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Robust statistics deals with deviations from ideal parametric models and their
dangers for the statistical procedures derived under the assumed model. Its primary
goal is the development of procedures which are still reliable and reasonably efficient
under small deviations from the model, i.e. when the underlying distribution lies
in a neighborhood of the assumed model. Robust statistics is then an extension
of parametric statistics, taking into account that parametric models are at best
only approximations to reality. The field is now some 50 years old. Indeed one can
consider Tukey (1960), Huber (1964), and Hampel (1968) the fundamental papers
which laid the foundations of modern robust statistics. Book-length expositions
can be found in Huber (1981, 2nd edition by Huber and Ronchetti 2009), Hampel,
Ronchetti, Rousseeuw, Stahel (1986), Maronna, Martin, Yohai (2006).

More specifically, in robust testing one would like the level of a test to be
stable under small, arbitrary departures from the distribution at the null hypothesis
(robustness of walidity). Moreover, the test should still have good power under
small arbitrary departures from specified alternatives (robustness of efficiency).
For confidence intervals, these criteria correspond to stable coverage probability
and length of the confidence interval.

Many classical tests do not satisfy these criteria. An extreme case of non-
robustness is the F-test for comparing two variances. Box (1953) showed that the
level of this test becomes large in the presence of tiny deviations from the normal-
ity assumption; see Hampel et al. (1986), p. 188-189. Well known classical tests
exhibit robustness problems too. The classical t-test and F-test for linear models
are relatively robust with respect to the level, but they lack robustness of efficiency
with respect to small departures from the normality assumption on the errors; cf.
Hampel (1973), Schrader and Hettmansperger (1980), Ronchetti (1982), Heritier
et al. (2009), p. 35. Nonparametric tests are attractive since they have an exact
level under symmetric distributions and good robustness of efficiency. However, the
distribution free property of their level is affected by asymmetric contamination,
cf. Hampel et al. (1986), p. 201. Even randomization tests which keep an exact
level, are not robust with respect to the power if they are based on a non-robust
test statistic like the mean.
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The first approach to formalize the robustness problem was Huber’s (1964,
1981) minimax theory, where the statistical problem is viewed as a game between
the Nature (which chooses a distribution in the neighborhood of the model) and the
statistician (who chooses a statistical procedure in a given class). The statistician
achieves robustness by constructing a minimax procedure which minimizes a loss
criterion at the worst possible distribution in the neighborhood. More specifically,
in the problem of testing a simple hypothesis against a simple alternative, Huber
(1965, 1981) found the test which maximizes the minimum power over a neighbor-
hood of the alternative, under the side condition that the maximum level over a
neighborhood of the hypothesis is bounded. The solution to this problem which is
an extension of Neyman-Pearson’s Lemma, is the censored likelihood ratio test. It
can be interpreted in the framework of capacities (Huber and Strassen, 1973) and it
leads to exact finite sample minimax confidence intervals for a location parameter
(Huber, 1968). While Huber’s minimax theory is one of the key ideas in robust
statistics and leads to elegant and exact finite sample results, it seems difficult to
extend it to general parametric models, when no invariance structure is available.

The infinitesimal approach introduced in Hampel (1968) in the framework
of estimation, offers an alternative for more complex models. The idea is to view
the quantities of interest (for instance the bias or the variance of an estimator) as
functionals of the underlying distribution and to use their linear approximations to
study their behavior in a neighborhood of the ideal model. A key tool is a derivative
of such a functional, the influence function (Hampel, 1974) which describes the local
stability of the functional.

To illustrate the idea in the framework of testing, consider a parametric
model {Fyp}, where 6 is a real parameter and a test statistic T,, which can be
written (at least asymptotically) as a functional T'(F},) of the empirical distribution
function F,,. Let Hy : 8 = 6y be the null hypothesis and 6,, = 6y + A/y/n a
sequence of alternatives. We consider a neighborhood of distributions F. g, =
(1—¢/y/n)Fy+ (¢/+/n)G, where G is an arbitrary distribution and we can view the
asymptotic level a of the test as a functional of a distribution in the neighborhood.
Then by a von Mises expansion of a around Fp,, where a(Fp,) = oy, the nominal
level of the test, the asymptotic level and (similarly) the asymptotic power under
contamination can be expressed as

nlLII;O a(Fegyn) = ao—i—e/IF(x;mFgo)dG(x) + o(e), (1)
N B(Feg,n) = fote / [F(2: 8, Fy )dG (@) + o(e), @)
where
IF(z;0,Fp,) = 6@ (L= o) IF(x:T, Fy,) [V (Fo, T))/2,
IF(:0,Fs,) = 8@ (1~ a0) = AVE)IF (T, Fy,) IV (Fay, T2,

ap = a(Fy,) is the nominal asymptotic level, By = 1 —®(® (1 —ag) —AVE)



is the nominal asymptotic power, F = [5’(90)]2/V(F90,T) is Pitman’s efficacy of

the test, £(0) = T(Fy), V(Fy,,T) = [IF(x;T, Fy,)*dFy,(z) is the asymptotic
variance of T, and ®71(1 — «p) is the 1 — o quantile of the standard normal
distribution ® and ¢ is its density; see Ronchetti (1979), Rousseeuw and Ronchetti
(1979). More details can be found in Markatou and Ronchetti (1997) and Huber
and Ronchetti (2009), Ch. 13.

Therefore, bounding the influence function of the the test statistic 7' from
above will ensure robustness of wvalidity and bounding it from below will ensure
robustness of efficiency This is in agreement with the exact finite sample result
about the structure of the censored likelihood ratio test obtained using the minimax
approach.

In the multivariate case and for general parametric models, the classical the-
ory provides three asymptotically equivalent tests, Wald, score, and likelihood ratio
test, which are asymptotically uniformly most powerful with respect to a sequence
of contiguous alternatives. If the parameter of the model is estimated by a ro-
bust estimator such as an M —estimator T, defined by the estimating equation
Sr ¢(zs;T,) = 0, natural extensions of the three classical tests can be con-
structed by replacing the score function of the model by the function . This
leads to formulas similar to (1) and (2) and to optimal bounded influence tests; see
Heritier and Ronchetti (1994).
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