuming that W, is the standard degree one finite element
space and {Qj}je | is the standard basis [32].
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In the case Qf c Qf; , we choose the multiplier space as the discontinuous test
space

My, = span{y);. : I = R| k € J,, supp () € wi} € C°(1,), (2.7)
where the functions 1), satisfy the following biorthogonality condition:
('L/)k, ej)Lz(Ih) = 6j,k(9‘5 l)Lz(Ih) Vj,kEJW. (2.8)

As described in [32; 47], a basis {l/)k}ke]w fulfilling (2.7) and (2.8) can be
constructed in a straightforward way, using only computations on single ele-
ments. Let E € 7, be one element in the mesh of the finite element space W;,. Let
M; = (mpq) be an element mass matrix, and Dy = (dpq) be an element diagonal
matrix defined by

Mpq = (QP’ eq)L2(E)’ dpg = O (Gp’ 1)L2(5) Vp,q € ANE,

respectively, where .4/ are the nodes of &, and E is the closure of the element E of
mesh Z,. As My is symmetric positive definite and thus invertible, for p € A/,NE
we can define functions 1, ; by

=(DM;') 6.(x) ifx€E,
Y, p(X) 1= Z’"G%”E( E™E )pr (x) (2.9)
0 else.
Then we can define the dual basis fulfilling (2.7) and (2.8) by
b= D, WYpe VPEK (2.10)

E€T,:peE

We furthermore note that in the case of affine elements, due to the scaling with
(6;,1)12(,) on the right-hand side of Equation (2.8), the coefficients in Equa-
tion (2.9) do not depend on the element E or the node p [32]. Thus it is sufficient
to compute them only once on the reference element. Furthermore, in this case,
the dual basis function v, is continuous on the patch wy, thatis |, € C%wy).

In the case where Qf Z Q’:n ,and I, = Q?ﬂﬂ’fn # ), we provide an example for a
modified multiplier space. We would like to stress that our framework is general
in the sense that multiplier and approximation spaces can be freely prescribed
by the user. In our example, let the discontinuous test space be

M, = span{y : I, > R|k € J!, supp (“f’k) C @&} COL), (2.11)

where &, is the support of the k-th basis function of ¥;, and the functions ),
with support in @, satisfy the following biorthogonality condition:

(Y1 0120y = 6,4(05, Do,y Vi keJL. (2.12)
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Hence {lﬁ k} is the dual basis with respect to the basis {Gk . th} of ¥;,.

As in the previous case, we can construct the dual basis elementwise by
slightly modifying the above procedure. More precisely, we restrict all indices
to the smaller index set J!, and replace 6, by 6, - 1, for all k. This implicitly
defines the functions y, in Equation (2.5).

In this case, even for affine elements, for an element E that is not completely
contained in the intersection, i.e., E € I, and E N I, # @, the coefficients in the
modified Equation (2.9) do depend on the element and on the node. Thus the
local matrices Dy and My need to be computed and M needs to be inverted on
every such element separately. Moreover, this implies that the function 1), is in
general not continuous on its support. If E NI, is small, the jump in the func-
tion 1/31( might become large, leading to instabilities in the method. This problem
can be handled by considering intersections with really small volume as empty.
Numerically speaking, we consider the intersections supp (.) N I, to be empty, if
their volumes are smaller than a small numerical constant. We emphasize that
this is an ad-hoc solution, which has turned out to work well in practice, which
does no affect the overall approach.

The pseudo-L2-projection is a projection, and it also guarantees an efficient
evaluation of the transfer operator T. In fact, using dual basis functions, T can
be evaluated easily, as D becomes diagonal (or block-diagonal in the case of sys-
tems). Thus, the usage of dual basis functions corresponds to replacing the stan-
dard L2-projection by a pseudo-L?-projection, which allows for a more efficient
assembly and application of T.

As investigated numerically in the study performed in [36], the pseudo-L>-
projection is close to the L?-projection in terms of the operator norm. The pseudo-
L?-projection is also proven to be H'-stable and has the L?-approximation prop-
erty for all shape-regular families of meshes (see [137; 32] for more details). All
of the numerical experiments presented in this thesis employ this operator.

2.2.3 Relation to the application scenarios

All the application scenarios we mentioned can be categorized either as volume
projection or as surface projection. Here we provide a link to the mathematical
objects we presented in Section 2.2.

Volume projections

Information transfer between volumes (i.e., volume projections) can be directly
related to the operators introduced above, hence allowing us to transfer informa-
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tion between finite element discretizations from one volume to another volume,
as illustrated in the example in Figure 2.2. In fact, it is sufficient to consider 7,
and , as volume meshes in N dimensions.

Surface projections

Information transfer between non-matching surface meshes (i.e., surface projec-
tions) shows up in many different applications. These might be coupled prob-
lems, such as, e.g.,, fluid structure interaction or contact problems. For fluid-
structure interaction, two different meshes are used for the fluid and solid. In
this case, usually surface forces originating from the fluid have to be transferred
to the solid and the velocities of the solid have to be transferred to the fluid
domain.

For contact and tying problems, boundary stresses and boundary displace-
ments have to be transferred between the two interacting bodies. We refer to [33;
106; 105; 34] and the literature cited therein concerning different approaches for
the treatment of surface projections in the framework of contact problems with
non-conforming contact interfaces. An alternative method for contact and ty-
ing problems is typically the NTS (node-to-segment) method. However, the NTS
method exhibts deficiencies such as failure to pass the patch test and oscillatory
stress response which are not present in mortar methods [60; 61].

What is common to both fluid structure interaction and contact problems,
is that the two surface meshes under consideration in general will also be non-
matching with respect to their position in space. For instance, in contact prob-
lems we have surface meshes which are in general non-matching on the predicted
area of contact. Thus, it will also be necessary to project the function values in
“physical space” between the two surfaces. Usually, this is done by means of
a normal projection. However, the way this normal projection is realized and
the way it is incorporated into the quadrature routines needed for assembling
the matrices B, D has strong influence on the quality of the resulting projection
operator T, cf. [33; 106; 105; 34].

Thus, surface transfers are not simply volume transfers in 2D, but, addition-
ally involve the careful construction of a discrete (normal) projection.



16 2.3 Procedure for the assembly of the coupling operators

owm X
A
S ~ )A(in,
:(1 xz. .
(a) Quadrature points X; on (b) Quadrature points x; = (c) Quadrature points X" =
reference element E. Gp_,s,(%;) mapped to the sim- GglEm (x;) in the reference
plex §; € Fe. element E.

Figure 2.3. Overview of the quadrature data for the assembly. The quadrature
points mapped to the simplex S; are transformed to the reference element for
evaluating the basis functions.

2.3 Procedure for the assembly of the coupling op-
erators

In this section, we describe in detail one example procedure for the assembly
of the matrices B and D defining the coupling operator T = D™'B for the case of
affine finite element discretizations associated to the two non-conforming meshes
Ts T, We choose 7, to be the master, and 7, to be the slave, where m stands
for master, and s stands for slave. As before, the finite element spaces associated
with these meshes are V,(Z,), W,(Z;), and the multiplier space is M, (7).

The assembly is done in four main steps.

1. We determine all pairs of intersecting elements (E, ,E,), E,, € 7, and
E, € .. This can be done by means of tree-search algorithms and data-
structures (quadtree, octree), or by means of advancing-front algorithms
with linear complexity such as the one proposed in [49].

2. For each pair (E,,, E,), we compute the intersection polytope I¥ = E, N E,
of the two intersecting elements E,, and E; and we mesh it (for our conve-
nience, triangulate it in 2D and for surface projections, or tetrahedralize it
in 3D). Hence, we obtain the mesh

Fe={S; € I*| USi =I* and S; is a simplex}

where for S;,S; CI* if S; # S; then S;NS; = @. The computation of the

Y =
intersection polytope can be done by means of the Sutherland-Hodgman
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clipping algorithm [130]. Note that the mesh Z;: does necessarily has to be
explicitly created, the next step can be performed by treating each simplex
implicitly by only using the intersection polytope connectivity.

3. We generate the quadrature points for integrating in the intersection re-
gion I*. This can be done by mapping points from quadrature rules defined
on the reference simplex E to each simplex S;.

4. We compute the local element-wise contributions by means of numerical
quadrature and assemble the two matrices B and D.

We now focus exclusively on the details of the last two steps, that is on the as-
sembly of the operators with respect to a given pair of elements (E,,E,) and

mo s

their intersection I£. We start by choosing a suitable quadrature formula (such
as GauRian quadrature [127]), with K points {%,}X_, C £ and weights {a;}¥_,
with 211::1 a; = 1. An example quadrature formula is shown in Figure 2.3(a).
Then, for each simplex S;:

» We map the quadrature points {%,}, C E to S; obtaining {x,}, C S; as
shown in Figure 2.3(b).

* We transform {x,}, C S; € E,, N E, to the reference element for both ele-
ments: X' = G};Em (x;) and X} = GﬁfiEs(xk), where G;_,, i € {m,s}, is the
transformation from the reference element £ to the element E; as shown
in Figure 2.3(c).

* We set weights

a, = oy El| det(V Gy KIS/ |,
where by |X| for X € R¢ we denote the volume of X.

* We compute and add the local contributions to the global coupling matrices
as follows

K
bpg e bpgt Z P, (X)X,
k=1

K
dyg e dpg+ Z P, (%)0,(%),
=1

the matrix entries at p, q for B and D respectively, where 1) s cﬁq, éq are basis
function defined in the reference element. The respective global counter-
parts are ¢, € V,(E,,), 0, € W,,(E;), and v, € M, (E,) which is the Lagrange
multipliers basis associated to E,.
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Figure 2.4. Displacement u, surface normal vector n and gap g.

2.3.1 Assembly procedure for two-body contact problems

The use of mortar methods in contact simulations requires, not only a more in-
volved selection of candidates, but also a more involved assembly procedure [34].
Let us consider a two-body contact problem, between two linear elastic bodies.
The two bodies are conveniently denoted as 2,, C R¢ and Q, c R¢, 2, NQ, = 0.
The displacement field u, decomposed into u™ and u®, is given as the solution
to the boundary value problem

—dive(u)=f inQ
u=q onI? (2.13)

o(un=p onIV,

where o is the stress tensor incorporating the material law, n is the outer surface
normal, Q =, UQ, and I =T, UT,,, with I, NT,, = @, represent the boundary of
Q. With T'? we denote the Dirichlet boundary, with 'V the Neumann boundary
and with T'¢ the contact boundary, T? NTN) U (I’ NT) U@V NI = 0. We
cover linearized contact conditions which do not apply to more general non-
linear problems. Such conditions are constructed by considering a very specific
set of contact directions defined by the normal field on FSC which leads to the
following definition of gap function g: FSC — R, with

g(x)= min n(x)"(x, —x),
X, €T¢
and the following non-penetration condition, Vx € I’

n(x) (w'(x)—u™(y)) < g(x), (2.14)

where y = argmin, rc n(x)"(x,, —x). We consider a frictionless contact prob-
lem, hence on I'C the tangential components of the stress are expected to be
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equal to zero, and the normal component to be less or equal to zero. Figure 2.4
provides a visual representation of these quantities.

We discretize 2,, and 2, with respective meshes &, and J,. With V, =
V4T, W, =WHZ,), and M, = M{(7;), where d corresponds to the spatial di-
mension, we denote tensor-product spaces. Let u;' € V, and u; € W), represent
the discete displacement fields in the master and slave mesh respectively.

The assembly procedure of the coupling matrices B and D, the weighted gap
block-vector gM € M,f (Z;) and weighted normal block-vector n™ € M, consists
of the following steps:

1. we determine all the pairs of near surface elements (E,,, E,), E,, € Z,, and
E, € J,. We employ the same strategies mentioned in Section 2.3, i.e.,
octrees and spatial-hashing, but we enlarge the bounding volumes of the
surface elements by small amounts in both positive and negative normal
directions.

2. Let E, be a planar surface element with normal n, which defines a pro-
jection plane. For simplicity we perform our computation in a (d — 1)-
dimensional setting. Hence, if d = 3, we compute the affine map G(x) =
Ax +q,, where A = [w,v,n], where w = q, —q,,Vv = q;—q,,n =
(w xv)/|lw x v||,, and q;,i = 1,...,n are the vertices of the element E,.
Note that G™'(E,) = E ¢ R%! is the reference element of the surface ele-
ment E,. For the sake of brevity, we denote the set {G(q)},q € Q, where Q
is a set of points, as G(Q). We transform the master surface element and
obtain obtaining E; = G (E,,), from which we remove the last compo-
nent from all its vertices and obtain the (d — 1)-dimensional orthogonal
projection £™.

We find the intersection | = En E™. If [ = @ we stop. Otherwise, for
the slave side we compute I, = G([). For the master side we compute the
orthogonal projection of I onto the surface defined by E &, the result is then
transformed by G to world coordinates thus obtaining I,,.

3. Once we have I, and I,, we compute the coupling operators D and B as in
the procedure illustrated in Section 2.3 by following step 3 and 4.

4. We assemble the weighted direction vector and weighted gap vector as
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follows:
K
n —nM+ > a) (%) n(x)
k;l
gY g+ > o i, (5) - e,(x)),
k=1

where e; = [1,0,0]7, U, is the counterpart of w, € M, in the reference
element, and p € J¢, J§ = {j € A;|supp(u;) N T # B}. The d-dimensional
blocks of vector n are normalized after assembly.

Note that if p & J .. we consider all the associated elements in B, D, nM as zero.
For the gap vector g™ we set the entries of p ¢ J;. to a suitable large number
n € R., and to [gi‘)” -e1,m,mn] otherwise. We consider the indices in J; to be
contiguous so that we can visualize the results as

_ |0 B, _|Dc O _|nc | gc
s=o 5] o=[% ome=[)eu=[%]

We compute the coupling operator T = DéB + Id, where D¢ is the generalized
inverse of D, the gap-vector coefficients g = Dég™, and the block-vector Dén™
which is then normalized block-wise to obtain the block-vector of normals n.

Since we have chosen to assign what we call normal component to the first co-
ordinate of each block of the gap vector. In fact we assume, a normal-tangential
coordinate system (frame of reference) spanned by the mutually orthogonal vec-
tors n,, t;, t ﬁ which are respectively the weighted surface normal an the respec-
tive tangential vectors at the node p.

Let us consider the following linear system of equations Au = f arising from
our contact problem (2.13). In order to work with the non-penetration condition
we transform the systems of equation. We do this by means of the Householder
transformation 0,, =Id—2ww’,w = (n, +e,)/lIn, +ell,, 0,, = O;p = O;;
for p € J;, and by O,,, = Id otherwise. We finally write the algebraic formulation
of (2.13) as

OT"ATOu =0OT"f,

8

o
IA

where @t = OT"u, which we solve by means of any method which handles
inequality constraints, such as projected gauss-seidel, non-linear multigrid, or
semi-smooth Newton methods [138; 107].
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Input Result Detail

Figure 2.5. Contact simulation between a parallelepiped and a cylinder with
automatically determined contact.

Automatic determination of contact patches

When using the mortar method in contact problems the role of adjacent surface
elements has to be the same, i.e., if an element is assigned the master role all
its adjacent elements can not be assigned the slave role, and vice-versa for an
element with the slave role.

When the slave and master roles are not provided a-priori by the user, they
are determined automatically. An example of such situation is self-contact in
transient scenarios. In such cases it is natural to consider the element describing
different bodies as part of a unique mesh. A strategy for automatically handling
this assignment problem is presented in [141]. We describe a more basic strategy
which consists of three main steps.

The first step consists of rejecting pairs of element which are detrimental to
the quality of the discretized non-penetration constraints. One criterion is to
reject pairs of elements that have a common node. Another criterion is to reject
pairs of elements for which cos @ > 8, where cos 0 = n!n,, is the cosine of the
angle between the normals n; and n,, defined on the slave and master surface
elements respectively, and f§ € R_,.

The second step consists of identifying which elements are suitable to be as-
signed the slave role. An element E; is considered suitable if its area |E,|is ap-
proximately equal to the total area of the geometric normal projection ZIk(:l |I skl
(Section 2.3.1), where K is the number of geometric projections. This step gives
us a weighted directed graph C with n vertices, which we call contact graph,
where each vertex corresponds to an element, and each edge goes to a valid
slave candidate E; to a valid master candidate E; . We consider the weight c;;
associated to the edge (i, j) of C to be the average gap function from the slave
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Figure 2.6. Contact simulation between multiple bodies with automatically de-
termined contact.

candidate to the master candidate. For a vertex i we define the set of vertices
connected by its outgoing-edges as C;.

The third and last step, is the actual master-slave role assignment. For pri-
oritizing near surfaces, we first consider the vertices of the contact graph (i.e.,
candidate slave elements) that have outgoing edges with small weights. In other
words, we consider E; before E; if 3, .. ¢ < Zkecj ¢ji- If an element E; without
role has has either adjacent master elements or is connected to a slave element
through an edge of C we consider E; to be ambiguous. We visit each candidate
slave element E; and we check if it has no role assigned. If E; is ambiguous we
skip it. We assign the slave role to E;, then immediately visit its neighboring el-
ements by traversing the adjacency graph defined by the mesh in a breadth-first
manner until we encounter candidate slave elements without role and that are
not ambiguous. We consider elements to be adjacent if they share a common
side. Then, for each parir ¢;;, j € C; we set the master role to the element E; and
all its neighboring elements using the same breadth-first traversal strategy we
previously described. Figure 2.5 and Figure 2.6 show examples of this strategy
applied to a two-body and multiple-body contact problem respectively.

2.3.2 Non-affine elements and quadrature points

In Section 2.3 we described the assembly procedures that only account for ele-
ments with affine geometric maps. The main reason is that computing the inter-
section between non-affine (curved) elements is both non-trivial and computa-
tionally more expensive.

A possible solution is to discretize such elements into piecewise linear poly-
gons (or polyhedra), intersect the polygonal approximations and generate the
quadrature points from the resulting intersection as in Section 2.3. Note that
the polygonal approximation might be non-convex, consequently the intersec-
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Figure 2.7. Space partitioning strategy examples for a five body data-set.

tion of two such polygons might be non-convex either. Hence, for meshing the
intersection more elaborate meshing strategies [27; 123] are required.

In [34] the authors show how to deal with contact between warped surfaces
by approximating the contact condition thorough the introduction of a common
plane. An option is the best fitting plane of the slave surface element or the plane
defined by the center of the element and its normal as in [105]. The geometric
projection is performed on the convex hull of the corners of the elements. After
the intersection is computed the back-projection is performed by solving a non-
linear problem.

2.4 Space partitioning and ordering

A performance critical aspect for exploiting the information transfer methods
described in Section 2.1 is intersection detection. Thus, in this section we provide
an overview of many relevant intersection detection techniques.

2.4.1 Space-subdivision strategies and acceleration data—structures

Acceleration data-structures and algorithms are widely used in spatial problems,
and there is a great amount of literature covering the topic [29; 41; 101; 131]. In
this section, we introduce some of the most commonly adopted objects for inter-
section detection, such as bounding volumes, grids, and binary space-partitioning
trees. A disadvantage of grids and trees is that you have to deal with the compli-
cation of objects intersecting multiple partitions. Sort and sweep methods [29]
avoid this complication. However, the performance of such algorithms breaks
down with respect to some common positional scenarios, hence they are com-
pletely neglected in this thesis.
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2.4.2 Bounding volumes

A bounding volume is a closed volume completely containing a set of geomet-
ric objects. Testing a bounding volume for intersections has to be significantly
cheaper than testing the contained objects. Commonly used bounding volumes
are bounding-spheres and convex-hulls. In this thesis we cover exclusively the
discrete oriented polytope (DOP) and the axis-aligned bounding-box (AABB).
The k-DOP is a discrete oriented polytope described as the intersection of k half-
spaces, see Figure 2.8. The AABB can be considered as a special case of the k-DOP
where the half-space orientations are given by the canonical basis vectors. More
specifically, a k-DOP A is defined as a set of k normal vectors [b,, b, ..., b;]
and signed distances from the origin of the respective cutting planes. We de-

note the minimum distances as B™ = [B]",B}',...,B;"] and the maximum dis-
tances as B =[B},B)',...,B"]. The k-DOP of a set of points Q is computed as

B =ming, b; - q and BY = maxg.ob;-q,1=1,...,k. For a pair of k-DOPs .&/
and A if
.0 AY<BM VvV BY <A, (2.15)

1=1,..., i i

is satisfied, then there is no intersection.

2.4.3 Spatial hashing

Spatial hashing data-structures, such as implicit grids, allow having constant
computational time complexity spatial queries for several applications, such as
3D parameterized textures, 3D painting, collision and intersection detection.
Here, we focus on the latter application. There are several strategies for per-
formance reliable spatial hashing, for computations both on CPU and GPU, such
as perfect hashing [84].

For uniformly or quasi-uniformly sized and distributed data, spatial hashing
provides the fastest way of detecting intersections. The simplest spatial-hashing
data-structure is a uniform implicit grid, which we refer to as hash-grid. We
recall the definitions of k-DOP and AABB introduced in Section 2.4.2. The hash-
grid is constructed by dividing each dimension k of the axis-align bounding-box

B=[B™ B"]in
L [1 (N)ﬂ BM —pBnm
n=\|{=-{= -
2\2 lgluns(BlM—Bm

.....

intervals which creates n = l_[;<=1 n* cells, where B, B,i"[ denote the k-th com-
ponents of the respective vectors, |-] is the floor operator, and [-] is the ceiling
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operator. The hash function is of the form

hx) =Zd](ﬂk(x) I ),

k=1 [=k+1

where
F(x)=| (x* = B)/(BY —B]") - n* |

describes the grid-index at dimension k. The cost of evaluating the hash function
h only depends on the dimension d. If we fix d, the computational time complex-
ity of evaluating h is constant. We build for each cell of the grid a list L of possibly
intersecting objects by exploiting h. This indexing process has O (n|L|,,.,) where
|L|nax is the maximum number of objects pointed by a cell. In order to index a
polytope E (e.g., an element of a mesh) we use its bounding-box % for identi-
fying which cells is intersecting. We compute .¢™ = .#(B™) and #M = #(BM)
which are respectively starting and ending tensorial indices of a range of cells of
the grid. We iterate over the cells within this range and we append E to the list
of the corresponding table entry. Elements generally intersects more than one
cell, hence when we compute the list of intersections for some element, we flag
the elements that have been encountered in any of the visited cells, in order to
avoid adding them twice in the intersection list. Once this list is complete we
remove the flags from its elements.

The performance of the hash-grid is dependent on |L|,,,, which can grow
(unnecessarily) in scenarios where there is high variability of element sizes and
positions.

Hierarchical grids allow to treat data with different size more efficiently than
simple uniform grids. A hierarchical grid is composed by a set of nested grids
organized by levels. The main difference with space-partitioning trees (Sec-
tion 2.4.4) is that there is no root. Hierarchical grids are extensively explained
in [41].

2.4.4 Space-partitioning trees and bounding volume hierarchies

Binary space partitioning trees (BSP trees) recursively subdivide space into con-
vex subsets. This subdivision is done by means of hyper-planes which can have
any orientation. A special case of BSP trees, where the hyper-planes have the ori-
entation of the canonical basis vectors, are kd-trees, quadtrees and octrees. The
latter ones are used to partition space by recursively subdividing it with either
four quadrants for the quadtree, or eight octants for the octree. From now on
we refer to quadrants and octants as cells. This partitioning strategy allows for



26 2.4 Space partitioning and ordering

Overview. k-DOP for one process. k-DOP for another process

Figure 2.8. The k-DOP is employed to efficiently discard trivial negatives for
the intersection detection. The hand mesh is courtesy of Pierre Alliez, INRIA
(Aim@Shape Project).

efficient spatial queries for finding intersecting/near geometric objects. The hi-
erarchical structure is described by a set of nodes, each node is a cell, and it is
either a branch, a leaf, or the root. A branch represents a subdivided cell, point-
ing to a set of sub-cells (children) which are either branches or leaves. A leaf
represents the smallest cell, and usually stores the information related to the
geometric data. The root, represents the top branch where the associated cell
describes the whole volume of interest. A node storing no data, i.e., no geomet-
ric data in the case of leaves, and no children in the case of branches, is referred
to as an empty node.

Bounding volume hierarchies (BVHs). In BVHs the leaf nodes of the tree are
the geometric objects, these geometric objects are usually wrapped in bounding-
volumes. The leaves of the tree are grouped as small sets and enclosed within
larger bounding volumes, which form the branches of the tree. BVHs can be
constructed with different types of sub-volumes such as spheres, cubes, k-DOPs,
etc.. The difference between BVHs and the other type of trees described in this
section, is that the bounding-volume associated with the nodes at the same level
do not have to form a partition.

2.4.5 Space-filling curves and linear octree/quadtree represen-
tations

Space-filling curves are a popular choice for data partitioning due to their prox-
imity preserving properties. We refer to [6] and the literature cited therein for
an extensive explanation of space-filling curves and their applications.

Linear octrees are widely used for collision detection [41] and for parallel
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depth

o)
=

Figure 2.9. Left: tree representation of the quadtree. Below the dashed line
we have the leaves which are considered in the ordered linear representation
of the tree. Here the leaves are following a fractal z-curve. Right: a square
domain decomposed using a quadtree. The shaded nodes are the leaves created
at maximum depth, and the dashed nodes are leaves which are flattened in order
to ensure uniqueness of the key associated with the leaves.

load balancing algorithms [129]. A linear octree consists of just the octree nodes
which contain data. These nodes are one-dimensionally sorted such that their
associated geometric data is ordered following a space-filling curve. The sorting
is based on a particular choice of keys associated with the nodes. To generate the
keys, or hashes, we choose the Morton encoding [41]. An example is depicted
in Figure 2.9, where the nodes in the linear representation are ordered based on
the Morton encoding. To generate the Morton keys, once the depth d is fixed, we
have to consider all the leaves as they were at level d. In Figure 2.9 the dashed
arrows represent the flattening and the dashed circles are the leaves which are
now considered at the tree depth d. The Morton ordering is a particular choice
of space-filling curve, however any other representation might be chosen for our
purposes. Hence, for a node n, let h;(n) denote the Morton code (or key). The
number of unique keys is usually equal to the maximum number of leaves of an
octree of depth d.

2.4.6 Advancing front algorithms

As mentioned in Section 2.3, for handling the information transfer between two
meshes, we could reach best-case linear computational time complexity by means
of the advancing-front algorithm proposed in [49]. From a mesh & defined as
a set of elements E and a set of nodes .4, we construct its element adjacency
graph in linear time by finding elements with common nodes. This graph is
used to find the intersections of two meshes Z,, and 7 in linear time. We first
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find a pair of intersecting elements {E,,, E;}. We compute the intersection and
determine if E,, is also a viable candidate for the neighbors of E,. Then, we use
the adjacency graph of E,, to test the neighboring elements for intersections with
E.. We repeat this operation until there are no elements intersecting E, and we
mark E; as resolved, and we move to the neighbors of E; and repeat.

In spite of the aforementioned advantages of this approach, we choose tree-
search algorithms. Although the advancing-front algorithm in the best case has
lower computational time complexity bound (O (n) instead of O (nlog(n)), where
n is the size of the input), it does have high hidden additional requirements
in terms of computational cost. For instance, it requires information on what
meshes or partitions need to be intersected with each other, and to determine
each starting couple of intersecting elements. Particularly in parallel environ-
ment with arbitrarily distributed meshes this might not be trivial, or even not
efficient. Additionally, with tree-search algorithms we can allow more use cases,
as mentioned in the introduction of this thesis, without having to change our
search strategy.

2.5 Parametrizations and finite element discretizations

The finite element method allows simulating physical phenomena while repre-
senting complex geometric objects by means of meshes. Such geometric objects
are complex geometric descriptions which are generated by computer aided de-
sign (CAD) software, captured from real life objects or organisms (e.g., 3D scans,
MRI, etc.), and need to represented in a sufficiently accurate way. This is the case
because the accuracy of the geometric representation influences the approxima-
tion error of the discrete solution of a partial differential equation.

The influence of accuracy of the geometric representation on the approxi-
mation error has been studied for curved boundary of iso-parametric discretiza-
tions [26; 114; 115] and for contact problems [75]. More recent literature fo-
cuses on numerical studies for different approximation spaces [15; 14], and el-
liptic and Maxwell problems [140].

During a simulation the approximation space might not be descriptive enough
to represent the solution. This problem is usually solved by means of adaptive re-
finement strategies, such as h-refinement [16; 18] and p-refinement [95]. When
using such strategies, a higher resolution at the boundary should be accompa-
nied by a better approximation of the original surface [37]. However, due to
the one-way connection between geometric information and simulation envi-
ronment, the adaptive refinement is rarely accompanied by an increase in the
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accuracy of the shape. In other words, the mesh is generated within a modeling
software and used in simulation environments without considering the original
surface, preventing a better surface approximation.

Iso-geometric analysis (IGA) [67] allows to overcome this limitation by work-
ing directly with the geometric description provided by CAD software, such as
non-uniform rational B-splines (NURBS). However, IGA is subject to several chal-
lenges such as the treatment of non-watertight surfaces, local refinement and
topological flexibility [87]. Moreover, IGA approximations, similarly to many
mesh-free methods, leads to complications in the imposition of essential bound-
ary conditions, which can be either imposed in a weak sense [11], or least-
squares satisfied in the strong sense [67].

Additionally, when dealing with three-dimensional shapes, CAD models usu-
ally describe only the boundary. Creating a NURBS volume parameterization is
a complex task, for which many different approaches exits. For instance, some
of them require particular shapes [1], need special geometric information [93],
or do not reproduce the surface exactly [85].

An alternative to IGA is the NURBS-enhanced finite element method (NE-
FEM) [124] that allows exploiting CAD geometries to describe exactly the bound-
ary of the geometry. However, this method requires creating a parameterization
mesh, and a special handling of the boundary, which according to [124] is still
an open problem.

Another challenge regards geometric multigrid methods which require a hier-
archy of nested spaces for optimal convergence [57; 22]. Such requirement can
be satisfied by generating the hierarchy by refining a coarse mesh representation
of the shape. However, such refinement cannot improve the shape accuracy. An
alternative approach [35] is to employ a parameterization such as transfinite in-
terpolation [110; 111] and to build nested hierarchies in the parameterization
domain. However, transfinite interpolation requires a surface parametrization,
a specific parametrization domain, and it is not guaranteed to be bijective for
general polytopes.

2.5.1 Composite mean value mappings

To the best of our knowledge only the composite mean value mappings [121]
allow creating smooth-bijective mappings between polytopes, such as polygons
or polygonal meshes. Convenient properties of such mappings are that they can
be evaluated point-wise, are provided in closed form, and are C*° in the interior
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bo = Z A?‘l?'s bos = Z A? qul
j=1 j=1

b= Eo.soi’o

Figure 2.10. Overview a composite barycentric mapping for T =[0,0.5,1].

of the domain. These mappings are based on the mean value mapping
b(x)= > A,(x)q;,
=1
where q; are the vertices of © and the functions Aj: ©,—R,j=1,...,narea

set of mean value coordinates [48] with respect to ©,. That is,

w; tan(a;_,/2)+tan(a./2

J n J ’
Zk:1 Wi I

where a; is the angle between the edges [x, q?H] and [x, q;’] and r; = ||x —qj.’ll,

with q; the vertices of ©,.

Unfortunately, the mapping b is not guaranteed to be bijective for all pair
of polytopes [70]. To overcome this limitation we follow [121] and “split” the
mapping from source to target polytope into a finite number of steps, where each
step perturbs the vertices only slightly. To this end, suppose that {;: [0,1] — R?,
i =1,...,n are a set of continuous vertex paths between each vertex q° = {;(0)
and its corresponding vertex q; = £;(0).

Let T, = (ty, tq,...,t,) with t, = k/s for k = 0,...,s be a uniform partition-
ing of [0,1] and Bk be the barycentric mapping from ©, to ©, , based on the
barycentric coordinates lf" : ©,;, = R. Then we define the composite barycentric
mapping from 6, to © as

b=Db, 10b;_50:--0b,

which is bijective for sufficiently large s according to [121]. Figure 2.10 shows
an example of how a composite barycentric mapping is constructed for s = 2.
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2.5.2 Efficient computation of the Jacobian matrix of the com-
posite mean-value mapping
This section provides all derivations for efficiently computing the Jacobian J; of

the 3D mean value mapping b [73]. To compute J; we first need the formula for
the partial derivative of the 3D mean value mapping of a point x,

bex) = D Gt Z s
i=1

2
k=1 k(x) l

where w; are the mean value weights [73] and q? are the vertices of ©°. We first
compute for each triangle T =[q?, q{, q3] the quantities

=l —xl, v=

with gradients

V;
Vdi=—=,  J, =dld+v;(Vd)"

for j =1,2,3. If x lies on a vertex of the source polyhedron, then we know that
the image of x is that vertex. Moreover, the function is only C° at the vertices,
hence its gradient is not defined.

Then, we compute

(ij+1 - Jv}-_1 )(Vj+1 - Vj—l)

L

ro= 4—1]2, 0; = 2arcsin(l;/2), VO; =2 , (2.16)

j
Where l] = ||Vj+1 _Vj—]”: h = (91 + 92 + 93)/2, and Vh = (V@l + V@z + V@g)/z.
If x is inside T, then h is equal to 7, and the image of x is given by the two-

dimensional barycentric coordinates of that triangular face.
For efficiency reasons, we pre-compute

. Lir l].z
So; = sin(0;) = D Co, = cos(6;)=1— 2
sp, =sin(h—6;) = L 1813 J+1r] Ly 23: lkrk+1rk 1

Ll Z?):lkrlﬁlrk—l
—=4+ ) =

s, =sin(h) = — S
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Note that the terms in the sums appear multiple times, hence we cache them.
Instead of evaluating the cosines, we exploit the trigonometric identities to com-
pute them from the sines, using exclusively square roots, which are much faster
to compute. For instance, cos(x) = Y+ 1 —«2, where the sign y is computed by
checking if the parameter h lies in the positive or negative region. We then com-
pute

=

¢; ShSh; . 2
¢;=2——1=2———1, s;=sign(det([v;,V,,V3])) 1—cj,
DCj Sej_156j+1

the corresponding gradients

v Z(CthShj +Shchj(Vh—v9j) NCjC9j+1vej+1 chcgj_lvej_l
Cj = - . 2 - .2
DC]_ So,_, S So,,, S|
and
ch Cj
Vs, =—

If x lies in the same plane as the triangle T and x ¢ T, then at least one of the
three s; = 0. In this case, T does not contribute to the computation of w; and
has to be skipped. Otherwise, we compute the mean value weight

Ny, 0;—cj110;1—¢; 10,

W . = =
j
D,, djsj185-1

and its gradient

VW _ VQJ - VC]'+1 Gj—l - Cj+1V9j_1 - VCj_l 9j+1 - Cj_1v9j+1
J DW]-
—w ( vd; €, VO Vs )
j .

+ +

d; $650 Sj-1

Finally, we aggregate the local weights and gradients

n n
w= E w;, Vw= E Vw,,
i=1 i=1

and compute the Jacobian matrix of the barycentric mapping b,

- VWi-f-i)iVW T
=S Trhey

i=1
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The composite barycentric mapping and its gradient are computed in parallel
for each evaluation point as

b:BMO...OBZOBl, VbZVBM(BM_lO...O,Bzobll)'...'v,Bz(Bl)'VBl.

We modified the algorithm proposed in [ 73] in order to avoid computing trigono-
metric functions. In fact, our adaptation contains only the computation of the
the arc-sine in (2.16), which is unavoidable because of the use of 6.

2.6 Software libraries and tools for scientific com-
puting

As new technologies arise, scientific-computing software libraries need to be con-
stantly updated or rewritten. For instance, the advent of GPGPU (general pur-
pose graphics processing units) induced new programming paradigms and new
languages such as CUDA [99] and OPENCL [74], which led to the creation of
new software libraries such as CUBLAS [100] and VIENNACL [117]. Keeping up
with such new technologies may cause small or significant changes in the code of
applications such as non-linear solution strategies, finite element analysis, and
data-analysis. However, the related high-level algorithms implemented in the
application code should not have to change.

For this reason, one solution is to develop on top of a portable interface that
fits many current and possibly future requirements (e.g., PETSc [7] and TRILI-
NOs [58]). For instance, software libraries such as DEAL.II [8], LIBMESH [76],
and MOOSE [50] rely on high level abstractions on top of existing linear alge-
bra and non-linear solution strategies codes, and allow choosing the underlying
implementation in a rather transparent way.

An alternative solution is exploiting scripting facilities for completely decou-
pling the application behavior from its actual implementation. This solution has
the advantage of hiding the complexity of parallel software to which the aver-
age, casual or opportunistic [19], user is not supposed to be exposed. The idea
is that the scripting code is translated to behavior which is implemented in an-
other lower-level language. This enables users to write few lines of very power-
ful code without the overhead of learning how to use complex parallel scientific
codes. A very specific form of scripting language is usually referred to as do-
main specific language (DSL). This specificity, while reaching the aforementioned
objectives, has a twofold advantage. First, it enables a simple description of a
specific problem since most implementation details can be hidden. Second, it al-
lows exploiting complex functionalities and performance critical optimizations.
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Notable examples related to finite element softwares, are FENICS’s unified form
language [88; 112], FREEFEM++ [71], and LiszT [31].

In DSLs lower-level abstractions are purposefully inaccessible because the ac-
tual algorithms are implemented in a different language, such as C++. This is
a problem when a DSL misses a functionality, since adding it would require ac-
cessing the underlying back-end which may be either closed source or very com-
plex. In contrast, embedded domain specific languages (eDSL) (e.g., CULA [68],
FEEL++ [104], OPENFOAM [135], SUNDANCE [90], VIENNAFEM [118]) uses the
same language and compiler for both the “scripting” layer and the implementa-
tion of the back-end. For this reason, eDSLs have the opportunity to provide the
right balance between abstraction and direct access to the back-end data-types
and algorithms.

2.7 Chapter conclusion

In this chapter we first introduced the related work. We covered the variational
transfer of discrete fields and provided detailed explanations on how to imple-
ment it for both volume coupling and contact problems in a serial environment.
Then, we briefly touched the subject of volume parameterizations, their impli-
cations in finite element work-flows and our volume parameterization of choice:
mean-value mappings. Finally, we provided an overview of the current trends in
the development of scientific software. The topics we covered impact the work-
flow and structure of finite element softwares and open opportunities for sim-
ulating on more accurate geometric descriptions, more automation in coupling
complex problems, and overall flexibility and usability.



Chapter 3

Parallel transfer of discrete fields for
arbitrarily distributed unstructured
finite element meshes

!lﬂ

Figure 3.1. Parallel bounding volume hierarchy generated by our algorithm for
detecting possible interections between arbitrarily distributed geometric objects.
Color represents processes.

The algorithm presented in this chapter is an effort towards approaching the
full automation of the geometric and functional coupling between different ge-
ometries and different approximation spaces in the context of coupled multi-
physics simulations on complex geometries. Our parallel approach is flexible
and can also be applied to different discretization techniques. And it is realized
through a general software framework which does not require ad-hoc complex
parallel code for each new scenario. In fact, our algorithm works under the as-

35
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sumption that we might have multiple meshes arbitrarily decomposed, arbitrarily
distributed, and their relation based on spatial information is not known.

However, it is imporant to note that in cases where the location information
is trivially and globally accessible, for instance with Cartesian grids or structured
meshes, our approach is not optimal. Our algorithm is designed as a general
black-box solution, hence it might not be as efficient as a reduced variant specif-
ically designed for Cartesian grids.

In Section 3.1, we provide an overview of the parallel algorithmic pipeline.
In Section 3.2, we present a parallel spatial search algorithm and the necessary
data-structures (Figure 3.1) for finding near or intersecting geometric objects,
such as the mesh surface or volume elements. In Section 3.3, we present how the
operator can be represented within the code, and how we can solve and handle
all the relationships in one pass of the algorithm. In Section 3.4, we discuss what
existing software tools we can use in order to implement the approach.

3.1 Parallel pipeline

The pipeline of our parallel approach to surface and volume projections consists
of two main phases, a search phase and a compute phase. Each process, from its
local knowledge about the data, gathers a minimal amount of information allow-
ing it to determine its dependencies and executes the assembly of the transfer
operator in a possibly balanced way. We will use the following terminology in
order to refer to different roles that a process can have with respect to data and
computation: owner process, which is a process owning a specific set of data be-
fore starting our algorithm and the related output at the end of our algorithm;
worker process, which is a process performing computation on data which might
or might not be its own. Our two-stages parallel pipeline can be summarized as
follows:

1. Parallel intersection /proximity detection, explained in Section 3.2. A set of
input meshes distributed arbitrarily to different owner processes is used as
an input to our parallel tree-search algorithm. The tree-search algorithm
then creates list of candidate-matching-element-pairs. This list of candi-
date pairs is used to identify near or intersecting objects (see Figure 3.2),
and it is partitioned evenly among the processes for computation.

2. Parallel operator assembly, explained in Section 3.3. This phase is divided
into a local and a global part. In the local part, we compute geometric
projections/intersections and generate meshes on the intersections for the
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quadrature; furthermore we assemble the entries of the coupling operators
D and B and other application dependent quantities. In the global part, we
create and communicate the complete representation of the transfer oper-
ator T = D™!B from the worker process to the owner processes together
with the other application specific quantities.

G

) A

-/

(b) Detail of the spa-
tial partitioning, with
only the mesh of inter-
est.

(d) Intersection of
two tetrahedral ele-
ments.

(¢) Geometric surface
projection of a tetra-
hedron facet.

(a) A mesh of human
vertebrae [51] and an
octree data-structure.

Figure 3.2. From a set of distributed meshes (a) we find the candidate-matching-
element-pairs and their physical location (memory) for either surface projection
(c), or volume projections (d). The elements are distributed in a grid of processes
{p;},i=1,2,...,N. The tree is constructed in parallel by exploring paths only
with respect to the local geometric data, as shown by the example in (b).

3.2 Parallel intersection/proximity detection

The output of the intersection/proximity detection phase is a collection of candidate-
matching-element-pairs (E,,, E;), such that E,, can either be near or intersecting
E,. Both elements might be originally owned by any pair of processes, hence
stored in two different memory spaces. The pair (E,,, E;) however, once detected,

is assigned to a worker process.

3.2.1 A parallel tree-search algorithm

The main goal of the search algorithm is to detect possible intersection candi-
dates. The input consists of unrelated meshes, and an application related pred-
icate. The predicate is used to determine if two meshes (also at the element
level) and consequently two processes to which these meshes are assigned, need
to be related or not. As previously introduced, the output consists of lists of
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intersection-candidate pairs relating geometric objects (e.g., tetrahedra , hexa-
hedra) on pairs of processes. For sake of simplicity and clarity, let us assume that
we have only one mesh or a subset of one mesh per process (for details about
multiple meshes see Section 3.2.3). Efficient collision detection algorithms are
usually divided into two phases, broad and narrow. In the broad phase, the tests
are conservative and fast in order to reject trivial negatives. In the narrow phase,
collision tests are exact and the actual intersection data is computed. We follow
a similar structure to illustrate our strategy, hence we divide it in three main
detection phases: broad, middle, and narrow.

Broad-phase detection

The main purpose of this phase is to eliminate, in the cheapest way possible, any
trivial negative for our search, and the identification of which processes are re-
lated and which are not. In each process, we locally construct bounding volume
data: an AABB and a k-DOB as introduced in Section 2.4.1. We exchange among
all processes the bounding volume data together with application predicate data.
We are now able to discard trivial negatives and have pair-wise relations between
processes. We call two processes related if they have a common non-empty par-
tition of space accepted by the application predicate. With the union of all local
AABBs, we can create a global AABB which will be the root of our tree search.
Note that at this point we might already have created a sparse communication
graph, hence allowing independent and specific point-to-point communication
between related processes. A simple example is depicted in Figure 3.3. In Fig-
ure 3.3(a) we have one mesh per process, J; for process p; and 7, for process p,,
and we want to determine the possible contact boundary between them. At the
end of the broad-phase detection the overall knowledge of process p,, as shown
in Figure 3.3(b), consists of its local information, the global bounding box and
the bounding box associated with process p, and &,. This information allows
us to reduce the amount of data to be considered substantially. In case of more
complex set-ups (e.g., concave objects) this is not always the case. Hence, a re-
fined search might be necessary, which brings us to the middle-phase detection
algorithm.

Middle-phase detection

The main purpose of this phase is to detect, on a finer scale, which non-empty
partitions of space exist and are shared between different processes. In order to
do that, we build a lookup table, where each partition of interest is mapped to
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all processes where this partition is non-empty. We realize this by performing
multiple simultaneous breadth-first traversals of the tree (quadtree, octree, or n-
dimensional generalization). More precisely, we perform a breadth-first traversal
for each pair of related processes. A traversal must be simultaneous between a
pair of related processes, however the other traversals in both processes can be
considered concurrently, hence allowing for additional parallelism. The traver-
sals can be performed by taking advantage of asynchronous communication (e.g.,
when implementing the algorithm with the MPI standard), i.e., by opportunisti-
cally advancing a traversal whenever new information is received by any other
process.

We start with the partition of space described by the root of the tree, which is
the same for every process (constructed in the phase described in Section 3.2.1).
Local to each process p, we have to consider the following objects:

* For the nodes of the tree, a lightweight representation is needed in order to
be exchanged after each iteration of the algorithm, and its essential form
comes with the following data: the node-id; a first boolean flag, whose
value is true when the node is empty and false otherwise; a second boolean
flag, whose value is true if it is a leaf node and cannot be refined (hence
changed into a branch), and false otherwise. The refinement of the search
can be controlled by application specific predicates.

* Aqueue Q,, for each related process q, where Q,, = Q,, (i.e., equivalent).
The queue Q,, = [ng,ny,...,n;] contains the next k nodes of the tree to
be visited for the simultaneous traversal of the process pair {p,q}. In order
to perform a breadth-first traversal, the queue is treated with a first in first
out (FIFO) policy, hence we push to the back of the queue and pop from
the front. With Q,,(i) we describe the ith element from the front of the
queue.

* We define the lightweight representation of Q,, as the queue qu, whose
elements are lightweight node representations. This representation is cre-
ated by process p, and communicated to process q.

* Alist L,, of non-empty nodes, such that L,, = Lg,. These nodes are either
leaves or branches, and identify where the various paths of the traversal
stop.

Each process p performs the following operations at each level [ for each related
process q, q # p:
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» If [ =0, we push the children of the root into queue Q,,, and we continue

to the next level.

pq°

e Ifl > 0, we create qu from Q,, and we send it to process ¢, and we receive
Qg from q.

* We process each pair n; = Q,,(i), fi; = qu(i), wherei=1,...,mand mis
the number of elements in Q,, and Q, (note that Q,, contains exclusively
nodes at level 1). If n; or fi; are empty, we move on to the next pair. If
either n; or A1; are leaves and cannot be refined to branches, we add n; to
L,,- Otherwise, if n; is a leaf, then we refine n; to a branch, and we push
the children of n; into Q,,. All m nodes which we considered are popped
from Q,,. It can be observed that this part of the procedure is and needs to
be symmetric with respect to p and g, ensuring consistent representations
of the traversal between related processes.

* IfQ,, is empty, we end the simultaneous traversal with respect to the pair
p and g. Additionally, if L,, is also empty, we consider p and q to be unre-
lated.

We can now construct the lookup table L, from p to any related process q by
gathering the information in all L,,. For each node of the local tree we identify
in which other processes the same (remote) node exists and how much data it
contains. This information can be used to balance the narrow-phase search.

An example execution of the middle-phase detection algorithm is illustrated
in Figure 3.4. Here, we can see how the quadtree structure is updated after each
iteration, until we obtain a small partition of space containing all the data of
interest.

Linearization and load-balancing

Generally, the middle-phase detection generates an output that gives rise to an
unbalanced narrow-phase search. For this reason, before entering the narrow-
phase detection phase, we redistribute the work. Hence, we first generate a linear
representation of the tree with local Morton ordering, then we identify the pair-
wise matching nodes by means of the lookup table resulting from Section 3.2.1,
balance and redistribute the node and related data accordingly.

With the set S,, we define the data storage (e.g., the mesh) for each element
E € S, owned by process p. We now construct a re-purposed linear representa-
tion of the tree as a piecewise-ordered set of nodes Z. We recall the lookup table
and its entries L, defined in Section 3.2.1. Anode n € L,, and anode m€ L,,,,
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Overview. Knowledge of p;. Knowledge of p,.

Figure 3.3. Parallel tree-search: result of the broad-phase detection algorithm.
The objective is detecting near/intersecting elements between meshes &; and
7,. Here, we can see the respective polygonal domains Q’ll and Q’ZI owned
respectively by process p; and p,. The roots’ bounding volumes and the user
meta-data are exchanged. In case of surface projections, in order to detect near
surfaces, the faces are considered to be blown-up in normal direction by a func
tion & : Q" - R.

First iteration. After the information of the nodes at level 1 has been exchanged between p; and
D, both processes know which partitions are of interest and which are not. The nodes in the
shaded area will be refined, and the children exchanged.

.................

Second iteration. By repeating the procedure applied in the first iteration, the are of interest has
become smaller.

Last iteration. The highlighted quadrants contain the data of interest. This quadrants are refer-
enced in the lookup tables L; , and L, ; introduced in Section 3.2.1.

Figure 3.4. Parallel tree-search: the middle-phase detection algorithm. Local
knowledge of a pair of processes. Left column: overview. Middle column:
knowledge of p;. Right column: knowledge of p,. For each iteration, the area
of interest, hence the focus of the search, is marked by the shaded area.
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with h;(n) = hy;(m), hence with same key, are considered to be the same node
if and only if ¢ = r. Let B,, be the AABB of node n and B of element E, we say
that n contains E if and only if B;NB, # §. Let N,(n), be the number of elements
contained by node n for process p, hence E € S, is counted if contained by n.
Let C(n) := C,,(n) be a cost function for node n and the pair of processes p and
q, for instance C,,(n) = N,(n)N,(n) or C,,(n) = N,(n) + N,(n). Since node n is
both in L,, and in L, for each process p we create a new set, our unbalanced

local work set
U, = U Lyq-
P<q

Locally to each process p, for each node n € U, we generate its key h,(n) and
sort U, according to the node keys, generating the ordered set 0p « sort,, (U,)
. For nodes with equal key, the rank of their associated remote process is used
as secondary key, hence for n,m € ﬁp, with n € L,, and m € L,,, such that
hy(n) = hy(m), n comes before m if ¢ < r. Note that d is the depth of the global
tree hence d = max,(d,) where d,, is the local depth for process p.

In a slight abuse of notation let us define the distributed piecewise-ordered
set as a concatenation of the local ones, hence U = U; o U, o ... o U, where
P is the number of processes, and o is the concatenation operator. With U(i),
where i € {1,2,...,|U]|}, we define the i-th element of U, hence the i-th node.
With X(j) =X(j—1)+ C(U(j — 1)), where j € {1,2,...,|U| + 1} and X(1) = 0,
we define the cumulative cost at node U(j). With an exclusive scan operation
we can compute X. We now know the total cost C; = X(|U| + 1), average cost
C,=|C;/P] and remainder C; = mod(Cy, P).

Our goal is to distribute the nodes and their content such that each process
p will have a balanced local work set Z, such that the associated cost Cz =

qp’

ZHEZP C(n) is as near as possible to C,.
For each process p in parallel:

* For each process q:
— Compute lower bound [, and upper bound u,. If ¢ < Cg then
l, < (@—1)(Cy+1) and u, < q(Cy+1),
otherwise
l, < (@—1)C4+Cr and [, < qCy+ Cy.

- Ifl, <X,(i) <u,i=1,2,...,]X,| then append ﬁp(i) to Zfl’. With Zé’
we denote a local-to-p partial representation of the balanced work set
Z,, which will have to be sent to g in a second moment.
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Figure 3.5. A circle represent a node of the linear tree. For each process p; with
i € {1,2,3}, we see a row of nodes. Each row represent a local view of the
linearized tree depicted in Figure 2.9. Each column represents matching node
pairs. The work is partitioned along the space filling curve among the different
processes p; as shown by the grouping on the bottom.

Note that the data associated with each node n € Zé’ is either on one or two
different processes. With D,,.(q), we describe the set of dependencies which are
non local to p, owned by r and destined to the worker process q. This implies
that in order to be able to completely construct Z,, p has to send D,.(q) to r
which then can construct Z;. Now both owner processes p and r can send the
correct data to the worker g to construct Z,. Hence, we have now constructed
Z =Zj0Zy0...0Zp. With n € Z, we are able to directly access the data contained
by n from process p.

Narrow-phase detection

The main purpose of this phase is to obtain the list of element pairs that are
matching (intersecting), and related intersection data which is then to be used
for quadrature as seen in Section 2.3. For each node of our linear tree we have
two sets of elements which have to be matched with each other. We are searching
matching-pairs at each node of the tree independently. A pair of matching ele-
ments might be detected in more than one node, and they might even be detected
on different processes. Hence, in order to avoid redundant pairs we apply a sim-
ple selection rule. Let B be d-dimensional axis-aligned bounding-box (AABB)
with minimum coordinates min,(B), and maximum coordinates max,(B), k =
1,2,...,d. For a node n with AABB B,, and a pair of elements t = (E,, E,) with
respective AABBs B, B,, the pair t is discarded whenever there exists a k such
that min, (B;) < min,(B,) Amin,(B,) < min,(B, ). In order to avoid missing pairs
at the boundary of the tree it is sufficient to enlarge the AABB at the root by a
small value (e.g., 107°). Note that, in order to avoind missing pairs of intersect-
ing elements the AABB intersection test with the tree bounding boxes has to be
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exactly as in (2.15) (i.e., with the inequality operator). If the pair t is not dis-
carded we perform our computation directly, or we first add the pair to a list of
candidates associated with node n, then re-balance, and finally compute. For
expensive computations such as the assembly of a transfer operator the second
option is more effective. In this case, we can exploit the ordering of the nodes
and re-balance the work by just reassigning the nodes such that the number of
pairs is evenly distributed among the processes. If necessary the content of the
node can be split to achieve a more fine-grained work partitioning.

3.2.2 Extended data-structures for pruning

Quadtrees and octrees might need several levels to reject non-intersecting data.
In order to anticipate this rejection, we can use bounding volumes to provide
a tighter bound for the content of each node of the tree. This bound will be
added to the lightweight node representation introduced in Section 3.2.1, hence
exchanged and tested against the remote counter-part, in order to prune the
search. This might allow us to reduce the amount of edges in the communica-
tion graph in the first iterations of the middle-phase detection algorithm, mostly
when handling complex shapes or chaotic distributions. Additionally, the ele-
ments in one node that we need to intersect can be tested against the bound-
ing volume associated with the lightweight representation of the related remote
node, in order to remove negatives before communicating. In other words, to-
gether with the octree, we are constructing a second bounding volume hierarchy
(BVH) which is tightly describing the actual geometric data. One choice can be
an AABB based BVH or a k-DOP based BVH. Though, the first choice is more
efficient in the middle-phase detection it generates more false positives which
might dramatically reduce performance in the computation phase.

3.2.3 Multiple meshes and multi-domain meshes per process

It is often the case to have multiple meshes per process (e.g., geometric multigrid,
contact problems, multi-physics problems, etc.). The application demands that
we have multiple pairwise relationships between processes (e.g., adjacent levels
in multigrid hierarchies). In order to handle these set-ups, in a general way, we
propose the following strategy: Each element is tagged with an ID representing
a domain. When the element is inserted into the tree, the nodes encountered in
the insertion paths are tagged with that same ID. A node might be tagged with
multiple IDs. The lightweight node representation introduced in Section 3.2 also
includes this information as a list of domain-IDs. Hence, at each node comparison
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in the middle-phase detection algorithm we also check by using the application
predicate if the local IDs and the ones received by the other process are related.

3.3 Application based assembly

We tackle any scenario in a monolithic fashion. That is, instead of assembling a
separate matrix for each master-slave pair, where a projection needs to be com-
puted, we assemble one single matrix describing all the different projections.
Hence, there is one unique operator T, which is assembled. The application
predicates mentioned in Section 3.2 are provided by the user and are required
to be able to discriminate between all domain (hence mesh) pairings. These
predicates can be very simple, consisting only of the comparison of two integer
numbers such as a domain identifier, or can be more elaborate depending on the
user engagement and the application requirements.

We now describe the set-up and the projection matrix T, assembled in this
way, in detail. Given n discrete domains Q? with associated meshes ; and 7,
1 < i < n, we assemble one matrix T containing all the different projection
matrices T,, ; for every pair of intersecting meshes (7,,, ) and related projection
operator P, ,, : V" (7,,) =» W, (?S), 1 < m,s < n, Here, in order to also include
the case of remeshing of multiple domains, two meshes &; and J; are associated
with every domain Qi‘ If no remeshing is done, the two meshes are the same,
ie, 7 =J,.

The global projection matrix T = DB is then the block matrix

Tl,l T1,2 oo Tl,n

. T2,1 TZ,Z “ee Tz’n

- . . . 5
T, T,o ... T,

where every block T; ; is the matrix representation of a projection P; ; : Vhi (7)—

w! (7,

j
. . i n . . .
function in V;! (7;), to a vector w = [wi]i:v where w; is the coefficient vector

). It maps a vector v = [vi]?zl, where v; is the coefficient vector of a

of a function in Whi (?l) Depending on the geometric set-up and application
considered, the various blocks T;; of the operator T and of the vectors v and w
might be zero or even undefined. Thus, even though the transfer problem w = Tv
seems to be a dense system in the monolithic form, in practice it is typically
sparse. For numerical implementation, T might also be employed through its two
separate components D! and B (e.g., in case the inverse of D is too expensive to
compute directly).
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As previously introduced in Section 2.1, there is a wide range of applications
suitable to our approach. All the representations of the operators related to these
applications can be described by our monolithic representation. For instance, the
ensemble of interpolation operators T and consequently restriction operators T’
(the transpose of T). for a three-level geometric multigrid hierarchy is repre-
sented as follows

0T, O
T=[0 0 Ty,
0 0 O

where T, ; is the interpolation matrix from level i to level j with corresponding
restriction matrix Tl.Tj. For the transfer of state variables when remeshing n dif-
ferent geometric objects the interpolation operator T would be represented as
follows

T,, 0 ... 0
. 9 T, ‘o 0
0

0 ... 0 T,

where T;; is the transfer from the old version J; to the new version J; of the
mesh for Q.

The examples are of course to be considered in the context of parallel com-
puting and distributed memory. A simple scenario would consist of the commu-
nication graph matching by the non-zero block structure of T, where each block
T, ; allows us to transfer quantities from process j to process i. Once the local
contributions to T are computed, the entries are redistributed according to the
original ownership of the entries, and added to the correct blocks. At this point,
any parallel linear algebra library (e.g., PETSc or TRILINOS algebra modules) can
be adopted for applying the operator.

3.3.1 Element-wise block operator representation

A convenient option is to assemble the coupling operator B as a block matrix,
where each block is associated to one element and it is disconnected from any
other block. In other words a node has a unique degree of freedom for each
incident element. Let us denote this variant of the coupling operator as B. Once
we have B, we can obtain B by introducing P, which allows us to compute

B =P'BP.
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The matrix P may come from discontinous Galerkin methods [3] or it might sim-
ply represent an aggregation from the disconnected nodal degrees to coupled
nodal degrees of freedom. The same reasoning may be applied to D when nec-
essary. The discontinuous operator representation is necessary when we need to
discard parts of the operator as for instance in contact simulations as explained
in Section 3.3.2. This representation might be convenient in the context of tran-
sient simulations, where the computational domain has both moving parts and
static parts. In order to save computational time we can exclusively re-compute
the operator for the moving parts.

3.3.2 Handling of assembled quantities in contact problem

The assembly of the transfer operator in the context of contact problems requires
special handling of the assemble quantities at the boundary of the contact sur-
face. Here, the intersections do not necessarily always match the surface of el-
ements of the slave side (i.e., there are case where the master surface does not
cover the slave surface). This issue can be detected only after computing inter-
sections of each slave elements with all intersecting elements on the master side,
which in parallel executions might be performed by different processes.

In order to discard invalid contributions, we first have to communicate the
quantities related to each surface slave element to the owner processes. We can
sum up the entries of the coupling matrices entries associated with the element
to compute the area of the intersection. If the intersection area is less than the
area of the slave element we discard all its associated quantities. Once this selec-
tion has been performed we can build the actual transfer matrix, the gap vector,
and the normal-tangential orthogonal transformation matrix introduced in Sec-
tion 2.3.1. The self-contact algorithm for parallel scenarios is not resolved in this
thesis.

3.4 Implementation

We implemented the whole algorithmic pipeline as part of the MOONOLITH li-
brary available at http://moonolith.inf.usi.ch. Though some parts of the
algorithm might be suitable for hybrid parallelism, we restricted ourselves to
a plain MPI (Message Passing Interface) implementation. The user can specify
a domain level predicate for pruning the search in order to be more efficient,
and relate domains and subdomains with each other. The user can also specify
element-level predicates to avoid unwanted element matches. The user needs
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to mark which element is a slave (or non-mortar) for handling the data depen-
dencies for the assembly. If all elements are marked as slaves, then the assem-
bly function is called for every intersecting element-pair (hence more expensive
computation), and the user can decide what to do at the last moment.

For applying the transfer operator, hence computing the actual information
transfer, we use the PETSc library.

In the implementation of this algorithmic framework within the MOONOLITH
library the following information transfer scenarios are supported: the transfer
of functions from a set of volume meshes to another, either in 2D or in 3D; the
transfer of functions from a set of surfaces to another in 3D, optionally including
the generation of contact surface data for contact problems between multiple
elastic bodies, such as weighted gap functions, normals, and other user exten-
sions; detection and balancing in n-dimensions.

Given that the MOONOLITH library has been implemented following object
oriented programming principles, additional extensions can be easily added.

We integrated our parallel algorithmic framework with the MFEM library [ 77]
for allowing volume transfer between all their available discretizations, and it is
officially available as an optional module here http://www.github.com/mfem.
We have implemented a full LIBMESH [76] integration both for surface and vol-
ume transfer available here http://www.bitbucket.org/zulianp/utopia.

3.5 Chapter conclusion

We presented a parallel approach for the assembly of transfer operators in the
context of finite element simulations. These operators are of interest for a broad
range of applications such as multi-physics simulations, non-conforming domain
decomposition, contact problems, multi-scale simulations, and re-meshing. We
focused our study on arbitrarily distributed unstructured meshes and the transfer
of discrete fields with respect to volume and surfaces.

We introduced the approach in relation to the assembly of projection opera-
tors like the L?-projection and its local approximations, nevertheless it can be em-
ployed for classical interpolation methods as well. We presented an algorithmic
framework and at an abstract level also the implementation of the MOONOLITH
library. This framework can be employed for handling 2D and 3D geometries
with respect to both surface and volume geometries. The approach can also be
employed for the case of surface projections in contact problems for computation
of bounded distances.

Our approach is not optimal for the scenario when either the master or the
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slave mesh is a structured-grid. In this scenario using spatial hashing algorithms
is the most efficient variant even in parallel. Spatial hashing is rather simple
to parallelize since the grid information can be fully replicated and stored by
each process with a relative small memory occupancy. This replication allows to
neglect complex communication routines.
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Chapter 4

Parametric finite elements with
bijective mappings

source
mesh

t=0 t=5 t=10 t=15 t=20

Figure 4.1. Transient non-linear elasticity simulation for a warped quad-mesh
with compressible-neo-Hookean material. The elastic gear is subject to vertical
body forces (gravity) and has a fixed tooth on the top boundary. The colour
represents the von Mises stress for the solution at the different time-steps t.

In this chapter, we present a novel discretization which enables exploiting ex-
act geometric descriptions (e.g., splines or surface meshes) together with strate-
gies employed in standard finite element simulations (Section 4.1). This dis-
cretization has the advantage of decoupling the geometry and the approximation
space allowing for sub/iso/super-parametric elements. Although our presenta-
tion is based on the Poisson problem, our discretization can be naturally em-
ployed to solve more complex problems, such as transient non-linear elasticity
shown in Figure 4.1.

Similarly to IGA, our approach focuses on a parametric representation of the
input geometry. Despite this similarity we can discern the two techniques for the
way they relate to standard finite elements, the existing codes, and the type of

51
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Figure 4.2. Overview of parametric finite elements with bijective mappings, with
colour-coded solution of the Poisson problem (4.1) on a 2D warped domain €2,
with zero boundary conditions and constant right-hand side.

input geometries they handle. For our method the choice of the basis functions is
not determined by the choice of the geometric mapping, whereas for IGA it does.
The extension of standard finite element codes with the techniques described in
this chapter is rather straightforward as it is illustrated in Section 4.1. The prob-
lem of dealing with exact geometries has been deeply studied for CAD geome-
tries by the IGA community. Unfortunately, a similar study for surface meshes is
missing. For this reason, we focus on the exact representation provided by sur-
face meshes, and present the construction of a bijective volume parameterization
from arbitrarily shaped domains to arbitrarily shaped meshes (Section 4.2).

4.1 Formulation

Let us consider the standard Poisson problem

—Au=f, ulpq =g, “4.1)

where Q is the computational domain, 912 is the boundary of Q and g describes
the boundary values. In contrast with the classical construction

is given by the image of a sufficiently smooth bijective mapping
b:0,— 06,

where Q, C @, is a source domain, ®, C R? is a parameterization domain, and
© C RY is a parameterization image. Figures 4.2 and 4.3 show an overview of
our construction and the solution of the Poisson problem (4.1).



53 4.1 Formulation

N
& <R

[

u(7)

Figure 4.3. Overview of the parametric finite elements with bijective mappings,
with colour-coded solution of the Poisson problem (4.1) on a 3D warped do-
main 2, with zero boundary conditions and constant right-hand side.

Let u € V = H, (), where H, is the Sobolev space of weakly differentiable
functions vanishing on the boundary, and f,g € L%(Q). Using integration by
parts, we rewrite (4.1) in its weak form, which is: find u € V such that

JVwVv:va Vvev.
Q Q

Using b, we express the previous integral with respect to the source domain
Q,. Considering that u(x) = u(b(x,)) and v(x) = v(b(x,)) where x € Q and
x,=b7'(x) € Q,, and applying change of variables in the integrals, we rewrite
the weak form: find u € V such that

f J,"Vu-J Ty det(Jy) :f fv det(J,) Yvev, (4.2)
Qo Qo

where Jj, is the Jacobian matrix of the mapping b.

In order to solve this problem, we represent the computational domain 2 by
a warped mesh 7 = b(%,), where Jy = {E, € Q|| JE, = Q,} is a conforming
mesh (i.e., the intersection of pairs of different elements E, is either empty, a
common node, edge, or side) describing the source domain 2, and the elements
E, form a partition. Note that, as described in (4.2), the bijective mapping warps
the entire volume, creating warped elements E = b(E,). Let the finite element
space associated to 7 be

X;’(ﬂ) ={veC’QIVEeTIwe P, : v(b(G(%)) =w(x),Vx € E}, (4.3)

abbreviated as X 5, where G the transformation from the reference element E to
the corresponding element Ej, in the source domain, and P, a space of polynomial
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Figure 4.4. The standard linear and quadratic shape functions ¢; on the element
of the source mesh and the corresponding warped element.

of order p defined in the reference element. Let the basis of X 5 be {¢©1,..-, ©m}s
where m is the number of basis functions. Figure 4.4 depicts an example of such
basis functions for a warped element. We approximate the function u by means of
u, €X 1’)’ , Where h stands for the discretization parameter. Expressing u;, in terms
of its basis reads as u;, = Z:’;l u;p;, where u; are real coefficients. By choosing
the test space as X 1}: , we discretize (4.2) as

Zuif Jb_TV‘Pi 'Jb_TVSDj det(Jb):ZfiJ @i, det(Jp) Vi=1,...,m,
i=0 o) i—0 Ja

which can be represented in the classical matrix form
Lu=Mf, (4.4)

with u = [uy,...,u,]" and f =[f1,..., fn 1"

To assemble the Laplace stiffness matrix L and the mass matrix M we perform
numerical quadrature. Because of the non-linearity of J, we need to choose a
proper quadrature scheme even when the basis functions of the approximation
space X ;’ are low order polynomials.

We perform the quadrature in £, using quadrature points £, € £, x, = G(%,)
with the respective quadrature weights a; € R, k = 1,...,K. Figure 4.5 shows
all the geometric transformations from the reference element £ to the warped
element E. We denote by ¢; the basis functions on the reference element and by
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Figure 4.5. Overview of the geometric transformations from the reference ele-
ment E to the source element E, € J; and to the warped element E € 7.

J; the Jacobian of G. This allows assembling the local matrices for the element
E

K
LE = B J 7" () Vi) - T (x )V (R),
. (4.5)
ME =" B, i(%) ¢5(%,),
k=1

where J(x;) = J,(x;)J;(%) and B, = a, det (J(x;)) |}§|, with |}§"| the volume of
E. These local contributions are then gathered to compute the matrices L and
M.

Note that the weak formulation and the assembly procedures are very similar
to classical finite elements. In fact, the only difference is the usage of the geo-
metric terms depending on the bijective mapping b, such as J, which contributes
toJ =J,Jg. As in standard FEM, the choice of the basis is independent from the
geometric description, leading to super/sub/iso-parametric approximations. In
our method the geometric description is given by the mapping b, which is usually
non-linear, so that our discretization falls into the category of super-parametric
elements.

If we assume that b(Z7 ,) describes the exact geometry, then the geometric
error is zero. However, the error in the solution is also connected to the choice of
the approximation space and the shape of the elements. This error is influenced
by the Jacobian J, of the bijective mapping. We estimate it by means of the
condition number

k= sup [y(xoll Il Gl (4.6)

X0€ENY,XEN

as in standard parametric finite elements estimates [17; 20].
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Figure 4.6. Example of parametric finite elements using a B-spline as the param-
eterization b. The colour describes the solution of the Poisson problem (4.1).

4.2 Shape and volume parameterization

The quality of a numerical solution of a partial differential equation is influenced
by the accuracy of the geometric description and by the choice of the approxi-
mation space. In other words, a parameterization which describes the geometry
exactly does not introduce any error related to the shape. The choice of this pa-
rameterization depends on the input geometry and includes every smooth bijec-
tive mapping, such as bijective spline mappings [42] (see Figure 4.6), composite
mean value mappings [121], or harmonic mappings [120].

Since for CAD geometries the problem has been widely studied by the IGA
community, we focus our study on volume parameterization between arbitrary
surface meshes. The first challenge is the construction of a simpler surface ©,, a
coarse source domain €, and a paramaterization image ©, such that Q = b(Q,)
(see Section 4.2.1). The other challenges are the construction of the volume
parameterization b (see Section 2.5.1), and the efficient evaluation of the forms
within a simulation work-flow (see Section 4.2.2).

Input surface Coarse surface Simplified ©, and coarse u(7),7 =
0=0 Qo surface @, mesh J, b(%)

Figure 4.7. Given an input surface © we simplify it to obtain ©,, which coincides
with ©,. We mesh Q, obtaining J, and solve the problem with respect to 7,
which has the same boundary as ©.
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Simplified surface
S

Input surface © = T = b(F) u,(7)

Figure 4.8. Three-dimensional example of the work-flow of our approach, from
the input surface to the solution of the problem in the warped mesh 7.

4.2.1 Constructing the parameterization domain

In order to solve the model problem with the exact input geometry, the shape
of ©® must coincide with Q, which describes the exact shape. As carried out in
detail in Section 4.1, our approach still requires a parameterization domain ©,
and a source domain 2,,. Hence, we first need to construct ®, with the same mesh
connectivity as © while ensuring that ©, describes a simpler shape. Note that in
order to reproduce 2 by means of b the shapes of 2, and ©, must also coincide.

The approximation space for the finite element solution for the model prob-
lem can now be chosen independently from the shape, since 2, and ©, are ar-
bitrary (e.g., the octagon in Figure 4.7 or the tetrahedron in Figure 4.8). This
allows meshing 2, with arbitrary mesh size to obtain &,. Hence, by applying b
to J,, we control the resolution of & = b(Z,) independently from the shape of
© without influencing the shape accuracy.

As illustrated in Figure 4.7, in the 2D case, , is constructed by removing
vertices from ©. In order to obtain ©, we reintroduce the removed vertices on
the edges of Q,, without modifying the shape described by ,. Finally, we mesh
Q, to obtain J; and solve the problem in 7 = b(Z,).

The 3D case requires to coarsen © in order to obtain 2, while construct-
ing a surface parameterization to build ©, [40; 83; 80]. In our implementation
we use the multi-resolution adaptive parameterization of surfaces (MAPS) algo-
rithm [83], which produces a geometrically non-conforming parameterization
(i.e., ©, is not nested inside €2,). To overcome this limitation, we extend the
MAPS algorithm by snapping the vertices of ©, to the edges of 2, and by apply-
ing few element splits to ©, and © when that is not feasible. We remark that the
only operation performed on © is splitting, which does not change its shape.

Summing up, we start with a detailed mesh representing the exact geometry
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Figure 4.9. Running times for computing the composite mean value mapping
and its Jacobian. The computational time depends on three parameters: the
number of intermediate steps s, the vertices n of ©, and the evaluation points.
For each of the three experiments we vary only one of the parameters, whose
base values are s = 10, n = 62, and 1800 evaluation points.

©. Then, from © we compute a coarse surface 2, which we mesh to obtain .
Finally, we use the parameterization obtained with MAPS to construct a surface
©, with the same connectivity as © and the same shape as 2,. An example of a
result of this procedure is shown in Figure 4.8.

4.2.2 Pre—computation of the composite mean value mapping

The composite mean value mapping described in Section 2.5.1 is computation-
ally intensive. For this reason we need to avoid computing the mapping and
its Jacobian multiple times. Similar to the classical assembly procedure of the
problem matrices, we start by deciding the order of quadrature. The order of
quadrature depends on the problem we want to solve, the choice of the approx-
imation space, and, especially for our approach, the bijective mapping b.

Instead of directly assembling the matrices in (4.4), we divide the assembly
procedure into two stages. The first stage consists of generating and storing all
the quadrature data associated with the geometry necessary for the assembly,
such as the global quadrature points b(G(x)) and the Jacobian matrices J,(x).

The second stage consists of the standard assembly procedure of the element
matrices (4.5), though using the precomputed quadrature quantities. This strat-
egy allows assembling the matrices like for standard finite elements without the
need of evaluating b and J, for each new operator.

For the standard finite element assembly procedure storing the quadrature
data is usually not necessary, making our two stage approach less memory-efficient.
However, the caching allows both a parallel evaluation of b and the possibility
of reusing the quadrature data for different operators (e.g., Laplacian and mass
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Figure 4.10. Comparison of b (orange dashed line) with its polynomial approx-
imations b* (black solid line) for an element E,,.

matrix) and multiple time-steps (e.g., in case of transient non-linear elasticity
simulations). For instance, in Figure 4.1 the quantities related to b are computed
only at the first time-step and reused in the following ones.

Despite the pre-computation, the evaluation of b remains expensive. For-
tunately, mean value coordinates are straightforward to parallelize on shared
memory processors. In fact, every point-wise evaluation of b and J, can be com-
puted in a completely independent way. Figure 4.9 shows the parallel-running
times using OpenCL [74] with respect to different input sizes, computed on a
laptop computer with Intel Core i7 2.3GHz processor and 16GB RAM.

4.3 Piecewise mapping approximations

As previously mentioned, composite mean-value mappings are computationally
very expensive and their inverse is computed by solving an even more expen-
sive optimization problem. An alternative option is approximating such map-
pings element-wise by a simpler geometric map. In this section we show possi-
ble choices of such approximation, ranging from polynomials (Section 4.3.1) to
polygonal approximations (Section 4.3.2 and Section 4.3).

4.3.1 Polynomial elements

A natural choice of a piecewise approximation of b is polynomial mappings [43].
For each element E, of the source domain mesh &, we consider the approximate
geometric map

m

Br(x) = cjp;(x), (4.7)

j=1
where m is the number of interpolation nodes, ; is a polynomial of degree at
most k, ¢; is the associated coefficient, and x € E,. The most basic procedure to
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determine the coefficients c; is to solve the following interpolation system [132]

01(x1),  @alx1), oo, @plxq) G b(x,)
01(x3), @alxz), ..o, @ulxs) Cy _ b(x,)
(‘01(.;Cm), 902(;Cm)1 ] (Pm(-xm) C;)q b(xm)

Figure 4.10 shows different variants of b* for k = 1,2,4. Let
XNT):={v € COIVE € T Iw P, : v(x) =w((b*G)'(x)),Vx € E} (4.8)

be the finite element space associated with b*, where PP, is the the space of poly-
nomials of degree p in the reference element £. When p = k we are considering
the case of iso-parametric finite elements, when p < k we are considering super-
parametric finite elements, and p > k we are considering the sub-parametric
case.

The main advantage of this approach is that, once the approximation b* is
constructed, the original map b is not necessary anymore. In other words, the
computation of b and its approximation procedure can be considered as prepro-
cessing, which does not directly affect the performance of the solution process.
Moreover, since b* is a polynomial, the numerical quadrature can be performed
efficiently with floating point precision [127]. However, b* does not guarantee
bijectivity. In fact, in the presence of large deformations or concavities this ap-
proach is very likely to fail. This issue is not resolved by naively refining the mesh
as shown in Figure 4.13, but, in some cases, it can be alleviated by a suitable po-
sitioning of the interpolation points. In this thesis we do not address such issues
and we consider exclusively standard node placements.

4.3.2 Polygonal elements

The main issue of the local polynomial approximant b* is caused by the lim-
ited (or absence of) control of the accuracy of the shape of the elements in the
co-domain mesh 7. In other words, the shape of the element b*(E,) solely de-
pends on the choice of the interpolation points, which may result in the loss of
bijectivity, as depicted in Figure 4.13.

An alternative method which reliably preserves bijectivity consists of approx-
imating b(E,) by a polygon (or polyhedron in 3D) which resolution is controlled
in the co-domain with arbitrary accuracy, see Figure 4.11 left. For obtaining
such polygon, we first sample every side of E, with n uniformly sampled points
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x;, i =1,...,n. Then, we compute b(x;) which gives us a densely sampled
polygonal approximation of b(E,). Finally, for efficiency reasons, we discard
all approximately collinear points thus creating polygons with fewer vertices. A
point x; is discarded if u”v/(||ul|||v]]) > (1—¢) is true, where u = b(x;)—b(x;_;),
v = b(x;,1)—b(x;), and ¢ € R_, determines the accuracy of the approximation.
Since the original mapping b is rather local, our strategy naturally generates
triangles away from the boundary, as shown in Figure 4.12. This brute force ap-
proach for approximating b can be replaced by adaptive discretization strategies
with the primary objectives set to preserving bijectivity and the boundary shape.
In this case adaptivity may substantially improve performance of the preprocess-
ing phase and reduce the minimal number of degrees of freedom imposed to the
solution process.

Standard finite element basis functions (e.g., ’; and P,) are not suitable since
the shape of the polygon is arbitrary. For this reason we follow the approach
in [128] and employ mean-value basis functions (MV), which are well defined
for any polygon. Note that mean-value coordinates for triangles coincide with the
IP, basis functions as for any other barycentric coordinate. When using such basis
the assembly procedure is not performed in the reference element but directly in
the physical element E € 7. We describe this polygonal finite element space as

Xoyw(T) :i={v e CUQIVE € T Iw e MV(E) : v(x) =w(x),Vx €E}, (4.9)

where MV(E) are the mean value coordinates defined in the polygonal element
E. Note that for this discretization we do not have an explicit geometric relation-
ship (i.e., volumetric map) between elements of J, and the elements of & except
for a node-wise correspondence on the boundary of each element. The main ad-
vantage of this discretization is that it avoids incurring in flipped triangles due
to linear edges or self intersecting elements due to polynomial oscillations. Note
that this discretization generally induces a higher number of degrees of freedom
which are automatically determined in the proximity of the boundary.

4.3.3 Piecewise affine elements

A practical choice of geometric map between the polygonal approximations of el-
ement E, € 7, and element E € 7 (introduced in Section 4.3.2) is the piecewise
affine map b*. We construct b* by a means of suitable local triangulation which
is valid for both polygonal elements E, and E. Validity of such map is ensured
if the triangulation does not create degeneracies, such as flipped or zero area
elements, in neither the polygonal approximations of E, nor E.
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Polygonal Piecewise-affine
E() E EO BA(EO)

Figure 4.11. Comparison of b (orange dashed line) with its polygonal and
piecewise-affine approximations (black solid line) for an element E,.

The geometric map b* can be employed with different choices of finite ele-
ment functions in the reference element, such as I’; and P,. We denote this finite
element space as

XNT):={ve€CUAQIVE€ TIweP, :v(x) = w((b*G) " (x)), Vx € E},
(4.10)
where b” is defined piecewise within each element as an affine transformation
which maps each simplex S? € E, € 7, to their image S; C E € . An example
of element b*(E,) is depicted in Figure 4.11 right.

&+
*{
~w J

Figure 4.12. Number of nodes per element. The color represents the number
of vertices of the polygonal elements, where white describes triangles and red
more complex polygons.
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Figure 4.13. Comparison between b and its different element-wise approxima-
tions. The loss of bijectivity for linear, quadratic and quartic approximations
around concavities is not mitigated by refinement. Note that refining the mesh
may actually introduce this problem, as visible in the second column of the
quartic approximation.
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Ty Ty Iy T =b(TP)

Figure 4.14. Multigrid method with warped mesh. Left: overview of the hierar-
chy of meshes. Right: warped mesh.

4.4 A multigrid method for arbitrarily shaped 2D meshes
using parametric finite elements

In the context of geometric multigrid methods, employing parametric finite el-
ements allows constructing the hierarchy of meshes in the parametrization do-
main, while the actual computational domain is represented exclusively through
a geometric map. In this Section we briefly illustrate how to exploit the concepts
introduced in Section 4.1 for implementing a geometric multigrid method for
arbitrarily shaped meshes.

We consider the Poisson problem (4.1) and the discretization introduced in
Section 4.1. We reuse the definition of the finite element space X ;’ , and introduce
the following hierarchy of L nested spaces

7= {XET)),. XATH,

where 901 is the conforming mesh at level [. The mesh at level [ is the (uniform)
refinement of the mesh at level [ —1, in such a way that each element E(l) € 901 is
a child of one element E; ! € 7/, such that E} € E,"! form a partition of E_ .

For relating coefficients between the different levels we employ the standard
prolongation operator I': X 1’; (901_1) — X 1’; (901) for geometric multigrid meth-
ods [21]. The standard procedure for constructing I' in the case of nested spaces
exclusively relies on the available hierarchical meta-information usually gener-
ated by the mesh refinement algorithm. The resulting operators can be equiva-
lently constructed by assembling the pseudo-L2-projection matrices (Section 2.2)
between each adjacent level of the hierarchy of meshes in the parameterization
domain [35; 62].

For constructing the mesh hierarchy in the parameterization domain we solely
require 901, which is obtained by following the procedure described in Section 4.2,
and construct the finer meshes by (uniform) refinement.
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Once our hierarchy is constructed, we assemble the matrix L and related ma-
trices and vectors from (4.4) on level L. We construct the stiffness matrices in the
coarse levels by performing the Galerkin projections L'=* = (I')TL'I'. In a similar
fashion, within the multigrid algorithm, we restrict the residual as r'~! = (I)7r!,
where r! = Mf— Lu and interpolate the correction as ¢! =I'c/™!.

Instead of employing the map b we can exploit its piecewise approximations
for a more efficient finite element assembly. In the case of the piecewise polyno-
mial approximation of b introduced in Section 4.3 we can just swap b with b in
the definitions of the multigrid hierarchy. With the finite element space X 1’3‘(? D)

from (4.7), where 7, = (Ek(gol)), we describe the finite element space associated
with level [ =1,..., L of the multigrid hierarchy

%j = {X;j(yl), ... ,X}’;(ﬂL)}.

For the polygonal finite element approximation we have no explicit map ap-
proximation that we can employ. Hence, we define the coarse space vazw(ﬂ H=
span;c; {¢;} on the [ level, where J; C N is the index set of the nodes of 7 L

. . . J J . .
Let us introduce the weight matrix Q € RV+*Vil with elements qij> > jendij =1

and follows the definition v; = ZjeJ, q;;0;, with X2 (T = spany,,, {6}
The weight matrix is constructed by assemblying the L2-projection operator be-
tween the auxiliary spaces XMV(%I), which are defined in the parameterization
domain, as described in Section 2.2. Note that, in our set-up, for [ < L we have
Xyw(FY) = X1(F). The recursive definition of X\, (7") at its base case is de-
fined as XRQAW(Q LY := Xy (7), which allows us to express this multigrid hierarchy
as

Ay = X2 (TN, .., X2 (T}

4.5 Chapter conclusion

The idea of combining the finite element method with bijective mappings allows
representing complex geometries on coarse meshes and enables specifying inter-
polation conditions as in the classical finite element method. For instance, our
method can be used with Lagrange elements, splines, NURBS, or mixed finite el-
ements independently from the complexity of the input geometry. We introduce
this novel discretization focusing on the particular case of composite mean value
mappings which automatically creates a volume parameterization given only the
boundary description.

Although we focus our presentation on the case of discrete geometry and com-
posite mean value mappings, our construction might be suitable for any other
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Figure 4.15. Handling the interface (grey stars) between the Neumann boundary
(blue solid lines) and the the Dirichlet boundary (orange dashed lines) from ©
to .

choice of bijective mapping b, and it would be interesting to further investigate
this flexibility. For instance, within the composite mapping, we can employ other
types of smooth barycentric coordinates for which we can compute the Jacobian,
such as maximum entropy coordinates [66; 52]. The method becomes compu-
tationally more expensive when employing the composite mean value mapping,
however much of the related data can be precomputed and reused for differ-
ent operators, as explained in Section 4.2.2. Moreover from the assembly point
of view, our method only requires to change to quadrature procedure (4.5) by
including the terms containing b.

In our presentation we first defined the mapping b as a global parameteriza-
tion from ©, to ©, though, in order to have a faster computation of the quadrature
data, we discussed strategies for localizing the mapping.

We presented the integration of our approach with efficient and modern solu-
tion techniques, such as multigrid methods. The flexibility provided by arbitrarily
choosing the mesh for describing €2, allows us to naturally generate nested geo-
metric multigrid hierarchies with exact geometry. Moreover, the construction of
the interpolation and restriction operators is trivially performed using standard
mesh refinement of the source mesh %, since the mapping b is the same for all
levels.

Our discretization with composite mean value mapping enables treating bound-
ary conditions with arbitrary precision even for the non-homogeneous case. For
instance, let us consider the example problem in Figure 4.15, where Dirichlet
boundary conditions are specified on 2, € 92 (orange dashed lines) and Neu-
mann conditions on dQy = 9N\ dQ, (blue solid lines). Let the interface (grey
stars) between 9, and 2y be I' and its corresponding interface in ©, be I, (i.e.,

[' = b(I)). When generating the mesh J; we preserve I}, which is then mapped
to its image I' in &. Since I is preserved, the boundary conditions which are
specified on 02, and d2y can be equivalently handled on €2,,.
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A limitation which comes with our choice of bijective mapping b is that com-
posite mean-value mappings do not provide any guarantees nor control over the
quality of the computational mesh, which is usually determined by aspect-ratio
and orientation of the elements [125]. In fact, the shape of the elements is en-
tirely subject to any distortion caused by the mapping b. This suggests that fur-
ther investigations on this topic are necessary for providing mesh-quality guaran-
tees that are conforming to industry standards or enabling synergies with state-
of-the-art methods, such as r-refinement [98]. In Section 4.3 we presented the
element-wise approximations of b which may present future opportunities for
localized mesh improvement and mesh adaption.
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Chapter 5

Utopia: a C+ + embedded domain
specific language for scientific
computing

In this chapter we present UTOPIA which is an eDSL deeply embedded in C++.
Its philosophy is the separation of model and computation and its main purposes
are linear and non-linear algebra, and finite element simulations. By exploit-
ing meta-programming facilities, UTOPIA can easily be integrated with any other
existing implementation, hence it is independent from technological changes.
Moreover, UTOPIA shares the advantages of DSLs, for instance hidden paral-
lelism, optimization transparency, and automatic differentiation. The UToOPIA
eDSL is designed and developed for providing a balance between abstraction
and low-level access without sacrificing performance. It aims at an organic in-
tegration with existing code without creating barriers between abstractions and
implementation. In fact, both abstractions and low-level data are accessible to
the user at any time. This allows users to extend their code with possibly missing
functionalities by manipulating the low-level data (and back-end) directly. The
flexible design of UToPIA allows for adding these features in a straightforward
way to future releases.

UToPIA follows object oriented programming (OOP) principles [92]. An ex-
ample is design-by-contract [96] which states that interfaces specified in the super-
type have to be respected in the sub-type. A violation of the contract leads to
code that, even if it compiles, does not run correctly. This type of fragility is
common, and a way of handling this issue consists of hiding as many details as
possible behind high-level abstractions. The UTOPIA abstraction performs all nec-
essary work-around to ensure that the client code, when compiles and respects
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the contract (which is automatically checked with assertions) runs without fail-
ures. Another important OOP principle is the dependency inversion principle [92]
which states that high-level abstractions should dictate how high- and low-level
modules have to be integrated. The implementation of UTOPIA is built and de-
veloped on top of this principle. Finally, other important OOP principles, such as
the open/close principle, are taken into consideration when developing UTOPIA.
The respect of these principles, allows UTOPIA to be modular, reusable, easy to
extend, and sustainable to maintain.

This chapter is organized as follows: in Section 5.1 we explain the princi-
ples and design of UTOPIA, in Section 5.2 we present some extensions, and in
Section 5.3 we provide a set of scenarios to show the usage of UTOPIA in an
application environment.

5.1 Architecture

Many powerful linear algebra libraries (e.g., PETSc, UBLAS [134], and AR-
MADILLO [119]) or finite element libraries (e.g., LIBMESH, MFEM [77], DUNE [9],
and FETK [65]) already exist. For this reason, the first prototype of UTOPIA does
not “reinvent the wheel” and relies on PETSc for the algebra and LIBMESH for
the finite element assembly. It is possible to develop other back-ends, such as
automatic OPENCL code generators.

The design of the UTOPIA core is based on three main components: the
eDSL (Section 5.1.1), the expression-tree (Section 5.1.2), and the evaluator (Sec-
tion 5.1.3), which are represented in the component diagram in Figure 5.1. The
UTtopIA eDSL allows users to state the behavior of their program and only care
about the details relevant to their application. Despite this high degree of ab-
straction, users may need to perform operations on concrete data-types, such as
accessing the entries of a matrix. To facilitate such tasks, UTOPIA provides an
application programming interface (API) which directly queries the back-end for
particular data (Section 5.1.4).

Natively, UTOPIA does not compute any of the specified operations since it
relies solely on its back-ends. We use expression-trees to evaluate the operations
depending either on the overall evaluation strategy or the specific back-end prop-
erties. We note that evaluation and back-end are conceptually tightly coupled.
For instance, if the back-end is a library such as PETSc, we tailor the evaluation
of the expression tree to the specific C functions.
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eDSL —O)— expression tree »— API
evaluator
expression to back-end
function mapping
PETSc BLAS

code generation O—

LAPACK

element-wise
evaluation

Figure 5.1. Component diagram of the UTopriA core, the main components are
highlighted. The connectors describe the dependency relationships among com-
ponents, where the circle represents an interface and the arc represents the us-
age of such interface.

5.1.1 Embedded domain specific language

The UTOPIA eDSL primitives are mainly inspired by MATLAB and EIGEN [55], and
are realized by exploiting the C++ language meta-programming facilities (i.e.,
templates), function overloading, and functional-style programming constructs
introduced in the C++11 standard. The simple and clean presentation to users
is made possible by type inference and the auto keyword which allows to hide
complex meta types, see Figure 5.2.

Tensor types are represented by the wrapper class template<class Tensor,
int Order> class Wrapper within UTOPIA expression-trees. The first template
parameter Tensor is the concrete back-end type, for instance a PETSc matrix.
The second parameter Order is the tensorial order, for instance Wrapper<Tensor,
1> describes vectors and Wrapper<Tensor, 2> describes matrices. Interaction
between wrappers is defined through the UTOPIA primitives, for instance the
multiplication or transpose operator. This interaction automatically generates
an expression tree which is evaluated only when it is assigned to another wrap-
per object. Direct wrapper manipulation (e.g., changing the entries of a vector)
is implemented in a unified API (Section 5.1.4).

5.1.2 Expression tree

The nodes of the tree are expressions and can be either operations, wrapper ob-
jects, or factories. The actual expression tree is generated by combining multiple
expression nodes, as shown in Figure 5.3. Operations are branches of the tree
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// 1) types
Matrix A, B, C;
double alpha, beta;

// 2) complete type of the expression treee
Binary< Binary< Number<double>,
Multiply<Matrix,
Matrix>,
Multiplies>,
Binary< Number<double>,
Matrix>,
Plus> expr = alpha * A x B + beta + C;

// 3) using C++11 auto keyword
auto expr = alpha * A x B + beta + C;

// 4) the expression is evaluated here
Matrix value = expr;

Figure 5.2. Four block of code showing the C++ representation of UTOPIA ex-
pressions. The second block of code shows the type of the expression tree gen-
erated from expression aAB + BC. The third block shows the usage of the auto
keyword, at this stage no computation involved. The last block shows how to
trigger the evaluation.

*/+\*

+

*/ \B c/@ A/ \*

ol ol

aAB+ f3C A+ ald

Figure 5.3. Expression tree of different expressions: the solid blue circles rep-
resent operations, the dashed orange circles are wrappers, and the solid green
boxes describe factories.
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and represent specific operations between nodes of the tree. For instance, the ex-
pression x + y is translated to a binary node representing the addition between
its left and right subtrees. Wrappers are always leaves of the expression tree and
allow to determine the back-end and the evaluation strategy. This is realized by
propagating meta-information from the leaves to the root at compile time. Fac-
tories are also leaves and are implicit data-descriptions. Their primary objective
is the creation of objects such as the zero, identity, and sparse matrices. The
secondary objective is specifying compositions of expressions without actually
creating concrete tensor objects. For instance, the expression A +1d is translated
to an addition binary node whose right child is the identity factory, which is then
implemented as a diagonal shift in our PETSc back-end.

Every function call or operation on the tree is exclusively performed on the
type template<class Derived> Expression (inshort Expression<Derived>),
which conforms to the curiously recurring template pattern (CRTP), where Derived
is subclass of Expression. CRTP allows for static polymorphism which comes
with three main advantages. First, everything can be recognized by its most spe-
cific type at any point in the code. This allows treating different types in a specific
way within the same code by function overloading and template specialization.
Second, static polymorphism allows for more complex type based transforma-
tions, such as symbolic differentiation at compile time. Third, the eDSL baseline
performance. This is possible since dynamic polymorphism is not necessary (no
virtual table search is performed), and the compiler has all necessary informa-
tion for in-lining. In fact, the overall performance solely depends on back-end
libraries and their integration with the eEDSL.

In order to generate such tree, UTOPIA provides a well defined set of primi-
tives, which are fully described in the complete API documentation [142]. For
instance, Figure 5.4 shows that the absolute value operation returns a unary
expression of type Unary<Expr, Operation> , where the absolute value func-
tion is applied to the Expr expression-tree, and Operation is the Abs type. An-
other example is the addition operation defined as the operator +. This operation
returns a binary expression of type Binary<Left, Right, Operation>, where
Left and Right are two expression-tree operands and Operation is the Plus
type. Note that nodes do not have behavior and they do not store any data.

An expression tree is used in two ways: for directly computing the corre-
sponding numerical operations, or for applying specific transformations before-
hand, such as symbolic differentiation or optimizations. Its first usage is the
evaluation of the represented expressions. The evaluation is triggered when
using the assignment operator with a concrete type as left operand. For in-
stance the expression b = Ax is translated to an object of type Assign<Vector,
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Multiply<Matrix, Vector> >whichisforwarded tothe Evaluator (Section5.1.3).

The second usage, is transforming the tree to another one with different prop-
erties. For instance, it can be transformed for optimization purposes by means of
tree simplification or re-ordering, or for symbolic differentiation. Since there is
no actual computation needed in the transformation of the expression tree any
manipulation is completely independent from the actual implementation in the
back-end.

An example of performance optimization involves the composite operation
ABCx, where A, B, C are matrices, and x a vector. Reordering the operations
from (ABC)x, to A(B(Cx)) decreases the time complexity of the operation from
cubic to quadratic. Reordering allows reducing the number of expression-tree
types that are generated by transforming equivalent composite operations to one
common type (e.g., ax+y and y+ ax), thus limiting the amount of code required
for implementing a back-end. Note that reordering is performed while generat-
ing the tree and after the complete tree is available. The only exception is trivial
reorderings for expressions such as ax and xa, which is performed before gen-
erating the expression tree.

An example of symbolic matrix differentiation [ 103] is the computation of the
derivative of x” Ax + x”b with respect to x. This is realized by transforming this
expression with compile time decisions to Ax + b without any actual numerical
computation.

The adoption of statically typed expression-trees allows propagating meta
and structural information from the leaves to the root at compile time, hence
without any runtime cost. This allows making informed decisions, possibly at
compile time, on how to approach the tree evaluation. The statically propagated
information includes sparsity (e.g., dense, sparse, diagonal, scalar etc.) and back-
end types. This information can be used for back-end specific optimization in
the tree evaluation, or for compile time checks of available features. In fact, this

template<class Expr>
Unary<Expr, Abs> abs(const Expression<Expr> &expr) {
return expr.derived();

}

template<class Left, class Right>
Binary<Left, Right, Plus> operator+(const Expression<Left> &left,
const Expression<Right> &right) {
return Binary<Left, Right, Plus>(left.derived(), right.derived());
}

Figure 5.4. Implementation of the eDSL primitive for the absolute value and the
addition.
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allows writing code that, once compiled, runs without encountering unsupported
operations, broken interfaces, or errors.

5.1.3 Evaluator

The purpose of the evaluator component is computing tensorial quantities from a
given expression tree by means of back-ends (Section 5.1.3). This is performed
with three different strategies: expression to function mapping (Section 5.1.3),
where the evaluator works as a dispatcher forwarding calls directly to specific
back-end functions; code generation (Section 5.1.3), where the evaluator uses the
expression-tree as a guide for generating and compiling code on the fly; element-
wise evaluation (Section 5.1.3), where the evaluator evaluates the expression-
tree, completely or partially, in-line [133]. The design of the evaluator provides
facilities for simple and modular extensions of the delegation of function calls, al-
lowing to map composite expressions to the most specific code without changing
the interface to the user.

We note that the aforementioned strategies can form a synergy. By exploiting
statically typed expression-trees, we can match particular branches to specific
strategies. For instance, when evaluating expression templates by in-line opera-
tion, the lack of specificity in the evaluation of an expression (e.g., matrix matrix
multiplication) might dramatically affect performance in a negative way (due to
cache misses). However, creating many intermediate representation might be
inefficient as well, since memory allocation is very costly. The combination of
different strategies can overcome this problems.

Back-end

The back-end provides data-types and algorithms. Usually it is either an external
library, such as PETSc or UBLAS, or a composition of libraries. In order to conform
to a common interface, libraries might be wrapped into an interface adapter. The
evaluator binds the eDSL abstractions to the concrete types and algorithms of
specific libraries depending on the desired strategy. The back-end adapter is also
used by the API functions for accessing structural information such as matrix
sizes or entries.

Expression to function mapping

This strategy is performed by mapping expressions to functions of specific back-
ends. This is done by matching the types of specific expression-trees (or sub-
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void build(int n, double val, std::vector<double> &v) {
v.resize(n);
std::fill(v.begin(), v.end(), val);

}

Figure 5.5. Example back-end implementation for the factory function values.

trees) by means of (partial) template specialization and delegating the computa-
tion to specific functions. The functions are applied in a functional programming
style deemed possible by C++11 return value optimization (RVO) and move se-
mantics. For instance, the factory Vector v = values(n, 0.1); in our cus-
tom back-end is mapped to the function in Figure 5.5 which constructs a vector
of length n with entries equal to 0.1.

More complex composite expressions (i.e., sub-trees) are mapped to specific
back-end calls; for instance the vectorial expression y = ax +y is mapped to the
BLAS function axpy. Another example is matricial expression C = aAB + f3C
which is mapped to the function dgemm_ in BLAS for which a representation of
the tree is depicted in Figure 5.3. Similar mappings are possible in the PETSc
back-end, for instance the evaluation of the a triple matrix product of the form
PTAP is mapped to the PETSc function MatPtAP, as shown in Figure 5.6.

The minimal requirements for a back-end are to map basic operations, such as
addition and multiplication. The mapping of composite expressions to specific
function calls can be gradually integrated. As a consequence, all the existing
application codes will automatically benefit from the performance given by the
specific function without changing a line of code.

Code generation

This strategy aims to generate code in a different language such as OPENCL. In
such a way the evaluator generates, compiles, and runs programs following a
just-in-time (JIT) approach similarly to VIENNACL. Statically typed expressions
allow automatically generating and compiling specific sub-trees only once for
each runtime. A given expression-tree is divided into several sub-trees which
represent the concurrent portions of the algorithm where synchronization is not
required. For each of these sub-trees we generate and compile a computational
kernel, or retrieve an already compiled one. The implementation of this particu-
lar part of UTOPIA is in a primitive stage and it only serves as a proof-of-concept.
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// empty eval declaration which is specialized for all expressions
template<class Expr, // the pattern to match

class Traits = utopia::Traits<Expr>,

int Backend = Traits::Backend>
class Eval {};

// specialization for the triple product transpose(L) * A * R
template<class LAndR, class A, class Traits>
class Eval<Multiply< Multiply<Transposed<LAndR>, A>, LAndR>,
Traits,
PETSC> {
public:
typedef utopia::Multiply< Multiply<Transposed<LAndR>, A>, LAndR> Expr;
typedef EXPR_TYPE(Traits, Expr) Result;

static Result apply(const Expr &expr) {
Result result;

// check if leftmost and rightmost operands are the same object
if (&expr.left().left().expr() == &expr.right()) {
// access back-end singleton and perform optimal triple product
UTOPIA_BACKEND(Traits).triple_product_PtAP(
Eval<LAndR, Traits>::apply(expr.left().left().expr()),
Eval<A, Traits>::apply(expr.right()),
result
);
} else {
// perform general triple product LT A R
}

return result;
}
+

Figure 5.6. Mapping the triple matrix product PTAP to the PETSc function
MatPtAP.
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Element-wise evaluation

Element-wise evaluation exploits the wrapper API for evaluating an expression
tree following the typical implementation of expression-templates meta-programming.
Expression templates are a well known and widely used technique for linear al-
gebra libraries, such as EIGEN, and have two main advantages. First, element-
wise operations can be concatenated and evaluated without creating interme-
diate data. This potentially allows the compiler to “in-line” operations [69] and
achieve comparable performance with respect to the most specific code for a par-
ticular task. Second, it allows to write expressions using operators thus providing
an aesthetic syntax similar to the classical mathematical writing.

In UTOPIA, this type of evaluation also allows for convenient interoperabil-
ity between wrappers belonging to different back-ends without requiring neither
copies nor conversions. Additionally, instead of directly evaluating expressions
through the API, we can exploit libraries such as EIGEN as back-ends by translat-
ing the UTOPIA expression-tree (Section 5.1.2) directly to back-end representa-
tion.

5.1.4 APl and memory access transparency

The eDSL is accompanied by a uniform API for basic interactions with tensors,
such as accessors and mutators (or getters and setters). Nevertheless, back-end
types are accessible by means of the raw_type function which takes an UTOPIA
tensor and returns its back-end representation. This allows users to directly ma-
nipulate the back-end representation, for instance to add specific missing fea-
tures.

Although UTtoPIA provides a certain degree of transparency and strives for
simplicity, it requires that operations are handled in a “memory-conscious” man-
ner, as shown in Figure 5.7. Since UTOPIA targets large scale computations and
heterogeneous computing, three main aspects related to memory location need
to be explicitly handled.

The first aspect concerns distributed memory access. For instance, compute
nodes of a supercomputer have separated dedicated memory, which implies that
the data accessible to one node is not directly accessible to another one. In fact,
independently of the particular back-end, with UTOPIA it is mandatory to use
ranges and their associated functions to deal with data distributions. Range ob-
jects allow to iterate over elements of tensors, which are available in the local
address space.

The second aspect regards data acquisition. For instance, a memory region on
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// n x n sparse matrix

SizeType n = 100;

SizeType max_entries_x_row = 3;

SparseMatrix m = sparse(n, n, max_entries_x_row);

{ // beginning of write lock scope
Write<SparseMatrix> w(m);
Range r = row_range(m);

for(SizeType i = r.begin(); i != r.end(); ++i) {
if(i > 0) {
m.add(i, i - 1, -1.0);
}

if(i < n-1) {
m.add(i, i + 1, -1.0);
}

m.add(i, i, 2.0);
}

} // end of write lock scope

Figure 5.7. Assembly of 1D Laplacian on template class SparseMatrix.

a GPU device is not directly accessible by the CPU, hence it needs to be copied to
main memory to be read. To handle different address spaces, UTOPIA provide a
locking mechanism of resources. In fact, in order to read or write from and object
we need to acquire its lock and release it when we are done. When we use a Read
lock, the memory is copied from the device to the main memory, whereas, when
we use a Write lock, memory is copied from a temporary buffer to the device
memory. This mechanism is automatic and the data-transfer is performed when
a lock is created (for reading) or destroyed (for writing).

The third aspect covers ownership of ordered data. When writing in a dis-
tributed matrix, the physical memory location of the entries might not be directly
accessible. To hide this problem from the user, UTOPIA uses locks again, and,
when the write lock is destroyed, all non-local data is automatically communi-
cated at once based on their global index.

The locking mechanism can be abused to perform post-processing. For in-
stance changing the matrix internal representation to better fit the sparsity pat-
tern.

5.2 Extensions

On top of the algebraic primitives, UTOPIA provides a simple interface to linear
and non-linear solution strategies (Section 5.9). Since UTOPIA is an eDSL tar-
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geting scientific computing it includes a prototype for finite element assembly
(Section 5.2.2). Finally, for facilitating debugging activities, UTOPIA is accompa-
nied by two visualization tools, one allowing to inspect algebraic data, and the
other to display functions on 3D meshes (Section 5.2.3).

5.2.1 Solvers as eDSL primitives

In UTOPIA, the representations of direct and iterative solution methods are de-
signed for optimization problems arising from partial differential equations. They
conform to the same idea applied to algebraic expressions, that is the separation
of model and computation. This design methodology follows two directions. On
the one hand, we reuse as many existing implementations as possible by inter-
facing with external solvers, such as PETSc’s KSP and SNES. For instance, the
LUFactorization<Matrix, Vector> class uses different implementations such
as LAPACK for our custom back-end, or MUMPSs [2] for PETSc. This might not
apply to all solvers, since some implementations might be unavailable for a par-
ticular configuration, which results in the application not compiling.

On the other hand, we develop new generic solvers on top of UTOPIA algebraic
primitives, hence they can be used with any wrapper. For instance, our imple-
mentation of the trust-region algorithm is the same for our custom back-end and
code-generation back-end. The only difference is how the primitive operations
are performed.

In order to exploit a wide range of existing scientific software applications
UTOPIA ensures interoperability with finite element libraries such as FENICS and
MOOSE. The class Function (Figure 5.8) is designed to ensure this interoper-
ability, by providing a uniform interface between external libraries and UTOPIA
solvers.

The interface to UTOPIA solvers is designed with several levels of abstrac-
tion. Users may call the high level routine solve(). This routine does not
expose any detail and uses a default strategy to solve a system of equations.
However, some problems require different solution strategies. For instance, for
symmetric-positive-definite systems we can use the conjugate-gradient method,
while for non-symmetric and indefinite systems we can use the preconditioned-
generalized-minimal-residual (GMRES).

The modular design of solvers allows compositions of different strategies.
This enables users to combine and customize different solution strategies in order
to build an efficient solver which suits their application the best, see Example 2.
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template<class Matrix, class Vector>
class NonlinearFunction : public Function<Matrix, Vector> {
public:

typedef UTOPIA_SCALAR(Matrix) Scalar;

bool value(const Vector &x, Scalar &f) const override {
// evaluation routine for objective function
return true;

}

bool gradient(const Vector &x, Vector &g) const override {
// evaluation routine for gradient
return true;

}

bool hessian(const Vector &x, Matrix &H) const override {
// evaluation routine for Hessian
return true;
}
}

NonlinearFunction<Matrix, Vector> fun;
Vector x = values(2, 0);
solve(fun, x);

Figure 5.8. Function used with UTOPIA non-linear solvers.

5.2.2 Finite element assembly

The set of UTOPIA primitives can be easily extended to include other domain
specific applications. In this section we describe the finite elements primivites of
UtopriA eEDSL. This extension provides a set of primitives for describing multi-
linear forms arising from variational problems. A typical example is: find u €
V, C H! such that

a(u,v)=f(v) YveW,

where a : V,, x W, — R is a bilinear form, f : W, — R is a linear form, V, and W,
are (tensor) finite elements spaces, H! is a Hilbert space of weakly differentiable
funcions, and h is the discretization paramter. A standard choice is low order
Lagrange elements (e.g., P;), hower higher orders can be chosen freely.

external library

FENICS -
utopla core

O function —FO— solver —(O—|:

MOOSE H back-end

Figure 5.9. Component diagram of UTOPIA solvers.
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In addition to the basic tensorial representation introduced in Section 5.1.1,
new types are necessary for representing finite element spaces, their basis func-
tions, and related coefficients. The lexicon of UTOPIA is extended with new
functionalities specific to the finite element representations and assembly. For
example, for instantiating a function v from its function space V it is sufficient
to write v = fe_function(V). Constant and non-constant coefficients can be
instantiated by means of coeff, vec_coeff for vector valued coefficients, and
mat_coeff for matrix valued coefficient. All of these objects can be manipulated
with differential operators such as grad, div, curl, and integral.

The evaluator is developed with the specific goal of finite-element based as-
sembly, since most of the objects are tensorial functions (e.g., basis functions).
In fact, all quantities are evaluated at quadrature points, which means that op-
erations are applied to collection of tensorial values.

Note that, UTOPIA’s finite element eDSL does not prescribe that the assembly
procedure has to be either global or element-wise (local). Hence, the assembly
can be implemented at any level in the code, not only at the top level. This
flexibility allows to straightforwardly employ the eDSL together with elaborate
solvers. For instance, varations of the multigrid algorithm may require separate
element matrices, for instance to generate coarse representations of the operator
by means of spectral agglomeration [28]. We refer to Section 5.3 for examples
created with our prototype built with a LIBMESH back-end.

5.2.3 Visualization and debugging

Debugging is a difficult task, and as Reiss wrote [113], “we need to make using
software visualization for debugging the standard practice of all programmers”.
This task is even more challenging in the context of numerical simulations be-
cause of the complexity and size of the underlying data. Several solutions are
available such as Paraview [5], VisIt [25], and Vestige [122]. These tools also
provide support for “in-situ visualization” [116], which couples the visualization
with the simulation code such that the data is visualized while the simulation is
running. On the one hand, we integrated UTOPIA with the Vestige visualization
tool. On the other hand, we developed a specific visualization for the distributed
and transient algebraic data.

The visualization of the algebraic data follows the same philosophy as pro-
posed in [122]: the application code sends the data through a socket to an ap-
plication running on an independent process which provides both visualization
and inspection facilities. This separation allows to follow the evolution of the
algebraic data at several moments of an algorithm at the same time.
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Figure 5.10. Visualization of algebraic data with our companion tool.

Figure 5.10 shows an example visualization with our tool, where the entries
of a matrix are color-coded according to their value. The tool stores the data of
several sessions and visualizes them in the list on the right, which displays also
high-level information, such as matrix size and non-zeros entries. In contrast
with [122] and other similar software tools, our tool also allows manipulating
the objects, as it is visible in the right picture.

5.3 Applications

In this section we provide several illustrative examples showing the usage of
UtoriA. To simplify the explanation we first introduce the necessary notation.
Let Q c RY be a (bounded) domain with Lipschitz boundary I' = 91, and let
L*(Q2) be the Hilbert space of square integrable functions on Q with inner product

(Va W) = (V: W)LZ(Q) = f ywdx

Q

and norm || - [| = || - [| .20y = (-, -)iéfm. With I, we denote the Dirichlet boundary

and with Iy =T\ [}, the Neumann boundary.

Let V = V(Q) be the function space associated with £, V = V¢ the d-th
order product space of vector-valued functions, W = V9*¢ the respective space
of matrix-valued functions. Naturally, these spaces are discretized by means of
finite elements. In our examples, we employ Lagrange elements such as P; for
linear simplicial elements, and Q, for bilinear/trilinear elements.

Example 1 shows how a text-book pseudo code translates to the UTOPI1A eDSL.
Note that the translation is one-to-one and it preserves the same level of sim-
plicity, while being completely parallel. Example 2 shows the combination of
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UToPIA solvers with the MOOSE library. Interoperability is achieved by means
of the SNESAdapter. This interface uses the PETSc SNES data structure to pass
information about objective functions and their derivatives to the non-linear so-
lution method. Consequently;, it can be easily used with other FEM libraries built
on top of PETSc, such as the MOOSE framework [24].

Example 3 shows how to use our eDSL for specifying a non-linear anisotropic-
Poisson problem with solution-dependent diffusion coefficients. In this example
the coefficient-function f is specified using the C++11 lambda function rhs_fun.
Example 4 shows, how to specify an initial value problem,

ou(x,t)/dt =h(t,u(x,t),...)

with u(x, ty) = uy(x), by exploiting the UTOPIA primitive dt for identifying the
time derivative. From the variational formulation we automatically extract the
update function h which is used in a time integrator, such as the explicit Euler or
the Runge-Kutta.

The last two examples show mixed formulations which can be interpreted as
the variational problem: find u € V,o0 € W:

a(u,v)+ b(o,v)=k(v)
b(qu)+g(o,q)=d(q) VveEV,qEW,

where a, b, g are bilinear-forms, and k,d are linear-forms. This problem is is
mirrored in the code by the corresponding block linear system:

¢ S

Example 5 shows how to assemble such mixed finite element problem derived
from a least-squares functional [ 102] which ensures the ellipticity of the resulting
linear operator. Similarly, Example 6 shows how to assemble a least-squares
linear-elasticity problem. Note that in this example, the UTOPIA eDSL is used in
a larger environment which deals with contact problems [33].
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Example 1: Preconditioned conjugate gradient

Algorithm taken from [126].

i

r
d
)
9]

While i < ipay A Spew > €26,

«—0
—b—Ax
—MIr
new — er

0 5new

q < Ad

6 new
dTq
X —x+ad

a «—

If i is divisible by 50
r—b—Ax

Else
r—r—aq

s—Mlr
Sold < Bnew
Onew < t’s
B~ Onew

old
d—s+pd

i—i+1

Description

Pseudo-code and parallel code

Vector r, d, q, s;

double delta_new, delta_0, delta_old;

double alpha, beta;

int 1 = 0;
r=>b - A x x;
solve(M, r, d);

delta_new = dot(r, d);
delta_0 = delta_new;

while(i < i_max && delta_new > eps_2 * delta_0) {

q=A=x*d;

alpha = delta_new/dot(d, q);

x += alpha * d;

if(i % 50 == 0)
r=>b - A x x;
else

r -= alpha * q;

solve(M, r, s);

delta_old = delta_new;
delta_new = dot(r, s);

beta = delta_new/delta_old;

d = s + beta * d;

++1;
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Example 2: Phase field fracture
Description
FindueV,, c € M, and 8 € Q,, such that

([A=c)*+klof —0,,Vv)=(t, V),
(IVe,Vg)+(B,q9) = (Ve n,q)y,

E—l<ﬂ+2(1—c)—g—£> m|=0
ot n g. U)o

VveV, VqgeQ, Yme M, where t € [0,T], c € [0,1], g.,L,m, k€ R, (x), = (x| +x)/2
is the ramp function, and the o and o~ super-scripts respectively represent the positive and
negative parts of the stress; see [97]. We perform our experiment in a parallelepipedal domain,
and we discretize V, with ]P’f elements, and both M, and Q, with P; elements. The computation
is performed in a displacement-driven context where the rate of change u on the y-axis is 107> on
the top side and zero on the bottom side. We use a linear elastic material with Lamé parameters
A =12, u =8, and phase-field parameters n =5 x 10~%, [ = 0.022, and k = 1075.

Code

auto direct_solver = make_shared<LUDecomposition<Matrix, Vector>>();
auto smoother make_shared<GaussSeidel<Matrix, Vector>>();

// initialization of preconditioner, setting up interpolation operators
Multigrid<Matrix, Vector> mg(smoother, direct_solver);
mg.init(move(interpolation_operators));

mg.set_max_iter(1l); mg.set_cycle_ type(2);

// iterative linear solver with MG as a preconditioner
ConjugateGradient<Matrix, Vector> cg; cg.set_preconditioner(make_ref(mg));

// non-linear solver
Newton<Matrix, Vector> solver(cg);

solver.set_line_search_strategy(make_shared<Backtracking<Matrix, Vector>>());

// interface between MOOSE and utopia non-linear solvers
SNESAdapter<Matrix, Vector> fun(snes); solver.solve(fun, x);

Simulation

uy =0 u, =59x107° u, =6.3x107 u, =7.4x107

Crack pattern for different values of u,. The color represents the solution for the phase-field
parameter c, from the unbroken state ¢ = 0 (gray) to the fully broken state ¢ =1 (red).
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Example 3: Non-linear anisotropic Poisson problem
Description
FindueV:
(1/(u®+0.1)AVy, Vv) = (f,v),

Yv eV, where f €V, ul;q =g, and A € R¥*,
We perform our simulation with two connected cubes, with paramters f = 10||x||, —5 for x € £,
g =0, A=diag(10,0.1, 1), and we discretize V with Q; elements.

Code

int dim = 2;

// anisotropic diffusion tensor
Matrix A = identity(dim, dim);
A.set(0, 0, 10);

A.set(1, 1, 0.1);

A.set(2, 2, 1);

// right-hand side

std::function<void(const Point &p, Scalar &ret)>

rhs_fun = [dim] (const Point &p, Scalar &ret) -> void {
// right-hand side function code...

+
auto f = coeff(rhs_fun);

// solution
auto u_k = interpolate( coeff(1.0), Vh, make_ref(solution_vec) );

// bilinear form
auto bf = integral( dot(1l./(pow2(u_k) + coeff(0.1)) * A x grad(u), grad(v)) );

// linear form
auto 1f = integral(dot(f, v));

Simulation

Visualization of the solution u from different persectives.
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Example 4: Heat-equation
Description
FindueV: P
u
—,v|=(f,v)—c(Vu,Vv),

(5v) =0 —c(Vu, )
Vv eV, where u(x, ty) = ug, ulr, = g, f €V and c €R; see [108].
We perform our simulation in a star-shaped domain with uy =1, c =2, g =0, and I}, as the top
surface of the star. We discretize V with P; elements.

Code

std::function<void(const Point &p, Scalar &ret)>
rhs_fun = [dim] (const Point &p, Scalar &ret) -> void {
// right-hand side function code...

b

double c = 1.0;
auto f = coeff(rhs_fun);

// u is created and set to u_®0 =1
auto u = interpolate(coeff(1.0), Vh, make_ref(solution_vec));
auto eq = integral(dot(dt(u), v)) == integral(dot(f, v) - c * dot(grad(u), grad(v)));

explicit_euler_integrate(eq, t_start, dt, t_end, [](const double t) {
// intercept each time-step of the simulation and perform custom operations
// the current solution is stored in u

1)

Simulation

Visualization of the solution u at different time-steps t.
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Example 5: Least-squares Helmholtz equation

Description
FindueV,o eW:

(cu,cv)+(Vu,Vv)+ (divo,cv)+ (o, Vv) =(f,cv)
(cu,divq) + (Vu,q) + (0,q) + (dive,divq) + B(curl o, curlq) = (f, divq),
VveV,Yqe W, with f €V, ul, =g,c €R_, and f € R.; see [102].

We perform out simulation in a square domain with g =0, f =1, ¢ =—100, # =0.99, I, =T,
and we discretize V with Q; elements and W with Q‘f elements.

Code

// parameters

double c = -100.0;
double beta = 0.99;
auto f = coeff(1l);

// bilinear forms

auto bf_11 = integral((c*c) * dot(u, u) + dot(grad(u), grad(u)));
auto bf_12 = integral(c x dot(div(s), u) + dot(s, grad(u)));

auto bf_21 = integral(c * dot(u, div(s)) + dot(grad(u), s));

auto bf_22 = integral(dot(s, s) + dot(div(s), div(s)) +

beta * dot(curl(s), curl(s)));
// linear forms

auto 1f_1 = integral(c * dot(f, u));
auto 1f_2 = integral(dot(f, div(s)));

Simulation

u ol

Visualization of the solutions u and o.
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Example 6: Linear elasticity with least-squares finite elements
Description
FindueV,oc e W

(e(u),e(v))—(Ho,e(v)) =0
—(e(u), &q) + (dive,divq) + (F o, .o q) = —(f,divq),

VveVand Yq €W, where feV, ul, =g, ol =2z, e(w)=(Vw+ (vw)T)/2, and

. dxd dxd _ 1 A

o RV - R ﬂ’a—zu(a dl+2u(tra)l)

is the inverse strain-stress relationship tensor and A, u € R are the Lamé paramters; see [23]. We

simulate the contact betweend two unit sized squares with A = 1,u = 1, and f = 0. We specify

the boundary conditions g = —[0.2,0.2] on the top side, g =[0.2,0.2] on the bottom, 2 = 0 on

the left and right sides. Contact conditions are resolved according as explained in Section 2.3.1.
We discretize V with Q2 elements and W with Q?*? elements.

Code
auto A = stress_strain_rel_tensor(dim, mu, lambda);
auto f = vec_coeff(force);
auto e = 0.5 *x (transpose(grad(u)) + grad(u));
auto As = A x s;

// bilinear forms

auto bll = integral
auto bl2 = integral
auto b2l = integral
auto b22 = integral

inner(e, e));

-inner(As, e));

-inner(e, As));

inner(div(s), div(s)) + inner(As, As));

// linear forms
auto 11 integral(inner(vec_coeff(0., 0.), u));
auto 12 = integral(-inner(f, div(s)));

Simulation

L
T
T

T

H

T
!
HHT

Input [lul|, 011 012

Viusalization of the solutions u and o.
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5.4 Chapter conclusion

UTtoPIA is a unified C++ eDSL for non-linear algebra and finite element assem-
bly following the philosophy of separation of model and computation. With a
MATLAB-like look-and-feel, our eDSL supports existing state-of-the-art software li-
braries, code generation and expression templates. UTOPIA has lower barriers to
entry to parallel computing, since it provides purposefully partial parallelization,
data-distribution and memory-location transparency. Moreover, UTOPIA provides
simple debugging routines to visualize both numerical and structural data. Since
solution methods, both linear and non-linear, are a fundamental building block
of any scientific software our eDSL is extended to provide a coherent interface
for supporting a large variety of strategies. These features are shown in several
examples of solution strategies and variational formulations in finite element as-
sembly.

One current major performance issue in our back-end implementations is
memory allocation. Though this issue can be addressed specifically in each back-
end, we plan to develop an independent mechanism to automatically solve this
problem. Our idea is to provide memory pools which reduce the amount of allo-
cations by reusing intermediate representations. Another performance improve-
ment consists of providing primitives to handle sparsity explicitly, for instance
allocating a sparse matrix with the same sparsity pattern as another one (e.g., m2
= sparse(sparsity(ml))). Finally, a minor issue of UTOPIA is the compilation
time due to the heavy use of template types. This issue will be attenuated by ex-
ploiting C++ modules which are currently being standardized for future version
of C++ [38].

A relevant MATLAB primitive is index-sets. This primitive allows accessing
tensorial entries based on a set of indices. Unfortunately, this feature is not yet
available in UTOPIA hence it will be added in the near future. We plan to ex-
tend the eDSL with primitives to allow transfer of discrete fields [81] for non-
conforming domain decomposition methods [13; 137; 105]. Another interesting
language feature is variational inequalities which allows specifying obstacle or
contact problems [34]. The UToPIA eDSL already contains a basic prototype of
symbolic differentiation [39; 56], we aim to improve it and add it to the finite
element eDSL. When the symbolic version does not apply, we intend to include
automatic differentiation mechanisms [4].

Finally, we plan to integrate and develop new back-ends for both the alge-
bra and the finite element assembly. This will allow to benchmark the different
libraries within the same framework.
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Chapter 6

Numerical experiments

In this chapter we look into the runtime performance of our parallel informa-
tion transfer algorithm (Section 6.1), and we observe the numerical behavior
of solving the Poisson problem discretized with our parametric finite element
discretization (Section 6.2).

6.1 Parallel transfer

The first contribution of the parallel approach presented in this Chapter 3 is to
enable for really complex and difficult simulation scenarios to be handled. Nev-
ertheless, in this section we illustrate scaling studies in the weak-scaling and
strong-scaling settings. We also illustrate particular corner cases where the ap-
proach does not perform at its best, and provide considerations on output sensi-
tivity and its effect on scaling. Being a method for handling an output-sensitive
problem, the issue of scaling should neither be addressed nor observed as in stan-
dard and ideal scenarios. We measure scaling/speed-up by s = t;/tp, where tp
is the time of the run with P processes and t; is the time of the base run with B
processes.

In our experiment we measure the cost of the assembly of the transfer oper-
ator starting when the input mesh is received, hence the measurement includes
searching, computing intersections, generating quadrature formulas, computing
the local integrals, and delivering the two coupling operators in their sparse ma-
trix representation.

As approximation spaces we have chosen linear Lagrangian finite-element
spaces. As a measure of the output we count the number of intersections which
is equivalent to the number of evaluated integrals. The cost of integration may
vary with respect to the shape of the intersection.

93
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In order to provide an estimate of the cost of the assembly of the transfer
operator in comparison to a standard mass matrix assembly we performed an
experiment in serial with the same routines that we use in our parallel numer-
ical experiments. The finite element assembly is performed in a generic soft-
ware framework which allows for mixed formulations with customizable quadra-
ture formulas, and our measurements are performed for a meshed cube Z with
297 316 elements. For assembling the transfer operator we use mass-matrix as-
sembly calls with Petrov-Galerkin formulation (different trial and test spaces) and
special quadrature formulas which are generated as explained in Section 2.3. We
consider the computational time of the assembly procedure a standard mass ma-
trix and compare it with the computational time for computing the pseudo-L?
projection operator. This particular transfer operator is constructed for transfer-
ring between equal spaces both associated with the same mesh, hence resulting
in an identity matrix. The measurements include the computational time associ-
ated with the intersection detection, intersection computation, quadrature points
generation, and assembly. The observed ratio between the assembly time of the
transfer operator and the assembly time of the mass matrix is approximately 15,
and the larger portion of the cost is due to intersection computation and the
assembly. The measurements of our experiments are tagged and organized as
follows:

* Create adapters: the cost of creating the adapter representations from the
provided geometric data. An adapter allows representing an element and
its related mesh data in a suitable format for the library code abstractions.
In order to this these adapters include meta-information such as tags, do-
main markers, and geometric information such as AABBs and k-DOPs.

* Build tree /detection: the cost of constructing the octree, searching for match-
ing remote nodes, generating index-sets for handling both the nodes and
the geometric data.

* Load-balancing: the cost of linearizing the local trees and scheduling the
narrow-phase detection.

* Organize dependencies: organization and communication of the actual ge-
ometric data.

* Match and re-balance: cost of the narrow-phase detection, and re-balancing.
Here no actual intersection is computed, only bounding-volume matching
is performed.
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* Computation: intersection computation and assembly.

We can consider all the measurements except the computation, as the overhead
which results in using our algorithm.

6.1.1 Hardware

The studies have been performed at the Swiss Supercomputing Center (CSCS)
on a Cray XC40 with the following specification: 1256 Compute Nodes with 2
Intel® Xeon® E5-2690 v3 @ 2.60GHz (12 cores each, 24 virtual cores each with
hyperthreading enabled); Theoretical Peak Performance 1.254 Petaflops; Mem-
ory Capacity per node 64 GB (1192 nodes) and 128 GB (64 fat nodes, bigmem);
Memory Bandwidth per node up to 137 GB/s per node; Total System Memory
82.5 TB DDRS3; Peak Network Bisection Bandwidth of 4.5 TB/s; Parallel File Sys-
tem Peak Performance of 50 GB/s;

6.1.2 Weak-scaling experiments

With weak scaling, we investigate how the framework behaves, with respect to
computational time, when increasing the number of processors, and keeping the
amount of computation per process fixed. The problem is output-sensitive, which
means that the computational complexity depends on the size of the output, mak-
ing it difficult, for most scenarios, to study scaling in a fair way by just controlling
the size of the input.

Hence, we study weak scaling in the simplest scenario, depicted in Figure 6.1.
We have a stack of parallelepipeds, each parallelepiped has two resolutions a fine
mesh and a coarse mesh. The partitions of coarse and fine meshes are randomly
distributed also with respect to each other. Hence, intersecting elements of the
fine mesh and coarse mesh are likely to be owned by different processes, thus
stored in different memory address spaces. In this setting, we assemble the trans-
fer operator for transferring from the coarse space to the fine space.

In Figure 6.1, we see the scaling results for this experiment in two resolutions.
In Figure 6.2, we have a detailed illustration of the medium size experiment.

6.1.3 Strong-scaling experiments

With strong scaling, we investigate how the framework behaves with respect to
computational time, when increasing the number of processes, and keeping the
total size of the problem fixed. The charts in Figure 6.3 and Figure 6.4, illustrate
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Figure 6.1. Weak scaling with different resolutions. Medium: per process
10923 input, 43 691 output. Large: per process 153 022 input, 641 141 output.
See Figure 6.2 for more details about the medium size experiment.

80 | |E== Search and balancing |
Il Computation

Seconds

12 96 768 1536 3072 6144 12288

Create adapters 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Build tree/detection | 0.26 0.44 1.68 1.54 | 2.10 3.59 10.78
Load-balancing | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 0.00
Organize dependencies 0.19 0.21 024 | 024 | 024 | 0.30 0.31
Match and re-balance 0.20 0.20 024 | 024 | 024 | 031 0.25
Computation | 24.07 | 28.66 | 29.39 | 33.73 | 36.74 | 45.58 | 63.25

Total | 24.78 | 29.58 | 31.63 | 35.83 | 39.40 | 49.87 | 74.60

Processes 12 96 768 | 1536 | 3072 | 6144 | 12288

Tree-depth 5 5 5 6 6 6 6
Input size (log,) 17 20 23 24 25 26 27
Output size (log,) 19 22 25 26 27 28 29

Figure 6.2. Volume projections: weak scaling experiment. The x axis describe
the number of processes. The computational times is measured in seconds. The
input is about 10 200 tetrahedral elements per process. Search and balancing
includes all the measurements except the computation.
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Create adapters 0.337 | 0.254 | 0.201 | 0.149 | 0.116

Build tree/detection 0.672 | 0.321 | 0.247 | 0.133 | 0.087
Load-balancing | 0.004 | 0.002 | 0.001 | 0.001 | 0.001
Organize dependencies 1.119 | 1.363 | 1.420 | 1.451 | 1.679
Match and re-balance 1.699 | 1.058 | 0.853 | 0.634 | 0.449
Computation | 11.000 | 5.090 | 2.469 | 1.248 | 0.584

Total | 14.830 | 8.090 | 5.194 | 3.618 | 2.919

Processes 288 576 864 | 1536 | 3072

Tree-depth 5 5 5 5 5

Table 6.1. Surface projections: strong scaling experiment. Time in seconds for
the middle size experiment illustrated in Figure 6.4.

the scaling for experiments with different mesh resolutions. Table 6.1, illustrates
in detail the computational time of each phase for different number of processes,
of the experiment shown in Figure 6.4(f) and (g).

6.1.4 Particular scenarios

This approach can handle any random spatial distribution, however, in the worst
case scenario (e.g., elements are distributed completely at random) where we
have an almost all-to-all dependency graph, no significant advantage is taken
from parallel tree-search algorithm in terms of scaling.

User input and parameter tuning

For surface projections, the user input can help to improve the performance dra-
matically, since the search is bounded to a particular distance. In fact, the user
can specify a parameter € which determines the size of the bounding volume of
each element, by blowing it up in normal direction. The value of € affects the
search and the quantity of element-pairs detected as near. In the experiment de-
picted in Figure 6.5 the bounding volumes are larger (hence large €) than needed
which gives rise to many false positives. In order to have an idea of how this af-
fects performance, we ran the software twice on eight cores, and we observed
that when reducing e by 40% we decreased the number of false positives (of
about 60%), and saved 60% of the computational time.
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Input size | 182961 | 1463688
Output size | 399499 | 3344987
Candidates | 821262 | 7013103

False positives | 421763 | 3668116

Base experiment 19.9 172.5
(seconds)

(a) A tooth and a cylinder. (c) Statistics for experiment (d).

10— ]
-~ -Ideal P
o 8 —oRun( 182961) .-~ '
2 6| —e—Run (1463688
o} PRie
2 4 =
A -
2 _
1 ‘ | | | |
12 24 60 72 120
Number of processes
(d) Two small size output experiments.
T =
301 Ideal P
A —eo— Experiment e .
5 201 P N Input size 93676032
o] P Output size | 239453927
3 , Candidates | 526199291
c% 10 False positives | 286745364
Base experiment 742.5
14 ‘ ‘ ‘ — (seconds)
288 2,304 4,608 6,912 9,216

Number of processes

(e) Medium size output experiment.

Figure 6.3. Volume projections: strong scaling experiment for different resolu-
tions. In (a), (b) we see the set-up of the three experiments; here color represents
processes. In (c) and (d) we see two small size experiments, and in (e) one greater
size experiment.
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(a) Example multi-body
contact simulation.

(b) Bounding volume
hierarchy constructed
by the algorithm.

(¢) Detected contact
boundary and gaps.

T T 1
30 Ideal N
o Experiment Volume elements | 11608960
3 90l Surface adapters 529 648
2 Output size 73207
g, Candidates 1249892
» 10 False positives 1176685
1¢ 111 | S— - Base experiment 9.6
48 24 36 48 60 72 96 108 132 (seconds)
Number of processes
(d) Small.
Ideal
o 6 Experiment J Volume elements | 742973440
=] Surface adapters 8474368
T 4 Output size 929 688
& 3 Candidates | 156505837
AC) False positives | 155576149
1
L L Base experiment 14.8
288 576 864 1536 (seconds)
Number of processes
(e) Medium.
4 ‘ -
deal Vol 1 5943787520
. olume elements
g 30 Experiment 7 Surface adapters 33897472
2 oL B Output size 3464544
Q i Candidates | 2163911881
Qg i False positives | 2160447333
! Base experiment 35.3
1,920 3,840 7,680 (seconds)
Number of processes
(f) Large.

Figure 6.4. Surface projections: strong scaling experiment with different resolu-
tions. In (a), (b), and (c) is depicted the context of the experiment. The coloring:
in (a) it is the Von-Mises stress, in (b) it represent the process. The scaling results
exclusively include the cost of computing the transfer operator related quantities.
In experiment (d), above 60 processes we can see the search costs taking over,
and the total time stagnates at around 0.5 seconds. Similarly, in experiment (f),
the search occupies the 70% of the total time.
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Surface proximity detection Bounding volume hierarchy.  Detail of the geometric surface
problem. projection.

Figure 6.5. Predicting the contact region: when there is a-priori knowledge
about the problem, the scope of the search can be reduced for saving computa-
tional time. Color represent processes.

6.1.5 Scaling and output-sensitivity

The main reason for the observed scaling behavior, in both strong and weak scal-
ing studies, is mainly due to imbalance and synchronization waiting time in the
search phase. The imbalance is due to the initial geometric set-up, when the
meshes are distributed in an unbalanced way as for instance in the scenario pre-
sented in Section 6.1.3, or the actual output of the search is strongly unbalanced.
In fact, since we are treating an output-sensitive problem, the actual cost of the
search is unknown a-priori and depends directly on the output, i.e., the number
of candidate intersections, which is directly related to the spatial location of the
meshes. Once the intersection candidates are found, and we have the neces-
sary knowledge, the assembly procedure can be performed in a more balanced
way. However, also the actual assembly might be subject to unavoidable im-
balance depending on the actual computed intersection polytopes and number
of quadrature points which are generated on each process. A possible solution
might be to re-balance again after the computation of the intersections.

6.2 Parametric finite elements with bijective mappings

We focus our study on (mostly) super-parametric discretizations based on com-
posite mean value mappings (Section 2.5.1) and its approximations (Section 4.3)
with linear Lagrange elements (PP;). For our experiments the analytical solution
is unknown, hence we estimate it by computing a reference solution u € X 11 (F5)
on a very fine mesh J;. To evaluate the quality of our discretization and the
standard discretization, we compute different solutions u;, for several mesh sizes
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notation functions geometric map section equation
X f P, composite mean value 4.1 (4.3)
X! P, affine 4.3.1 (4.8)
b & P, quadratic 4.3.1 (4.8)
X3 P, cubic 431 (48
Xy MV - 4.3.3 (4.9)
x4 P, piecewise affine 4.3.3 (4.10)

Table 6.2. Finite element spaces employed in our experiments and where to
find their definitions.

o9
2| “‘.\rx
1025 | ‘\'\\ i

|
10~ 14 10-1:6 10-!8 m=21 m = 92752

Figure 6.6. Left: visualization of e(u;) against the mesh size h, where the straight
line shows the quadratic trend. Right: solution of the Poisson problem for dif-
ferent number of nodes m.

h. Table 6.2 provides an overview of the different spaces and notation appearing
in this section.

6.2.1 Convergence

We exclusively study the convergence of the solution for u;, € X f since it is the
only discretization we introduced that provides an exact geometric description
of the computational domain Q. The solution is expected to converge quadrati-
cally in L?(Q) to the exact one with respect to the mesh size h for classical FEM
with linear elements for H*-regular problems. Hence, we study the convergence
related to our approach by measuring the approximation error as

e(up) = 122 (wp) —ull 25,5,

where # : Xf(f?) — Xll(ﬂ}) is the L2-projection operator [137; 81] (the assem-
bly of & by considering only the parameterization domain). Similar to standard
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Figure 6.7. Mesh refinement without shape recovery. Even at fine resolution
(last image) we do not recover the original shape (blue polygon).

FEM, our method shows a quadratic convergence behaviour for the Poisson prob-
lem, as illustrated in the plot in Figure 6.6. Despite the fact that the computation
is always performed in the exact geometry, the approximation error is not zero
because of the piecewise polynomial approximation of the solution, which is vis-
ible for a mesh with small m and disappears for larger m.

6.2.2 Comparison

We compare our discretization with the standard finite element discretization for
a simple 2D problem (Figure 6.8), an extreme 2D problem (Figure 6.9), and for a
realistic 3D shape (Figure 6.10). Since for the standard finite element discretiza-
tion, the boundary of & differs from 2, we measure

||uh||L2(9)
r(uy) = | —

:
||u||L2(f7f)
to estimate the approximation error [91].

In classical finite element simulations the original shape is usually not recov-
ered when performing mesh refinement as shown in Figure 6.7. For this reason,
r(u,) does not converge to zero for the standard solution, while our approach
converges (left plots in Figures 6.8, 6.9, and 6.10).

In order to better understand this behaviour, we measure the actual geometric
deviation with

s(7) = 11l 2¢2)»
which corresponds to the volume of the mesh (note that s() is computed by
summing the entries of the mass-matrix). We compute the volume by means
of numerical quadrature, which might introduce errors, since our discretization
consists of warped elements. For the standard discretization, when refining the
mesh without recovering the shape, the volume trivially stays constant. Hence,
in order to have a fair comparison, we increase the shape accuracy while refin-
ing the mesh to ensure that the shape of the domain also converges to the exact
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Figure 6.8. Source meshes 7, with boundary ©, (first row), warped meshes
T used by our method (second row), and convergence plots against different

numbers of degrees of freedom m (last row).
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m=1791
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Figure 6.9. Source meshes 7, with boundary ©, (first row), warped meshes
T used by our method (second row), and convergence plots against different
numbers of degrees of freedom m (last row).
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Figure 6.11. Estimation s(Z) of the volume error for different discretizations.
The x-axis represents the number of elements, and the y-axis represents s(7).
The left plot describes the same experiment depicted in Figure 6.8, and right
plot the experiment in Figure 6.9.

one. The behaviour of s(J) shows that our discretization has almost zero geo-
metrical error independently of h, while the standard discretization has higher
geometrical error (middle plots in Figures 6.8, 6.9, and 6.10).

In order to investigate how the approximation error is influenced by the ge-
ometrical error, we measure r(u;) for our method and classical finite elements
with shape recovery. Our discretization always has a smaller approximation er-
ror compared to the standard discretization (right plots in Figures 6.8, 6.9, and
6.10). This is due to the fact that our approach allows solving the problem in the
exact geometry, even at low resolutions.

We performed the same experiments shown in Figure 6.8 and Figure 6.9 for
the different piecewise approximations of b. In these experiments the standard
discretization is represented by the iso-parameteric finite element discretizastion
X 11, for which the geometric accuracy is increased together with the number of
elements. In Figure 6.11 and Figure 6.12 we observe an improved convergence
behaviour, in terms of geometric deviation s() and estimation of the solution er-
ror r(u;), when employing polygonal elements and higher order piecewise poly-
nomial map approximations. The local map approximations provide a computa-
tionally cheaper alternative to the discretizations built directly on b. The reason
is that instead of evaluating b at each quadrature point in the assembly procedure
we evaluate it only at each node of the mesh for constructing the approximation.

6.2.3 Conditioning

For solution methods such as iterative solvers, the condition number x of the
stiffness matrix plays an important role for the convergence rate [10]. In order
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Figure 6.12. Estimation r(u;) of the solution error for different discretizations.
The x-axis represents the number of elements, and the y-axis represents r(uy,).
The left plot describes the same experiment depicted in Figure 6.8, and right
plot the experiment in Figure 6.9.

to understand how our discretization affects the condition number, we compute «
for the discrete Laplace operator L with respect to different mesh sizes h for both
our discretization and the standard one. Because of the influence of the bijective
mapping b, as shown in (4.6), our discretization has a slightly larger condition
number. Figure 6.13 shows that x(L) behaves similarly for both discretizations
which suggests that iterative solvers perform nearly as well for our discretization
as for the standard one.

6.2.4 Convergence of the multigrid method with parametric fi-
nite elements
We observe the average convergence rate of the multigrid method applied to dif-

ferent parameterizations for reaching a residual Mf — Lu with magnitude 1072,
We compare it to a semi-geometric multigrid method where we construct the
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Figure 6.13. Condition number of the discrete Laplace operator k(L) against the
mesh size h for the examples in Figure 6.8 (left) and Figure 6.9 (right).
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coarse levels of the multigrid hierarchy by exploiting the pseudo-L?-projection
operator introduced in Section 2.2. For generating such hierarchy we first com-
pute the axis-aligned bounding-box (AABB) of the input mesh & = L. Then,
we compute Z ! by meshing the AABB in such a way that the number of elements
of 7! is smaller than the number of elements in J; by a factor of (2¢)!7!, where
d is the spatial dimension. When building 7! we make sure that its elements
have an aspect ratio close to one. We generate the intermediate L — 2 meshes
by (uniform) refinement of 7°. Then, we compute the pseudo-L?-projection op-
erator I* from the coarse space V,(Z;_;) to the fine space V,(7;) as explained
in Section 2.3. We compute the prolongation operators for the lower levels as
for standard geometric multigrid methods. We define this hierarchy of spaces as
5. An overview of the geometric objects involved is shown in Figure 6.14.

Let us recall the spaces and hierarchies of the parametric discretization de-
fined in Section 4.4. The hierarchy s is composed by the spaces X*(7') where
p represents the order of the polynomial basis functions defined in the reference
element and k the polynomial order of the geometric transformation.

The hierarchy %”pA is composed by the spaces Xl’j where p represents the order
of the polynomial basis functions defined in the reference element and A repre-
sents the piece-wise geometric map defined for each element of the fine level
mesh.

With 44, we denote the hierarchy of polygonal finite element spaces.

For our experiments we select different type of domains with several level of
details, smooth and non-smooth features. However, as explained in Section 4.3.1
a valid piecewise k-th order polynomial map b* is not always available. Hence,
we restrict our numerical evaluation to examples which allows constructing such
map. We observe the average convergence rate

p=n"' IlLu’ —Mfll/|[Lu" —Mf],

q=1

where u is the solution at the g-th iteration, n is the number of iterations, and u®
is the initial guess. Our observations are made with respect to different resolution
of both the input mesh and the solution to the Poisson problem (4.1).

We observe that the hierarchies }pr and %”pk consistently appear to provide
the same convergence rate for all experiments (Figure 6.15 and Table 6.3). The
hierarchies 74y, and 5, instead display degraded convergence rates depending
on the geometric set-up. The loss of convergence appears to manifests itself
for 74, when the shape of the elements is highly distorted for many layers
around the boundary, and for 5, when the domain has an extremely oscillatory
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Figure 6.14. Example set-up of a geometric work-flow exploiting the L2-

projection for the construction of coarse spaces in multigrid hierarchies.

0.5

0.1

0.03 | /

L

10°

10*

0.1

0.01

e

=

10? 10°

10%

Figure 6.15. Average convergence rate p (y-axis) of the geometric multigrid
method for different parameterizations, and mesh resolutions (x-axis). The left
plot has the geometric set-up depicted in Figure 6.8, and right plot the set-up

depicted in Figure 6.9.
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# elements # d.o.f fine / coarse # iterations convergence rate p

300 196 /61 8 0.026
! 1200 691 /196 11 0.073
1 4800 2581 /691 12 0.103
19200 9961 /2581 14 0.135
300 196/61 8 0.027
2 ) w3 1200 691/196 11 0.071
] 4800 2581/691 12 0.101
19200 9961/2581 14 0.135
75 568 /61 10 0.069
2 300 1068/196 18 0.208
MV 1200 2131/691 22 0.278
4800 4993 /2581 25 0.334
19200 13600/9961 31 0.425
300 196/61 8 0.027
oA 1200 691/196 11 0.072
1 4800 2581/691 12 0.103
19200 9961 /2581 14 0.135
433 330 / 104 7 0.019
P 669 448 / 153 31 0.406
? 2272 1250 / 493 57 0.611
6999 3637 / 1881 57 0.613
16987 8692 / 4753 60 0.628

Table 6.3. Comparison of performance of the multigrid method with respect to

different discretizations for the example shown in Figure 6.16.
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shape (right plot Figure 6.15). Additionally, the convergence rate of the multigrid
method is slightly worse when increasing the number of degrees of freedom for
both 4,y and ;.

A more typical scenario and the different geometric approximations and mesh
hierarchies are illustrated Figure 6.16. In this scenario, the multgrid method has
convergence rates below 0.7 for all discretization, however the variants with
parametric finite elements display a much better convergence behavior, as it can
be observed in Table 6.3.

6.3 Chapter conclusion

We performed numerical experiments including weak-scaling and strong-scaling
of our parallel algorithm for the variational transfer of discrete fields. We ob-
served that most of the computational effort of our approach goes into comput-
ing the numerical quadrature, and for a large number of processes goes into
finding intersection candidates. We investigated performance drivers. The time
needed for communication of the actual geometric data is comparably small, and
the main issue is the load-balancing which is challenged by the output-sensitive
nature of the problem.

We studied the behaviour of our parametric finite element discretization based
on mean-value mappings and its local approximations with respect to the Poisson
problem. Through numerical experimentation we show that our super-parametric
discretization generally has a lower approximation error compared to the stan-
dard one, due to the higher geometric accuracy, without significant changes on
the conditioning of the discrete operators. We observed that our discretization
does not affects the performance of the multigrid method for super-parametric
case. For the case of polygonal finite elements based on mean-value coordinates
we observed a shape dependent degrading behaviour.
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Chapter 7

Conclusion

We investigated what we consider to be key issues related to complex geometric
interactions in parallel multi-physics simulations. For dealing with such issues,
we proposed a completely parallel strategy for transferring discrete fields be-
tween arbitrarily distributed finite element meshes and its applications. With
a relatively small computational time overhead our strategy allows to simplify
the simulation work-flow even for very complex mesh distribution scenarios. We
studied the performance and the limitations of our strategy through detailed
numerical experiments, and we provided several example application scenarios.
We open-sourced and integrated our algorithms with the MFEM and the LIBMESH
libraries.

We proposed a new parametric finite element discretization that allows de-
coupling the accuracy of the shape from the choice of the approximation space in
finite element simulations. This separation allows for high flexibility with respect
to the geometric objects in the simulation work-flow. We studied our discretiza-
tion with several numerical experiments illustrating both promising results and
limitations. Even if our discretization is based on mean-value mappings and their
local approximations, we believe that further investigations may reveal more ef-
ficient and effective way of generating finite element discretizations.

We have discussed current trends and our idea for the development of sci-
entific libraries. We instantiated our ideas with the UToPIA library for which we
provided a detailed description of its design and rationales. The UTOPIA library
is public available as an open-source project.

A topic which has been only partially covered is the automatic determination
of contact patches in contact problems. In fact, we have not covered this topic
for parallel computations. In parallel settings the automatic determination of
master and slave roles of contact patches may be a very useful tool which would
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simplify the simulation work-flow significantly.
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