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Abstract

Comprising of a potentially large team of autonomous cooperative robots locally
interacting and communicating with each other, robot swarms provide a natu-
ral diversity of parallel and distributed functionalities, high flexibility, potential
for redundancy, and fault-tolerance. The use of autonomous mobile robots is ex-
pected to increase in the future and swarm robotic systems are envisioned to play
important roles in tasks such as: search and rescue (SAR) missions, transporta-
tion of objects, surveillance, and reconnaissance operations. To robustly deploy
robot swarms on the field with humans, this research addresses the fundamen-
tal problems in the relatively new field of human-swarm interaction (HSI). Four
groups of core classes of problems have been addressed for proximal interaction
between humans and robot swarms: interaction and communication; swarm-
level sensing and classification; swarm coordination; swarm-level learning.

The primary contribution of this research aims to develop a bidirectional
human-swarm communication system for non-verbal interaction between humans
and heterogeneous robot swarms. The guiding field of application are SAR mis-
sions. The core challenges and issues in HSI include: How can human operators
interact and communicate with robot swarms? Which interaction modalities can
be used by humans? How can human operators instruct and command robots from
a swarm? Which mechanisms can be used by robot swarms to convey feedback
to human operators? Which type of feedback can swarms convey to humans? In
this research, to start answering these questions, hand gestures have been chosen
as the interaction modality for humans, since gestures are simple to use, easily
recognized, and possess spatial-addressing properties.

To facilitate bidirectional interaction and communication, a dialogue-based
interaction system is introduced which consists of: (i) a grammar-based gesture
language with a vocabulary of non-verbal commands that allows humans to ef-
ficiently provide mission instructions to swarms, and (ii) a swarm coordinated
multi-modal feedback language that enables robot swarms to robustly convey
swarm-level decisions, status, and intentions to humans using multiple individ-
ual and group modalities. The gesture language allows humans to: select and
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address single and multiple robots from a swarm, provide commands to perform
tasks, specify spatial directions and application-specific parameters, and build
iconic grammar-based sentences by combining individual gesture commands.
Swarms convey different types of multi-modal feedback to humans using on-
board lights, sounds, and locally coordinated robot movements. The swarm-to-
human feedback: conveys to humans the swarm’s understanding of the recog-
nized commands, allows swarms to assess their decisions (i.e., to correct mis-
takes: made by humans in providing instructions, and errors made by swarms in
recognizing commands), and guides humans through the interaction process.

The second contribution of this research addresses swarm-level sensing and
classification: How can robot swarms collectively sense and recognize hand gestures
given as visual signals by humans? Distributed sensing, cooperative recognition,
and decision-making mechanisms have been developed to allow robot swarms
to collectively recognize visual instructions and commands given by humans in
the form of gestures. These mechanisms rely on decentralized data fusion strate-
gies and multi-hop messaging passing algorithms to robustly build swarm-level
consensus decisions. Measures have been introduced in the cooperative recog-
nition protocol which provide a trade-off between the accuracy of swarm-level
consensus decisions and the time taken to build swarm decisions.

The third contribution of this research addresses swarm-level cooperation:
How can humans select spatially distributed robots from a swarm and the robots
understand that they have been selected? How can robot swarms be spatially de-
ployed for proximal interaction with humans? With the introduction of spatially-
addressed instructions (pointing gestures) humans can robustly address and se-
lect spatially-situated individuals and groups of robots from a swarm. A cascaded
classification scheme is adopted in which, first the robot swarm identifies the se-
lection command (e.g., individual or group selection), and then the robots co-
ordinate with each other to identify if they have been selected. To obtain better
views of gestures issued by humans, distributed mobility strategies have been
introduced for the coordinated deployment of heterogeneous robot swarms (i.e.,
ground and flying robots) and to reshape the spatial distribution of swarms.

The fourth contribution of this research addresses the notion of collective
learning in robot swarms. The questions that are answered include: How can
robot swarms learn about the hand gestures given by human operators? How can
humans be included in the loop of swarm learning? How can robot swarms co-
operatively learn as a team? Online incremental learning algorithms have been
developed which allow robot swarms to learn individual gestures and grammar-
based gesture sentences supervised by human instructors in real-time. Humans
provide different types of feedback (i.e., full or partial feedback) to swarms for
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improving swarm-level learning. To speed up the learning rate of robot swarms,
cooperative learning strategies have been introduced which enable individual
robots in a swarm to intelligently select locally sensed information and share
(exchange) selected information with other robots in the swarm.

The final contribution is a systemic one, it aims on building a complete HSI
system towards potential use in real-world applications, by integrating the al-
gorithms, techniques, mechanisms, and strategies discussed in the contributions
above. The effectiveness of the global HSI system is demonstrated in the context
of a number of interactive scenarios using emulation tests (i.e., performing sim-
ulations using gesture images acquired by a heterogeneous robotic swarm) and
by performing experiments with real robots using both ground and flying robots.
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Chapter 1

Scientific Context, Goals, and
Contributions

This chapter serves as the introduction of this dissertation, it presents the scien-
tific goals, objectives, and contributions of this research, and discusses the fun-
damental research problems in the context of human-swarm interaction (HSI).

1.1 Introduction

1.1.1 Robot Swarms for Real-world Applications?

Swarm robotics is a relatively new research area that started developing in the
late 1990s. It finds its roots in the field of swarm intelligence [Bonabeau et al.,
1999], that focuses on the mechanisms employed by animals and social insects
for realizing collective behaviours. At the same time, it also grew as a generaliza-
tion and extension to large multi-robot systems of the behaviour-based approach
in robotics [Arkin, 1998]. The field of swarm robotics studies how a large num-
ber of autonomous cooperative robots, collectively referred to a robot swarm (or
in short, swarm), locally interact and communicate with each other and with
the environment to produce self-organized coordinated behaviours [Beni, 2005;
Sahin, 2005] that can go far beyond the capabilities of single-robot systems, po-
tentially showing super-linear speed-ups.

The key advantages of swarm robotics relies on the capability of produc-
ing emerging swarm-level behaviours [Dorigo et al., 2004]. Due to their in-
trinsic redundancy, robotic swarms naturally provide a diversity of parallel and
distributed functionalities, high robustness and flexibility, spatial distribution,
fault-tolerance, and adaptivity. Prototypical examples of decentralized and self-
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2 1.1 Introduction

organized systems from nature in which swarm behaviour occurs, includes the
collective behaviour of animals [ Camazine, 2003] such as, the honey bee’s nest-
building, trail following of ants [Dorigo et al., 1996], construction of the ant
and termite mound, bird flocking, and fish schooling. As individuals agents in
a natural swarm usually do not need sophisticated knowledge to produce such
complex swarm behaviours [ Martinoli and Easton, 2003; Martinoli et al., 2004;
Ducatelle et al., 2011], this results in a system that is mostly based on relatively
simple local behaviours and interactions.

Similarly, in present day robotics technology, a robot swarm is usually com-
posed of a potentially large number of relatively simple and unsophisticated mo-
bile robots. Swarm robots offer low-quality sensing devices, basic locomotion
capabilities and limited on-board computation and communication resources as
compared to single-robot systems, which are expected to be more sophisticated
than an individual swarm robot [ Navarro and Matia, 2012; Brambilla et al., 2013;
Kumar et al., 2013]. In principle, individual robots in a swarm do not need to
be extremely sophisticated, as their coordination, cooperation and synergistic
interaction aims to produce a system (swarm) with enhanced abilities and skills.

The evolution of swarm robotics has reached a stage where miniature robot
swarms lie on one side of the spectrum of distributed robotics, and the other
side of the spectrum represents multi-robot systems, as illustrated in Figure 1.1.
Miniature robot swarms are aimed at achieving lower manufacturing costs with
a limited set of features, by leveraging swarm size over the complexity of the sys-
tem. Commercial miniature swarms include robots such as the, e-puck® and Alice
robots, Jasmine robots? and the iRobot SwarmBots [McLurkin and Smith, 2004].
The Kilobot® is currently the smallest and cheapest swarm robot available, with a
retail price of $14 USD. Miniature swarms can have up to 1000 robots, as demon-
strated by the Kilobot swarm. As the small size of miniature robot swarms limits
the possibility of a flexible design [Navarro and Matia, 2012], fewer features
limit the possibility of performing real-world applications.

As miniature robot swarms are potentially unreliable and provide minimalis-
tic performance, in this research the focus is mainly on mid-range robot swarms,
which are considered the middle ground between multi-robot systems and minia-
ture swarms®, as illustrated in Figure 1.1. Mid-range robot swarms are seen as
more suitable candidates for performing real-world tasks, and feature more com-
plex and sophisticated robots, which are bigger in size and cost higher to produce,

Thttp://www.e-puck.org/

http://www.swarmrobot .org/
3https://www.eecs.harvard.edu/ssr/projects/progSA/kilobot .html
“Refer to [Tan and Zheng, 2013] for an overview of swarm robotics and multi-robot systems
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Figure 1.1. The evolution of swarm robotics. Mid-range robot swarms are the
middle ground between multi-robot systems and miniature robot swarms.

but still a relatively high number of them can be employed in a single system.
Being more capable task solvers, mid-range swarms involve a wider spectrum of
features (i.e., sensory-motor skills) for the solution of simpler to advanced tasks.
Mid-range robot swarms comprise of a reasonable number of minimum robots
(e.g., 5 robots) that can range up to 50 robots or more, and can employ typical
swarm intelligence approaches for coordination and cooperation.

Having significant sensing and actuation capabilities, mid-range swarms are
considered suitable candidates to support direct interaction with humans and
perform real-world tasks in cooperation with humans, which is the central as-
pect of this research. By including humans in the interaction loop of mid-range
swarms, human-swarm teams can be formed, as illustrated in Figure 1.1. Robot
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swarms offer a clear advantage to interact with humans as peers, due to the
combined and enhanced capabilities of a large number of autonomous robots
acting in cooperative synergy. This research focuses on developing techniques
and strategies for HSI, by integrating the heterogeneous sensory-motor skills and
capabilities available from both the human’s side and from the swarm’s side.

In this research, the main focus is on the application of human-swarm teams
for search and rescue (SAR) missions, which is the guiding application. As robot
swarms have the ability to cover large areas, rescue workers can interact with
heterogeneous robotic swarms, and dispatch swarms to visually assess and de-
tect the presence survivors in places where rescue personnel cannot safely reach:
burning and collapsed buildings, disaster zones (e.g., fires, avalanches, earth-
quakes), mountainous terrains and cluttered territory. By coordinating and co-
operating with rescue workers using multiple interaction modalities, robots can
inform the status and location of survivors once they have been found.

1.1.2 Humans in-the-loop of Robot Swarms

The inclusion of humans in the interaction loop of swarms is a relatively unex-
plored area. In practice, humans can be included in the interaction loop in many
different ways. For instance, humans can script the task, can define the criteria
to evaluate the performance, can perceive the environment and the task using a
sensory system complementary to the one used by the swarm, and can reason on
the task progress using human-specific heuristics and a priori knowledge.

Existing works have explored a wide spectrum of possibilities: humans with
a fully supervisory and controlling role [Cummings, 2004; Chen et al., 2011;
Kolling et al., 2012], humans treated as a resource to robots [Fong et al., 2003,
2005, 2006], and the case of mixed initiative teams [Hearst, 1999; Bruemmer
et al., 2005], in which robots are autonomous and the levels of autonomy and
tasking are dynamically assigned on the basis of peer-to-peer teaming with hu-
mans [Loper et al., 2009]. Proximal interaction [Kolling et al., 2016] with hu-
mans was envisioned beneficial for firefighters in SAR scenarios [Naghsh et al.,
2008], and in [Couture-Beil et al., 2010a] human operators were able select and
command robots. In [Alboul et al., 2008] humans interacted with swarms as a
special swarm member that acted as an attractor.

In the context of proximal interactions, a first approach based on the use of
instrumented methods (i.e., sophisticated devices for supporting interaction) was
investigated by Payton et al. [Payton et al., 2001 ], which demonstrated that hu-

SRefer to [Kolling et al., 2016] for a survey of human interaction with robot swarms.
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mans are able interact with small-scale robots referred to as pherobots, using a
handheld remote. The handheld remote consisted of a PalmPilot with an Infrared
(IR) emitter that transmitted highly directional and omni-directional wireless sig-
nals to the pherobots. Using this instrumented approach, human operators were
able to issue commands to individual robots and to the entire swarm, using a nar-
row (directional) and wide (omni-directional) IR beam respectively. Payton et
al. also demonstrated the concept of a world-embedded distributed display [ Pay-
ton et al., 2003 ] (where each robot represented a pixel or an annotation on the
immediate environment), in which the user interface to interact with the pher-
obots was adopted as a see-through augmented reality head-mounted display
(HMD) worn by human operators. IR signals emitted by the pherobots were re-
ceived by the HMD, and this information was displayed as a graphical overlay on
the human’s field of view. Virtual pheromones introduced by Payton et al. signi-
fied the use of simple communication and emergent coordinated movement with
minimal on-board processing for real-world applications [Payton et al., 2005].

The initial works of Payton et al. [Payton et al., 2001, 2003, 2005] stressed
that, without the use of instrumented methods (e.g., handheld devices) [ Grieder
et al., 2014] and sophisticated interaction (supporting) gadgets, humans might
face difficulties in proximally interacting with multiple robots. With the improve-
ments in the sensing devices of mobile robots, the research team at the Autonomy
Lab® of Vaughan has demonstrated the successful use of uninstrumented methods
for proximal interaction between humans and multi-robot systems [Pourmehr
et al., 2015; Monajjemi et al., 2013]. Uninstrumented methods do not use so-
phisticated supporting devices from the human’s side, instead they rely on more
natural and intuitive means of interaction (e.g., robots sense audio/visual sig-
nals given by human operators). The Kinect is a good example of a natural user
interface (NUI) that uses human body movements for interaction.

The Autonomy Lab introduced the use of NUIs [Couture-Beil et al., 2010b;
Milligan et al., 2011; Pourmehr et al., 2013b] for selecting and commanding
robots from a distributed multi-robot system using different interaction modal-
ities. These modalities include facial engagement and hand gestures (see Sec-
tion 4.1.1 for more details). Multi-modal interactions have also been investi-
gated [Xavier and Nunes, 2007], in which speech has been used in conjunction
with gaze and gestures [Pourmehr et al., 2013a, 2014; Monajjemi et al., 2014].

With the aim of building a HSI system that allows robot swarms to proximally
interact and cooperate with humans, and motivated by the use of NUIs, the re-
search reported in this dissertation considers the use of uninstrumented and non-

bhttp://autonomylab.org/
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verbal communication methods (see Figure 1.2), in which passive markers (i.e.,
inexpensive coloured gloves worn without any instrumentation) are adopted by
human operators. Even if it might appear limited, non-verbal communication
consists of wordless (i.e., visual and body language) cues communicated be-
tween people [Argyle et al., 1970]. Non-verbal communication represents ap-
proximately two-thirds of all human-to-human communication processes, and
has the ability to portray a message or instruction with the correct body language
and signals [ Matsumoto, 2006]. Body language expresses thoughts, intentions,
feelings, conscious and unconscious signals, and the mediation of personal space,
using physical actions and behaviours [Arygle, 1988], such as: facial expressions,
hand gestures, body postures and movements, eye contact (gaze) and touch.

Human and
Multi-robot Interaction

]
/
Human-Swarm /

Interaction
My
Research -

Non-verbal | Swarm
Communication Robotics

Figure 1.2. Classification of research area.

As a variety of body language cues and behaviours exist that humans can use
to interact with multiple robots, we select hand gestures as the modality of choice,
due to the fact that gestures serve as non-verbal communication symbols, and
have the ability to encode human instructions and commands (see Section 1.3).

1.2 Considered Human-swarm Interaction Scenario

As highlighted in the previous sections, this research aims at studying interaction
and cooperation between humans and mid-range robot swarms, provided that
swarms are located within physical proximity (proximal range) of sensing au-
dio/visual signals given by human operators. Humans proximally interact with
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robot swarms using hand gestures that are transmitted to robot swarms as visual
signals, and sensed by cameras on-board the robots. The guiding application of
this scenario are SAR missions. The reference HSI scenario’ which motivates this
research is composed of 6 stages:

1. A human operator enters a dynamic environment (e.g., a room) in which a
swarm of robots is present, as shown in Figure 1.3(a). As the human moves
within physical proximity of the robots, the human gains the attention of
the swarm (e.g., using visual means such as, the waving of arms and hands,
through sounds such as a hand clap, a whistle blow).

2. After the human has been detected by the swarm, the robots in the swarm
coordinate together to autonomously deploy themselves in positions (loca-
tions) which offer a more reliable and clearer view of the human issuing the
gestures. Deployment results in the robot swarm physically surrounding the
human, as given by the swarm formation in Figure 1.3(b). The deployment
stage is useful, however not compulsory.

Figure 1.3. lllustration of the HSI scenario considered in this research using a
swarm of N = 15 robots. (a): A human operator entering a room where a swarm
of robots are randomly located. (b) A human interacting with a robot swarm.

3. Then, the interaction process initiates with the robot swarm requesting the
human to provide a command (i.e., a gesture). The human interacts with the
swarm by providing a gesture which encodes a possible mission command
(e.g., a command to instruct the swarm to search in a specific direction).

4. Next, the robot swarm cooperatively senses and recognizes (classifies) the
given gesture from a set of predefined gestures already learned by the swarm.

7 A video demonstration illustrating the reference HSI scenario is available at: http: //www.
jnagi.net/interaction_scenario
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5. After the swarm’s recognition is complete, the swarm-level decision is com-
municated as feedback to the human using actuation devices on-board the
robots (e.g., coloured lights, speakers). This swarm-level feedback informs
the human, if the swarm recognized the command properly or not, and guides
the human during the interaction process. When a gesture command is not
properly recognized (i.e., due to mistakes made by the human in presenting
the gesture or due to recognition errors made by the swarm), the swarm re-
quests the human to present the same gesture again, so that the gesture can
be properly recognized the next time.

6. After the given gesture has been properly classified and interpreted by the
swarm, the swarm performs the task associated with the recognized gesture.

1.2.1 The Used Robot Platforms

To assemble heterogeneous swarms of robots, we consider the use of two robot
platforms, namely the Foot-bot robots, that are small ground robots, and the
Parrots, which are flying robots (drones). In practice, up to 16 Foot-bots and
4 Parrots have been experimentally tested. These two platforms have different
capabilities which allows us to investigate a wide range of difference scenarios.
The capabilities of both platforms are presented in the next sections.

1.2.1.1 Foot-bot Robots (UGV5s)

The Foot-bot is a small unmanned ground vehicle (UGV) that has been derived
from the marXbot platform [Bonani et al., 2010], as shown in Figure 1.4(a). The
Foot-bot robots were developed within the Swarmanoid project [Dorigo et al.,
2006, 2013]. Having limited computational power with an on-board ARM 11
processor operating at 533MHz and 128MB of RAM, the Foot-bots are controlled
using the multi-robot simulator, ARGoS [Pinciroli et al., 2012] (see Section 6.1),
in a Linux-based environment. All computation (i.e., image processing and ges-
ture classification using the frontal camera) is done on-board the Foot-bots.
Foot-bots are equipped with a variety on-board sensing and actuation devices,
as shown in Figure 1.4(a): afrontal camera that acquires VGA images in a resolu-
tion of 640 x 480 pixels (see Figure 1.4(b)), motorized track-based wheels that
offer speeds up to 0.3 m/s, a 802.11 wireless (Wi-Fi) network interface, a ra-
dio frequency (RF) and infrared (IR) based range-and-bearing (RAB) system that
allows robots to detect and relatively localize line-of-sight neighbouring robots
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up to a range of a 5 meters through low-bandwidth wireless communication, a
circular ring of 12 RGB coloured LEDs, and a RGB colour beacon.

9 Catadioptric camera
{ RGB LED beacon
Frontal Camera

T WiFi network interface
/ Laser distance scanner
Range-and-bearing

/ sensor and comms

Ultrasonic distance sensor

N ~——————  RGBLEDrin -~

e A4 9 F i
S Rotating gripper e —
. | —_—
! @ Motorized tracks / /

(@) (b)

Figure 1.4. (a): The Foot-bot robot platform, a small unmanned ground vehicle
(UGV) with on-board computational capabilities and a variety of sensing and
actuation devices. (b): A RGB image with QVGA display resolution (dimension
of 320 x 240 pixels) acquired by the frontal camera of the Foot-bot.

As the RAB system provides structured line-of-sight communication signals
with the ability to estimate the angular distance (8,d) from neighbouring Foot-
bots, the RAB system has been adopted for autonomous and coordinated deploy-
ment of UGV swarms (see Section 4.3.1).

1.2.1.2 Parrot Drones (UAVs)

The unmanned aerial vehicle (UAV) that has been adopted, is the standard Par-
rot AR.Drone 2.0 quadcopter, as illustrated in Figure 1.5(a). The Parrots are
equipped with: a frontal camera that acquires images in a high-definition (HD)
resolution of 1280 x 720 pixels using a 92° diagonal wide angle lens (as shown
in Figure 1.5(b)), a Wi-Fi network interface for communication, a vertical QVGA
camera (with an image resolution of 320 x 240 pixels) for measuring ground-
speed, pressure sensors, and ultrasound sensors for altitude measurement.

Equipped with a 1GHz ARM Cortex A8 processor to perform flight operations,
the Parrots are also provided with a 800MHz video processor and 1GB RAM
for acquiring images. The out-of-the-box Parrots cannot perform any on-board
computation (i.e., cannot process or recognize images acquired from the frontal
camera). All images acquired by the Parrots are streamed onto a computer (using
Wi-Fi), which performs all the necessary processing (see Section 6.1).



10 1.3 Core Challenges in Human-swarm Interaction

(a) (b)

Figure 1.5. (a): A Parrot AR.Drone 2.0 with an indoor hull (top) and its cross-
sectional view (bottom). (b): An image with a resolution of 640 x 360 pixels
acquired by the frontal camera of the Parrot using a wide angle lens.

The Parrots are controlled in a Linux-based environment using the Robot Op-
erating System (ROS) [Quigley et al., 2009]. In the case of multiple Parrots, each
robot is associated to a Linux process that communicates with other processes
for information exchange and collective decision-making (see Section 6.1). The
frontal camera of the Parrots has been adopted for coordinated deployment and
human-relative localization of UAV swarms (see Section 4.3.2).

1.3 Core Challenges in Human-swarm Interaction

The majority of existing solutions that investigate interactions between humans
and multiple robots are mostly problem-specific, can hardly scale effectively in
the case of large robot swarms both in terms of communication overhead and hu-
man workload, and mainly rely upon the use sophisticated interaction devices.
As existing approaches are not suitable enough to face such challenges and profit
from the advantages of swarms, the multiple dynamic aspects and the lack of pre-
cise information in the problem definition of HSI leave space to explore several
core issues. With respect to the HSI scenario considered in this research (see
Section 1.2), below we identify a number of fundamental research issues and
present solutions to tackle these challenges systematically.

In Section 1.4 that follows, we set a number of goals out of these core HSI
issues and challenges, and we provide an outline of how these goals have been
achieved in this doctoral research.
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Proximal Interaction between Humans and Robot Swarms

How can human operators communicate and provide instructions to robot swarms?
Which mechanisms can be used by a swarm of robots to efficiently convey swarm-
level feedback to humans?

Which kinds of feedback can swarms convey to humans?

To address these fundamental HSI challenges, a bidirectional human-swarm com-
munication system needs to be developed for proximal interaction [Kolling et al.,
2016], which allows humans to efficiently provide mission instructions and com-
mands to swarms, and enables swarms to easily convey multi-modal feedback to
humans with a high and immediate impact.

Intelligent HSI System with a Human-friendly User Interface

What capabilities and functionalities does the user interface need to have so that
human operators can easily interact with robot swarms?

How can the HSI system be made robust so that errors and mistakes made during
the interaction can be identified and minimized?

Although some potential works have examined how proximal interaction be-
tween humans and multiple robots takes place, little is known on how to best
design robust and effective user interfaces for interacting with swarms. We con-
sider that the HSI system should have some important characteristics: to be able
to identify when humans are issuing commands and basic reasoning capabilities.

Collective Sensing and Fusion of Information Acquired by Robot Swarms
How can robot swarms collectively sense and recognize hand gestures given as visual
signals by human operators?

Which strategies can be used by robot swarms to efficiently build swarm-level deci-
sions for the recognition of gesture commands?

Robot swarms can function as distributed sensing systems to gather (acquire) in-
formation from gesture commands. Cooperative recognition strategies can allow
individual robots in a swarm to effectively fuse information sensed from gestures
and build consensus decisions for the swarm-level classification of gestures.

Coordination for Spatial Selection of Robots and Deployment of Swarms
How can humans address and select spatially-situated robots from a swarm and
how do the robots understand that they have been selected?

How can robots in a swarm efficiently coordinate and spatially deploy themselves
for proximal interaction with humans?
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The research team at the Autonomy Lab of Vaughan investigated the use of audio
and visual interaction modalities for selecting robots from a multi-robot system
(see Section 4.1.1). We consider that, spatially-addressed gestures can efficiently
address (select) spatially distributed robots from a swarm, and individual robots
can coordinate and recognize spatial gestures to understand if they have been
selected. Deployment techniques should focus on improving the sensing cover-
age of robot swarms (i.e., to sense better quality of information from gesture
commands) while maintaining wireless connectivity with the swarm network.

Including Humans in-the-loop of Swarm-level Learning
How can swarms learn about the gesture commands given by human operators?
How can humans provide gesture commands for swarm-level learning?

In real-world environments human instructions (gesture commands) arrive in
increments (i.e., over the passage of time through interaction with humans).
Online incremental learning strategies can provide robot swarms the ability to
remember previously issued gesture commands (i.e., previous interaction expe-
riences) as well as newly issued gestures. Distributed online learning strategies
are required so that robot swarms can efficiently learn gesture commands from
humans instructors and teachers in real-time (i.e., learning immediately).

Sharing and Exchanging Learning Information between Individual Robots
What strategies need to be in place so that individual robots in a swarm can collec-
tively learn gesture commands as a team?

How can robot swarms learn gesture commands in bandwidth-limited scenarios?

If individual robots in a swarm learn only their locally sensed information, the
presence of a swarm is only exploited in terms of distributed sensing and coop-
erative recognition. For individual robots to collectively learn gestures in coop-
eration with other robots in the swarm, cooperative learning strategies (see Sec-
tion 5.4) can allow individual robots to share and exchange learning information
with other robots in the swarm. Under communication constraints, mechanisms
need to be developed which can select the most important (e.g., novel or repre-
sentative) learning information available within the swarm network.

The core challenges and issues reported above are common to all multi-robot
systems, and are amplified in the case of swarm robotic systems, especially when
the scalability of solutions, the limited instantaneous connectivity, and learning
are explicitly taken into account.
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1.4 Scientific Goals and Contributions

This section presents the main objectives and goals of this dissertation together
with the scientific contributions and improvements made to the state-of-the-art.
In general, the focus of this research is to develop fully distributed techniques
that enable peer-to-peer symbiotic interaction and cooperation between humans
and autonomous robotic swarms, and provide highly adaptive solutions to over-
come the core challenges presented in Section 1.3. With reference to the con-
sidered HSI scenario (see Section 1.2), this research is grounded to real-world
applications, which is of both theoretical and practical interest.

1.4.1 Main Goal: Bidirectional Human-swarm Communication

The primary objective of this research is focused on developing a bidirectional
human-swarm communication system for proximal interaction between humans
and heterogeneous robot swarms based on uninstrumented and non-verbal com-
munication methods. The purpose of this research is not to develop smart vision-
based algorithms for gesture classification, and this is why we consider the use
of coloured passive markers (i.e., inexpensive coloured gloves), which robot
swarms can detect and recognize. In principle, it is not necessary to use gloves,
if sophisticated vision-based gesture recognition techniques are adopted. To de-
velop a bidirectional interaction system that allows human-to-swarm and swarm-
to-human communication, existing works in human-robot interaction (HRI) have
suggested that, conversations between humans and robots can be efficiently re-
alized using structured dialogues [ Chambers et al., 2005; McLurkin et al., 2006 ]
(see Section 2.1.1.2). We explore this opportunity and investigate the use of
human-swarm conversational dialogues.

In this research, a dialogue-based interaction system is introduced, which con-
sists of: (i) a grammar-based gesture language with a vocabulary of non-verbal
commands, using which humans can efficiently provide mission instructions to
robot swarms, and (ii) a swarm coordinated multi-modal feedback language, us-
ing which swarms can convey swarm-level status, decisions and intentions to
humans. As briefly highlighted in Section 1.1.2, for humans to interact and com-
municate with swarms, hand gestures are selected as the modality of choice, be-
cause once compared with other non-verbal cues (i.e., facial expressions, gaze
and body postures), gestures have the advantage of being easy to use [Alonso-
Mora et al., 2015], they are easily understood and recognizable [Hu et al., 2012],
and they can: encode complex human instructions (i.e., represent a variety of
tasks that robots can perform) as grammar-based sentences, spatially indicate
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directions for robots to move to a location [Abidi et al., 2013], and represent
quantities (e.g., numbers), all of which are necessary in HSI (see Section 2.2.1).

For human-to-swarm communication, the grammar-based gesture language
provides a set of basic operational commands, which humans can present to
robot swarms during SAR missions. For swarm-to-human communication, the
swarm-coordinated multi-modal feedback language is based on the use of multi-
ple modalities (i.e., lights, sounds and coordinated movements) in order to: con-
vey to humans the swarm’s understanding of recognized gesture commands, de-
tect mistakes made by humans in providing gestures and errors made by swarms
in recognizing gestures, and guide humans through the interaction process.

To develop an intelligent HSI system with a human-friendly user interface,
we consider the following functionalities and characteristics. Firstly, human in-
structions that are given using gestures, need be engineered keeping into mind
the psychological and physiological properties of gestures, such as, naturalness,
intuitiveness, comfortableness, recognisability, spatial characteristics, and ease
of use [Stern et al., 2006, 2008b,a; Wachs et al., 2008; Stern et al., 2009; Mai
etal., 2011; Pfeil et al., 2013]. Secondly, robot swarms should be able to identify
when humans are presenting gesture commands, and when random movements
(manipulations) of the hands and arms occur-that are not human instructions.
This can be achieved by implementing a human body motion detection system.

Lastly, it is desirable that swarms possess basic reasoning and self-assessment
capabilities. This means that, a swarm should be able to intelligently assess with-
out the use of human feedback (external inputs), if it is confident or not in recog-
nizing given human instructions (gesture commands). Self-assessment made by
robot swarms should be able to: identify sensing ambiguities, detect errors and
mistakes from the human’s side and from the swarm’s side, and request humans
for corrections. The techniques and strategies discussed above are presented in
Chapter 2 and have been published in [Nagi et al., 2014b,c].

This set of main goals builds upon the state-of-the-art methods for dialogue-
based interaction with multiple robots [Skubic et al., 2004; Chambers et al.,
2005; Harris et al., 2005], multi-robot command and control languages [Sto-
ica et al., 2014, 2013], and HSI strategies that adopt the use of gestures [Xavier
and Nunes, 2007; Podevijn et al., 2013; Alonso-Mora et al., 2015].

1.4.2 Sub-goals: Functional to Achieve the Main Goal

The four sub-goals presented below provide the secondary contributions of this
research, in-line with the main goal. They address the core challenges outlined
in Section 1.3 and are functional to achieve the main goal.
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1.4.2.1 Distributed Sensing and Cooperative Recognition

This sub-goal aims on developing a distributed sensing and recognition mecha-
nism for cooperative decision-making in robot swarms. To achieve this goal, we
design a general protocol that enables the swarm-level classification (recogni-
tion) of commands defined in gesture language (vocabulary).

To overcome the limitations of individual robots and allow robots in a swarm
to utilize their local (individual) sensing capabilities, following the works of Pay-
ton and Vaughan (see Section 1.1.2), we find it useful to consider robot swarms
as distributed sensing systems, that can concurrently gather perceptual visual in-
formation (using on-board cameras) from gesture commands while located at
different viewpoints. Distributed and parallel sensing mechanisms facilitate the
cooperative swarm-level recognition of gestures.

Cooperative recognition is considered as a global swarm task, which can be
decomposed into distributed and parallel inter-dependent tasks or sub-problems
(that naturally account for distributed and coordinated solutions). These sub-
problems can be adaptively solved by every individual robot in the swarm, since
every robot has only partial knowledge (i.e., partially viewable information) of
the global task. Distributed and parallel information sensed from gestures by
multiple robots, can be combined using decentralized data fusion methods that
rely on multi-hop messaging passing algorithms. We consider the use of dis-
tributed consensus mechanisms for building swarm-level decisions (i.e., unified
mutual agreements between individual robots in the swarm).

The developed protocol consists of an integrated strategy: a mechanism that
recognizes passive markers (i.e., coloured gloves) worn by humans, and a con-
sensus building mechanism for data fusion and multi-hop information propaga-
tion. To provide performance control, a “prudence” parameter is introduced in
the protocol, using which the accuracy of swarm-level decisions and the time re-
quired to build consensus decisions can be specified. This protocol is presented
in Chapter 3 and the associated results have been published in [Nagi et al., 2011;
Giusti et al., 2012a,b,c; Nagi et al., 2014c, 2015].

This sub-goal provides improvements over the state-of-the-art cooperative
distributed vision methods that rely on data fusion mechanisms [Yu and Nag-
pal, 2009; Jorstad et al., 2010; Kokiopoulou and Frossard, 2010, 2011].

1.4.2.2 Swarm Understanding of Spatial Robot Selection and Deployment

This sub-goal focuses on the development of swarm-level coordination mecha-
nisms for dealing with spatially related issues. We provide techniques and strate-
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gies: (i) that enable human operators to efficiently select robots from a swarm,
and allow robots in a swarm to understand if they have been selected, and (ii)
using which spatially-situated robots in a swarm coordinate and autonomously
deploy for proximal interaction with humans.

To select individuals and groups of robots from a swarm, we consider the use
of spatially-addressed instructions, namely pointing gestures. As human opera-
tors may want to select an individual robot or a group (subset) of robots from a
swarm, this can be achieved by pointing at the robot(s) that need to be selected.
To select individual robots, an index finger can be used to point to the desired
robot, while to select a group of robots, two pointing hands can define the range
of the group of robots to be selected. The difficult problem is for robots to under-
stand if they have been selected. This is because, many robots may see the given
gesture from different viewpoints at the same time, and every individual robot
in the swarm has to coordinate with the other robots to reliably decide based on
its viewpoint and local gesture observation, if it has been selected or not. Spa-
tial robot selection is performed in a two-stage process. First, robots in a swarm
identify the type of selection command (e.g., individual or group selection), and
secondly, individual robots solely decide if they have been selected.

As individual robots in a swarm may be positioned in locations that do not
offer a good (or clear) view of the issued gesture commands (e.g., due to par-
tial occlusions), individual robots need to coordinate with each other to move
to sensing positions that offer better views of gestures. We have considered dis-
tributed mobility strategies based on mobility rules, using which heterogeneous
teams of robot swarms (UGVs and UAVs) can reshape their spatial distribution,
and this offers an informed way of human-relative localization. The above men-
tioned swarm-level coordination mechanisms are presented in Chapter 4 and
have been published in [Giusti et al., 2012c; Nagi et al., 2014a,c].

This sub-goal contributes to the state-of-the-art robot selection strategies for
human and multi-robot interaction (HMRI) and HSI [Monajjemi et al., 2013;
Lichtenstern et al., 2013; Pourmehr et al., 2013a; Milligan et al., 2011; Couture-
Beil et al., 2010a], and multi-robot deployment techniques [Monajjemi et al.,
2013; Guinaldo et al., 2013; Saska et al., 2014; Duan et al., 2014].

1.4.2.3 Cooperative Learning Supervised by Humans

This sub-goal aims on developing distributed online learning strategies that allow
robot swarms to learn the grammar-based gesture language (vocabulary of com-
mands) supervised by human instructors. In an online learning setting, humans
can use their unique sensory-motor capabilities to act as teachers for supervising
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the swarm’s learning of gesture commands. For instance, after a gesture is pre-
sented by a human and it is recognized by the swarm, based on the swarm-level
recognition outcome, the swarm conveys multi-modal feedback to the human.
After the human has interpreted the swarm’s feedback, the human can provide
different types of feedback (e.g., full or partial feedback) to the swarm for im-
proving the swarm-level learning and understanding of gesture commands.

As information sharing in robot swarms plays an important role in building
synergistic cooperative strategies, we have considered developing information
sharing and selection mechanisms that can allow robot swarms to collectively and
collaboratively learn gesture commands in bandwidth-limited scenarios. To al-
low cooperative learning in robot swarms, information selection strategies need to
be based on intelligent criteria, and should rely on principles of sharing and for-
getting learning (training) information. The swarm-level learning strategies are
presented in Chapter 5 and have been published in [Nagi et al., 2011, 2012b,a;
Di Caro et al., 2013b; Ngo et al., 2014; Nagi et al., 2014e,d].

This sub-goal improves the state-of-the-art algorithms for, learning with hu-
man feedback [Kakade et al., 2008; Chen et al., 2009; Wang et al., 2010; Cram-
mer and Gentile, 2011], collaborative learning [Predd et al., 2005, 2006a,b,
2009], and the online selection of training information [ Zechner and Granitzer,
2009; Lopes et al., 2010; Chen et al., 2013].

1.4.2.4 Building a Complete HSI System

The final goal of this research aims on building a fully functioning HSI system
for potential use in real-world interaction applications. This involves a systemic
integration of all the components and technologies developed in this research,
that are discussed in the aforementioned goals.® To evaluate the performance
of developed HSI system, real robot experiments are performed using heteroge-
neous teams of robot swarms (i.e., ground and flying robots).

Assessing the efficacy and efficiency of HRI solutions [Goodrich and Olsen,
2003; Steinfeld et al., 2006] for multi-robot systems [Crandall and Cummings,
2007b; Pourmehr et al., 2015] and robot swarms [Harriott et al., 2014; Hayes
and Adams, 2014] is an open issue. Although metrics have been proposed for
HRI [Steinfeld et al., 2006], proper definitions of metrics in the case of HSI do
not exist. Appropriate metrics in context to the considered HSI scenario (see
Section 1.2) have been defined in Chapter 6, to assess and evaluate system-level

8Videos demonstrating the developed HSI system are available at: http://www. jnagi .
net/example_task and http://www. jnagi.net/systemic_integration
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parameters: the perceptual reliability of robot swarms, the level of symbiosis
and cooperation maintained within swarms, the impact of different learning and
communication strategies, the scalability of solutions, and the associated levels
of fault-tolerance and adaptivity.

1.5 Impact of Work

The research presented in this dissertation has been performed at Istituto Dalle
Molle di Studi sull'Intelligenza Artificiale (IDSIA)® associated with Scuola Uni-
versitaria Professionale della Svizzera Italiana (SUPSD)'° and Universita della
Svizzera Italiana (USI)!! in Lugano, Switzerland. This research is supported by
the National Centre of Competence in Research (NCCR) Robotics, with search
and rescue (SAR) missions being the guiding application. The NCCR Robotics
project (http://www.nccr—robotics.ch/) consists of research groups in
Switzerland that have the common objective of developing new, human-oriented
robotic technology. NCCR Robotics is a joint effort between four Swiss institu-
tions: Ecole Polytechnique Fédérale de Lausanne (EPFL), Eidgendssische Tech-
nische Hochschule Ziirich (ETH Ziirich), Universitit Ziirich (UZH), and the Dalle
Molle Institute for Artificial Intelligence (IDSIA). Launched on December 2010,
NCCR Robotics spans for a period up to 12 years, and is funded by the Swiss Na-
tional Science Foundation (SNSF). NCCR Robotics is overlooked by an advisory
board committee composed of an international panel of experts.

The first phase of NCCR Robotics which initiated in 2011 and ended in 2015,
fully funded this PhD research under the sub-project “Symbiotic cooperation be-
tween humans and robotic swarms”. This project is a follow-up of IDSIAs re-
search in the domain of swarm robotics, a successor to the Swarmanoid project!?
and the Swarm-bots project'®. Live demonstrations of the developed technolo-
gies have been shown at the AAMAS 2012 conference [Giusti et al., 2012b] and
at the annual NCCR review meetings. Experiments have been performed with
heterogeneous robotic swarms (UGVs and UAVs). A total of 15 peer-reviewed
publications have resulted as a consequence of this research (see Section 7.4).
In addition, a number of video demonstrations have been recorded during the
course of this research (see Section 7.4.3), which verify the good performance,
scalability and robustness of the developed HSI system.

“http://www.idsia.ch/
Onttp://www.supsi.ch/
Uhttp://www.usi.ch/
2http://www.swarmanoid.org/
Bhttp://www.swarm-bots.org/
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1.6 Dissertation Organization

This dissertation comprises of seven chapters, with this being the Introduction
(Chapter 1), and six further chapters follow.

Chapter 2 presents the techniques and strategies developed for bidirectional
human-swarm interaction and communication. These include dialogue-based in-
teraction techniques for human-to-swarm and swarm-to-human communication.

Chapter 3 presents a general protocol for the swarm-level classification of
commands defined in the gesture language (vocabulary). The developed tech-
nologies include: strategies for decentralized data fusion, mechanisms for multi-
hop message passing, and techniques for swarm-level decision making.

Chapter 4 provides swarm-level coordination solutions for spatially related
issues. These include techniques and strategies for: selecting spatially-situated
individuals and groups of robots from a swarm, autonomous and coordinated
deployment of robot swarms, and human-relative localization.

Chapter 5 presents algorithms and techniques that allow robot swarms to
learn information from humans instructors in real-time. These include: dis-
tributed online learning strategies that use human feedback, and cooperative
learning mechanisms that rely on information selection and sharing strategies.

Chapter 6 evaluates the algorithms, strategies and techniques developed in
Chapters 2 to 5, and presents and discusses the experimental results. Experi-
mental validation is performed in context of the HSI scenario considered in Sec-
tion 1.2, both in simulation (using emulation tests) and using real robots.

Chapter 7 presents concluding remarks, discusses the key findings, and pro-
vides future directions that need to be explored in the domain of HSI.



Chapter 2

Bidirectional Communication
between Humans and Swarms

The chapter addresses the main goal of this research outlined in Section 1.4.1.
More specifically, a bidirectional communication system for proximal interaction
between humans and robot swarms is presented in this chapter. To allow robust
bidirectional communication, dialogue-based interaction is adopted. Figure 2.1
illustrates the bidirectional flow of information between a human and a hetero-
geneous swarm, namely, human-to-swarm and swarm-to-human communication.

In the context of human-to-swarm communication, a grammar-based gesture
language with a vocabulary of non-verbal commands is developed, using which
humans can provide complex mission instructions to robot swarms. The gesture
language has the ability to build semantically and syntactically correct sentences
of individual gesture commands based on grammatical expressions. The vocabu-
lary allows humans to specify a variety of gesture commands: spatially-addressed
commands for selecting robots from a swarm, commands for swarms to perform
application-specific tasks, spatial directions for robots to move to specific loca-
tions, and commands that encode numerical quantities.

For swarm-to-human communication a swarm coordinated multi-modal feed-
back language is developed, which provides different types of multi-modal feed-
back to swarms. These multi-modal feedback: convey the swarm’s understand-
ing of recognized gesture commands to humans, provide basic reasoning capa-
bilities for swarms to assess their recognition decisions (i.e., to identify sensing
ambiguities, and detect mistakes made by humans and errors made by swarms),
and guide human operators through the interaction process. Swarms convey
multi-modal feedback to humans using actuation systems on-board the robots
(e.g., lights, sounds and locally coordinated movements).

20
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Figure 2.1. Bidirectional flow of information between humans and swarms.
Human-to-swarm communication: Humans provide instructions to swarms.
Swarm-to-human communication: Swarms convey feedback to humans.

The research presented in this chapter has been collaborated with a num-
ber of experts at IDSIA: Jérome Guzzi, Alessandro Giusti and Gianni Di Caro.
The grammar-based gesture language, the selection of robots using spatially-
addressed commands, spatial directions pointed by humans, the swarm coordi-
nated multi-modal feedback language, and the use of spokes-robots for human-
to-swarm communication, are based on the creative ideas of the above men-
tioned individuals. In terms of my contribution, I have implemented and setup
the UGV and UAV platforms with the components and technologies presented in
this chapter, and have designed and performed experiments with real robots.

2.1 Background and Related Work

Human-robot interaction (HRI) is an extensively studied domain [ Murphy, 2004;
Goodrich and Schultz, 2007] in which large majorities of works focus on exam-
ining interactions between a single human-robot pair [Breazeal, 2004]. Being a
relatively new field of research, human-swarm interaction (HSI) has received less
attention [Xiaohui and Eberhart, 2008], and not much is known about the issues
related with interaction between humans and multiple robots [Jones et al., 2010;
Rule and Forlizzi, 2012]. Although some existing solutions do provide some ca-
pabilities to mitigate complexity that human operators may face in interacting
with multiple robots [Saidi and Pradel, 2006], however it is not entirely clear
what kinds of interaction mechanisms and strategies are most appropriate.
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The sections below review topics in different domains. The covered topics
include: the interaction modalities and methods used by humans to interact
and communicate with multiple robots (see Section 2.1.1), and the interaction
modalities used by individual and multiple robots to convey feedback to humans
(see Section 2.1.2). In addition, for human-to-swarm communication, gesture-
based interaction techniques (see Section 2.1.1.1) and dialogue-based interac-
tion mechanisms (see Section 2.1.1.2) are reviewed.

2.1.1 Modalities for Humans to Communicate with Swarms

The majority of existing works that deal with interaction between humans and
multiple robots adopt teleoperation strategies [ Kira and Potter, 2009; Vasile et al.,
2011; Clare and Cummings, 2011; Sycara and Lewis, 2012; Lewis and Suk-
thankar, 2012; Kolling et al., 2013; Sklar et al., 2013] (supervised control by
humans), which rely on the use of sophisticated supporting devices (e.g., hand-
helds such as joysticks, smartphones and tablet computers) [ Coppin and Legras,
2012]. The work conducted by Payton et al. [Payton et al., 2001, 2003] which is
discussed in Section 1.1.2, provides a good example of the use of instrumented
methods (i.e., handhelds and wearables) for interaction with multiple robots. In
recent times, an intuitive head-mounted display (HMD) was developed in [Licht-
enstern et al., 2013], which had the capability of cycling through real-time video
streams originating from the cameras of multiple UAVs. This enabled humans to
select a particular robot and inspect the field of view (FOV) of the robot.

Although instrumented methods serve as an efficient interaction medium and
reduce mental efforts put by human operators, they lack spatially-addressed con-
trol of multiple robots. The widespread availability of cost-effective sensors (e.g.,
cameras and microphones) for ubiquitous computing [Malima et al., 2006; Yin
and Xie, 2007] enables multiple robots to sense audio/visual signals given by
humans using uninstrumented methods. The research team at the Autonomy Lab
of Vaughan has demonstrated the successful use of uninstrumented methods for
HMRI [Couture-Beil et al., 2010a; Milligan et al., 2011; Pourmehr et al., 2013a;
Monajjemi et al., 2013], as discussed in Sections 1.1.2 and 4.1.1. The Auton-
omy Lab introduced the use of visual interaction modalities such as, gaze, hand
gestures, and body postures. Audio modalities such as speech and non-verbal
sounds have also been used in conjunction with vision for realizing multi-modal
interaction [ Stiefelhagen et al., 2004; Xavier and Nunes, 2007; Jones et al., 2010;
Pourmehr et al., 2014; Monajjemi et al., 2014].

With respect to non-verbal communication methods (see Figure 1.2), the fo-
cus in this research is on how hand gestures can be used for interaction with robot
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swarms. The next sections presents the related works for gesture-based interac-
tion and control of single and multiple robots, and dialogue-based interaction
between humans and robots.

2.1.1.1 Gesture-based Interaction with Robots

In general, hand gestures can be sub-divided into three major groups, namely,
adapters, conversational and symbolic. Adapters are hand movements which are
not considered gestures, and include manipulations such as, scratching, rubbing,
tapping, and touching. Conversational gestures are hand movements that do
no refer to actions or words, but instead accompany speech, and are related to
the speech. In this research, symbolic gestures are of great importance, as they
represent hand movements with specific conventionalized meanings.

Being an active area of research, hand gestures have served as interaction
modalities for various applications, including, sign language interpretation [ Kelly
etal., 2010], video games control, virtual reality, and assistive environments [ Ste-
fan et al., 2008]. Numerous research efforts have promoted the use of hand ges-
tures as effective interaction modalities for HRI tasks [Mitra and Acharya, 2007;
Wachs et al., 2011; Konda et al., 2012; Naseer et al., 2013]. However, hand
shape recognition [Duta, 2009; Yin and Zhu, 2006; Huang et al., 2011a; Hu
et al., 2012] is a challenging problem [ChaLearn Gesture Challenge], due to the
ambiguities associated with different hand poses (orientations) and computer
vision problems associated with different lightning conditions. In order for ges-
ture recognition systems to be real-time, robust and deployable in uncontrolled
environments [Fang et al., 2007b,a], they need to be able to operate in com-
plex scenes with different backgrounds, under variable lightning conditions [Zhu
et al., 2013], while taking into consideration different hand positions/orienta-
tions and occlusions [Choras, 2009; Duta, 2009; Hu et al., 2012].

Humans use a broad range of deictic gestures that can direct attention to-
wards collocated objects, people or spaces. To investigate the communication
effectiveness of different gestures under various conditions, a set of six dietic
gestures: pointing, presenting, touching, exhibiting, grouping and sweeping ges-
tures, were evaluated in [Sauppé and Mutlu, 2014] for a HRI task with a NAO
robot. The Autonomy Lab introduced the use of gestures for HMRI applica-
tions [Couture-Beil et al., 2010a,b; Milligan et al., 2011]. By detecting human
motion (see Appendix B) in predefined zones of the upper body, they defined a
set of four distinct hand waving gestures (i.e., no wave, left hand wave, right
hand wave, two-handed wave) [Monajjemi et al., 2013], which encoded in-
structions to select and command multiple robots and to gain the attention of
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robots [Pourmehr et al., 2013a,b] (see Section 4.1.1). As waving gestures are
characterized based on the optical flow of motion in the hands and arms, in
practice, this limits the total number of gestures that can be used by humans,
and does not fully exploit the potential advantages of gestures, such as the intu-
itiveness, spatial-addressing properties and shape characteristics.

The majority of uninstrumented methods for interaction with multi-robot sys-
tems and robot swarms that use hand gestures and body postures have adopted
the Microsoft Kinect sensor [Podevijn et al., 2012, 2013; Gasparri et al., 2012;
Lichtenstern et al., 2012; Pourmehr et al., 2013b; Alonso-Mora et al., 2015] for
reducing the expertise required by human operators. In [Lichtenstern et al.,
2012] a system for controlling a team of flying UAVs was presented, where a
human directed gestures to a single UAV (i.e., the elected leader of the swarm)
which was equipped with a Kinect. The research group of Dorigo developed a
HSI system for gesture-based control of robot swarms [Podevijn, 2012; Podevijn
et al., 2012, 2013] that allowed humans to provide commands to swarms using
the Kinect sensor. Human operators had the ability to guide groups and teams
of robots to designated task completion zones using five basic hand gestures,
that encoded the tasks [Podevijn et al., 2012]: steer, split, merge, stop and se-
lect. However, the disadvantages of the Kinect are that: multiple Kinect devices
located within close proximity of each other generate interference, it is not eco-
nomically feasible to equip every individual robot in a swarm with a Kinect, and
the Kinect is not suitable for outdoor use.

To simplify the task of recognizing gestures without loosing generality, we
consider the use of passive markers that can naturally supplement symbolic ges-
tures. Human operators wear a pair of inexpensive coloured gloves (i.e., passive
markers) as illustrated in Figure 2.3, which serve as suitable color-coded inputs
for robot swarms to detect and recognize gestures. Gloves are worn without any
instrumentation and are used as part of a computer vision-based approach (see
Appendix A). Existing works have also addressed the hand gesture recognition
problem by adopting the use of gloves [Parvini et al., 2009; Huang et al., 2011b].
For instance, a multi-coloured glove with a known pattern was designed in [Wang
and Popovi¢, 2009], which was used for tracking hands at different orientations
and with different finger positions.

2.1.1.2 Interacting with Robots using Dialogues

Within the domain of HRI, a human-robot conversational dialogue consists of the
entire process in which a human provides a command to a robot, and in turn
the robot provides feedback to the human. In a grammar-based language of
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operational commands, one command given by the human represents a single
word, and multiple commands (i.e., a sequence of words one after the other)
comprise of a full sentence, as illustrated in Figure 2.2. As a result, sentences
comprise of instructions having more than one word.

/\

Sentence from Human
[ word 1 | |Word 2 | [ word 3 |

Human Feedback
Command for

(Word) Recognized
Word

\

< Robot Swarm >

Figure 2.2. Dialogue-based interaction between a human (who provides a sen-
tence using single words/individual gestures) and a robot swarm (which provides
swarm-level feedback regarding the recognition outcome of each word).

With respect to the considered HSI scenario (see Section 1.2), a dialogue be-
tween a human and a robot swarm can take place as follows: a human provides
a single word (individual gesture) to the swarm, and the swarm provides ap-
propriate feedback to the human (see Section 2.1.2) after recognizing the given
gesture. This process repeats for every word (individual gesture) given by the
human in a sentence, as depicted in Figure 2.2. A dialogue is considered com-
plete when the human has presented the full sentence, and all words (gestures)
in the sentence have been correctly recognized by the swarm. Such a structured
dialogue enables bidirectional communication between humans and swarmes.

Since the dawn of artificial intelligence in the 1960s, human-machine inter-
action (HMI) using verbal and non-verbal dialogues [Weizenbaum, 1966] has
been an active area of research [Wahlster and Kobsa, 1986]. Dialogue-based in-
teraction [Allen et al., 2001; Fong et al., 2003] between humans and robots can
be realized using three main communication channels: spoken (or verbal), writ-
ten, and non-verbal modes of communication. However, as human language is
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frequently ambiguous, humans often refers to objects/entities in terms that are
sometimes incomprehensible to robots. This can make the complete understand-
ing (i.e., clarification) of human instructions even more difficult for robots (e.g.,
instructions may be interpreted as having more than one meaning). Considering
these challenges, a limited number of research efforts have investigated the use
of dialogues for interaction with single robots [Jones and Rock, 2002], multiple
robots [ Chambers et al., 2005], and swarms [ McLurkin et al., 2006].

A spatial language for human-robot dialogues was reported in [ Skubic et al.,
2004], which described how linguistic spatial descriptions and information can
be used by humans in a natural style. In recent times, two gesture-based lan-
guages, namely, the UGV Language (UGVL) [Stoica et al., 2013] and the UAV
Language (UAVL) [Stoica et al., 2014] were introduced for controlling the be-
haviour of multiple ground and aerial robots respectively. However, the UGVL
and UAVL methods adopted an instrumented method with the use of a Biosleeve
device [Wolf et al., 2013] (a sophisticated interaction device with multiple sen-
sors) which is worn on the arm of the human operator.

To the best of our knowledge, currently no dialogue-based interaction system
exists that can address and command a swarm of robots using spatially-addressed
instructions and gestures, while providing swarm-level feedback to humans. As
it is too costly to implement iterative methods for building a natural language
system that can constantly add/update new contents incrementally [Dow et al.,
2005], we have developed a grammar-based gesture language with a vocabulary
of commands in Section 2.2.1, which follows syntax rules for combining the se-
mantic meanings of individual gestures and provides humans more flexibility and
variety for communicating with robot swarms.

2.1.2 Modalities for Swarms to Convey Feedback to Humans

During dialogue-based interaction, it is crucial for human operators to receive ap-
propriate feedback from robot swarms, in order to be fully aware of the current
intentions, status and state of the swarm. For instance, after an individual robot
or swarm has recognized a human command (e.g., gesture), the swarm should
inform the human regarding the recognized command using a feedback mech-
anism. As feedback from robots plays an important role during human-robot
conversational dialogues [Skubic et al., 2004; Deits et al., 2013], to convey to
humans the response (feedback) of a single or a group of robots, research efforts
have used the actuation systems and devices on-board small mobile robots.

A first analysis of feedback from a small mobile ground robot (UGV) was in-
vestigated in [Mohammad and Nishida, 2007], in which the e-puck robot [ Mon-
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dada et al., 2009] was used. The results reported in [Mohammad and Nishida,
2007] and its successive works [ Mohammad and Nishida, 2008] indicate that,
actuation systems such as, speech, lights (e.g., LEDs) and robot movements (i.e.,
wheels), are the most effective interaction modalities that small mobile robots
can use for conveying feedback to humans. The results in [Mohammad and
Nishida, 2008] explicitly indicated that, using any type of feedback provides a
statistically significant improvement as compared to cases with no feedback. No
interaction modality is considered superior over another, as modalities are gen-
erally problem-specific. The research group of Dorigo [Podevijn, 2012; Podevijn
etal., 2012, 2013 ] has investigated the use of feedback from a swarm of Foot-bots
(see Section 1.2.1). Self-organized mechanisms for conveying visual feedback to
humans were presented in [Podevijn et al., 2012, 2013] which adopted the use
of coloured LEDs and coordinated multi-robot movements.

Following these works, we consider the use of multiple individual and group
modalities, which includes, coloured lights, synthetic speech and robot move-
ments, for swarms to convey feedback to humans (see Section 2.3).

2.2 Human-to-Swarm Communication

This section introduces a gesture language for human-to-swarm communication
using dialogue-based interaction. This vocabulary of gesture commands has been
designed keeping into mind search and rescue (SAR) scenarios (see Section 1.1.2)
and is aimed for use with UGV and UAV swarms.

2.2.1 Gesture Language for Issuing Human Instructions

An iconic grammar-based gesture language with a vocabulary of non-verbal com-
mands has been developed for humans to communicate and interact with robot
swarms. Individual gestures represent the symbols (i.e., grammatical expres-
sions) in the language. The concept of a non-verbal communication language
with grammatical expressions emerges from the context of human-robot conver-
sational dialogues (see Section 2.1.1.2). As it seems natural to emulate struc-
tured dialogues that are evident in humans, we consider that the following char-
acteristics and functionalities are crucial for the gesture vocabulary:

(a) Flexibility and Variety: Human commands (gestures) can be represented us-
ing one hand or a combination of both hands. The choice of using one and
two-handed gestures provides variety and flexibility to human operators, as
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simple instructions can be associated with one handed commands, while
complex instructions may require the use of both hands.

(b) Intuitiveness: As the vocabulary comprises of multiple gesture commands,
gestures need to be intentionally engineered so they can be easily compre-
hended by robot swarms. Gesture commands need to be instinctive, so that
they represent similarities with sign language, and at the same time they
should be able to encode a variety of tasks that robot swarms can perform.

(c) Spatiality: For humans to address/select robots from a swarm, gestures that
possess spatial properties are essential. More importantly, individual robots
in a swarm should be able to accurately interpret if spatially-addressed ges-
tures are presented to them. In this context, the spatial relationship between
humans and robot swarms needs to be investigated.

(d) Extensibility: The vocabulary needs to be designed such that, it is relatively
easy to expanded/increase the number of gesture commands (so that new
gesture symbols that are “different” enough from previous ones can con-
stantly be added for handling new tasks).

Operationally, the grammar-based language is implemented as a Finite State
Machine (FSM) with four interaction states, referred to as semantic gesture classes
(see Figure 2.3). These interaction states comprise of the entire gesture lan-
guage, and are introduced next in Section 2.2.2.

2.2.2 Semantic Gesture Classes

This section introduces the four semantic gesture classes which consist of four
different levels of instructions and commands that can be given by human op-
erators to robot swarms. Every semantic gesture class corresponds to a single
interaction state in the gesture language. Figure 2.3 illustrates the gesture lan-
guage with the four semantic gesture classes of commands. A trained statistical
classifier is used for learning (see Chapter 5) and recognizing (see Sections 3.4)
gestures in the language. Individual gestures in every semantic class are designed
in such a way that they different in terms of shape characteristics and flexibility
(one or two-handed) when compared to gestures in all other semantic classes.
In every semantic class, gestures are selected such that they are sufficiently
expressive and highly discriminative compared to gestures in other semantic
classes. The first semantic gesture class (or first interaction state) explicitly deals
with the selection of individuals and groups of spatially-situated robots from a
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Figure 2.3. A grammar-based gesture language (vocabulary) for dialogue-based
interaction between humans and robot swarms.

swarm. As addressing is an important means to select robots and trigger their
attention, we consider that, when interacting with a robot swarm, all commands
begin with an addressing terminal, as presented later in Section 2.2.3.1. In this
way, the first command issued by humans is for selecting robots.

The second semantic class of gestures represents potential SAR commands
that humans can provide to swarms to perform predefined tasks. The third and
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fourth semantic classes are parametric, and humans may choose to use them
depending upon the complexity of the task. For instance, if the task requires
the selected robots to move to a specific direction, the third semantic class is
required. In addition, if additional information is required to complete the task,
then the fourth semantic class which represents application-specific parameters
needs to be used. The four semantic gesture classes are introduced below.

1. Selecting Spatially-situated Robots (C,,;): These commands are used to se-
lect a specific number of robots and direct (instruct) the selected robots to per-
form a task. Spatially-addressed commands provide an intuitive way of selecting
and gaining the attention of individuals and groups of robots from a swarm. From
a swarm of robots, three types of spatial robot selections are considered [Nagi
et al., 2014c]: (i) individual robots, (ii) a group (subset or team) of robots, and
(iii) all robots in the swarm, as illustrated by the spatial pointing gestures in
Figure 2.4(a). Section 4.2 introduces the algorithms that enable spatial robot
selection and Section 4.1.1 presents the related work. After robots have been
selected, the selected robots can then be instructed to perform a specific task,
using the second semantic gesture class presented below.

(b)

Figure 2.4. Gesture commands in the grammar-based language. (a) Spatial ges-
tures for robot selection. Left to right: Individual selection, group selection, and
all robot selection. (b) Gestures for performing SAR tasks. Left to right: Take off,
follow, go to base, land, search, follow me, go to and wait.

2. Application-specific Commands (C,,,): To support a variety of SAR mis-
sions that heterogeneous teams of robots (UGVs and UAVs) can perform, gestures
are intentionally designed to be intuitive (i.e., gestures represent similarities with
sign language) [Stern et al., 2006, 2008b,a; Wachs et al., 2008; Stern et al., 2009]
so they can easily be remembered by human operators. Figure 2.4(b) illustrates
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seven gesture commands which could represent the tasks: take off, follow, go to
base, land, search, follow me, and go to and wait.

3. Spatial Directions (C;;,): Tasks may require robots to move to a specific
direction or location. Humans can provide spatial directions for robots to ma-
noeuvre (e.g., to move to a space, object or specific location) by pointing the
hand and arm in a specific direction, as illustrated in Figure 2.5. For simplic-
ity, we consider that spatial directions given by humans consist of four cardinal
compass directions: north (N), east (E), south (S), and west (W), and four in-
tercardinal directions: north-east (NE), south-east (SE), south-west (SW), and
north-west (NW). Using these compass directions, humans can provide up to 8
unique directions, in which a single direction represents a circular area of 45°
within a circular plane of [0,360°]. Direction-specific feedback in Section 2.3.2
discusses the approach using which spatial directions are estimated by robots.

-
-

Figure 2.5. A human operator providing a spatial direction (to an airborne UAV)
to maneouver to, using the direction pointed by the arm and the hand.

4. Numerical Quantities (C,,,,): The simplest way using which application-
specific parameters (i.e., quantities) can be provided, is by encoding gestures
into finger counts, as illustrated in Figure 2.6 with K = 6 gestures that represent
finger counts from O to 5. With a combination of both hands, atleast 11 dis-
tinctive quantities (e.g., finger counts 0 to 10) can be easily represented. Task-
parameters encode specific measurement units which include, distance (e.g., in
metres), duration (e.g., in minutes) and speed (e.g., in m/s).

The gesture language consists of K = 16 gestures (see Figures 2.4 and 2.6)
that are distributed among the four semantic classes [Cy,;, Copps Cair>Crum]- The
next sections present how individual gestures in the four semantic classes are
combined to build full sentences of human commands.
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Figure 2.6. Finger count gestures used for representing quantities. Left to right:
Finger counts from 0 to 5.

2.2.3 Building Syntactically Correct Sentences

Having the ability to support a variety of operations, the gesture language builds
iconic sentences by combining single gestures (words) in a semantically and syn-
tactically correct manner. Every sentence contains at least one selection (C,,;)
and one task (C,,,) command. Depending upon the complexity of the task,
humans may provide additional instructions, which includes spatial directions
(Cy4;,) and application-specific parameters (C,,,,). As a result, sentence composi-
tion follows the simple rule that, sentences are always organized in the sequence
Cset=Capp—l Cair - Crum J, Where the commands in the brackets are optional.

This form of simple grammar allows to easily check the correctness of sen-
tences, and words (individual gestures) can be syntactically combined to build
sentences while retaining the semantic/symbolic meanings of the individual ges-
tures. Section 2.3.2 presents the trained statistical classifiers used to recognize
the gestures the four semantic classes.

2.2.3.1 Grammar Definition

This section presents the grammar developed for sentence composition. This
grammar expresses relatively complex human instructions by combining the in-
dividual gestures given in Figures 2.4 and 2.6 and spatial directions shown in 2.5.
The Backus—Naur Form (BNF) family of meta-syntax notations [Backus et al.,
1960; Naur et al., 1963] has been adopted to express context-free grammar, since
it encodes grammar intended for human consumption. Based on the gesture lan-
guage in Figure 2.3, complete sentences in the BNF are as follows:

<sentence> ::= <addressing> <task> (complete sentence)
<addressing> = all robots (task directed to all robots)
<addressing> = some robots <subset> (select only a few robots)

<addressing> ::= you (directed to individual robots)
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<subset> ::= (robots within spatial cone defined by hands)
<task> ::= take off
<task> = go to base
<task> = follow <person>
<task> = land <where>
<task> = follow me
<task> = go to and wait <where>
<task> = search <where> <duration>
<where> ::= <direction> <distance>
<where> ::= <landmark>
<duration> ::= <number>
<distance> ::= <number>
<landmark> ::= here
<landmark> ::= base
<person> ::= <person-id>
<person> ::= <direction>
<person—id> ::= <number>
<direction> ::= (relative direction pointed by human)
<number> ::= (number of fingers)

2.2.3.2 Grammar Terminals

The grammar includes the following terminals, which correspond to actual ges-
tures. Gestures on the right-hand side of a single non-terminal need to be clearly
distinguishable (below, they have been regrouped into a single row):

allrobots somerobots you

takeoff gotobase follow land gotoandwait search

here base

(relative direction pointed by user)

(number of fingers)



34 2.2 Human-to-Swarm Communication

2.2.3.3 Grammar Generality

The grammar-based language has been designed keeping into mind SAR mis-
sions. However, this grammar can be easily adopted for other application sce-
narios, and could be easily extended. As only the blue rules in Section 2.2.3.1 are
application-specific, a meaningful grammar for different applications can easily
be built by substituting the blue rules with other application-specific rules. De-
pending upon the complexity of the application scenario, additional semantic
gesture classes can also be included into the language.

2.2.3.4 Examples of Valid Sentences

Using the CFG defined in Section 2.2.3.1, a few examples of sentences (that do
not violate syntax and semantic rules) are:

allrobots goto <dir> 5 (all robots go to <direction pointed by user> for 5m)
you land here (pointed robot lands at current position)
somerobots follow 3 (pointed robots follow person with id #3)

you and you follow right (pointed robots follow person at given direction)

allrobots search left 10 4 (all robots search in direction left at 10m for 4mins)

| 5 2
v -1

Y - SN
~ e A
Providing actions to selected robots 3 Issuing action parameters 3 4;,,’

Figure 2.7. A real-world demonstration scenario (images from top left to bottom
right) in which two human operators provide a sentence of gesture commands
to a heterogeneous robotic swarm composed of 2 UAVs and 1 UGV.

Figure 2.7 depicts a real-world scenario, in which two human operators pro-
vide a sentence to select and command robots from a heterogeneous swarm.
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First, one human operator selects a group of two robots. Next the second oper-
ator, selects an individual robot. Next, all selected robots are instructed by the
second operator to go and wait at the pointed direction at a distance of 3 metres.’

2.3 Swarm-to-Human Communication

During dialogue-based interaction with robot swarms, it is crucial for robots in a
swarm to provide feedback to human operators. Although feedback from robots
in a swarm can be wirelessly transmitted and displayed on handheld devices
(e.g., smartphones and tablets), the focus in this research is on the use of unin-
strumented interaction methods, as introduced in Section 1.1.2. Since small
mobile robots mainly have a limited set of on-board actuation devices, we con-
sider the use of visual mechanisms (i.e., coloured lights and locally coordinated
movements) and audio capabilities (i.e., playback of sounds and synthetic speech)
which are on-board swarm robots such as the Foot-bots (see Section 1.2.1.1).

(b)

Figure 2.8. Visual feedback conveyed by a robot swarm (sequence from left to
right) [Podevijn et al., 2012; Podevijn, 2012]. (a): A human commands a swarm
to split into two groups. (b) Groups are formed and visual feedback is given
using LEDs of different colors. (c): The two groups are separated using locally
coordinated movements (visual feedback).

As visual feedback from multiple robots has demonstrated to be effective in
conveying information to humans (see Section 2.1.2), coloured lights are simple
and easy to use and can encode different types information. For instance, if a
human provides a gesture that requires a robot swarm to split into two groups,
coloured lights and locally coordinated movements can convey to humans the
two groups of robots, as illustrated in Figure 2.8 [Podevijn et al., 2012]. To con-
vey application-specific feedback, audible feedback such as predefined sounds
and synthetic speech are known to be easily understood by humans. As an ex-
ample, for a robot to convey to a human that it’s battery is running low, the robot

A video demonstrating the real-world scenario in Figure 2.7 is available at: http: //www.
jnagi.net/demonstration_scenario
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can play a sound file (i.e., synthetic voice or speech) in a dying (fading out) voice.
In addition, coloured LEDs can be augmented with speech such that, the more
critical the battery power gets, the faster the LEDs blink.

As the combined use of multiple mechanisms (audio and visual) is more effec-
tive in terms of motivation of a human’s response, multi-modal feedback robustly
conveys swarm-level status, decisions, and intentions to humans. To reduce the
cognitive load of human operators which see and hear feedback from swarms,
three types of swarm-to-human multi-modal feedback are developed:

* The first feedback is responsible for conveying a swarm’s understanding of
recognized gesture commands to humans (see Section 2.3.1).

* The second feedback provides basic reasoning capabilities and conveys to
humans self-assessment decisions made by swarms. This feedback iden-
tifies sensing ambiguities, detects mistakes made by humans and errors
made by swarms, and requests humans for corrections (see Section 2.3.2).

* The third feedback is used for guiding human operators through the inter-
action process (see Section 2.3.3).

The combined and coordinated use of these feedback builds a swarm coordi-
nated multi-modal feedback language, which allows swarm-to-human interaction
and communication with a high and immediate impact. The three multi-modal
feedback are introduced in the next sections.

2.3.1 Feedback Showing Swarm Understanding

This section presents a multi-modal feedback which conveys to humans a swarm’s
understanding of recognized (classified) gesture commands during dialogue-
based interaction. In context of the gesture language defined in Section 2.2.1,
feedback from robot swarms varies depending on the semantic gesture class (see
Section 2.2.2). In principle, multi-modal feedback from a swarm of robots can
be given in three possible ways:

1. An individual robot is selected as the representative of the swarm. This
individual robot, better known as a spokes-robot, communicates swarm-
level feedback to humans on behalf of the swarm.

2. Only a random subset of spatially-situated spokes-robots (in the swarm)
convey swarm-level feedback to human operators.



37 2.3 Swarm-to-Human Communication

3. The entire robot swarm (i.e., all robots) conveys feedback to humans.

A spokes-robot can be beneficial in situations when all robots in the swarm
need to convey the same information (feedback) to humans. With the use of a
spokes-robot, a swarm’s consumption of energy and resources (e.g., communica-
tion bandwidth) can be minimized. In principle, a spokes-robot can be selected
from a swarm using at least two possible strategies:

(a) Relative Location with respect to Humans: The robot that is the most closest
(nearest) to the human, or the robot that has the most frontal view of the
human (i.e., the human’s face).

(b) Actuation Capabilities: Actuation devices on-board robots can convey differ-
ent types of feedback. For instance, some robots in the swarm may have
coloured LEDs or beacons, others might only have speakers, while others
may have a combination of two or more (multi-modal) such capabilities.

Other possible strategies to select spokes-robots may include: the color of
the LEDs or random selection. In the following section we describe how the
two aforementioned strategies are used for conveying multi-modal feedback (to
humans) regarding the swarm’s understanding of recognized gesture commands.

2.3.1.1 Multi-modal Feedback for Interaction States

We develop four multi-modal feedback for each of the four semantic gesture
classes (or interaction states) given in Section 2.2.2. These feedback convey the
swarm-level classification of gesture commands to humans. Although there are
many techniques using which robots in a swarm can provide these feedback, we
consider one possible way in which visual and audible mechanisms are carefully
chosen and combined together. The four multi-modal feedback that are discussed
below take into consideration when UGVs are used vs. UAVs.

1. Spatial Selection Feedback: Spatially distributed robots in a swarm that are
selected by humans, use visual modalities (including coloured lights and coor-
dinated robot movements) to convey to humans that they have been selected.
After robots in a swarm recognize an <addressing> symbol from the grammar
(see Section 2.2.3.1), such as:

allrobots

<addressing> ::= somerobots <subset>

<addressing>

<addressing> ::= you
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the selected robot(s) (which maybe: an individual spokes-robot, multiple
spokes-robots or the entire swarm) provide selection feedback to the human using
coloured lights. If an individual or a group of robots is selected with the C,,;
command (see Section 2.2.2), the use of spokes-robots is the best choice. For
instance, if an individual robot is selected, this individual is the only spokes-
robot. If a group of robots is selected, then all robots in the selected group are
considered spokes-robots. Otherwise, if all robots in the swarm are selected, then
the entire swarm communicates feedback to the human.

(@ b)

Figure 2.9. Spatial selection feedback from a robot swarm using colored LEDs.
(a): Feedback from a spokes-robot robot. (b): Feedback from a group of robots.

Selected robots convey multi-modal feedback to humans based upon the actu-
ation capabilities of the robot platforms (see Section 1.2.1). In the case of UGVs,
individuals and groups of selected UGVs blink (flash) their colored LEDs in a dif-
ferent color than the non-selected robots, as illustrated in Figure 2.9, in which
the LEDs of the selected robots change to pink color.? Groups of selected UGVs
use locally coordinated movements to physically move close to one another for
visually expressing a group, while non-selected UGVs move a little farther away
or remain at their places. When UAVs located on the ground are selected, they
first make a beep sound, and then start to fly above the same location where they
were positioned. Also, when UAVs are selected, after selection the selected UAVs
fly at higher altitudes while the non-selected UAVs usually fly a little lower.

Algorithms 2 and 3 in Section 4.2.1, depict the mechanisms using which se-
lected individuals and groups of robots convey feedback to humans. In practice,
line 21 in Algorithm 2 and line 23 in Algorithm 3 allows selected individuals and
groups respectively, to change the colors of their LEDs. If all robots in the swarm
are selected, then all robots change their LEDs to the same color.

2A video demonstrating spatial selection feedback from UGV swarms is available at: http:
//www. jnagi.net/individual_and_group_selection
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2. Application-specific Feedback: To convey the recognition outcome of task
related commands, we employ a spokes-robot which conveys swarm-level deci-
sions on behalf of the swarm. We consider the use of audio mechanisms by using
the speakers on-board the robots. After robots in a swarm identify a <task>
symbol that has been defined in the grammar (see Section 2.2.3.1):

<task> ::= land <where>
<task> ::= follow <person>
<task> = search <where> <duration>

a spokes-robot provides audible (vocal) feedback, by speaking the name of
the recognized application-specific command. In this case, the spokes-robot is
selected as the robot which is the most nearest to the human. This audible feed-
back from the spokes-robot serves as an acknowledgement for the human.

3. Direction-specific Feedback: For a swarm of robots to convey direction-
specific feedback (i.e., illustrate recognized spatial directions) to humans, multi-
modal feedback is adopted with the use of audio and visual modalities. After
a swarm identifies a relative <direction> (or location) pointed by the human,
based on the defined grammar:

<where> ::= <direction>
<person> ::= <direction>
<direction> ::= (relative direction pointed by user)

robots in the swarm convey the recognized direction (pointed by the human) us-
ing their coloured LEDs, and a spokes-robot provides audible feedback by speak-
ing the name of the recognized direction (e.g., north, south-west). As the Foot-
bot (UGV) platform is equipped with a circular ring of 12 multi-colored LEDs
around the circumference of the body (see Section 1.2.1.1), LED colors corre-
sponding to the direction where the human is pointing at are set to a specific
color (e.g., red), as illustrated in Figure 2.10. Since such LEDs are not available
on the Parrots (UAV platform; see Section 1.2.1.2), audible feedback given by
the spokes-robot is sufficient to convey the recognized direction to humans.

To convey direction-specific feedback, robots need to estimate spatial direc-
tions pointed by humans.?> We provide an explanation of how spatial directions
are estimated by individual robots in a swarm. Firstly, robots in a swarm need to

3A video that demonstrates how spatial directions are estimated by robot swarms is available
at: http://www. jnagi.net/spatial_directions
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e et
Figure 2.710. A human provides a direction by pointing his hand towards the left,

where the robot swarm needs to move. The swarm recognizes the command and
provides feedback using coloured LEDs to indicate the recognized direction.

(a) (b)

Figure 2.11. A’ human providing a spatial direction to an airborne UAV. Measures
from the upper body are used for identifying the direction of the pointing hand.

to identify their relative angular position with respect to the human’s location.
At this aim, operations on the upper body are performed to detect the face in a
[0, 180°] semi-circular plane using the face detection approach in Section 4.3.2.1.
Face detection results in computing a bounding box b = (fy, fy, fwide> freight)
around the face, as illustrated in Figure 2.11. Using the coordinates of the
bounding box, the face centroid c;,.(X,y) coordinates are computed as: x =
((fx + fuwiaen)/2) and y = ((fy + freigne)/2). Next, a straight line m; is computed
from the y-coordinate of c,.(x,y) to y = O of the image plane, and another
straight line m, is computed from c;,..(xX,y) to the centroid of the pointing hand
Chang- 10 the final step, the inner angle between m; and m, is calculated as the
hand orientation H;, = (atan2(cxgng — Crace) * 180/ 1) within one complete revo-
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lution [0 : 360°] (i.e., circumference of 27t radians), as illustrated in Figure 2.11
with a human providing spatial directions towards the right and left of a UAV.

The hand orientation Hg;, is estimated by the robot which has the most
frontal-view of the face (see Section 4.3.2.2), and this robot broadcasts Hy;, to
rest of the swarm. In this way, the entire swarm does not need to take part
in estimating the hand direction. Alternatively, a mixed HSI solution using an
instrumented-natural interface can be adopted. For instance, if every robot is
equipped with a GPS device, then spatial directions pointed by humans can be
selected robustly using spatial coordinates.

4. Numeric Feedback: To convey numeric feedback to humans, multi-modal
feedback is adopted with the use of a spokes-robot which is selected as the robot
closest to the human. After a swarm identifies a <number> given by the human,
defined in the grammar rules:

<duration> ::= <number>
<distance> ::= <number>
<person—-id> ::= <number>
<number> ::= (number of fingers)

the spokes-robot conveys the recognized number of finger counts K (where
0 < K <10 for finger counts given using both hands), by blinking its coloured
beacon K consecutive times and speaking the number K.*

2.3.2 Feedback for Self-assessment and Error Correction

The multi-modal feedback presented in this section conveys to humans the self-
assessment decisions made by swarms, if the swarm is confident or not in rec-
ognizing given gestures. Self-assessment made by swarms relies on basic rea-
soning capabilities: identifying sensing ambiguities, detecting mistakes made by
humans in providing gestures and recognition errors made by swarms, and re-
questing humans for corrections (i.e., if a swarm is not confident in recognizing
a gesture, the swarm requests the human to present the same gesture again).
In conventional closed-loop interaction systems, when a robot does not prop-
erly interpret (recognize) a command given by a human, the human provides
feedback to the robot, using which the robot learns to better understand and ro-
bustly recognize the same command the next time. We consider that a more con-
venient way is by allowing robot swarms to assess the performance of their own

4A video demonstrating the use of visual feedback for finger count recognition is available at:
http://www. jnagi.net/finger_count_recognition.
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recognition (classification) decisions. Robot swarms can autonomously decide
without any human intervention (i.e., without any external input or feedback) if
they are confident or not in recognizing given commands (i.e., to assess swarm-
level decisions without human inputs). For swarms to assess their recognition
performance without human feedback is a challenging problem, which has not
been addressed in existing works.

2.3.2.1 Formulation of Self-assessment Feedback

To equip robot swarms with basic reasoning capabilities, we consider that the
swarm-level recognition outcome for classifying (recognizing) a gesture com-
mand produces two possible outcomes: confident or not confident. This implies
that, after a swarm has recognized a given gesture command, the swarm may or
may not be confident regarding its recognition outcome.

When a swarm realizes that it is not confident in recognizing a gesture com-
mand, it requests the human to provide the same gesture again, in an effort to
recognize it confidently the next time. This process repeats until the swarm is
confident in recognizing the given gesture. For instance, if a human provides
a numerical quantity based on the count of fingers (see Section 2.2.2) and the
swarm is not confident in recognizing the number of finger counts, the swarm
requests the human to provide the same number of finger counts again. This
mechanism ensures that, sensing and recognition errors made by swarms due
to poor environmental conditions and mistakes made by human operators when
issuing commands are robustly detected, and proper measures are taken by the
swarm to continue with the interaction process.

With the aim to develop an intelligent and human-friendly HSI system, we in-
troduce a strategy that provides four possible swarm-level recognition outcomes
for the classification (recognition) of a single gesture command. In this strategy,
“confident or certain” decisions are categorized as properly recognized or inap-
propriate, and “not confident or uncertain” decisions are further classified as not
properly recognized or undefined, as introduced below.

(i) Confident: When a swarm is confident (certain), this implies that, either
the given command has been properly recognized or the given command
is inappropriate in the current circumstance. When a command is properly
recognized, in order to speed up the interaction, no feedback is provided
to the human. However, when the swarm identifies that the command is
inappropriate, this reveals that given gesture command has been misplaced
according to the predefined grammar rules in the gesture language (see
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Section 2.2.3.1). This simply means that, the word (individual gesture) is-
sued by the human is incorrectly positioned in the sentence. As an example,
when a swarm requests a human to provide a gesture to select robots, but
instead the human issues a command to perform a task (see Section 2.2.2),
the command given by the human is inappropriate. When this happens, a
spokes-robot (closest to the human) provides feedback to inform the human
regarding his/her mistake, and requests the human to provide a gesture
that belongs to the correct semantic gesture class (interaction state).

(i) Not Confident: When a swarm is not confident (uncertain), this indicates

that the given command is not properly recognized or the given command is
undefined (not defined) in the gesture language. When a gesture command
is not properly recognized, a spokes-robot provides feedback to request the
human to present the same gesture again more carefully and clearly, so it
can be recognized correctly the next time. However, when a swarm iden-
tifies that a given command is undefined, this implies that the given ges-
ture does not exist in the predefined set of commands. In such situations,
a spokes-robot provides feedback to the human operator to indicate that
the human maybe unaware of the predefined commands in the vocabulary.
Then, the interaction process starts from the beginning with the swarm re-
questing the human to provide a gesture for robot selection.

Swarm-level recognition outcome for classification of individual gestures

Confident (certain) Not confident (uncertain)

Properly recognized, Inappropriate Not properly recognized, Undefined

Figure 2.12. The swarm-level decision (for the recognition of an individual ges-
ture) results in a confident or not confident decision. These decisions are further
categorized into four swarm-level recognition outcomes: properly recognized,
inappropriate, not properly recognized and undefined.

These four swarm-level recognition outcomes are illustrated in Figure 2.12,

which form a new state in the HSI system, known as the assessment state. Fig-
ure 2.13 depicts the assessment state with respect to the gesture vocabulary in
Figure 2.3 that has four interaction states.
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Multi-modal self-assessment feedback from robot swarms is reliably conveyed
to humans with the aid of blinking lights (used by the entire swarm) and syn-
thetic speech (used by a spokes-robot). Visual feedback is provided such that
all robots in the swarm blink their colored LEDs: once if the swarm properly
recognizes the given command, twice if the swarm does not properly recognize
the command, thrice if the command is inappropriate, and four times if the com-
mand is undefined. The spokes-robot (closest to the human) provides audible
feedback by speaking the name of the recognized command and if the human
needs to provide a correction (i.e., provide the same gesture again).

Undefined

Interaction Started
< (Start from beginning)

Not Confident

(Uncertain)
Not Properly Recognized
/ (Provide again)
/ 7 VVVVGeSture Command:%% b Assessment
_Select/Task/Direction/Quantity /=~ g = rm-level > STATE STATE 5
— g In decision
apprOp .
( Pro Vige rig te
9ain) Confident
Properly (Certain)
Recognized
(Continue)

Next Command
(in Sentence)

\4

Interaction Finished

Figure 2.13. lllustration of the assessment state with the four swarm-level recog-
nition outcomes, in relation to the gesture vocabulary in Figure 2.3.

2.3.2.2 Implementation of Self-assessment Feedback

To comprehend the way in which the self-assessment feedback works, an intro-
duction of offline learning methods is necessary, as presented in Section 5.2. We
consider the use of a statistical multi-class SVM classifier that is trained using
gesture images. Multi-class SVMs aim on maximizing the margin (hyperplane)
between K classes in a multi-dimensional feature space. A properly trained SVM
classifier can identify (recognize) a given gesture from a predefined set of K
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trained gestures. After prediction of a gesture sample, SVMs output a probabil-
ity vector that corresponds to the K gesture classes.

To implement the self-assessment feedback on robots, a multi-classifier scheme
is adopted in which different SVM classifiers are trained using the four semantic
gesture classes of commands in Section 2.2.2. In particular, every robot in the
swarm is equipped with multiple SVM classifiers to recognize (classify) an indi-
vidual gesture. The gestures in Figures 2.4 and 2.6 comprise of the entire gesture
vocabulary, and are used for training the multiple classifiers on-board the robots.
Every robot in the swarm is equipped with 6 statistical classifiers:

(a) Classifier Cr,: This is a multi-class supervised classifier trained using the
K = 3 robot selection gestures in Figure 2.4(a).

(b) Classifier Cp,: A multi-class classifier trained using the K = 6 application-
specific (i.e., SAR) gestures in Figure 2.4(b).

(c) Classifier Cpy: This is a binary classifier with K = 2 classes, in which one
class represents spatial directions (see Figure 2.11) and the other class rep-
resents numerical quantities (i.e., the 6 finger counts in Figure 2.6 grouped
into one class). This classifier determines if a given gesture is a direction
(pointed by the arm and hand) or a numeric quantity.

(d) Classifier Cg,: A classifier trained using the K = 6 finger count gestures in
Figure 2.6, in which finger counts represent integers from O to 5.

(e) Classifier Cpg: This classifier is a combination of classifiers Cr; and Cp, hav-
ing K = 10 classes, and is trained on gestures for selecting and commanding
robots (i.e., all gestures in Figure 2.4). This classifier identifies if a gesture
represents a command to select robots or a command to perform a task.

(f) Classifier Cpg: A combination of classifiers Cp; and Cp, that has K = 7
classes. One class represents spatial directions and the remaining six classes
represent the K = 6 finger counts. This classifier determines if a gesture
represents a direction or numeric quantity. If the recognition outcome of
classifier Cgg is a quantity (i.e., a finger count), then classifier Cp, is used to
identify the number of finger counts.

Using the six statistical classifiers, a deductive reasoning mechanism based con-
ditional logic is implemented, which provides output rules and reliably associates
a predicted gesture to one of the four swarm-level outcomes: properly recog-
nized, not properly recognized, inappropriate, undefined. The pseudocode in
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Appendix C.1 illustrates the working principle of the deductive reasoning mech-
anism using the six trained classifiers [Cp1, ..., Cpg].

To classify an individual gesture, every robot makes use of a combination of
two classifiers in [Cpq,...,Cre]. Consider that the two classifiers are classifierA
and classifierB, and C, and Cj respectively represent the number of classes (ges-
tures) in the two classifiers. With the use of two classifiers, the prediction out-
come of an individual gesture results in two classification vectors, classifierA,,,
and classifierB,,,, as illustrated in Appendix C.1. From the prediction outcome of
classifierA,,,, we identify probA1 as the gesture class with the highest probability
(score), and probA2 as the class with the second highest probability. Similarly,
probB1 and probB2 are identified from the prediction outcome of classifierB,,,,,.
Using these four probability measures [probA1,probA2,probB1,probB2], two nor-
malized confidence measures probA and probB are computed. The average prob-
ability difference P,,, between classifierA,,, and classifierB,,, is calculated as a
simple average: P,,, = (probA + probB)/2, as illustrated in Appendix C.1.

For any probabilistic values in classifierA,,, and classifierB,,,, the value of P,,,,
always lies in a closed interval [0, 1]. To make reliable swarm-level decisions, we
select P,,, = 0.5 (the middle point of the interval [0, 1]) as the baseline between
undefined and not properly recognized decisions. When P,,, > 0.5, the recog-
nition results of classifierA,,, and classifierB,,, have a comparatively high differ-
ence between each other (i.e., the mean confidence varies a lot between both
classifiers), which indicates that the swarm is not confident and the gesture is
classified as not properly recognized. However, when P,,, <= 0.5 the mean con-
fidence computed from both the classifiers is significantly low, this indicates that
the swarm’s decision highly uncertain and the gesture is classified as undefined.

2.3.3 Feedback to Guide Interaction

The multi-modal feedback presented in this section is conveyed by robot swarms
to guide human operators through the different states in the interaction system
(see Figures 2.3 and 2.13). We consider that, conveying the current state of
the HSI system to humans during dialogue-based interaction provides a human-
friendly user interface. Multi-modal (audio and visual) mechanisms are adopted
which includes the use of coloured lights, sounds, and synthetic speech. In con-
text of the HSI scenario considered in this research (see Section 1.2), three types
of multi-modal feedback can be conveyed by swarms as presented below.

>Depending upon the application requirements and conditions, additional classifiers can be
added to produce a more complex reasoning process.



47 2.3 Swarm-to-Human Communication

1. Start and End of Interaction Process: During dialogue-based interaction
it is desirable for human operators to know when the interaction system has
been launched and when the interaction process has ended, as illustrated in Fig-
ure 2.13. The starting of the interaction process informs humans to prepare (get
ready) for interaction, and the ending of the interaction process signifies that the
given commands have been properly recognized and understood by the swarm,
and the task associated with the recognized sentence is going to be performed.
For instance, when the interaction system starts, all robots switch on their LEDs
or beacons. This useful to identify individual robot malfunctions and failures
(e.g., low battery, issues with wireless connectivity, sensory-motor problems).
Robots with problems do not turn on their LEDs, and this is an effective way to
identify faulty robots prior to the start of the interaction process.
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Figure 2.14. Top: LEDs arranged in RGB (red, blue and green) colors to con-
vey that the interaction process has started. Bottom: LEDs arranged in a color
spectrum represent that a full sentence of commands has been successfully rec-
ognized and the interaction process is going to finish.

To robustly convey the start and end of the interaction process, we consider
the use of multi-modal feedback using audio and visual modalities. Combina-
tions of blinking and fading multi-coloured RGB LEDs arranged in different pat-
terns allow humans to easily distinguish between the start and the end of the
interaction, as illustrated in Figure 2.14. Complementary to visual feedback, au-
dio feedback is given using a spokes-robot which is located closest to the human.
When the interaction system is launched the spokes-robot speaks that the interac-
tion has started. After all gestures (words) in a full sentence have been properly
recognized, the spokes-robot speaks the names of all gestures in the sentence (in
the order they were recognized), indicating that the interaction has finished.

2. Detecting Human Operators for Interaction: After the interaction system
is launched, the next step requires the robot swarm to search for a human oper-
ator located within physical proximity (proximal range). Individual robots in a
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swarm need to search for the human, because it is likely that the human may not
be present in the field of view (FOV) of every individual robot. In principle, hu-
man operators are detected by identifying and recognizing the passive markers
(i.e., coloured gloves) that they wear (see Appendix A).

Multi-modal feedback is adopted with the use of audio and visual mecha-
nisms. When searching for a human operator, individual robots in a swarm rotate
360° in their current position/location, the coloured LEDs of all robots change to
white color and the coloured beacon of all robots blinks in yellow color, as shown
in Figure 2.15(a). After a human has been detected, individual robots stop ro-
tating and fixate the FOV of their cameras on the human, and the beacons of all
robots stop blinking and change to green color. Audible feedback (sounds and
synthetic speech) is provided in conjunction with coloured lights and coordinated
movements such that, a spokes-robot speaks that the swarm is currently search-
ing for a human, and it also speaks when a human operator (wearing coloured
passive markers) has been successfully recognized.
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Figure 2.15. A swarm of robots with different LED colors conveying to humans
the different interaction states (given in Figures 2.3 and 2.13).

3. Semantic Classes (States) in HSI System: The HSI system consists of 5
interaction states when the self-assessment state is included (see Figures 2.3
and 2.13). Each of these interaction states are communicated to human opera-
tors using multi-modal audio and visual mechanisms. Multi-modal feedback al-
lows humans to closely follow the HSI system, and easily interpret the intentions
of swarms and the commands (semantic gesture classes) requested by swarms.
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To convey visual feedback, the entire swarm takes part in expressing the cur-
rent interaction state. All robots in a swarm change their LEDs to different colors,
which allows humans to easily differentiate between the 5 interaction states. In
conjunction with visual feedback, a spokes-robot provides vocal feedback to hu-
mans by speaking the name of interaction state (e.g., state for: robot selection,
performing tasks etc). As an example, when a robot swarm requests a human to
provide a gesture for robot selection, the LED colors of all robots change to red
(see Figure 2.15(b)) followed by a spokes-robot that speaks to the human to pro-
vide a gesture for selecting robots. Similarly, when a swarm requests a human
to present a gesture: to perform a task, to move to direction, as a application-
specific parameter (numerical quantity), all robots change their LEDs to green,
yellow and blue colors respectively, as shown in Figures 2.15(c), (d) and (e).
When a swarm provides self-assessment feedback to humans (see Section 2.3.2)
the LEDs change to purple color, as shown in Figure 2.15(f).°

2.4 Summary of Experimental Results

The experimental results and discussion of this chapter are presented in Sec-
tion 6.5. With the low computational capabilities of swarm robots, the results
for human-to-swarm communication illustrate that, words (individual gestures)
and sentences in the grammar-based gesture language can be efficiently learned
by robot swarms, and the interaction time on the Foot-bot platform is reasonable
with respect to the swarm size (i.e., the size of the swarm accounts to the amount
of information relayed within the swarm network). In the context of swarm-to-
human communication, the results indicate that swarms of relatively large sizes
(i.e., swarms of 10 robots or more) can reliably classify the two types of not
confident (uncertain) decisions: undefined and not properly recognized. Over-
all the results signify that, larger swarms yield better swarm-level classification
performance, however the time required to interact is also slightly higher.

2.5 Summary of Contributions

This chapter presented a bidirectional human-swarm interaction and communi-
cation system to fulfil the main goal of this research given in Section 1.4.1. This
chapter is divided into two sections, human-to-swarm communication strategies
in Section 2.2 and swarm-to-human communication methods in Section 2.3.

®A video illustrating visual feedback for different interaction states is available at: http:
//www.jnagi.net/interaction_states_feedback
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For non-verbal human-to-swarm communication, a grammar-based gesture
language with a vocabulary of commands is introduced using which humans
communicate and provide mission instructions to robot swarms. This vocabu-
lary allows humans to: select spatially distributed robots from a swarm using
spatially-addressed gestures, provide potential SAR commands for robot swarms
to perform tasks, specify spatial directions for robots to move to, and present nu-
merical quantities (finger counts). This self-contained gesture language provides
a number of advantages. Firstly, it serves as a direct interaction protocol between
humans and swarms. Secondly, it provides a basic set of encoded control com-
mands. Lastly, the gesture language allows humans to build iconic sentences
composed of words (individual gestures) that encode mission instructions.”

Within the context of swarm-to-human communication, a swarm coordinated
multi-modal feedback language is developed which consists of three types of
multi-modal feedback. These feedback provide multiple functionalities: (i) the
ability to guide humans during the interaction process, (ii) an intelligent HSI
system and a human-friendly interface with basic reasoning capabilities (i.e., to
identify mistakes made by humans and errors made by swarms), and (iii) the use
of spokes-robots which minimize the use of energy, resources and bandwidth.®

In summary, the grammar-based language and the swarm coordinated multi-
modal feedback language provide robust and effective dialogue-based interac-
tion and bidirectional communication between humans and robot swarms.

’A video demonstrating the grammar-based gesture language is available at: http: //www.
jnagi.net/gesture_language

8A video demonstrating the swarm coordinated multi-modal feedback language is available
at: http://www. jnagi.net/swarm_coordinated_language
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Chapter 3

Swarm-level Classification of
Gestures: A General Protocol

This chapter presents a general protocol that allows robot swarms to sense and
recognize (classify) mission instructions issued by human operators, as outlined
by the sub-goal in Section 1.4.2.1. The main purpose of this protocol is the
swarm-level classification of commands defined in the gesture language (see Sec-
tion 2.2.1), For robot swarms to classify gesture commands, we introduce a dis-
tributed sensing and cooperative recognition mechanism, as shown in Figure 3.1.

Operatively, gestures given by humans using passive markers (i.e., coloured
gloves) are separated from the image background using color-based segmentation
(see Appendix A). If a human operator remains still for a short period of time and
no human body motion is detected during this period, this gives an indication to
the swarm that the human is presenting a gesture, as described in Appendix B.

When no human motion is detected, a robot swarm performs distributed and
parallel sensing of the given gesture, as presented in Section 3.2. After visual
information from the gesture has been acquired by the swarm, the cooperative
recognition and decision-making protocol introduced in Section 3.4 is adopted for
the swarm-level classification of the gesture. Every robot in the swarm classifies
the given gesture based on its individual viewpoint and produces a local opinion
regarding the classified gesture. Opinions generated by individual robots are
disseminated through the swarm network using multi-hop communication. After
individual robots receive opinions from all other robots in the swarm, opinion
fusion is performed at the individual-robot level. To efficiently fuse individual
robot opinions, decentralized data fusion algorithms are employed for building a
distributed consensus. After a consensus is built, the swarm-level decision-making
mechanism provides the swarm-level recognition outcome for the given gesture.
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Figure 3.1. Distributed sensing and cooperative recognition (swarm-level classi-
fication and decision-making) of commands defined in the gesture vocabulary.
The strategies developed for selecting spatially-situated robots from a swarm are
presented in Chapter 4.
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In this chapter, I gratefully acknowledge the help and assistance of Hung
Ngo, Alessandro Giusti and Gianni Di Caro, because without their cooperation
and collaboration it would not have been possible to develop the cooperative
recognition protocol. The cooperative recognition protocol has been devised by
Gianni Di Caro, and has been implemented by Alessandro Giusti. Different ap-
proaches for data fusion have been investigated with the assistance of Hung Ngo,
including the design and implementation of a general data fusion algorithm for
building consensus decisions. My contribution in this chapter has been to support
the above mentioned individuals in evaluating the performance of the developed
algorithms and techniques (performing experiments).

3.1 Background and Related Work

This section reviews related works in different domains. The covered topics in-
clude, distributed and cooperative sensing mechanisms used by multi-robot sys-
tems and multi-camera networks to acquire (collect) information from dynamic
environments (see Section 3.1.1), and data fusion methods that combine infor-
mation sensed by multiple sensors/robots (see Section 3.1.2). Consensus algo-
rithms are reviewed for sensor networking applications and multi-agent systems.

3.1.1 Distributed and Cooperative Sensing

Information readily acquired using sensors on-board multiple robots (e.g., cam-
eras) has been formulated as a distributed and cooperative sensing problem by
Payton et al. [Payton et al., 2001, 2003] and the research team at the Autonomy
Lab of Vaughan [ Couture-Beil et al., 2010a; Milligan et al., 2011; Pourmehr et al.,
2013a; Monajjemi et al., 2013]. Existing works that deal with problem of sens-
ing information using multi-robot systems make use of centralized or distributed
mechanisms. Centralized sensing systems for interaction between humans and
multiple robots generally adopt the Kinect sensor [Podevijn et al., 2012, 2013;
Gasparri et al., 2012; Lichtenstern et al., 2012] as discussed in Section 4.1.1.
Since centralized systems make use of a single sensor which offers good quality
of reliable information, distributed sensing systems [Winfield, 2000; Fleck and
Strager, 2008; Perez et al., 2013] use multiple sensors (e.g., multiple robots) sit-
uated in different positions (locations) in the environment, in which every sensor
(robot) has a different viewpoint to the entity of interest (e.g., gesture).

Visual sensing systems comprise of an integrated network of stationary cam-
eras attached to walls/ceilings (with pan-tilt-zoom capabilities) or mobile camera
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networks (e.g., cameras on-board mobile robots), that are capable of processing
and fusing images of a scene from a variety of viewpoints. Distributed sensing
in multi-camera networks has been used for many applications: monitoring and
surveillance [Bramberger et al., 2006; Remagnino et al., 2004], object detec-
tion [Sankaranarayanan et al., 2008], pose estimation [Wu and Aghajan, 2008;
Aghajan et al., 2008] and gesture recognition [Wu and Aghajan, 2006; Aghajan
and Wu, 2007]. Section 5.1.1 provides details on multi-camera networks.

Due to the economical cost of sensing devices in recent times, distributed
and cooperative sensing [Dietl et al., 2001; Yang et al., 2007] in multi-robot sys-
tems [Gerkey et al., 2003; Gerkey and Matari¢, 2004] has gained much impor-
tance. We consider that, with the use of data fusion methods (see Section 3.1.2),
a swarm of robots equipped with cameras can collectively act as a single sensor.

3.1.2 Data Fusion using Consensus Building Methods

Information sensed distributively and/or in parallel from multiple sensors (e.g.,
multiple robots), requires fusion. Initial studies on the statistical consensus the-
ory [DeGroot, 1974] investigated techniques for finding agreements between dif-
ferent experts (sensors), which directly relates to the problem of fusing uncer-
tain sensor readings. This framework was later adopted in several other research
works [Berman et al., 1989; Benediktsson and Swain, 1992].

Consensus algorithms serve as fundamental tools in wireless sensor networks
(WSNs). A swarm of mobile robots that form an ad-hoc network, can distribu-
tively and cooperatively sense information from a single entity of interest (e.g.,
a gesture) while located at different viewpoints in the environment. In decen-
tralized data fusion, a variety of distributed consensus strategies exist for sensor
networks [Olfati-Saber and Shamma, 2005 ], multi-agent [ Olfati-Saber and Mur-
ray, 2004] and multi-robot [Stroupe et al., 2001; Fagiolini et al., 2008] systems.
Fusion of observations from multiple static cameras has been adopted in many
perception applications: object recognition and image classification [Schriebl
et al., 2009; Naikal et al., 2010; Kokiopoulou and Frossard, 2006], pose esti-
mation [Jorstad et al., 2010] and collective map building [Aragues et al., 2012],
with multiple viewpoints providing valuable inputs for reconstructing 3D infor-
mation and to overcome the limits (i.e., occlusions, range) of each sensor. Han-
dling multiple successive observations from every sensor is not a standard fea-
ture in consensus algorithms. Due to this reason, Kalman filters that provide dy-
namic updates to iteratively build consensus decisions [Olfati-Saber, 2007] have
been introduced for single-target [Olfati-Saber and Sandell, 2008] and multi-
target [Soto et al., 2009] tracking. An overview of common consensus algorithms
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and applications is reported in [Olfati-Saber et al., 2007].

For vision-based classification tasks, distributed camera networks have been
used to build consensus decisions [Aghajan et al., 2008; Aghajan and Cavallaro,
2009]. A distributed face recognition system was presented in [ Kokiopoulou and
Frossard, 2010, 2011], in which multiple cameras participated to build a fully-
distributed multi-class classifier that took advantage from the joint information
contained in face observations acquired from multiple viewpoints. The standard
approach for fusing vision-based data from multiple cameras requires computing
features from acquired images, which are then aggregated and centrally classi-
fied, as presented in [Yu and Nagpal, 2009] for human action detection.

Ensemble learning (or ensembles of classifiers) [Polikar, 2006] has emerged
as one of the promising approaches for data fusion [Erdem et al., 2005; Parikh
and Polikar, 2007] which makes use of heuristics such as: mean, weighted aver-
age, and majority voting. As every sensor (robot) suffers a loss after learning the
truth of its prediction, in ensemble systems, the weights of the fused decision are
updated taking into account the incremental performance of each classifier [Po-
likar et al., 2001]. Ensemble methods such as, bagging [Breiman, 1996] and
boosting [Quinlan, 1996], work by combining relatively weak learners and have
been extended to online versions [Oza, 2005 ]. Refer to [Polikar, 2006, 2007] for
theoretical insights on ensemble-based learning.

The focus of research in this dissertation lies on the use of robot swarms as
distributed and cooperative sensing systems for the collective recognition of ges-
ture commands. For instance, a single robot positioned at a bad viewpoint (i.e.,
a location in which gestures are not clearly distinguishable even to human ob-
servers) faces difficulties in accurately classifying gestures. In a swarm of robots,
where some robots maybe located at good sensing viewpoints while others in
bad viewpoints, we consider that data fusion mechanisms (see Section 3.4.3)
can reliably allow robot swarms to cooperatively recognize gesture commands.

3.2 Robot Swarms as Distributed Sensing Systems

Following the works of Payton et al. and Vaughan in Sections 1.1.2 and 3.1.1, we
consider robot swarms as distributed and parallel sensing systems, in which the
sensing capabilities of all robots in the swarm (i.e., the on-board robot cameras)
are focused on the task of recognizing gesture commands given by humans.
When using robot swarms one fundamental difficulty consists in the fact that,
the advantage provided by the presence of a large number of robots is usually
payed back in terms of limited computational power and low-quality sensing
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devices (see Section 1.2.1.1). To overcome the limitations of the individual
robots, we consider that robots swarms can synergistically act as a single power
augmented sensor by distributively fusing information acquired from individual
robots. Considering a swarm as an array of distributed R = {ry, r,, ..., ry} robots,
where r represents an individual robot and N represents the number of robots
in the swarm (swarm size), every robot in r € R acquires an image i, of a given
gesture at time t, as illustrated in Figure 3.2 using a swarm of N = 13 robots. Fig-
ure 3.2(b) depicts a distributively sensed gesture from 13 different viewpoints.
The 13 segmented gestures (i.e., black and white gesture images) are obtained
using the color-based segmentation approach in Appendix A.
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Figure 3.2. Distributed sensing of a gesture using a swarm of N = 13 robots.
(@): A human presenting a gesture to the swarm. (b): Illustration of a segmented
gesture (see Appendix A) acquired by a swarm from 13 different viewpoints.

Although distributed sensing allows robot swarms to quickly acquire a large
amount of information (i.e., gesture observations), it however presents a number
of challenges. In particular, a large portion of the possible sensing positions do
not allow robots in a swarm to acquire good quality of gesture samples due to
the, presence of occlusions, angled viewpoints (i.e., bad sensing positions), and
excessive distance from the signal source (i.e., the human). To overcome these
issues, spatially-aware swarm deployment techniques have been developed in
Section 4.3, which enable individual robots to move to sensing positions that
offer better views of gestures [Batalin and Sukhatme, 2002; Li et al., 2007].

3.3 Cooperative Recognition Problem Formulation

First, we consider the gesture recognition problem using an individual robot. For
a single robot to learn and recognize gestures, a standard vision-based approach
is adopted as illustrated in Figure 3.3. A single robot performs: color-based seg-
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mentation (see Appendix A) to separate gestures from the image background,
feature extraction to compute meaningful features from the segmented gesture
images (see Section 5.2.1), and supervised classification to learn and recognize
gestures (see Sections 5.2 and 5.3). Experimental results showing the classifi-
cation performance of a single robot are presented in Section 6.4.4. Since the
single robot recognition problem is based on standard techniques (as explained
in Figure 3.5), we focus on gesture recognition using a swarm of robots.
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Figure 3.3. A standard vision-based approach for learning and classifying ges-
tures using a single robot.

The cooperative recognition and decision-making process® involves: acquisi-
tion and processing of visual signals (gestures), formation of opinions, spreading
and dissemination of opinions through multi-hop communication, decentralized
data fusion using distributed consensus mechanisms, and swarm-level decision-
making, as illustrated by the flow of information in Figure 3.4. When the inter-
action process starts, the robot swarm requests the human to provide a gesture

1A video of the developed cooperative recognition protocol using a swarm of robots is available
at: http://www. jnagi.net/cooperative_recognition
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command. After a gesture is presented, the swarm transitions to the Informa-
tionGathering() state (see Figure 3.4), in which visual information regarding the
gesture is acquired (sensed) and processed by all robots in the swarm. The last
state is the CollectiveDecision() state, which issues the swarm-level recognition of
outcome of the given gesture command.

Visual signal acquisition and processing (by individual robots) :I InformationGathering()

v

Opinion generation (at individual-robot level)

Y

Opinion dissemination (through multi-hop message relay)

Opinion fusion (at individual robots)

Y

Decision-making and consensus (at the swarm-level) CollectiveDecision()

Figure 3.4. Cooperative recognition and decision-making by a robot swarm.

The cooperative recognition and decision-making problem considered in this
research is formulated in a general form that requires making minimal assump-
tions regarding prior knowledge or available infrastructures. Considering the
dialogue-based interaction scenario illustrated in Figure 2.2, a human provides a
full sentence of commands to a robot swarm, in which the sentence is composed
of 2 to 4 words (or individual gestures; see Section 2.2.3). For every gesture
(word) given by the human in a sentence, the swarm recognizes the gesture and
communicates appropriate swarm-level feedback to the human (see Section 2.3).

We consider the cooperative recognition of a single word (individual ges-
ture) in a full sentence as follows: Let E be a spatially-situated entity of interest,
namely a gesture (or more appropriately the segmented hand mask obtained
from a given gesture) which represents the object of the cooperative recognition
task. The entity E is assumed to be persistent within a finite time period AT:
it does not change appreciably for (at least) a time interval AT. During AT, E
can be (repeatedly) sensed by a set R = {r;,r,,...,7y} of N robots composing
the swarm. The robots are scattered in random positions throughout the envi-
ronment (see Figure 1.3(a)) and may move during AT.

Each robot r € R can acquire observations of entity E using an appropriate
robot sensor (i.e., a robot acquires images of a human who is presenting gestures



59 3.4 Protocol for Cooperative Recognition

using its on-board camera). The quality of the sensed observations depends on
the positions of the robots (see Section 4.3), both relative to E (e.g., at a dis-
tance or a relative angle) and in relation to local environmental conditions (e.g.,
occlusions, light sources and sounds). Based on individual robot observations,
the swarm as a whole needs to classify (recognize) E from a predefined set of K
gesture classes (see Section 2.2.2). Every observation requires a constant acqui-
sition time AT, < AT, and each robot can asynchronously perform repeated
observations during AT. In this way, information about E can be progressively
accumulated and used by every robot to form a local (individual) assessment,
hereafter termed as an opinion, regarding the gesture class to which E belongs.

Every robot in the swarm is equipped with a statistical classifier which sup-
ports multi-class classification (see Section 5.2 for more details). This classifier
is used to build individual robot opinions regarding E. The classifier is aspecific,
meaning that, it can operate on gesture observations sensed from any position,
albeit with varying accuracy depending on the sensing position with respect to E.
Each individual observation is independently classified and results in a posterior
probability vector, referred as a classification vector: a normalized numerical vec-
torc={c;...cx}, Zil ¢; = 1 that assigns a posterior probability to each of the K
possible gesture classes, as discussed in Section 5.2 for Support Vector Machine
(SVM) classifiers. To allow individual robots to build an opinion about E’s class,
classification vectors generated by each robot can be used and combined with
the classification vectors produced by the other robots in the swarm.

3.4 Protocol for Cooperative Recognition

As swarm robots are equipped with wireless communication interfaces, a typi-
cal robot swarm forms a mobile ad-hoc network (MANET) [Royer and Toh, 1999;
Tseng et al., 2002; Perkins, 2008]. The global topology of such a network is
assumed to be unknown, dynamic, and not necessarily always fully connected.
However, certain assumptions on connectivity might be required to ensure the
convergence of the consensus, as presented in Section 3.4.5. Robots only make
use of local message broadcasting, such that, a message sent by a given robot r
only reaches a subset of the swarm (i.e., the neighbours of r). The goal of the
swarm is to exploit the ad-hoc network to reach, in a fully distributed way, a
distributed consensus about the class of E which results in a swarm-level classifi-
cation decision, that balances time constraints with the accuracy of the decision.
We investigate the finite-time capability of robot swarms to effectively building
cooperative decisions regarding an entity of interest E. Once a decision has been
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built, the swarm as a whole can act according to the meaning associated to E
and its classification (i.e., perform the task encoded in the recognized gesture).

In context of the cooperative recognition problem statement, we investigate
the behaviour of a robot swarm within the time period AT, that is, following the
triggering at time T, of the recognition process. Triggering is performed by
appropriate attention gaining mechanisms (e.g., a hand clap or a whistle blow;
see Section 1.2). Following triggering, robots enter (possibly at different times)
the InformationGathering() state, during which each robot in the swarm collects
observations and shares information (opinions) with the other robots regarding
E. In the InformationGathering() phase, each robot r € R engages in three paral-
lel activities: sensing, communication and data fusion (see Section 3.4.3). When
a robot r has gathered enough statistical evidence in favour of a specific gesture
class among the K possible classes, it makes a transition to a CollectiveDecision (i)
state (i = {1...K}) and issues a decision: from r’s point of view, in which E be-
longs to class i with a specified confidence level. In this way, r’s decision and the
associated confidence are communicated to the neighbouring robots and then
propagated throughout the swarm in multi-hop fashion (see Section 3.4.2), with
the aim to reach a swarm-level consensus, namely a swarm-level decision. Multi-
ple robots can asynchronously make a transition to the CollectiveDecision() state,
such that different decisions can exist at the same time within the swarm: con-
flicts are resolved at the node (i.e., the robot) where they arise, with the winning
decision having the “highest confidence” being propagated further. Using this
strategy, it can be ensured that the whole swarm unanimously converges to a
single decision within a finite amount of time (see Section 3.4.4).

3.4.1 Opinion Formation

In the InformationGathering() state, each robot r € R iteratively acquires and
processes observations about the entity of interest E. Each observation consists
of a K-dimensional classification vector ¢ = {c;,...,cx}. At any given time t, a
robot r can rely on certain number w, > 0 of observations {c!,...,c":}, gathered
since Ty, (With t — Ty, < AT). The opinion o"(t) produced by robot r at t is
defined as the sum of the classification vectors generated up to t:

Wy

o' (t) :Zcf (3.1

F=1
The elements of o(t) sum to w,, the total number of observation it com-
bines: Zle o/(t) = w,. An individual robot r does not attempt to explicitly
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estimate the reliability associated to its classifications (opinions), which depends
on the position-quality relationship. It is expected that a robot in a bad position
will likely produce unreliable opinions. However, a properly trained statistical
classifier is expected to correctly reflect in the output classification vectors the
ambiguities present in the input data. The classification vectors associated to
bad observation positions, on average, have a more flat distribution of values as
compared to the classification vectors associated with good viewpoints.

(a) (b)

Figure 3.5. Performance of a single robot using an acquired image dataset of K =
6 finger count gestures (see Section 6.2). (a): Position-dependent classification
accuracy of gestures from an individual robot placed in 13 x 5 = 65 different
viewpoints using an offline trained SVM classifier. (b): Entropy computed from
the SVM classification vectors in (a).

For instance, the performance of a single robot is illustrated in Figure 3.5
using a dataset of images which comprises of K = 6 finger count gestures (see
in Section 6.2). Figure 3.5(a) depicts the classification accuracy of an individ-
ual robot as a function of robot position (i.e., position-dependent classification
performance) using an offline trained SVM classifier (see Section 5.2). The SVM
classification performance is the gesture recognition accuracy of an individual
robot from 13 x 5 = 65 different viewpoints. A flat value probability distribution
indicates that none of the K possible classes are associated to a probability which
is significantly higher than the others, implicitly indicating that an intrinsic un-
certainty lies within the classification vector. To quantify this aspect, the notion
of normalized entropy for a classification vector c¢ is computed:

K

> e;logy(c) (3.2)

H(O) = "og,00 &
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where H(c) takes values in [0, 1], and is low only when the probability of one
or a few classes is much higher than the other classes. For example, in a K = 3
class scenario, for c =[1 0 0]7, H(c) = 0, while for ¢ = [1/x 1/x /x]*, H(c) =1
(in this case, the vector ¢ contains no useful information).

We select the entropy of the classification vector as an indirect measure of
the reliability or uncertainty of a robot, to empirically define the impact that a
robot’s opinion has in the consensus building process. Figure 3.5(b) illustrates
the entropy of an individual robot by using the same experimental setting in
Figure 3.5(a). It is observed that, the entropy of the SVM classification vectors at
good viewpoints is low, while in bad viewpoints the entropy is high. This measure
of impact is used for prioritizing the dissemination of high-impact opinions in
communication-constrained environments. Taking into account that an opinion
vector needs to be normalized to a value of 1, so it can be treated as an empirical
probability distribution, the impact of an opinion o(t) is defined as:

I(o(t); w) =w,(1—H(w, o(t))), (3.3)

where the parameter w, represents the number of observations o(t) is based
on. The impact function I(0) has the following properties:

* 0 <I(o) £w, where I(o) = 0 iff o = {w/K,w/K,w/K}: An opinion has
zero impact if it is not informative.

* I(0) = w iff all but one component of o are null: An opinion has a large
impact if it results from many informative classification vectors that agree
with each other.

* I(no) =nI(0): The opinion resulting from n identical classification vectors
has n times the impact of the opinion resulting from a single classification,
which quantifies the reasonable assumption that an opinion resulting from
multiple agreeing observations should weigh more than an opinion result-
ing from only one of such observations.

The process of opinion formation is illustrated in Figure 3.6, in which a multi-
class SVM classifier is used by every robot to recognize a given gesture, which
results in local classification vectors. Opinions originating from robots positioned
in bad positions with respect to the sensing of the entity E, have, on average, a
lower impact value than opinions obtained from good positions (and an equiva-
lent number of observations). According to the definition of the impact function
in eq. (3.3), this is due to the combination of two effects: (i) individual classifica-
tion vectors resulting from bad positions have on average, larger entropy values,
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(ii) the same classification vectors are more contradictory to each other, which
results in the equalization of values associated to each class in the opinion vector.

Figure 3.6. The process of opinion formation. After individual robots inde-
pendently classify a gesture, individual opinions, namely classification vectors
(associated with the gesture recognition outcome of every robot), are produced.

In spite of the nice characteristics of the impact function, it may happen that a
robot r,, repeatedly generates wrong classifications, which are all consistent with
each other. In this case, the (wrong) opinion of r,, becomes stronger and stronger
and has the potential to negatively affect the swarm-level consensus decision.
To robustly deal with this issue, efficient means of information dissemination
are established: concurrently with r, all the other robots in the swarm build
and circulate their opinions, and when most of robots have settled on a correct
decision, they will effectively outweigh the robots with the wrong decision.

3.4.2 Multi-hop Spreading of Opinions

Robots in a swarm continuously update their opinion by iteratively sensing ob-
servations and generating classification vectors accordingly. To allow fast and
accurate decision-making at the swarm-level, each time a robot revises its cur-
rent opinion it can use the communication network to rapidly spread the opinion
and share it with the other robots in the swarm.

In an ideal communication environment, each robot can effectively broad-
cast its opinion to the rest of the swarm immediately after the opinion has been
updated, so that every robot in the swarm is always informed about the most
recent opinion that has been spread through the swarm network. As the flow
of data packets between robots is a routing problem, when no external infras-
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tructure is present, a multi-hop information dissemination protocol is required
to spread messages throughout the ad-hoc network, and proper network control
strategies are needed to minimize traffic jamming, packet losses and collisions,
energy consumption, and to cope with local bandwidth limitations.

The major challenges faced in the design and implementation of communica-
tion protocols for robot swarms includes addressing the issues of resource man-
agement and bandwidth limitation [Wieselthier et al., 2002], as swarms may
have a large number of robots. To address these issues, we introduce a general
approach for dealing with robot communications for swarm recognition tasks.
This approach provides simplicity and robustness in challenging communication
environments, and is able to effectively work in conditions: when relatively large
bandwidth is available, and under strict bandwidth-limited conditions.
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Figure 3.7. Overview of robot data structures for managing opinions. In this
example, robot #1 has just acquired and processed a second observation. The
updated opinion is saved in it's data structures as o}, . Robot #1 has previously
broadcast the opinion obtained from its first classification vector (ollast). Now,
robot #1 receives from robot #2 a previously unseen opinion of robot #3, which
is saved as o7, . Robot #2 previously received the same opinion in a message

from robot #3, but it did not reach robot #1.

Robots exchange their opinions using OPINION messages, and each robot
r € R maintains a set S C R of all robots it knows about (i.e., all robots from
which at least one opinion has been received in the past), including r itself. For
each robot s € S, the following information is maintained in a data structure
(i.e., the memory) of robot r:

* 0} ., the most recent known opinion of s, and the time ]  when it was
generated.

* n’, the number of times an opinion o} has been received in an OP INION
message.
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* o}, the last opinion of robot s that robot r has relayed by broadcasting an
OPINION message.

The data structures associated to S represent a robot’s view of the swarm’s
opinions, as illustrated in 3.7. Not all robots share the same view, as updated
opinions do not necessarily reach all robots immediately.

Figure 3.8. The multi-hop spreading and dissemination of opinions (generated
by every individual robot) within a swarm of robots.

At initialization time, S is empty. When robot r performs its first sensing,
which results in a classification vector ¢!, an entry for r is added to S, and its
values are set as follows: o] =« ct, toy < t, n" <0, o < 0. Whenever a
new observation f is processed and a new classification vector cf is generated,
the data structure is updated by setting: o <« o + o/, t7 «—t, n" 0.

cur
Figure 3.8 illustrates the multi-hop spreading of opinions in a swarm of robots.

3.4.2.1 Receiving OPINION Messages

The OPINION messages contain three pieces of vital information: (i) the robot
r’ originating the message (i.e., the robot who generated the opinion-may not
be the last sender of the message), (ii) the time® t’ at which the opinion was
last updated by r’, and (iii) the opinion vector itself o’. Such a message is de-
noted with the notation OPINION(r’,t’,0’). When robot r receives a message
OPINION(r’,t’,0"), the robot executes the following actions:

e ifr' €8, t’ is compared to t;/lr:

- ift' < t;/lr, the incoming opinion is out of date, the message is ignored.

2Robots are not synchronized: t’ is only used as a robot-specific message sequence number.
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— if t/ = t” , the opinion is already known, but n"" is incremented.

cur’
-ift' > t;;r’ the opinion is new, then the data needs to be updated:

/ / /
r /.4 /T

«— 0 «— «—
Lot —t,n 1.

OCU
* else, an entry for r’ is added to S, and its values are initialized accordingly:

/ / /
o «o,tl «t,n «<1, o« 0.
cur cur last

3.4.2.2 Propagating OPINION Messages based on Information Importance

The set S and the associated data structures always represent the most up-to-
date view of the swarm’s state as seen from r. To disseminate this information to
the rest of the swarm, robot r periodically broadcasts OPINION(s €S, t; , o )
messages. If s = r, then the robot is communicating its own current opinion to
the rest of the swarm; else, the robot is relaying information from another robot,
which was previously received. After an OPINION(s € S, t; , 0} ) message is
sent, the robot keeps track of this by setting o}, < o; . The frequency for
broadcasting OPTINION messages, and how many opinions to include in each
message, depends upon the available bandwidth.

To decide which opinion(s) to include in each local broadcast, if new updates
from other robots or from the robot itself are available, the robot evaluates all the
data it has locally accumulated and makes an intelligent selection from it. This
selection strategy aims to transmit all critical information to allow the swarm
reach a robust consensus, while at the same time taking into account bandwidth
limitations. The selection is made on the basis of an estimate of the amount of
novel information that the propagation of the opinion will provide to the rest of the
swarm. At this aim, two functions I;(s) and I,(s) are designed to heuristically
estimate this amount of information, which we introduce as the information im-
portance of an opinion. At robot r, priority is always given to the opinion(s) with
the highest measure of information importance (ties are resolved randomly):

* I,(s) = I(o;,, — o, ), where s indicates a robot in S (which includes r)

and the function I is defined by eq. (3.3) I;(s) = (W}, — wjast)H[(wscur -
Wi t)_l(ofw -0, t)]. I,(s) measures the impact of the information con-
tained in o the most up-to-date knowledge that r has about the opinion
of s, relative to the information associated to o}, the last opinion of s which
was included in an OPINION(s, ...) message broadcast by r. If r has never
in the past broadcast an opinion of s, then o], = 0 and I, = I(0o ). If robot
r has already propagated o] , then o] and this consequently re-

J— S
ur? last — Ok
sults in I;(s) = 0.

ur’
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e I,(s) = (1/2)" I,(s) defines the importance of an opinion taking into account
both its absolute importance value and the effective need to communicate
with neighbours. This is obtained by scaling I; with a factor (1/2)" which
represents a rough estimate of the ratio between the number of neighbour-
ing robots that are expected to have never received the opinion. The higher
this ratio, the more important it is to include the opinion in the next broad-
cast message, to guarantee the spreading of information. This estimate is
based on the assumption that, each time an opinion o° is received by r
(with n® representing the total number of opinions received), the number
of r’s neighbours that have not received the same information is reduced
by half, based on the fact that some neighbours within the same commu-
nication range of r may have received the same broadcast. For r’s own
opinions that have not yet been transmitted, n° = 0 and I,(s) = I,(s). In-
stead, if s # r, then n* > 1 and I,(s) < I;(s).

Figure 3.9. The opinion propagation mechanism that takes into account the in-
formation importance in selecting opinions to broadcast to neighbouring robots.
In turn, the neighbouring robots relay and propagate these opinions in a multi-
hop fashion to the entire swarm, as shown in Figure 3.8.

The use of importance estimates I; and I, for opinion selection result in an
improved multi-hop message propagation behaviour: since important opinions
are associated to higher values of Ij; ,, compared to the less important ones,
they get a higher selection priority and can more rapidly spread throughout the
swarm. In this way, the available network bandwidth is effectively used to trans-
mit messages that contain the most novel and important information. However,
this does not mean that opinions with low information importance values do not
get spread throughout the swarm. Instead, the prioritization mechanism only
reduces the frequency at which opinions are propagated. Figures 3.8 and 3.9
illustrate the propagation of opinions to neighbouring robots using this strategy.
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To explain this further, consider the case of a robot r in a bad sensing position,
which will naturally result in classification vectors with high entropy values. As
r’s opinions o° will get a low score from the selected measure of importance,
both the robot r itself and other robots that have received these opinions will
unlikely include them in their OP INTON messages. However, if the classification
vectors generated by r are consistent with each other over time, the importance
value of r’s opinion constantly grows as more observations are acquired and
classified. In fact, assuming that r is not able to send its opinion in the past
(i.e., o}, = 0), I(0; ) increases proportionally to w} . Eventually, as more
observations are gathered, this raises the information importance of o’ to a value
that will trigger its inclusion in the next OPINION messages. A similar process
happens on the robots where the opinions are relayed. In practice, as long as
an opinion is supported by a sufficiently large number of similar observations,
it is always propagated with the propagation frequency depending both on the
number of observations and the entropy value of the classification vectors (i.e.,
the lower the entropy, the higher the frequency).

3.4.3 Decentralized Data Fusion

While robots are in the InformationGathering() state, they continuously generate
and exchange updated opinions, locally accumulating evidence about the entity
to be classified. When robot r has enough evidence accumulated in favour of a
class i’, the robot makes a transition to the InformationGathering(i’) state and
issues class i’ as its local decision. This triggers the swarm-level decision-making
process during which a unanimous consensus needs to be rapidly reached regard-
ing E’s class, as discussed in Section 3.4.4. In a fully decentralized approach, no
particular robot has the responsibility to trigger the swarm-level decision pro-
cess. Instead, any robot r can initiate such a process at any time, based on the
fusion of all the pieces of information (i.e., opinions) it has available at that time.

Data fusion at robot r is realized through the use of a local decision vector
D(t), which additively combines all the opinion vectors that are available at the
current time ¢, including both the robot’s own opinion and the opinions received
from the other robots in the swarm:

D(t)= Y o, (3.4)

sES
Every time an OP INION message is received or modified by a robot r, D(t) is
updated as shown in Figure 3.10. Section 3.4.3.1 presents a variety of different
data fusions approaches that have been investigated in this research. The data
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fusion approach in eq. (3.4) is referred to as the linear opinion pools method,
which avoids double counting of redundant information [Bailey et al., 2012].
This is desirable, as observations are not independent (see [Genest and Zidek,
1986] for more information on fusing multiple probability distributions).

Both the individual components and the L; norm |[D(¢t)||,, = 2511 D,(t) of
the D(t) vector grow over time as more opinions are received/generated and
more classification vectors (observations) contribute towards each opinion (if
the observation process continues indefinitely, lim,_,, [[D(¢t)|l,, = +00). The
value of the kth component of the vector D(t) is the result of both: the total
number of observations that have been taken into account and the sum of the
weights associated to class k for each accounted opinion (i.e., how likely is k
the true class associated to the entity E). In other words, D(t),, k = 1...K
represents the cumulative amount of evidence which is available to robot r at
time t, to support the assertion that k is E’s true class. Figure 3.10 illustrates an
individual robot fusing received opinions to form D.

w =2 w=3 w=1 |)\
_ 2 __ _ _ —
5= 0<1:ur_ Ocur 0?:111‘_ D = ]ﬂ

> i i

Robot 1

Figure 3.10. The process using which a local decision is generated by an indi-
vidual robot and the illustration of how parameter A is calculated.

By inspecting D(t), every robot can make a local decision about E’s class with
class i’, that is associated to the highest value among D(t)’s K elements. The
decision made by every robot is local and needs to be integrated and compared
with the local decisions made by the other robots in the swarm. As different
robots might issue different local decisions, the issue which arises is that: when
should the local decision be made and spread out to the swarm?

To trigger a local decision, two general criteria need to be satisfied by robot
r: (i) the evidence in favour of the selected class i’ is significantly larger than the
evidence in favour of any of the other K — 1 classes, (ii) a sufficient amount of
information has been collected, such that, it is very unlikely that the decision will
change if additional opinions were to be collected. The satisfaction of these two
criteria is quantified through the measure of confidence A(t), that E’s true class is
the class i’ that has the largest amount of gathered evidence. More specifically,
the components in D(t) with the largest and second largest values, which are i’
and i” respectively, are used to define the measure of confidence:
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A(t) =D(t); —D(t); (3.5)

where A (see Figure 3.10) quantifies the amount of additional evidence that
would be needed in favour of class i” to let it become the current candidate
decision. An even larger amount of additional evidence would be needed for any
other class j € K, j # i’,i”. If the value of the local A(t) indicates that enough
evidence has been gathered in favour of class i’, a robot triggers the generation of
a local decision and enters the new state CollectiveDecision(i"). The mechanisms
of this process are presented in Section 3.4.4. Figure 3.11 depicts individual
robots in a swarm fusing opinions to produce a unified swarm-level consensus
decision. In the next section, we present a general data fusion algorithm for
swarm-level consensus building and provide different data fusion methods that
can be easily used with this algorithm.
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Figure 3.11. Opinions received by an individual robot and the fusion of all
received opinions into a swarm-level consensus decision.

3.4.3.1 Different Data Fusion Approaches

To ensure that the data fusion process is robust, effective and scales well with
large sized swarms, we introduce a general algorithm that ensures guaranteed
convergence in building unified consensus decisions and facilitates the integra-
tion of different data fusion methods. This algorithm is inspired from ensemble-
based learning (see Section 3.1.2), in which different data fusion methods have
different working mechanisms derived under different assumptions. Some fusion
methods may perform well in some domains or some input regions, while others
may perform poorly in other domains or regions. The research area most closely
related to the cooperative recognition problem in Section 3.3 deals with issu-
ing consensus predictions using expert advice [ Cesa-Bianchi and Lugosi, 2006].
In this paradigm, multiple classifiers (on-board robots in a swarm) develop an
adaptive aggregation rule to intelligently fuse their individual opinions, thereby
exploiting the wisdom of the swarm [Giusti et al., 2012c; Nagi et al., 2015].
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Consider a scenario in which, a human presents a gesture, and the swarm
recognizes it and produces a consensus decision. The human presents another
gesture and the swarm performs a consensus and recognizes it, and this pro-
cess repeats for every new gesture given by the human. Every time a gesture
is presented by a human, the following events take place: the trained classifier
of every individual robot issues an opinion based on its local observation and
expertise, after which an overall swarm-level consensus decision made through
an aggregation rule. Next, the human reveals the true outcome (i.e., the actual
label that corresponds to the given gesture) to the robot swarm using audio or
visual signals (e.g., speech, gestures). Lastly, the data fusion aggregation rule is
updated based on the performance of the individual opinions.

Algorithm 1: A General Data Fusion Algorithm for Consensus Building

1 //Initialization
2{CQr=]}£ﬂ7//Consensus weight

//Main interactive learning loop
3 fort=1{1,2,...,T} do

4 Receive new observation x, € R¢
Output prediction probability vector c

// BEGIN swarm consensus phase

6 Exchange c among N robots in the swarm
// On receiving all ¢'s

7 Compute consensus probability vector c,
// END swarm consensus phase

8 Output consensus label y, = arg max(ci)
i=1,...,K

9 Observe feedback y, € {1,...,K}

10 Update consensus weight {c, . }"_|

11 Update K-class learning parameters using y,
12 end

The update rule aims to find the best aggregation in terms of the cumulative
prediction mistakes, as quickly as possible. A general approach for data fusion
is introduced in Algorithm 1 which has been designed keeping in mind a wide
range of data fusion algorithms (for multi-class recognition) that can be easily
plugged in. Without loss of generality, Algorithm 1 is executed on every robot r in
the swarm. The algorithm works with any supervised classifier whose prediction
output is a classification vector ¢ over the K trained classes (see Section 5.2).
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The issued prediction is always different for every robot in the swarm, as every
robot observes inputs from different viewpoints.

Initially, each robot r is assigned a unit consensus weight ¢, , = 1. Given a set
of {1,..., T} samples issued by a human, as more samples are presented, learned,
and classified, robots with more accurate predictions obtain higher weights and
robots with more mistakes receive diminishing weights. Swarm-level consensus
decisions are built using the weighted prediction vector, c., where ci => ct’rci
foreach classi = {1,...,K}. After the actual/true label is revealed by the human,
each consensus weight is updated based on the current loss of its learner. We
consider three data fusion methods that can be easily used in a multi-class setting
with Algorithm 1: (i) averaging methods [Giusti et al., 2012c; Nagi et al., 2012b],
(ii) frequency counting (counting the number of correct predictions) [Nagi et al.,
2014d], and (iii) aggregation rules [Nagi et al., 2015].

Averaging Methods: One of the most simplest and effective data fusion method
involves in computing an element-wise average over the classification vector prob-
abilities for each class. If ¢” represents the classification vector for robot r in a
swarm of N robots, then y = erv:l ¢’ represents the consensus outcome as the
mean (average) of all the classification vectors (i.e., ¢,’s). The weighted arith-
metic mean (or weighted average) is another approach for tasks that require
data fusion. Weighted average is computed by calculating the component-wise
weighted sum of all the classification vectors that are use to build the consensus
decision. Every classification vector is weighted according to a specific individual
weight (i.e., this weight can be an individual robot’s recognition performance for

all the samples it has predicted so far):

N r; I
y = argmax —Zi:l (Wt < )
= —
c Zj:l cli
where w}' represents the individual weight of each robot at time t, and c" is
the classification vector of robot r in a swarm of r = {1,...,N} robots.

(3.6)

Frequency Counting: This data fusion approach calculates the frequency of
correct predictions for each class and weighs the classification vector of each
robot ¢, with this frequency (or weight) before performing weighted averaging
(i.e., frequency counting is used in conjunction with weighted average). The
recognition confidence of every robot at time t is calculated as an online accu-
racy rate oa,’ = (fcorrectpredictions/ysamples). To obtain a weight for each robot at
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time t (which serves as a measure of a robot’s online learning performance) a
normalized online accuracy weight is computed:

N
wﬁ = (oaz . Zoai) (3.7)
j=1

where w} is scaled between a closed interval [0,1] and w} can be directly
inserted into eq. (3.6).

Aggregation Rules: Based on a set of complex update rules, aggregation meth-
ods provide efficient ways to fuse information predicted by multiple classifier-
s/robots. A variety of aggregation approaches exist that are suitable for use
with Algorithm 1. The Weighted Average Algorithm (WdAA; [Kivinen and War-
muth, 1999]) is one such approach that makes use of a multiplicative update
rule ¢, = c,_,e"° with &, being the prediction loss on the current observation.
Other aggregation approaches for data fusion include the Weak Aggregating Al-
gorithm (WKAA; [Kalnishkan and Vyugin, 2005]) and the Aggregating Algorithm
(AA; [Vovk and Zhdanov, 2009]). The WkAA employs a time- and loss-dependent
update rule ¢, = ¢, ;e~%/V?, while the multi-class extension of the AA algorithm
uses a more involved update rule.

3.4.3.2 Dealing with False Positives

During cooperative sensing and recognition, we assume that a few robots are
located in good sensing positions. When majority of robots in a swarm produce
wrong decisions, this results in the swarm not properly recognizing the given
gesture, referred to as a false positive (FP). FP swarm-level decisions occur in
situations when the human is positioned in a bad position with respect to the
majority of robots. Techniques that have been adopted to eliminate FPs include:

* Exploiting the entropy of generated opinions to identify the relative posi-
tion of a human with respect to individual robots (i.e., determine if robots
are located in good or bad sensing positions), as illustrated in Figure 3.5.

* Opinions generated from robots in bad sensing positions have high entropy
(i.e., probability vectors are flat), and these robots receive lower weights
in the consensus building process.

* Self-weighting the consensus weight in Algorithm 1. The consensus weight
can be diminished if majority of the robots are in bad positions.



74 3.4 Protocol for Cooperative Recognition

3.4.4 Swarm-level Decision Making

To determine if there is enough evidence in favour of class i’ with the highest
value in D(t) (see eq. (3.4)) a robot compares its A(t) value (in eq. (3.5)) to
a fixed threshold A,, which is a swarm-level prudence parameter encoding the
desired trade-off between the recognition speed (small A,) and the classification
accuracy (large A,). If the evidence-trigger satisfies the condition A(t) > A, (i.e.,
confidence > threshold) as shown in Figure 3.12, the robot can send out its deci-
sion indicating i’ as the true class for entity E. In real-world scenarios, a robot
swarm is required to settle on a decision in a finite (and possibly short) amount
of time. To avoid excessively and indefinitely prolonging the classification pro-
cess, a local decision is automatically triggered at a robot when the time since the
robot entered the CollectiveDecision() state exceeds the value of the swarm-level
parameter T, the time-trigger.

Figure 3.12. Calculation of the measure of confidence A given in eq. (3.5). The
confidence represents A(t) and the threshold represents A, such that A(t) > A,.

At robot r, the occurrence of either an evidence-trigger or a time-trigger de-
termines the transition to the CollectiveDecision(ié) state, and the broadcast of a
DECISION(i},A;) message to announce to the rest of the swarm the candidate
decision i’. The values assigned to parameters A, and T shape the response dy-
namics of the swarm: how prudent or fast the swarm is in issuing a classification.
These parameters can be tuned in accordance to the requirements of the appli-
cation. For instance, in urgent situations a fast response from the swarm may
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be desirable, while in other cases a slow and more accurate response may be re-
quired. Setting both parameters to small values determines a fast but potentially
inaccurate classification response, and setting T to a large value means to allow
the swarm to gather enough statistical evidence before triggering an action.

Multiple robots can asynchronously send out their local decisions at the same
time. In any case, once at least one DECISTON message starts to be spread out,
all robots in the swarm are forced to move into the CollectiveDecision () state when
they receive the message, so that the swarm as a whole can rapidly settle on a
common classification decision. When robot r receives a DECISION(i}, A;) mes-
sage, it reacts in different ways depending on its local status and information and
based on the comparison between the received confidence A, and the confidence
A, associated to the local best guess.

If r is still in the InformationGathering() state:

 if Ay = A,, the robot adopts the incoming decision by setting i’ « i}
and A, < A;; the message is then further relayed and a transition to the
CollectiveDecision(i(’i) state is made.

* else, the robot first makes a transition to the CollectiveDecision(i;) state,
and then overrides the decision by discarding the incoming message and
using its own information to set up a decision; as a result, it broadcasts a
new message DECISION(i’,A,).

If robot r is already in the CollectiveDecision() state (i.e., this implies that it
has already settled upon a decision, i’):

* if 4; > A,, the new decision i} is adopted: A, < A; and the message is

forwarded further; in the case i/, = i’ the robot does not need to change its
current decision, while if i, # i’, it sets i’ < i}, to replace its current deci-
sion with i, which is supported by more evidence, and it makes a transition
to the new CollectiveDecision(i}) state.

e if A; < A,, the robot does not forward the message and ignores the (less
confident) decision.

After entering into the CollectiveDecision(i; ) state and adopting a decision,
robot r periodically rebroadcasts the DECISION(i/, A,) message to ensure effec-
tive information propagation (e.g., robustness to communication losses) and to
keep all robots consistently up to date.
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According to the mechanisms aforementioned above, decision packets com-
pete with each other: decisions assessed with high confidence (i.e., with large A)
override and interrupt the propagation of weakly assessed decisions. It is there-
fore possible that, a robot after receiving and adopting a decision can change
its decision shortly afterwards, if a different different decision with a larger A
is received. The above rules for the propagation of DECISION packets ensure
that, in a connected network eventually all robots converge to the same decision
even when different robots issue different decisions at different times, with the
“winning decision” being the one with the highest confidence.

- Camera
™ failure

Occluded

Looking in
wrong direction

Figure 3.13. Robustness of the cooperative recognition protocol to occlusions,
camera failure, and wrong viewpoints.

After adopting a classification decision, a robot needs to start acting according
to the classified command. However, as a robot’s current decision can be over-
ridden due to the propagation of multiple decisions, the robot waits a short time
before starting the associated task. The Propositions in Section 3.4.5 provide a
technique to define a delay: to wait for the minimum time that guarantees under
certain assumptions that no further decision messages will be received.

After a robot swarm has mutually converged upon a swarm-level decision in
the CollectiveDecision() state, it transitions to the Action() state for the winning
class i’. In the Action() state, the task associated with the recognized gesture is
performed. The cooperative recognition and decision-making protocol is robust
towards individual robot failures, robots out of communication range and robots
with occluded field of views, as illustrated in Figure 3.13 where the two unaf-
fected robots (i.e., the two robots on the extreme left and right of the human)
continue to function as normal.
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3.4.5 Properties and Complexity

The cooperative recognition and decision-making system implements an epi-
demic protocol for disseminating temporally-aggregated opinions and is com-
bined with an optimized flooding mechanism for enforcing a swarm-level con-
sensus decision. Each of these steps are analysed separately to derive time and
communication complexity bounds.

The key assumption made is that, the network topology and communication
model guarantee that a single message propagated by flooding can reach to all
nodes in the network within a finite time delay T, ,,. Assuming a dynamic topol-
ogy and an imperfect communication model, under broad conditions it can be
proven that T, ,, exists, and its value is related to N (which defines the swarm
size) and the topology.

Proposition 1: (Time complexity of the opinion dissemination phase): As-
sume that T,,,, exists; additionally, assume that each robot in the swarm makes a
single observation at time t,, generates a corresponding opinion, then stops sensing
and only relays opinion messages. Under such assumptions, all robots will be aware
of all opinions by time ty, + 2T,

The above proposition implies that, at time t,+2T,,,, the average of all opin-
ions known to a robot, is the same as the average of all opinions generated by
all robots in the swarm.

Proposition 2: (Time complexity of decision propagation): Let t; be the time
when robot r; issues the first decision d, (of class i; and confidence A,). r, is the
first robot entering the CollectiveDecision() state. If T, exists: (i) by time t;+ Ty
all robots in the swarm are in the CollectiveDecision (i) state, with the decision i that
can take different values for different robots; (ii) by time t, + 2T, all robots are
in the same CollectiveDecision(i,) state, where i, might differ from i,. No further
changes occur afterwards.

From Proposition 2 the following can immediately be derived:

Proposition 3: Under the same assumption as Proposition 2, any decision which
is not reverted by time t, + 2T, .. will not be reverted any more, as it is the final
unanimous swarm decision.

The proofs for Propositions 1, 2 and 3 are based on the fact that, all commu-
nication within the swarm represents instances of either one-to-all or all-to-all
flooding problems, for which strict time bounds can be derived [Topkis, 1989].
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3.4.5.1 Memory and Computational Complexity

In terms of memory requirements, the opinion dissemination approach in Sec-
tion 3.4.2 requires saving two opinion vectors o, and oy, for each known robot
in the swarm. Decision propagation only requires robots to store information
about the last adopted/generated decision. Given a swarm of N robots and K
classes, the memory complexity is therefore O(KN).

The opinion dissemination stage dominates the computational complexity of
the approach. At each iteration of its internal control loop, every robot is re-
quired to evaluate each known opinion (which are N at most) and compute its
importance (using functions I; or I, in Section 3.4.2.2) which finally determines
the most important opinion. As all known opinions must be summed up to build
the local decision vector, the computational complexity of the actions performed
by every individual robot is O(KN).

3.5 Summary of Experimental Results

The experimental results of this chapter are presented in Section 6.4 together
with the discussion. The results investigate the effect of different parameters
and techniques used in the cooperative recognition protocol. The impact of the
prudence parameter A, is studied relative to the swarm-level classification ac-
curacy, the time taken to reach consensus decisions, and the swarm size. This
parameter is beneficial as it controls the trade-off between: the amount of evi-
dence to gather before making swarm-level decisions, and the time taken to reach
consensus decisions. The effect of communication losses in small and large sized
swarms is investigated with different packet loss rates. Various strategies for
opinion selection and aggregation (message prioritization) have been compared,
with the proposed strategies providing the best performance. The performance
of different data fusion approaches has been compared with respect to the sens-
ing positions of robots and the size of the swarm. The recognition performance
of individual robots is investigated with respect to their sensing positions and the
opinion impact is characterized based on measures of entropy.

3.6 Summary of Contributions

This chapter introduced a general protocol for the swarm-level classification of
gesture commands to fulfil the sub-goal outlined in Section 1.4.2.1. This cooper-
ative recognition protocol provided a robust and scalable solution to address the
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distributed sensing and decision-making problem in robot swarms. The protocol
together with its major contribution is summarized below.

Visual information from a given gesture is acquired by individual robots in
a swarm using distributed sensing mechanisms. After information processing
(i.e., color-based segmentation and feature extraction), individual robots clas-
sify a given gesture command based on their viewpoints from the gesture. Af-
ter classification, local opinions are produced by individual robots regarding the
recognition outcome of the gesture. These opinions are propagated and dissemi-
nated within the robot swarm using multi-hop message-passing algorithms. After
every robot receives opinions from the other robots in the swarm, a distributed
consensus is built at the individual-robot level (based on position-dependent esti-
mates of reliability) for fusing opinions between robot members. The consensus
decision provides the swarm-level classification outcome for the given gesture.

A tunable prudence parameter is introduced in the protocol to balance (con-
trol) the trade-off between the time taken to reach consensus decisions (conver-
gence speed) and the amount of evidence collected from multiple gesture observa-
tions (gathered by a swarm from a single gesture shown for a duration of time).
Using the prudence parameter humans can specify if swarm-level decisions re-
quire urgency (i.e., a fast response) or high classification accuracy. This protocol
can result in an advantage in many practical and real-world scenarios when com-
putation and communication resources and rapid response time are an issue.



Chapter 4

Swarm-level Coordination: Swarm
Understanding of Robot Selection
and Spatially-aware Deployment

The swarm-level coordination mechanisms presented in this chapter enable spa-
tially distributed robots in a swarm to understand if they have been selected, and
allow individual robots to deploy themselves in dynamic environments for prox-
imal interaction with humans, which is one of the sub-goals in Section 1.4.2.2.

Based on the developed cooperative sensing and recognition system in Fig-
ure 3.1, after a swarm-level consensus identifies the spatially-addressed robot se-
lection command (i.e., to select individual robots, groups of robots, or all robots
in the swarm) given by the human, a second classification stage is used for the
coordination and identification of the selected robots (see Section 4.2). Spatially-
aware deployment strategies make use of local mobility rules for the coordinated
deployment of heterogeneous swarms (UGVs and UAVs). These mobility rules
allow individual robots to move to sensing positions that offer better viewpoints
of gestures, and at the same time provide human-relative localization.

In this chapter, I am very grateful to Jacopo Banfi for his help with the spa-
tial selection of robots, and I acknowledge with appreciation Alessandro Giusti
and Gianni Di Caro for their support and assistance with the swarm deployment
strategies. Jacopo Banfi assisted in the planning and implementation of video
demonstrations which illustrate the selection of spatially-situated individuals and
groups of UAVs. Alessandro Giusti has implemented the mobility strategy for the
deployment of UGVs, and has performed experiments in simulation and with
real robots. My contributions include: the design and implementation of the al-
gorithms using which humans select spatially-situated individuals and groups of

80



81 4.1 Background and Related Work

robots, performing experiments in simulation and with real robots to investigate
robot selection performance, and implementing mobility strategies for human-
relative localization and the deployment of multiple UAVs.

4.1 Background and Related Work

This section reviews related works in different domains. The covered topics in-
clude, the interaction modalities and techniques used for selecting individuals
and groups of robots from multi-robot systems, strategies using which single and
multiple robots understand that they have been selected (see Section 4.2), and
mechanisms that allow distributed mobile sensing systems to autonomously de-
ploy and move to better sensing positions (see Section 4.3).

4.1.1 Selecting Single and Multiple Robots

To allow individual robots in a swarm to understand that they have been ad-
dressed, a substantial amount of work on selecting and commanding robots from
a multi-robot system has been investigated by the research team at the Auton-
omy Lab of Vaughan [Milligan et al., 2011; Monajjemi et al., 2013] using unin-
strumented methods. To gain the attention of multiple robots, a gaze detection
approach (i.e., to capture the movements of the eyes) was developed in [ Couture-
Beil et al., 2010a,b] that relied on the mechanisms of face engagement. Many
other works of the Autonomy Lab have adopted gaze [Pourmehr et al., 2013b,a;
Monajjemi et al., 2013] as a means to initiate interaction between humans and
multi-robot systems. We consider that, gaze detection is costly and unreliable,
especially when using low-quality cameras that are available on swarm robots.
As humans are accustomed to directing other people’s attention by point-
ing towards an entity of interest, recent studies have identified that spatially-
addressed pointing gestures act as a directive (instruction) for robots [Abidi et al.,
2013]. Since pointing behaviours are considered a natural means for machines
to recognize human intentions [Sato et al., 2007], machine vision approaches
have proven to be useful for learning and recognizing pointing gestures [ Nickel
and Stiefelhagen, 2007; Martin et al., 2010]. For instance, if a human needs to
select a specific number of robots (i.e., individual robots or a group of robots)
from a swarm and instruct them perform a task, spatial pointing gestures [Payne
et al., 2006; Kwon and Gross, 2007; Kurdyukova et al., 2012; Folmer and Morelli,
2012] can allow humans to address spatially-located robots. In [Pourmehr et al.,
2013b] pointing gestures were investigated for HMRI, by mounting Kinect sen-
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sors onto multi-robot system comprising of two Pioneer P3-DX robots. Based
on these findings, we consider that, humans can select individual robots from a
swarm simply by pointing at the individual robots (see Section 4.2.2).

As spatial relationships are considered one of the key elements for proximal
interaction between humans and multiple robots [Wang et al., 2011; Pourmehr
et al., 2013a], the spatial relation between a human and an individual robot is
defined by the angular distance (6,d) between the human and the robot. The
Autonomy Lab adopted the use of pointing instructions to select and command
multiple robots [ Couture-Beil et al., 2010a; Milligan et al., 2011; Pourmehr et al.,
2013b], and these techniques were inspired from similar existing works [Daily
et al., 2003; Skubic et al., 2007; Naghsh et al., 2008; Micire et al., 2009]. More
specifically, in [Milligan et al., 2011] a human was required to draw a circle
(with the hand) around a desired area, in front of the group of robots to be
selected [Pourmehr et al., 2013b]. Tracking a moving hand trajectory and deter-
mining if the face is within the hand’s circular motion (i.e., if the face is within
the circumference of the drawn circle) is a complex recognition process. Alterna-
tively, we consider that the range of the robot group to be selected can be defined
as a spatial cone between two pointing gestures (see Section 4.2.3).

4.1.2 Deploying Robot Swarms in Dynamic Environments

Being aware of a human’s location is a precondition in human-centered com-
puting for applications such as, HRI, human action recognition, and intruder
detection. The deployment of mobile robot swarms is directly related to the cov-
erage problem in distributed mobile sensing systems [Liu et al., 2005; Li et al.,
2007] (see Section 3.1.1). A number of works have investigated multi-sensor
positioning for improving the coverage of mobile sensor networks [ Capkun and
Hubaux, 2005; Guestrin et al., 2005; Krause et al., 2006] and multi-robot sys-
tems [Guinaldo et al., 2013]. Vision-based sensing has been adopted for rec-
ognizing humans and their intentions [Teixeira et al., 2010; Espes et al., 2013;
Duan et al., 2014]. Positioning of multi-robot systems with on-board cameras
has been investigated for cooperative distributed vision [ Navarro-Serment et al.,
2004] and object recognition [Westell and Saeedi, 2010] tasks. Deployment of
aerial robot swarms [Saska et al., 2014; Purohit et al., 2014] has also been ex-
plored in recent times. As the aforementioned strategies are problem specific,
we introduce mobility rules that use the RAB system on the Foot-bots (see Sec-
tion 1.2.1.1) for the coordinated deployment of robot swarms (see Section 4.3.1).

In recent times, vision-based human localization has been gaining much at-
tention [ Gay-Bellile et al., 2010; Kim et al., 2011]. To localize a human from the
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viewpoint of multiple airborne UAVs, the Autonomy Lab presented vision-based
approaches for Simultaneous Localization and Mapping (SLAM) using marker-
based and feature-based methods [Monajjemi et al., 2013, 2014; Pourmehr et al.,
2014; Sadat et al., 2014]. Other localization approaches have adopted laser
rangefinders [Duan et al., 2014] and ultra-wide band (UWB) technology [Espés
et al., 2013]. We consider estimating the angular position ¢ between a human’s
face and a robot (using robot cameras), which is considered a more natural way
of human-relative localization (see Section 4.3.2).

(a) (b) (©)

Figure 4.1. Spatially-addressed pointing gestures for selecting robots from a
swarm. (a): Individual selection. (b): Group selection. (c): All robot selection.

4.2 Selecting Spatially-situated Robots from a Swarm

For humans to efficiently select spatially distributed robots from a swarm, and
for the robots to robustly understand that they have been selected, we consider
the use of spatially-addressed pointing gestures. Considering a multi-class classi-
fication problem, a supervised classifier (e.g., a SVM; see Section 5.2) is trained
offline to classify the predefined set of K = 3 spatial robot selection gestures given
in Figure 4.1. Every individual robot {r,,r,,...,ry} in a swarm is equipped with
a multi-class classifier S,,,;;;, and each robot uses this classifier to independently
predict a spatial gesture by computing r; = argmax(c), where r; is the class
among the K = 3 gestures that has the highest probability in the output clas-
sification vector r.. The cooperative recognition protocol in Section 3.4 is used
for data fusion, which allows individual robots to reach a swarm-level consensus
regarding the presented gesture. The swarm-level decision identifies a presented

gesture among one of the K = 3 predefined gestures shown in Figure 4.1.

4.2.1 Swarm Understanding of Spatially-addressed Gestures

When a robot swarm recognizes a given gesture as a spatially-addressed com-
mand for selecting robots, then the issue for the robot swarm is to understand,
to which robot(s) the spatial gesture has been addressed/directed. The gesture
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sample that was initially used by the robot swarm to identify that a robot selec-
tion command was presented, this gesture sample is used again by the swarm
to identify the selected robot(s). In principle, this is achieved using a cascaded
classification scheme, in which classifier S,,,;,; with K = 3 gesture classes firstly
identifies the robot selection command given by the human (i.e., to select individ-
uals, groups or all robots), and secondly a binary classifier on-board every robot
coordinates with the other robots in the swarm to identify the selected robot(s).
The binary classifier with K = 2 gesture classes is trained to recognize, if the
human is pointing towards the robot(s) that need be selected, or if the human is
pointing towards the robot(s) that are not desired (unintended) to be selected.
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Figure 4.2. Segmented gestures on the top and bottom correspond to the spatial
gestures in Figures 4.1(a) and (b) for individual and group selection. Top left:
Finger pointing towards an individual robot to be selected (class 1). Top right:
Finger pointing in a direction where the individual to be selected is not located
(class —1). Bottom left: Hand pointing towards a group of robots to be selected
(class 1). Bottom right: Hand pointing in a direction where the group to be
selected is not located (class —1).

A binary classification problem with K = 2 classes has two output labels y; €
{—1,+1}. Class label 1 represents that the human is directly pointing towards
the robot(s) that need be selected, and class label —1 represents that the human
is pointing towards the robot(s) that are not desired to be selected. Figure 4.2
illustrates the segmented hand masks of the spatial robot selection gestures in
Figures 4.1(a) and (b). The segmented gestures for selecting individual robots
are shown on the top of Figure 4.2 and the segmented gestures for selecting a
group of robots (which use both hands) are given on the bottom of Figure 4.2.
All images on the left of Figure 4.2 represent class label 1 and all images on the
right represent class label —1. All images on the top of Figure 4.2 are used to
train classifier S;,; for individual robot selection, and all images on the bottom
are used to train classifier S,,, for group selection.
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The recognition outcome after classifying a gesture with the binary classifiers
Sina @nd S, results in an output classification vector ¢ that has 1 x 2 elements.
To identify the selected individuals and group of robots, every robot uses its local
results from r, together with the algorithms presented in the next sections.

4.2.2 Incrementally Selecting Individual Robots

When a human presents the individual selection gesture given in Figure 4.1(a),
spatially-located individual robots need to understand if they have been selected.
Figure 4.3 illustrates a human providing a one-handed spatial pointing gesture
to select an individual robot from a swarm of UGVs (left) and UAVs (right). If the
task requires to select more than one individual robot, an incremental selection
approach is adopted in which additional individuals are selected one-by-one, as
illustrated in Algorithm 2 that runs distributively on every robot in the swarm.

(b)

Figure 4.3. Selecting an individual robot from a swarm using the robot selection
gesture in Figure 4.1(a). (a): Selecting a UGV. (b): Selecting an airborne UAV.

In incremental selection a human points to an individual robot and selects it,
and then the human points to another robot and selects it. This selection process
repeats until a condition is satisfied which enforces the incremental selection
mechanism to terminate. This condition is specified by humans: if the hand that
issues the gesture (i.e., green glove) is higher than the other hand (i.e., yellow
glove) the incremental selection process continues until the gesture issuing hand
goes lower than the other hand. In practice, the centroid of the green and yellow
gloves, c,.,(x,y) and c,,,,(X,y) respectively, are compared with respect to the x-y
coordinates of the image plane, as given by lines 23-25 in Algorithm 2.

For individual robots to understand if they have been selected, we adopt a
distributed election approach which is inspired from existing works [ Couture-Beil
et al., 2010a,b]. In this approach, every robot that classifies the given gesture as
class 1 (i.e., finger directly pointing towards the robot) using its local classifier
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Algorithm 2: Incremental Selection of Individual Robots

1

2

® N o u »

10

11
12
13
14
15

16
17
18

19
20
21
22

23
24
25
26

indtotal - 0; //Initialization

if (consensus == individual) then

repeatloop:

//Motion detection (Appendix B)
for every acquired image do
if (Mscore < MTH) then
‘ break; //Exit loop and proceed
end
end

//Individual selection score
if (argmax(r,) == 1) then
Individual score: r;,4,., = |¢;1 — Cip] X (argmax{c;;,¢;»})
//For all robots in swarm, broadcast and receive
fori=1:N do
Send ordered pair (Fipgser, ig) tO robot '
Receive (745, T;) broadcast from ith robot
end
end

//Robot with highest score

After N — 1 pairs of (r,4s,> ;q) are sent and received by every robot
. oawin 1 1 N N

ComPUte' rind =arg maxrindscr {(rindscr’ rid )’ Tt (rindscr’ rid)}

indtotal ++; //Total individuals selected

/ /Swarm—-to—human communication

//Check if robot is selected individual

if (r"! ==r;,) then _

‘ //Change LED colors of robot r;, (Section 2.3.1)
end

//Check height of glove
if (Cgrn(Y) > Cylw(Y)) then

‘ goto repeatloop;

end

end
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rs. ,» computes an individual selection score Tyqsc, = [€i1 — o] X (argmax{c;1, ¢;o})
using its local classification vector r.. The value of r;,4,., and the robot identi-
fication number r;; are broadcast as an ordered pair (7;,4s,>iq) i @ multi-hop
fashion to all robots in the swarm. To identify the selected individual, every robot
uses its list of received ordered pairs (including its own pair) and builds a dis-
tributed election using r* = argmax, {(r} i), (N TN}, where
N represents the number of robots in the swarm that predict the gesture as class
1, and rl%” corresponds to the robot that wins the election. Robot rl.vfll;in changes
the colors of its LEDs to convey selection feedback to humans (see Section 2.3.1).

4.2.3 Simultaneously Selecting a Group of Robots

When a human operator issues the group selection gesture given in Figure 4.1(b),
spatially-situated robots that are located within close proximity of each other
need to understand that the human wants to select these robots as a group.
Figure 4.4 illustrates a human operator providing a two-handed spatial point-
ing gesture to select a group of robots from a swarm of UGVs (left) and UAVs
(right). To select a group of robots, a simultaneous selection approach is adopted.

(b)

Figure 4.4. Selecting a group of robots from a swarm using the gesture in Fig-
ure 4.1(b). (a): Selecting a group of 4 UGVs. (b): Selecting a group of 2 UAVs.

In simultaneous selection, robots that are located within the confined spatial
area between the two pointing hand gestures are members of a group. In other
words, both pointing gestures define the boundaries of a spatial cone in which the
group of robots is located. For robots to understand that they have been selected
as a group, Algorithm 3 runs distributively on every robot in the swarm.

To be robust, the group selection process ensures that only the robots that lie
within the spatial cone (defined by the boundaries of both the hands) get selected
as a group. To select the members of a group, robots in a swarm go through a
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Algorithm 3: Simultaneous Selection of a Groups of Robots

//Initialization
grptotal — 0;
ming;,; =40; //Minimum distance

Mming, e, = 0.65; //Minimum score
?;’rlg<list> — Empty;

gaua H» W N =

6 if ((consensus == group) && (M. < Myy)) then

//Select robots located within spatial cone

7 if ((argmax(r.;) == “1") and (argmax(r.,) == “1")) then
//Compute metrics

8 1. Centroids of both hands: c,,,(x,y) and c,;,(x,y)

9 2. Euclidean distance between hands:

10 d = 4/ (Cgrna(¥) = ¢y (¥))? + (Crn(y) — €y (¥))?

11 3. Group score: Ty, = (argmax(re;) +argmax(rey))/2
//Check gloves separation and group score

12 if ((d >=ming,) and (rg,per >= ming,,.)) then

13 Add robot r;, into list _r';”rl;

14 grptotal++; //Total robots in group

15 end

16 end

//For all robots in swarm, broadcast and receive
17 fori=1:N do
Send ?;Vrl; (list of selected robot ids) to robot r*

Receive ?;’f; broadcast from ith robot

18

19

20 end

/ /Swarm-to-human communication
21 fori=1 :length('r’grlg) do
//Check if robot is in selected group

22 if (FVin(i) == r.id) then

grp i ,
//Change LED colors of r,
24 break; //Exit loop
25 end
26 end

27 end

23 (Section 2.3.1)
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two-stage selection process as given in Algorithm 3. In the first stage, all robots
that classify both the pointing gestures as class 1 (i.e., the two hands directly
pointing towards a robot) using their local classifier rs,,,» are selected as possible
candidates for the group. In the second stage, the candidate robots compute the
centroids of both the hands c,,,(x,y) and c;,(x,y), based on their viewpoint
from the gesture. The centroids of both hands are used by all candidate robots
to compute the Euclidean distance d between the two hands (gloves).

The group score 1, = (argmax(r¢;) + argmax(r.,))/2 is only computed
by the candidate robots. Individual robots positioned at viewpoints which: (i)
observe a distance d >= ming;,, between both hands and (ii) obtain a group
score r >= Ming, ., get selected as members of the group, as given by

grpscr
line 12 in Algorithm 3. The group selection parameters ming;;, and min,, ., are
selected using a trial and error approach. Good values have been experimentally
found as miny;,, = 40 and min,, .. = 0.65. The selected group of robots ?;’rl;
change the colors of their LEDs to convey spatial selection feedback to human

operators (see Section 2.3.1).

4.3 Spatially-aware Swarm Mobility

When robots in a swarm do not know where they are located in the environ-
ment with respect to the human issuing the gesture commands, the correct un-
derstanding of gestures becomes a challenging task for the swarm. As briefly
highlighted in Section 1.2, swarm deployment is not compulsory as humans can
move directly in front of the majority of robots to present gestures. However, it is
common that some robots in a swarm are unable to detect gestures, due to other
robots obstructing their field of view. It is therefore considered better for robots
to be fully aware of the location of humans prior to the start of the interaction.

As the quality of sensed information in distributed mobile sensing systems
strongly depends on multi-sensor (multi-robot) positioning (see Section 3.1.1),
we consider exploiting individual robot mobility to improve the overall sens-
ing coverage and spatial distribution of robot swarms. To develop coordinated
mobility strategies for spatially-aware deployment some challenges need to be
addressed. Firstly, if the size of the swarm is large positioning becomes difficult,
as robots may obstruct the field of view of other robots (i.e., partial occlusions).
Secondly, the angular distance (6,d) between a human and every robot needs to
be determined when deciding (selecting) positions that offer good and bad view-
points of the human who presents the gestures. Estimating the angular distance
is dependent on the type of robot platform (e.g., UGV, UAV).
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Since distributed mobility strategies have the potential to guide robots to
sensing positions that offer good coverage of humans, we consider developing
spatially-aware swarm mobility strategies that are platform dependent and pro-
vide human-relative localization. As briefly discussed in Section 1.2.1, with the
Foot-bots (UGVs) the RAB system is adopted (see Section 4.3.1), and with the
Parrots (UAVs) the frontal camera is used (see Section 4.3.2).

4.3.1 Coordinated Deployment of UGV Swarms

When a UGV swarm is deployed at random positions in a room and a human oper-
ator approaches to proximally interact with the swarm as given in Figure 1.3(a),
first the human issues an instruction to gain the attention of a swarm. After
Foot-bots in the swarm interpret the human’s intention, the swarm prepares for
interaction. This involves in reshaping the spatial distribution of the swarm for
which the following goals need to be simultaneously achieved:

(a) Sensing observations from good viewpoints in front of the human.
(b) Increasing mutual information collectively gathered by the swarm.

(c) Maintaining wireless connectivity within swarm network.

In general, goal (a) implies moving closer to the human or to a new relative
position from the human, assuming that the function that relates a robot’s posi-
tion to the sensing quality is (partially) known. The new target position needs to
be chosen taking into account the distance from the human, the distance to the
neighbouring robots, and to avoid obstructing the field of view of the neighbours.

In goal (b), it is assumed that the correlation among sensed observations ac-
quired by any two robots monotonically decreases as the distance in between the
robots increases. Under this assumption every individual robot needs to maxi-
mize its distance to its closest neighbours, to increase the amount of mutual in-
formation gathered by the swarm. This avoids robots occluding each other and
prevents robots from being too close to their neighbours.

In goal (¢), robots are required to stay within a given maximal distance from
each other in order to maintain a connected network topology (i.e., a minimum
network connectivity) from the M closest neighbouring robots. As the network
topology must be equivalent to a connected graph (according to the wireless
range of the Foot-bot robots), the needed wireless connectivity for multi-hop
communication needs to be taken in consideration. With the aim to reach goals
(a)-(c), robot swarms are deployed using a set of local mobility rules:
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Radial Positioning (Rule 1): This rule controls the radial position of individual
robots. With the goal of gathering better quality observations, robots aim on
reaching distance d, from the target (i.e., human). The optimal distance that
needs to be maintained between a human and a Foot-bot is found to be d, =
1.5m, which maximizes single-robot recognition accuracy.

Tangential Positioning (Rule 2): This rule controls the tangential movements
of individual robots with the aim to increase the amount of information collec-
tively gathered by the swarm (i.e., observations acquired by any two neighbour-
ing robots do not have a high correlation). This is achieved by maximizing the
angular distance (6,d) of every robot with respect to its neighbours and the hu-
man (i.e., human anchors the coordination) which reduces redundancy in the
robots’ observations (i.e., observations sensed by any two neighbouring robots
do not have a high correlation).

t=0s

\‘9— o

N
Figure 4.5. Simulated deployment using N = 10 robots. Robot trajectories are
represented as gray lines. The thin blue lines show distance-dependent link

quality between robot pairs (using line-of-sight communication). Left: Initial
random positions. Right: Positions after implementing mobility rules 1 and 2.

Unfortunately, Rules 1 and 2 result in a topology that negatively affects robot
connectivity in goal (c) when line-of-sight communication mechanisms are used.
When robots are deployed along a semi-circle as shown in Figure 4.5 (right), the
closest neighbour to every robot usually occludes robots one step further away,
effectively blocking communication links. This results in less efficient multi-hop
communication as messages need more hops to propagate to the swarm. To
counter this effect, a rule for line-of-sight communications is introduced:

Line-of-sight Communication (Rule 1b): This rule replaces Rule 1 in the case
of line-of-sight communication and tackles the above mentioned issue using a
probabilistic approach. The target distance d, is defined asd = d, +n, n ~
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% (—a,+a), in which % denotes an uniform probability distribution and a is a
parameter defining the expected spatial deviation (a = 0.5m).

At every control step, every Foot-bot in the swarm estimates its radial and
tangential components using the local mobility rules (which are augmented with
a line-of-sight obstacle avoidance mechanism) and moves in the direction of the
resultant vector. As a consequence of such local rules, UGVs tend to position
themselves at regular angular intervals (i.e., in a uniform angular spacing) along
a semi-circle centered in front of the human. Figure 4.6 illustrates the spatial
distribution of a swarm of 6 Foot-bots before and after deployment.

Figure 4.6. Spatially-aware deployment using a swarm of N = 6 Foot-bots. Image
sequence from top left to bottom right. Top left: A human operator enters a
room in which robots are randomly located. Top right: The human provides an
attention gaining instruction to the swarm and an individual robot identifies this
instruction. Bottom left: The swarm initiates the deployment process. Bottom
right: The swarm settles upon its decided spatial configuration.

4.3.2 Human-relative Localization of UAV Swarms

For robot swarms to be fully aware of a human’s location, the direction in which
the human is facing needs to be determined. This is achieved by estimating
the pose of the human’s face. To estimate the face pose, the first step involves
face detection. After a face has been detected, relative measures from different
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face poses are computed using a face score system. The face scores are used
determine the angular position ¢ and the distance d between a human and a UAV.
The estimated angular distance (¢,d) is used as a measure for coordinated UAV
deployment and human-relative localization, as presented in the next sections.

4.3.2.1 Face Detection

Face detection is an active topic in computer vision due to its significant role
in many real-world applications such as, face recognition, gaze detection, and
pose estimation. However, detecting faces is a challenging problem due to the
factors associated with illumination conditions, facial expressions, and camera
position. In general, face detection provides a normalized and user-centric view
of humans. In the context of HRI, face detection identifies the direction and
visual orientation in which humans are facing and is functional in determining
the relative angular and radial position of humans from the viewpoint of robots.

(b)

Figure 4.7. Face pose estimation using the frontal camera of an airborne Parrot.
Face windows (bounding boxes) around the detected face of a human. Identified
face poses: (a) Right, (b) Center, (c) Left.

Face detection is performed using the OpenCV implementation of the Viola-
Jones face detector [Viola and Jones, 2004 ], which computes a face window (or
bounding box) around a detected face. As face detectors are insensitive to small
changes in orientation and position, they have the ability to compute multiple
face windows around a detected face [ Couture-Beil et al., 2010a,b], as shown in
Figure 4.7. The number of detected face windows (bounding boxes) represent
the recognition confidence of a face detection classifier. The larger the number
of detected windows, the more confident the classifier is in detecting a face and
vice versa. We use the recognition confidence to estimate the face pose.

In practice, the recognition confidence is obtained by setting the OpenCV face
detection parameter minNeighbors (which specifies the number of neighbours
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each candidate window should retain) to the minimal value, which identifies all
groups and subgroups of neighbouring windows clustered around the face. The
recognition confidence from OpenCV’s face detector is used to build a face score
system, which is introduced in the next section.

As robots can easily loose a detected face and detect false positives (FPs), a
Kalman Filter is adopted for smoothing face detection estimates. Using a nearest
neighbour strategy with the Mahalanobis distance as an estimate (i.e., computing
the covariance of the detected face windows), the best window to use for face
tracking is determined. In addition, the face centroid F.,,,(x,y) is computed by
averaging the centroid of all detected face windows.

4.3.2.2 Face Score System

Inspired by the well known AdaBoost technique [Viola and Jones, 2001] that
implements a robust face detector capable of detecting frontal-views of faces,
we use a combination of two face detectors for detecting faces from frontal and
lateral views. In practice, we consider two pretrained Haar feature-based cascade
classifiers (OpenCV face detectors) which are used by every UAV in the swarm.
One Haar classifier FC; is trained on the frontal-views of the face profile and the
other classifier FC, is trained on the lateral-views (left and right views) of the
face profile, as illustrated in Figure 4.7. The red coloured face windows show
detections from F Cr (e, the frontal-view classifier) and the blue coloured face
windows are the outcomes of FC, (i.e., the lateral-view classifier). For every
image i acquired by the frontal camera of a Parrot, four relative face measures
Fm={Fm;,Fm;;,Fmg, Fmg} are computed:

(i) Fmy (frontal-view): Computed by running classifier F C; on image i.

(i) Fmy, (frontal-view flipped): Image i is flipped horizontally 180° to obtain
i, which is processed by classifier FC;.

(iii) Fm, (lateral-view): Computed by running classifier FC, on image i.
(iv) Fmy; (lateral-view flipped): Obtained by running classifier FC; on i,.

The four face measures, namely, the frontal-view, frontal-view flipped, lateral-
view, and lateral-view flipped, each represent the number of detected face win-
dows (see Section 4.3.2.1). To represent Fm in terms of a meaningful represen-
tation, a set of three face scores {S.,S,,S,} are computed using S, = Fm, +Fm;,
S, = Fmg and S; = Fmy;. The three face scores {S,,S,,S,} are used for estimat-
ing the face pose in image i. Large values of a face score indicate that the face
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is detected with a high confidence and vice versa for low scores. For instance,
when a robot is positioned directly in front of a human (i.e., frontal-view), the
value of S, is larger than S, and S;. However, if a robot is positioned towards the
left or right of the human (i.e., lateral-views), the value of S; or S, respectively
(depending upon the side) is larger than S,. If all three scores are below the
threshold S, we consider that the human is not present in field of view of the
robot or the face (human) is too far away to be reliably detected.

The relative distance between a human and a robot is computed as the average
area of face windows, using d = ZrFa0)/1, where F, = [Fmg,,q(1), ..., FMyo0(T)]
represents the total area of all face windows and T = (Fm;+Fm;+Fm,+Fm;)
denotes the total number face windows. Large values of d indicate that the robot
is near to the human and small values indicate that the robot is far away.

4.3.2.3 Learning Face Pose Estimates

The face scores and the relative human-robot distance {S’,S,S;,d'} computed
from a single image i are referred to as face pose features. The face pose fea-
tures represent the estimated angular distance (¢,d) between a human’s face
and a UAV. We consider the face pose estimation problem as a supervised learn-
ing task, in which the objective is to predict the face pose ¢ in a [0, 180°] semi-
circular plane in front of the human operator. To learn and predict face poses, we
adopt the Locally Weighted Projectron Regression (LWPR) algorithm [Vijayaku-
mar et al., 2002 ] which belongs to a family of online incremental learning meth-
ods that perform piecewise linear function approximation using regression. As
the LWPR is a non-parametric local learning system that makes use of a mixture
of locally linear kernalized regressors, it learns a non-linear regression function
with 2nd-order online methods and makes use of samples (observations) arriv-
ing incrementally over the course of time. For more details regarding the LWPR
refer to [Klanke et al., 2008; Glaude et al., 2011; Vijayakumar et al., 2005].

Consider a supervised non-linear regression task in which x; = {S!,S!,S!,d'}
represents a set of face pose features computed from image i and y; denotes the
face pose ¢; (i.e., the target label) in i. Given a set of N training samples as
input-output tuples ({x,...,Xy},{¢,..., ¢n}), the LWPR learns the relationship
(mapping) between the face pose features and the face pose for every sample in
N. For a set of M testing and validation samples {x, .. .,X,,}, the task of the LWPR
algorithm is to predict the face pose of every testing sample {¢, ..., ¢,,}. Tolearn
and predict face poses using the LWPR, a dataset of face images is acquired using
a swarm of N = 4 airborne Parrots (see Section 6.1). The experimental results
for face pose estimation using a single UAV are reported in Section 6.6.2.2.



96 4.3 Spatially-aware Swarm Mobility

4.3.2.4 Localization of Humans

Using information from the face pose features {S.,S,,S;,d} and the predicted
face pose ¢ (which are computed from every acquired image), UAVs in a swarm
can deploy and localize relative to the location of human operators. Considering
a swarm of R = {1,2,...,N} UAVs for r € R, the goal of every Parrot r is to
move to a target position that optimizes the swarm’s spatial distribution. This is
achieved by using the following set of local mobility rules:

Radial Positioning (Rule 1): With the goal of gathering better quality observa-
tions, the radial position of each Parrot is selected at angular intervals such that
the human is surrounded in a [0, 180°] semi-circular plane. At every control step
t, the angular distance (ré,ré) between the human’s face and a robot is com-
puted. The angular distance (r;,ré) is used as feedback for the UAV’s attitude
controller to simultaneously steer the roll and pitch. This allows the robot to ma-
noeuvre itself 180°/N degrees apart from the other robots while maintaining an
optimal distance d = 2m between itself and the human. At the swarm-level, this
results in the maximization of the angular distance of every robot with respect to
its closest neighbours. This approach works well as long as a minimum distance
of d = 1.5m is enforced between neighbouring UAVs.

Tangential Positioning (Rule 2): With the aim of increasing the amount of mu-
tual information collectively gathered by a UAV swarm, the predicted face pose
(at every control step) r; is used by a UAV to manoeuvre its tangential position
by steering the yaw angle. As soon as a UAV detects the human’s face, it fixates
its position in the direction facing towards the human.

Altitude Positioning (Rule 3): When interacting with UAVs that are located on
the ground, it is natural for humans to bend their body and tilt their head down.
However, when UAVs are airborne, the goal of each UAV is to maintain a fixed
altitude with respect to the height of the human operator [ Nagi et al., 2014b,a].
To achieve this, at every control step t a Parrot checks it’s elevation component
and maintains a fixed altitude with respect to the human’s height. This manoeu-
vre is performed by constantly minimizing the Euclidean distance between the
face centroid F,,,,.(x,y), (see Section 4.3.2.1) and the centroid of acquired image.

At every control step, each Parrot estimates its angular, radial, and elevation
components using the local mobility rules and steers its heading in the direction
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provided by the resultant vector while maintaining a fixed altitude. The com-
bined application of these rules enables UAVs in a swarm to position themselves
along a semi-circle surrounding the human, as illustrated in Figure 4.8.

B

(b)

Figure 4.8. Spatially-aware swarm deployment and human-relative localization
using a swarm of N = 4 airborne Parrots.

4.4 Summary of Experimental Results

The experimental results and discussion of this chapter are given in Section 6.6.
The results investigate: (i) the performance of the algorithms and techniques
using which spatially-situated robots in a swarm understand if they have been
selected or not, and (ii) the effect of deployment and mobility strategies on the
swarm-level gesture recognition performance. In the context of robot selection,
individual and group selection scores are investigated with respect to surround-
ing non-selected robots. An inversely proportional relationship is found between
the selection accuracy and the size of the swarm. In the case of large swarms,
selection accuracy decreases with the increase in swarm size. In the case of de-
ployment, mobility strategies reshape the spatial distribution of the swarm and
provide better gesture recognition performance compared to situations with no
deployment (i.e., when individual and swarm-level sensing positions are not op-
timized). In addition, different mobility strategies have been compared with
respect to the swarm-level recognition accuracy, the swarm size, and the com-
munication capabilities of the Foot-bot platform.

4.5 Summary of Contributions

This chapter presented swarm-level coordination mechanisms to fulfil the sub-
goal outlined in Section 1.4.2.2. Strategies that allow humans to select spatially
distributed individuals and groups of robots from a swarm were introduced with
the use of spatially-addressed gestures, and the developed algorithms enable
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robots in a swarm to understand if they have been selected or not. For spatial
selection, individual robots in a swarm calculate an individual or group score.
The individual and group scores provide a relative measure and determine if a
human is pointing (providing a spatial gesture) towards an individual robot or
a group of robots. Robots that obtain the highest scores are chosen as the se-
lected individual or group member. The distributed mobility strategies enable
spatially-aware deployment of heterogeneous robot swarms (UGVs and UAVs)
for proximal interaction with humans, and provide human-relative localization
in context of the considered HSI scenario (see Section 1.2).



Chapter 5

Learning as a Swarm

For robot swarms to recognize gesture commands given by humans (see Sec-
tion 3.4), first the robots have to learn the commands defined in the gesture
language (see Section 2.2.1), before they can be classified. The focus of this
chapter is on the development of supervised learning strategies that allow robot
swarms to distributively and collectively learn gestures in real-time supervised
by humans instructors, which is one of the sub-goals outlined in Section 1.4.2.3.

This chapter is organized as follows. First, we investigate the use of offline
learning methods by using a dataset of gesture images for training (i.e., build-
ing a classifier), as shown in Figure 5.1(a). The red and blue coloured samples
(acquired by an individual robot in a swarm) represent a binary (two-class) clas-
sification problem. Although offline (batch) approaches are very efficient and
provide good learning and classification performance with a swarm of robots, the
main limitation of offline methods is that no new knowledge can be added/up-
dated into the trained classifier. In this context, we direct attention towards on-
line incremental learning methods as shown in Figure 5.1(b). In online learning,
samples arrive incrementally over the course of time and are used for training.
Every time new samples arrive they are used for retraining the current classifier.
In this way, new knowledge is incrementally updated into the classifier model.

To include humans in the loop of online learning, we introduce the learning
strategy in Figure 5.1(c). The scenario depicted in (c) is as follows: a human
provides a gesture to a swarm, the swarm classifies the gesture and conveys
feedback to the human based on the swarm-level recognition outcome of the
gesture. Based on the swarm’s feedback, the human provides the swarm with
the label of the given gesture sample, which is used by individual robots in the
swarm to update their classifiers. The entire process from the human presenting
a gesture to the robots updating their classifiers, is termed as an interaction round.
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Figure 5.1. Supervised learning strategies for robot swarms for learn gesture com-
mands. A sample represents a gesture image acquired by an individual robot.
(a) Offline/batch learning using K = 2 gesture classes. (b) Online incremental
learning with K = 2 classes. (c) Online learning using feedback from humans.

The cooperative learning strategy in Figure 5.2 uses the learning approach in
Figure 5.1(c). The only difference of Figure 5.1(c) with the cooperative learning
is that, individual robots in a swarm share and exchange acquired gesture sam-
ples with each other (using information selection and sharing strategies) before
building a swarm-level classification decision (see Section 5.4).
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Figure 5.2. Distributed cooperative learning with a swarm of N = 5 robots using
information selection and sharing strategies. By incrementally sharing knowl-
edge, individual robots learn information sensed by other robots in the swarm.

The research presented in this chapter has been collaborated with a num-
ber of colleagues and experts at IDSIA: offline learning with support from Dan
Ciresan, Ueli Meier, Jiirgen Schmidhuber and Frederick Ducatelle, online learn-
ing with guidance from Hung Ngo and Eduardo Feo Flushing, and cooperative
learning in collaboration with Alessandro Giusti and Gianni Di Caro. The Con-
volutional Neural Network (CNN) is one of the adopted offline learning method,
and is based on Dan Ciresan’s implementation. Frederick Ducatelle assisted with
the first implementation of the gesture classification algorithm on the Foot-bot
platform, and also supported in testing the algorithm with small sized swarms.
The Confidence-Weight Swarm Learning (CWSL) algorithm has been developed
in collaboration with Hung Ngo. Strategies for cooperative learning have been
formulated by Gianni Di Caro, and have been implemented by Alessandro Giusti.
My contributions in this chapter include: investigating the use of different types
of learning algorithms (suitable for swarm learning) with advice and collabora-
tion from different experts, and designing and performing experiments.

5.1 Background and Related Work

This section reviews related works in different domains. The covered topics in-
clude, distributed learning in wireless sensor networks (WSNs) and multi-camera
systems (see Section 5.1.1), supervised online learning strategies that use feed-
back from humans (see Section 5.1.2), and collaborative training (learning)
strategies in multi-classifier and ensemble-based systems (see Section 5.1.3).
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5.1.1 Learning in Sensor Networks and Multi-camera Systems

Distributed and decentralized learning in wireless sensors networks (WSNs) has
been actively studied in recent years [ Mihaylov et al., 2010; Iyengar and Brooks,
2012] with the research group of Poor [Predd et al., 2005, 2006a,b, 2009] pro-
viding an in-depth analysis. As it is difficult to assume a specific topology of
mobile sensor networks (i.e., topology changes over time), the success of dis-
tributed learning depends upon network topology and the learning architecture.
The research group of Poor [Predd et al., 2006¢, 2009] identified that distributed
learning strongly depends on the modelling of communication links [Predd et al.,
2009] in network topologies (see Section 5.1.3).

Visual sensing networks also known as distributed smart cameras [Rinner and
Wolf, 2008; Tabar et al., 2006; Fleck and Strager, 2008; Song et al., 2011], al-
low capabilities of distributed visual sensing [ Kulkarni et al., 2005; Aghajan et al.,
2008; Aghajan and Cavallaro, 2009] with robust and reliable communication be-
tween cameras [Kim and Medioni, 2008; Wang et al., 2012a]. One practical ap-
plication of multi-camera systems is 3D information reconstruction [Peissig et al.,
2002] using distributed computer vision techniques [ Chellappa et al., 2010; Tron
and Vidal, 2011] for tasks that require multi-target tracking and to overcome the
limitations of occlusions and range in individual cameras. A broad survey on
visual sensing networks is available in [Soro and Heinzelman, 2009].

Distributed learning in multi-camera networks is a task in which information
is sensed and learned in parallel from multiple observation points to solve a sin-
gle joint-task, also referred to as multi-view learning [Thomas et al., 2006; Chiu
et al., 2007]. Multi-pose or multi-view learning [ Muslea et al., 2002; Shan et al.,
2006] has been adopted for a number of visual learning tasks: object recogni-
tion [Sun et al., 2009; Westell and Saeedi, 2010], hand gestures [Chen, 2009;
Kirishima et al., 2010], faces [Jones and Viola, 2003; Li et al., 2004 ], humans and
pedestrians [Zhao et al., 2012; Zheng et al., 2011], and road traffic signs [ Tim-
ofte et al., 2009]. Existing works for distributed learning in multi-camera net-
works mainly focus on supervised learning and classification problems [Shan
et al., 2006; Kokiopoulou and Frossard, 2010]. A survey on multi-view learning
is available in [Sun, 2013; Xu et al., 2013].

Multi-robot systems with on-board cameras have recently started to receive
attention: self-organized camera networks for multi-robot deployment [Canedo-
Rodriguez et al., 2013] and distributed target sensing and recognition using mul-
tiple UAVs [Schwager et al., 2011]. We consider that, a swarm of mobile robots
equipped with cameras [Cui et al., 2007; Aghajan and Cavallaro, 2009] can col-
lectively learn and predict gesture commands from a broad visual scene.
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5.1.2 Online Incremental Learning

To constantly learn new information from dynamic environments research stud-
ies have focused on developing online variants of supervised learning algorithms,
which has resulted in widely dispersed learning methods [Raducanu and Vit-
ria, 2007; Steil and Wersing, 2006; Cruz et al., 2008; Kawewong et al., 2011;
Kankuekul et al., 2012]. Online styles of learning or online learning methods,
are well justifiable for multiple robots because remembering past samples [Leist-
ner et al., 2008] is useful for learning problems associated with incremental data
acquisition [Argall et al., 2009], which is the case in most real-world environ-
ments. In online learning no assumptions regarding the distribution of the data
are made, when each datum arrives it is used for training and is discarded—not
to be used later in another iteration of the training (learning) process.

The intuitive working principle of online learning algorithms [ Crammer et al.,
2006; Cesa-Bianchi and Lugosi, 2006] relies on balancing the two conflicting
goals in making model updates: the new model should provide a smaller loss
on the current training sample while not forgetting much of the information
learned from the previous training samples (i.e., a small divergence with the
old model). Online learning frameworks [ Cesa-Bianchi and Lugosi, 2006; Vovk,
2001; Azoury and Warmuth, 2001] aim to make as few mistakes as possible
on any sequence of given samples. For instance, the online learning Passive-
Aggressive (PA) [Crammer et al., 2006 ] algorithm finds a new weight vector that
is closest in the £2-norm sense to the old one, under the constraint that its hinge
loss on the current sample is zero. For more insightful discussions on online
learning refer to [ Giraud-Carrier, 2000; Shen, 1996].

The main advantage of online learning algorithms is that they provide the ca-
pability to include humans in the loop of the learning process (see Figure 5.1(c)).
We consider that, humans can supervise the learning of robots [Rouanet et al.,
2011, 2013]: gestures one after the other are given by humans to robots, and
these gestures are incrementally learned in real-time by the swarm. In this way,
during online learning human instructors and teachers can select the gesture
observation sequence to show to swarms in an adversarial manner. A number
of research studies have used human feedback for learning with robots [Auster-
mann and Yamada, 2008; Alissandrakis and Miyake, 2009; Lang et al., 2010;
Giovannangeli and Gaussier, 2010]. Prominent works that use human feedback
mainly rely on scalable active learning strategies [Joshi et al., 2010, 2012].

The 2nd-order online learning algorithms that use linear models have shown
to achieve good performance for supervised learning tasks. These algorithms
maintain extra confidence information in the form of a covariance matrix [ Cesa-
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Bianchi et al., 2005; Dredze et al., 2008; Cesa-Bianchi et al., 2009 ] which is used
to guide and adapt the direction and magnitude of weight updates during the on-
line learning process. Confidence-Weighted (CW) learning algorithms [ Crammer
et al., 2008, 2009; Wang et al., 2012b] are good examples of 2nd-order learn-
ing methods. CW learning methods belong to a family of linear classifiers that
maintain a multivariate Gaussian distribution over the weight vectors and ex-
clusively deal with linearly separable data. CW learning is motivated from the
insight that low-confidence feature weights should be updated more aggressively
than high-confidence ones. Existing works have shown that CW learning [ Cram-
mer et al., 2012, 2013] outperforms other popular learning algorithms such as
1st-order online learning methods [Bottou and LeCun, 2004; Bottou and Bous-
quet, 2007]. We consider the use of CW learning as it allows to effectively fuse
multiple predictions using confidence information (see Appendix D).

5.1.3 Learning with Cooperation and Collaboration

Cooperative and collaborative learning strategies [ Dillenbourg, 1999] allow mul-
tiple sensors/robots to learn as a team [Panait and Luke, 2005] and require the
share and exchange of information during the learning process. Potential works
that investigate cooperative learning for visual recognition tasks select data to be
learned using margin-based classifiers [Wang et al., 2007; Olvera-Lopez et al.,
2010; Liu and Motoda, 2013], which aim to make robust selection among the
available (possibly large) samples and address memory and computational costs.
Some methods are based on selecting input patterns that are located near to the
boundaries of a classifier’s decision margin [Wang et al., 2007].

The majority of existing cooperative learning approaches select samples for
training [ Zechner and Granitzer, 2009; Lopes et al., 2010; Plaza and Plaza, 2010]
and contribute in speeding up the performance and the learning rate [Chen et al.,
2013; Liu and Motoda, 2013 ]. A few works have addressed the issue of the online
selection of training samples [Garcia-Pedrajas, 2009; Fu et al., 2011]. In [Tor-
ralba et al., 2004, 2007] an approach for cooperative learning is presented, in
which visual features computed from multi-viewpoint images [Sun et al., 2006]
are used as the shared information for object recognition.

Collaborative learning has also been investigated for sensor networking ap-
plications [Predd et al., 2006¢c, 2009]. A distributed approach for collaborative
learning put forward by the research group of Poor [Predd et al., 2005, 2006a]
decomposes a training set into smaller batches (subsets) and subsequently paral-
lelizes the learning process (by assigning distinct sensors to each of the training
batches). If the dataset is not partitioned, three collaborative learning methods
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Figure 5.3. Data partitioning methods for collaborative learning [Predd et al.,
2009] in sensor networks: (a) A bipartite graph model. (b) A centralized ensem-
ble. (c) Topology dependent learning.

exist [Predd et al., 2009]: (i) a bipartite graph in which every sensor has access
to some of the training samples in the dataset, (ii) a centralized ensemble in which
every sensor can access all the samples in the dataset, and (iii) topology depen-
dent in which sensors only access samples that are nearby (in close proximity)
with respect to topological characteristics. Figure 5.3 illustrates the three collab-
orative learning methods in which the learning agents represent the sensors. If
the dataset is partitioned, an ensemble of classifiers (see Section 3.1.2) is used
with public database (training set) that is available to every sensor [Predd et al.,
2006a,c], as illustrated in Figure 5.4. In this setting, every sensor learns only
local knowledge (i.e., partial-view information) of the entire training set.
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In our case, the above mentioned approaches are computationally expensive
when using robots that have limited on-board computational capabilities. We
introduce a heuristic approach for cooperative learning in robot swarms which
is based on information selection and sharing strategies (see Section 5.4).
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Figure 5.4. An ensemble with a public database [Predd et al., 2009] in which
every sensor has access to all samples in the training set.

5.2 The Starting Point: Offline Learning

The most simplest and straightforward approach in which a swarm of robots can
learn information is by using an offline learning method, also known as batch
learning. Prior to the learning phase, a large dataset of gesture images is gathered
by a swarm of robots from multiple viewpoints, as presented in Section 6.2. As
every robot in the swarm is equipped with a local supervised classifier, every robot
uses a subset of images from this dataset to train its local classifier. In this way,
every robot in the swarm independently learns gesture commands from multiple
viewpoints. Individual robots with classifiers trained offline use the cooperative
recognition protocol in Section 3.4 for the swarm-level classification of gestures.
We consider the use of two supervised classifiers: Convolutional Networks
(CNNSs) [Nagi et al., 2011; Ciresan et al., 2011, 2010] and Support Vector Ma-
chines (SVMs) [Giusti et al., 2012c; Vapnik, 2013]. CNNs are based on neural
architectures and SVMs are statistical margin-based classifiers. The CNN is a
deep learning framework that possess the capability to compute features from
images and perform classification. Figure 5.5 illustrates the Max-Pooling Convo-
lutional Neural Network (MPCNN) and the free parameters used for training in
each layer. For a segmented gesture image in Figure A.1, the activations of the
first convolution and max-pooling layers (C1 and MP1 respectively) for 20 maps,
are illustrated in Figures 5.6(a) and (b) respectively. As activations pass through
the deep feedforward network they are down-sampled in the following layers
such that a feature vector of F = 300 elements is obtained in the fully-connected
layer, which is used for classification in the last layer, as shown in Figure 5.5.
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Due to the fact that, statistical margin-based classifiers such as SVMs are
not capable of computing features from images, we introduce feature extrac-
tion methods in Section 5.2.1 that can be used for multi-class classification with
SVMs. The classification performance of SVMs strongly depends on the feature
extraction method and the quality of the learned features (i.e., different types of
feature computation methods may result in a better or worse SVM performance).
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Figure 5.5. The architecture of a deep learning Max-Pooling Convolutional Neu-
ral Network (MPCNN) using alternating convolutional and max-pooling layers.
Parameters used for MPCNN training are shown in every layer of the network.

Besides conducting classifications multi-class SVMs also compute posterior
probabilities for each class. Based on the analytic concept of generalization and
certainty, for a problem of K gesture classes SVMs aim to estimate the probability
of each class in the data X such that, p; = p(y = i|X) for i = {1,2,...,K}. Given
that r;; is an estimate for the output probability of pairwise classifiers between
class i and class j, and p; is the probability of the ith class, a one-against-one
(OAO) approach solves the following optimization problem:

1 K
minimize, {EZ Z (ripi— rl.].pj)z} (5.1)

i=1 j;j=1

subject to the constraints Zle p; = 1 and p; = 0, where r;; is defined as
ri; & p(y = {i,j},X), such that r;; + r;; = 1. Refer to [Vapnik and Vapnik, 1998;
Platt, 1998; Vapnik, 2013] for more details of SVMs.

The advantage of offline learning methods is that, they require all gesture
images (samples) to be shown only once and at the same for training (learning).
As CNNs and SVMs offer good learning and recognition performance of gestures
(see Section 6.7.2), in [Nagi et al., 2012a] we developed a hybrid supervised clas-
sifier Convolutional Neural Support Vector Machine (CNSVM) which combines
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the properties of both the MPCNN and the SVM. The CNSVM architecture is built
by replacing the classification layer (last layer) of the MPCNN (see Figure 5.5)
with a multi-class SVM classifier. Training of the CNSVM is performed using a
stochastic gradient descent (SGD) approach which uses small batches (chunks) of
samples acquired by a swarm of robots for incremental learning updates. How-
ever, CNSVM training is computationally expensive when using swarm robots
that typically have limited on-board processing capabilities. Refer to [Nagi et al.,

2012a] for more details of the CNSVM classifier.
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Figure 5.6. Image activations resulting from the MPCNN classifier using 20
maps. (a) Activations from the C1 layer. (b) Activations from the MP1 layer.

As offline learning methods require the prior definition of all commands in
the gesture vocabulary (see Section 2.2.1) and require gathering a large training
dataset of gesture samples (images), offline methods do not allow learning new
information (i.e., information can only be learned once and new knowledge can-
not be added or updated into the learned model). In addition, the acquired train-
ing dataset needs to be well representative of all the possible conditions that the
system might encounter. This is challenging when using robots with low-quality
cameras (i.e., illumination conditions can significantly differ between training
and normal usage which greatly affects classification performance).

To overcome the limitations of offline methods, we consider online learning to
be more favourable in real-world scenarios (where samples arrive in increments
over the passage of time), as introduced in Section 5.3. The next section presents
approaches using which features are computed from the segmented hand masks
(see Appendix A). The computed features are used with the distributed cooper-
ative learning strategy presented in Section 5.4.
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5.2.1 From Hand-crafted Features to Automatic Features

The computation of image features is an integral part of learning and classifying
gestures from the segmented gesture images (see Figure A.1). If swarm robotic
systems are to be used for learning gestures in real-time (i.e., learning instantly)
efficient strategies for online feature computation need to be in place. We investi-
gate techniques that effectively compute image features for gesture recognition
and efficiently represent the commands defined in gesture vocabulary: spatial
pointing gestures (see Figure 2.4(a)), gestures for performing potential SAR tasks
(see Figure 2.4(b)), and finger count gestures (see Figure 2.6).
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Figure 5.7. Hand-crafted properties computed from a segmented hand mask.
(a): Properties such as, length, height, centroid, orientation, major and minor
axis. (b): Properties such as, convex hull, convexity defects and perimeter.

5.2.1.1 Hand-crafted Features

Although many feature computation methods for vision-based gesture recogni-
tion exist, we adopt the most familiar approaches that compute meaningful and
discriminative properties from the segmented hand masks (see Figure A.1). As
features need to robustly represent all the commands in the gesture vocabulary
(see Section 2.2.1), we compute hand-crafted features from the segmented hand
masks (gestures): shape and blob properties [MATLAB R2014b documentation;
Linan, 2007], geometrical characteristics and image moments [OpenCV 3.0.0-
dev documentation]. These hand-crafted features have gained importance due
to their powerful gesture classification performance [Savaris and Wangenheim,
2010] and for similar recognition tasks [Zhang and Lu, 2004; Daliri and Torre,
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2008; Das et al., 2010; Trigo and Pellegrino, 2010; Cox and Budhu, 2008; van der
Werff and van der Meer, 2008].

A few hand-crafted properties computed from a segmented hand mask are
visualized in Figure 5.7. Image moments {tyg, Ug1, - - - , Usg, Ugy } are used to calcu-
late properties such as the, length, height, area, centroid, orientation, major and
minor axis, as shown in Figure 5.7(a). Figure 5.7(b) illustrates properties such
as the, convex hull, convexity defects and perimeter. From the above mentioned
hand-crafted feature properties (i.e., shape, blob and geometrical characteristics
etc.), we select a set of F = 110 features that can be efficiently computed from
segmented hand masks. However, using a relatively large number of features is
redundant and counter-productive, because:

* Classifiers yield better accuracy (and faster predictions) if only a few, highly
discriminative features are used. This is true with datasets that have a high-
dimensional feature space, namely too many features.

* Computing fewer features is faster as compared to techniques that require
training by building a large dataset (e.g., offline methods).

* Using fewer number of features more training samples can be disseminated
(spread) throughout the robot swarm for bandwidth-limited scenarios.

Feature selection strategies aim to reduce the dimensionality of the feature
space by selecting the best subset of features that have the highest importance in
a supervised classification problem. To select an optimal subset of features from
the given set of F = 110 features, we adopt the Principle Component Analysis
(PCA) technique and the Ranker method in WEKA [Hall et al., 2009] (see Sec-
tion 6.7.3), which provide an assessment of the quality of the features and rank
the features: with respect to their individual and mutual discriminative powers
and based on their contribution towards the multi-class classification problem.
The top 20 hand-crafted feature properties (i.e., the 20 features with the highest
ranks) are reported in Table 5.1 together with their measured PCA scores.

After feature selection is performed, the reduced subset of F < 110 features
are termed as a feature vector X, also known as feature descriptor. As the ges-
ture vocabulary comprises of one and two-handed gesture commands (see Fig-
ure 2.4), for one-handed gestures a one-dimensional feature vector is computed
which consists of F numerical elements. In the case of two-handed gestures, a
single feature vector of F elements is computed from each of the two segmented
hand masks, after which the resulting two feature vectors are concatenated end-
to-end to form a feature vector of F x 2 elements.
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Table 5.1. The top 20 hand-crafted feature properties selected using the PCA
and Ranker methods in WEKA [Hall et al., 2009].

Rank Feature PCA Score
1 Solidity 0.594946
2 Extent of minimum enclosing circle 0.482678
3 Extent of minimum area rectangle 0.399841
4 Extent of enclosing bounding box 0.328516
5 Minimum y-axis co-ordinate 0.272821
6 Extent of ellipse 0.236379
7 Formfactor 0.210368
8 Roundness 0.186468
9 Compactness 0.165338
10 | Solidity of circle 0.151234
11 | Y-axis centroid co-ordinate of minimum enclosing ellipse 0.137960
12 | Y-axis centroid co-ordinate of minimum enclosing circle 0.126662
13 | Y-axis centroid co-ordinate of minimum area rectangle 0.115440
14 | Y-axis centroid co-ordinate 0.105492
15 | Y-axis centroid co-ordinate of enclosing bounding box 0.096098
16 | Solidity of ellipse 0.086963
17 | Minimum y-axis co-ordinate at maximum x-axis co-ordinate | 0.078208
18 | Minimum y-axis co-ordinate at minimum x-axis co-ordinate | 0.070038
19 | Sphericity 0.062963
20 | Solidity of rectangle 0.056212

5.2.1.2 Automatic Online Feature Computation

The main disadvantage of hand-crafted methods is that, hand-crafted features
cannot guarantee that they best represent the segmented hand masks (gestures).
To overcome this critical issue, in [Nagi et al., 2014d ] we introduce Convolutional
Max-Pooling (CMP), a novel approach for automatic online computation of fea-
tures as illustrated in Figure 5.8. Inspired from the alternating convolution and
max-pooling layers of the MPCNN [Nagi et al., 2011], the CMP is a two-layer
feedforward network which does not make use of any training mechanism (i.e.,
features are computed independently and irrespective of the gesture class). Refer
to [Nagi et al., 2014d] for details of the CMP feature computation method.

Compared to hand-crafted features, the online features computed using the
CMP provide a better numerical representation of the segmented hand masks
and improve classification performance. This is because, for binary (black and
white) images, hand-crafted features use only the segmented mask (i.e., only the
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white pixels in the image) for feature computation, while the CMP uses all pixels
(i.e., black and white pixels) and performs convolution and pooling operations.
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Figure 5.8. Online feature computation using the Convolutional Max-Pooling
(CMP) approach, a two-layer feedforward network [Nagi et al., 2014d].

5.3 Online Learning Supervised by Human Feedback

Online incremental learning algorithms compute new hypotheses as soon as new
training samples become available (i.e., when gesture samples are given by hu-
mans). Since offline learning methods induce a hypothesis from a set of train-
ing samples presented at a single point in time, online learning methods allow
robot swarms to update their learned knowledge constantly. In online learning,
a swarm of robots collects training samples at every point in time and then de-
cides at some specific time-interval to compute (or re-compute) a new updated
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hypothesis of the training samples that it has observed (seen) so far. Training
samples are not available a priori in online learning, but incrementally arrive
over time (usually one at a time) as the learning process needs to go on indef-
initely. The time between new samples arrive is not negligible in the way the
robots make use of the samples. Therefore, it is not always feasible to wait and
gather a large number of samples before learning out of them.

For robot swarms to learn gesture commands in real-time (i.e., learn im-
mediately), human instructors supervise the online learning process. Online
learning allows human instructors to teach new gesture commands to swarms
and improves what swarms have already learned so far (i.e., previously learned
gestures). As swarm robots are equipped with computational capabilities (see
Section 1.2.1.1) the general ability of remembering past observations and incre-
mentally updating the related classification models is extremely useful. The next
sections present the stages involved in online learning scenarios.

5.3.1 Phases in Online Incremental Learning

An online learning scenario involving a human instructor and a robot swarm is
described as follows. A human presents a gesture (from a set of K predefined
gestures) to the swarm which needs to be learned by the swarm. Next, each
robot acquires an observation (sample) of the presented gesture, segments the
image to obtain the hand mask (see Appendix A), computes features from the
segmented hand mask (see Section 5.2.1), and the uses computed features with
the cooperative recognition and decision-making protocol in Section 3.4 to build
a unified swarm-level consensus decision. The swarm-level decision represents
the swarm’s recognition outcome for the presented gesture which is a gesture
class label from a set of known K labels (gesture classes).

Based on the outcome of the swarm-level consensus, the classified gesture
sample is used by the individual robots in the swarm to update their local clas-
sifiers (see Figure 5.1(c)). Next, the human presents another gesture, and this
entire process repeats again for every new gesture issued by the human. In prin-
ciple, online learning in robot swarms is obtained using a two-phase process:
initial learning followed by interaction rounds, as discussed in the next sections.

5.3.1.1 Initial Learning Phase

The initial learning stage is required by robot swarms to gain preliminary knowl-
edge (i.e., to acquire a small amount of basic information) regarding the gestures
to be learned. During the initial learning phase a human instructor explicitly
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makes a swarm learn gestures that have been defined in the gesture vocabulary
(whose cardinality K is assumed known a priori). In practice, the human presents
M samples for each of the K gesture classes and every robot in the swarm ac-
quires M x K gesture samples. In total, the swarm acquires M x K x N samples
within a short duration, where N represents the swarm size.

Gesture commands are numbered and presented by humans in a sequential
order which does not require humans to provide the class label K (for supervised
learning) along with every gesture sample. Since the acquired samples are as-
sociated with their respective ground-truth (GT) information (see Section 6.2)
every robot individually learns the M x K samples it acquires by training its lo-
cal classifier. At the end of the initial learning stage every robot builds an initial
classification model (classifier) which is trained using information only acquired
from one viewpoint. This implies that, every individual robot in the swarm knows
only the appearance of gestures from its own observation point (viewpoint). The
initial classifiers trained by every robot are used for learning and classifying ges-
tures during the interaction rounds as discussed in the next section.

5.3.1.2 Interaction Rounds with Human Feedback

Immediately after the initial training phase is complete, every robot in the swarm
has a classifier in place and can start to learn and perform classification tasks.
As the classifiers resulting from the initial learning stage have only a minimal
amount of knowledge regarding the gesture classification problem, these classi-
fiers are not expected to provide good recognition performance. The interaction
rounds following the first round begin with a human providing a gesture (that
represents a command to be executed by the swarm).

After an interaction round starts, the given gesture is recognized by the swarm
using the cooperative recognition protocol introduced in Section 3.4, as shown
by steps 1 and 2 in Figure 5.9. With this protocol, every robot uses its local most
recently-trained classifier to generate a local classification opinion. After individ-
ual robot opinions have been fused and a swarm-level classification decision has
been obtained, the human needs to provide feedback to the swarm based on the
swarm-level decision of the presented gesture. For instance, if a gesture is not
properly recognized by the swarm or it is classified as inappropriate, as shown in
Figure 2.13, then the human needs to “correct” the swarm’s wrong decision by
communicating feedback to the swarm. Feedback from human instructors im-
proves learning and corrects learning mistakes made by swarms. We consider
that, during the interaction rounds humans can provide two types of feedback to
swarms: full and partial feedback, as presented below.
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Figure 5.9. lllustration of a single interaction round with a human instructor.
The numbers indicate the steps in a sequential order.

Full Feedback: Full feedback implies that humans communicate the actual/true
label of the given gesture sample (i.e., the class among a set of K predefined ges-
ture classes) to the swarm. If a gesture has not been not properly recognized by
the swarm, the human conveys full feedback to the swarm using a simple visual
signal: the rapid waving of hands (which can be robustly detected by a single-
robot). After full feedback is given, the swarm proposes the second most-likely
decision which represents the gesture class corresponding to the second highest
probability in the swarm-level decision. This procedure iterates until the correct
gesture class is proposed by the swarm and the human implicitly accepts it by not
reacting to it (i.e., by remaining still). The Confidence Weighted Swarm Learning
(CWSL) algorithm developed in this research is based on the CW learning method
(see Section 5.1.2) and is presented in Appendix D. The CWSL algorithm uses
full feedback from humans and has been customized for use with swarms.

Partial Feedback: Online learning with partial feedback (also referred to as bi-
nary feedback), builds upon results from analogical reasoning. Instead of convey-
ing the actual/true label of the presented gesture which is full feedback, humans
provide partial feedback to the swarm represented as a binary variable: correct
or incorrect (yes or no). Humans convey partial feedback to robot swarms using
visual signals. For instance, if a gesture has not been not properly recognized
by the swarm, the human waves his/her hand indicating to the swarm that the
swarm-level classification is incorrect. However, if the gesture is properly rec-
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ognized, then the human does not react and remains still. Compared to full
feedback, partial feedback is more flexible and comes at a lower cost. The On-
line Learning Partial Feedback algorithm developed in this research is based on
Recursive Least Squares (RLS) methods and supports generality (i.e., applicable
to single-robot systems and swarms). Refer to [Nagi et al., 2012b; Ngo et al.,
2014] for more details of the RLS-based partial feedback algorithm.

After receiving appropriate feedback (full or partial) from humans, the robot
swarm gets informed of the correct label associated with the presented gesture.
For supervised learning to take place, an observation (sample) and its corre-
sponding label are required. Since the gesture label is communicated to the
swarm using full/partial feedback, the given gesture (which was already classi-
fied by the swarm) is now used as training sample and is learned by individual
robots in the swarm (i.e., all robots in the swarm update their local classifiers
with this new information), as shown by steps 3 and 4 in Figure 5.9. With the
use of a mixed instrumented-natural interface, humans can robustly convey the
gesture label to robot swarms. For instance, a handheld or wearable device (e.g.,
smartphone, smartwatch or tablet computer) can be used for communicating the
actual/true sample label to a single robot or to the entire swarm.

When human feedback has been provided and the gesture is learned by the
swarm, a single interaction round is complete. In summary, an interaction round
consists of the following sequence of events: a human provides a gesture, the
gesture is classified by the swarm, the swarm-level decision is communicated to
the human, based on the swarm-level decision the human conveys full/partial
feedback to the swarm, robots in the swarm learn the given gesture.

As the online learning process unfolds (progresses) and gestures are learned
by the swarm in real-time (i.e., immediately), eventually the robot swarm will
learn the entire vocabulary of gesture commands (see Section 2.2.1). A potential
advantage of online learning is that, during the interaction rounds new mission
commands can be learned by swarms.

5.4 Distributed Cooperative Learning with Humans

In online learning, selecting the ‘right’ next samples to learn and update a robot’s
classifier greatly affects the performance of a robot’s learning and recognition ca-
pabilities, which is an open problem in cooperative learning. Cooperative learn-
ing in robot swarms relates to the problem in which every robot independently
trains its local classifier, but at the same time it cooperates with the other robots
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in the swarm to collectively speed up and improve swarm-level learning. Existing
works that deal with cooperative learning are discussed in Section 5.1.3.

Since online learning algorithms abstract away the process of data acquisi-
tion, they do not generally incorporate communication which limits a robot’s
access to the training data. Cooperative learning in robot swarms emerges from
the fact that, each robot in the swarm augments its local training set with data ac-
quired from other robots that are located at different viewpoints. Every robot in
the swarm needs to exploit both the locally available training information (i.e.,
the acquired samples from its specific viewpoint) and the training samples re-
ceived from other robots. The information directly acquired by a robot amounts
to its experience and the information received from other robots corresponds to
the common knowledge (or shared knowledge) of the swarm.

Robot 1

common knowledge

Figure 5.10. lllustration of a cooperative learning scenario with information se-
lection and sharing using a swarm of N = 3 robots.

An example of a cooperative learning scenario with information sharing is
illustrated in Figure 5.10 using a swarm of N = 3 robots. In this scenario every
robot possess its own private (local) training set which consists of three subsets
of samples: T® are samples acquired by a robot itself, Trb represents samples to
broadcast (samples to share with the other robots in the swarm), and T, are
samples received from the other robots in the swarm. The grey colored samples
are the samples acquired by every robot, and the red, blue, and green coloured
samples collectively represent the common knowledge of the swarm. Robot 1
broadcasts 1 sample (blue) to all other robots, Robot 2 broadcasts 1 sample (red)
to the other robots, and Robot 3 broadcasts 2 samples (green) to the others.

In dynamic environments that allow the online learning of information, dis-
tributed cooperative learning is formulated as follows. During an interaction



118 5.4 Distributed Cooperative Learning with Humans

round a human provides full feedback to the swarm (see Section 5.3.1.2). After
human feedback is conveyed, robots in a swarm share and exchange the labelled
samples (observations) that they have acquired. When samples have been shared
within the swarm, every robot adds the samples it has received from other robots
and its own samples into its local training set, and the local classifier of every
robot is retrained (updated) using these new samples. In this way, cooperative
learning allows individual robots to learn information seen from the viewpoints
of other robots, thereby expanding the local training set of individual robots.
The hypothesis we consider is that, distributed cooperative learning can sig-
nificantly improve swarm-level recognition performance: (i) learning faster and
more robustly through information sharing, and (ii) producing more accurate
swarm-level classification decisions. Although cooperative learning is potentially
very effective, however, it poses intrinsic restrictions in the way it is performed:

* The processing of every training sample (acquired gesture observation)
needs to be fast (i.e., within a second).

* The computational capabilities and communication resources available to
individual robots in a swarm are very limited.

* The use of cooperation through information sharing can overcome the lim-
itations of individual robots, however, cooperation needs communication
bandwidth which is potentially very limited in robot swarms.

These are the precise conditions of the learning scenario taken into consid-
eration: swarm robots are generally not extremely powerful (due to the need to
balance the number of robots with the cost), communication bandwidth is lim-
ited, and it is necessary to learn fast, and from a few number of samples. The
core contribution in cooperative learning consists in accounting for these require-
ments and restrictions, and developing computationally and communicationally
efficient strategies to deal with such situations. Being online and fully distributed
(and bandwidth-limited) make the problem settings extremely challenging.

5.4.1 Constraints on Swarm-level Learning

The main goal of cooperative learning in robots swarms is to maximize the quality
and the speed of learning of information while minimizing the use of computa-
tional and communication resources. This problem is more generally defined as
cooperative learning with computational and communication constraints, which
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requires intelligent selection from a stream of data samples (i.e., gesture obser-
vations) that are locally acquired and shared among multiple robots in a swarm.

Existing approaches for cooperative learning are either too expensive for com-
putation or communication, or cannot properly scale with large swarms (see Sec-
tion 5.1.3). Strategies that perform selection of data are based on the distributed
form of the popular bagging classifier [Breiman, 1996], in which each sensor
(robot) individually trains a multi-class classifier based on a bootstrapped replica
of the entire training dataset. The replica is implicitly derived from a robot’s own
observations and from the selected training data it receives from other robots
through cooperative information sharing. Bagging is simple, lightweight, and
has shown good performance in the case of limited training data [Polikar, 2006;
Claesen et al., 2014], as presented in Section 3.1.2.

While it has been demonstrated that sharing learning information in sensor
networks is advantageous (i.e., it guarantees a faster convergence in the learning
rate; see Section 5.1.3), in many applications, bandwidth, energy, and resource
considerations do not allow for constant exchange of complete inter-network in-
formation. If communications are delayed as opposed to being instantaneous,
they may become obsolete before arriving at their intended destination. To min-
imize bandwidth consumption and reduce redundancies in shared information,
it is important to investigate the “amount” and “quality” of shared information.

As simplicity in communication needs to be emphasized, distributed infor-
mation sharing strategies that select information based on intelligent criteria and
share a selective amount of information (i.e., robots share compressed statistics)
are required. We consider that, every time new training information is available
either from local sensing or received from other robots, a robot has to decide
whether the data (information) should be kept, shared or discarded based on:

* The data the robot has acquired so far without any knowledge about what
training information will be provided in the future (which sets the impor-
tance of a training sample).

* The partial and incomplete view of: (i) the data the robot has received so
far and (ii) what data other robots have in their training sets.

The most basic strategy for sharing information consists in spreading to the
entire swarm every sample acquired by each individual robot. If robots in a
swarm make use of the maximal amount of available training information, this
has a number of drawbacks. Firstly, the computational complexity of the training
process rapidly increases (in the case of large swarms) which has a dramatic con-
sequence on the processing time required to retrain local classifiers. Secondly,
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a large communication overhead is generated (consumption of high bandwidth
and resources) due to multi-hop message passing algorithms that uniformly dis-
seminate data throughout the swarm network. Lastly, it does not guarantee that
the shared samples represent the most novel information known by the swarm.
As a consequence, sharing all information (experiences) is not be feasible and a
criterion needs to be introduced that can select the appropriate subset of training
samples to be shared with the rest of the swarm.

We consider that the criterion for selecting data to be disseminated is based
on an original distinction between a robot’s personal and shared data, which
is derived from previous works [ Tangamchit et al., 2003; Navia-Vazquez et al.,
2006; Flouri et al., 2009] and has been adapted for optimizing the mutual infor-
mation gathered by a swarm. One open problem in cooperative learning is the
online selection of training samples. Without any additional simplifying assump-
tions, the problem of online training data selection is tackled using a heuristic
approach that is compliant with the given restrictions.

5.4.2 Strategies for Sharing and Forgetting Information

The strategies developed for the online selection of training data are heuristic
and based on a computational approach. These strategies aim at intelligently
selecting training information to share with other robots in the swarm, by per-
forming data selection and keeping the amount of training data for robot learning
to be bounded in size. We introduce two bounds: (i) bounding the local training
set to a restricted size (which induces a bound in time for processing the same
dataset) and (ii) bounding the size of the shared training information (which cir-
culates across the swarm network). This cooperative learning behaviour results
in simultaneous sharing and forgetting of information [Di Caro et al., 2013a], as
introduced in Sections 5.4.2.1 and 5.4.2.2 respectively.

5.4.2.1 Strategies for Selecting and Sharing Experiences

The problem of selecting which sample to disseminate is directly related to active
learning [Cohn et al., 1996] in which a robot has a large number of unlabelled
samples and can buy labels for some samples. In the case of margin-based classi-
fiers, this problem has been thoroughly investigated: the distance between each
sample and the separating hyperplane in the feature space is used as a crite-
rion [Schohn and Cohn, 2000] by privileging samples either close or far from
the classification margins. In our case, this problem is different as the focus is to
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select training samples to share with other robots, however, only partial knowl-
edge is available of the samples that are known by other robots in the swarm.

Consider R to be a set of robots in a swarm and let T, denote the set of training
samples currently available to robot r € R. The set of training samples T, can be
partitioned into three different subsets:

* Personal, T?: Includes the samples acquired by r that have not been shared
with the rest of the swarm.

* Shared T;: Includes the samples acquired by r that have been shared with
the rest of the swarm.

* External T¢: Includes the samples originally acquired by robot r’ # r, that
have been shared by r’ and received by r.

As every robot has information from a different set of training samples, this
further complicates the task. In the case of full connectivity, r has no interest in
broadcasting samples in T or T; as they are already known to the rest of the
swarm. In fact, the set of samples T® U T¢ represent the common knowledge of
the swarm. For a robot r to select a sample x € T? that will be shared first with
the rest of the swarm, we consider three sample selection criteria:

1. Random Selection: The sample is selected in a purely random way without
any intelligent criterion. This strategy serves as a performance baseline.

2. Novelty-driven Selection: Robots prefer to share the sample which brings
the most novel information compared to the samples already known by the
rest of the swarm. Intuitively, this selection strategy mimics the behaviour
of a teacher who presents samples that are dissimilar as possible from the
samples already known to the students. Robot r selects the training sample
to be broadcast as follows. First, a class K is selected at random, then a
training sample x for class K is selected using:

arg max ||f(x),f(x’) I, Vx'e(T; UT),

p
xeTr’K

where f(x) represents the feature vector of the training sample x, ||f(x), f(x")||
denotes the Euclidean distance in the feature space, and Tf 0 T:K, and Tr‘fK
respectively represent the personal, shared and external training subsets of
robot r for class K.
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3. Representativity-driven Selection: A robot r shares a sample that best repre-
sents its current knowledge about a given class. This corresponds to a teacher
who privileges samples that are the most typical ones. Sample selection is im-

plemented by firstly sampling class K at random, and then choosing a training
sample x such that:

argmin [|f(x), fx|l,
xeTr{’K

where fy represents the centroid in the feature space of all samples in T?,.
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Figure 5.11. Criteria to select the samples to broadcast. For a given class K all
training samples known to a robot are represented as points in the feature space.
Gray circles: Samples already known to the swarm. Black crosses: Samples only
known to a robot itself. Red diamond: Centroid of all personal samples (fy).

Figure 5.11 illustrates the three different sample selection strategies. In prac-
tice, once a training sample x is selected by robot r, the feature vector and class
label K of sample x are spread to the rest of the swarm as a local broadcast. This
message is firstly received by the wireless neighbours of r and is further relayed
in a multi-hop fashion to all other robots in the swarm. After the broadcast is
complete, the following updates are performed:

* Atrobot r, x is removed from T” and moved to T.

* At all other robots r’ # r that receive the message, x is included in T?,.

As a result, after this update x will never be broadcast again by any other
robot in the swarm. In summary, if robot r has n training samples to disseminate,
then the mechanisms mentioned above are repeated n times.



123 5.4 Distributed Cooperative Learning with Humans

5.4.2.2 Strategies for Forgetting Experiences

The strategies introduced in Section 5.4.2.1 for sharing information and expe-
riences yield a training dataset which monotonically increases in size as more
interaction rounds (see Section 5.3.1.2) are performed. Eventually, the size of
the training set will increase too large to allow the rapid retraining (update) of
the local classifiers. The obvious solution is to limit (bound) the maximum num-
ber of training samples stored by every robot. This implies that, when the size
limit is reached: a new training sample needs to be inserted into the training
set and a previously stored sampled needs to be removed. In other words, it is
necessary to forget some samples to make space for newer samples.

A straightforward and computationally light solution consists in forgetting
the oldest training samples and implementing a first-in first-out (FIFO) queue in
the memory storage (training set). If the environmental conditions slowly chang-
ing over time (i.e., yielding a slow drifting classification problem) old training
samples may not be relevant any more. Forgetting old training samples can im-
prove the classification performance of robots rather than limiting it. This is
because, removing old samples and adding new samples into the training set
from time to time will result in a training set that contains an up-to-date repre-
sentation of the classification problem to be solved.

The three strategies presented in Section 5.4.2.1 that implement an intuitive
criteria for selecting samples (by exploiting the topology of training samples in
the feature space) are used for forgetting samples. In all three strategies, the first
step is to determine class K which is the most representable in the training set.
The sample to be forgotten will be selected within T, x, i.e., the set of samples that
belong to the training set of robot r with class K. This has an effect to keep the
training set balanced. The three sample forgetting strategies are (no distinction
is made among samples that are personal, shared, or external):

1. Random Selection: The sample is selected in a purely random way within
the training set T, .

2. Redundancy-driven Selection: Robots decide to forget a sample which is
most similar to another sample that is already known. This strategy mirrors
novelty-driven selection (see Section 5.4.2.1) such that, a robot prefers to
retain the samples that are the most novel with respect to all the other samples
known by the robot. In particular, a robot r selects the training sample x to
forget (remove) as:
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argmin [|[f(x),f(x')Il, Vx'€(T.x\x).

x€T,x

At least two samples always meet the criterion, but only one sample is selected
using random selection.

3. Representativity-driven Selection: Robots forget the sample which is the
least representative from their current knowledge about class K. This mirrors
the representativity-driven selection strategy (see Section 5.4.2.1) such that,
a robot prefers to keep the samples that are the most representative with
respect to what is currently known by the robot. A robot r selects the training
sample x to be removed as:

argmax [[f(x), fel,
x€T, x

where fy represents the centroid in the feature space of all samples in T, .
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Figure 5.12. Criteria for the selection of samples to forget. For a given class K
all training samples known to a robot are represented as points in the feature
space (gray squares). Red diamond: Centroid of all samples (f;). The least
representative sample lies farthest away from the centroid of all samples and the
most redundant samples lie closer to the centroid.

The three strategies to forget samples are illustrated in Figure 5.12 for a sim-
plified scenario. In practice, at robot r once a training sample x needs to be
to forgotten, the feature vector of sample x is removed from the training set of
the robot. For every training sample that needs to be forgotten (removed) the
mechanisms reported above are repeated once.



125 5.5 Summary of Experimental Results

5.5 Summary of Experimental Results

The experimental results of this chapter are presented in Section 6.7 along with
the discussion. These results investigate the effect of different swarm-level learn-
ing strategies such as, offline learning (which requires gathering a large dataset)
and real-time learning supervised by human instructors: online learning and co-
operative learning. The effect of offline learning is investigated with respect to
two different types of supervised classifiers, CNNs (which compute features from
images) and SVMs (which require the use of hand-crafted features or automatic
feature computation methods). Within the context of hand-crafted features, the
impact of different feature selection methods is investigated. Compared to all
other methods, the PCA provides the best performance for reducing the dimen-
sionality of the feature space. In terms of cooperative learning, the swarm-level
learning performance is investigated with respect to the number of interaction
rounds, the amount of information (samples) shared by individual robots in the
swarm, the size of the shared feature vector, and the swarm size. Strategies for
selecting and sharing information have been compared, and the representativity-
driven approach outperforms all the others. Similarly, for forgetting and remov-
ing samples, the random selection approach provides the best performance.

5.6 Summary of Contributions

This chapter presented swarm-level learning algorithms and strategies to satisfy
the sub-goal outlined in Section 1.4.2.3. In particular, distributed online learning
strategies for robot swarms were investigated which provide the capability to
include humans in the loop of the swarm learning process.

Offline learning methods justify that robot swarms have the capability to ef-
fectively learn instructions and commands defined in the gesture language. The
developed online learning strategies support the inclusion of human instructors
in swarm-level learning process. Humans supervise the learning of gesture com-
mands by providing full or partial feedback to robot swarms. The strategies
developed for cooperative learning allow intelligent online selection of training
samples (to disseminate the most novel and representative training information
to other robots in the swarm) and provide a trade-off between the use of commu-
nication in the swarm and the quality of learning.



Chapter 6

Experimental Results and Discussions

This chapter presents the experimental results and discussion of the techniques,
algorithms and strategies implemented in Chapters 2 to 5. These results have
been obtained as a consequence of: (i) emulation experiments (i.e., simulations
performed on a computer that uses images acquired by a heterogeneous robotic
swarm) and (ii) real-time interaction with robots, as discussed in Section 6.3.

6.1 Implementation on Real Robots

To implement the HSI system on real robots, simulators, middleware and open
source libraries have been used. The source code is written entirely in C/C++
and runs on a Linux-based operating system. To control the Foot-bots (see Sec-
tion 1.2.1.1), ARGoS!, a large scale multi-robot simulator is adopted, and for
the Parrots (see Section 1.2.1.2), ROS? is used. ARGoS has been developed to
simulate swarms in virtual environments and to control robots in real-world en-
vironments. ROS is a middleware that interfaces with many robotic platforms,
and at the lowest level it offers a message passing interface that provides inter-
process communication. With the use of ARGoS and ROS a heterogeneous swarm
of UGVs and UAVs can quickly be assembled.

All computation and processing is done on-board the embedded Foot-bot plat-
form (i.e., the compiled Linux code runs as a controller on the Foot-bots). With
the Parrots, all processing is done offline and the acquired images are wirelessly
streamed from the Parrots on to a computer that performs all the necessary com-
putation. For image processing the OpenCV library is used and Opencvcblobslib

lhttp://www.argos—-sim.info/
2http://www.ros.orqg/
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is adopted for feature extraction and computation.> The LIBSVM library* is used
for supervised multi-class learning and classification. The human body motion
detector (see Appendix B) is implemented using a C++ circular buffer library.

To fuse information generated from multiple robots, we evaluate the use of
centralized and decentralized communication architectures. A decentralized ar-
chitecture is used for the Foot-bots as they are equipped with the RAB system
and can easily communicate with each other. For the Parrots, a centralized ar-
chitecture is adopted since the images acquired by the Parrots are streamed to a
computer which performs, image processing, feature extraction, and data fusion.

In the decentralized approach, every Foot-bot runs a single Linux process (i.e.,
the robot controller) and this process executes: the gesture vocabulary thread,
the image acquisition thread, the motion detection thread, and the thread to lis-
ten to incoming messages from other Foot-bots in the swarm. The centralized
approach is realized using a client-server architecture in which clients represent
the robots and the server represents the fusion center (FC). A computer is used as
a FC which runs a Linux process that performs the following: listens to incoming
information from all the Parrots in the swarm, processes and fuses received infor-
mation, and sends out the swarm-level decision to all the Parrots. The number
of threads that listen to incoming data from the Parrots are equal to the number
of Parrots in the swarm (i.e., one thread is used for each Parrot). Each Parrot is
associated to a single Linux process that runs on the FC and executes threads for,
the gesture vocabulary, image acquisition, and motion detection.

The camera properties of the UGVs and UAVs (e.g., resolution, field of view,
and frame rate) have significant differences between each other, which greatly
effect the performance and robustness of the HSI system. The Foot-bot with its
frontal camera acquires images in a native resolution of 384 x 288 pixels (0.1
megapixel) at 2 fps in a 4:3 aspect ratio, as shown in Figure 1.4(b). The frontal
camera of the Parrots acquires images in a resolution of 640 x 360 pixels (0.2
megapixel) at 30 fps in a 16:9 aspect ratio, as given in Figure 1.5(b). The image
resolution effects gesture recognition performance, and the frame rate has an
impact on the performance of human motion detection (see Appendix B).

The image acquisition rate of the Foot-bots is lower than 3 fps, which causes
a constant delay in motion detection (see Section 7.2). With the Parrots a frame
rate of 30 fps is achieved, and motion detection is very reliable. In terms of cam-
era resolution and image quality, the lower resolution camera of the Foot-bots
requires adjusting and correcting the white balance (using the gain and satura-

3http://opencv.org/ and https://github.com/opencvblobslib
“Nttps://www.csie.ntu.edu.tw/~cjlin/libsvm/
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tion settings) based on the illumination conditions. In contrast, the Parrot cam-
era has a higher resolution (i.e., better quality images) and a larger color depth.
Experimentally it has been verified that, 2 Parrots can provide gesture recogni-
tion performance similar to that of 10 Foot-bots, and 4 Parrots can outperform a
swarm of 15 Foot-bots. Overall, the Parrot camera has a better image quality and
frame rate as compared to the Foot-bot camera, which is why gesture recogni-
tion and motion detection is more robust with the Parrots. Although experiments
in this research have been performed in an indoor environment with controlled
illumination (lighting), the UGV and UAV cameras are suitable for outdoor use
under bright and sunny conditions while taking into consideration shadows.

To assemble a heterogeneous swarm of Foot-bots and Parrots, a platform inde-
pendent distributed communication protocol based on native TCP/IP sockets has
been developed which serves as a communication bridge between ARGoS and
ROS. Using this communication protocol heterogeneous swarms of up to 20 real
robots have been tested, and using an acquired dataset of images (as discussed
the next section) up to 100 robots have been simulated.

6.2 Offline Data Acquisition using Real Robots

To allow flexibility in performing different experiments, a large amount of ges-
ture images are acquired using a heterogeneous swarm of robots. This dataset
of gesture images which is acquired for training (learning) is used to perform
emulation experiments (see Section 6.3). With the use of the Foot-bots and the
Parrots (UGVs and UAVs) gesture data is collected from a wider visual perspec-
tive: (i) airborne UAVs observe the human from a higher altitude compared to
UGVs that are closer to the ground, and (ii) the more in number UGVs gather
large amounts of data from different observation points (viewpoints).

Before the dataset can be acquired, a swarm of UGVs and UAVs are posi-
tioned in the configuration shown in Figures 6.1(a) and (b) respectively. The
swarm of N = 13 Foot-bots is positioned to gather images near to the ground
and the swarm of N = 4 airborne Parrots acquires images hovering at an altitude
of 1.5m (which is considered a good height to observe the upper human body
and gestures). The Foot-bots are placed at evenly-spaced angles of 15° covering
a semi-circle centered around the human and at different distances from the hu-
man. The Parrots are made to fly in a semi-circular formation while being 40 to
60° apart from each other (at different distances from the human), and always
facing towards the human (i.e., the human is always present within the field of
view of every UAV’s camera). In this configuration, the central robot (i.e., the
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robot directly in front of the human) is at the optimal viewpoint to sense and rec-
ognize gestures, and the remaining robots see gestures from angled viewpoints.

In the case of a UGV swarm, each Foot-bot acquires and stores 200 unpro-
cessed images while a human for a short time presents a single gesture from
the gesture vocabulary (see Section 2.2.1), which is directed towards the robot
precisely in front (at 6 = 0°) of the human. For the predefined set of K = 16
gestures in the vocabulary (see Figures 2.4 and 2.6), the UGV swarm acquires
13x200x16 = 41,600 images. This process is repeated 5 times, once for a differ-
ent distance d =[1, 2, 3,4, 5]m between the UGVs and the human, as illustrated
in Figure 6.2. This results in a dataset of 41,600 x 5 = 208,000 gesture im-
ages acquired by the UGV swarm from 13 x 5 = 65 different viewpoints. The 65
viewpoints represent the cells of the superimposed grid illustrated in Figure 3.5.
Using the same approach with UAVs, 4 x 600 x 16 x 5 = 192,000 gesture images
are acquired by a swarm of airborne Parrots from 4 x 5 = 20 viewpoints.

: -45° -30° AL %+15°
% % % % %ew
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Figure 6.1. Experimental setup for the acquisition of a gesture image dataset.
Top: Swarm of N = 13 Foot-bots. Bottom: Swarm of N = [3, 4] airborne Parrots.

As gestures are presented naturally: rotational, translational, and scaling in-
variances are present in the acquired images. Every gesture image acquired by
each individual robot in the swarm is tagged (labelled) with ground truth (GT)
information. The GT information is unique for every acquired gesture image and
it contains the following information:
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(i) The angular distance (0,d) between the human and the robot.

(i) The time when the image was acquired (timestamp), where t = O repre-
sents the starting time of the acquisition process.

(iii) The class/label of the acquired gesture image (used by supervised learning
methods for multi-class classification).

) (e ®

Figure 6.2. Gesture images acquired by a Foot-bot at different human-robot
distances (in metres): (@) 0.5m (b) Tm (c) 1.5m (d) 2m (e) 2.5m (f) 3.0m.

In the context of human-relative localization (see Section 4.3.2.3), an air-
borne UAV is used to acquire images of a human’s face from multiple poses
(i.e., frontal-views and lateral-views). GT information is obtained using an Op-
tiTrack Motion Tracking System which consists of an overhead Infrared-emitting
and -sensing multi-camera system positioned to triangulate and extract location,
movement, and orientation information of robots. The OptiTrack represents the
location and position information of the airborne UAV in 3D Cartesian coordinate
system. To acquire the dataset, the UAV is made to fly in a [0, 180°] semi-circular
plane of in front of the human while acquiring images of different face poses and
at the same time receiving GT information.
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6.3 Types of Experiments

In this research, two types of experiments are performed, emulation experiments
and experiments with real robots. Quantitative emulation experiments are per-
formed as simulations on a computer that make use of an acquired dataset.
To challenge emulated swarms with difficult problems, we implement an ex-
perimental protocol: using GT information from an observation (image) in the
dataset, a simulated robot positioned at (8,d) in the polar plane ‘sees’ an obser-
vation that is randomly selected from the subset of observations acquired from
the viewpoints closest to (d; 6) for the same gesture class. In simpler words,
gesture observations are sampled from the acquired image dataset using which
realistic simulations are built. To perform a variety of experiments different re-
alizations of random variables (i.e., robot positions, observations in the dataset,
and gesture sequences) are considered. Experiments performed with real robots
evaluate the real-time performance, robustness and scalability of the HSI system.
The sections below present the results and discussion of Chapters 2 to 5. The
results of Chapter 3 are presented first followed by: the bidirectional human-
swarm communication system (Chapter 2), swarm-level coordination for robot
selection and deployment (Chapter 4), and swarm-level learning (Chapter 5).

6.4 Results for Chapter 3

The experimental results of Chapter 3 are presented first, because the general
protocol for the swarm-level classification of gestures provides valuable insights
on how swarms cooperatively sense and recognize gestures. Experiments re-
ported in this section are the results of emulation tests that use a dataset of K = 6
finger count gestures (see Section 2.6) and a multi-class SVM classifier (see Sec-
tion 5.2) that is trained using hand-crafted features (see Section 5.2.1.1).

6.4.1 Swarm-level Performance of General Protocol

The experiments described in this section are aimed on studying the swarm-level
recognition accuracy and response time depending on different parameters of
the cooperative recognition protocol. Experiments are carried out in simulation
as emulation tests as classifications are always based on gesture images acquired
by a swarm of real robots (see Section 6.2). In all experiments, robots’ opinions
are produced once per second which is the performance attained on the Foot-bot
platform (see Section 1.2.1.1) accounting for image acquisition, processing, and
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classification. Robot communications are simulated with parameters matching
the characteristic of the Foot-bot’s RAB communication system: packets are re-
ceived with a 0.1s delay and packet loss probability is modelled as a piecewise
linear function 7t(d) of the distance d between two communicating robots. That
is, m(d < di, = 1m) = 0.2, t(d = d,qr = 4m) = 1, where n(d,;, < d < dppqy) 1S
the line segment between (d,,;,,, 7(d,,;,,)) and (d,,,y> T(d,0x))-

For each tested configuration, a large number of simulation trials are per-
formed using different spatial positions of the robots and different random sam-
pling of observations from the image dataset. Each simulation results in one
of three outcomes: success (all robots reach a CollectiveDecision() state for the
correct class), failure (all robots reach a CollectiveDecision() state for the same,
wrong class), or no consensus (none of the previous outcomes is true at t =2 T).
For each experiment, the time to decision is recorded which is defined as the
earliest time in which all robots are in the CollectiveDecision() state for the same
class (or 2 T in case of no consensus). Two performance measures are computed
for each configuration: (i) the average accuracy (i.e., the fraction of experiments
with successful outcome) and (ii) the average time to decision.

6.4.1.1 Accuracy vs. Time to Decision and Accuracy vs. Swarm Size

The swarm-level parameter A, determines the amount of statistical evidence a
robot needs in order to initiate the swarm-level decision phase. Figure 6.3 shows
that decisions taken on the basis of less evidence (small A,) are less accurate but
are issued faster, compared to more prudent decisions (large A,) which are taken
only when very solid statistical evidence is available. Moreover, larger swarms
improve both accuracy and time to decision with respect to swarms composed
of fewer robots. The advantages of swarms larger than N = 10 robots are clear
only when fast response times are needed. A 20-robot swarm has a 7% larger
accuracy than a 10-robot swarm when decisions are taken in 0.7s. When A, is
set to larger values, this gap reduces as the accuracy approaches 100%. It can be
observed that a single robot has a comparatively much worse accuracy.

In terms of swarm size, Figure 6.3 illustrates that a larger swarm always re-
sults in higher accuracies. Increasing the number N of robots in the swarm has
two main positive effects on the cooperative recognition protocol: (i) a larger
number of different opinions are available, and (ii) swarm connectivity is im-
proved due to increased robot density. Figure 6.22 reports the impact of swarm
size on recognition accuracy in relation to the value of A and the use of mobility.

The accuracy vs. speed trade-off for each of the K = 6 finger count gestures
(i.e., finger counts from O to 5) is shown in Figure 6.4. It is observed that, some
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Figure 6.3. Trade-off between swarm-level accuracy and time to decision for
different values of A, and swarms composed of 1, 10, 20 and 30 robots. Each

data point is averaged over 50 trials using the K = 6 finger count gestures. De-
ployment is random, no mobility, no communication losses, T = 10s.
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Figure 6.4. Average accuracy and time to decision for the K = 6 finger count
gestures using the experimental setup in Figure 6.3 (each data point is averaged
over 7200 simulations). The accuracy vs. time to decision trade-off is biased
towards fast decisions as most simulations use small values of A..
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gestures are significantly harder to recognize than others. For instance, this is
the case with the gesture that corresponds to finger count 3. The reason of the
difficulty lies in the fact that the gesture was represented in the dataset using
several different combinations of three fingers. Recognition of difficult classes
requires on average a longer time, because the swarm needs to acquire more ob-
servations in order to reach the required evidence threshold A;,. When compared
to easier classes, classifications generated from difficult classes tend to be more
contradictory with each other. Decision vectors resulting from the fusion of such
opinions exhibit less pronounced peaks, consequently leading to lower A values.

The experiments in Figure 6.4 make use of data resulting from the same set
of simulations used in Figure 6.3, the majority of which use a very small A, value.
As a result, the accuracy vs. speed trade-off is biased towards faster decisions and
lower accuracies. When using N = 10 robots and a larger A, = 2, finger count
3 is recognized with an average accuracy of 0.86 in an average time of 4.2s. In
contrast, with the same parameters finger count 0 (closed hand) is recognized
with almost perfect accuracy (0.99) in an average time of 1.4s.
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Figure 6.5. Effect of different packet loss probabilities with static and mobile
swarms. Only the finger count 2 gesture is considered. Each data point is the
average of 500 trials. 95% confidence intervals are reported, T =4s, A, = oco.

6.4.1.2 Effect of Communication Losses

The average accuracy for swarms of N = [5,20] robots with respect to their
packet loss rates are reported in Figure 6.5. The results illustrate the specific
impact of N on communications and show that larger swarms are quite robust
to very high packet loss rates. To have approximately the same amount of obser-
vations (samples) per robot in each scenario, A, is set to a very large value (i.e.,
robots never take a decision before the time triggering threshold T is reached).
The swarm’s resiliency to unreliable communications is also illustrated in Fig-
ure 6.5. Large swarms show no significant decrease in performance for up to
80% of the packet loss probability.
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6.4.1.3 Effect of Prioritization Strategies for Opinion Propagation

The different prioritization mechanisms for propagating opinions are shown in
Figure 6.6 (bright bars). Three simple baseline approaches are compared with
the optimizations proposed in Section 3.4.2.2. In all cases, each robot r broad-
casts the current opinion of a single robot s" € S’ C S" every 0.1s, where S"
denotes the set of all robots in the swarm knowntor,and S’ = {s|s€S",0} #
o} (i.e., S’ denotes the set of robots for which r has an updated opinion that
has not yet been broadcast). The only difference among different strategies lies
in how s’ is selected in S ..~ The baseline approaches that we consider are: (i)
selecting s” in a purely random way, (ii) selecting s’ as the robot whose opin-
ion was most recently updated (LIFO), and (iii) selecting s’ as the robot whose
opinion was least recently updated (FIFO). These opinion selection approaches
consist in selecting s’ as the robot maximizing I, (s") or maximizing I,(s").
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Figure 6.6. Time to decision as a function of message prioritization strategies.
N =20, A, =2 and T = oo (i.e., all decisions are evidence-triggered). Each
data point is the average of 50 trials, 95% confidence intervals are reported. All
simulations result in a correct classification due to the large amount of collected
evidence (large A,). Differences in time to decision are accountable to different
prioritization mechanisms. A lower bound is reported which is obtained using
an idealized communication model in which all opinions are instantaneously
made available to all robots. The leftmost dark bar reports the results in the
same scenario when the simplified protocol in [Giusti et al., 2012c] is used.

Among the baseline approaches, FIFO performs the worst and LIFO results in
the best performance (shortest time to decision). This is because, in LIFO recent
opinions (which normally contain more information) are given priority and tend
to spread faster throughout the swarm. Significant performance improvements
are observed when the proposed intelligent prioritization criteria are used. In
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particular, prioritizing opinions of the robots that maximize I,(-) yields the best
decision speed at around 4.5s, which is close to the performance obtained with an
idealized communication model in which all opinions are instantaneously shared
among all robots in the swarm immediately after they are generated.

In the cooperative recognition protocol (see Section 3.4), multiple classifi-
cations from the same robot are aggregated over time into opinions, which are
then propagated. In [Giusti et al., 2012c], we described a simpler approach in
which each classification is propagated to the swarm individually: no time ag-
gregation of information is performed before transmission (dark grey bar on the
left of Figure 6.6). When the two approaches (with and without temporal aggre-
gation) are compared as shown in Figure 6.6, the local temporal aggregation of
information results in an improved swarm-level performance (light grey bars).

6.4.2 Performance of Data Fusion Approaches

The experimental results reported and discussed in this section evaluate the per-
formance of different data fusion approaches for building swarm-level consensus
decisions. The goal of this section is to identify the best data fusion method that
can be used in conjunction with Algorithm 1. These results are emulation exper-
iments that use the K = 6 finger count gesture dataset.

6.4.2.1 Swarm-level Accuracy based on Robot Positions

At first, we investigate the swarm-level classification performance of the different
data fusion approaches presented in Section 3.4.3.1. Robot deployment positions
are classified into: good, bad, and mixed (good and bad) positions. Good po-
sitions refer to locations that provide better quality of sensed information (e.g.,
facing directly in front of the human, central field of view, at a shorter distance
from the human), bad positions refer to locations with worse sensing conditions
(e.g., rear field of view, partial occlusions, excessive distance from the human),
and mixed positions consist of both good and bad positions.

The number of cumulative prediction mistakes made by the swarm and indi-
vidual robots (in different positions) are reported Figure 6.7, which is the out-
come of a single typical run in our experiments. The abbreviations, AA, WdAA,
WKAA, Freq, and Avg refer to, the Aggregating Algorithm, the Weighted Average
Algorithm, the Weak Aggregating Algorithm, Frequency counting and Averaging
respectively, as presented in Section 3.4.3.1. The noticeable repeating pattern
in Figure 6.7 is that, the consensus performance with a swarm is better than
that of individual robots and the Avg approach (that closely follows the Freq
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approach) outperforms all other data fusion approaches. Also as expected, the
performance of individual robots deployed in good sensing positions is better
than that of robots deployed in bad and mixed positions.
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Figure 6.7. Cumulative mistakes vs. number of training (learning) samples for a
20-robot swarm. Individual robots in the swarm are deployed at different (good,
bad, and mixed) sensing positions.
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Figure 6.8. (a): A swarm of N = 50 robots. (b): A swarm of N = 100 robots.
In both plots, robots are deployed at different (good, bad, and mixed) sensing
positions. The majority of individual robots are located in bad sensing positions
due which the number of cumulative mistakes is large.

Experiments with large size swarms are reported in Figure 6.8. More specif-
ically, in Figure 6.8(a) swarm of N = 50 robots is emulated and Figure 6.8(b)
shows results from a swarm of N = 100 robots. For the 50-robot and 100-robot
swarms the three approaches, Avg, Freq, and WKAA closely follow each other and
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provide the best performance in terms of the smallest number of cumulative mis-
takes. In the case of the 50-robot swarm the Avg approach clearly outperforms
all other data fusion methods, and for the 100-robot swarm the WKAA approach
outperforms all other approaches. For both plots in Figure 6.8, on average, there
are more individual robots in bad sensing positions as compared to individuals in
good positions, which results in a large number of mistakes made by individuals.
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Figure 6.9. Impact of different deployment positions (good, bad, and mixed) on
the cumulative mistakes made by a 13-robot swarm after 20 interaction rounds.

The impact of distinctive deployment positions is shown in Figure 6.9 us-
ing a swarm of N = 13 robots. These results are produced after emulating 20
interaction rounds using full feedback (see Section 5.3.1.2) and on each interac-
tion round 20 gestures are shown to the swarm. These results are computed by
averaging the results of 20 trials per experiment. Performance decreases when
robots are deployed at bad sensing positions and vice versa for good positions.
One interesting observation is that, in bad positions the improvement of aver-
aging methods is the highest as compared to all other methods. As bad sensing
positions result in a lower entropy (see Figure 3.5), averaging is most beneficial
when the majority of robots produce classifications vectors with high uncertainty.

6.4.2.2 Impact of Swarm Size on Data Fusion Approaches

The impact of swarm size on different fusion methods is reported in Figure 6.10.
Experiments have been performed using swarms of N=[13,26,39,52,65,91]
robots. These results are computed by averaging 20 experimental trials. The
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major observable is that, larger swarms yield less mistakes when making swarm-
level consensus predictions as compared to smaller size swarms. Also, swarms
with N = [65,91] robots have nearly similar performance. Since the acquired
dataset has a maximum number of 65 viewpoints (see Section 6.2), the 91-robot
swarm is emulated by assigning one viewpoint to more than one individual robot.
As more than one robot acquires information from the same viewpoint, both
swarms of N = [65,91] robots learn the same information with the only differ-
ence being that the 91-robot swarm learns highly correlated information.
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Figure 6.10. Effect of different swarm sizes (N = [13,26,39,52,65,91] robots)
vs. number of cumulative mistakes after 20 interaction rounds.

6.4.3 Effect of Weighting on Opinion Fusion

This experiment is designed to study the effect of weighting opinion vectors.
Weight calculation is performed as follows. Let d(r, ;) denote the angular dis-
tance between two robots r; and r,. We assume that there is a minimum angular
distance d,, such that, when d(r,,r,) > d,,, the observations of r; and r, can be
considered independent (in the experiments d,, is set to 30°). The weight w, of
a robot r depends on the number its of neighbours and the positions of its neigh-
bours closer than d,,. Let Q(r) = {q;1,q,,""*q|q} be the set of such neighbours
(referred to as sensing neighbours) and let |Q(r)| denote its cardinality. We define
w, according to the following equation:

w, = L (6.1)

(14 Zpeqim e (d (1,0))?)
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where c(-) is a linear function of the distance between r and its neighbour is
defined by c(d,,) = 0 and ¢(0) = p with 0 < p < 1. The parameter p indicates
the expected redundancy between observations gathered by two robots at the
same position (viewpoint) and its value is experimentally set to p = 2/3. The use
of eq. (6.1) to define w has several nice properties:

1. Function f : R*M — RN that maps the position of the robots to weights is
continuous.

2. If a robot q € Q(r) moves farther from robot r, w, increases such that r’s
opinion gains importance.

3. It can be proven that the optimization of a robot’s own weight consequently
equalizes the distances between the robot and its neighbours.

According to eq. (6.1), a robot computes its weight by only knowing the an-
gular distance to each sensing neighbour. With the Foot-bot platform the angular
distance with respect to neighbouring robots can be computed by using the mea-
sures provided by the RAB system (see Section 1.2.1.1).

+3 % ' ' : T -
3+1lrobots __ Equal weights for all robots

\ ~. (baseline)

+2 %

+1%

Accuracy relative to baseline

1% 4 L L I I 1
0.4 0.5 0.6 0.7 0.8 0.9 1

Weight for grouped robots

Figure 6.11. Effect of opinion weighting on accuracy. Thin red line: group of
2 robots + 1 isolated robot (w = 1). Thick blue line: group of 3 robots + 1
isolated robot (w = 1). 95% confidence intervals are reported.

To verify that the opinion weighting approach is meaningful, we design the
following experiment. Three robots a, b, and c are considered all at the same
distance d from the gesture. Robots a and b are very close to each other and
share the same angular position 6, = 6, = 0’, whereas robot c is at a much larger
angular distance 6, = 6’+30° (i.e., it is isolated from the other two robots). Each
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robot outputs one classification vector which is fused with the weight of robot ¢
fixed to the maximal value, while the weight of the grouped robots a and b is
varied: w, = 1 and w, = wy, = w,, € [0,1]. In this way, we study the impact
of different weightings for robots a and b which report correlated opinions. For
each experiment trial, the swarm-level decision vector D = w,,C,+w,;,C,+w_C, is
computed and the consensus result is considered successful if the largest element
of D corresponds to the true class of the given gesture.

This experiment is performed by using as observations for robot a, b and c,
three images belonging to the testing set that are acquired during the same time
interval (i.e., timestep). In this way, we approximate the simultaneous acquisi-
tion of the same scene from three robots that are located at different viewpoints.
This procedure is repeated for all triplets of observations in the testing set and
for different values of 6’. The resulting average classification accuracy is com-
puted as a function of the weight w,,. Experimental results are reported in Fig-
ure 6.11. The thin red line shows the average accuracy peaks are w,, ~ 0.7.
The improvement over the baseline (all robots have the same weight) is limited
but statistically significant for p < 0.01 under the Wilcoxon paired signed-rank
test. Using a peak value w = 0.7 and solving for p in eq. 6.1 with one single
neighbour at distance 0, yields p & 2/3 which is the value of p used. Repeating
the same experiments with a triplet of robots in the same position and a fourth
isolated robot (thick blue line), the average accuracy peaks when the weight of
the correlated robots is set to w = 0.55 (with a +2.5% improvement over the
baseline), which is consistent with the value p ~ 2/3 in eq. 6.1.

6.4.4 Single-robot Performance based on Robot Position

This experiment investigates the classification accuracy of a single robot as a
function of the robot’s position. To perform this experiment, the K = 6 finger
count dataset (see Section 6.2) is used and the classification vectors obtained
from the entire dataset are scored. The results reported in Figure 6.12 (top)
illustrate how effective a trained SVM classifier is in terms of recognition accu-
racy. Robots positioned in central locations (i.e., close to 6 = 0° the direction
the gesture was directed to) provide good recognition accuracies up to 81%.
The accuracy of classification vectors obtained from bad sensing viewpoints is
extremely poor and barely larger than 1/k (where K = 6 represents the number
of gesture classes), which is the performance of a random classifier. The perfor-
mance systematically degrades with the increase of the angle with respect to the
gesture and with the increase of the human-robot radial distance. Performance
at the radial periphery is extremely poor due to the extremely bad viewpoint.
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Robots closer to the gesture generally perform better than robots farther
away, although distance has a smaller effect than the angle. From a larger dis-
tance the gesture appears smaller (i.e. covering less pixels), which makes the
segmented hand masks less accurate due to the limited resolution of the cam-
era, image noise, and segmentation inaccuracies. The dataset includes some
viewpoint-dependent disturbances which affect accuracy: strong light sources
which create problems to robots at angle 6 = +60° and objects with similar
colour as the gloves create segmentation issues.
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Figure 6.12. Top: Average accuracy as a function of robot position. Bottom:
Normalized entropy of classification vectors obtained from different viewpoints.

In addition to classification accuracy, the entropy of the classification vec-
tors is reported in Figure 6.12 (bottom). The impact of an opinion vector ¢ in
the consensus building process is determined by the opinion’s weight and also
by the relative differences among ¢’s components (gesture classes). In other
words, the entropy of ¢ precisely quantifies how much information is carried
in the opinion. The values reported in Figure 6.12 (bottom) refer to the nor-
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Figure 6.13. Opinions from bad viewpoints (dark red) have, on average, a lower
impact I(o) than opinions from good viewpoints (light blue). The histogram
is computed by using 4000 opinions for each of the two groups. Each opin-
ion is generated as the sum of w = 10 classification vectors that result from 10
consecutive gesture images acquired from a single viewpoint.

malized entropy H(c), which is low only when the opinion strongly favours
some gesture classes over others. For instance, H(c = {0,0,1,0,0,0}) = 0 and
H(e={Y/s,/6,1/6,1/6,1/6,1/6}) = 1.

Classification vectors resulting from angled viewpoints exhibit, on average, a
larger entropy than classification vectors from good viewpoints. As a result, in
the consensus process the opinions of robots in good positions have a larger ef-
fect in determining the winning gesture class with respect to the other opinions.
Similarly, correct opinions have classification vectors with an average entropy
H = 0.67, which is significantly lower than the average entropy of wrong classi-
fication vectors H = 0.76. As classification vectors are aggregated into opinions
and spread throughout the swarm network, Figure 6.13 shows that, on average,
an opinion o generated at a good viewpoint has a larger impact I(o) than an
opinion from a bad viewpoint. This implies that the opinions from good view-
points tend to propagate faster in communication-limited scenarios when the
importance-based prioritization mechanisms in Section 3.4.2 are adopted.
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6.5 Results for Chapter 2

This section presents the experimental results of Chapter 2 and evaluates the
techniques and strategies for bidirectional human-swarm interaction and com-
munication. These experiments consider the scalability of multi-robot inter-
faces [Velagapudi et al., 2008; Humphrey et al., 2007] and the metrics used
by HMRI systems [Pourmehr et al., 2015; Olsen and Wood, 2004; Olsen et al.,
2004]. Experiments are the results of real-time (online) testing with the Foot-bot
robots (see Section 1.2.1.1). The experiments dealing with gesture recognition
adopt the SVM classifier and use the entire vocabulary of K = 16 gestures.

6.5.1 Swarm-level Classification Performance of Words

At first, we evaluate the recognition performance of individual gestures (words)
in the vocabulary using real robots. This experiment is performed with a single
robot and with swarms of N = [3,5,7,9,12,15] robots. The results reported in
Figure 6.14 are averaged over 50 trials (i.e., every bar represents the average of
recognizing the same gesture 50 times). As expected, a larger swarm provides a
positive effect and significantly improves the swarm-level classification accuracy.
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Figure 6.14. Recognition performance of gestures in Figure 2.4 using real robots.
(a): Classification accuracy of robot selection gestures vs. swarm size. (b): Ac
curacy of application-specific gestures vs. swarm size.

The classification accuracy of the robot selection gestures (see Figure 4.1) is
shown in Figure 6.14(a). It is observed that, spatial pointing gestures are more
difficult to classify as compared to the non-spatial gesture in Figure 4.1(d) which
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used to select all robots in the swarm. Figure 6.14(b) reports the classification
accuracy of the K = 6 application-specific gestures in the vocabulary (see Fig-
ure 2.4(b)). The takeoff, land, and go to base gestures are easier to recognize
as compared to the follow, search, and go to and wait gestures. The go to base
gesture has the highest classification performance and can be easily recognized
as compared to all other gestures. This simply is because, the go to base gesture
represents a one-handed command that requires a correct classification from a
single hand, while all other gestures are two-handed are require correct classifi-
cations from both hands. The go to and wait and follow gestures have the lowest
recognition accuracy due to their complex shapes.

6.5.2 Swarm-level Accuracy for Classifying Sentences

This section evaluates the performance of robot swarms for classifying full sen-
tences from the gesture language. We setup five different experiments that cover
a wide range of scenarios and effectively measure the performance of the gesture
language and the swarm-to-human feedback. The five experiments (E;, E,, ..., Es)
act as indicators and are presented below.

Experiment E;: In the first experiment, the classification performance of the
gesture language is investigated under normal operating conditions. Perfor-
mance is evaluated using swarm-to-human feedback that has four typical recog-
nition outcomes: properly recognized, not properly recognized, inappropriate
and undefined (see Section 2.3.2). In this experiment, two multi-class SVM clas-
sifiers are used to classify an individual gesture (word). The classification perfor-
mance of a full sentence is evaluated by using 6 classifiers [Cr;, Cps, ..., Crg | (s€€
Section 2.3.2.2). For instance, to classify a gesture to select robots, Cr; and Cps
are used, and to classify an application-specific gesture, Cp, and Cy; are adopted.

Experiment E,: In this experiment, the recognition performance of the gesture
language is investigated in the case when the grammar is ignored in the sentence.
When the grammar is ignored, each individual gesture (word) is recognized by
using classifiers that are trained on a combination of gestures from multiple se-
mantic classes (see Section 2.2.2). In simpler words, a single classifier is used
to recognize an individual gesture in a sentence. In practice, this experiment
uses only 3 classifiers to recognize full sentences, namely, Cp,, Cps, and Cpg (see
Section 2.3.2.2). Each of the three classifiers are trained on gestures that are
associated with any two semantic classes.
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Experiment E;: This experiment investigates the scenario in which the swarm
does not provide feedback to the human after the recognition of an individual
gesture in a full sentence. As no acknowledgement is given to humans after
the recognition of gestures, humans present gestures with a natural timing. The
swarm does not inform the human when the gesture was recognized and when
the next gesture in the sentence is expected. Only at the end of the sentence
the human can observe the final classification result and check whether the full
sentence was properly recognized or not. In practice, a single classifier is used to
recognize an individual gesture in every semantic class. To recognize sentences
4 classifiers are used, one classifier for each semantic class. Every classifier is
trained on the set of gestures that are associated only to that semantic class.

Experiment E,: This experiment evaluates the performance when one random
gesture in every semantic class is replaced with a gesture that is not defined in the
gesture language, namely an undefined gesture. If the full sentence is properly
recognized including the undefined gesture, then the classification outcome is
considered correct, otherwise in all other cases the recognition outcome is con-
sidered incorrect. To recognize an individual gesture 2 classifiers are used in
every semantic class, and to classify full sentences all 6 classifiers are used.

Experiment E5: In the final experiment, one random gesture in every semantic
class is replaced with a gesture which is in the defined gesture language but out-
side the set of expected gestures, namely an inappropriate gesture. For instance,
when a swarm requests a human to present a gesture to select robots and the
human provides a direction for robots to move, the command provided by the
human is considered inappropriate based on the semantic class requested by the
swarm. If the entire sentence is properly recognized including the inappropriate
gesture, then the recognition outcome of the swarm is considered correct, while
in all other cases it is considered incorrect. For classifying an individual gesture
2 classifiers are used and to recognize full sentences all 6 classifiers are adopted.

The results of all five experiments with respect to different swarm sizes are
reported in Figure 6.15. To perform these experiments, a set of 20 predefined
sentences are chosen (see Section 2.2.3.4) which include the K = 16 gestures in
the vocabulary. Each of the 20 sentences are evaluated with the five experiments,
and in this way each experiment evaluates the performance of nearly 50 gestures.
The first observable from Figure 6.15 is that, the larger the swarm size, the higher
will be the classification performance for all five experiments.
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Figure 6.15. Results for the swarm-level recognition of the five experiments
(Ei, E,,...,Es) vs. swarm size, using real robots. (a): Classification accuracy of
gestures (words). (b): Accuracy of sentences composed of 2 to 4 words.

The classification performance of words (individual gestures) is shown in Fig-
ure 6.15(a) and the classification accuracy of sentences composed of 2 to 4 words
is given in Figure 6.15(b). The second noticeable fact from both plots is that, E;
has the best performance and E; has the worst performance. E; is the most
challenging experiment because the swarm does not provide acknowledgement
(feedback) to the human when the human should stop showing the gesture and
when the next gesture needs to be presented. The performance of E, is lower
than E,, because E, does not use classifiers that are trained for each semantic
class in the grammar. Instead classifiers in E, are trained using gestures asso-
ciated with multiple semantic classes which makes it more difficult to properly
recognize gestures. The performance of E, (undefined gestures) and Eg (inappro-
priate gestures) is significantly good and similar to E;. Even in the most difficult
settings such as E, and E;, a 70% classification accuracy for individual gestures
and a 50% accuracy for full sentences is obtained.

The recognition accuracy of words (individual gestures) and sentences (com-
posed of 2 to 4 words) using E; with N = 15 robots is reported in Figure 6.16.
These results are produced using 20 trials and on each trial the same set of indi-
vidual gestures and sentences are evaluated. For N > 10 robots, the classification
accuracy of words and full sentences is greater than 80%. The average accuracy
for recognizing words is greater than that for sentences, even though there are
50 words on average and the total number of sentences is less than !/2 of the
total number of words. As the classification accuracy increases with the increase
in swarm size, the variation in the accuracy decreases which is indicated by the
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boxes that get smaller in height at larger swarm sizes. With large swarms the
classification accuracy of the gesture vocabulary can be reliably determined.

6.5.3 Time Taken for Interaction and Recognition

As interaction time is an essential metric in HRI efficiency [Crandall and Cum-
mings, 2007a,b] and designing interfaces that have smaller interaction times is a
strong theme in HRI [ Goodrich and Olsen, 2003], we investigate the time taken
by a swarm of Foot-bots to recognize individual gestures and full sentences.

The research team at the Autonomy Lab of Vaughan [Pourmehr et al., 2015]
identified that, the time taken to interact with multiple robots depends upon
the: interface design, communication method and strategy, physical workspace,
spatial arrangement of the robots, and time needed by the swarm to sense and
recognize inputs given by humans. We consider that, the total interaction time
tine Tequired for a recognizing an individual gesture or a full sentence can be
represented by t;,; = thuman + tswarm> Where tp ., represents the time during
which the human interacts with the swarm and t,,,,,, is the time during which
the swarm conveys multi-modal feedback to the human.
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Figure 6.16. The classification accuracy of E; for recognizing individual gestures
and sentences composed of 2 to 4 words using N = 15 robots.

The time during which the human interacts with a swarm is then considered
as, thyman = Cmeancel T Cetassify> WHETe tocance T€Presents the time taken by the
swarm to identify that human motion is cancelled so the sensing of the gesture
can begin, and the time taken by the human to provide a gesture and settle
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(finalize) on a gesture. Time ¢4, represents the time taken by the swarm
to: sense a gesture, obtain classification results from individual robots, and fuse
individual robot opinions to produce a swarm-level consensus decision.
Similarly, the time taken by the swarm to interact with the human is repre-
sented DY, t50rm = Creedback + Louider WNETE Lreeqpqck TEPrEsents the time during
which the swarm conveys multi-modal (audio/visual) feedback to the human
regarding the swarm-level classification outcome of a gesture. Time t,,4, rep-
resents the time taken by the swarm to: guide humans through the interaction
process (i.e., request humans to provide a gesture for a specific semantic class),
and to convey to humans the classification outcome of fully recognized sentences.
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Figure 6.17. (a): Time taken by the human to interact with swarm ty,;.q.n
vs. swarm size, to classify individual gestures (words). (b): Time taken by a
swarm of N = 15 robots to convey feedback to the human after recognizing
words and sentences composed of 2 to 4 words.

6.5.3.1 Components of Interaction Time

In this experiment we investigate the time required to recognize individual ges-
tures (words) and sentences from the gesture language. These experiments are
performed by randomly evaluating 20 words and sentences, and averaging the
classification results over 20 trials. Humans present gestures to swarms with a
smooth and natural timing (i.e., gestures issued by humans are not very fast nei-
ther too slow). Experimental results are reported in Figure 6.17. As expected,
Figure 6.17(a) reports that, as the swarm size increases the time taken to coop-
erate and reach a swarm-level consensus is longer. Also, Figure 6.17(b) shows
that sentences with more words require a larger interaction time.
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For the classification of an individual gesture, the time t;,,,.,, taken by a hu-
man to interact with swarms of different sizes is shown in Figure 6.17(a). A sin-
gle robot provides a faster recognition outcome as compared to a swarm. This
is because, in the case of a swarm, the cooperative recognition protocol requires
a small amount of time to produce a swarm-level recognition outcome, but for
a single robot the decision is issued instantly after gesture classification is com-
plete. Using a swarm of N = 15 Foot-bots, time t ¢, is nearly 3s, time ., qncel
is roughly 5s, and time ty,,,,,, is less than 9s. These times are reasonable consid-
ering the limited computational capabilities of the Foot-bots.

The time t,,,,, taken by a swarm of N = 15 robots to recognize a single
gesture and sentences composed of 2 to 4 words is reported in Figure 6.17(b).
As observed, time t,,,, scales almost linearly with respect to the number of
words in a sentence. This is because toqpqcx and tg,;4, are almost the same for
any individual gesture (word) in entire the vocabulary.
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Figure 6.18. The total interaction time t,,, taken by a swarm to recognize words
and sentences composed of 2 to 4 words vs. swarm size.

6.5.3.2 Total Time Taken for Word and Sentence Recognition

This experiment investigates the total interaction time t;,,, = tpman T tswarm taken
by the different swarm sizes to recognize individual gestures (words) and full
sentences. Experimental results are shown in Figure 6.18. Using a swarm of
N = 15 Foot-bots, an individual gesture (single word) roughly takes 10s and
sentences composed of 2, 3 and 4 words require, 25, 36 and 44s respectively.
This suggests that sentences composed of 5 words may take up to 1 minute.
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On average, with a swarm of robots, time t;,, for an individual gesture (word)
is approximately 10 to 12s. This amount of time is considered rational since
gestures are given with a natural timing. Evidently, time t;,, can be minimized

if humans present gestures with a fast timing.

6.5.4 Effect of Uncertain Swarm-level Recognition Decisions

This experiment reports the effect of uncertain (not confident) swarm-level con-
sensus decisions based on the average probability difference P,,, between two
supervised classifiers. Within uncertain decisions, we investigate the effect of
not properly recognized and undefined decisions (see Section 2.3.2.1). By select-
ing P,,, = 0.5 as the baseline for uncertain decisions (see Section 2.3.2.2), we
consider that, not properly recognized decisions lie within the range P,,, > 0.5

and undefined decisions are within the range P,,, < 0.5.
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Figure 6.19. The distribution of average probability difference P,,, values for
undefined and not properly recognized decisions vs. swarm size.

In this experiment, we evaluate the distribution of P,,, values for different
swarm sizes. To perform this experiment, a set of 20 full sentences is evaluated
which results in P,,, values that correspond to 35 undefined and 38 not properly
recognized decisions. The experimental results are reported in Figure 6.19. In
the case of a single robot, the majority of not properly recognized decisions lie
in the range between 0.5 < Py, < 0.85 (mean at 0.7), undefined decisions are
within the range 0.2 < P,,, < 0.5 (mean at 0.3), and the distribution of P,
values is large as represented by the tall boxes.

vg
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The decisions produced by smaller size swarms (e.g., N = [1,5] robots) on
average have a distribution (spread) of P,,, values closer to the baseline (0.5).
This is because, swarms with a relatively few number of robots have higher un-
certainties in their decisions. As the swarm size increases the distribution of the
decisions shifts from P,,, ~ 0.5 to P,,, — 0 (for undefined) and P,,, — 1 (for
not properly recognized) which is indicated by the tall boxes that shrink in size
(get smaller in height). For swarms of moderate sizes (e.g., N = 15 robots)
the majority of not properly recognized decisions have on average P,,, = 0.95
and undefined decisions have P,,, = 0.1. This indicates that large swarms yield
decisions that are well separated from each other.

6.6 Results for Chapter 4

This section reports the experimental results of Chapter 4 and evaluates the per-
formance of the developed algorithms and techniques. Experiments performed
are the results of emulation tests that use the dataset of K = 3 robot selection
gestures and the K = 6 finger count gestures. For the recognition of spatial ges-
tures, one multi-class and one binary-class SVM is adopted, and both classifiers
are trained using hand-crafted features.

6.6.1 Swarm Understanding Performance for Robot Selection

To verify the robustness and performance of the algorithms and strategies that
select robots from a swarm, several experiments using different spatial configura-
tions of individuals and groups of robots are performed. In every configuration,
a human operator attempts to select an individual robot or a groups of robots.
Experiments are performed by selecting subsets of spatial gesture images from
the dataset and evaluating Algorithms 2 and 3. The results indicate robot selec-
tion accuracies as grayscale color maps. All experiments are averaged over 100
trials using images from similar spatial configurations of the robots on each trial.

6.6.1.1 Effect of Individual Selection Scores

In this experiment, we study the effect of the individual selection score ;4. €
[0,1] on surrounding, non-selected robots. The experimental results are re-
ported in Figure 6.20 (top). For this experiment two configurations of two indi-
vidual robots are considered. In the first configuration the two individual robots
are very close to each other (top right), and in the second configuration the two
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individual robots are far apart from each other (top left). All surrounding robots
are uniformly spread around in the environment.

The gray colormap in Figure 6.20 (top) illustrates the individual selection
score T4, for all robots that surround the two selected robots. The positions
(cells) with dark colors represent surrounding robots that have large values of
T'indser (@S they are very near to the two selected individuals), while surround-
ing robots with light coloured cells represent that these robots are far from the
two selected individuals. As expected, when robots are positioned within close
proximity of each other the success rate of selecting individual robots decreases.
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Figure 6.20. Top: Individual robot selection scores r;, .., computed using Algo-
rithm 2 for two robots close to each other (left) and the two robots far from each

(right). Bottom: Group selection scores r,, ., computed using Algorithm 3.

6.6.1.2 Sensitivity of Group Selection Scores

This experiment investigates the sensitivity of the group selection score r, . on
surrounding, non-selected robots. Experimental results are shown in Figure 6.20
(bottom). As shown by spatial configurations of robots, we select a group of 8
robots (cells with blue background) from a swarm of N = 15 robots while the
non-selected robots are placed uniformly in each one of the remaining cells. The

gray colormap in Figure 6.20 (bottom) represents the group selection score ;...
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for all deployed robots. The dark color cells represent surrounding robots with
values of r,, ... that are similar to the selected group, while surrounding robots
with light coloured cells indicate that these robots are far from the selected group.

Table 6.1. Accuracies for selecting spatially-located individuals and groups of
robots from a swarm using an incremental and simultaneous selection approach.

Configuration | Incremental | Simultaneous | Success
LI, 2/2 - 98%
G,G, - 2/2 96%
1,1,G, 2/2 1/1 91%
1,1,G,G, 2/2 2/2 87%
I,I,I5G,G, 2/3 1/2 82%
1,1,1,G,G,G, 3/3 2/3 76%
I,1,151,G,G,G, 3/4 3/3 68%

I 1,1,1,G,G,G5G, 3/4 2/4 62%

Total Accuracy 85% 76.5% 82.5%

It is observed that the success rate in selecting a group strongly depends upon:
(i) the angular distance between the robots to be selected and (ii) the distance
to other surrounding (neighbouring) robots. When a group of robots that needs
to be selected is within close proximity of other groups or individuals, there is a
high chance that undesired robots may get selected in the group. This is because,
when undesired robots are in close proximity r of undesired robots will be
similar to that of the group being selected.

grpscr

6.6.1.3 Effect of Incremental and Simultaneous Selection

This experiment investigates the success rate for selecting a desired number of
individuals and groups of robots using an incremental and simultaneous selec-
tion approach. In this experiment, we use 8 different scripted configurations
attempted by a human operator to select individuals and groups from a swarm
of N = 15 robots. The results are summarized in Table 6.1, where I; and G;
indicate that the human issued a gesture to select the ith individual or group
respectively. Individual and groups of robots are indexed from 1 to 4.

It is observed that, on average, the accuracy for selecting individuals (incre-
mental selection) is the highest at 85% and the performance for selecting groups
of robots (simultaneous selection) is the lowest at 76.5%. The accuracy for se-
lecting groups is low because after two groups have been selected (i.e., G,G,),
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there is a high probability that the third and fourth groups to be selected (i.e.,
G5 and G,) will contain undesired robots (i.e., robots that are not meant to be
selected). The total success rate for the combined selection of individual and
groups over all selection trials is 82.5% which is considered significantly good
for combined incremental and simultaneous selection.

6.6.1.4 Effect of Swarm Size on Selection of Individuals and Groups

In this experiment, we investigate the effect of swarm size on the selection accu-
racy of individuals and groups of robots. This experiment is the average result
of the 50 selection trials, where on each trial robots are positioned in different
spatial configurations. The effect of the selection accuracy on different swarm
sizes is reported in Figure 6.21 for all robots, individuals, groups, and individu-
als inclusive of groups. As expected, large swarms have a negative impact on the
selection accuracy since it decreases with the increase in swarm size.
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Figure 6.21. The accuracy for selecting, all robots, individual robots, groups of
robots, and individuals inclusive of groups vs. swarm size.

The accuracy for selecting of individuals and groups from large swarms (e.g.,
N >=10 robots) is relatively poor. With a swarm of N = 15 robots the selection
accuracy of individuals and groups is lower than 60%. On average, the selection
accuracy of individual robots is significantly better than the selection accuracy of
groups. This is because, individual robots have a wider spatial workspace (i.e.,
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the selection of individual robots is robust to a wider set of mutual poses). This
indicates that the spatial configurations of individual robots have a reduced effect
in relation to the size of the swarm.

6.6.2 Effect of Mobility Rules for Swarm Deployment

This section reports the performance of the spatially-aware deployment tech-
niques and mobility strategies that reshape the spatial distribution of swarms (to
obtain better sensing coverage of gestures) and provide human-relative local-
ization. Performance is evaluated both with UGVs and UAVs. Emulation experi-
ments are performed using a dataset of gesture and face images (see Section 6.2).

6.6.2.1 Impact of Mobility on UGVs and UAVs vs. Recognition Accuracy

This section investigates the effect of mobility strategies on the swarm-level clas-
sification of gestures. The average swarm accuracy obtained with and without
the use of mobility strategies for different swarm sizes is reported in Figures 6.22
and 6.23. These results indicate that the use of swarm mobility provides signifi-
cant improvements in the swarm-level consensus performance.

The swarm-level accuracy with respect to the time required to issue decisions
(which is set using the prudence parameter A,) in the case of mobility and with-
out mobility, is shown in Figure 6.22. To have approximately the same amount of
observations per robot in each scenario, A, is set to a very large value (i.e., robots
never take a decision before the time triggering threshold T is reached). The time
to decision is therefore constant in all simulations and accuracy depends on the
quality of observations and the efficiency of the opinion propagation mechanism.
With the use of mobility strategies the time to reach a swarm-level decision is ap-
proximately 20% less as compared to the case with no mobility.

The effect of different mobility strategies and different swarm sizes is reported
in Figure 6.23. Positive effects of mobility on swarm-level accuracy are observed:
in all settings, the difference between bar a (no mobility) and b (mobility ac-
cording to the rules in Section 4.3.1) is statistically significant according to the
Wilcoxon paired signed-rank test p < 0.01. On one hand, mobility generally
improves communication for small swarm sizes since it tends to group robots en-
suring a more efficient way of multi-hop propagation of messages. On the other
hand, some mobility strategies may result in topologies which negatively affect
communication ability. For instance, when robots follow mobility Rules 1 and
2 (see Section 1.2.1.1) they tend to break the line-of-sight communication with
most of their neighbours except for the two closest neighbours.
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Figure 6.22. Swarm accuracy vs. time to decision as a function of prudency A,
using N = 10 robots with and without mobility and averaged over 20 trials.
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Figure 6.23. Accuracy obtained with swarms of N = {1, 10, 15, 20} robots when
using different mobility strategies, a fixed time threshold T = 5s, and A, = oo
(all decisions are time-triggered). Each data point is obtained as the average
of 100 trials, and the 90% confidence interval is reported. Bar series a, b and
c: realistic IR communication model in which two robots communicate only
if no other robot blocks their line-of-sight. Bar series d: line-of-sight constraint
is ignored. Bar series e: XBee radio communication model (which ensures full
connectivity). Bar series a: no mobility. Bar series b, d, e: mobility according
to Rules 1+ 2. Bar series c: mobility according to Rules 1b + 2.
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Differences in accuracy are accountable to the quality of observations and the
efficiency of opinion propagation. In Figure 6.23 the accuracies obtained with
the three mobility scenarios are: no mobility (bar series a), mobility according to
Rules 142 (bar series b), and mobility according to Rules 1b+2 (bar series ¢). In
the last case, not all robots reach the optimal sensing distance from the gesture
as they avoid a perfect semi-circular alignment and avoid occluding each other.
Gesture images acquired by the robots are expected to be of low quality but in-
formation flows between the robots is improved, which results in an increased
accuracy indicated by the gap between bar series b and c. Bar series d shows the
accuracy obtained by robots implementing mobility when line-of-sight occlusions
do not block communication. The difference of bar series b with respect to all
other bar series is that, bar series b quantifies the loss of accuracy due to broken
line-of-sight communication links. Lastly, bar series e reports performance ob-
tained with an XBee-based radio communication model which is simulated using
the NS-2 simulator. XBee-based communications do grant full connectivity and
do not incur bandwidth bottlenecks, however, they do not result in a significant
advantage over the less powerful mechanisms in bar series ¢ and d.

6.6.2.2 Face Pose Estimation Performance using UAVs

This experiment shows the performance of the face pose estimation system for
human-relative localization with UAVs (see Section 4.3.2). Observations sam-
pled from the dataset of face images (see Section 6.2) are used for online learning
and prediction using the IWPR method (see Section 4.3.2.3). The dataset is parti-
tioned into training and testing sets, where 30% of the samples are used for train-
ing and the remaining 70% are used for testing and validation. In regression-
based learning x; = {S!,S!,S!,d'} of image i represents a set of four face pose
features and y; = ¢, denotes its respective target label. Using a non-linear Gaus-
sian kernel, LWPR maps these features into a face pose ¢ which is projected onto
a [0,180°] semi-circular plane (with distance d serving as a normalization fac-
tor). An ordered pair (¢, d) computed from a face image represents the angular
distance between a human’s face and a UAV (see Section 4.3.2.2).

The face pose estimation accuracy of a single robot is investigated as a func-
tion of its angular distance (r,,r4). Using a subset of images from the dataset,
the average pose accuracy is computed using GT information which is the differ-
ence between the actual and predicted angular distances. Results are reported
in Figure 6.24. UAVs located at distances between d =[1,...,3]m in the central
sensing positions provide good accuracies up to 92%. With the increase in the
human-robot radial distance (e.g., d > 3m) performance systematically degrades
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as the face cannot be reliably detected at larger distances. A distance between
2 < d < 3m is considered a safe proximity to interact with airborne UAVs.
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Figure 6.24. Face pose detection accuracy of a single UAV as a function of the
angular distance (¢, d) with respect to the face pose.

6.7 Results for Chapter 5

This section presents the experimental results of Chapter 5 and evaluates the
performance of the developed swarm-level learning algorithms. All experiments
reported below are the results of emulations (that use the dataset of K = 6 finger
count gestures) and real-time testing with the Foot-bots.

6.7.1 Learning Cooperatively with Information Sharing

The performance of the distributed cooperative learning strategy is investigated
in this section. For the learning and recognition of gestures the multi-class SVM
classifier is adopted which is trained using hand-crafted features.

6.7.1.1 Experimental Scenario

Each simulation run starts at the beginning of the initial learning phase in which
every robot is initialized with an empty training set and placed at a random po-
sition. Initially, s;,;, = 5 samples are acquired from each of the K = 6 finger
count gestures by every robot. In this way, a total of T; = 5 x 6 = 30 samples
are acquired by every robot for the initial training phase (see Section 5.3.1.1).
After hand-crafted features are computed from the acquired T; samples, each
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robot broadcasts a subset of the acquired samples (i.e., computed feature vec-
tors). The value of parameter B € [0, 1] defines the fraction of newly acquired
samples which are disseminated by a robot. As an example, for B = 0 robots
do not communicate. For B = 1 robots exchange all acquired data and share
the same training set at any moment in the simulation. For B = 0.1 each robot
shares 0.1 x 30 = 3 training samples. When B € (0, 1) the samples to be shared
are selected according to one of the three strategies presented in Section 5.4.2.1.

After information sharing is complete, the training set of each robot contains
KM +BKM(N —1) training samples, where N represents the number of robots.
As an example, for B = 0.2 robot r in a swarm of N = 10 robots will have 84
samples in its training set T,: 24 samples in T? (still unknown to the rest of the
swarm), 6 samples in T (already disseminated to the rest of the swarm), and 54
samples in T¢ (received from the other robots in the swarm). The 60 samples in
T° U T represent the current common knowledge of the swarm.

When the initial training phase is complete the interaction rounds begin (see
Section 5.3.1.2), in which 150 random gesture commands are given by the hu-
man to the swarm. Before each gesture command is given, the positions of the
robots with respect to the gesture are randomized to simulate a realistic scenario,
since in between commands robots perform their own tasks which causes them
to be randomly scattered in the environment. By means of the cooperative recog-
nition protocol in Section 3.4, the swarm converges to a decision for the gesture
which can be correct or wrong. In both cases, each robot in the swarm acquires
the correct label for the given gesture using full feedback from the human and
adds the related information to the subset T? of its training set. After every 10 in-
teraction rounds robots exchange B x 10 training samples (selected within the T?
subset, which may include samples acquired during previous interaction rounds
but not samples which have already been disseminated).

When information sharing is complete the value of parameter R determines if
and when robots need to forget some of the training samples in order to limit the
size of the training set. Parameter R represents the maximum number of training
samples that a robot can retain. If the current size of the training set for a robot
exceeds R, one of the sample forgetting strategies in Section 5.4.2.2 is iteratively
applied to reduce/shrink the size of the training set (number of training samples)
to be exactly R. Finally, all robots retrain their classifiers (i.e., update classifiers
with new information) and a new interaction round starts.

The average classification accuracy of the swarm is computed after every 10
interaction rounds (see Section 5.3.1.2). In this way, for a full simulation run
of 150 gesture commands, we obtain 15 accuracy values measured at different
stages of the cooperative learning process. The first value corresponds to the
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first set of 10 commands in the first interaction round, which is obtained using
classifiers trained during the initial learning phase (see Section 5.3.1.1). Initial
classifiers are trained using T; = 30 samples. Subsequent values correspond to
incrementally larger training sets, until the maximum training set size (parame-
ter R) is reached. For each set of simulation parameters, 50 simulation runs are
performed using different realizations of random variables in the dataset.
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Figure 6.25. Average swarm accuracy vs. number of interaction rounds. Top:
Accuracy curves for different swarm sizes with robots sharing B = 25% of their
samples using representativity-driven selection. Bottom: Accuracy curves for
N = 13 robots corresponding to different communication loads (different per-
centages of samples shared among robots) B = {0%, 20%, 40%, 100%} with ran-
dom selection of samples. Grey bands correspond to confidence intervals.
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6.7.1.2 Effect of Swarm Size and Amount of Shared Information

The learning curves for different swarm sizes and different amounts of exchanged
information (e.g., 20% communication means that every robot only shares 20%
of its personal samples) are reported in Figure 6.25. As expected, larger swarms
yield a significantly better accuracy in all stages of the learning (training) process.
Two factors contribute to this effect:

* When B > 0, large size swarms are trained much faster than small size
swarms. This is because a large swarm collectively acquires and exchanges
a proportionally larger amount of training samples. A single robot or a
swarm which does not exchange training data (see the curve with B = 0%
in Figure 6.25 (bottom)) learns very slowly.

* When recognizing a gesture, large swarms enjoy a more powerful consen-
sus ability as more observations are accounted for.

The contribution of the former factor is explored in Figure 6.25 (bottom),
which shows how communication improves the learning ability of a swarm of
N = 13 robots. The latter factor is isolated when comparing the bottom curves
of both plots in Figure 6.25. In both cases (bottom curves), no communication
is allowed and each robot learns independently from the rest of the swarm. The
only difference among the two scenarios is given by the size of the swarm which
affects accuracy due to the different amount of data acquired during the con-
sensus phase. As expected, the 13-robot swarm in Figure 6.25 (bottom) with
B = 0% is more accurate than the single robot in Figure 6.25 (top).

The results in Figure 6.25 (bottom) report that, the larger the amount of
communication, the better is the swarm-level accuracy. After a very large number
of interaction rounds, the training sets of all robots become so large that no
further increase in accuracy is possible. At this point, all scenarios in Figure 6.25
(bottom) are expected to yield the same accuracy.

6.7.1.3 Effect of Selection and Sample Sharing Strategies

The effect of the three strategies for selecting training samples to disseminate
(see Section 5.4.2.1) is reported in Figure 6.26 (top). Giving priority to novel
samples results in a performance which is comparable to purely random selec-
tion for almost the entire training process. On the other hand, giving priority
to the most representative samples leads to a significantly faster learning rate
especially during initial training phase. This is due to the fact that a representa-
tive sample summarizes multiple samples as it lies near to their centroid. In this
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context, representativity-driven selection can be more informative compared to
the typical characteristics of a given class. Conversely, novel samples appear to be
more useful later on in the learning process due to their contribution in refining
the decision boundaries of the classifiers.
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Figure 6.26. Top: Effect of using different selection strategies for sharing samples
with N = 13 robots, F = 30 features, B = 50% communication, and R = oo
(robots never forget samples). Bottom: Accuracy using representativity-driven
selection with N = 13 robots and different number of features.

6.7.1.4 Impact of Number of Features in Bandwidth-limited Scenarios

Communication constraints are the main reason for limiting the amount of infor-
mation in the training samples which are shared among robots in a swarm. As
training samples comprise of feature vectors with their respective GT classes, the
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dimensionality of the features vectors (i.e., feature space) to be exchanged is an
important parameter. Larger feature vectors produce more powerful classifiers,
but at the same time require more bandwidth for dissemination. In bandwidth-
limited scenarios, a trade-off emerges as using more features implies disseminat-
ing less training samples, which has a negative impact on learning rate of the
swarm. This trade-off is investigated in Figure 6.26 (bottom) which reports the
swarm learning curves when using different feature vector sizes.

Each robot has the opportunity to disseminate a fixed amount of information
corresponding to a total of F = 120 features after a set of 12 gestures is given
(i.e., approximately 500 bytes assuming single-precision floating point represen-
tation). In Figure 6.26 (bottom) it is observed that, when small feature vectors
are used (F = {2,5,10}) all acquired samples need to be shared among robots
in the swarm. However, the individual classifiers are still not powerful enough
and yield relatively poor recognition accuracy. If F = 120 features are used, each
robot can only disseminate 1/12th of the acquired samples and the size of the local
training sets increases at a much slower rate which results in slower learning.

In general, relatively small feature vectors (F = {10, 20}) lead to better accu-
racy during the initial training stage as they allow to quickly build moderately-
sized training sets. However, in the later training stage classifiers are not pow-
erful enough to exploit the expanding size of the training set. Instead, relatively
large feature vectors (F = {40,60}) lead to suboptimal results at the beginning
but are able to fully exploit the larger training sets accumulated in the later stages
of the cooperative learning process. Intermediate feature values (F = {30,40})
lead to nearly-optimal swarm accuracy in all learning stages (see Section 6.7.3).

6.7.1.5 Impact of Strategies for Forgetting and Removing Samples

One key requirement for real-time learning is to ensure that the retraining time
of a classifier remains manageable. A simple approach is to limit the maximum
number of retained training samples (parameter R). In Section 5.4.2.2 three sim-
ple strategies are presented that iteratively select the samples to be removed (for-
gotten) from the training database. The quantitative results of the swarm-level
accuracy and the SVM retraining time (computed on the Foot-bots) is reported in
Figure 6.27 which evaluates the effects of the three sample forgetting strategies.

In this experiment the same setup used in Figure 6.25 is considered with
N = 13 robots sharing all acquired samples (B = 100%). As we are interested
in the long-term behaviour, we consider a snapshot after 150 interaction rounds
are performed. At this point, a robot which did not forget any sample holds
around 2000 training samples, and on the Foot-bot platform the SVM retraining
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time amounts to nearly 5 minutes for the rightmost data point. With the large
amount of training samples, swarm accuracy reaches to 81.5%.

The forgetting strategies indicate that, selecting samples to forget using either
representativity-driven or redundancy-driven criteria is detrimental to swarm ac-
curacy when compared to random selection. This result is opposite to that ob-
tained for selecting samples to be shared, where random selection is clearly not
the best approach (see Figure 6.26 (top)). This due to the fact that, over time
these approaches incrementally bias the training dataset which fails to remain
representative of the classification problem to be solved. To forget samples, ran-
dom selection results in a system which pays a minimal penalty in terms of the
swarm accuracy while enjoying a fast retraining time. With R = 500, the swarm
accuracy decreases marginally to 79.6% but the training time does not exceed
30s compared to the case with R = 2000 = oo samples.
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Figure 6.27. Swarm accuracy (y-axis) vs. SVM retraining time on the Foot-
bot platform (x-axis, logarithmic) after 150 interaction rounds, N = 13 robots,
F = 30 features, and B = 100% communication. Different amounts of samples
maintained in the training set (R = {100, 200, 500, co}) along with three differ-
ent strategies for forgetting samples. For R = oo samples are never forgotten.
Vertical error bars report confidence intervals on the accuracy.

6.7.2 Offline Learning in Robot Swarms

This section presents the swarm-level classification performance using offline
learning methods, namely, the SVM and MPCNN classifiers (see Section 5.2).
Experiments are reported in Figure 6.28 and make use the dataset of K = 6 fin-
ger count gestures (finger counts from O to 5). The classification accuracy of the
SVM (trained using hand-crafted features) for different swarm sizes is shown
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in Figure 6.28(a). Figure 6.28(b) illustrates the swarm-level accuracy for the
MPCNN classifier using the same setup as for the SVM. The MPCNN architecture
used in this experiment consists of 6 hidden layers as shown in Figure 5.5. The
output maps of the fully-connected layer are down-sampled to 1 pixel per map
which result in a feature vector of F = 300 features. The output or classification
layer of the MPCNN consists of 6 neurons (i.e., one neuron per gesture class).’
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Figure 6.28. Swarm-level classification accuracy vs. swarm size for the K = 6
finger count gestures. (a): SVM with hand-crafted features. (b): MPCNN.

Using the SVM and MPCNN classifiers, simple shapes such as finger counts 0
and 1, are the easiest to classify with smaller swarms. Finger counts 2, 4, and
5 have nearly the same difficulty level in the multi-class classification problem,
and finger count 3 is the most difficult gesture to classify in terms of the required
number of robots. Finger count 3 is the hardest to recognize even for human
observers, due to the fact that, when finger counts 4 and 5 are seen from angled
viewpoints they resemble the shape characteristics of finger count 3.

6.7.3 Feature Selection and Ranking

To reduce the curse of dimensionality of a large feature space, this experiment
performs feature selection to investigate the quality of the hand-crafted features
(see Section 5.2.1.1) with respect to their individual and mutual discriminative
powers. To make an intelligent selection from the initial set of F = 110 hand-
crafted features and provide a robust analysis, feature selection techniques com-

>See Figure 5.5 for details of the MPCNN parameters used for training.
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monly used in existing works for similar tasks have been considered. These in-
clude the, Principal Component Analysis (PCA), Information Gain (IG), and Gain
Ratio (GR) approaches. In order to rank the F = 110 features based on a mean-
ingful score, the Ranking method in WEKA [Hall et al., 2009] is combined with
the PCA, IG, and GR methods. Experimental results are shown in Figure 6.29.
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Figure 6.29. (a): Comparison of the PCA, IG, and GR approaches with F =110
features using the SVM and Ranker method in WEKA [Hall et al., 2009]. (b):
Effect of using different values of F,, (i.e., the amount of principle component
attributes retained to account for some proportion of the variance in the data).

The comparison results are shown in Figure 6.29(a), using the SVM with the
F =110 hand-crafted features. For comparison purposes, the results of the three
feature selection approaches have been normalized (scaled y-axis) in a closed
interval [0,1]. Feature scores produced using the GR method do not provide
much reliable information. The IG method indicates two significant drops in the
discriminative power of the feature scores, one drop between F = [10,20] and
the other drop between F =[30,40]. As a smooth gradient descent is evident in
the scores produced by the PCA method, this indicates that the PCA is the most
reliable feature indicator among all approaches. Using F = [30,40] features
the PCA provides the most discriminative information for K = 6 finger count
classification problem. The use of additional features (i.e., F > 40 features) will
deteriorate the classification performance, as shown in Figure 6.26 (bottom).

The effect of using different values of the PCA parameter F,,, is reported in
Figure 6.29(b). Parameter F,,, controls the amount (%) of principle component
(PC) attributes to retain in order to account for a proportion of variance in the
original data. For instance, if F,,. = 0.95 PC attributes accounting to 0.95 pro-
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portion of variance (in the original data) are retained. When F,,, =1, all F =
110 features are selected by PCA. Different values of F,,, result in different num-
bers of selected features. With F,,, = [0.95,0.975,0.98,0.985,0.99,0.995] the
number of features selected are F =[21,27,29, 32,36, 42] respectively. Within a
small interval F,,, =[0.995,1] == F =[42,110] (that accounts to a very small
proportion of variance) many redundant features are present. The best option is
to use 0.98 < F,,, < 0.995 so a large majority of the redundant features can be

var —

omitted without sacrificing the quality of the high ranking features.

6.8 Summary of Contributions

This chapter presented and discussed the experimental results and reported the
performance of the algorithms, techniques and strategies developed in Chap-
ters 2 to 5. Experiments were performed as emulation tests which made use of a
dataset of gesture images acquired by a heterogeneous robotic swarm (UGVs and
UAVs), and real-time (online) experiments were performed with real robots to
verify the performance, robustness, reliability and scalability of the HSI system.

The insights resulting from this chapter are as follows. The general protocol
for the swarm-level classification (cooperative recognition and decision-making)
of gestures is capable of building robust consensus decisions for real-time inter-
action with robot swarms. Individual gesture commands and grammar-based
sentences defined the gesture language (vocabulary) can easily be learned and
recognized. The bidirectional human-swarm communication systems facilitates
proximal interaction within a reasonable amount of interaction time. The dis-
tributed algorithms and strategies that select spatially-situated robots from a
swarm report a notably good performance, however, with large and densely pop-
ulated swarms robot selection accuracy significantly decreases. With the use of
spatially-aware mobility strategies individual robots in a swarm are able to sense
better quality gesture observations, which provides deployment and improves
the swarme-level classification accuracy of gestures. The information selection
and sharing strategies developed for cooperative learning guarantee a fast con-
vergence rate for the swarm-level learning of gestures while optimizing the use
of computational and communication resources.



Chapter 7

Conclusions, Future Work, and
Publications

This chapter provides a summary of the research contributions achieved in this
work. The achievements obtained with respect to the goals in Section 1.4 and
the experimental results in Chapter 6 are highlighted together with the key find-
ings and the limitations encountered. Recommendations and suggestions are
provided for conducting future research in this domain. Lastly, the publications
resulting from of this research are listed.

7.1 Summary of Research and Main Contributions

This research has addressed several fundamental issues and core challenges in
HSI (see Section 1.3) and has dealt with a number of problems commonly aris-
ing in swarm robotic systems. At a systemic level (the last sub-goal in Sec-
tion 1.4.2.4), the main contribution lies in the fact that a global HSI system has
been coherently built and made to work. It is the synergistic result of combining
and integrating the algorithms, techniques, and strategies developed in Chap-
ters 2 to 5. As a result, robot swarms have been made to cooperatively learn and
recognize relatively complex non-verbal human instructions and grammar-based
sentences given as visual signals (gestures). Multi-modal feedback and coordi-
nation schemes have been developed to allow humans to interpret the status,
decisions, and intentions of swarms. The HSI system has been evaluated on het-
erogeneous swarms of up to 20 real robots (see Section 7.4.3) and validated in
emulation tests using swarms of up to 100 robots.

In terms of the individual components of the global HSI system, to fulfil the
main goal outlined in Section 1.4.1, a bidirectional human-swarm communica-
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tion system has been developed in Chapter 2 which allows proximal, instru-
mented and non-verbal interaction between humans and heterogeneous robot
swarms based on the use of coloured passive markers (i.e., inexpensive coloured
gloves worn by humans). The introduction of dialogue-based interaction with
a grammar-based gesture language and a vocabulary of commands, facilitates
human-to-swarm communication and enables human operators to build iconic
sentences and convey complex mission instructions to robot swarms using ges-
tures. Moreover, it allows humans to express spatially-addressed commands and
select spatially-located individuals and groups of robots from a swarm [Nagi et al.,
2014c]. The developed gesture language supports the concept of generality (see
Section 2.2.3.3) and can be adapted for different applications.

The swarm-coordinated multi-modal language uses robot actuation devices
for swarm-to-human communication and conveys swarm-level feedback to hu-
mans. The language provides three types of multi-modal feedback that robot
swarms convey to humans: (i) feedback to convey the swarm’s understanding
of the recognized gesture commands, (ii) self-assessment feedback that corrects
mistakes and errors made by humans and by swarms, and (iii) feedback to guide
humans through the interaction process. With the use of these feedback: (a)
humans can easily interpret swarm-level status, decisions and intentions during
interaction, (b) an intelligent HSI system with a human-friendly interface is built
that can identify and minimize mistakes and errors, and (c) swarms can reliably
assess consensus decisions without human feedback (external inputs) and pro-
vide basic reasoning capabilities. The experimental results in Chapter 6 signify
that the grammar-based gesture language and the swarm-coordinated multi-modal
feedback language developed in Chapter 2 allow bidirectional interaction and
communication between humans and robot swarms.

The general protocol for the swarm-level classification of gesture commands
introduced in Chapter 3 satisfies the sub-goal in Section 1.4.2.1. The devel-
oped distributed sensing and cooperative recognition mechanisms enable robot
swarms to effectively gather and fuse information (acquired in parallel by indi-
vidual robots from different viewpoints) and build swarm-level decisions for the
collective recognition of commands in the gesture vocabulary. The developed dis-
tributed consensus protocol guarantees convergence to a common swarm-level
decision. The protocol also introduces a trade-off parameter to balance the accu-
racy of swarm-level decisions and the time taken to reach swarm-level decisions.
For instance, this allows to adapt the response to the urgency of the situation.
From the experimental analysis in Chapter 6, the cooperative recognition pro-
tocol in Chapter 3 proves to be robust and scalable [Nagi et al., 2014d; Giusti
et al., 2012a,b,c; Nagi et al., 2012a, 2015], as shown in Figure 6.3.
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In the context of cooperative sensing and recognition, the implemented hu-
man body motion detection system (Appendix B) reliably allows robot swarms
to identify when humans are presenting gesture commands that need to be clas-
sified and when no instructions are given by humans [Nagi et al., 2014c].

The swarm-level coordination mechanisms in Chapter 4 fulfil the sub-goal
outlined in Section 1.4.2.2. With spatial pointing gestures humans can select and
address spatially-located individuals and groups of robots from a swarm. This is
based on coordination strategies internal to the swarm: robots individually clas-
sify the given gesture and exchange information to coordinate and cooperatively
understand which individual or groups of robots have been selected based on an
estimate of their relative position with respect to the gesture. When a gesture
is being issued individual robots locally coordinate with each other to move and
optimally surround a human operator. Robots position themselves with the goals
to: uniformly cover the field of view in front of the human, maximize the mu-
tual information sensed by the swarm regarding the gestures, and support local
wireless connectivity in the multi-hop swarm network. The experimental results
in Chapter 6 indicate that the coordination algorithms for the swarm’s under-
standing of spatial robot selection and the mobility rules developed in Chapter 4
are robust and efficient for use with both ground and flying robots (UGVs and
UAVs) [Giusti et al., 2012¢; Nagi et al., 2014c,a,b,d].

The distributed learning strategies developed for robot swarms in Chapter 5
fulfil the sub-goal in Section 1.4.2.3. Supervised online learning approaches have
been studied which cover a wide variety of swarm learning scenarios. As offline
learning methods limit the capability to include humans in the loop of swarm
learning, online incremental learning strategies have been developed for swarms
to learn gestures in real-time supervised by humans. The role of human feedback
in swarm-level learning has been investigated with the development of online
algorithms that support the use of full and partial feedback given by humans. Full
feedback comes at a higher cost but provides a faster swarm-level learning rate,
while partial feedback comes at a lower cost and provides a reasonable learning
performance [Nagi et al., 2014d,e; Ngo et al., 2014; Nagi et al., 2012b].

As robot swarms can collaboratively learn as a team, heuristic approaches for
cooperative learning are introduced, which make use of intelligent information
selection strategies for optimizing the use of the computational and communica-
tion resources that are typical constraints in robot swarms. Compared to methods
that do not share learning information between robots, the developed strategies
for cooperative learning provide a significant increase in the swarm-level learn-
ing rate (i.e., allow swarms to learn gestures within a few interaction rounds)
and scale well with swarm size and available resources [Di Caro et al., 2013a].
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The novelty and expected impact of this doctoral research lies in the fact that,
the core HSI challenges for proximal interaction (see Section 1.3) have been
addressed by developing a complete HSI system which has been experimentally
evaluated in simulation and with real robots.

7.2  Major Issues Faced

Apart from the notable contributions discussed in the previous section, some
major issues were faced during this research and they are presented below.

(i) The swarm robots used in this research, namely the Foot-bots (see Sec-
tion 1.2.1.1), are equipped with low quality-sensing devices and small-scale
computational power. The ARMv6 processor with 533 MHz and cameras
on-board the i.MX31 architecture are considered outdated. These early
VGA cameras are unable to capture good quality images (compared to to-
day’s smartphones and tablet computers) as they highly depend upon il-
lumination conditions which makes them challenging to use. As the HSI
system executes multiple threads on a Foot-bot (i.e., the robot controller
runs separate processes for, image acquisition, gesture vocabulary, and mo-
tion detection), it takes a Foot-bot approximately 0.5s to acquire, process,
and classify a single gesture image.

(i) The acquired dataset of gesture images (see Section 6.2) used to run emu-
lation experiments is challenging because gestures are shown in many dif-
ferent rotations of the hands and some gestures are represented in different
variations. Most viewpoints in which robots are located do not clearly al-
low distinguishing between different gestures even to human observers.
Many samples in the dataset present serious segmentation issues (e.g., due
to factors such as illumination conditions) which are related to practical
problems arising in real-world situations.

(iii) Robot swarms are prone to communication and packet loss. The range-
and-bearing (RAB) system that the Foot-bots use for communication (see
Section 1.2.1.1) has very low bandwidth and is inherently unreliable.

(iv) With the Foot-bot platform the detection of human body motion (see Ap-
pendix B) is not very robust nor reliable. This is mainly due to the limited
on-board computational power of the Foot-bots. Images acquired at res-
olution of 384 x 288 pixels (0.1 megapixel) provide a frame rate of 2 fps
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while images acquired at a resolution of 512 x 384 pixels (0.2 megapixel)
achieve only 1 fps. Due to the low fps, a constant delay (lag) is always
present when detecting human motion. This means that the Foot-bots de-
tect human motion a bit later in time than it actually occurs.

(v) Individual robot failures are unavoidable problems in swarm robotic sys-
tems. These problems are mainly caused due to: dead or low battery, mal-
function of sensory-motor systems (e.g., camera or LEDs failure), wireless
networking and connectivity problems, color segmentation problems due
out of focus camera lens or bad illumination conditions, and storage prob-
lems (i.e., read/write errors, memory corruption). Some of these issues
can be overcome by rebooting the effected robots, replacing low batteries
with charged ones, while other situations require robot maintenance skills.

7.3 Future Directions to Explore

This section presents a spectrum of possibilities for continuing further research
in the domain of HSI. Future directions that can be investigated for symbiotic
interaction between humans and robot swarms are presented below.

7.3.1 Reduction of Energy Consumption

The swarm-to-human feedback mechanisms, the cooperative recognition proto-
col, and the coordinated deployment strategies are not energy aware. Energy
consumption can be reduced using different types of optimization strategies. As
energy minimization was briefly discussed in Section 2.3.1 with the selection of
spokes-robot(s), the amount of duplicate robot-to-human communication (i.e.,
all robots which convey the same feedback to humans) needs to be minimized.
For instance, individual robots can coordinate and cooperate with other robots to
mutually decide, which robots in the swarm should turn on their LEDs or beacons
to provide visual feedback to humans.

One possible optimization strategy is for robots positioned at bad sensing po-
sitions. As probability vectors generated from robots in bad positions will tend
to have high entropy (see Figure 3.5), these robots can reduce their image acqui-
sition frame rate (fps), resulting in the acquisition and processing of a smaller
number of samples as compared to robots in good positions. Robots located at
bad viewpoints can be excluded from the consensus building process. However,
the effects of this have to be investigated with the case when all robots in the
swarm take part in building consensus decisions.
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Instead of having the entire swarm deploying around a human operator, a few
robots closer to the human can deploy themselves smartly. If gesture assessment
(i.e., gesture recognition performance) made by the deployed robots is not ro-
bust, then these robots can request assistance from other robots that are located
further away from the human. In this way, an adaptive incremental deployment
strategy can be developed in which a few robotic informers are deployed first,
and if required, additional robots (resources) can be invited to join.

7.3.2 Use of Context for Disambiguation

The grammar-based gesture language introduced in this research is based on
the classification of individual words (single gestures). Instead of recognizing
each word (gesture) one-by-one in a sentence (as performed in this research),
entire sentences can be recognized at once, and context can be used to reduce
ambiguity and to interpret the meaning of the words.

To remove ambiguities and to narrow down the meaning of individual words
while retaining their semantic meanings, grammar parsing techniques are re-
quired. In order to recognize complete sentences using vision-based inputs, all
words (gestures) in a sentence need to be correctly interpreted from a stream of
continuous images, which is a challenging task. In the context of audio signals
(e.g., speech and voice commands), interpreting a sentence of audible commands
is simpler, and speech recognition has been demonstrated in the context of multi-
robot systems [Pourmehr et al., 2013a; Monajjemi et al., 2014; Pourmehr et al.,
2014]. With the use of audio-based inputs, a vocabulary of audible commands
needs to be built that has similar functionality as the grammar-based gesture
language, and distributed cooperative mechanisms for sensing and recognition
of audio signals need to be developed.

7.3.3 Instrumented Interaction with Handhelds and Wearables

As interactions can be direct (uninstrumented) or indirect (instrumented), Ta-
ble 7.1 lists potential modalities that can be used for HSI. For indirect interac-
tion, instrumented devices (e.g., smartphones and tablets) can serve as efficient
user interfaces: to select and command robot swarms (human-to-swarm commu-
nication), and to convey multi-modal feedback from swarms (swarm-to-human
communication). For instance, a human rescuer can order robots to search an
area using a gesture, but that does not precisely define the search area. A medi-
ated interaction such as an outline on an ad-hoc map (e.g., on a handheld device)
provides more finer and precise control.
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Table 7.1. Direct and indirect modalities vs. information flow direction.

Modalities
vs Human-to-swarm Swarm-to-human
Direction Communication Communication
Lights (synchronized amon
Speech, hand or full-body 1S \Syn &
) J ’ multiple robots), sounds,
Direct gestures (static l(_)lr y;amlc speech, projected images or
(Proximal) gestu}*es), touch or direct laser dots/shapes/rays,
manipulation of robots, o
) specific movement patterns,
sounds such as whistles .
robot location
Commands provided through
. suitable user interfaces Audible and visual
Indirect cpe s ,
(Distant) (wearable sensors, notifications on the human’s
smartphones and tablets with portable device
user interfaces)

With the use of wearable devices, humans can robustly provide mission in-
structions to swarms, and swarms can easily recognize information and signals
emitted by wearables without the need of developing sophisticated modality-
specific recognition algorithms. A potential example of a wearable sensing de-
vice is the Myo Gesture Control Armband' which communicates using Bluetooth,
and has been adopted by IDSIA [Gromov et al., 2016] in the second phase of
the NCCR Robotics project (see Section 1.5). With this armband, gestures are
detected through proprietary EMG muscle sensors (i.e., highly-sensitive motion
sensors) and haptic feedback is provided using different vibration settings.

7.4 Publications

The publications resulting as a consequence of this doctoral research are listed
below. These include journals, conferences and video demonstrations.
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7.4.3 Videos

A collection of videos published during this PhD research are available on my
website at: http://videos. jnagi.net/ and on my Youtube channel at:
http://youtube. jnagi.net/.

7.5 Summary

This section concludes this dissertation. The research goals and objectives out-
lined in Section 1.4 have been successfully achieved through Chapters 2 to 5 and
have been verified by the experimental results in Chapter 6. The outcome of this
research provides a complete HSI system that has been implemented and tested
on a heterogeneous robotic swarm. The experiment results verify the efficacy
and performance of developed HSI schemes and strategies, and conclude that
the HSI system is robust, scalable, and works well in real-world environments.
A large number of peer-reviewed publications have resulted as a consequence
of this research. Although some issues were faced which can be overcome, the
contributions made by this research are of much greater significance. It is envis-
aged that, such HSI systems will enable autonomous and heterogeneous teams
of robot swarms to perform SAR missions in cooperation with rescue workers.


http://videos.jnagi.net/
http://youtube.jnagi.net/

Appendix A

Segmenting Gestures from
Background using Coloured Gloves

When gesture recognition is performed on natural scenes without relying on sim-
plifying assumptions the task is becomes a challenging pattern recognition prob-
lem [ChaLlearn Gesture Challenge; Arbelaez et al., 2011]. As the focus of this
research is not the vision-based aspect of the gesture recognition problem while
at the same time learning and recognition of gestures using robots with limited
computational power (see Section 1.2.1.1) is required, to simplify the recogni-
tion task we consider that human operators wear passive markers (i.e., gloves)
with known characteristic colors, as briefly highlighted in Section 2.1.1.1.

With a swarm of R = {r,, 1, ..., ry} robots, where N comprises of the number
of robots in the swarm, in the InformationGathering() state (see Figure 3.4) every
robot r € R acquires an image at time step t. For every image acquired by a robot,
the first step requires to separate the gesture from the image background (i.e., to
identify which of the image pixels belong to the gesture/glove) using color-based
segmentation. As gesture projections normally cover a small fraction (portion) of
an acquired image [Nagi et al., 2011], gestures are segmented by exploiting the
characteristic colors of the gloves (i.e., the green and yellow gloves in Figure 2.4).

A standard per-pixel color-based segmentation approach is adopted in the
HSV (Hue, Saturation, Value) color space [Kakumanu et al., 2007] using the
OpenCV library. In practice, a simple rectangular area identified by parameters
H ins Hoaxs Smin» and Sy, provides satisfactory color segmentation when supple-
mented by an additional constraint on the minimum value of the V,;, channel,
which is useful to discard dark areas of the image which provide unreliable Hue
pixels. These five parameters [H, ., Hyaxs Smin> Smax> Vaninl €an easily be esti-
mated from a single hand gesture image and they remain fixed given the type

max» max
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of illuminant conditions in the environment. After segmentation, a binary image
(i.e., a black and white image with pixel intensities [0, 255]) is produced. Image
pixels with the value 0 represent the background and pixels with the value 255
represent the gesture. Glove pixels are identified as those pixels whose coor-
dinates match those observed in the Hue-Saturation plane of the sampled glove
color. The largest connected component resulting from a segmented gesture image
is referred as a segmented hand mask.

Hﬂlﬁiﬁiﬂ .
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Figure A.1. A hand gesture acquired by a swarm of N = 13 robots (from 13
different viewpoints) using a distributed sensing mechanism. Top: Images of a
hand gesture acquired by a swarm of Foot-bots. Bottom: Segmented hand masks
corresponding to the top image after color-based segmentation.

As robots acquire gesture images at various distances from humans, the size
distribution of the segmented hand masks is inspected and a dimension of 28
pixels (similar to the MNIST database [LeCun et al., 1998] of characters) is iden-
tified as an appropriate size to represent the segmented hand masks in a square
region of interest (ROI). The hand masks are rescaled and resized to a dimension
of 28 pixels (while maintaining the same aspect ratio) such that, if the height and
width dimensions of the hand mask are not of equal size (which is normally the
case), the larger dimension is rescaled to 28 pixels, otherwise if both height and
width dimensions are the same, both dimensions are rescaled to 28 pixels. After
rescaling, the final operation consists in padding the rescaled images with 4 back-
ground pixels (i.e., black color pixels with an intensity value of 0) on each of the
four sides which results in a hand mask centered within an image of 32 x 32 pix-
els. Figure A.1 illustrates a hand gesture acquired by a swarm of N = 13 robots
from different viewpoints after color-based segmentation, resizing, and padding.
To perform color-based segmentation on an image of 512 x 384 pixels (acquired
by the frontal camera of the Foot-bots; see Section 1.2.1.1) takes roughly 0.2s.

The black and white images which represent the segmented hand masks in
Figure A.1 are used for computing a standardized set of meaningful features,
as presented in Section 5.2.1. To learn and recognize gesture commands, the
feature vectors computed from the segmented hand masks are fed as inputs into
supervised classifiers, as discussed in Chapter 5.
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Detecting Human Body Motion using
Robot Swarms

For a gesture-based interface to be fully acceptable by robot swarms, the interface
should allow humans to perform gestures in the same natural way and with the
same speed as gestures are performed towards humans. It is necessary to take
into account that, human operators can perform various unnecessary additional
movements with the arms and hands (i.e., adapters; see Section 2.1.1.1) which
are not instructions (gesture commands). We consider that, before a gesture
is presented to the swarm, individual robots in the swarm need to collectively
identify: if the human is preparing (or is in process) to issue a gesture, or if the
human has already settled upon (has issued) a gesture.

A motion detection system can identify the presence of human motion in
the upper body. For instance, when human motion is cancelled the swarm gets
informed that the human is issuing a gesture. However, if human motion is
detected for a continuous interval of time, this indicates that the human is not
yet ready (i.e., the gesture has not been issued by the human) as illustrated in
Figure 3.1. Using multiple airborne UAVs, the research team at the Autonomy
Lab of Vaughan estimated the optical flow of motion in three predefined zones of
the upper body [Monajjemi et al., 2013]: the face region and the left and right
sides of the body where the arms and hands move freely.

An approach for motion detection and cancellation was presented in [Naseer
et al., 2013] which made use of the Kinect sensor. In this approach an au-
tonomous interaction system allowed an airborne UAV to follow humans and
respond to gesture commands. We consider that, with the use of coloured gloves
as passive markers, robots can estimate the motion of the arms and hands from
a stream of images. However, to measure the displacement of the human body
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(i.e., if the human torso moves) we adopt another passive marker, namely a
jacket, which is worn by humans and has a known characteristic color (i.e., or-
ange) as shown in Figures 2.4 and 2.5. A pair of gloves and a jacket consist of a
standard uniform worn by firefighters, air marshallers, and rescue workers.

As color-coded markers can be distinguished based on their individual char-
acteristic colors (see Appendix A), the three largest connect components resulting
from the segmentation of the three markers (two gloves and the jacket) are re-
tained (see Appendix A). The next step involves in computing the centroid of the
jacket c;(x,y) and the centroids of both the (green and yellow) gloves c,,,(x,y)
and c,,;,,(x,y) with respect to the x-y coordinates of the image plane. The cen-
troids of the three markers [c;x,C,,n,Cy1, ], are used to detect motion caused by
movements of the arms and hands including the displacement of the body.

B.1 Estimating Magnitude of Optical Flow

To measure the optical flow in the upper body, a multiple-ring circular buffer is
adopted as a data structure. The circular buffer queues (stores and updates)
the magnitude of motion computed from the three passive makers (two gloves
and the jacket) as illustrated in Appendix B. The multi-ring buffer consists of
3 buffers, in which each buffer stores the centroids of each of the three passive
markers (inputs). Each of the 3 buffers comprise of bN elements and bN is a tun-
able parameter that controls the damping of motion. After the centroids of the 3
inputs [cgm(x, ¥)s ¢y (5, ), Cie (X, y)] are computed from every acquired image,
the next step is to calculate 3 Euclidean distances using every two consecutively
(sequentially) acquired images. This includes the distance between:

(a) One hand (i.e., the green glove) and the jacket, D, ji

(b) The other hand (i.e., the yellow glove) and the jacket, D, jx

(c) Between both hands, D, ,;,,

For instance, the Euclidean distance between the centroid of one hand (i.e.,
the green glove) and the centroid of the jacket is computed as:

Dyrn e = abs(/ (Cgrn(®) = e ()2 + (Crn(¥) — e (1))2) (B.1)

Similarly, the remaining two Euclidean distances D,;, i, and Dg,., ., are
computed. The three distance measures {Dy,,, jkr> Dyiw jke» Dgrn_yiw} @s illustrated
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in Figure B.1, are computed using two consecutively acquired images, and are
added/updated into each of the 3 circular buffers. Using a stream of N consec-
utive images, three distance vectors {ﬁgm _jkt:ﬁylw Jkt,ﬁgm 1w} are computed,
where each vector has a length of bN elements and bN = N — 1. The three dis-
tance vectors represent a distance matrix D = {Z_jgmjkt,ﬁylekt,13gm_ylw} having
a dimension of 3 x bN elements. To determine the magnitude of motion between
the two gloves and the jacket (i.e., the motion relative to the movements of the
three markers), three magnitudes of optical flow {Mg,, jxe, My jke> Mgrn_yiw} are

computed as shown by the pseudocode in List B.1.

Listing B.1. Magnitude of optical flow relative to the two gloves and jacket

for every (acquired image) {
// Initialization

Mgrn_jkt = 0;
Mylw_jkt = 0;
Mgrn_ylw = 0;

// For every element in distance matrix "D"
for (int i = 0; i < bN; i++) {
Mgrant = Mgrant + abs (Dgrant[i] - Dgrant[i+1])7

-

Mylw_jkt = ylw_jkt + abs (Dylw_jkt[i] - Dxlw_jkt[i'*'l]) 7

Mgrnle = grn_ylw T abs (Dgrnle[i] - Dgrnle[i+1]) 7

The magnitude of optical flow, namely the motion score M, is calculated
at every time step t (i.e., when every new image is acquired):

Mgrn jke My jke Mgrn yiw
o) )+ ()
= (B.2)

score 3

The M,.,,. is a metric that defines if upper body motion is present in a visual
scene. Figure 3.1 illustrates the M., for the cooperative sensing and recog-
nition system presented in Chapter 3. To be robust towards the detection of
transient motion flows, Ms‘wre which results from a continuous time signal (i.e.,
from a stream of images) is fed into a moving average filter. The higher the value
of M!  the more rapid is the motion detected from the upper body, and the

score

smaller M  gets the slower the motion speed becomes.

score

To determine if upper body motion is present, a threshold parameter M is
introduced. Using a trial and error approach, a threshold of M;, = 1 is identi-
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Figure B.1. The three Euclidean distances {Dy,, jx¢> Dyiw_jke» D }, computed

grn_ylw
using the centroids of the coloured passive markers (two gloves and jacket).

fied as the best value to balance the trade-off between small fractions of motion
(that are hardly noticeable) and rapid motion. If M{  >= My, this represents
that motion is detected, else if M < My, this indicates that motion is can-
celled as the human maybe presenting a gesture.! Operationally, human motion
is detected prior to the sensing and recognition of every gesture command, as
illustrated in Figure 3.1. When a robot swarm awaits a command from a human
and upper body motion is continuously detected (i.e., M| > M) for a period

of t >= 30s, the swarm considers that the human is not ready to issue a com-
mand (i.e., a maximum time-out occurs) and the interaction process terminates.

B.2 Sensitivity to Human Motion Detection

To ensure that interaction between humans and swarms is natural as possible, we
investigate the effect of using different motion damping values of parameter bN
on the motion score M,.,,, (see Appendix B.1). Experimental results are shown in
Figure B.2. In this experiment, we select 4 individual robots over a course of 180
consecutively acquired gesture images in which every selection time corresponds
to a vertical stripe, namely the time interval when M,.,,, < M.

In Figure B.2 it is observed that, if bN is too small, M,.,,,. changes very rapidly,
is unstable (i.e., M,.,,, fluctuates rapidly), and too sensitive to reliably detect

A video demonstrating the motion detection system using an airborne UAV is available at:
http://www. jnagi.net/human_motion_detection
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human motion over time. Instead if bN is too large, human motion will not
be detected on the spot it occurs but after some delay in time. Small motion
damping values (e.g., bN = 5) indicate a faster decay in M,.,. (spikes) and
large values (e.g., bN = 20) provide a slower decay rate (steps).

IS
o

bN = 10

= N W
o O O

W
o

Motion score (Mqcors)
N Py

-
o

0 20 40 60 80 100 120 140 160 180 20 40 60 80 100 120 140 160 180
No. of images

Figure B.2. Average magnitude of human body motion M,.,,, for different values
of the motion damping parameter bN.

If the decay occurs very rapidly or too slow, the way in which robots in a
swarm perceive gestures can cause color-based segmentation errors due to blur
in the acquired images, thereby making human motion detection and gesture
recognition potentially unreliable. Choosing a good estimate of bN is crucial to
support the reliability of motion detection. We determine that, bN in the range of
[9,...,12] provides a near-optimal (i.e., Gaussian like) distribution for detecting
human body motion as illustrated by bN = 10 in Figure B.2.



Appendix C

Pseudocode for Swarm-to-Human
Self-assessment Feedback

Listing C.1. Swarm-to-human assessment feedback for mistake/error correction.

// Initialization of trained classifiers

Cp1 — Addressing

Cry — Actions

Cps — Direction or Numerics
Crqy — Numerics

Cps — Addressing and Actions
Cre — Direction and Numerics

// Classifier details

L1177 0 7777777777777 7777777 777777777 777777777
C, = No. of classes in classifierA

Cp = No. of classes in classifierB

Classifier outputs = classifierA,,; and classifierB,,;

// Global variables

double highestprobability;
int swarmfeedback, glovelcnt, gloveZcnt, total;

// Find "highest and second highest" predicted classes
int G4 max = —1;
double probAl = 0.0, probA2 = 0.0;

for (int i=0; i<Cy; i++) {
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// Highest score in classification vector //
if (classifierAy,[i] >= probA2) {
probA2 = classifierAy,[il;
CA_max = 1i;
}
// Second highest score //
if (classifierAy,[i] >= probAl) {
ProbA2 = probAl;
probAl = classifierAy,[il;

// Retrieve index of highest score
for (int 1i=0; 1i<Cy; i++) |

if (classifierA,,;[i] == probaAl) {
CA_max = i;
break;

CA_max = CA_max + 1;

// Repeat method above, for classifierB,,, with Cp elements
// This yields: probBl, probB2 and Cg

// Normalized confidence measures

double probA = abs ((probA2*C,) - (probAl*C,)) / Cu;

double probB = abs((probB2*Cgz) - (probB1*Cg)) / Cg;

// Average prob. difference b/w classifierA,,, and classifierB,,,
double ng = (probA + probB) / 2;

// 1. Addressing (Selecting robots)
L1177 7777777 7777777
if ((CA == CF].) and (CB == CFS)) {

// Both classifiers have similarity between results
if (CB_max < (CFl_classes + 1)) |

if (CA_max == CB_max) {
// Gesture represents ROBOT SELECTION
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// CONFIDENT —--> PROPERLY RECOGNIZED

swarmfeedback = 1;
highestprobability = Cg max;
} else {

// Gesture BELONGS TO SAME SEMANTIC CLASS
// CONFIDENT —--> INAPPROPRIATE
swarmfeedback = 2;

highestprobability = Cg paxi

// Both classifiers identify different semantic classes
else {
1f (Pgg <= 0.5) {
// NOT CONFIDENT —--> UNDEFINED
swarmfeedback = 3;
} else {
// Gesture represents an ACTION
// NOT CONFIDENT —--> NOT PROPERLY RECOGNIZED
swarmfeedback = 4;
highestprobability = Cg maxi

// 2. Action (Commanding robots)
L1707 777 7777777777 7777777
else if ((CA == CFZ) and (CB == CFS)) {

if (CB_max > CFl_classes) {
if (CA_max == (CB_max - CFl_classes)) {
// Gesture represents an ACTION
// CONFIDENT —--> PROPERLY RECOGNIZED
} else {
// Gesture BELONGS TO SAME SEMANTIC CLASS
// CONFIDENT —--> INAPPROPRIATE
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// NOT CONFIDENT --> UNDEFINED
}

else {
// Gesture represents ROBOT SELECTION
// NOT CONFIDENT —-—> NOT PROPERLY RECOGNIZED

// 3. Hand direction (Action parameters)
L1770 77 7777777777777 777777777777 77777777777777777
else if ((C4 == Cpz) and (Cg == Cpg) and (Cpz == 1)) {

// Both classifiers have similarity between results
if ((CA max == 1) and (Cg jmax == 1)) {

// Gesture is a HAND DIRECTION

// CONFIDENT —-> PROPERLY RECOGNIZED

// Both classifiers identify different semantic classes
else {
if (Pgg <= 0.5) {
// NOT CONFIDENT —--> UNDEFINED
}

else {
// NOT CONFIDENT —-—> NOT PROPERLY RECOGNIZED

// 4. Numeric quantity (Action parameters)
L1777 7 7777777777777 777777777 7777777777777
else if ((C4 == Cpz) and (Cg == Cpg) and (Cpz == 2)) {

if ((Comax == 2) and (Cp jmax > 1)) {
// Gesture is a FINGER COUNT
// CONFIDENT —--> PROPERLY RECOGNIZED

// Use Cp4 to predict counts in both hands
// Compute total number of finger counts

handlcnt = C4 max;
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hand2cnt = Cp paxi

// Sum of counts from both hands
total = handlcnt + hand2cnt;

else {
if (Pgg <= 0.5) {
// NOT CONFIDENT —--> UNDEFINED
}
else {
// NOT CONFIDENT —--> NOT PROPERLY RECOGNIZED




Appendix D

Confidence-Weighted Swarm
Learning (CWSL)

Confidence-Weighted Swarm Learning (CWSL) is inspired from 2nd-order online
learning methods which includes the Confidence Weighted (CW) large-margin
learning scheme [Dredze et al., 2008; Crammer et al., 2012] and its succes-
sor Soft Confidence Weighting (SCW) [Wang et al., 2012b] learning. The SCW
learning method [Wang et al., 2012b] was introduced to address the problems
of CW learning, by applying the soft-margin idea in SVMs [Cortes and Vapnik,
1995] (see Passive-Aggressive algorithms [Crammer et al., 2006]) to CW learn-
ing. SCW learning is the first online algorithm that has the properties of: (i)
large-margin learning, (ii) confidence weighting, (iii) capability to handle noisy
and non-separable data, and (iv) adaptive margin constraints. Previous analysis
have shown these properties to be very effective in improving performance.

I greatly thank Hung Ngo who collaborated with me for developing the CWSL
algorithm. In CWSL, as given in Algorithm 4, the consensus weights of a swarm
are updated on every interaction round using full feedback from humans (see
Section 5.3.1.2). For more details on CW and SCW learning refer to [Crammer
et al., 2008, 2009, 2012, 2013; Wang et al., 2012b].

D.1 The CWSL Algorithm

Inspired from the game-theoretic competitive online learning [Littlestone, 1987;
Vovk, 2001; Azoury and Warmuth, 2001; Crammer et al., 2006; Cesa-Bianchi
and Lugosi, 2006] framework and multi-class prediction with expert advice [Vovk
and Zhdanov, 2009], CWSL makes no statistical assumptions on the underlying
data generating process and does not rely on any pre-acquired training or testing
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Algorithm 4: Confidence-Weighted Swarm Learning (CWSL)

1 //Initialization

2 W =0; X =Ii={1:K}// Learning parameters for K classes

w

wyo=1//Consensus weight of every robot in swarm

//Main learning loop
4 fort =1{1,2,...,T,pynqs} do

5 Receive new observation x, € R¢

6 | Output normalized classification vector c: ¢' = #, i={1:K}
j=11""

// BEGIN swarm—level consensus

7 | Compute loss vector A: A' = zjzl(cf —6,;), i={1:K}
8 Compute surrogate consensus weights w, = w,_;e*
Exchange w; to all N —1 robots in the swarm

// On receiving all ®, from N—1 robots

10 Compute generalized prediction vector g = In (wl + Zerz wr)
K .

11 Solve forseR: >, _ (s+g)" =2

12 Set consensus prediction margin vector ¢, = (s + g)*/2

// END swarm-level consensus
13 | Output predicted label 7, = argmax(c' )
i=1,...,K
14 Observe full feedback from human y, € {1,...,K}

// UPDATE weights and communicate

15 Update consensus weight w, = o'

16 Broadcast x, if w, € L, largest consensus weights {cw’t}, r = {1: N}
17 Update weight distribution {(w, le)}f:1 using y, and L observations
18 end

datasets. CWSL uses the CW learning framework [ Crammer et al., 2008; Dredze
et al., 2008; Crammer et al., 2009; Wang et al., 2012b] which makes use of the
weight distribution (u,, X,) for online learning. The weights of a linear classifier
in CW learning are associated with the confidence information via a multivariate
Gaussian distribution, with mean vector u € R? and covariance matrix . € R4*¢,
where d € Z* (see Section 5.1.2). For each training sample the CW learning
model is updated aggressively while maintaining the knowledge learned so far
by not changing too much the Kullback-Leibler (KL; [Kullback, 1959]) divergence
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from the previously trained model. The CWSL method presented in Algorithm 4
uses confidence information from CW learning.

Considering aswarm of r = {1,2,..., N} robots trained using the initial learn-
ing phase (see Section 5.3.1.1), Algorithm 4 runs distributively on every robot
r in the swarm. Figure 5.9 illustrates the flow of information in Algorithm 4.
The multi-class prediction output from CW learning consists of a classification
vector ¢ over the K possible gesture classes (see Section 3.3). We adopt a square-
loss function for multi-class prediction [Vovk and Zhdanov, 2009]: for an out-
put of class i € {1,...,K} the learner with classification vector ¢ suffers a loss
A= Zle(cj — &, ;)% on every interaction round in {1,..., Trounds}, where §, ;
is a Dirac delta function &, ; =1, if i = j and 6, ; = 0 otherwise.

In the beginning, every robot in the swarm is assigned a consensus weight
with the same value w, = 1. As the online learning process unfolds (see Sec-
tion 5.3.1.2), robots with more accurate classifications obtain higher weights
while robots with more mistakes receive diminishing weights. As a swarm-level
consensus needs to be built before full feedback is provided, each robot r in
the swarm computes and exchanges surrogate weights for all possible outputs:
wir = w, ;e ", Vi =1: K. Based on the exchanged surrogate weight vectors
{w,}_, every robot in the swarm makes the same prediction by calculating the
consensus prediction margins ¢, (line 12 in Algorithm 4). Using the exchanged
surrogate weights, every robot decides which robots in the swarm are among the
“top L experts” (i.e., the best L robots based on prediction performance).

With this strategy individual robots initiate (or inhibit) the broadcast of their
local observations to the rest of the swarm for bootstrap learning. After individual
robots have updated their classifiers with the gesture label (feedback from the
human) as given in step 4 of Figure 5.9, a 5th step is performed which requires
updating the consensus weight of the swarm. At this aim, after an output of
class i is revealed and the human provides the actual/true label as full feedback
to the swarm (see Section 5.3.1.2), the swarm’s consensus weight is updated
exponentially based on the loss of the learner: w, = Wt_le_’li. The theoretical
analysis of the CWSL approach in Algorithm 4 is provided next in Appendix D.2.

D.2 Theoretical Analysis of CWSL

The confidence interval in the prediction margin estimate of the CWSL method
(see Appendix D) is bounded using the Azuma-Hoeffding bound [Azuma, 1967;
Alon and Spencer, 2004] and the representer theorem [Crammer et al., 2008].
These are restated in Lemma 1 and Theorem 1 as given below.
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Lemma 1 (Azuma-Hoeffding bound): Let X,,...,X,, be random variables with
IX;| < a; for some a,,...,a, > 0. Then for all positive integers m and positive
reals b:

m

P{ ‘ D> X = D EIX Xy, X ]
=1 =1

Zb} SZexp{—szz}

23,0

The Azuma-Hoeffding theorem bounds the probability of the deviation of a
sum of bounded random variables from their mean. The deviation probability
decays exponentially with the distance b from the mean.

Theorem 1 (Representer Theorem): The mean ,uit and covariance Zi can be rep-
resented as linear combinations of the input vectors:

t—1

(t) - (t)
Z T qxpxq +al, u, —va X,,

p,q=1 p

where the variables ngé and v(f) only depend up on the inner product of in-
puts [Crammer et al., 2008]:

V(rtﬂ) =1,

1)§t+1) v(t) ta ZrZ REZ)Xi -x,, forVj<t,

(t+1) () (t) (t)
—B, Z T T X X+ 1T

ﬂ(t) (t) —B, Z 7T(t)x X,

(t+1) — _
Tct,t - ﬂf

The representer theorem is similar to the one in kernel methods, in which
the estimated function defined over a Reproducing Kernel Hilbert Space (RKHS)
can be represented as a finite linear combination of kernel products evaluated at
the input points in the training set. Therefore, with the representer theorem, the
mean and covariance can be re-written as linear combinations of input vectors
whose weights can be computed with Mercer kernels. This helps to intuitively see
the dependence of the mean and covariance on the inputs. Note that the kernel
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at time t can be built recursively as linear combination of kernels at time t — 1.
Next, the confidence interval in prediction margin estimate can be bounded, as
stated in the following lemma.

Lemma 2 (Bayes optimal): Assume there exists a Bayes optimal solution u‘, &*
fori=1,...,K and ||u' — u’||* < c. With probability 1 — &, for all labels i €
{1,...,K}:

. . t—1
|,u}t X, —u' -xt| < \/21n(2M/5)Zj:1 Ivg.t)l2

In this lemma, the first assumption ||u! — u’||> < ¢ means that the distance
between bounded random variables is also bounded. The intuitive goal of this
lemma is to bound the difference between the prediction margins of the adaptive
learning classifier and its Bayes optimal classifier. The bound consists of two
parts: the first part depends on 6, and the second part, composed of vg.t)’s, is
considered as constant given a particular input sequence.

Proof 1: For eachi € {1,...,K}, X; = vg.t)xj - X, Lemma 1 is used, thus [|X;| <
|v§.t)|, assuming that ||x,|| < 1. Then,

X1, X411 = u'-x,

The following is the result of applying Lemma 1:

i i =1 () o
Pr[|,u,t-xt—u -xt|2\/21n(2M/5)Zj:1|vj |2]SM

By applying a union bound, then there is a guarantee that with a probability of
1—0, for all labelsi € {1,...,M}:

. . t—1
|,u}t X, —u' -xt| < \/21n(2M/6)Z]_:1 |v§t)|2

Now the difference between the distributions of the Bayes optimal classifier
and CWSL is bounded. The difference is measured by the KL-divergence between
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the two weight distributions, where the distance at time T is:
— T y T
1= DKL(JV(ut X, X, DX A (" - X, X, Zt‘xt))
where u,, % represent one of K pairs u', £*.

Theorem 2: With probability 1— 6, the difference y, can be bounded by the term
0 (C,+1n(2M/6)C,), where C, and C, depend on the data only through inner
products.

Again, similar to Lemma 2, this difference is probabilistically quantified, to
depend on the inner products of the inputs, which can be considered as con-
stants given a particular input sequence. Similar to the representer theorem, the
components depending on the inner products of the inputs can be quantified re-
cursively, therefore given the inputs, the upper bound can be computed exactly.
Then, given 9§, it is possible to quantify the confidence regarding the divergence
between the learned CWSL classifier and the Bayes optimal classifier. The proof
makes use of Lemma 2.

Proof 2: Let T denote y,. By the definition of the Bayes optimal solution:

T I §7T T 5 %
V=X, LX 22X LX =V,

Furthermore,

. - 2
T s T ( o . )
X, thxt) X, 27X, Wy - X — U Xy

X =ln( m . —1
t X! X, X! %X, X{ DX,
4 2
viy v (ux—u,-x
=In(t +—§_+( L ) -1
Vi Ve Vi
N . . 2
v;r v: (,U)t'Xt—uT-xt—}-uT-xt—ut-Xt)
=In(L)+-+t+ .. —1
V; V; v[
- - - 2 2
V! VY X, —u'-x ) H(u'-x,—u, - x
s1n(—i)+—i+(ut t J .L( U x) ~1
Vil oy, 2v,
. T-1 T |
Gemma) oviy vi 2In(2M/8) 3 D 4 llu —u 2 x )2
S ln(—*)+7+ - -
2 v, 2v,

+ -1
viy vi o 2In(2M/8)Y WP+
<In (—* + — + T -
Ve t' 2Vt



197 D.2 Theoretical Analysis of CWSL

I'>v¥ then:

with probability 1 —6. As v

viy  2In(2M /5)2;1 D2+
Xt S 11’1(—*)+ -
V; 2V2

According to the representer theorem [Crammer et al., 2008]:
=1, (T)2 2511 (T))2 2571, (T))2
N Y U G Y U

T = 2 _ 2
P RS )
i %%
p

The final term also depends on inner products of inputs, so does v]. Therefore,
1. < 0(C,+1n(2M/6)C,) with:

C, = 1n(:—f) C,=
t

T—1, (T)
23T WP
-1 2
2(2 v§. )xj-xt)
p

It is noteworthy here to mention that, in passing that the computed bound
with components C; and C,, depending on the data through inner products is
similar to the quantity M*TZ;}H U in the exact convex bound [Crammer et al.,
2008], is because the quantity Z;}rl is also represented in the same manner, as a
direct result of the representer theorem.




Appendix E

Online Fusion of Classifiers on-board
Individual Robots

Since each robot in the swarm is equipped with an individual (local) classifier,
multiple robots in the swarm learn the same classification task in parallel from
different viewpoints. When multiple classifiers (or ensembles of classifiers; see
Section 3.1.2) on-board multiple robots are trained on different portions of the
sensed data, online model fusion is fundamental for combining multiple classi-
fiers, in order to produce a better single classifier and reduce duplicated learning
efforts. As CW learning (see Appendix D) uses the mean u, and the covariance 3,
to update the distribution A" (u,, ;) of the weight vector w,, it offers an informed
and effective way to fuse the information learned by multiple classifiers/robots.

Considering a set of {r,}?_, robots in a swarm, where r; corresponds to the
kth robot, the combined model of all robots, also a Gaussian, can be computed
as the one that is closest to all other k distributions in the sense of a chosen
divergence. The distribution over the learning parameters in the CW algorithm
(Appendix D) can be exploited, to provide a weighted combination of the learn-
ing parameters from individually trained classifiers. In this analysis, we consider
that every robot in the swarm is equipped with a binary (two-class) classifier.
In the case of KL divergence [Kullback, 1959]), the combined model parameters
(@;,%;) for each ith binary classifier can be represented by:

N -1
5= (Z(Ei)‘l) (E.1)
k=1
N . .
=5 (Z) 7 (E.2)
k=1
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where (ul,>}) denotes the ith binary CW classifier of the kth robot in the
swarm. This approach can easily be extended for multi-class classifiers. With this
strategy, classifier fusion can be performed for selective robots within a specific
communication range (i.e., neighbouring robots located within a certain no. of
hops), and the schedule for classifier fusion can be set periodically or when the
difference (change) in the classifiers of the robots exceeds a threshold.
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