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Abstract

The Voronoi diagram is a fundamental geometric structure that encodes proximity
information. Given a set of geometric objects, called sites, their Voronoi diagram
is a subdivision of the underlying space into maximal regions, such that all points
within one region have the same nearest site. Problems in diverse application do-
mains (such as VLSI CAD, robotics, facility location, etc.) demand various gener-
alizations of this simple concept. While many generalized Voronoi diagrams have
been well studied, many others still have unsettled questions. An example of the
latter are cluster Voronoi diagrams, whose sites are sets (clusters) of objects rather
than individual objects.

In this dissertation we study certain cluster Voronoi diagrams from the perspec-
tive of their construction algorithms and algorithmic applications. Our main focus
is the Hausdorff Voronoi diagram; we also study the farthest-segment Voronoi di-
agram, as well as certain special cases of the farthest-color Voronoi diagram. We
establish a connection between cluster Voronoi diagrams and the stabbing circle
problem for segments in the plane. Our results are as follows.

(1) We investigate the randomized incremental construction of the Hausdorff
Voronoi diagram. We consider separately the case of non-crossing clusters, when
the combinatorial complexity of the diagram is O(n) where n is the total number
of points in all clusters. For this case, we present two construction algorithms that
require O(n log2 n) expected time. For the general case of arbitrary clusters, we
present an algorithm that requires O((m+n logn) logn) expected time and O(m+

n logn) expected space, where m is a parameter reflecting the number of crossings
between clusters’ convex hulls.

(2) We present an O(n) time algorithm to construct the farthest-segment
Voronoi diagram of n segments, after the sequence of its faces at infinity is known.
This augments the well-known linear-time framework for Voronoi diagram of
points in convex position, with the ability to handle disconnected Voronoi regions.

(3) We establish a connection between the cluster Voronoi diagrams (the Haus-
dorff and the farthest-color Voronoi diagram) and the stabbing circle problem. This
implies a new method to solve the latter problem. Our method results in a near-
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optimal O(n log2 n) time algorithm for a set of n parallel segments, and in an opti-
mal O(n logn) time algorithm for a set of n segments satisfying some other special
conditions.

(4) We study the farthest-color Voronoi diagram in special cases considered by
the stabbing circle problem. We prove O(n) bound for its combinatorial complexity
and present an O(n logn) time algorithm to construct it.
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Chapter 1

Introduction

The research field of computational geometry is a branch in the area of theory of al-
gorithms that deals with algorithmic problems in discrete geometry. In particular,
the mission of computational geometry is to design efficient algorithms involv-
ing discrete geometric structures, and to analyze the performance (time and space
complexity) of such algorithms. Computational geometry is often motivated by
problems in application domains that require algorithmic tools to manipulate ge-
ometric objects. Such application domains include VLSI computer-aided design,
motion planning in robotics, geographical information systems, and many other
areas.

A typical research question in computational geometry is as follows. Given a
finite set of simple geometric objects, provide an algorithm to efficiently construct
a certain geometric structure that is induced by this set. One of the most celebrated
geometric structures is the Voronoi diagram. It is a subdivision of a given space
into maximal regions that reveal proximity information for an input set of simple
geometric objects, called sites. Such proximity information is highly demanded in
diverse areas, both theoretical and applied. Hence, Voronoi diagrams have numer-
ous applications.

The classic Voronoi diagram is the nearest-neighbor Voronoi diagram of point
sites, which is defined as follows. Given a set of points in some space, its nearest-
neighbor Voronoi diagram is a partitioning of the underlying space into maximal
regions such that all points in one region have the same nearest site, see Definition 1
and Figure 1.1. A symmetric concept, which has been well studied too, is the
farthest-site, or simply the farthest Voronoi diagram. This diagram reveals the
farthest site, as opposed to the nearest one, see Definition 3 and Figure 1.2. These
two basic types of Voronoi diagram are of great help to solve a large number of
geometric problems. However, the basic Voronoi diagrams may not reflect the real

1
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situation sufficiently. This leads to various generalized Voronoi diagrams.
Generalized Voronoi diagrams have been studied by the computational geome-

try community for a long time already (almost for four decades) [75, 7, 9, 60, 10].
However, lots of questions regarding combinatorial properties and construction al-
gorithms are still open. This is true even for very straightforward generalizations of
the basic Voronoi diagrams. This dissertation investigates certain cluster Voronoi
diagrams. A cluster Voronoi diagram reveals proximity information for a given
input family of clusters (sets) of sites or for clusters of the input sites.

The cluster Voronoi diagrams considered in this dissertation are the Hausdorff
Voronoi diagram, the farthest-color Voronoi diagram, and the farthest-segment
Voronoi diagram. These diagrams are most natural generalizations of the basic
nearest-neighbor and farthest Voronoi diagram of points. Each of them can be ob-
tained from one of the two basic Voronoi diagrams of points simply by considering
sites to be sets (clusters) of points, rather than single points, and by choosing the
appropriate distance measure. Another result in this dissertation is establishing
a connection of the Hausdorff and the farthest-color Voronoi diagrams with the
problem of computing stabbing circles for sets of line segments.

For information about the Voronoi diagrams see the book of Aurenhammer et
al. [10], and the book by Okabe et al. [60] that contains a comprehensive (to date)
overview of the applications of the diagrams.

1.1 Basic concepts of Voronoi diagrams

Before discussing the generalized Voronoi diagrams that are the focus of this dis-
sertation, we review basic concepts necessary to understand the material of this
chapter.

Definition 1. The nearest-neighbor Voronoi diagram of a finite set of sites in a
given space is a subdivision of this space into maximal regions such that all points
within one region have the same nearest site.

Throughout this dissertation, unless explicitly stated otherwise, we consider
the Euclidean plane as the underlying space (we refer to it as the plane, or R2), the
Euclidean norm as a distance measure, and sets of sites, as well as finite clusters
of points. We use the term “Voronoi diagram” in two ways: it either denotes the
space subdivision (e.g., as in Definition 1), or it denotes the graph structure of this
subdivision, i.e. the union of the boundaries of all Voronoi regions.

The most celebrated Voronoi diagram is the nearest-neighbor Voronoi diagram
of points in the plane. Figure 1.1 shows the Voronoi diagram of a set of thirteen
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Figure 1.1. A set of points in R2; its nearest-neighbor Voronoi diagram (solid
lines) and Delaunay triangulation (dashed lines)

points in solid lines. This diagram is a plane graph, with one convex face per site.
Its combinatorial complexity (size) is linear in the number of sites. The diagram
can be preprocessed and stored in a point-location data structure, which, for any
query point in R2, returns its nearest site; the time for such query is logarithmic
in the number of sites. This basic Voronoi diagram has been fully studied, and
optimal construction algorithms have been derived [75, 42, 45].

A geometric structure, closely related to the Voronoi diagram, is the Delaunay
triangulation.

Definition 2. The Delaunay triangulation of a set of point sites in the plane is a
triangulation of this set such that for any of its triangles, no sites are enclosed in
the interior of the circumcircle of this triangle.

The Delaunay triangulation of a set of points in general position (no four points
are co-circular) is dual to the nearest-neighbor Voronoi diagram of that set: two
sites are adjacent in the triangulation if and only if their Voronoi regions are neigh-
bors in the diagram. Figure 1.1 shows the Delaunay triangulation of the set of point
sites in dashed lines.

Symmetric to the nearest-neighbor Voronoi diagram is the farthest-site Voronoi
diagram defined as follows.

Definition 3. The farthest-site Voronoi diagram of a set of sites is a subdivision of
the underlying space into maximal regions, such that every point within one region
has the same farthest site.

When the sites are points in the plane, the farthest-site Voronoi diagram is
called the farthest-point Voronoi diagram. Each Voronoi region in this diagram
is unbounded, and the graph structure of the diagram is a tree. Further, a point p
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p5

p4

p3 p2

p1

p6

(p5)(p6)

(p1) (p2) (p3) (p4)

Figure 1.2. The set of points from Figure 1.1, its convex hull (gray lines), and
its farthest-point Voronoi diagram (black lines)

has a non-empty Voronoi region if and only if p lies on the convex hull of the set of
point sites. The ordering of sites along the convex hull corresponds to the ordering
of their Voronoi regions at infinity. Figure 1.2 depicts the farthest-point Voronoi
diagram of the same set of points as in Figure 1.1. The convex hull of the set is
shown in gray lines, and the points on it are named p1, . . . , p6. The Voronoi region
of a point pi,1≤ i≤ 6, is labeled as (pi).

An “intermediate” structure between the nearest-neighbor and the farthest-site
Voronoi diagrams is the higher-order Voronoi diagram [75, 53, 37]. Given a set
of n sites, the regions of its order-k Voronoi diagram reveal information about k
nearest sites, where k is an integer between 1 and n− 1. The nearest-neighbor
Voronoi diagram is the order-1 diagram, and the farthest Voronoi diagram is the
order-(n−1) Voronoi diagram.

Another important concept is the abstract Voronoi diagram, which reflects the
common topological properties of many concrete Voronoi diagrams. Abstract
Voronoi diagrams are defined using a system of bisecting curves that satisfy a
number of simple combinatorial axioms [50]. As opposed to concrete Voronoi
diagrams, no sites or distance functions are considered. The abstract Voronoi di-
agram machinery [50, 57, 52, 58] can be used to prove complexity bounds and
to derive efficient construction algorithms for any concrete Voronoi diagrams that
satisfy their axioms [10].

Lifting transformation [40, 37]. The lifting transformation is a powerful tech-
nique that connects Voronoi diagrams of points in Rd and arrangements of hyper-
planes in Rd+1. It lifts a point in Rd onto the unit paraboloid in Rd+1, and returns
the tangent hyperplane to the paraboloid at the lifted point.

As applied to points in the plane, the lifting transformation provides an equiv-
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alence between the nearest-neighbor or the farthest Voronoi diagram of points and
certain substructures of the arrangement of three-dimensional hyperplanes, which
are respectively the upper envelope and the lower envelope of the hyperplanes. For
details, see Chapter 2 (Section 2.2.2).

Exploiting this transformation, any algorithm to compute the upper and the
lower envelope of hyperplanes may be used to compute the corresponding Voronoi
diagram.

1.2 Generalized Voronoi diagrams in this dissertation

The focus of this dissertation is on generalized Voronoi diagrams, termed cluster
Voronoi diagrams, whose sites are sets, or clusters, of points, rather than single
points. These diagrams have a number of applications such as in VLSI computer-
aided design [65, 55, 67] and in motion planning for robots with obstacles of dif-
ferent shapes, see e.g. a survey by Schwartz and Sharir [72]. They also help to
solve problems in facility location: for example, to find a position that is as close
as possible to each of k different types of facilities (such as schools, post offices,
etc.), or to all the facilities of one type [2].

Cluster diagrams have many variants. Indeed, one can choose differently the
form of clusters, the way to measure the distance from a point to a cluster, and
restrictions on clusters’ size; higher-order Voronoi diagrams are also instances of
cluster Voronoi diagrams. Due to such freedom in choices while defining a cluster
Voronoi diagram, the properties of different cluster Voronoi diagrams can vary a
lot. Classic construction algorithms may not handle well specific properties of their
instances. This dissertation considers such instances of cluster Voronoi diagrams.

1.2.1 The Hausdorff Voronoi diagram

Given a set S of points in the plane, we partition S into clusters, resulting in a family
F of clusters of points, where no two clusters share a point. The Hausdorff Voronoi
diagram of F is a subdivision of the plane according to the nearest cluster, where
the closeness between a point and a cluster is measured by the maximum distance.
The diagram is formally defined as follows.

Definition 4. The Hausdorff Voronoi region of a cluster C ∈ F is:
hregF(C) = {p | ∀C′ ∈ F \{C} : max

x∈C
d(p,x)< max

x∈C′
d(p,x)};

The Hausdorff Voronoi region of a point c ∈C, C ∈ S is:
hregF(p) = {p | p ∈ hregF(C) and ∀c′ ∈C \{c} : d(p,c)> d(p,c′)}.
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Figure 1.3. A family of four clusters and its Hausdorff Voronoi diagram

The Hausdorff Voronoi diagram of F is the subdivision of R2 derived by the Haus-
dorff Voronoi regions.

In Figure 1.3, solid lines indicate the boundaries between the Hausdorff
Voronoi regions of clusters. Dashed lines indicate the subdivision of the Voronoi
region of each cluster into finer regions as provided by the farthest Voronoi diagram
of the cluster points.

The Hausdorff Voronoi diagram is a “min-max” type of diagram. It can be
viewed as a generalization of the basic Voronoi diagrams. If each cluster in F is
a single point, the Hausdorff diagram coincides with the nearest-neighbor Voronoi
diagram of F . If F consists of one cluster, the diagram coincides with the farthest-
point Voronoi diagram of that cluster. If F consists of all k-subsets of a set S of
points, then the diagram coincides with the order-k Voronoi diagram of S.

Let n be the total number of points in all clusters in the input family F , or,
equivalently, the number of points in the underlying set S. The Hausdorff Voronoi
diagram was first considered by Edelsbrunner et al. [38] under the name cluster
Voronoi diagram. For arbitrary clusters, the authors proved that the combinatorial
complexity of the diagram is O(n2α(n)) and also provided an algorithm of the
same time complexity for its construction, where α(n) is the inverse Ackermann
function. These bounds were later improved to O(n2) [66]. When the convex hulls
of the clusters are disjoint, the combinatorial complexity of the diagram is O(n). In
fact, it remains O(n) for non-crossing clusters, a weaker condition than disjointness
of convex hulls [66].

Two clusters P and Q are called non-crossing, if the convex hull of P∪Q admits
at most two supporting segments with one endpoint in P and one endpoint in Q. If
the convex hull of P∪Q admits more than two such supporting segments, then P
and Q are called crossing. See Figure 1.4.

Papadopoulou [62] gave a more detailed analysis of the complexity of the Haus-
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dorff Voronoi diagram. She showed that its complexity is O(n+m), where m is the
number of crossings between clusters, and this is tight. The number of crossings m
is bounded from above by (half) the number of supporting segments between pairs
of crossing clusters, m = O(n2). For a formal definition, see Definition 7. If all
clusters are pairwise non-crossing (m = 0), the diagram has size O(n).

Figure 1.4 shows two pairs of non-crossing clusters (Figures 1.4a,b), a pair
of clusters with one crossing (Figure 1.4c), and a pair with two crossings (Fig-
ure 1.4d).

(a) (b)

(c) (d)

Figure 1.4. Non-crossing clusters with (a) disjoint and (b) non-disjoint convex
hulls; crossing clusters with (c) one crossing and (d) two crossings

The O(n2) time algorithm of Edelsbrunner et al. [38] to construct the Hausdorff
Voronoi diagram, although optimal in the worst case, remains quadratic in all cases,
even for linear-complexity instances of the diagram.

A large part of this dissertation is dedicated to construction algorithms for the
Hausdorff Voronoi diagram, see Chapter 3. We consider separately the case of
non-crossing clusters, and for this case we give two randomized algorithms that
are near optimal. For arbitrary clusters, we give another randomized algorithm
whose time complexity improves the previous results for the families of clusters
with small number of crossings.

Algorithms to construct the HVD prior to this dissertation

The first O(n2) time algorithm is given by Edelsbrunner et al. [38]. There are
plane sweep and divide and conquer algorithms for constructing the Hausdorff
Voronoi diagram of arbitrary clusters [62, 66]. Both algorithms have a K logn term
in their time complexity, where K is a parameter reflecting the number of pairs of
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clusters such that one is contained in a specially defined enclosing circle of the
other, for example, the minimum enclosing circle [66]. However, K can be ω(n)
(superlinear), even in the case of non-crossing clusters when the diagram has linear
complexity.

For non-crossing clusters, the Hausdorff Voronoi diagram can be computed us-
ing the generic randomized incremental framework for abstract Voronoi diagrams
of Klein et al. [52]. The expected time complexity of this algorithm is O(bn logn),
where b is the time to compute the bisector between two clusters [1]. If there are
clusters of linear size, then b can be Θ(n).

A parallel algorithm is given by Dehne et al. [33]. It constructs the Hausdorff
Voronoi diagram of non-crossing clusters in O(p−1n log4 n) time with p proces-
sors, which implies a divide and conquer sequential algorithm of time complexity
O(n log4 n) and space complexity O(n log2 n).

1.2.2 An industrial application of the Hausdorff Voronoi diagram

The Hausdorff Voronoi diagram finds direct application in VLSI computer-aided
design [65, 18]. In fact, the intensive study of the diagram was motivated by this
application. In particular, the use of the Hausdorff Voronoi diagram lowered con-
siderably the time required to measure the critical area of a chip design [55], which
is one of the key parameters in VLSI yield prediction.

Nowadays, a VLSI chip has all its elements packed within a so small area (a few
nanometers), that even a tiny particle can easily cause a fault during the printing
process. Since printing a chip is an expensive operation, a crucial problem for
the semiconductor industry is predicting the yield (the percentage of successfully
printed chips) prior to the printing phase, that is, only given a design of the chip.
One of the important and widely used quality measures of a chip design is critical
area, that represents the sensitivity of a design to random defects. For the extensive
overview of the yield analysis tasks and the use of generalized Voronoi diagrams
to address them, see the book chapter by Gupta and Papadopoulou [46]. Here we
consider only the part that is directly connected to the Hausdorff Voronoi diagram.

One of the standard types of faults is a via block, and it consists on the blockage
of the connection (via) between conducting regions in two different layers of the
VLSI chip. In particular, a defect entirely covers a certain contact region between
two layers. Defects are modeled as circles, and the contact regions as polygons.
Given a point p on a via layer (an intermediate layer between two conducting ones),
the critical radius of p is the smallest defect centered at p that causes a via block.
Designers typically use redundant vias to increase the reliability of their design
against manufacturing defects. Thus a via block happens if a particle overlaps
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Figure 1.5. The farthest-color Voronoi diagram of the family of clusters from
Figure 1.3

the entire cluster of the (redundant) vias. The Hausdorff Voronoi diagram of the
clusters of redundant vias on the via layer provides the critical radius for every
point on that layer. The critical area is an integral of the critical radius over the
points on the via layer. Once the Hausdorff Voronoi diagram of the clusters of vias
is available, the integral reduces to a summation over the Voronoi edges [61]. The
critical area computation for via blocks can thus be reduced to construction of the
Hausdorff Voronoi diagram.

The Hausdorff Voronoi diagram is useful for other problems in VLSI design,
such as the geometric min-cut problem [68], motivated by redundant intercon-
nects [63].

1.2.3 The farthest-color Voronoi diagram

A cluster Voronoi diagram of a “max-min” type is the farthest-color Voronoi dia-
gram (see Figure 1.5) that can be regarded as the opposite to the Hausdorff Voronoi
diagram. For a family F of clusters of points, its farthest-color Voronoi diagram is
formally defined as follows.

Definition 5. The farthest-color Voronoi region of a cluster C ∈ F is:

fcregF(C) = {p | ∀C′ ∈ F \{C} : min
x∈C

d(p,x)> min
x∈C′

d(p,x)};

The farthest-color Voronoi region of a point c ∈C, C ∈ F is:

fcregF(c) = {p | p ∈ fcregF(C) and ∀c′ ∈C \{c} : d(p,c)< d(p,c′)}.

The farthest-color Voronoi diagram of F , for brevity FCVD(F), or simply FCVD,
is the subdivision of R2 derived by the farthest-color Voronoi regions.
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In other words, the farthest-color Voronoi diagram of F subdivides R2 into
maximal regions, such that every point within one region has the same farthest
cluster, where the closeness between a point in R2 and a cluster is measured by the
minimum distance from that point to a point in the cluster.

Figure 1.5 illustrates the farthest-color Voronoi diagram of four clusters. Solid
lines indicate the edges that separate the farthest-color Voronoi regions of clusters.
Dashed lines show the further subdivision of the region of an individual cluster by
the nearest-neighbor Voronoi diagram of the point of this cluster.

The farthest-color Voronoi diagram was first considered by Huttenlocher et
al. [47], who showed that its complexity is O(nkα(nk)) and gave an O(nk lognk)
time construction algorithm, where k is the number of clusters and n is the total
number of points in all clusters. Independently, Abellanas et al. [2] considered this
diagram, and gave a tighter O(nk) bound on its complexity, and a matching Ω(nk)
lower bound for k ≤ n/2. They also provide an O(n2α(k) logk) time construction
algorithm. An O(n2) time algorithm is implied by the result of Edelsbrunner et
al. [38] (see also Property 2.2.3). Cheong et al. [23] considered the case when sites
(clusters) form pairwise disjoint simple polygons. They call the FCVD of such
sites the farthest-polygon Voronoi diagram, and show that it has O(n) complexity
and can be constructed in O(n log3 n) time, where n is the total number of vertices
in all polygons [23].

The farthest-color Voronoi diagram has been studied much less than the Haus-
dorff Voronoi diagram. Its structural properties are not yet well understood. In
particular, so far there is no known analog of the non-crossing condition of the
Hausdorff Voronoi diagram, that would guarantee the linear combinatorial com-
plexity of the FCVD for a certain class of inputs.

In this dissertation, the farthest-color Voronoi diagram is involved through its
application to the stabbing circle problem. We consider some special cases as they
appear in our study of the stabbing circle problem. In particular, the clusters are
pairs of points, and the line segments that connect them are either (i) parallel to
each other, or (ii) are edges of the Delaunay triangulation of some set of points.

1.2.4 The farthest-segment Voronoi diagram

The farthest-segment Voronoi diagram is the farthest-site Voronoi diagram, where
sites are line segments inR2, see Definition 3. Figure 1.6 illustrates a set of five line
segments in black lines and its farthest-segment Voronoi diagram in red lines. Each
face of the diagram is labeled by the name (in parentheses) of the line segment,
farthest to it.

Despite being the most natural and most immediate generalization of the classic
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Figure 1.6. ([64]) Set S= {s1, . . . ,s5} and its farthest-segment Voronoi diagram

farthest-point Voronoi diagram, this diagram has properties surprisingly different
from the latter, as pointed out by Aurenhammer et al. [8]. For example, a single
Voronoi region may have disconnected faces, see the region of the segment s5 in
Figure 1.6. In fact, the number of disconnected faces of one Voronoi region can
be Θ(n), where n is the number of segments in the input set. However, the total
combinatorial complexity of the farthest-segment Voronoi diagram is O(n) [8].

The convex hull of the sites does not determine the non-empty Voronoi re-
gions, neither does it determine the ordering of the faces at infinity. There is,
however, another structure, called the Gaussian map, introduced by Papadopoulou
and Dey [64], that determines the ordering of non-empty faces at infinity, and thus
plays the role of convex hull for the farthest-segment Voronoi diagram.

The farthest-point Voronoi diagram can be constructed in linear time, if the
convex hull of the sites is given [3]. In this dissertation we show that, despite the
differences, the farthest-segment Voronoi diagram also can be constructed in linear
time, given the ordering of its faces at infinity.

1.3 Algorithmic techniques to construct Voronoi dia-
grams

Several algorithmic techniques have been explored to construct Voronoi diagrams
efficiently. These are typically divide and conquer, plane sweep, and randomized
incremental construction.
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Divide and conquer [75]. The divide and conquer technique to construct a
Voronoi diagram, in its first (“divide”) phase, subdivides the sites into two suf-
ficiently large subsets. This is usually, but not necessarily, done with respect to a
straight line. This breaks the problem into two subproblems, which are then solved
recursively. That is, the Voronoi diagrams of the two subsets are recursively com-
puted. In the second (“conquer”) phase, the two Voronoi diagrams are merged. To
merge two diagrams, their portions that must appear in the final Voronoi diagram
are stitched together along the so-called merge curves.

The key conditions for an O(n logn) time divide-and-conquer algorithm to con-
struct a Voronoi diagram are: (1) the size of both subproblems must be at least a
constant fraction of the size of the whole problem, with the two corresponding
constants summing up to 1; (2) while determining the merge curve of the two di-
agrams, one visits only those parts of the diagrams that do not appear (or appear
only partially) in the resulting merged diagram. The latter condition implies a
linear-time merging procedure. Given this property and condition (1), the Master
theorem [31] ensures an O(n logn) time complexity for the whole algorithm.

Plane sweep [42]. The plane sweep technique handles the two dimensions of the
problem separately. In particular, it considers a vertical line, called a sweepline,
that sweeps the plane from left to right. While this process is advancing, the
algorithm maintains the Voronoi diagram of all the sites lying to the left of the
sweepline, together with the sweepline as an additional site. The diagram is up-
dated only when the sweepline hits an event point, which is either a new site, or
an intersection of two Voronoi edges. The “dynamic” part of the diagram, which
needs to be kept track of, is the boundary of the Voronoi region of the sweepline.
This boundary is called the wavefront. Storing the wavefront and the pending event
points in appropriate dynamic data structures yields an efficient algorithm.

Randomized incremental construction (RIC) [26, 45]. A randomized incre-
mental construction algorithm inserts sites one by one in random order, and up-
dates the diagram after each insertion. Such algorithm has a good expected time
complexity, while still enjoying the simplicity of an incremental algorithm. The
randomized incremental construction (RIC) framework was introduced by Clark-
son and Shor [26]. It provides a powerful method to construct a geometric struc-
ture, should the construction problem be formulated in the generic terms of the
framework and satisfy certain update conditions. The classic RIC framework has
two variations, depending on the auxiliary data structure it uses to perform effi-
cient updates at each incremental step. In particular, it uses either a conflict graph,
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or a history graph. Applying this framework, many Voronoi diagrams have been
computed in expected O(n logn) time [44, 45, 52, 58].

There is another variation of RIC [35, 48], which is based on point location.
This technique is specific to the proximity-based geometric structures, such as the
Delaunay triangulation and Voronoi diagrams. To perform updates at each incre-
mental step efficiently, it uses a dynamic hierarchical data structure called Voronoi
hierarchy [48]. This technique is practical and simple, and it has been implemented
in the CGAL library [19], despite its O(n log2 n) time complexity for Voronoi dia-
grams, which is worse than the classic RIC.

A linear-time construction technique for points in convex position [3]. It is
well known that the task to construct the nearest-neighbor Voronoi diagram of a set
of points is at least as hard as to construct a convex hull, thus it requires Ω(n logn)
time [70]. However, if the points are in convex position, and their ordering along
the convex hull is known in advance, then their Voronoi diagram can be computed
in O(n) time [3].

The technique to achieve this is a variation of the divide-and-conquer approach.
The difference with the standard divide-and-conquer strategy is as follows. At each
step during the “divide” phase, the algorithm takes out of consideration a constant
fraction of sites, called crimson sites. The algorithm continues execution for the
remaining sites only. During the “conquer” phase, in addition to the standard merg-
ing of the recursively computed Voronoi diagrams, the crimson sites are inserted
one by one. The key property of the crimson sites is that their Voronoi regions are
pairwise non-adjacent. The existence of such a set of crimson sites was shown by
Aggarwal et al. in their combinatorial lemma [3], which also provides the linear-
time procedure to choose a crimson set.

The Aggarwal et al. technique is so powerful that it was applied to solve many
problems of similar nature. First, it immediately applies to a list of problems,
resulting in a linear-time algorithm for each of them [3]. This list includes: con-
structing the farthest-point Voronoi diagram, when the convex hull of the sites is
known; updating the nearest-neighbor Voronoi diagram of points after deletion of
one site; computing the order-(k+1) subdivision of a face of the order-k Voronoi
diagram of points. The last result implies a speedup by a logarithmic factor in
the incremental construction of higher-order Voronoi diagram of points. In par-
ticular, the time complexity of a construction by Lee [53] can be improved from
O(k2n logn) to O(k2n). Further, the technique has been exploited by Chin et al. to
construct the medial axis of a simple polygon in linear time [24].

The technique has been extended to handle certain types of abstract Voronoi
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diagrams. Klein and Lingas [51] show how to use it to compute the Hamilto-
nian abstract Voronoi diagrams. The Hamiltonian abstract Voronoi diagrams are
abstract Voronoi diagrams with the following additional property: an unbounded
curve is known, which intersects each Voronoi region exactly once, and may in-
tersect each bisector at most once. Recently, Bohler et al. further generalized the
algorithm to treat the forest-like abstract Voronoi diagrams [14]. The forest-like
abstract Voronoi diagrams are abstract Voronoi diagrams, such that every site has
a unique face, and the diagram of the input set is a tree, but the diagram of a subset
may be a forest.

In Chapter 4 of this dissertation, we extend this technique to construct the
farthest-segment Voronoi diagram after the sequence of its faces at infinity is
known. The farthest-segment Voronoi diagram may have disconnected Voronoi
regions, and we augment the Aggarwal et al. technique with the ability to handle
this issue.

This dissertation. The algorithms in this dissertation exploit the techniques re-
viewed above. Chapter 3 investigates application of the RIC framework, both the
one based on point location and the classic one, to construct the Hausdorff Voronoi
diagram. We give a more detailed review of the RIC framework in Chapter 2 (Sec-
tion 2.1). Chapter 4 applies the Aggarwal et al. linear-time technique to construct
the farthest-segment Voronoi diagram.

1.4 The stabbing circle problem: an application of clus-
ter Voronoi diagrams

The stabbing circle problem poses questions about the classification of a family of
pairs of points according to their containment in a circle. For our purposes, it is
convenient to represent a pair of points by a line segment connecting them, and we
stick to such representation.

Let S be a set of n line segments in the plane.

Definition 6. A circle c is a stabbing circle for set S if exactly one endpoint of
each segment in S is contained in the exterior of the closed disk induced by c; see
Figure 1.7.

A stabbing circle intersects all the segments in S and classifies their endpoints
into two classes, depending on whether or not the endpoint lies in the exterior of
the corresponding disk. Two stabbing circles are combinatorially different if they
classify the endpoints of S differently.
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Figure 1.7. Left: Segment set with a stabbing circle; Right: Segment set with
no stabbing circle

The stabbing circle problem asks the following questions: (1) Report a repre-
sentation of all the combinatorially different stabbing circles for S; and (2) Find the
stabbing circles of minimum and maximum radius.

The stabbing circle problem is a generalization of the famous stabbing line
problem [36]. The stabbing line can be solved in optimal O(n logn) time [36, 37].
There is a matching Ω(n logn) lower bound, in the fixed order algebraic decision
tree model, to decide whether a stabbing line exists [11]. If all segments are paral-
lel, the stabbing line problem can be solved in O(n) time by linear programming.

It is natural to ask about types of stabbers other than lines. Variations of the
problem include stabbing wedges [28], as well as isothetic stabbing strips, quad-
rants and 3-sided rectangles [29].

The stabbing circle problem was posed by Claverol in her PhD disserta-
tion [27]. She gives an algorithm that in O

(
n2√n logn

)
time computes the stab-

bing circle of minimum radius (if one exists) for a set of arbitrary segments, and an
O(n2) time algorithm for the case when all segments are parallel. She also provides
an example of a segment set that admits Ω(n2) combinatorially different stabbing
circles.

Chapter 5 of this dissertation continues exploring this problem. We show
that the stabbing circle problem is tightly connected to cluster Voronoi diagrams,
specifically, the Hausdorff and the farthest-color Voronoi diagram, where clusters
are the endpoints of segments in S. In particular, any point p ∈ R2 is the center
of a stabbing circle for S if and only if p is closer to its farthest than to its nearest
cluster. Here by the farthest and the nearest cluster of a point we mean respectively
the owner of the region of this point in the farthest-color or the Hausdorff Voronoi
diagram.

The above connection is not only interesting on its own right, but it also yields
a method to solve the stabbing circle problem. For sets of line segments, satis-
fying certain conditions, we show that our method leads to efficient algorithms,
improving the previously known results. In particular, it results in O(n log2 n) time
algorithm for the parallel segments. Further, if all segments are edges of a Delau-
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nay triangulation of some set of points, and either all segments are parallel or all
have same length, the algorithm has optimal O(n logn) time complexity.

1.5 Dissertation contributions

The main focus of this dissertation is on cluster Voronoi diagrams. The goal is
to improve the state of the art for these diagrams. In particular, we study their
properties, and design new construction algorithms of better complexity. We also
give an algorithmic application, involving the stabbing circle problem. The rest of
this section gives a detailed overview of the contributions.

Randomized incremental construction (RIC) of the Hausdorff
Voronoi diagram (Chapter 3)

We investigate the RIC framework as applied to the Hausdorff Voronoi diagram of
a family of k clusters, having n points in total. We present two different randomized
incremental approaches to construct the diagram, that improve all previous results
for this problem.

1. A RIC for the Hausdorff Voronoi diagram of non-crossing clusters, based on
point location (Section 3.2).

• We show that the Hausdorff Voronoi diagram can be constructed in
expected O(n logn logk) time and expected O(n) space, following the
variant of the RIC approach that is based on point location.

• We augment the Voronoi hierarchy with the ability to handle the fea-
tures of the Hausdorff Voronoi diagram of non-crossing clusters that
were not handled originally by the Voronoi hierarchy. These features
include:

– sites of non-constant complexity;

– sites not enclosed in their Voronoi regions;

– empty Voronoi regions.

The proposed ways of handling those features may be of help in similar
situations with other generalized Voronoi diagrams.

• We also extend the Voronoi hierarchy to perform parametric point lo-
cation queries in expected O(logn logk) time.
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• We show how to preprocess the farthest Voronoi diagram of the points
of an individual cluster, building the centroid decomposition data struc-
ture, that can perform the point location and the segment queries in
O(logn) time.

2. We apply the (classic) Clarkson-Shor RIC framework [26, 25] to the Haus-
dorff Voronoi diagram (Sections 3.3 and 3.4). We consider both non-crossing
and arbitrary clusters.

• For non-crossing clusters, we propose a simplified definition of a con-
flict, that is based on the properties of the Hausdorff Voronoi dia-
gram. This yields an algorithm to construct the diagram in expected
O(n logn+ k logn logk) time and deterministic O(n) space. The com-
plexity of our algorithm is considerably better than one that would fol-
low from a straightforward application of the RIC framework.

• We apply the classic RIC framework to the Hausdorff Voronoi dia-
gram of arbitrary clusters that may cross. We address the problem of
constructing a Voronoi diagram with disconnected regions and discon-
nected bisectors, via the randomized incremental construction frame-
work. Such setting has not been considered before. The resulting
algorithm runs in expected O((m + n logk) logn) time and expected
O(m+n logk) space, where m is the total number of crossings between
clusters.

Linear-time construction of the farthest-segment Voronoi diagram
(Chapter 4)

We show that, given the sequence of Voronoi faces at infinity, the farthest-segment
Voronoi diagram of n line segments can be computed in O(n) time. Our algorithm
follows the linear-time framework to compute the Voronoi diagram of points in
convex position [3], and augments this framework with the ability to handle dis-
connected Voronoi regions.

Application of the cluster Voronoi diagrams to the stabbing circle
problem (Chapter 5)

• We point out that the stabbing circle problem for segments in the plane can
be reduced to the problem of computing stabbing planes for segments in R3.
The latter problem can be solved in O(n2) time [38], and the reduction can be
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performed in O(n) time. Moreover, there is a matching Ω(n2) lower bound
on the number of combinatorially different stabbing circles, i.e., the size of
the output for the stabbing circle problem [27]. Thus, based on previous
results, we establish the tight worst-case time complexity for this problem.

• We point out the connection between the stabbing circle problem and the
cluster Voronoi diagrams. In particular, the existence of a stabbing circle
centered at a given point p in the plane is fully determined by the Hausdorff
Voronoi region and the farthest-color Voronoi region that contain p.

• Building upon the connection to cluster Voronoi diagrams, we present an
approach to solve the stabbing circle problem. This approach complements
the O(n2) time solution. The latter is worst-case optimal, but in certain cases
our alternative approach performs better, as it is sensitive to properties of the
cluster Voronoi diagrams.

• We prove that for parallel segments our alternative approach works in
O(n log2 n) time. This improves considerably upon the best previously
known O(n2) time complexity bound for this setting.

• For segments that are disjoint edges of the Delaunay triangulation of some
set of points (we say that such segments satisfy the Delaunay property), and
in addition that either have equal length, or are parallel to each other, we
show that the stabbing circle problem can be solved in O(n logn) time.

Some results on the farthest-color Voronoi diagram (Chapter 5)

As part of our study of the stabbing circle problem, we prove the following results
on the farthest-color Voronoi diagram (assuming S to be a set of n line segments).

• If all segments in S are parallel to each other, the farthest-color Voronoi dia-
gram of pairs of their endpoints has O(n) combinatorial complexity. More-
over, it can be constructed in O(n logn) time.

• If the segments in S are disjoint edges of the Delaunay triangulation of some
set of points (i.e., the segments satisfy the above Delaunay property), then the
farthest-color Voronoi diagram is an instance of the farthest abstract Voronoi
diagram [58]. This fact implies that its graph structure is a tree, and that its
combinatorial complexity is O(n).

• For segments satisfying the Delaunay property we independently give an
algorithm to construct the farthest-color Voronoi diagram in deterministic
O(n logn) time. (Note that being an instance of farthest abstract Voronoi
diagrams leads only to an expected O(n logn) time algorithm.)
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Dissertation overview

This dissertation is organized as follows. Chapter 2 reviews various important con-
cepts that are used in this dissertation. Chapter 3 presents our results on the ran-
domized incremental construction of the Hausdorff Voronoi diagram. Chapter 4
presents a linear-time construction algorithm for the farthest-segment Voronoi di-
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stabbing circle problem. It provides an algorithmic application of cluster Voronoi
diagrams to the stabbing circle problem, as well as the results on the farthest-color
Voronoi diagram.
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Chapter 2

Background

In this chapter we give a review on the concepts and techniques that are the basis
of the results in this dissertation. We first discuss the randomized incremental con-
struction framework. Then we give an overview of the geometric transformation,
including the point-line duality, the lifting transformation, and the duality for the
fartest-segment Voronoi diagram.

2.1 The randomized incremental construction (RIC)
framework

Clarkson and Shor [26] introduced a generic framework, which yields simple and
efficient construction algorithms for various geometric structures. Several exten-
sions have been proposed on both the algorithmic [25, 15, 45, 34] and the analyti-
cal [45, 73, 76] part. The framework is discussed in detail in the books of Boisson-
nat and Yvinec [17] and of Mulmuley [59]. We term it “classic RIC framework”
in order to distinguish it from another variant of randomized incremental construc-
tion, which is based on point location. Both variations of the RIC are reviewed in
the next two sections. Our presentation of the classic RIC (Section 2.1.1) follows
the presentation of the book of Boissonnat and Yvinec [17].

2.1.1 Classic RIC framework

Suppose we are given a set of objects (sites), and we aim to construct a certain
geometric structure (target structure) induced by this given set of sites. The frame-
work operates with objects, ranges and conflicts, whose definitions are specific to
the concrete problem. A randomized incremental algorithm to construct the target

21
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structure, or RIC for brevity, inserts objects one by one in random order, updating
the target structure at each step. Ranges1 are simple subsets of the space, defined
by a constant number of objects. The target structure at each step is seen as a col-
lection of ranges which are defined and without conflicts over the set of objects
inserted so far. While the target structure at two consecutive steps may differ a
lot, the expected total number of ranges created during the whole execution of the
algorithm is bounded by a function of the complexity (size) of the target structure,
see Theorems 2.1.1 and 2.1.2. In particular, the expected number of created ranges
is linear for the target structures whose size is linear in the number of sites. To up-
date the target structure efficiently, an auxiliary data structure is maintained, which
is either a conflict graph, or a history graph.

Conflict graph. The conflict graph is a bipartite graph, defined as follows. At
each step of the algorithm, one of the two groups of nodes of the conflict graph
corresponds to ranges comprising the current target structure, and the other group
of nodes corresponds to objects that are not yet inserted. Two nodes are connected
by an edge if the corresponding range and object are in conflict. An algorithm
using a conflict graph satisfies a sufficient update condition if the time to update
the conflict graph at each step of the algorithm is proportional to the number of
edges of the conflict graph, deleted or created during this step. This condition
yields good expected time and space complexity:

Theorem 2.1.1 (Thm 5.2.3 [17]). Let S be a set of n objects, and consider a ran-
domized incremental algorithm that uses a conflict graph to process S. Let f0(r,S)
be the expected number of ranges in the target structure for a random sample of r
objects from S.

1. The expected total number of ranges created by the algorithm is

O

(
n

∑
r=1

f0(r,S)
r

)
.

2. The expected total number of arcs added to the conflict graph by the algo-
rithm is

O

(
n

n

∑
r=1

f0(r,S)
r2

)
.

1We use the original [26] term range, instead of a more usual term region [17], to avoid the
confusion with the Voronoi regions latter.
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3. If the algorithm satisfies the update condition, then its expected complexity
(both in time and space) is

O

(
n

n

∑
r=1

f0(r,S)
r2

)
.

The above framework requires that the whole input set of sites is available
from the beginning. That is, the framework yields off-line randomized incremen-
tal construction algorithms. In order to drop this requirement and thus make the
algorithms on-line, a variation of the framework was designed, that, instead of a
conflict graph, uses a history graph.

History graph. The history graph [25, 15], also called influence graph, is a di-
rected acyclic graph defined as follows. At each step of the algorithm, the nodes
of the history graph correspond to all ranges created by the algorithm so far. The
nodes with zero out-degree, termed leaf nodes, correspond to the ranges present in
the current target structure. The nodes that have outgoing edges, termed intermedi-
ate nodes, correspond to the ranges that have been already deleted from the target
structure. Intermediate nodes are connected, by their outgoing edges, to the nodes
whose insertion caused the deletion of their ranges. The latter nodes are referred
to as the children of the former nodes. The update condition for a history graph is
the following: (1) The out-degree of each node is bounded by a constant; and (2)
the existence of a conflict between a given range and a given object can be tested
in constant time. This update condition yields similar bounds on the complexity of
a randomized incremental algorithm, as in in the case of conflict graph:

Theorem 2.1.2 (Thm 5.3.4 [17]). Consider a RIC algorithm that uses a history
graph to process a set S of n objects. Let f0(r,S) be the expected number of ranges
in the target structure for a random sample of r objects from S. If the algorithm
satisfies the update condition, then:

1. The expected storage used by the algorithm to process the n objects is

O

(
n

∑
r=1

f0(r,S)
r

)
.

2. The expected time complexity of the algorithm is

O

(
n

n

∑
r=1

f0(r,S)
r2

)
.
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Figure 2.1. ([16]) The Voronoi hierarchy for the Voronoi diagram of convex
objects, consisting of three levels; walks for a query point x at each level (solid
lines)

For some generalized Voronoi diagrams it is shown how to choose objects,
ranges and conflicts so that the above update conditions hold. Klein et al. [52]
presented the application of the RIC framework to abstract Voronoi diagrams. This
was followed by a similar result on the farthest abstract Voronoi diagram [58].
These results imply that any Voronoi diagram which is an instance of the nearest
of farthest abstract Voronoi diagrams can be computed in expected O(n logn) time2

via the RIC framework. Among the generalized Voronoi diagrams in the plane that
are not instances of these abstract diagrams, the RIC framework has been applied,
for example, to the Voronoi diagram of curved objects, where bisectors may be
closed curves [4].

2.1.2 RIC based on point location

For Voronoi diagrams and the Delaunay triangulation, there is an alternative on-line
randomized incremental technique, which is based on point location. Algorithms
following this technique, are simple and practical, despite often being inferior to
the classic RIC framework in terms of time complexity. Such algorithms have been
implemented in the CGAL library [19].

At each incremental step, when a new object is inserted, the target structure is
updated in the following way. First, the range that contains a representative point
is located, where a representative point is guaranteed to belong to one of the new
ranges after the update. Then, starting from this point, the structural changes in the
target structure are traced, and the target structure is updated.

To perform the necessary location queries efficiently, a semi-dynamic data
structure is maintained. Originally the Delaunay hierarchy was proposed by Dev-

2More precisely, these algorithms perform O(n logn) basic operations, which yields O(n logn)
time, assuming that a basic operation requires O(1) time.
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illers [35] as such data structure; its use resulted in an algorithm to construct the
Delaunay triangulation of n points in expected optimal O(n logn) time [35]. Later,
the Delaunay hierarchy inspired the Voronoi hierarchy for the nearest-neighbor
Voronoi diagram of convex objects, presented by Karavelas and Yvinec [48]. The
Voronoi hierarchy is also presented in a book chapter by Boissonat et al. [16]. Us-
ing this data structure leads to an O(n log2 n) time construction algorithm for the
Voronoi diagram of convex objects.

The Voronoi hierarchy. The Voronoi hierarchy for a set of n sites consists of an
expected O(logn) levels: The zero level corresponds to all the sites, and stores their
Voronoi diagram. Each consecutive level corresponds to a random sample of sites
of the previous level following a Bernoulli distribution with a constant parameter.
Point location in this structure is done by performing walks level by level, starting
from the topmost level. Each walk goes from the site found at the previous level
to the closest site on the current level. Each step of the walk proceeds from a
site to one of its neighbors, such that the distance to the query point is reduced.
See Figure 2.1. The Voronoi hierarchy (as well as the Delaunay hierarchy) can be
viewed as a 2D analog of the skip lists [71].

2.2 Geometric transformations

Geometric transformations are a powerful tool in computational geometry that help
to gain insights in studying a geometric structure through its connection with other
seemingly unrelated structures.

2.2.1 Duality and related transformations for line segments in the
plane

Point-line duality is a well-known transformation that connects geometric struc-
tures involving points to certain substructures of arrangements of lines. The trans-
formation can also handle line segments, which is useful in this dissertation. In its
general form, the duality transformation maps points in Rd to hyperplanes in Rd

and vice versa. Here we consider the two-dimensional case.
The transformation T maps a point p = (a,b) in the primal plane to the line

T (p) : y = ax−b in the dual plane. It also maps a line ` : y = ax+b in the primal
plane to the point T (`) = (a,−b) in the dual plane.

Transformation T has an important property that it reverses the above/below
relationship between the geometric objects. In particular, a point p is above a line
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`

u

v

(a)

T (u)

T (v)

T (`)

(b)

Figure 2.2. Point-line duality transformation: (a) a line segment uv in the
primal plane, and a line ` that intersects it; (b) the left-right double wedge
formed by lines T (u) and T (v), and the point T (`) inside it

` if and only if the dual point T (`) is above the dual line T (p). Similarly, the
transformation T preserves the incidence relationship.

The above duality transformation proved useful for many problems involving
point sets, such as the testing if a point set contains three collinear points, comput-
ing the visibility graph, and computing ham-sandwich cuts [41, 37, 54, 21, 32]. In
the dual setting, these problems involve arrangements of lines that are intuitively
easier to address.

Point-line duality and the stabbing line problem

An example of the power of the duality transformation is its application to the
stabbing line problem [36, 37].

Let S be a set of segments in the plane. A line ` is a stabbing line for S if ` inter-
sects all segments in S. The stabbing line problem is to construct (a representation
of) all the stabbing lines for a given segment set S.

The duality transformation turns this problem into computing the intersection
of double wedges in the plane as follows. Consider a line segment uv. Any (non-
vertical) line ` that intersects uv is below one of its endpoints and above the other;
see Figure 2.2. The point T (`) dual to line ` lies in the left-right double wedge
formed by the lines T (v) and T (u). The left-right double wedge is the union of the
two (out of the four possible) areas bounded by these lines, that do not contain the
vertical line, shown shaded in Figure 2.2b.

A non-vertical line ` is a stabbing line for S if and only if point T (`) lies in the
intersection of the double wedges of all the line segments in S. This intersection
region is not necessarily connected, but it consists of at most n + 1 potentially
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Figure 2.3. Point-line duality transformation: (a) a line segment uv, and its
supporting line `; (b) the upper and lower wedges formed by lines T (u) and
T (v), and the point T (`)

unbounded convex polygons. The combinatorial complexity of the boundary of
this intersection region is O(n). It can be computed in O(n logn) time by a divide
and conquer algorithm [36].

Duality for the farthest-segment Voronoi diagram

Consider the farthest-segment Voronoi diagram of a set S of n line segments. Recall
that the farthest-segment Voronoi diagram of S, denoted FVD(S), is a subdivision
of the plane induced by the farthest Voronoi regions of segments, where the region
of a segment si ∈ S is freg(si) = {x ∈ R2 | d(x,si)> d(x,s j),1≤ j ≤ n, j 6= i}.

Aurenhammer et al. [8] pointed out that the point-line duality transformation
T offers a correspondence between the faces of FVD(S) and envelopes of double
wedges, which are derived from the input segments.

Let uv be a segment in S. We map uv to a double wedge that is the union of a
lower wedge and an upper wedge, defined respectively as the area below and the
area above both lines T (u) and T (v). Figures 2.3a,b show respectively a segment
in the primal plane and its double wedge in the dual plane (shaded).

Since the transformation T reverses the above/below relationship, a line passing
above the segment uv in the primal plane corresponds to a point in the lower wedge
formed by T (u) and T (v) in the dual plane; and vice versa.

Let E be the boundary of the union of all the lower wedges of the segments in S
(see Figure 2.5a). Let E ′ be defined symmetrically for the upper wedges. Then, the
faces of FVD(S), which are unbounded in directions from 0 to π in cyclic order,
correspond exactly to the edges of E in the order of increasing x-coordinate [8].
Symmetrically for the edges of E ′ and the Voronoi faces unbounded in directions
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Figure 2.4. ([64]) (a) FVD(S), S = {s1, . . . ,s5}; (b) its farthest hull; (c)
Gmap(S)

from π to 2π. We often refer to this dual setting in Chapter 4.
In addition, Aurenhammer et al. [8] observed the following.

Observation 2.2.1 ([8]). A farthest Voronoi region freg(si) of a segment si ∈ S is
non-empty and unbounded in some direction φ if and only if there exists an open
halfplane, normal to φ, which intersects all segments in S but si.

Another correspondence for the faces of the farthest-segment Voronoi diagram
is provided by the farthest hull and its Gaussian map, introduced by Papadopoulou
and Dey [64].

To define the farthest hull and the Gaussian map, we need to give the following
notions. The line `, normal to φ, bounding the halfplane of Observation 2.2.1, is
called a supporting line. The direction φ (normal to `) is referred to as the hull
direction of ` and it is denoted by ν(`). An unbounded Voronoi edge towards
infinity, separating freg(si) and freg(s j), is a portion of b(p,q), where p,q are
endpoints of si and s j, such that the line through pq induces an open halfplane that
intersects all segments in S, except si,s j (and possibly except additional segments
incident to p,q). Segment pq is called a supporting segment; the direction normal
to it and pointing inside this halfplane is denoted by ν(pq) and is called the hull
direction of pq. A segment si ∈ S such that the line ` through si is supporting, is
called a hull segment; its hull direction is ν(si) = ν(`), normal to `.

The farthest hull is the closed polygonal line obtained by following the sup-
porting and hull segments in the angular order of their hull directions.

Figures 2.4a,b illustrate a farthest-segment Voronoi diagram and its farthest
hull respectively. In Figure 2.4b, supporting segments are shown in dashed lines,
and hull segments are shown in bold. Arrows indicate the hull directions of all
supporting and hull segments.
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Figure 2.5. (a) The dual arrangement of lower wedges and the boundary of
its union (black) (b) The upper Gmap of S from Figure 2.4

The Gaussian map of FVD(S), denoted Gmap(S) (see Figure 2.4c), provides
a correspondence between the faces of FVD(S) and a circle of directions K [64].
K can be assumed to be a unit circle, where each point x on K corresponds to a
direction as indicated by the radius of K at x. Each Voronoi face is mapped to an
arc on K, which represents the set of directions along which the face is unbounded.
An arc is delimited by consecutive hull directions of supporting segments. The
Gmap(S) can be viewed as a cyclic sequence of consecutive arcs on K (in coun-
terclockwise order), where each arc corresponds to one face of FVD(S). Two
neighboring arcs α,γ are separated by the hull direction of a supporting segment
pq, denoted by ν(α,γ) = ν(pq). Direction ν(α,γ) is the relevant direction towards
infinity of bisector b(p,q).

The arc of a hull segment s is called a segment arc and consists of two sub-arcs,
one for each endpoint of s, separated by the hull direction of the segment, ν(s). An
arc that corresponds to a single endpoint of a segment is called a single-vertex arc.

Figure 2.4c shows the Gmap(S) for the segment set S from Figure 2.4a; hull
directions of the hull segments and of the supporting segments are shown as dashed
and solid arrows respectively. Arc bc is a single-vertex arc, whereas arc ce is a
segment arc.

Let the upper and lower Gmap denote the portion of Gmap(S) above and be-
low the horizontal diameter of K respectively, i.e., in the upper and lower half-
circle of K. There is a clear correspondence between E (resp., E ′) and the upper
(resp., lower) Gmap: the vertices of E are exactly the hull directions of supporting
segments on the upper Gmap and the apexes of wedges in E are exactly the hull
directions of hull segments [64]; see Figure 2.5a,b.

Note that for both E and E ′, the (left-to-right) order of increasing x-coordinate
corresponds to the counterclockwise order of increasing slope of the directions in
the Gmap (i.e., in the upper and the lower Gmap respectively).

The Gmap(S) and the farthest hull of S can be computed in O(n logn) time (or
in output-sensitive O(n logh) time, where h is the number of faces of FVD(S)) by
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p

λ(p)

Figure 2.6. One-dimensional nearest-neighbor Voronoi diagram as a projec-
tion of the upper envelope of lines tangent to the unit parabola

adapting most of the algorithms for the convex hull of points in the plane (except
for the Graham scan algorithm) [64].

2.2.2 Lifting transformation

The lifting transformation was introduced by Edelsbrunner and Seidel [40]. It
connects Voronoi diagrams of points in Rd and arrangements of hyperplanes in
Rd+1. The transformation is discussed in detail in the book by Edelsbrunner [37].

For points in the plane, the lifting transformation is defined as follows. For a
point p, let λ(p) be a point on the unit paraboloid in R3 vertically above p. The
lifting transformation, as applied to point p, returns the hyperplane tangent to the
unit paraboloid at point λ(p).

We need the following definitions. Given a set of hyperplanes, the upper en-
velope of their arrangement is the locus of all points q such that q lies on at least
one of the hyperplanes, and a vertical ray drawn from q upwards does not intersect
any hyperplane of the set. The lower envelope of an arrangement of hyperplanes is
defined symmetrically for the rays pointing downwards.

Now we are ready to formulate the connection between the envelopes of the
arrangement of hyperplanes and the Voronoi diagrams.

Property 2.2.1 ([40]). Let S be a set of points in R2, and let the set T (S) of hyper-
planes be its image after the lifting transformation. The vertical projection of the
upper envelope of T (S) to the horizontal plane coincides with the nearest-neighbor
Voronoi diagram of S. Respectively for the lower envelope of T (S) and the farthest
Voronoi diagram of S.

The above property suggests that any algorithm to compute an envelope of
hyperplanes may be used to compute the corresponding Voronoi diagram.
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Figure 2.6 illustrates Property 2.2.1 for R1 (instead of R2, for simplicity). In
particular, the sites are points on a horizontal line, indicated by the filled black
disks. Unfilled disks indicate their counterparts on the unit parabola (see, e.g.,
points p and λ(p)); the tangent lines are shown in gray, and the upper envelop of
their arrangement is shown in red lines. The vertices of the upper envelope, as
projected back onto the horizontal line, are the vertices of the (one-dimensional)
nearest-neighbor Voronoi diagram of the set of initial sites; the vertices are shown
as red filled squares. The Voronoi region of point p is shown bold.

Connection to cluster Voronoi diagrams. Property 2.2.1 can be used to connect
the Hausdorff Voronoi diagram of a family F of clusters of points in the plane with
the arrangement of hyperplanes in three dimensions. For each cluster in F , take
the lower envelope of hyperplanes corresponding to it, and then consider the upper
envelope of these lower envelopes. The projection of the resulting upper envelope
to the horizontal plane coincides with the HVD(F). Formally, the property is as
follows.

Property 2.2.2 ([38]). The Hausdorff Voronoi diagram of F is equivalent to the
upper envelope of a family of lower envelopes of planes inR3, where each envelope
corresponds to a cluster.

A symmetric property holds for the farthest-color Voronoi diagram of F :

Property 2.2.3. The farthest-color Voronoi diagram of F is equivalent to the lower
envelope of a family of upper envelopes of planes in R3, where each envelope
corresponds to a cluster.

The above properties, for both the HVD and the FCVD, reduce the construc-
tion of these diagrams to the construction of the corresponding three-dimensional
surfaces. Using a technique by Edelsbrunner et al. [38], the latter task can be
accomplished in O(n2) time. For both diagrams, this implies an O(n2) time con-
struction algorithm, which is worst-case optimal.

Summary. The material reviewed in this chapter is used in the following parts
of this dissertation. The randomized incremental construction framework provides
the base of our algorithms in Chapter 3. In particular, Section 3.2 builds upon the
RIC variation that is based on point location, which is described in Section 2.1.2;
whereas Sections 3.3 and 3.4 rely on the classic RIC framework described in Sec-
tion 2.1.1. The point-line duality and the related transformations (Section 2.2.1)
are used in Chapter 4. Chapter 5 exploits the lifting transformation (Section 2.2.2).
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In fact, the stabbing circle problem in Chapter 5 is a direct generalization of the
stabbing line problem that was discussed in Section 2.2.1.



Chapter 3

Randomized incremental construction
of the Hausdorff Voronoi diagram

This chapter presents randomized incremental algorithms to compute the Haus-
dorff Voronoi diagram.

Section 3.2 is based on:
P. Cheilaris, E. Khramtcova, S. Langerman, and E. Papadopoulou. A random-

ized incremental algorithm for the Hausdorff Voronoi diagram of non-crossing
clusters. Algorithmica, 2016. DOI 10.1007/s00453-016-0118-y.

Sections 3.3 and 3.4 are based on:
E. Khramtcova, and E. Papadopoulou Randomized Incremental Construction

for the Hausdorff Voronoi Diagram of Point Clusters. In preparation. Preliminary
version is submitted to a conference.

We investigate two variants of the randomized incremental framework: the clas-
sic RIC, and the RIC based on point location, as applied to the Hausdorff Voronoi
diagram. We consider separately the cases of non-crossing and arbitrary input
clusters. After giving definitions and properties of the diagram used in all the al-
gorithms (Section 3.1), we proceed with our results. In Section 3.2 we present a
RIC based on point location for non-crossing clusters. Then we apply the clas-
sic RIC framework to the Hausdorff Voronoi diagram, which results in two algo-
rithms. Section 3.3 presents an algorithm for non-crossing clusters, and Section 3.4
presents one for arbitrary clusters that are allowed to cross.
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3.1 Preliminaries and Definitions

Let F be a family of k clusters of points in the plane such that no two clusters have
a common point, and let n = | ∪F |. Unless stated otherwise, we use C to denote a
cluster in F , and c to denote a point within C. Let convC denote the convex hull of
C. Let d(·, ·) denote the Euclidean distance between two points in R2.

For simplicity of presentation, we follow a general position assumption that
no four points lie on the same circle. This assumption can be removed similarly
to an ordinary Voronoi diagram of points, e.g., following techniques of symbolic
perturbation [74].

The farthest Voronoi diagram of C, in brief FVD(C), is the farthest-site Voronoi
diagram of its points (see Definition 3). It partitions the plane into regions such that
the farthest Voronoi region of a point c ∈C is:

fregC(c) = {t | ∀c′ ∈C \{c} : d(t,c)> d(t,c′)}.

Let T (C) = R2 \⋃c∈C fregC(c), if |C| > 1; and let T (C) = c, if C = {c}. For
|C| > 1, T (C) is the graph structure of FVD(C), which is well known to be a
tree. It is also well known that fregC(c) 6= /0 if and only if c is a vertex of convC.
We assume that the tree T (C) is rooted at a point at infinity along an unbounded
Voronoi edge.

For a point t ∈ R and a cluster P ∈ F , let the farthest distance between t and P
be defined as

df(t,P) = max
p∈P

d(t, p).

Using the notion of the farthest distance, the Hausdorff Voronoi diagram of F is
defined as follows (see also Definition 4 in Section 1.2.1).

The Hausdorff Voronoi region of a cluster C ∈ F is defined as:

hregF(C) = {p | ∀C′ ∈ F \{C} : df(p,C)< df(p,C′)}.
The Hausdorff Voronoi region of a point c ∈C is defined as:

hregF(c) = hregF(C)∩ fregC(c).

The partitioning of the plane into Hausdorff Voronoi regions is called the Haus-
dorff Voronoi diagram of F , for brevity HVD(F), or simply HVD.

By the definition of a Hausdorff Voronoi region, hregF(c) = /0 for any point
c ∈ C that is not a vertex of convC. Since such points are not relevant to the
Hausdorff diagram, we assume throughout this chapter that all points in C are also
vertices of convC.
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For two clusters C,P ∈ F , their Hausdorff bisector is:

bh(C,P) = {y | df(y,C) = df(y,P)}.
The Hausdorff bisector bh(C,P) is a subgraph of T (C∪P). It consists of one (if
P,Q are non-crossing) or more (if P,Q are crossing) unbounded polygonal chains.
Each vertex of bh(C,P) is the center of a circle passing through two points of one
cluster and one point of another that entirely encloses P and Q. These vertices are
called mixed.

Definition 7. A vertex on the bisector bh(C,P), induced by two points ci,c j ∈ C
and a point pl ∈ P is called crossing, if there is a diagonal pl pr of P that crosses the
diagonal cic j of C, and all points ci,c j, pl, pr are on convC∪P. The total number
of crossing vertices along the bisectors of all pairs of clusters is the number of
crossings and is denoted by m.

The structure of a face of a Hausdorff Voronoi region is illustrated in Figure 3.1.
For a point c ∈ C, the boundary of a face of hregF(c) consists always of two
chains: (1) the farthest boundary, which is internal to hregF(C) (i.e., ∂hregF(c)∩
∂fregC(c)⊆T (C)); and (2) the Hausdorff boundary (i.e., ∂hregF(c)∩∂hregF(C)).
Neither chain can be empty, if |C|> 1 [66].

There are three types of vertices in a Hausdorff Voronoi diagram (see Fig-
ure 3.1) [62]:

(1) Pure Voronoi vertices, which are equidistant to three clusters and appear on
Hausdorff boundaries;

(2) Mixed Voronoi vertices, which are equidistant to three points of two clusters;

(3) Farthest Voronoi vertices of T (C), which appear only on farthest bound-
aries.

Mixed Voronoi vertices are the points incident to a Hausdorff and a farthest bound-
ary. Mixed vertices that are induced by two points in cluster C and one point in an-
other cluster are called C-mixed vertices. The farthest boundary of hregF(c) meets
its Hausdorff boundary at a C-mixed vertex, or it extends to infinity, if hregF(c) is
unbounded.

Hausdorff Voronoi edges are polygonal lines that connect pure Voronoi ver-
tices and separate the Voronoi regions of different clusters, see the solid lines in
Figure 1.3. Mixed Voronoi vertices correspond to the breakpoints of these polygo-
nal lines.

A line segment connecting two points in C is called a chord of C. The closure
of a Voronoi region is denoted as reg(·).

The following definition is illustrated in Figure 3.2.
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c

pure vertex
C-mixed vertex
other mixed vertex
vertex of T (C)
Hausdorff boundary
farthest boundary

Figure 3.1. Features of ∂hregF(c)
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root(T (C))

c2

c1

Figure 3.2. Dy is partitioned by c1c2

in Dr
y (shaded) and D f

y . The 2-point
cluster P, illustrated in squares, is rear
limiting w.r.t. the 3-point cluster C.

Definition 8 (Rear/forward limiting cluster [66]).

• Let y be a point on an edge e of T (C) induced by c1,c2 ∈C, i.e., df(y,C) =

d(y,c1) = d(y,c2). Point y partitions T (C) into two parts: T r
y and T f

y , where
T r

y is the subtree rooted at y as we traverse T (C) starting at its root; T f
y is

the complement of T r
y .

• Let Dy be the disk centered at y of radius df(y,C). Chord c1c2 partitions
Dy in two parts: Dr

y and D f
y , where Dr

y (shown shaded in Figure 3.2) is the
portion that contains the points of C that induce T r

y .

• A cluster P enclosed in Dr
y ∪ convC (resp., in D f

y ∪ convC) is called rear
(resp., forward) limiting for C with respect to y.

Below we list some useful properties of the Hausdorff Voronoi diagram.
For the next three properties, assume all clusters in F to be non-crossing.

Property 3.1.1 ([66]). If cluster C has a rear (resp., forward) limiting cluster P
with respect to y in T (C), then the entire T r

y (resp., T f
y ) is closer to P than to C.

Property 3.1.1 implies also Properties 3.1.2 and 3.1.3.

Property 3.1.2. Let C,P ∈ F.

(a) Region hregF(C) contains exactly one connected component of T (C), unless
hregF(C) = /0.

(b) Let v be a vertex in T (C). If df(v,P)< df(v,C), then only one of the subtrees
incident to v may intersect hregF(C).
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p

Figure 3.3. Visibility-based decomposition of a face of hregF(p)

(c) Let e = uv be an edge in T (C). If both u and v are closer to P than to C,
then hregF(C)∩ e = /0.

Property 3.1.3 ([66]). Region hregF(C) = /0 if and only if one of the following
conditions holds: (1) there is a cluster in F entirely contained in convC; (2) there
is a pair of clusters in F such that one is forward limiting and the other is rear
limiting with respect to the same point y ∈ T (C).

The cluster or pair of clusters of Property 3.1.3 is called a killer or a killing pair
of C respectively.

Property 3.1.2a can be generalized for the case of arbitrary clusters, that are
allowed to cross:

Property 3.1.4 ([62]). Each face of a (non-empty) region hregF(C) intersects
T (C) in one non-empty connected component. This component is delimited by
C-mixed vertices.

Property 3.1.5 ([66]). For any point x ∈ hregF(c) the line segment cx∩ fregC(c)
lies entirely in hregF(c).

Property 3.1.5 implies that the Hausdorff Voronoi diagram can be refined to
simpler regions by the visibility-based decomposition, without increasing combi-
natorial complexity of the diagram. The decomposition is defined as follows.

Visibility-based decomposition of the Hausdorff Voronoi diagram [66]. Con-
sider each region hregF(p) of HVD(F). For each vertex v on its boundary, draw
the line segment pv, as restricted within hregF(p), see Figure 3.3.

Each face f of the visibility-based decomposition of hregF(p) is convex, and its
boundary consists of three parts:(1) a chain that is portion of T (P), shown in dotted
lines in Figure 3.3; (2) a segment of bh(P,Q),Q ∈ F , shown solid in Figure 3.3; (3)
at most two edges of the visibility-based decomposition, shown bold in Figure 3.3.

Observation 3.1.1. A face f of the visibility-based decomposition of hregF(p), p∈
P, borders the Hausdorff Voronoi regions of one, two or three clusters in F \{P}.
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3.2 A RIC for the Hausdorff Voronoi diagram of non-
crossing clusters based on point location

Throughout this section we assume that all clusters in F are pairwise non-crossing.
Let C1, . . . ,Ck be a random permutation of the input family F of clusters. Let

Fi = {C1, . . . ,Ci}, 1 ≤ i ≤ k, be the set of the first i clusters in the given permuta-
tion. Our algorithm incrementally computes HVD(Fi), for 1 < i≤ k, starting with
HVD(F1) = FVD(C1). At step i, we insert cluster Ci in HVD(Fi−1) and derive
HVD(Fi). To this goal, we identify a representative point t ∈ hregFi(Ci) or we de-
termine that no such point exists. If t exists, we trace the boundary of hregFi(Ci),
and update the diagram to HVD(Fi). Else, we conclude that hregFi(Ci) = /0 and
HVD(Fi) = HVD(Fi−1).

The main challenge of our algorithm is to efficiently identify a representative
point t or conclude that no such point exists. Then, the tracing of hregFi(Ci) can
be done similarly to [66], in time proportional to the complexity of the new region,
plus the complexity of the deleted portion of the diagram, times O(logn), see Sec-
tion 3.2.3. In the remaining of this section we focus on identifying a representative
point t. We skip the subscript “Fi” and let hreg(Ci) stand for hregFi(Ci).

Property 3.1.2a implies three possibilities for hreg(Ci): (1) hreg(Ci)∩T (Ci)

contains a vertex of T (Ci); (2) hreg(Ci) intersects exactly one edge of T (Ci);
and (3) hreg(Ci) is empty. The edge of case 2 is called a candidate edge, see
Definition 9. In Figure 1.3, the bounded region in the middle illustrates case 2,
while the three unbounded regions illustrate case 1.

To identify case (1), it is enough to perform point location of the vertices in
T (Ci) in HVD(Fi−1). If any vertex v is found to be closer to Ci than to its owner
in HVD(Fi−1), then v can serve as a representative point, i.e., t = v. Suppose that
no vertex of T (Ci) satisfies case (1). Then we look for a candidate edge that may
satisfy case (2).

Definition 9 (candidate edge). Let uv be an edge of T (Ci) and let Qu,Qv be
the clusters in Fi−1 closest to u and v respectively. Edge uv is called a can-
didate edge if Qu 6= Qv and uv satisfies the following predicate: cand(uv) =
(df(u,Qu)< df(u,Ci)< df(u,Qv))∧ (df(v,Qv)< df(v,Ci)< df(v,Qu)).

Lemma 3.2.1. If there is an edge uv of T (Ci) that is a candidate edge, then either
hreg(Ci) intersects uv or hreg(Ci) = /0.

Proof. Consider the clusters Qu and Qv of Definition 9. By Property 3.1.2b, only
one of the subtrees of u can be closer to Ci than to Qu. Because uv is a candidate
edge satisfying Definition 9, v lies in this subtree. That is, only the subtree of



39 3.2 A RIC for the HVD of non-crossing clusters based on point location

u that contains uv may intersect hreg(Ci). Symmetrically, only the subtree of v
that contains uv may intersect hreg(Ci). The intersection of these two subtrees is
exactly the edge uv. Thus, T (Ci)∩hreg(Ci)⊂ uv, or T (Ci)∩hreg(Ci) = /0. In the
latter case, by Property 3.1.2a, hreg(Ci) = /0.

Lemma 3.2.1 implies that, given a candidate edge uv, it suffices to search on
uv to identify a representative point. Furthermore, if such a point cannot be found
on uv, then hreg(Ci) = /0. We can perform the search for a representative point
as follows: Traverse T (Ci), starting at its root, checking vertices and possibly
pruning appropriate subtrees according to Properties 3.1.2b and 3.1.2c. During the
traversal, either determine t as a vertex of T (Ci), or determine a candidate edge
uv, or conclude that hreg(Ci) = /0.

When a candidate edge uv is determined, we still need to identify a representa-
tive point t on uv or determine that hreg(Ci) = /0. This is achieved by performing a
parametric point location query in HVD(Fi−1) for edge uv as given in the follow-
ing definition.

Definition 10 (Parametric point location query). Given a family of clusters F ,
HVD(F), a cluster C 6∈ F , and a candidate edge uv ⊂ T (C), determine a clus-
ter P ∈ F and a point t ∈ uv such that t ∈ hregF(P) and df(t,P) = df(t,C). If such
a point does not exist, return nil.

The performance of the parametric point location query sets the time complex-
ity of our algorithm. To perform parametric as well as ordinary point location
efficiently, we store HVD(F) in a hierarchical data structure, called the Voronoi
hierarchy. This data structure is described in Section 3.2.2 and the parametric
point location query is detailed in Section 3.2.2. The parametric point location
requires to also answer an additional non-standard location query on the static far-
thest Voronoi diagram of a given cluster, called a segment query. A data structure
to efficiently answer segment queries is given in the Section 3.2.1.

3.2.1 Centroid Decomposition

This section describes a data structure, called the centroid decomposition, that can
efficiently answer queries related to point location on a planar subdivision induced
by a tree structure. The centroid decomposition was introduced by Megiddo et
al. [56], and we use it in this chapter to efficiently perform segment queries on the
farthest Voronoi diagram of a cluster. Segment queries are used during parametric
point location in the Hausdorff Voronoi diagram. The query is defined as follows.
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Figure 3.4. A cluster P (disks), FVD(P) (thick grey lines) and (a) the rays ri
corresponding to vertex w; (b) the segment query for uv outputs point x

Definition 11 (Segment query). Consider two clusters C,P. Given a segment uv⊂
T (C) such that df(u,C) < df(u,P) and df(v,C) > df(v,P), find the point x ∈ uv
that is equidistant from C and P, i.e., df(x,C) = df(x,P). See Figure 3.4b.

Let P be a cluster of points and let CD(P) denote the centroid decomposition
for FVD(P). We first define CD(P), and then we describe how to use it to perform
an ordinary point location query on FVD(P). Finally, we adapt the point location
query to perform a segment query on FVD(P).

Definition of CD(P). Any tree with h vertices has a vertex v, called the centroid,
whose removal decomposes the tree into subtrees of at most h/2 vertices each [56].
Exploiting this fact, we build CD(P) as a balanced tree whose nodes correspond to
Voronoi vertices of FVD(P) as follows:

• Find the centroid w of T (P). Create a node for w and assign it as the root of
CD(P).

• Remove w from T (P). Recursively build the centroid decomposition trees
for the connected components of T (P) incident to w and link them as sub-
trees of w.

Point location on FVD(P) using CD(P). Given a query point q, we perform
point location as follows. Starting from the root, we traverse CD(P), testing q
against the current node of CD(P) (we explain the procedure of such test in the
next paragraph). Every time, we choose one of the node’s subtrees to continue,
until a leaf node is reached. Among the three points in P inducing the Voronoi
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vertex of the leaf node, we choose the one farthest from q. Then point q belongs in
the farthest Voronoi region of the chosen point.

Testing q against a node α is performed following Aronov et al. [6]. In partic-
ular, let w be the Voronoi vertex of FVD(P), corresponding to node α of CD(P).
Let p1, p2, p3 ∈ P have farthest Voronoi regions incident to w. Consider the rays
ri, i = 1,2,3, originating at w and having direction −→piw respectively; see Fig-
ure 3.4a. The rays ri subdivide the plane into three sectors. Among the subtrees
of CD(P) incident to α, pick the one that corresponds to the sector containing q.
The correctness of this procedure is implied by the construction of CD(P) and the
following lemma.

Lemma 3.2.2. Rays ri, i = 1,2,3, subdivide the plane into three sectors, where
each sector contains exactly one connected component of T (P)\{w}.
Proof. It is well known that for any point t ∈ fregP(p) (p ∈ P), the ray originating
at t and having direction −→pt is entirely contained in fregP(p). Thus, no ray ri
can intersect the edges of T (P). Since the rays ri lie in three distinct regions of
FVD(P), there is a component of T (P)\{w} in each of the three sectors formed
by these three rays. The claim follows.

Segment query on FVD(P) using CD(P). The segment query can be performed
similarly to a point location query within the same time complexity. The difference
is in the testing of segment uv against a node α of CD(P). Let w be the Voronoi
vertex of FVD(P) that corresponds to α. Let rays ri, i = 1,2,3, emanate from w as
defined above; see Figure 3.4b.

Consider the (at most two) intersection points of the rays with uv. If any of
these points is equidistant to C and P, return it. Otherwise, these intersection points
break uv into (at most three) subsegments, each lying in one of the three sectors
formed by the rays ri. Among these subsegments, pick subsegment u′v′ such that
df(u′,C) < df(u′,P) and df(v′,C) > df(v′,P), and continue with the child of α in
CD(P) whose Voronoi vertex lies in the same sector as u′v′.

If α is a leaf of CD(P), let e be the edge of T (P) incident to the vertex w
that lies in the same sector as u′v′. Let p1, p2 be the points in P that induce the
edge e, and let c1,c2 be the points in C that induce uv. Since df(v,P)< df(v,C) =

df(v,c1) = df(v,c2), the closed disk centered at v and passing through c1,c2 must
contain both p1 and p2. Since C and P are non-crossing, both p1 and p2 lie to the
same side of the chord c1c2. Thus, one of the two closed disks defined by points
p1,c1,c2 or by points p1,c1,c2 must contain both p1 and p2. Return as an answer
to the segment query the center of this disk. In Figure 3.4b, such a disk Dx has a
dotted arc on its boundary and its center x is shown as an unfilled circle.
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Lemma 3.2.3. The centroid decomposition CD(P) of a cluster P can be built in
O(np lognp) time, where np is the number of vertices of FVD(P). Both the point
location and the segment query in CD(P) require O(lognp) time.

Proof. Given a subtree of T (P), its centroid can be computed in O(h) time [56],
where h is the number of vertices in this subtree. Building CD(P) requires to
recursively compute the centroids of its subtrees, each of size at most half the size
of P. This implies an O(np lognp) total time to build CD(P).

The point location query consists of O(lognp) tests of a query point against
a node of CD(P). Each test involves a constant number of points and rays, thus,
it can be performed in constant time. The same argument works for the test of a
segment against a node of CD(P) during a segment query, which implies the same
O(lognp) time bound.

3.2.2 The Voronoi Hierarchy for the Hausdorff Voronoi Diagram

We describe a randomized semi-dynamic data structure to store the Hausdorff
Voronoi diagram that supports insertion of a cluster, and point location queries (or-
dinary and parametric). It augments the Voronoi hierarchy [16, 48] with the ability
to handle the generalized Voronoi features present in the Hausdorff diagram. These
are sites of non-constant complexity, sites that are not entirely contained in their
regions, and empty Voronoi regions. We refer to our adaptation as the Hausdorff
Voronoi hierarchy. For details about the Voronoi hierarchy, refer to Section 2.1.2.
It is formally defined as follows.

Definition 12 ([48, 35]). The Voronoi hierarchy of a set of sites S is a sequence
of Voronoi diagrams VD(S(`)), ` = 0, . . . ,h, where the sets S(`) form a hierarchy
of subsets of S, built as follows. S(0) = S, and for ` = 1, . . . ,h, S(`) is a random
sample of S(`−1) following a Bernoulli distribution with a fixed constant parameter
β ∈ (0,1). We refer to ` as “level of the Voronoi hierarchy”.

To perform point location for a query point q in the Voronoi hierarchy, we start
at the last level h, and for each level `, we determine the site s` ∈ S(`) that is closest
to q by performing a walk. Each step of the walk moves from the current site to one
of its neighbors such that the distance to q is reduced. To determine an appropriate
neighbor, binary search may be used [48]. A walk at level ` starts at s`+1. The
answer to the query is s0.

For the Hausdorff Voronoi diagram, a first difference to consider is that clusters
are not of constant complexity and n can be ω(k). Recall that k is the number
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of sites (clusters) and n is their total complexity (k ≤ n). Nevertheless, the com-
plexity of the Hausdorff Voronoi hierarchy is expected O(n) as for the original
hierarchy [35, 48].

Lemma 3.2.4. Consider the Voronoi diagram of a family of k sites of total com-
plexity n, where the size of the diagram is also O(n). Then the Voronoi hierarchy
for such diagram has expected size O(n) and expected number of levels O(logk).

Proof. Let ‖S(`)‖ denote the total complexity of the sites at a level S(`). For any
site s ∈ S, the probability that s appears in S(`) is β`. Then the expectation of ‖S(`)‖
is E[‖S(`)‖] = β`‖S‖ = β`n, and the expected size of the Voronoi diagram at level
` is O(β`n). The expected size of the hierarchy is

∞

∑
`=0

O(E[‖S(`)‖]) =
∞

∑
`=0

O(β`n) =
1

1−β
O(n) = O(n).

The bound on the expected number of levels follows immediately from properties
of the Bernoulli distribution [35, 48].

To adapt the Voronoi hierarchy for the Hausdorff Voronoi diagram, several dif-
ficulties have to be addressed. When performing a walk at a level ` of the hierarchy,
at each step we need to reduce the distance between the current cluster C and the
query point q. However, the farthest distance df(q,C) may be realized by a point
c ∈C that has an empty Voronoi region at level `. Thus, instead of df(·, ·), we base
the walk on a slightly different distance function, which reflects the diagram better
and which equals df(·, ·) at the end of the walk. In addition, the neighbors of a
Hausdorff Voronoi region do not have a natural ordering, and thus, it is not easy to
use binary search when performing one step in the walk. To address these prob-
lems, we first redesign one step of the walk. Then, point location can be performed
as in the ordinary hierarchy. Further, we describe the parametric point location
query that is needed for our algorithm. Empty Voronoi regions in the Hausdorff
diagram pose another major difficulty when updating the hierarchy because they
complicate the transition between the hierarchy levels. Finally, we show how to
maintain the hierarchy and deal with regions that become empty.

In our modified hierarchy that handles the above difficulties, a walk at level `
does not necessarily start from the same cluster where it stopped at level `+1, but
possibly from another cluster that is closer to q. The following lemma shows that
the expected length of the walk on one level of the Hausdorff Voronoi hierarchy is
constant. It is a simple modification of [48, Lemma 9].
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q

Figure 3.5. One step of a walk for a
query point q and a starting cluster C

c2

c3

c4c4

vc1

c∗

Figure 3.6. Illustration of the proof of
Lemma 3.2.6

Lemma 3.2.5. Let s`0, . . . ,s
`
r = s` be the sequence of sites visited at level ` dur-

ing point location for a query point q. Assuming that df(q,s`i ) < df(q,s`i−1),
i = 1, . . . ,r, and either s`+1 = s`0, or df(q,s`0) < df(q,s`+1), the expectation of the
length r of the walk at level ` is constant.

Proof. Each site visited by the walk at level ` is closer to q than s`+1, and thus does
not belong to level `+1. The probability that there are t such sites is β(1−β)t−1.
Thus, the expected number of sites visited at level ` is at most

|S(`)|
∑
t=1

t(1−β)t−1
β < β

∞

∑
t=1

t(1−β)t−1 =
1
β
.

One step of the walk

Let `∈ {0, . . . ,h} be a level in the Hausdorff Voronoi hierarchy of F . Let hreg(`)F (·)
denote hregF(`)(·) and let hregF(`)(·) denote the closure of this region.

A point c∈C is called active if hreg(`)F (c) 6= /0. Let Ĉ denote the set of all active
points in a cluster C. The walk to locate a query point q uses the farthest distance
to the active points of a cluster C as opposed to the farthest distance to all points of
C. One step of the walk is defined as follows.

Definition 13 (a step of the walk at level `). Given a query point q and a cluster
C ∈ F(`) such that q 6∈ hregF(`)(C), determine Q ∈ F(`) such that hreg(`)F (Q) is
adjacent to hreg(`)F (C) and df(q, Q̂)< df(q,Ĉ). If q ∈ hregF(`)(C) then Q =C.

To perform one step of the walk we use the set of active points Ĉ. We store Ĉ as
a circular list of its points in the order of its convex hull. Each point c∈ Ĉ has a link
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Algorithm Step-`
1. Determine c∗ by locating q in FVD(C);
2. if c∗ ∈ Ĉ then
3. Let ĉ∗ = c∗;
4. else
5. Let ĉ∗ be the point in {c1,c2} that is the farthest from q (See

Lemma 3.2.6);
6. Let Q=Qi such that ray

−→
ĉ∗q follows

−−→
ĉ∗vi and/or precedes

−−−→
ĉ∗vi+1

(See Figure 3.5);
7. if df(q, Q̂)< df(q,Ĉ) then
8. return Q
9. else return C

Figure 3.7. An algorithm to perform a step of the walk at level ` for a query
point q, starting from cluster C

to the ordered list of pure Voronoi vertices v1, . . . ,v j on the boundary of hreg(`)F (c).
(Recall from Section 3.1 that pure Voronoi vertices are equidistant to three differ-
ent clusters.) Let Q0, . . . ,Q j+1 be the corresponding list of clusters whose Voronoi
regions are adjacent to hreg(`)F (c), see Figure 3.5. We determine cluster Q by bi-
nary search in these lists. The detailed algorithm is given in Algorithm Step-`, see
Figure 3.7.

For the rest of this section, let c∗ (resp., ĉ∗) be the point in C (resp., in Ĉ) that
is farthest from q, i.e., df(q,c∗) = maxc∈C df(q,c) and df(q, ĉ∗) = maxc∈Ĉ df(q,c).
Let c1,c2 ∈ Ĉ be the active points immediately following and preceding c∗ respec-
tively on the boundary of convC. In the following, we use c1 and c2 to determine
point ĉ∗.

To establish the correctness of Algorithm Step-` (Figure 3.7) we need to prove
correctness for Lines 5 and 6–9. The following lemma shows that ĉ∗ ∈ {c1,c2} (if
c∗ is not active), and thus, it establishes the correctness of Line 5.

Lemma 3.2.6. Assuming c∗ 6∈ Ĉ, fregC(c∗)⊂ fregĈ(c1)∪ fregĈ(c2).

Proof. Let C′ = Ĉ∪{c∗}. Since C′ ⊆C, fregC(c∗)⊆ fregC′(c∗). Thus it is enough
to prove that fregC′(c∗) ⊂ fregĈ(c1)∪ fregĈ(c2). Suppose for the sake of con-
tradiction that there is c3 ∈ Ĉ \ {c1,c2} such that fregC′(c∗)∩ fregĈ(c3) 6= /0; see
Figure 3.6. Then fregC′(c∗) (shown striped in Figure 3.6) has at least three neigh-
bors in FVD(C′), which implies that fregC′(c∗) contains at least one vertex v of
T (Ĉ). Figure 3.6 shows hreg(`)F (C) as a grey area, T (Ĉ) in thick dashed lines,
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ĉ∗

Qq
x

D̂q Dx

(a)

ĉ∗

q
x

D̂y Df
x

y

(b)

Figure 3.8. Two cases of the proof of Lemma 3.2.7: (a) ĉ∗q intersects the
Hausdorff boundary of ĉ∗; (b) ĉ∗q does not intersect it

and T (C′) in thin solid lines. Since all points in Ĉ have non-empty Voronoi re-
gions in HVD(`)

F (C), all vertices of T (Ĉ) must be contained in hreg(`)F (C). Thus,
v ∈ hreg(`)F (C), which implies that c∗ is active; a contradiction.

Lemma 3.2.7. Let Q be the cluster determined at Line 6 of Algorithm Step-` (Fig-
ure 3.7). Then df(q, Q̂)< df(q,Ĉ) if and only if q 6∈ hregF(`)(C).

Proof. Suppose q ∈ hregF(`)(C). Let F̂ = {P̂,P ∈ F(`)} be the family of
sets of active points of all clusters in F(`). Clearly, HVD(F̂) is identical to
HVD(F(`)). Since hreg(`)F (C) = hregF̂(Ĉ) it follows that q ∈ hregF̂(Ĉ). There-
fore df(q,Ĉ)≤ df(q, Q̂).

Suppose q 6∈ hregF(`)(C). Let D̂q be the closed disk centered at q with radius
|ĉ∗q|. We prove that Q̂ is enclosed in D̂q, which is equivalent to df(q, Q̂)< df(q,Ĉ).
There are two cases:

1. Suppose that segment ĉ∗q intersects the Hausdorff boundary of hreg(`)F (ĉ∗)
at a point x. (By Property 3.1.5, ĉ∗q may intersect this boundary at most
once). Let Dx be the closed disk centered at x with radius df(x,C). Since x
lies on the boundary between hreg(`)F (C) and hreg(`)F (Q), df(x,C) = df(x,Q).
Equivalently, Q ⊂ Dx. Since q 6∈ hreg(`)F (ĉ∗), then df(q, Q̂) < df(q,Ĉ) =

|qĉ∗|. Thus Q̂ is enclosed in D̂q. See Figure 3.8a.

2. Suppose that ĉ∗q does not intersect the Hausdorff boundary of hreg(`)F (ĉ∗).
Since q 6∈ hreg(`)F (C), the situation is as in Figure 3.8b. Let y be a point
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where ĉ∗q intersects ∂fregĈ(ĉ
∗); let e be the edge of ∂fregĈ(ĉ

∗) that con-
tains y, and let x be the C-mixed Voronoi vertex encountered first as we
traverse ∂fregĈ(ĉ

∗) from y towards hreg(`)F (C). Note that Q is the cluster
whose Voronoi region is incident to x. Cluster Q̂ is either rear or forward
limiting with respect to Ĉ, see Definition 8. Without loss of generality, let
Q̂ be forward limiting, that is, Q̂ ⊂ Df

x ∪ convĈ. Since y 6∈ hreg(`)F (C) and
y ∈ fregĈ(ĉ

∗), then Df
x ∪ convĈ ⊂ D̂y ⊂ D̂q, where D̂y the closed disk cen-

tered at y with radius df(y,Ĉ). Thus, Q̂ is enclosed in D̂q.

Lemma 3.2.8. One step of the walk is performed in O(logn) time.

Proof. We analyze the time complexity of the algorithm in Figure 3.7. In Line 1,
point c∗ is determined by locating q in FVD(C) in O(logn) time. In Line 5, points
c1,c2 are determined in time O(logn) by drawing the tangents from c∗ to Ĉ, which
is a convex chain. In Line 6, cluster Q is found by binary search in the list v1, . . . ,v j.
Thus, all steps are performed within time O(logn). Correctness is established by
Lemmas 3.2.6 and 3.2.7.

Parametric point location in the Voronoi hierarchy

In this section we show how to perform parametric point location on a candidate
edge uv of T (C). Recall the definition of a candidate edge (Definition 9) and of a
parametric point location query (Definition 10).

We follow the same top-down traversal of the hierarchy, as for the ordinary
point location. Starting at the last level h of the hierarchy, at each level `, we
search for a cluster Q` ∈ F(`) and a point u` ∈ uv such that u` ∈ hreg(`)F (Q`) and
df(u`,C) = df(u`,Q`). The answer to the query is the cluster C0 and the point
u0 of level 0. If at any level ` we find out that the desired cluster Q` or point
u` do not exist, the answer to the parametric point location query is nil. At level
`, we determine a sequence (a j)

r
j=0 of points on the line segment uv, such that

a0 = u`+1 and ar = u`. Let Qa j , j = 1, . . . ,r, denote the cluster in F(`) such that
a j ∈ hreg(`)F (Qa j). For each j = 0, . . . ,r point a j+1 is derived from a j so that it is
equidistant to Qa j and C (df(a j+1,C) = df(a j+1,Qa j)).

The algorithm to perform parametric point location is given in Algo-
rithm Parametric-point-location in Figure 3.9. At level `, we determine a j+1 from
a j by performing a walk starting at Qa j , and by performing a segment query (see
Definition 11) for a subsegment of uv on FVD(Qa j).
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Algorithm Parametric-point-location
1. Find Qh and uh (by brute force);
2. for `= (h−1) downto 0
3. do Set a0 = u`+1, and j = 0;
4. Find Qa0 by performing a walk at level ` starting at Q`+1;
5. while df(a j,C)> df(a j,Qa j) do
6. if df(v,Qa j)> df(v,C)

7. then Find a j+1 ∈ a jv by performing a segment query
for a jv on FVD(Qa j);

8. Find Qa j+1 ∈ F(`) by a walk at level ` starting at Qa j ;
9. Set j = j+1;
10. else Exit and return nil.
11. Set Q` = Qa j and u` = a j;
12. Exit and return Q0, u0.

Figure 3.9. Parametric point location on candidate edge uv

Lemma 3.2.9. The expected length of the sequence (a j)
r
j=0 at one level of the

hierarchy is O(1).

Proof. Consider the sequence (a j) at level `. Let a = a0, and let P be the cluster at
level `+1 that is nearest to a. We first prove that for each j = 0, . . . ,r−1, a is closer
to Qa j than to P. By the construction of the sequence, df(a j+1,C) = df(a j+1,Qa j)

and df(v,Qa j)> df(v,C). Since clusters C and Qa j are non-crossing, cluster Qa j is
either forward or rear limiting for C with respect to point a j+1; see Definition 8.
By Property 3.1.1, a is closer to Qa j than to C. Since df(a,C) = df(a,P), we have
df(a,Qa j) < df(a,P). Similarly to the proof of Lemma 3.2.5, we can derive that
the expected number of clusters in F(`) that are closer to a than to P is constant.
In addition, clusters Qa j for each j = 0, . . . ,r−1, are distinct. Thus, r is expected
O(1), which proves the claim.

Lemma 3.2.10. Parametric point location in the Hausdorff Voronoi hierarchy can
be performed in expected O(logn logk) time.

Proof. The expected number of clusters at level h of the Voronoi hierarchy is
O(1) [48] and computing the distance from a point to a cluster requires O(logn)
time, thus Line 1 of Algorithm Parametric-point-location in Figure 3.9 requires
expected O(logn) time. At a level `, ` = 0, . . . ,h− 1, it identifies points of the
sequence (a j) one by one, each time performing a walk and a segment query. The
expected number of such walks and segment queries is O(1) (see Lemma 3.2.9),
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each walk performs expected O(1) steps (see Lemma 3.2.5), and each step of the
walk requires O(logn) time (see Lemma 3.2.8). Each segment query can be per-
formed in time O(logn) (see Lemma 3.2.3). Since the expected number of levels
in the Voronoi hierarchy is O(logk) (see Lemma 3.2.4), the claim follows.

Updating the Voronoi hierarchy

To insert a new cluster C in the Hausdorff Voronoi hierarchy, we traverse the hier-
archy starting at level 0 until a randomly computed maximum level for C, denoted
as `(C), is found. Inserting C at a level ` may make the region of a cluster P at this
level empty.

Definition 14. A cluster P ∈ F is called critical at level ` with respect to C 6∈ F , if
hreg(`−1)

F (P) 6= /0, hreg(`−1)
F∪{C}(P) = /0, and hreg(`)F∪{C}(P) 6= /0.

Such a critical cluster P becomes an obstacle to correct point location. Indeed,
if a query point lies in hreg(`)F∪{C}(P), we do not know where to continue the point
location at level `−1. To fix the problem, P could be deleted from all levels of the
hierarchy, however, this is computationally expensive. Instead of deleting P, we
link P to the cluster or to the pair of clusters responsible for the empty region of P.
One of these responsible clusters is C. There are the following cases:

1. Cluster C is a killer for P, and `(C) = `−1.

2. There is a cluster K ∈ F(`−1) such that {C,K} is a killing pair for P, and one
of the following holds:

(a) `(K)≥ `, and `(C) = `−1;

(b) `(C)≥ `, and `(K) = `−1;

(c) `(C) = `(K) = `−1.

In cases 1 and 2a, we link cluster P to cluster C only, see Lemma 3.2.11. In
case 2b we link P to cluster K, and in case 2c to both clusters C and K. In the
latter two cases we also need to identify cluster K. The linking process is detailed
in Figure 3.10.

Lemma 3.2.11. Cases 1 or 2a occur if and only if all the P-mixed vertices on the
boundary of hreg(`)F (P) are closer to C than to P.

Proof. Suppose we have cases 1 or 2a, i.e., C ∈ F(`−1), C 6∈ F(`), and either C
is a killer for P (case 1) or there is K ∈ F(`) such that C,K is a killing pair for P
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Algorithm Linking
1. Let V`−1 be the list of the P-mixed vertices on ∂hreg(`−1)

F (P);
2. Let V` be the list of the P-mixed vertices on ∂hreg(`)F (P);
3. if all vertices in V` are closer to C than to P
4. then Link P to C and return .
5. else Let v ∈V` be closer to P than to C;
6. Let c ∈C be such that df(v,C) = d(v,c);
7. for u ∈V`−1
8. let p1, p2 ∈ P and q ∈ Q be such that

v borders hreg(`)F (p1), hreg
(`)
F (p2) and hreg(`)F (q);

9. if c and q lie on different sides of chord p1 p2
10. then set K = Q; if `(C)≥ `

11. then Link P to K and return .
12. else Link P to {C,K} and return .

Figure 3.10. Linking cluster P that is critical at level w.r.t. cluster C

(case 2a). In any of these two cases the addition of C to HVD(F(`)) would make the
region of P empty (hregF(`)∪C(P) = /0). Thus, each point in hregF(`)(P), including
all the P-mixed vertices, is closer to C than to P.

Now suppose that all P-mixed vertices on the boundary of hreg(`)F (P) are
closer to C than to P. Clearly none of these P-mixed vertices is contained in
hregF(`)∪C(P). We need to prove that either C is a killer for P (case 1) or C,K is the
killing pair for P for some cluster K ∈ F(`). Suppose on the contrary, that neither of
these two cases holds. Then by Property 3.1.3, hregF(`)∪C(P) is not empty, and by
Property 3.1.2a, hregF(`)∪C(P) has at least two P-mixed vertices on its boundary.
These vertices are equidistant to P and C; let v be any of them. Since P and C are
non-crossing, we have that C is forward or rear limiting for P with respect to v,
see Definition 8. By Property 3.1.1, there is a subtree of T (P) incident to v (T r

v
or T f

v ) such that all its points are closer to P than to C. This subtree includes at
least one P-mixed vertex on the boundary of the region of P in HVD(F(`)∪C); a
contradiction.

Lemma 3.2.12. Algorithm Linking in Figure 3.10 performs the linking correctly.
That is, for any point x ∈ hreg(`)F∪C(P), df(x,Q) < df(x,P), where Q is the cluster
(or one of the two clusters) linked to P.

Proof. We need to prove that Algorithm Linking (Figure 3.10) always identifies a
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cluster (or a pair of clusters) such that any point in hreg(`)F (P) is closer to these
cluster(s) than to P.

Suppose that Line 4 of the procedure is executed, i.e., linking is done to cluster
C. Then by Lemma 3.2.11, cases 1 or 2a occur, and Property 3.1.3 guarantees that
any point in hreg(`)F (P) is closer to C than to P. Thus, the linking to C is correctly
done.

Suppose that Algorithm Linking (Figure 3.10) does not terminate at Line 4. Let
vertex v and point c be as determined in Lines 6 and 7 respectively. Since df(v,C)>

df(v,P) and df(v,C) = d(v,c), we have c 6∈ convP. Since hreg(`−1)
F∪{C}(P) = /0 and

v is closer to P than to C, we have v 6∈ hreg(`−1)
F (P). Cluster C is (forward or

rear) limiting for P with respect to any P-mixed vertex w on the boundary of
hreg(`−1)

F (P). Suppose, without loss of generality, that C is forward limiting, i.e.,
C ⊂ Df

w∪ convP; then c ∈ Df
w \ convP. Let u be the first P-mixed vertex encoun-

tered as we traverse T (P) from v to its portion enclosed in hreg(`−1)
F (P). Let Q be

the cluster inducing u, and q be the point in Q such that d(u,q) = df(u,Q). The
pair {Q,C} is by definition a killing pair for P, and q, c lie at opposite sides of the
chord of P inducing u. All other P-mixed vertices vi 6= u on ∂hreg(`−1)

F (P) must be
induced by forward limiting clusters, see Property 3.1.1. Thus, any point qi, qi 6= q,
inducing a P-mixed vertex vi must lie on the same side of the corresponding chord
as c. Thus, Line 12 correctly sets K = Q.

The check in Line 13 distinguishes between cases 2b (Line 14) and 2c
(Line 16). Property 3.1.3 again guarantees correctness.

We summarize in the following theorem.

Theorem 3.2.1. The Voronoi hierarchy for the Hausdorff Voronoi diagram of a
family of k clusters of total complexity n has expected size O(n). Both the point
location query and the parametric point location query can be performed in ex-
pected time O(logn logk). Insertion of a cluster takes O((N/k) logn) amortized
time, where N is the total number of update operations in all levels during the
insertion of all k clusters.

Proof. The expected space of the Voronoi hierarchy is analyzed in Lemma 3.2.4.
Lemmas 3.2.4 to 3.2.7 imply that point location in the Voronoi hierarchy can be
done in expected O(logn logk) time. By Lemma 3.2.10, parametric point location
is performed in expected O(logn logk) time. During the insertion of a cluster, two
procedures are performed: updating the diagram at all necessary levels, and the
linking of regions that disappear. Since updating each (constant-sized) element of
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Figure 3.11. Tracing the T -chain of face f (dotted lines), starting from the
endpoint u

a diagram requires O(1) time, the total time required for all update operations to
insert all k clusters is O(N).

Consider the linking of a cluster P that is critical at level ` with respect to a
cluster C. We visit the P-mixed vertices of HVD(F(`−1)), but these vertices get
deleted during the same step. We also visit the P-mixed vertices of HVD((F ∪
{C})(`)). The latter vertices are visited at most twice: when P is critical at level
`+1 and when P is critical at level `. The time complexity of each of these visits
is O(logn). Thus, the claimed complexity follows.

3.2.3 Tracing a new Voronoi region

In this section we give details on how to compute the boundary of a new region
hregFi(Ci) within HVD(Fi−1), given a representative point t in hregFi(Ci). The
first task is to determine a point w on the boundary of hregFi(Ci). Then tracing can
be performed as described in [66].

Let HVD∗(F) denote the visibility-based decomposition of HVD(F). The
main algorithm (see the beginning of Section 3.2) has identified a segment tv, along
an edge of T (Ci), where t is the representative point in hregFi(Ci), and v is the par-
ent of t in T (Ci) such that v /∈ hregFi(Ci). We determine a Ci-mixed vertex w along
tv. To this goal, we trace segment tv through HVD(Fi−1), starting at t, until we
determine w.

In more detail, let f be a face of HVD∗(Fi−1) intersected by tv. Let us call
T -chain of f the portion of T (P) on ∂ f , where P is such that f ⊂ hregFi−1

(P).
Initially, f is the face of HVD∗(Fi−1) containing t. In constant time, we check
whether w lies in the interior of f , and if so we identify w. If it does not, we
move to the face g of HVD∗(Fi−1) that is adjacent to f and is intersected by tv.
To identify g, we may need to trace a portion of the T -chain of f . This is per-
formed as follows: Among the two endpoints of the T -chain, at least one must be
in hregFi(Ci), by Property 3.1.2a. We first identify such an endpoint u, and then
we trace the T -chain, starting at u, until we meet its intersection with tv, see Fig-
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ure 3.11b. At this time, we have determined g and we can continue our search for
w with f = g. Tracing the T -chain of f , starting at u, has no effect on the overall
time complexity because all traced edges of the T -chain intersect hregFi(Ci), and
thus, they are guaranteed to be deleted from HVD(Fi−1) by the main algorithm
during the insertion of Ci at step i. To identify u, we consider both endpoints of the
T -chain, and compare their distances to Ci and to their closest cluster in Fi−1. The
latter distance is readily available from HVD(Fi−1). To derive the former distance,
we perform point location in FVD(Ci). Thus, in the worst case, we perform two
point locations in O(logn) time, and in addition, we trace a number of edges of
HVD(Fi−1), none of which will appear in HVD(Fi), spending O(1) time per edge.

After w is identified, the tracing of the boundary of hregFi(Ci) is performed in
time proportional to the total number of edges that are inserted or deleted from the
Hausdorff diagram during step i, plus |Ci|. Note that to identify the new Voronoi
vertices we simply walk sequentially along edges of HVD(Fi−1) and FVD(Ci),
which are deleted, using the visibility-based decomposition. To identify w, we also
perform point location, thus, an O(logn) factor is multiplied to the above quantity.

We conclude that the time complexity for tracing hregFi(Ci) is proportional to
the number of updates (insertions and deletions) in the Hausdorff diagram as a
result of inserting cluster Ci, multiplied by O(logn). Combining with the overall
time complexity analysis, given in the following section, the total expected time
devoted to the tracing of new regions throughout the algorithm is O(n logn).

3.2.4 Complexity analysis

The running time of our algorithm depends on the number of update operations
(insertions and deletions) during the construction of the diagram. Based on the
Clarkson-Shor technique [26], we prove that the expectation of this number is lin-
ear, when clusters are inserted in random order. In the Hausdorff Voronoi diagram,
sites (clusters) do not have constant size, as it is typically assumed in the literature.
Thus, we need to adapt the standard probabilistic arguments in this environment.

Theorem 3.2.2. Given a family F of non-crossing clusters of points, the expected
total number of update operations during the randomized incremental construction
of HVD(F) is O(n), where n is the total complexity of the clusters in F.

Theorem 3.2.2 can be extended to all levels of the Voronoi hierarchy as stated
in the following corollary. We defer its proof to Section 3.2.4, after the proof of
Theorem 3.2.2. The proof of Theorem 3.2.2 is contributed by Panagiotis Cheilaris.
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Corollary 3.2.1. The expected number of update operations made on all the levels
of the Hausdorff Voronoi hierarchy of F during the incremental construction is
O(n).

We conclude with the following theorem.

Theorem 3.2.3. The Hausdorff Voronoi diagram of a family F of non-crossing
clusters can be constructed in O(n logn logk) expected time and O(n) expected
space, where k is the number of clusters in F and n is number of points in all
clusters.

Proof. As a preprocessing, we build the centroid decomposition for each cluster
in F , in total O(n logn) time (see Lemma 3.2.3). The algorithm to insert a cluster
C ∈ F does the following: (1) searches for a representative point in the new Haus-
dorff Voronoi region; (2) traces the boundary of the new region (see Section 3.2.3);
and (3) inserts C in the Voronoi hierarchy (see Section 3.2.2). By the discussion
in Section 3.2.3, and by Theorem 3.2.2 and Corollary 3.2.1, the total time to per-
form (2) and (3), for all clusters, is expected O(n logn). Searching for a represen-
tative point in the Hausdorff Voronoi region of C (part (1)) performs O(|C|) point
location queries and at most one parametric point location query in the Voronoi hi-
erarchy. Combining with Lemma 3.2.3 and Theorem 3.2.1, we derive that the total
expected time to determine a representative point for all clusters is O(n logn logk);
the claim follows.

Remark 3.2.1. Deterministic O(n) space complexity can be achieved by using
a dynamic point location data structure for a planar subdivision [5, 12]. On
this data structure, parametric point location can be performed as described in
Cheong et al. [23]. The time complexity of such a query is t2

q , where tq is the
time complexity of point location in the chosen data structure. In particular, the
data structure by Baumgarten et al. [12] has tq ∈ O(logn log logn), which leads
to the construction of the Hausdorff Voronoi diagram with expected running time
O(n log2 n(log logn)2) and deterministic space O(n).

Proof of Theorem 3.2.2

In order to count the number of update operations of the algorithm (i.e., insertions
and deletions of features (vertices, edges, faces) of the incrementally constructed
diagram), we will associate these operations with such features. Each feature of
the diagram that appears during the incremental algorithm has been inserted by an
operation. If a feature is deleted, then it cannot be inserted again in the future. As
a result, the number of deletion operations is bounded by the number of insertion
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Figure 3.12. A configuration (p,q,r)

operations. So, we intend to prove that the expected number of features that appear
during the construction of the diagram is O(n). To that end, we can ignore features
associated only with the farthest Voronoi diagrams of each cluster, because their
total worst case combinatorial complexity is O(n).

Configurations. We give some definitions related to features of the diagram.

Definition 15. A configuration is a triple of points (p,q,r) such that p, q, r lie on
the boundary of a disk D and q is contained in the interior of the counterclockwise
arc from p to r. We call D the disk of the configuration, its center the center of the
configuration, and the counterclockwise arc pr the arc of the configuration. See
Figure 3.12.

A configuration is pure if its three points belong to three different clusters of F
and all other points of these three clusters are contained in the interior of the disk
of the configuration.

A configuration is mixed if its three points belong to two different clusters of F
and all other points of these two clusters are contained in the interior of the disk of
the configuration.

From now on, configurations of our interest will be either pure or mixed. There-
fore, each configuration is either associated with three (a pure one) or two (a mixed
one) clusters.

Definition 16. A cluster C is in conflict with a configuration if (a) C does not
contain any of the points in the configuration, and (b) C is contained in the union
of the interior of the disk of the configuration and the arc of the configuration.

The weight of a configuration is the number of clusters in conflict with it.

Definition 16 is general and it does not follow the general position assumption
stated in Section 3.1. Under this assumption (b) can simplify to: “(b) C is contained
in the union of the interior of the disk of the configuration”.



56 3.2 A RIC for the HVD of non-crossing clusters based on point location

Lemma 3.2.13. The number of zero-weight configurations of F is of the same order
as the combinatorial complexity of the Hausdorff Voronoi diagram of F.

Proof. Each zero-weight configuration is associated with a vertex of the Hausdorff
Voronoi diagram. Indeed, the center of this configuration is at the vertex and the
disk of the configuration that contains the clusters associated with the configura-
tion. Consider a vertex v of the Hausdorff Voronoi diagram. The degree of v in
the diagram equals the number of configurations with center v plus the number
of some features that are associated just with farthest Voronoi diagrams (that we
have claimed before that we can ignore). As a result, zero-weight configurations
estimate well the combinatorial complexity of the Hausdorff Voronoi diagram.

Configurations of weight at most k. Let Kpure
0 (F), Kpure

k (F), Kpure
≤k (F) denote

the sets of pure configurations of zero weight, weight equal to k, and weight at most
k, of a family F of non-crossing clusters, respectively. Let Npure

0 (F), Npure
k (F),

Npure
≤k (F) denote the cardinality of the aforementioned sets, respectively. Define

analogously the sets of mixed configurations Kmix
0 (F), Kmix

k (F), Kmix
≤k (F) and their

cardinalities Nmix
0 (F), Nmix

k (F), Nmix
≤k (F), respectively. Both Npure

0 (F) and Nmix
0 (F)

are O
(
∑C∈F |C|

)
= O(n) [62]. Then, using the Clarkson-Shor technique [26], and

in particular [76, Theorem 1.2], with a random sample of the clusters in F , we
obtain:

Npure
≤k (F)≤ cpure ·nk2 and Nmix

≤k (F)≤ cmix ·nk,

for k > 0 and some constants cpure and cmix. The details to obtain these bounds are
quite standard and we refer the interested reader to [26].

Appearance of a feature. Consider a configuration c of weight k in family F
with m clusters.1 Assume the Hausdorff Voronoi diagram of F is constructed with
the incremental algorithm and the clusters are inserted according to permutation π.
The feature corresponding to c appears at some stage of the incremental algorithm
if and only if the clusters associated with c occur in π before the k clusters that
conflict with configuration c. This event happens with probability

Pr[pure c feature appears] =
3!k!

(k+3)!
=

6
(k+1)(k+2)(k+3)

1Note the difference in notation from previous sections: here k denotes the weight of a configu-
ration and m denotes the number of clusters in F. We do this change in order to be consistent with
the notation of Sharir [76].
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for pure configurations, and with probability

Pr[mixed c feature appears] =
2!k!

(k+2)!
=

2
(k+1)(k+2)

for mixed configurations.
The expected number of appearances of features corresponding to a pure con-

figuration is therefore:

m−3

∑
k=0

∑
c∈Kpure

k (F)

Pr[pure c feature appears] =
m−3

∑
k=0

∑
c∈Kpure

k (F)

6
(k+1)(k+2)(k+3)

= 6
m−3

∑
k=0

Npure
k (F)

(k+1)(k+2)(k+3)
= Npure

0 (F)+6
m−3

∑
k=1

Npure
≤k (F)−Npure

≤k−1(F)

(k+1)(k+2)(k+3)

=
3
4

Npure
0 (F)+18

m−4

∑
k=1

Npure
≤k (F)

(k+1)(k+2)(k+3)(k+4)
+

Npure
≤m−3(F)

(m−2)(m−1)m

≤ 3
4

Npure
0 (F)+18

m−4

∑
k=1

cpure ·nk2

(k+1)(k+2)(k+3)(k+4)
+

cpure ·n(m−3)2

(m−2)(m−1)m

≤ 3
4

Npure
0 (F)+18 · cpure ·n

m−4

∑
k=1

1
k2 +

cpure ·n
m

= O(n)

Similarly, the expected number of appearances of features corresponding to a
mixed configuration is:

m−2

∑
k=0

∑
c∈Kmix

k (F)

Pr[mixed c feature appears] =
m−2

∑
k=0

∑
c∈Kmix

k (F)

2
(k+1)(k+2)

= 2
m−2

∑
k=0

Nmix
k (F)

(k+1)(k+2)
= Nmix

0 (F)+2
m−2

∑
k=1

Nmix
≤k (F)−Nmix

≤k−1(F)

(k+1)(k+2)

=
1
2

Nmix
0 (F)+4

m−3

∑
k=1

Nmix
≤k (F)

(k+1)(k+2)(k+3)
+

cmix ·n(m−2)
(m−1)m

≤ 1
2

Nmix
0 (F)+4 · cmix ·n

m−3

∑
k=1

1
k2 +

cmix ·n
m

= O(n)

Therefore, we have proved the following, which implies Theorem 3.2.2.

Lemma 3.2.14. The expected number of features that appear during the incremen-
tal construction is O(n).
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Proof of Corollary 3.2.1

By the discussion in the proof of Theorem 3.2.2, the expected number of struc-
tural changes during the incremental construction is proportional to the expected
number of appearing features (i.e., pure and mixed vertices). For a fixed level `,
the expected total number of points in F(`) is β`n. By Lemma 3.2.14, the expected
number of features that appear during the incremental construction of HVD(F(`))

at level ` is O(β`n). Therefore, the expected total number of features that appear at
all the levels is at most ∑

∞
`=0 O(β`n) = O(n).

This concludes our presentation of the RIC for the Hausdorff Voronoi diagram
of non-crossing clusters, based on point location. The rest of this chapter presents
a classic RIC for the Hausdorff Voronoi diagram.

3.3 A classic randomized incremental construction of
the Hausdorff Voronoi diagram of non-crossing
clusters

In this section we give a construction algorithm for the Hausdorff Voronoi diagram
for a family F of non-crossing clusters of points in R2. Recall that, since clus-
ters in F are non-crossing, the Hausdorff Voronoi regions are connected and the
combinatorial complexity of the diagram is O(n).

Despite the O(n) complexity of the diagram, a direct application of the RIC
framework does not result in an efficient algorithm. This is because input clusters,
and thus the edges of the Voronoi diagram, are of non-constant complexity. If we
assigned objects to be clusters, and ranges so that one Voronoi edge corresponds
to one or two ranges, then both objects and ranges would have non-constant com-
plexity. This would imply that the work to update the conflict/history graph is not
proportional to the number of conflicts created or deleted, but rather to the total
complexity of the objects/ranges involved in these conflicts, contradicting the up-
date condition, see Section 2.1.1. Still the framework can be applied at the cost of
a multiplicative factor that matches the time required to test whether a given object
is in conflict with a given range [17]. However, such test may require Ω(n) time,
resulting in a O(n2 logk) time algorithm. To reduce the multiplicative factor we
choose ranges to be simpler than Hausdorff Voronoi edges. This choice, however,
yields another problem: The number of new ranges that appear in the place of one
deleted range R, may be Ω(n). To overcome these problems, we introduce a new
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definition of a conflict, and give a procedure to find new conflicts efficiently.

r

x

(a)

x

(b)

Figure 3.13. Insertion of a cluster C (filled disks): (a) T (C) (dashed) rooted
at r, its active subtree (bold); (b) the HVD after the insertion: x is the rear
C-mixed vertex

Defining conflicts and ranges

Let S ⊂ F , and C ∈ F \ S. Recall from Section 3.1, T (C) is rooted at a point at
infinity along one of its unbounded edges.

Let Ta(C,S) denote the active subtree of T (C) with respect to S, which is the
portion of T (C) relevant to the insertion of C in HVD(S). In particular, let x be
the first point on the boundary of hregS∪{C}(C) that is encountered as we traverse
T (C) starting at its root. Then Ta(C,S) is the subtree of T (C) following x, and x is
the root of Ta(C,S). Point x is a mixed vertex (unless the root of T (C) is contained
in hregS∪{C}(C), in which case Ta(C,S) and T (C) coincide).

Figures 3.13a and 3.13b illustrate HVD(S) and HVD(S∪ {C}) respectively.
The points of C are shown as unfilled circles. Figure 3.13a illustrates also T (C)

in dashed lines, superimposed on HVD(S); T (C) is rooted at r. Point x is the
root of Ta(C,S) which is shown in bold. Figure 3.13b shows the boundary of
hregS∪{C}(C) in bold lines. The following property is implied by Property 3.1.4,
given that clusters in F are non-crossing, and thus, Voronoi regions are connected.

Property 3.3.1. A cluster C has a non-empty Voronoi region in HVD(S∪{C}),
S ⊆ F, if and only if Ta(C,S) is non-empty. Moreover, the root of Ta(C,S) is a
C-mixed vertex of HVD(S∪{C}) (possibly a vertex at infinity).

Property 3.3.1 suggests that once the root of the active subtree Ta(C,S) is de-
termined, cluster C can easily be inserted into HVD(S). Thus, the crux of our
problem becomes to efficiently maintain the up-to-date root of Ta(C,S) for every
C in F \S.
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We now formulate the problem in terms of objects, ranges and conflicts. Ob-
jects are the clusters in F . Ranges are the faces of HVD(S) as refined by the
visibility-based decomposition (see Section 3.1). A range corresponding to face f ,
f ⊂ hregS(P), is said to be defined by the clusters whose Voronoi regions border f
(including P). By Observation 3.1.1 these clusters are at most four.

Definition 17 (Conflict for non-crossing clusters). A range f is in conflict with a
cluster C ∈ F \S, if Ta(C,S) is not empty and its root x lies in f . The triple ( f ,x,C)

is called a conflict. The list of conflicts of a range f is denoted as L ( f ).

Each range f stores a pointer to its owner p and a pointer to the list of its con-
flictsL ( f ). The same notation is used for both a range and its corresponding face.
The following is a direct implication of the above definition and Property 3.3.1.

Corollary 3.3.1. Each cluster C ∈ F \S has at most one conflict. If a cluster C has
no conflicts, then hregS∪{C}(C) = /0, and thus, hregF(C) = /0.

Our definition of a conflict can be seen as a generalization of the idea used in
the RIC for the trapezoidal map of line segments [17, Ch. 5.3], where conflicts
are defined in terms of the (static) left endpoint of each line segment. Here, the
corresponding point is dynamic, being a point on T (C), which serves as a skeleton
representing a cluster. This dynamic definition of conflict could be of use to other
non-standard applications of the RIC framework.

Insertion of a cluster, variant with the conflict graph

Suppose that HVD(S),S⊂ F has been constructed together with its conflict graph.
The algorithm to insert a cluster C ∈ F \ S in HVD(S) is given as pseudocode in
Figure 3.14.

To update the Hausdorff Voronoi diagram after the insertion of C, the boundary
of hregS∪{C}(C) is traced, starting at the root of Ta(C,S). This tracing is detailed
in [66]. The update of the conflict graph is detailed in Lines 4–16 of Figure 3.14. In
particular, for each deleted range f we delete its conflicts, and create new conflicts
in place of the deleted ones. Let ( f ,y,Q) be a conflict of f . If Ta(Q,S∪ {C})
remains the same as Ta(Q,S), then we find a new range that contains the root y of
Ta(Q,S∪{C}) (Line 9), by performing a binary search on the sides of the ranges
comprising hregS∪{C}(p). Otherwise, we first find the root z of Ta(Q,S∪ {C})
and then find the range of HVD(S) that contains z. Using the (updated) root of
the active subtree and the range containing it, we create the new conflict of Q. To
locate a range in Line 15 we do the following: Find the owner c ∈C of the range h,
such that z ∈ h, by performing a point location for z in FVD(C); The actual range
h can be found by binary search as in Line 9.
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Algorithm Insert-NonCrossing
(ú Inserts a cluster C in HVD(S); updates the conflict graph ú)
1. Let (g, x, C) be the conflict of C.
2. Trace the region hregSfi{C}(C) starting from x.
3. Update HVD(S) to HVD(S fi {C}).
4. for f œ HVD(S) \ HVD(S fi {C}) do
5. Let p be the owner of f .
6. for each conflict (f, y,Q) œ L(f) do
7. Discard the conflict (f, y,Q).
8. if df(y, p) < df(y, C) then
9. Locate the range f Õ µ hregSfi{C}(p) that contains y.
10. Create conflict (f Õ, y,Q).
11. else
12. Search for an edge uv in Ta(Q,S) such that df(u,Q) > df(u,C)

and df(v,Q) < df(v, C).
13. if uv is found then
14. Perform a segment query for uv in FVD(C) to find root z

of Ta(Q,S fi {C}).
15. Locate the range h µ hregSfi{C}(C) that contains z.
16. Create conflict (h, z,Q)

Figure 3.14. Algorithm to insert cluster C; case of non-crossing clusters

Lemma 3.3.1. The algorithm Insert-NonCrossing (Figure 3.14) is correct.

Proof. We only consider important points that are not easy to see. In Line 8, it is
enough to compare distance from y to only p and C as no other cluster may become
the closest to y as a result of inserting C. Suppose that df(y,C)< df(y,Q)= df(y, p),
and that Ta(Q,S∪{C}) 6= /0 (Lines 11—16). In this case y is no longer a part of the
(updated) diagram HVD(S∪{C}). Clearly, Ta(Q,S∪{C}) is a subtree of Ta(Q,S),
thus, there is exactly one edge uv of Ta(Q,S) such that u is not in Ta(Q,S∪{C})
and v is in Ta(Q,S∪{C}). Edge uv satisfies the condition of Line 12 by definition
of an active subtree. The root of active subtree never coincides with a vertex of
T (C) due to the general position assumption.

Complexity analysis for the conflict graph

We now analyze the time and space complexity of our algorithm. Consider a ran-
dom permutation {C1, . . . ,Ck} of the input family F , and the sequence {F0, . . . ,Fk},
where F0 = /0, Fi = Fi−1∪{Ci} and Fk = F . At step i we insert cluster Ci, following
the procedure described in Section 3.3.

Corollary 3.3.1 directly implies the following.
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Lemma 3.3.2. The number of edges in the conflict graph at any step is O(k).

Lemma 3.3.3. Updating the conflict graph at step i of the algorithm requires
O((Ni +Ri) logn) time, where Ni is the total number of edges dropped out of the
active subtrees of clusters in F \Fi at this step; Ri is the total number of conflicts
deleted at this step.

Proof. Updating the conflict graph corresponds to two nested for loops in Lines 4–
16 of the algorithm in Figure 3.14. Clearly the inner loop (Lines 6–15) is per-
formed O(Ri) times. Inside this loop, the breath-first search is performed that
spends O(logn) time per visited edge. By Corollary 3.3.1, one active subtree is
considered at most once. All the visited edges, except the last one, are dropped out
of the respective active subtree. It remains to show, that, except for the breath-first
search, the rest of the work in any execution of the inner loop requires O(logn)
time. Indeed, it is a point location in Line 8, a segment query in FVD(Ci) in
Line 13, and a binary search in Line 9 or Line 15.

Theorem 3.3.1. The randomized incremental construction algorithm to compute
the Hausdorff Voronoi diagram of k non-crossing clusters of total complexity n,
requires O(n) space, and expected O(n logn+ k logn logk) time.

Proof. The expected total number of ranges created and deleted during the algo-
rithm is O(n), see Theorem 3.2.2. Updating the Hausdorff Voronoi diagram can be
done in time proportional to this number using the tracing described in [66]. Now
we will analyze only the work to update the conflict graph. By Lemma 3.3.3, the

total time required for this task is T =
k
∑

i=1
O((Ni +Ri) logn). An edge of T (C) of

any cluster C ∈ F is dropped out from the active subtree at most once. The total
number of edges in the farthest Voronoi diagrams of all clusters in F is O(n). Thus

T = O(logn)(n+
k
∑

i=1
Ri).

Applying backwards analysis, it is easy to see that the expected number of the
conflicts created at step i is O(k/i). Each conflict deleted at step i either induces
one new conflict, or the cluster in F \Fi corresponding to that conflict stop having
a conflict at step i.

The expectation of T is O(n+
k
∑

i=1
(k/i+Di logn)), where Di is the number of

clusters in F \Fi that stop having a conflict at step i. Note that
k
∑

i=1
Di ≤ k, since

the active subtree of a cluster can become empty at most once. The claimed time
complexity follows.
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The space requirement at any step is proportional to the combinatorial com-
plexity of the Hausdorff Voronoi diagram, which is O(n), plus the total number of
edges of the conflict graph at this step, which is at most k by Lemma 3.3.2. Hence
the claimed O(n) bound holds.

Adapting the algorithm for a history graph

Suppose that the algorithm maintains a history graph. LetH (Fi) denote the history
graph that has been computed at step i. H (F0) is a single node corresponding
to the whole R2. For i ∈ {1, . . . ,k}, H (Fi) consists of all nodes and edges of
H (Fi−1) and in addition it contains the following: (i) A node for each new range
in HVD(Fi)\HVD(Fi−1); these nodes are called the nodes of level i. (ii) An edge
connecting a deleted range f ∈ HVD(Fi−1) \HVD(Fi) to every new range f ′ ∈
HVD(Fi)\HVD(Fi−1) such that f ′ intersects f .

Suppose that HVD(Fi−1) and H (Fi−1) are already computed. To insert the
next cluster Ci, we traverseH (Fi−1) from root to a leaf. Simultaneously, we move
in T (Ci), keeping track of the root x of the active subtree Ta(Ci,Fj) at the current
level j of H (Fi−1). When we reach a leaf of H (Fi−1), we trace the boundary
of the Voronoi region hregFi(Ci), starting at the root x of Ta(Ci,Fi), and update
H (Fi−1) to becomeH (Fi).

In more detail, the procedure for level j is as follows: Let f be the face in
HVD(Fj) that contains x. Suppose that f is deleted at step `. If df(x,Ci) <

df(x,C`), we search for the child f ′ of f , that has the same owner as f , and contains
x; we move to the level `, keeping x intact, and updating its face to be f ′. Else we
search for the root z of the (new) active subtree Ta(Ci, F̀ ∪{Ci}) (the procedure
to do this is the same as for the conflict graph, see Section 3.3). If z is found, we
move to level `, replace x by z and the face f by f ′ ⊂ hregF̀ (C`) that contains z. If
z is not found, the active subtree is empty, hence hregFi(Ci) = /0.

Updating the history graph during step i takes time O(logn(Ni+Ki)), where Ni
is the number of edges of T (Ci) that do not belong to the active subtree Ta(Ci,Fi),
and thus, they are eliminated by the breath-first search. Ki is the number of clusters
in the sequence {C1, . . . ,Ci−1} that change the root of the active subtree as we move
in the history graph level by level. The expectation of Ki is O(log i). Summing over
all k steps gives us O(k logk). The total expected running time of the algorithm
using the history graph is thus, O(n logn+ k logn logk). The space complexity of
the algorithm is expected O(n).
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3.4 A classic randomized incremental construction of
the Hausdorff Voronoi diagram of arbitrary clusters

In this section we drop the assumption that clusters are pairwise non-crossing, and
consider a classic variant of the randomized incremental construction framework,
as applied to a family F of arbitrary clusters that may cross.

Allowing clusters to cross raises a major difficulty that Voronoi regions may
be disconnected and the simple definition of a conflict of Section 3.3 is no longer
adequate. We adapt a more standard definition for a conflict (see Definition 18).
Ranges remain the same as in Section 3.3.

Let S ⊂ F , and let f be a face of HVD(S) such that f is in hregS(p), p ∈ P.
Let C be a cluster in F \ S. Consider the Hausdorff bisector bh(P,C) as truncated
within f , and let Lv( f ,C) denote the list of vertices of bh(P,C)∩ f in clockwise
order as seen from p. Figure 3.15a illustrates bh(P,C)∩ f as a blue bold polygonal
line, however, bh(P,C)∩ f may consist of several connected components.

Definition 18 (Conflict for arbitrary clusters). A range f of HVD(S) is in con-
flict with a cluster C ∈ F \ S, if f intersects hregF∪{C}(C). A conflict is a triple
( f ,Lv( f ,C),C). ListLv( f ,C) is called the vertex list of the conflict and it consists
of the vertices of bh(P,C) in f .

Using this new definition of conflict we need to efficiently update the conflict
graph after the insertion of C.

Before describing our algorithm to update the conflict graph, we need to in-
troduce some notation regarding visibility-based decomposition of the Hausdorff
Voronoi regions. Recall from Section 3.1 the definition of the visibility-based de-
composition, and that the boundary of each face f of the visibility-based decom-
position of consists of three parts:

(1) a chain that is portion of T (P);

(2) a segment of bh(P,Q),Q ∈ F ; we call it the Hausdorff segment of f ;

(3) at most two edges of the visibility-based decomposition; we call them the
sides of f .

In Figure 3.3, the sides are shown in bold, the Hausdorff segments are shown solid
and the relevant portion of T (P) is shown dotted. For brevity we often refer to the
chain induced by the Hausdorff segment and the (≤ 2) sides of f as the π-chain of
f . Point p is called the owner of f .

Now we are ready to describe the algorithm to update the conflict graph.



65 3.4 A classic RIC for the HVD of arbitrary clusters

p

(a)
p

(b)
p

x

y

(c)

Figure 3.15. A deleted range f (grey); (a) Lv( f ,C) and the adjacent portion
of T (C); (b) Lv( f ,Q) (red), where Q is a cluster in conflict with f ; the
components of Lv( f ,Q) of type 1 (red, bold) and of type 2 (red, dotted);
ranges in Lr( f ,C), (c) Illustration for tracing Lv( f ,Q)

3.4.1 Updating the conflict graph

When inserting cluster C in HVD(S) a number of ranges get deleted. For each
deleted range f , we need to delete its conflicts and to create new conflicts with the
new ranges that intersect f . The technical challenge of this task is caused by the
non-constant complexity ofLv( f ,C). That is, the number of new ranges related to
f is non-constant, as well as the size of the vertex lists of the conflicts of f . We
update the conflict graph in a way that all the work done is charged to conflicts
that are created or deleted, to the vertices that are deleted from the vertex lists of
conflicts, and to number of crossings of the inserted cluster. In the remaining of
this section we give the details of this process. The algorithm to update the conflict
graph is given as pseudocode in Figure 3.16.

Let f be a range deleted during the insertion of C of owner p ∈ P. Let Lr( f )
denote the list of the (new) ranges of HVD(S∪{C}) that are owned by p and inter-
sect f . The ranges inLr( f ) are ordered clockwise as their Hausdorff segments are
seen from p. Lr( f ) can be easily derived from Lv( f ,C) while updating HVD(S)
to HVD(S∪{C}). For a range f ′ ∈Lr( f ), the second side in this ordering is called
the right side of f ′.

Lines 3–16 in Figure 3.16 process a cluster Q ∈ F \ (S∪{C}) that is in conflict
with f . To determine the new conflicts of Q, we need to process the vertices of
Lv( f ,Q). We need the following distinction. Intersections between Lv( f ,C) and
Lv( f ,Q) partition Lv( f ,Q) into components of two types: type 1: portions that
are closer to p than to C, and type 2: portions that are closer to C than to p.
Figure 3.15b shows Lv( f ,C) in blue thick lines, and Lv( f ,Q) in red (solid and
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dotted lines show its components of type 1 and 2 respectively).
The vertices of the components of type 1 stay in the vertex lists of new conflicts,

while the vertices of the components of type 2 are discarded. When processing a
component of type 1, we need to create conflicts between Q and the ranges of
Lr( f ) intersected by this component. Each vertex of the component must be placed
in the appropriate vertex list. To do this, we subdivide the list of vertices of the
component by the intersections with the sides of these ranges (Lines 8–11). When
processing a component of type 2, we need (i) to determine the starting point of
the next component of type 1 (Line 14), and (ii) to create the conflicts between Q
and the ranges of C; these conflicts correspond to the face of hregS∪{C,Q}(Q) that
is incident to the starting point x of this component (Line 13).

Lines 6 and 11 can be performed by binary search in Lv( f ,Q). Line 12 is
implemented by a segment query: Let uv denote the roof of f ′, and let cluster R be
a pair {p,c}, where c is the point in C, that is the farthest to points of uv. Clearly,
df(u,Q) < df(u,R) and df(v,Q) > df(v,R); the answer to the segment query for
segment uv in FVD(Q) is exactly the point x. Points x and y from Lines 12 and 14
respectively, are shown in Figure 3.15c.

Lemma 3.4.1. The algorithm Update-Conflict-Graph-(Arbitrary-Clusters) (Fig-
ure 3.16) is correct.

Proof. We need to show that after the algorithm is executed, all the conflicts of
the new ranges are created. This is due to two observations: (1) Each face of
hregS∪{C,Q}(Q) borders the Hausdorff Voronoi region of some cluster from S (not
only that of C). Thus, all the conflicts between Q and new ranges owned by C
are encountered in Line 13. (2) For a range f ′ ∈Lr( f ), consider the points where
Lv( f ,Q) intersects the sides of f . If both points are closer to p than to C, then,
since hregS∪{Q}(Q) is convex, the chain induced byLv( f ,Q) does not intersect the
roof of f . Hence, Line 8 gives a correct condition to find the next transition point
from a component of type 1 to a component of type 2.

Complexity analysis

We now analyze the time and space complexity. We follow the notation of Sec-
tion 3.3. At each step i, cluster Ci is inserted into HVD(Fi−1) as described in
Section 3.4.1.

Lemma 3.4.2. Updating the conflict graph after the insertion of cluster Ci requires
time O((A(Ci)+L(Ci)+Cr(Ci)) logn), where A(Ci) is the number of conflicts cre-
ated and deleted, L(Ci) is the total number of vertices discarded from the vertex
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Algorithm Update-Conflict-Graph-(Arbitrary-Clusters)
(ú Updates the conflict graph after insertion of C œ F \ S into HVD(S) ú)
1. for f œ HVD(S) \ HVD(S fi {C}) do
2. Let p œ P be the owner of f .
3. for each cluster Q œ F \ (S fi {C}) that is in conflict with f do
4. Initialize v as the first vertex in Lv(f,Q).
5. Initialize f Õ as first range in Lr(f).
6. Let z be the intersection of Lv(f,Q) with the ray originating at p

and passing through the right wall of f Õ.
7. repeat
8. while df(z, P ) < df(z, C) do
9. Assign the relevant part of Lv(f,Q) to the left of z, as

Lv(f Õ, Q).
10. Let f Õ be the next range in Lr(f).
11. Update point z with respect to new f Õ.
12. Find point x of intersection between the Hausdor� segment

of f Õ and Lv(f,Q).
13. Starting at x, trace ˆhregSfi{C,Q}(Q) inside hregSfi{C}(C),

creating new conflicts between Q and the ranges owned by C.
14. Starting at x, trace Lv(f,Q) until the next intersection y with

Lv(f, C) is found.
15. Let z be the intersection between Lv(f,Q) and the right wall

of the face containing y.
16. until all vertices in Lv(f,Q) or all ranges in Lr(f) are visited.

Figure 3.16. Algorithm to update the conflict graph after the insertion of
cluster C

lists of conflicts, and Cr(Ci) is the total number of crossings between Ci and the
clusters in F \Fi.

Proof. The algorithm iterates over all the deleted conflicts. At one such iteration,
each range inLr( f ,Ci) is considered at most once, and if considered, a new conflict
is created. Processing the components of type 1 (Lines 8–11) for all conflicts thus
takes total time O(A(Ci) logn). All executions of Line 14 and Line 15 require in
total O((A(Ci)+L(Ci)+Cr(Ci)) logn) and O(L(Ci) logn) time, respectively. Each
execution of Line 7, Line 12, or Line 13 requires O(logn) time: two former proce-
dures are binary search, and the latter is a segment query.

Lemma 3.4.3. At step i, the total number of vertices in the vertex lists of all the
conflicts is O(n+Cri), where Cri is the total number of crossings between all pairs
of clusters such that one cluster is in Fi and the other is in F \Fi.

Proof. Consider the vertex list Lv( f ,Q) of the conflict between a cluster Q ∈ F \
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Fi and a range f of HVD(Fi) whose owner is p ∈ P. Members of Lv( f ,Q) are
Q-mixed and P-mixed vertices. The latter ones are crossing mixed vertices on
bh(P,Q), plus at most two non-crossing mixed vertices. The former ones are Q-
mixed vertices in HVD(Fi∪{Q}), which are in total O(|Q|+Cr(Q)), where Cr(Q)

is the number of crossings between Q and clusters in Fi. Since the total number of
points in all clusters is n, the claim follows.

Theorem 3.4.1. The Hausdorff Voronoi diagram of a family F of k clusters of
total complexity n can be computed in O((m + n logk) logn) expected time and
O(m+n logk) expected space.

Proof. To analyze the expected total number of conflicts created during the course
of the algorithm, we need to estimate the expected number of ranges in HVD(R),
where R is a random r-sample of F . This is proportional to the number of mixed
Voronoi vertices in HVD(R) [66]. The number of non-crossing mixed vertices
is in turn proportional to the total number of points in the sample, which is ex-
pected O(nr/k). A crossing mixed vertex v induced by clusters P,Q∈ F appears in
HVD(R) with probability at most r(r−1)/(k(k−1)) which is the probability that
both P and Q are in R. Summing over all crossings of clusters in S, we have that
the expected number of crossing mixed vertices in HVD(R) is O(mr2/k2). Thus,
the expected number of ranges in HVD(R) is O(nr/k+mr2/k2). Applying Theo-
rem 2.1.1, we conclude that the expected total number of conflicts created during
the course of the algorithm is O(n logk+m); the expected space required by the
algorithm is within same bound, since the additional space to store all the vertex
lists of conflicts is O(n+m), see Lemma 3.4.3.

Consider the number L(Ci), the total number of the vertices deleted from the

vertex lists of the conflicts during the step i. Expectation of
k
∑

i=1
L(Ci) is as well

O(n logk+m): For each cluster Q ∈ F , there is O(|Q|) non-crossing Q-mixed ver-
tices at one time. Each such vertex can undergo at most k updates over the course
of the algorithm. Since the sequence of insertions is random, the expected number
of updates is O(logk); Summing over all clusters in F , we obtain O(n logk). Cross-
ing mixed vertices contribute an additional O(m) to this sum, since any crossing
mixed vertex may be deleted at most once, and they are at most m in total. The

sum
k
∑

i=1
Cr(Ci) is O(m), since for each pair of clusters there is only one i such that

their crossings are counted by Cr(Ci). The claim is implied by Lemma 3.4.2.

The above RIC algorithm can be adapted to work on a history graph within the
same time and space bounds.
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Summary
In this chapter, we have presented two different randomized incremental ap-
proaches to construct the Hausdorff Voronoi diagram of a family of k clusters,
having n points in total.

In Section 3.2, we presented a RIC for the Hausdorff Voronoi diagram of
non-crossing clusters, based on point location. The algorithm runs in expected
O(n logn logk) time and expected O(n) space. It uses the Voronoi hierarchy data
structure, which we augment with the ability to handle the features inherent to the
Hausdorff Voronoi diagram of non-crossing clusters. These features are: sites of
non-constant complexity, sites not enclosed in their Voronoi regions, and empty
Voronoi regions. We also extended the Voronoi hierarchy to perform parametric
point location queries in expected time O(logn logk). We showed how to prepro-
cess the farthest Voronoi diagram of the points of an individual cluster, building
the centroid decomposition data structure, that can perform the point location and
the segment queries in O(logn) time.

In Section 3.3, we presented the application of the classic RIC
framework [26, 25] to the Hausdorff Voronoi diagram of non-crossing clusters. We
proposed a simplified definition of conflict, that is based on the properties of the
Hausdorff Voronoi diagram. This implies an algorithm to construct the diagram
in expected O(n logn+ k logn logk) time and deterministic O(n) space. The com-
plexity of our algorithm is considerably better than one that would follow from a
straightforward application of the Clarkson-Shor framework.

In Section 3.4 we showed how apply the Clarkson-Shor framework to the Haus-
dorff Voronoi diagram of arbitrary clusters, which may possibly cross. We ad-
dressed the problem of computing a Voronoi diagram with disconnected regions
and disconnected bisectors via the randomized incremental construction frame-
work. The resulting algorithm runs in expected O((m+ n logk) logn) time and
expected O(m+ n logk) space, where m is the total number of crossings between
pairs of clusters.
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Chapter 4

Linear-time construction for the
farthest-segment Voronoi diagram

In this chapter we present a linear-time algorithm to construct the farthest-segment
Voronoi diagram, once the sequence of its faces at infinity is known. The chapter
is based on:

E. Khramtcova and E. Papadopoulou. Linear-time algorithms for the farthest-
segment Voronoi diagram and related tree structures. In Proc. Algorithms and
Computation - 26th International Symposium, ISAAC, pages 404–414, 2015.

4.1 Preliminaries and Definitions

Let S be a set of n arbitrary line segments in R2; segments in S may intersect
or touch at a single point. The distance between a point q and a line segment
si is d(q,si) = min{d(q,y) | y ∈ si}, where d(·, ·) denotes the Euclidean distance
between two points.

The bisector of two segments si,s j ∈ S is b(si,s j) = {x ∈ R2 | d(x,si) =

d(x,s j)}. For disjoint segments, b(si,s j) is an unbounded curve that consists of a
constant number of pieces, where each piece is a portion of an elementary bisector
between the endpoints and open portions of si,s j, see Figure 4.1a. If two seg-
ments intersect transversally at point p their bisector consists of two such curves
intersecting at p.

If segments si,s j have a common endpoint then b(si,s j) contains a 2-
dimensional region, see the shaded region in Figure 4.1b. Following standard con-
ventions, see e.g. [8], the two-dimensional portion can be replaced by the piece of
the angular bisector of si,s j within this common region, obtaining a single curve,
see the red curve in Figure 4.1b.

71



72 4.2 The Farthest Voronoi Diagram of a Sequence

si

sj

b(si, sj)

(a)

si
sj

b(si, sj)

(b)

Figure 4.1. The bisector of two segments si,s j. Two cases: (a) si and s j are
disjoint, and (b) si and s j share an endpoint p.

Note that the unbounded pieces of b(si,s j) are rays that are portions of bisectors
of segment endpoints. We assume that such unbounded pieces are oriented towards
infinity. For brevity, we refer to the direction of such a portion as a direction of
b(si,s j). Bisector b(si,s j) has two directions if si,s j are disjoint or have a common
endpoint, and four directions if si,s j intersect transversally.

The farthest Voronoi region of a segment si is freg(si) = {x ∈ R2 | d(x,si) >

d(x,s j),1 ≤ j ≤ n, j 6= i}. The (non-empty) farthest Voronoi regions of the seg-
ments in S, together with their bounding edges and vertices, define a partition of
the plane, called the farthest-segment Voronoi diagram, denoted FVD(S); see Fig-
ure 2.4a. Any maximally connected subset of a Voronoi region is called a face.

Recall from Section 2.2.1 that each segment corresponds to a double wedge in
dual space, thus, S induces two arrangements of wedges, one of lower and one of
upper wedges, respectively. The upper envelope of the former arrangement and the
lower envelope of the latter arrangement correspond to the sequence of faces of
FVD(S) at infinity. Recall also from Section 2.2.1 that these envelopes correspond
to the Gaussian map of S, denoted Gmap(S). The Gmap provides a one-to-one
correspondence between the faces FVD(S) at infinity.

4.2 The Farthest Voronoi Diagram of a Sequence

Consider the arrangements of upper and lower wedges of the segments in S in dual
space. Let G be a sequence of arcs on the circle of directions K, such that the
sequence corresponds to a pair of x-monotone paths in the dual space, one in the
arrangement of upper and one in the arrangement of lower wedges. No arcs in
G can overlap and no gaps can be present between consecutive arcs. Sequence
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sα

α1 α2 β

sβ

x
r(x, sα)

p

b(α2, β)

b(sα, sβ)

Figure 4.2. Arcs α1,α2 of segment sα, and β of segment sβ; attainable regions
R(α1),R(α2),R(β) (shaded); segment bisector b(sα,sβ) (red, dashed) and arc
bisector b(α2,β) (red, bold)

G corresponds to a pair of x-monotone paths in the arrangements of wedges in the
same way as Gmap(S) corresponds to the two envelopes in these arrangements (see
Section 2.2.1). We refer to such a sequence G as an arc sequence. When necessary,
we refer to the endpoints of an arc as arc-endpoints, to differentiate from endpoints
of segments. Throughout this chapter, given an arc α, let sα denote the segment in
S that induces α.

Similarly to Gmap(S), an arc sequence G consists of single-vertex arcs and
segment arcs. For a segment arc α, the related hull direction of segment sα, ν(sα),
is always included in α; in dual space, it corresponds to the apex of the wedge of
segment sα. G may contain consecutive arcs of the same segment. The maximal
union of such arcs is referred to as a maximal arc.

Let Gs denote a simplified version of an arc sequence G, where any consecutive
arcs of the same segment sα in G have been unified into a single maximal arc α.
That is, for any arc α in Gs its neighbors are arcs of a different segment.

In the following we define the farthest Voronoi diagram of an arc sequence G,
FVD(G). For G = Gmap(S), FVD(G) = FVD(S). The diagrams of such se-
quences appear as intermediate diagrams in the process of computing FVD(S),
however, they do not correspond to any type of segment Voronoi diagram. We first
define such a diagram and then present an arc deletion and arc insertion operation,
which constitute the basis for our algorithm.

4.2.1 Defining the FVD(G)

Given an arc α∈G and a point x ∈R2, x 6∈ sα, let r(x,sα) denote the ray emanating
from x in the direction −→px, where p is the point in sα closest to x; see Figure 4.2.

Definition 19. A point x, x 6∈ sα, is said to be attainable from α if the direction
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of r(x,sα) is contained in α. An endpoint of segment sα is attainable from all its
corresponding single-vertex arcs. All points in sα are attainable from α if α is
a segment arc. The locus of points attainable from arc α is called the attainable
region of α, R(α). See Figure 4.2

Region R(α) is derived by the two rays in the direction of the arc-endpoints
of α that emanate from the relevant endpoint(s) of sα, see Figure 4.2. Within its
attainable region, an arc α corresponds to a portion of segment sα. If α is a single-
vertex arc, it corresponds to one endpoint of sα (see α1, β in Figure 4.2). If α

is a segment arc, it corresponds to both endpoints of sα and at least one side of sα

represented by ν(sα) in α (see α2 in Figure 4.2). An arc α should not be considered
outside its attainable region. By the definition of an attainable region, we make the
following remark.

Remark 4.2.1. For any non-consecutive arcs α1,α2 ∈ G induced by the same
segment sα, the interiors of their attainable regions are disjoint. Moreover,
R(α1)∩R(α2)\{sα}= /0.

We define the distance between an arc α and a point x ∈ R2 as follows:

d(x,α) =

{
d(x,sα), if x ∈ R(α);

−∞, if x /∈ R(α).

Definition 20. For two arcs α,β such that sα 6= sβ, their arc bisector b(α,β) is
the interior of b(sα,sβ)∩R(α)∩R(β). If sα = sβ and α,β are consecutive, then
their artificial bisector b(α,β) is the interior of R(α)∩R(β), which is the common
boundary of R(α) and R(β).

Note that arc bisector b(α,β) is always an open (possibly unbounded) con-
nected portion of a curve.

Artificial bisectors involving same segment cannot intersect, see Remark 4.2.1.

The farthest Voronoi region of an arc α can now be defined in the ordinary way:

freg(α) = {x ∈ R2 | d(x,α)> d(x,γ),∀ arc γ ∈ G,γ 6= α}.
The subdivision of the plane derived by the farthest Voronoi regions of the arcs

in G and their boundaries, is called the farthest Voronoi diagram of G, denoted
FVD(G). Let freg(α) denote the closure of freg(α). Assuming that ∪α∈Gfreg(α)
covers the plane (see Lemma 4.2.1), we define the graph structure of FVD(G) as
follows:

T (G) = R2 \∪α∈Gfreg(α).
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Figure 4.3. Proper arc sequence G = {α,γ,δ}, and (a) FVD(G); (b)FVD(Gs)

x

r

z

freg(γ)

∂R(γ)

Figure 4.4. Illustration for the proof of Lemma 4.2.1

Figure 4.3a illustrates an arc sequence G and its diagram FVD(G). On the right
G is shown as a circle of directions K; solid arrows indicate the arc-endpoints, and
dashed arrows indicate hull directions of segments within the segment arcs. The
left figure shows FVD(G): its graph structure T (G) is shown in red lines; its
Voronoi regions are labeled with the corresponding arc (inside a little circle); the
regions of arcs α and γ of segment sα are shown shaded. For more examples of arc
sequences and their diagrams, see also Figures 4.3b, 4.7.

Consider FVD(Gs), where Gs is the simplified version of G. A (maximal) arc
α in Gs corresponds to a series of consecutive sub-arcs of sα in G. The region
freg(α) is split in FVD(G) into subregions by the artificial bisectors of these arcs.
Figure 4.3b shows Gs and FVD(Gs) for the sequence G of Figure 4.3a: arcs α and
γ of G are united into one maximal arc αγ. We often alternate between G and Gs

in this paper, as needed, and we often use the same notation, G, to denote both the
original arc sequence and its simplified version Gs.

Lemma 4.2.1. If ∂freg(α),∀α ∈ Gs, consists solely of portions of arc bisectors
involving α, then ∪α∈Gfreg(α) = R2.

Proof. Suppose for the sake of contradiction, that there is a point x ∈R2, such that
x does not belong to freg(α) for any α ∈ G, i.e., x 6∈ ∪α∈Gfreg(α). Observe that x
can not be attainable from any arc in G (otherwise, it would lie either in a Voronoi
region of FVD(G), or on an arc bisector; the latter is always the border between
two Voronoi regions of FVD(G)). Consider a ray r originating at x, see Figure 4.4,
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π
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Figure 4.5. Illustration for the proof of Lemma 4.2.2

and let φ be the direction of r. Points on r far enough from x are attainable from
the arc α ∈ G such that φ ∈ α . Thus, when moving on r starting at x, at some
point z we for the first time cross the boundary of the attainable region of some arc
γ ∈ G (not necessarily γ = α). Clearly d(z,γ) 6= −∞ and d(z,β) =−∞ for any arc
β∈G,β 6= γ. Since the interior of segment xz is outside R(γ), z lies on the boundary
of freg(γ) (shaded in Figure 4.4). However, z is not attainable from any arc other
than γ, thus, z is not on any arc bisector; a contradiction.

Definition 21. If T (Gs) consists solely of portions of arc bisectors, then G, T (G),
and FVD(G) are all called proper. See e.g. Figures. 4.3, 4.7.

The diagrams produced by our algorithms at the intermediate steps are always
proper. Note, however, that for an arbitrary arc sequence G, T (Gs) may contain
two-dimensional regions, or boundaries of attainable regions that are not bisectors.

Lemma 4.2.2. For a proper arc sequence G, T (G) is a tree.

Proof. Since G is proper, T (G) is a graph and each of its edges is a portion of the
interior of an arc bisector. Let x be a point in freg(α) for some α ∈ G. We first
prove that the entire unbounded ray r(x,sα) is enclosed in freg(α), thus, freg(α) is
unbounded.

Suppose first that G = Gs. Consider any arc γ, other than α, which is attainable
from x. Since d(x,α) = d(x,sα)> d(x,γ) = d(x,sγ), arc bisector b(α,γ), which is
a portion of b(sα,sγ), cannot intersect r(x,sα). This is easy to see by considering
a disk D(y) centered at a point y of r(x,sα), see Figure 4.5a. As y moves along
r(x,sα), D(y) enlarges and it must always intersect sγ (see [8, Lemma 1]). Thus,
no arc bisector b(α,γ), where γ is attainable from x, can bound r(x,sα) as we walk
on it towards infinity starting at x. Suppose now that an arc δ that is not attainable
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from x, suddenly becomes attainable as we walk along r(x,sα), because r(x,sα)

intersects R(δ) at a point z. If d(z,δ) < d(z,α) then z and a neighborhood around
it must remain in freg(α). Since z is attainable from δ, arc bisector b(α,δ) cannot
intersect r(z,sα) for the same reason as above. If on the other hand, d(z,δ) ≥
d(z,α) (see Figure 4.5b), then z ∈ T (G) without being on the interior of an arc
bisector, contradicting our assumption about T (G). Thus, no interior point of an
arc bisector involving α can bound r(x,sα). Since T (G) contains only such points,
it follows that the entire ray r(x,sα) ⊂ freg(α). To remove the assumption that G
equals its simplified version, imagine that G contains consecutive arcs of the same
segment, and thus the artificial bisectors. However, any artificial bisector involving
α, by its definition, can be either parallel to r(x,sα), or it can coincide with it, or
intersect it in an endpoint of segment sα.

It remains to show that T (G) is connected. Suppose otherwise. Then there
is a face in FVD(G), which is unbounded along two directions that belong to
two different non-consecutive arcs of G. That is, there are non-consecutive arcs
α1,α2, such that freg(α1) and freg(α2) are path-connected. But α1 and α2 should
be of the same segment sα, as freg(α1) and freg(α2) cannot be path connected if
sα1 6= sα2 . Then for any point p in freg(α1) and point q in freg(α2), there is a path
π connecting them such that π is entirely contained in freg(α1)∪ freg(α2), see Fig-
ure 4.5c. But then for any point x along π, ray r(x,sα) would be entirely contained
in freg(α1)∪ freg(α2), i.e., arcs α1,α2 would be neighboring; a contradiction.

4.2.2 Subsequences and augmented subsequences of Gmap(G)

An arc sequence G is called a subsequence of Gmap(S) if every arc of G entirely
contains a corresponding arc of the Gmap(S) that are induced by the same segment.
The arcs in G are expanded versions of the arcs in Gmap(S). The arcs in Gmap(S)
as well as their expanded versions in G are called original arcs. The exact arcs
of Gmap(S) are called core arcs or simply cores. The core of an arc β in G is
denoted as β∗.

In the dual space, a subsequence G corresponds to an x-monotone path in the
arrangement of lower wedges. Each maximal portion of a wedge on this path
(dual to an arc β ∈ G) contains a part that appears in the upper envelope of the
arrangement (this part is dual to β∗). In Figure 4.6b, dashed blue lines illustrate
such path that corresponds to a subsequence of Gmap(S).

A sequence G′ is called an augmented subsequence of Gmap(S) if the following
holds: For every segment in S that contributes an arc to G′, there is an original arc
in G′ induced by this segment. An augmented subsequence consists of original
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Figure 4.6. (a) The upper Gmap of S from Figure 2.4; (b) the dual ar-
rangement of lower wedges with its upper envelope (black) and two other x-
monotone paths, corresponding to a subsequence of Gmap(S) (blue, dashed)
and to its augmented subsequence (red); (c) upper Gmap corresponding to
the red path
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Figure 4.7. FVD(G) and G, where G = Gmap(S) for (a) set S = {sα,sβ} of
disjoint segments; (b) set S = {sα,sδ} of intersecting segments

arcs, which are expanded versions of the arcs in Gmap(S), and new arcs, which do
not correspond to arcs of Gmap(S). An augmented subsequence G′, which has the
same original arcs as G, is said to be corresponding to G. In Figure 4.6b, the path
shown in red solid lines corresponds to an augmented subsequence of Gmap(S). In
this augmented subsequence, all arcs before point g are new arcs, and all arcs after
point g are original arcs.

A starting point for our algorithms are subsequences of Gmap(S) consisting
of two maximal arcs. That is, the simplified version of such subsequence has two
arcs. We refer to such sequence as a base subsequence of Gmap(S). Obviously,
such sequences are induced by two segments in S.

The simplified version of a base subsequence can be of two types, depending
on whether these segments intersect: the diagram of two disjoint segments (Fig-
ure 4.7a), or the diagram of two intersecting segments without one of its faces
(Figure 4.3b). In the (non-simplified) base subsequence, a single maximal arc may
consist of several smaller consecutive sub-arcs of the same segment. In this case
its Voronoi region is subdivided by the corresponding artificial bisectors, see Fig-
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ure 4.3a.

Remark 4.2.2. A base subsequence G of Gmap(S) is proper.

Proof. The simplified version Gs of G consists of two arcs α,β, whose bisector
either coincides with the segment bisector b(sα,sβ) (see Figure 4.7a), or it is com-
posed of the two of four branches of b(sα,sβ) that meet at the only vertex of the
corresponding farthest-segment Voronoi diagram (see Figure 4.3b). Thus the com-
mon boundary of freg(α) and freg(β), which is the only edge of FVD(Gs), consists
only of portions of arc bisectors.

4.3 A deletion and insertion operation in a sequence of
arcs

Throughout our algorithm to construct FVD(S) (see Section 4.4) we use a deletion
and re-insertion operation for original arcs in sequences derived from Gmap(S).
The deletion operation produces subsequences of Gmap(S) that are not necessarily
proper. The insertion operation introduces new arcs, and creates augmented subse-
quences of Gmap(S), which are always proper. The insertion operation is tightly
coupled with updating the Voronoi diagram computed so far.

For an arc sequence G, and an original arc β ∈ G, let G	 β denote the arc
sequence derived from G after deleting β from it. Respectively for an arc sequence
G and an original arc β 6∈ G, we denote G⊕β the result of insertion of β in G. Let
FVD(G)⊕β denote the operation of inserting freg(β) in FVD(G), for an original
arc β 6∈G. FVD(G)⊕β=FVD(G⊕β). Recall that an arc sequence G corresponds
exactly to the cyclic sequence of Voronoi faces of FVD(G), and thus, similarly for
G⊕β and FVD(G)⊕β.

4.3.1 Arc deletion

Let G be a subsequence of Gmap(S). G is derived from Gmap(S) by deleting arcs.
When an arc β is deleted from G, the neighboring arcs α and γ expand over β, see
Figure 4.8. Either both α and γ expand (see Figures 4.8a,c,d) or one expands while
the other shrinks (see Figure 4.8b). During the expansion, α and γ may change
from being a single-vertex arc to a segment arc (e.g., arc α in Figure 4.8b, or arc
γ in Figure 4.8c). Since α and γ are original arcs, they both remain present in
G	{β}, and their common endpoint becomes ν(α,γ).

The direction ν(α,γ) is determined as follows:
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Figure 4.8. The deletion procedure: arcs α,β,γ in G, dual and primal image
(left); the result of deletion of β (right)
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sα

r

sβ

b(sα, sβ)

Figure 4.9. Segments sα,sβ, and the ray r contained in the artificial bisector
b(α,γ), sα = sγ, after deletion of β

1. If sα 6= sγ, then ν(α,γ) is obtained from the directions of b(sα,sγ). Among
the possibly four such directions (two, if segments sα and sγ are disjoint),
ν(α,γ) is the first direction of b(sα,sγ) encountered as we move on K from
α∗ to γ∗. In Figure 4.8c, ν(α,γ) is shown as unfilled circle in the third figure
from the left, and the three (possible) directions of b(sα,sγ) are shown as
square marks in the first figure.

2. If sα = sγ 6= sβ, then β must be a segment arc (easy to see in dual space).
Then ν(α,γ) is set to ν(β), the hull direction of sβ that must be in β, see
Figure 4.8d. This is the direction of the artificial bisector b(α,γ) (see Re-
mark 4.3.1).

3. If sα = sβ = sγ, then let ν(α,γ) be ν(α,β). That is, two consecutive arcs β

and γ of the same segment unite and become one arc γ.

Together with β, we store pointers to α and to γ, plus the direction ν(α,β). This
additional information is necessary for correct insertion of β during the insertion
(and conquer) phase of our algorithms.

Remark 4.3.1. The artificial bisector b(α,γ) (sα = sγ) is (or contains) the ray
perpendicular to sβ, emanating from the relevant endpoint of sα and extending
away from sβ. Figure 4.9 shows such ray r. See also Figure 4.3a: the artificial
bisector of α and γ contains ray rβ.

4.3.2 Arc insertion

Let G′ be a proper augmented subsequence of Gmap(S) and let β be an original
arc, β 6∈G′. Let α,γ be two consecutive original arcs in G′, such that β∗ is between
α∗ and γ∗. A number of new arcs may lie between α and γ in G′. Inserting arc
β in G′ corresponds to inserting freg(β) in FVD(G′) resulting in FVD(G′)⊕β =

FVD(G′⊕β).
Suppose first, for simplicity, that α,γ are consecutive in G′, i.e., no new arcs lie

between them. We need to determine the arc-endpoints of β in G′⊕β, i.e., ν(α,β)

and ν(β,γ). There are three cases to consider.
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Case 1: sα 6= sβ,sγ 6= sβ, and ν(α,γ) ∈ β∗. Then ν(α,β) is the first direction of
b(sα,sβ) encountered as we walk on K starting at ν(α,γ) and moving towards α∗.
Symmetrically for ν(β,γ). Since α,β,γ are original arcs, and since β∗ lies between
α∗ and γ∗, directions ν(α,β) and ν(β,γ) must exist within α and γ respectively.
The result is the sequence αβγ in place of αγ. Figure 4.10a illustrates this case: arc
ε is inserted between arcs δ and α.

Case 2: sα 6= sβ,sγ 6= sβ, but ν(α,γ) 6∈ β∗. Then β∗ is entirely contained in either
α or γ. Suppose β∗ is in γ. Consider two consecutive directions of b(sβ,sγ) that
surround β∗. Let ν1 be that one of them which lies between β∗ and γ∗, and let ν2
be the other one. Since β∗ ⊂ γ, ν1is in γ. Let ν(β,γ) = ν1. Direction ν(α,β) is
determined as follows:

(a) If ν2 6∈ γ, then ν(α,β) is a direction of b(sα,sβ) as in case 1, and the result of
the insertion is the same as in case 1.

(b) If ν2 ∈ γ, then γ is split into two parts by β. Let γ′ be the part of γ that
lies before ν2 (in counterclockwise order); and ν(α,γ) becomes ν(α,γ′). Let
ν(β,γ′) = ν2. The insertion of β in G′ results in αγ′βγ in place of αγ, where
γ′ is a new arc.

In FVD(G′)⊕β, freg(β) splits freg(γ) into two regions, freg(γ) and freg(γ′).

Figure 4.10 illustrates the insertion of an arc ε of segment sε into FVD(G′) =
FVD(G), G = αγδ, of Figure 4.7b. The above and the below part show respec-
tively case 1 and case 2b. Figure 4.10a shows FVD(G′) superimposing segment
sε (dashed), and G′. Fig 4.10b shows FVD(G′)⊕ ε, where freg(ε) is shaded,
and G′⊕ β. Respectively for Figures 4.10c,d. For the case of Figures 4.10a,b
G′⊕ ε = αγδε, whereas for Figures 4.10c,d G′⊕ ε = αγδεδ′. Note that segment sε

could contribute two arcs into G′, but only one of them is inserted.

Case 3: sα = sβ (symmetrically, if sβ = sγ). In this case α is split in two parts
by ν(α,β), and one part becomes β. Note that ν(α,β) has been determined when
α and β become consecutive in a deletion operation. Note also that α,β cannot be
neighbors in Gmap(S).

In FVD(G′), freg(α) is simply split in two parts by the artificial bisector corre-
sponding to ν(α,β); one part remains freg(α) and the other part becomes freg(β).
See such regions of α and γ in Figure 4.10, left.
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Figure 4.10. Insertion of arc ε in FVD(G′),G′ = αγδ, assuming that the
(stored) neighbors of ε are δ and α: case 1 (above) and case 2b (below)

We now remove the initial assumption that the arcs α and γ are consecutive in
G′, and we suppose that there are several new arcs between them. Some of these
new arcs may be deleted by the insertion of β.

The procedure to insert β is as follows. Starting with any point in β∗, we move
counterclockwise on G′ until we determine an arc δ such that the relevant direction
of b(sδ,sβ) is in δ. Clearly, all the arcs encountered before δ (if any) must be
deleted. Note that δ may equal α. Symmetrically, we move clockwise on G′, until
we encounter an arc ε. Since β∗ ∈ Gmap(S), for any arc ω ∈ G′ the direction of
b(sβ,sω) is not in β∗.

Inserting β between δ and ε is analogous to cases (1) to (3), with δ and ε playing
the role of α and γ respectively.

Lemma 4.3.1. The diagram FVD(G′ ⊕ β) can be computed from FVD(G′) in
O(|∂freg(β)|+ |∂freg(ω′)|+ d(β)) time, if a new arc ω′ is created by the in-
sertion of β. If no new arcs are created, FVD(G′ ⊕ β) can be computed in
O(|freg(β)|+ d(β)) time. Here d(β) is the number of new arcs that get deleted
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by the insertion of β.

Proof. To insert β into FVD(G′), we first determine the neighbors of β in G′⊕β

by tracing G′ in both directions starting from β∗. Since any visited arc gets deleted
from the arc sequence, and since tracing requires O(1) time per visited arc, this
step requires overall O(d(β)) time.

Now we trace ∂freg(β). Suppose first that no new arcs are created by the in-
sertion of β. This means, that the neighbors of β in FVD(G′⊕β) are two different
arcs. Thus there is at least one unbounded edge of FVD(G′) that gets deleted by
the insertion of β (e.g., any of the unbounded edges between the regions of the
neighbors of β) We trace ∂freg(β) starting from this edge in the standard way,
see e.g. [32]. The time complexity of such tracing is proportional to |∂freg(β)|
plus the total complexity of the Voronoi regions of the new arcs that get deleted.
Such edges form a forest of total complexity O(d(β)). Thus the tracing requires
O(|∂freg(β)|+d(β)) time.

Suppose now that the insertion of β caused the creation of a new arc ω′. In this
case, no unbounded edge of FVD(G′) is deleted, and we trace a number of edges
on ∂freg(ω′) in order to find a starting point on ∂freg(β). Thus the tracing in this
case requires O(|∂freg(β)|+ |∂freg(ω′)|) time.

The correctness of the insertion procedure is implied by the following.

Lemma 4.3.2. Let G′ be a proper augmented subsequence of Gmap(S) and let β

be an original arc, β 6∈G′. Then the sequence G′′ = G′⊕β obtained by inserting β

in G′ is also a proper augmented subsequence of Gmap(S).

Proof. Let α and γ be the two neighbors of β in G′′. They may be original or new
arcs. We first eliminate some simple cases.

If sβ = sα or sβ = sγ (or both equalities hold), then the simplified versions of
G′′ and of G′ coincide, and since G′ is proper, so is G′′ (see Definition 21).

If all the segments in S that contribute an arc to G′ share the same endpoint,
then the number of maximal arcs in G′′ is two. By Remark 4.2.2, G′′ is proper.

Therefore, from now on we assume that (1) sα 6= sβ and sγ 6= sβ; and (2) not all
the segments in S that contribute an arc to G′ share the same endpoint.

Since FVD(G′) is proper, it is enough to show that every edge that lies on
∂freg(β) is a portion of an arc bisector. Equivalently, we need to show that all ver-
tices of ∂freg(β) are proper Voronoi vertices, i.e., each of them is a point incident to
at least three segment bisectors. Starting with the two unbounded edges, we trace
∂freg(β) from both sides considering pairs of edges and proving that at least one
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sα

sβ b(sα, sβ)b(sβ , sγ)

b(β, γ)b(α, β)

rα
rγ

x

sγ

r(x, sβ)r(x, sα) freg(β)

Figure 4.11. Illustrations for the proof of Lemma 4.3.2: three segments
sα,sβ,sγ; attainable regions R(α) and R(γ) marked by a tiling pattern; R(β)
has rays rα,rγ on its boundary; freg(β) is shaded and its boundary is shown
in red.

edge from the pair ends in a proper Voronoi vertex. Then we change that edge to its
adjacent edge and repeat this argument. We consider the two edges as oriented in
the direction of our traversal. At every such step we discover a new Voronoi vertex
on ∂freg(β), thus the process will terminate. At the end, the two edges in our pair
are adjacent, and this will prove the statement.

We now show, for a pair of (oriented) edges of ∂freg(β), that at least one of
them ends in a proper Voronoi vertex. Consider, without loss of generality, the two
unbounded edges of ∂freg(β), that are portions of b(α,β) and b(β,γ). We need to
prove, that at least one of b(α,β), b(β,γ), as oriented from infinity, hits an edge
of FVD(G′) before it hits the boundary of the attainable region of an involved arc
(R(α) or R(β) for b(α,β); and R(β) or R(γ) for b(β,γ)).

Observe, that since G′ is proper, b(α,β) cannot hit ∂R(α) before hitting
∂freg(α). Symmetrically, for b(β,γ) and ∂R(α).

The boundary of R(β) consists of two rays emanating from sβ, one in the direc-
tion of ν(α,β), and one in the direction of ν(β,γ). Let us denote them respectively
by rα and rγ, see Figure 4.11a.

We show that b(α,β) cannot hit the part of rα that is not an arc bisector. If sα

and sβ are disjoint, b(α,β) cannot hit rα because of well-known visibility properties
of segment bisectors; in particular, for any point x on b(α,β), the rays r(x,sα) and
r(x,sβ) lie entirely at opposite sides of b(α,β), see the blue rays in Figure 4.11a.
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If sα and sβ share an endpoint p, b(α,β) is the common boundary of R(α) and
R(β), and the only point of rα that is not on an arc bisector is its endpoint, which
is p. Due to our assumption (2), not all the arcs in G′ are attributed to p. Thus
p 6∈ freg(α), and b(α,β) hits an edge of FVD(G′) before it reaches p.

A symmetric argument holds for b(β,γ) and rγ.
Finally, suppose that b(α,β) hits rγ before hitting ∂freg(α). Then, since

∂freg(γ) and R(β) are connected curves, b(β,γ) must hit ∂freg(γ) before hit-
ting ∂R(β).

Thus, one of b(α,β), b(β,γ) indeed ends in a proper Voronoi vertex. This
completes our argument.

4.4 A linear-time algorithm to construct FVD(S)

We now augment the framework of Aggarwal et al. [3] for points in convex position
with concepts and techniques from Sections 4.2, 4.3, and derive a linear-time algo-
rithm to compute FVD(S), given Gmap(S). Let G be a subsequence of Gmap(S),
and let G′ be a corresponding proper augmented subsequence such that the com-
plexity of G′ is O(|G|), where |G| denotes the number of arcs of the sequence G.
Our algorithm follows the flow of [51], which in turn follows [3].

1. Unite consecutive arcs of the same segment in G into single maximal arcs.

2. Color each arc of G red or blue by applying the following two rules:

(a) For each 5-tuple F of consecutive arcs α,β,γ,δ,ε in G, compute FVD(F ′)
as follows: start with the sequence γδ, and consecutively insert the arcs β,ε,α

(in this order) resulting in FVD(F ′). (F ′ is a possibly augmented version of
F .) In FVD(F ′), if freg(γ) does not neighbor any region of segments sα and
sε, color γ red; else color γ blue.

(b) For each series of consecutive blue arcs, color red every other arc, except
the last one.

3. Let B (blue) be the sequence obtained from G by deleting all the red arcs.
Recursively compute FVD(B′). (B′ is a possibly augmented version of B.)

4. Partition the red arcs into crimson and garnet: Re-color as crimson at least a
constant fraction of the red arcs, such that for any two crimson arcs, if they
were inserted in FVD(B′), their Voronoi regions would not touch.

5. Insert the crimson arcs one by one in FVD(B′) resulting in FVD(V ′).
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Figure 4.12. (a) a 5-tuple F ; scheme of (b) FVD(F ′2), (c) FVD(F
′
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6. Let Gr (garnet) be the sequence obtained from G by deleting all blue and
crimson arcs. Recursively compute FVD(Gr′).

7. Merge FVD(V ′) and FVD(Gr′) into FVD(G′) so that |G′| is O(|G|).
8. For any arcs united in Step 1, subdivide their regions in FVD(G′) into finer

parts by inserting the corresponding artificial bisectors.

The recursion ends when the number of maximal arcs in G is at most five. Then
FVD(G′) can be directly computed in O(1) time and also enhanced as indicated
in Step 8. If all arcs in G are of the same segment, no diagram is generated but
instead G is returned as a list of arcs. In this case, in Step 7, we obtain FVD(G′)
by inserting this list of arcs in FVD(V ′) one by one.

Step 2. Rules 2a and 2b guarantee that no two consecutive arcs in G are red and
no three consecutive arcs in G are blue. The insertion order in Rule 2a guarantees
that γ neighbors at most one new arc. This is ensured by the lemma below, which
follows the spirit of [51, Lemma 8] and extends it to include new arcs.

Lemma 4.4.1. No two consecutive arcs in G are red and no three consecutive arcs
in G are blue.

Proof. Suppose for the sake of contradiction, that there are two consecutive arcs
γ,δ in G, which are both colored red. Clearly, they must both be colored red by
Rule 2a (not by Rule 2b). Thus,there is a 6-tuple α,β,γ,δ,ε,σ in G such that γ and
δ satisfy Rule 2a. Since all arcs in G are maximal, any two consecutive ones must
be induced by different segment. Further, if sβ = sδ then by Remark 4.2.1, freg(β)
and freg(δ) are not neighboring, and therefore freg(γ) in FVD(F ′) neighbors a
region of some arc induced by either sα or sβ, which contradicts coloring γ red by
Rule 2a. Thus, sβ 6= sδ. Analogously sγ 6= sε.

Consider the 5-tuple F = α,β,γ,δ,ε (see Figure 4.12a), and FVD(F ′), derived
by applying Rule 2a. Building FVD(F ′) starts from FVD(F ′2), F ′2 = γδ, shown
schematically in Figure 4.12b. The insertion of β results in sequence F ′3 = β,γ,δ or
F ′3 = β,δ′,γ,δ. Since γ is colored red by Rule 2a, in FVD(F ′), freg(γ) borders only
regions of arcs of segments sδ and sβ. Since each of the arc bisectors b(β,γ), b(γ,δ)
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and b(δ,ε) is an unbounded portion of respectively b(sβ,sγ), b(sγ,sδ) and b(sδ,sε),
we consider the latter three curves oriented from the infinite part that is contaied
in the corresponding arc bisector. If oriented in such way, bisector b(sγ,sδ) must
meet b(sβ,sγ) first (before it meets b(sδ,sε)) forming a Voronoi vertex (vertex ω

on Figure 4.12c). Applying the above argument to the 5-tuple D = β,γ,δ,ε,σ, we
have that the oriented b(sδ,sε) must meet b(sγ,sδ) before any other related bisector,
i.e., b(sγ,sδ) meets b(sδ,sε) before b(sβ,sγ). A contradiction.

Rule 2b prevents three consecutive blue arcs.

Step 4. To choose the crimson arcs we apply the combinatorial lemma of [3]
on (a modified) T (B′). The lemma states that for a binary tree T with n leaves
embedded in R2, if each leaf of T is associated with a subtree of T and if for
any two successive leaves these subtrees are disjoint, then in O(n) time we can
choose a set of leaves, whose number is at least a constant fraction of n and whose
subtrees are pairwise disjoint. We associate each red arc β in G with a unique leaf
of T (B′), which would be the entry point for β in FVD(B′). If the insertion of β

splits an arc of B′ in two, then we also add an artificial bisector to T (B′) to serve
as an entry point for β. The leaf in T (B′) associated with β is in turn associated
with the incident subtree of T (B′), which would be intersected by freg(β), if β

were inserted in FVD(B′). In the following lemma we show that the modified
T (B′) satisfies the requirements of the combinatorial lemma, and has complexity
proportional to |B′| plus the number of red arcs |R|.

Lemma 4.4.2. For any two successive red arcs in G, if they were inserted in
FVD(B′), the closures of their Voronoi regions would be disjoint.

Proof. Suppose for the sake of contradiction that there is a pair of successive red
arcs in G which do not satisfy the statement. By Rule 2b, there is either one or two
blue arcs between them in G. In the former case, there is a 5-tuple F = α,β,γ,δ,ε

of the arcs in G, such that the arcs β and δ are colored red, and freg(β) and freg(δ)
are adjacent if β and δ are inserted in FVD(B′) (by the insertion process of Sec-
tion 4.2). Then the regions of β and δ must be adjacent in FVD(F ′), and they
are obtained from F as described in Rule 2a. Then γ must satisfy Rule 2a and it
must have been colored red during Step 2; a contradiction. If there are two blue
arcs between the red arcs in question, the same argument works for one of the two
corresponding 5-tuples.

Step 7: Merging two diagrams. We obtain G′ and FVD(G′) by merging
FVD(V ′) and FVD(Gr′). To keep the complexity of G′ within O(|G|), we merge
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Figure 4.13. Two examples of merging. From left to right: two arc sequences
A′ (red) and B′ (blue), and the result of merging them (purple); core portions
are bold; (a) A′ = αβ and B′ = γδ′γ′δ and (b) merging A′ and B′ gives γαβδ ;
(c) A′ = αβ, B′ = γδ′σ, (d) merging such A′ and B′ gives αβγβ′σ, and β′ is a
new arc, β′ 6∈ A′,β′ 6∈ B′.

the two diagrams while discarding parts that are guaranteed to contain no original
arcs. Merging is done in two steps: (1) identify starting points for the merge curves
between the two diagrams, and (2) trace the merge curves. Step (2) can be done in
the standard way [32]. Here, we identify starting points only for the merge curves
that are related to original arcs of B′. Skipping a merge curve (or a pair of corre-
sponding merge curves) has the effect of discarding the portion of one diagram that
is bounded by it. This can be safely done because any portions of the diagram that
are associated with only new arcs can not appear in FVD(S).

Below we give the details of obtaining G′ and FVD(G′) by merging FVD(A′)
and FVD(B′), where A′ = V ′ and B′ = Gr′. In particular, we describe how to
identify starting points for the merging curves in Step (1) of the merging process.
For simplicity we use the dual space. Recall that an arc sequence corresponds to
a pair of x-monotone paths in the arrangement of lower and upper wedges; see
Figure 4.13, where the (lower) paths of A′ and B′ are shown in red and blue re-
spectively (blue lines are also made dashed). Let U (resp., L) be the upper (resp.,
lower) envelope of A′ and B′ in the arrangement of lower (resp., upper) wedges.
U (resp., L) consists of a series of connected components alternating between the
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paths of A′ and B′. The vertices incident to such connected components reveal
the starting points of merge curves, which all can be easily identified in total time
O(|A′|+ |B′|). Each merge curve has exactly two starting points in U ∪L. We iden-
tify all such starting points, and among them we choose only those whose incident
component of B′ contain the core portion of at least one original arc. In Figure 4.13,
the core portions of original arcs of A′ and of B′ are shown in bold using red and
blue color respectively (blue lines are made dashed), and the chosen starting points
are shown as filled purple disks, whereas the ignored starting points are shown as
(unfilled) purple circles. For each merge curve of interest either one or two starting
points are identified. For some merge curves no starting points are identified; this
happens only in case when the incident component of B′ contains no original arcs
and it will not appear in FVD(S). The description can be adapted to work directly
on the arc sequences A′, B′ in primal space, similarly to [64].

The correctness and time complexity of the merging process is established by
Lemmas 4.4.3 and 4.4.4.

Lemma 4.4.3. |G′| is O(|A′|+ |B′|). Moreover, G′ contains all the original arcs of
A′ and B′; and the number of new arcs in G′, which are neither in A′ nor in B′, is
proportional to the total number of original arcs in A′ and B′.

Proof. (a) Consider the arrangement of lower wedges and its upper envelope U
(the case of upper wedges is symmetric). Clearly, every original arc in A′ and B′

must entirely its core, which is dual to a portion of U . G′ in dual space is a path,
which lies above or on (but never below) the path dual to A′, thus all original arcs
from A′ are in G′. For each original arc β ∈ B′, the core portion of β must be part
of a maximal component of B′ in U . For each such component, Step (1) of the
merging process chooses the starting points of both merge curves incident to this
component. Thus, β ∈ G′.

(b) A new arc that is neither in A′ nor in B′ is created when a portion of B′ in G′

splits an arc of A′ (or vice versa). See Figure 4.13c,d, where the arc β′ is exactly
such an arc. Thus, the number of such new arcs in G′ is bounded from above by
the number of maximal components of B′ and of A′ that are contained in G′. This
is in turn bounded by the number of original arcs in A′ and B′, which is |G|.
Lemma 4.4.4. Suppose that V ′ and Gr′ are proper. Then FVD(G′), obtained by
merging FVD(V ′) and FVD(Gr′), is also proper.

Proof. It is enough to show that any merge curve consists solely of arc bisec-
tors. Tracing the merge curve inside a single region freg(α) of FVD(V ′) (resp.,
FVD(Gr′)) is equivalent to tracing the boundary of freg(α) if it would be inserted
in FVD(Gr′) (resp., FVD(V ′)). Thus, we can repeatedly apply the argument of
the proof of Lemma 4.3.2 to any of the merge curves.
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Sequence G′ is an augmented subsequence of Gmap(S) corresponding to G, and
the recursive algorithm starts with G=Gmap(S). Thus, at the end of the algorithm,
the resulting arc sequence must be G′ = Gmap(S) (easy to see in dual space).

Lemma 4.4.5. |G′| is O(|G|).
Proof. Let m = |G| and S(m) = |G′|. Since Step 4 is performed by applying the
combinatorial lemma of [3], |Gr| ≤ q|R|, where 0 < q < 1 and |R| is the number of
red arcs (|R| = |G|− |B|). Thus, (following [3, 51]) there exist positive constants
q1 and q2, q1 + q2 < 1, such that |B| ≤ q1|G| and |Gr| ≤ q2|G|. At Step 4, at
most one new arc is generated for every crimson arc inserted in B′, thus, |V ′| =
S(q1m) +O(m). At Step 7, |G′| ≤ |V ′|+ |Gr′|+O(m). Thus, |G′| ≤ S(q1m) +

S(q2m)+O(m). Hence, S(m) = O(m).

Since the size of the augmented subsequences is always kept bounded, the time
complexity can be analyzed similarly to [3]. We conclude:

Theorem 4.4.1. Given Gmap(S), the FVD(S) can be computed in O(h) time,
where h is the combinatorial complexity of FVD(S).

Proof. Since |G′| is O(|G|), the time complexity of the algorithm can be analyzed
similarly to [3]. Step 7 is performed in time O(|V ′|+ |Gr′|+ |G′|), which is O(|G|).
In step 4 the crimson arcs are chosen based on the combinatorial lemma in time
O(|G|). Their regions in FVD(V ′) are disjoint, thus, the total time to insert them
is O(|V ′|), i.e., O(|G|). Let m = |G| and let T (m) denote the time to compute
FVD(G′). The recursive inequality of [3] holds, i.e., T (m)≤ T (q1m)+T (q2m)+

O(m), which implies T (m) = O(m).

Summary

In this chapter, we have presented an algorithm to construct the farthest-segment
Voronoi diagram, given the sequence of its faces at infinity. This extends the
paradigm of the existing linear constructions for tree-structured diagrams beyond
the case of points in convex position [3]. Our goal is to extend the fundamental
techniques known for points to more general objects so that the computation of
their basic diagrams can be unified, despite their structural differences.

Concluding remarks

The technique presented in this chapter is also applicable to similar settings. These
are the task to construct the order-(k+1) subdivision within an order-k Voronoi
region of segments, and the task to update a nearest-neighbor Voronoi diagram of
segments after deletion of one site. See Section A.1 in the Appendix.
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Chapter 5

Application of the cluster Voronoi
diagrams to the stabbing circle problem

This chapter presents an algorithmic application of the Hausdorff and the farthest-
color Voronoi digram to the stabbing circle problem. The material is based on the
following publications:

M. Claverol, E. Khramtcova, E. Papadopoulou, M. Saumell, and C. Seara.
Stabbing circles for sets of segments in the plane. In LATIN 2016: Theoretical
Informatics - 12th Latin American Symposium, pages 290–305, 2016.

M. Claverol, E. Khramtcova, E. Papadopoulou, M. Saumell, and C. Seara.
Stabbing circles for some sets of Delaunay segments. In Abstracts of the 32th
European Workshop on Computational Geometry (EuroCG’16), pages 139–142,
2016.

Some lemmas that are part of the proof of the correctness of our method and of
the analysis of its running time are not to be considered part of this dissertation. We
provide their proofs for completeness in Section A.2 of the Appendix. Similarly
for the technical lemma that is the part of the proof of the running time for parallel
segments, see Section A.2.1.

5.1 Preliminaries and Definitions

Let S be a set of n segments in the plane. This chapter discusses the stabbing
circle problem for S, introduced in Section 1.4, in the view of its connection to the
Hausdorff and the farthest-color Voronoi diagrams (see Definitions 4 and 5). The
input families of point clusters for the diagrams are of a special form, as needed
in the stabbing circle problem. In particular, clusters are pairs of endpoints of the
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segments in S. Slightly abusing the notation of previous chapters, we refer to such
diagrams simply as the Hausdorff and the farthest-color Voronoi diagram of S,
although S is a set of segments. Below we give the necessary definitions, including
some definitions from Chapters 1 and 3 as adapted to the setting of this chapter.

We assume segments in S to be in general position (segments have non-zero
length, no three endpoints are collinear, and no four of them are cocircular).

A circle c is called a stabbing circle for S if exactly one endpoint of each seg-
ment of S is contained in the exterior of the closed disk (region) induced by c.

The stabbing circle problem for S consists of:

(1) answering whether a stabbing circle for S exists;

(2) reporting a representation (for the centers) of all the combinatorially different
stabbing circles for S; and

(3) finding stabbing circles with minimum and maximum radius.

Note that the stabbing circle of minimum radius does not always exist. On the
contrary, there are cases in which any stabbing circle can be shrunk by decreasing
its radius or moving its center, but the “limit” circle is not stabbing anymore. In
such cases, our task is to find this “limit” circle. The same may happen with the
stabbing circles of maximum radius; refer to Lemma 5.3.8 for the details. Note also
that our stabbing criterion uses only the segment endpoints, thus, S can be seen as
a set of pairs of points, where a segment is simply a convenient representation for
such a pair.

The Hausdorff Voronoi diagram of S is a partitioning of R2 into regions defined
as follows:

hreg(aa′) = {p ∈ R2 | ∀bb′ ∈ S\{aa′} : max{d(p,a),d(p,a′)}< max{d(p,b),d(p,b′)}};
hreg(a) = {p ∈ hreg(aa′) | d(p,a)> d(p,a′)}.

Regions hreg(a) and hreg(a′) are subregions of hreg(aa′) (see Figure 5.1a).
The graph structure of this diagram is:

HVD(S) = R2 \
⋃

aa′∈S

(hreg(a)∪hreg(a′)).

An edge of HVD(S) is called pure if it is incident to regions of two distinct seg-
ments; and it is called internal if it separates the subregions of the same segment.
A vertex of HVD(S) is called pure if it is incident to three pure edges, and it is
called mixed if it is incident to an internal edge. The pure vertices are defined by
three distinct sites, and the mixed vertices by two distinct sites.
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Figure 5.1. (a) HVD(S), (b) FCVD(S). Pure and internal edges are repre-
sented in solid and dashed, respectively. The gray letters in parentheses label
the respective regions.

The farthest-color Voronoi diagram is a partitioning of R2 into regions defined
as follows:

fcreg(aa′) = {p ∈ R2 | ∀bb′ ∈ S\{aa′} : min{d(p,a),d(p,a′)}> min{d(p,b),d(p,b′)}};
fcreg(a) = {p ∈ fcreg(aa′) | d(p,a)< d(p,a′)}.

Its graph structure is:

FCVD(S) = R2 \
⋃

aa′∈S

(fcreg(a)∪ fcreg(a′)).

The edges and vertices of FCVD(S) are characterized as pure or internal, and
pure or mixed, analogously to those of HVD(S) (see Figure 5.1b). Let hreg(·) and
fcreg(·) denote the closures of the respective regions.

When the segments in S are pairwise disjoint, clearly, they are non-crossing,
thus the combinatorial complexity of HVD(S) is O(n). It is not known whether this
is the case for FCVD(S). For arbitrary segments, the complexity of both diagrams
is O(n2). See Sections 1.2.1 and 1.2.3.

Definition 22. Given a point p, the Hausdorff disk of p, denoted Dh(p), is the
closed disk with center at p and radius d(p,a), where p ∈ hreg(a). Its radius is
called the Hausdorff radius of p, and is denoted as rh(p). The farthest-color disk
D f (p) and the farthest-color radius r f (p) of p are defined analogously.

The following lemma reveals the connection between the stabbing circle prob-
lem and the cluster Voronoi diagrams (HVD(S) and FCVD(S)).

Lemma 5.1.1. Given a point p, there exists a stabbing circle centered at p if and
only if r f (p)< rh(p).
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Proof. Let c be a circle centered at p with radius r, and let D be the closed disk
induced by c. Recall that c is a stabbing circle if and only if (1) each segment
in S has an endpoint outside D; and (2) each segment in S has an endpoint in D.
Condition (1) is equivalent to r < rh(p). Condition (2) is equivalent to r f (p) ≤ r.
The claim follows.

Now we are ready to define FCVD*(S), which is the closure of the locus of the
centers of all stabbing circles for S.

Definition 23. The FCVD*(S) is the locus of points in R2 for which the farthest-
color radius is less than or equal to the Hausdorff radius, i.e., FCVD*(S) = {p ∈
R2 : r f (p)≤ rh(p)}.

For any point on the boundary of FCVD*(S), its Hausdorff radius equals
its farthest-color radius. Note that this equality also holds for some points in
the interior of FCVD*(S). Any point p in the interior of FCVD*(S) such that
rh(p) = r f (p) lies on an internal edge of both HVD(S) and FCVD(S) that sep-
arate centers of stabbing circles of two combinatorially different types, refer to
Section 5.2.2 for the details.

Lifting transformation for the stabbing circle problem. The stabbing circle
problem can be solved by exploiting the lifting transformation (see Section 2.2.2)
and the well known results on arrangements of 3D hyperlanes [38]. The lifting
transformation maps the pair of endpoints of each segment in S to a pair of planes
in 3D, where the lower and upper envelope of such a pair form a lower and upper
wedge, respectively. The HVD(S) and FCVD(S) correspond to the upper envelope
of all lower wedges, and to the lower envelope of all upper wedges, respectively
(See Properties 2.2.2 and 2.2.3). Thus, FCVD*(S) corresponds to the locus of
points below HVD(S) and above FCVD(S). As shown by Edelsbrunner et al. [38],
this is a set of O(n2) convex cells in 3D with O(n2) total complexity, and it can
be computed in O(n2) time and space. Moreover, this set is a representation of
all combinatorially different stabbing planes for S′ [38], where S′ is the set of
3D segments obtained by lifting the endpoints of each segment in S onto the unit
paraboloid, and connecting them by a straight line. We observe that a stabbing
circle for S can be transformed into a stabbing plane for S′ and vice versa. Thus,
we obtain the following result which, to the best of our knowledge, has not been
explicitly stated anywhere before:

Theorem 5.1.1. The stabbing circle problem for a set S of n arbitrary segments
can be solved in O(n2) time and space.
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aj ai

a′i a′j

Figure 5.2. A set with Θ(n2) combinatorially different stabbing circles, and
the stabbing circle defined by

{
ai,a j

}
.

Claverol [27] showed that the set S might have Θ(n2) combinatorially different
stabbing circles; see Figure 5.2. In the construction, each pair

{
ai,a j

}
of points

in the upper arc defines a stabbing circle that leaves the endpoints in the upper arc
between ai and a j outside the circle. Hence, the Θ(n2) stabbing circles defined in
this way are combinatorially different. We observe that it is possible to perform a
small perturbation so that the general position assumptions are satisfied.

5.2 Properties of HVD(S),FCVD(S), and FCVD*(S)

In this section we investigate structural properties of the geometric structures in-
volved in the stabbing circle problem. First, in Section 5.2.1, we list basic prop-
erties of the Hausdorff and the farthest-color diagrams. These are later used to
derive the structural properties of FCVD*(S) and the correctness of our solution to
the stabbing circle problem. The structure of the Hausdorff diagram has been well
known, see e.g., [38, 66, 62], however, this has not been the case for the farthest-
color diagram. We use Section 5.2.1 to derive such basic structural properties for
FCVD(S). Then, in Section 5.2.2 we investigate the structure of FCVD*(S), we
characterize its faces and their complexity linking them to features of HVD(S) and
FCVD(S). We show that every face of FCVD*(S) corresponds to a unique combi-
natorially distinct solution of the stabbing circle problem. Finally, in Section 5.2.3,
we complete the structural complexity analysis of the FCVD*(S) and count its
faces that are not related to vertices of HVD(S) or FCVD(S). The structural prop-
erties derived in this section are later used in Section 5.3 to obtain our algorithm
that computes all the combinatorially distinct stabbing circles for S.
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5.2.1 Properties of HVD(S) and FCVD(S)

We list some structural properties of the Hausdorff and the farthest-color diagrams,
which are used by our algorithms. First, a visibility property of both diagrams is
summarized in the following lemma. For HVD(S), this property follows directly
from [66, Property 2] (item (a)). We prove an equivalent property for FCVD(S)
(item (b)).

Lemma 5.2.1. Consider hreg(a) and fcreg(a), where aa′ ∈ S and |S|> 1.

(a) For a point p in hreg(a), the segment ap intersects ∂hreg(a) exactly once
and the intersection point lies on an internal edge of HVD(S). For a point q
on an internal edge of ∂hreg(a), the segment aq does not intersect hreg(a).

(b) For a point p in fcreg(a), the segment ap intersects ∂fcreg(a) exactly once
and the intersection point lies on a pure edge of FCVD(S). For a point q on
a pure edge of ∂fcreg(a), the segment aq does not intersect fcreg(a).

Proof. We only prove item (b). If |S| > 1, a /∈ fcreg(a), thus, ap intersects
∂fcreg(a) at least once. Suppose ap intersects ∂fcreg(a) more than once, and let x
and y be the first two intersection points that are encountered when moving from
p to a. Points x and y are on ∂fcreg(a) and the segment xy is outside fcreg(a).
Thus, D f (x) and D f (y) contain at least one endpoint of every segment in S, their
boundary passes through a, and a′ is outside both disks. Let w be a point on xy
and let D(w) be the closed disk centered at w passing through a. Since the dis-
tance of any point on the line through x,y from a increases as we move away
from a, D f (y) ⊂ D(w) ⊂ D f (x). But then D(w) must contain all points in D f (y),
a′ 6∈ D(w), and a ∈ ∂D(w). Thus, D(w) = D f (w); hence, w ∈ fcreg(a). We obtain
a contradiction.

The second claim in item (b) follows directly from the first one by considering
a point p ∈ fcreg(a) that is infinitesimally close to q.

Figure 5.1 illustrates a Hausdorff and a farthest-color diagram. Every compo-
nent of a Hausdorff region hreg(aa′) contains exactly one internal edge [66, Prop-
erty 3] (see the dashed lines in Figure 5.1a). In the following lemmas we show
properties of a similar nature for FCVD(S).

Lemma 5.2.2. Any bounded face of fcreg(aa′) contains an internal edge.

Proof. Let f be a bounded face of fcreg(aa′). Suppose for the sake of contradiction
that f contains no internal edge. Then f is a face of fcreg(a), for an endpoint a of
aa′, such that ∂ f consists solely of pure edges. Let p be a point in f and consider
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Figure 5.3. Illustration for Lemma 5.2.3: two variants of an impossible situa-
tion.

the ray r from a through p. Let q be the first intersection point between r and ∂ f , as
we move on r starting at p away from a (such point exists because f is bounded).
Since f consists solely of pure edges, q is a point on a pure edge and pq ∈ f ,
yielding a contradiction to the last claim of Lemma 5.2.1b.

Lemma 5.2.3. For any face of fcreg(a), the portion of its boundary that is formed
by pure edges is connected. (See the solid lines in Figure 5.1b.)

Proof. Suppose |S| > 1 as otherwise the claim holds trivially. Let f be a face of
fcreg(a). Clearly, any internal edge on ∂ f is a portion of bh(a,a′). Since |S| > 1,
a 6∈ fcreg(a), but a lies in the same halfplane induced by bh(a,a′) as fcreg(a). This
implies that a lies in a region of the plane bounded by bh(a,a′) and one of the con-
nected components of pure edges of ∂ f (such regions are shown with tiling patterns
in Figure 5.3). If ∂ f contained more than one such connected components of pure
edges, then any point x on any additional component would violate Lemma 5.2.1b.
See Figure 5.3.

The following property of FCVD(S) is only used in Section 5.4.

Lemma 5.2.4. FCVD(S) has O(n) unbounded faces.

Proof. We observe that each unbounded face of FCVD(S) corresponds exactly to
one face of the farthest-segment Voronoi diagram of S, see Sections 1.2.4 and 2.2.1.
To make the correspondence 1-1 we remove the internal unbounded edges of
FCVD(S) and merge the incident faces of fcreg(a) and fcreg(a′), for some aa′ ∈ S,
into one face of fcreg(aa′). Then a face f in FCVD(S) is unbounded in a direction
φ if and only if a face f ′ in FsVD(S) is unbounded in the same direction φ. See [64]
for the properties of the faces of FsVD(S) at infinity, which are identical to those
of FCVD(S). The total number of faces in FsVD(S) is O(n) [8], thus, the same
holds for the unbounded faces of FCVD(S). Note that a component of fcreg(aa′)
can contain at most two unbounded portions of bh(a,a′), thus, having removed the
internal unbounded edges of FCVD(S) has no effect on the derived bound.
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5.2.2 Properties of FCVD*(S)

In this section, we first characterize the boundary of FCVD*(S). Then we define
faces of FCVD*(S), and we observe that they are in one-to-one correspondence
with the combinatorially different solutions for the stabbing circle problem for S.
Finally, we characterize faces of FCVD*(S) with respect to their intersection with
HVD(S) and FCVD(S), which is the basis of our algorithm to compute FCVD*(S)
(and thus to solve the stabbing circle problem) presented in Section 5.3.

We refer to the connected components of FCVD*(S) as components of
FCVD*(S). Notice that a component is unbounded in a direction φ if and only
if there exists a stabbing line for S that is orthogonal to φ. We proceed with de-
scribing the boundary of the components of FCVD*(S).

The vertices of ∂FCVD*(S) are incident to edges of HVD(S) or FCVD(S).
Indeed, any vertex of FCVD*(S) is caused by switching the region of either
HVD(S) or of FCVD(S) (in a traversal of ∂FCVD(S)), which happens exactly
when ∂FCVD*(S) meets an edge of one of the diagrams. Thus we distinguish
three types of vertices of ∂FCVD*(S): (1) vertices incident to pure edges of
HVD(S), called h-vertices; (2) vertices incident to pure edges of FCVD(S), called
fc-vertices; and (3) vertices incident to internal edges of both diagrams, called
mixed vertices.

The following lemma implies that each mixed vertex of ∂FCVD*(S) is a mixed
vertex of either HVD(S) or FCVD(S), hence, the name for such vertices. More-
over, this lemma and its corollary lead to the definition of a face of FCVD*(S),
which will then be treated as an atomic piece of FCVD*(S).

Lemma 5.2.5. Point p ∈ bh(a,a′) is in FCVD*(S) if and only if p lies on an
internal edge of both HVD(S) and FCVD(S). If p is on ∂FCVD*(S), then p is a
mixed vertex of either HVD(S) or FCVD(S).

Proof. Since p ∈ bh(a,a′), either both a,a′ are outside Dh(p) or they lie on its
boundary. Symmetrically, either both a,a′ are in the interior of D f (p) or on its
boundary.

Suppose p ∈ FCVD*(S). Then D f (p) ⊆ Dh(p). By the above argument,
D f (p) = Dh(p) and both a,a′ lie on the boundary of this disk. Therefore,
rh(p) = r f (p) = pa = pa′, and the claim follows.

Suppose that p lies on an internal edge of both HVD(S) and FCVD(S) that
separates the respective regions of a and of a′. Since p lies on such edge of
HVD(S), rh(p) = pa, and since p lies on such edge of FCVD(S), r f (p) = pa.
Thus rh(p) = r f (p), hence, p ∈ FCVD*(S).

Now we prove the second part of the statement. Since p ∈ bh(a,a′) is on
∂FCVD*(S), Dh(p) = D f (p), and the boundary of this disk passes through a,a′.
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Figure 5.4. Illustration for the proof of Lemma 5.2.6.

It is easy to see that this boundary also passes through an endpoint c of some seg-
ment cc′ ∈ S (otherwise, the center of this disk could move in any direction while
still being in FCVD*(S), contradicting the fact that p ∈ ∂FCVD*(S)). If the other
endpoint c′ of cc′ is inside this disk, then p is a mixed vertex of HVD(S), and if it
is outside, p is a mixed vertex of FCVD(S).

Corollary 5.2.1. No mixed vertex of HVD(S) or FCVD(S) may lie in the interior
of FCVD*(S).

Proof. Suppose p is a mixed vertex of HVD(S) such that p ∈ FCVD*(S). Let e
denote the internal edge of HVD(S) incident to p; e is a portion of bh(a,a′), for
some aa′ ∈ S. Since p is a vertex of e, there is a point p′ on bh(a,a′) infinitesimally
close to p such that p′ does not belong to e. Observe that rh(p′) < p′a, and both
a,a′ are outside the Hausdorff disk of p′. This implies that p′ is not in FCVD*(S),
and therefore p is not in the interior of FCVD*(S). A similar argument (with
r f (p′)> p′a) proves the case of p being a mixed vertex of FCVD(S).

The common portion of an internal edge of HVD(S) and one of FCVD(S)
within a component of FCVD*(S) is called an internal edge of FCVD*(S). In-
ternal edges partition the components of FCVD*(S) into disjoint open faces of
FCVD*(S). Thus there are different types of components of FCVD*(S): (1) Com-
ponents that consist of several faces separated by internal edges, called (multiple-
face components); (2) Components that contain no internal edges; the interior of
each such a component is also a face of FCVD*(S), and the component is called a
single-face component.

Lemma 5.2.6. Two stabbing circles are combinatorially different if and only if
their centers lie in different faces of FCVD*(S).
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Figure 5.5. Illustration for the proof of Lemma 5.2.7.

Proof. Let c1 and c2 be two combinatorially different stabbing circles, and let re-
spectively p and q be their centers. There is a segment aa′ ∈ S such that a is
enclosed in c1, and a′ is enclosed in c2. Observe that p and q lie in different half-
planes with respect to bh(a,a′). If p and q were in the same face f of FCVD*(S),
then there would be a path π connecting p and q such that π lies entirely in f . Since
p and q are separated by bh(a,a′), path π would need to cross bh(a,a′) at a point
t. However, point t cannot lie inside f due to Lemma 5.2.5, which would derive a
contradiction.

Next, suppose that the stabbing circles c1 and c2 are combinatorially equivalent.
Let w be a point on the segment pq. We show that w is the center of a stabbing circle
c3 that is combinatorially equivalent to c1 and c2. Indeed, if c1 and c2 intersect in
two points, then let c3 be the circle centered at w and passing through these two
intersection points; see Figure 5.4a. If c2 is enclosed in c1, let c3 be the minimum
circle centered at w and enclosing c2; see Figure 5.4b. Let D1, D2 and D3 be the
disks corresponding to c1,c2 and c3 respectively. Observe that D1∩D2 ⊂ D3 and(
(R2 \D1)∩ (R2 \D2)

)
⊂ (R2 \D3). Thus all the endpoints of segments in S that

are enclosed in c1 and c2 are also enclosed in c3, and the ones that lie outside of
c1 and c2 also lie outside of c3. This implies that c3 is a stabbing circle that is
combinatorially the same as c1 and c2. By Lemma 5.1.1, r f (w)< rh(w), and thus
w is in the interior of FCVD*(S) and does not lie on an internal edge of it. This
implies that the closed segment pq lies in one face of FCVD*(S).

The second part of the above proof implies that, for any pair of points p,q
within one face f of FCVD*(S), the segment pq lies in f . This proves the follow-
ing property:

Corollary 5.2.2. The faces of FCVD*(S) are convex.

FCVD*(S) has the following useful visibility property:



103 5.2 Properties of HVD(S),FCVD(S), and FCVD*(S)

a

p

y

a

p

x

yz

x

z

f

e

h

HVD(S) ∩ f

(a) (b)

Figure 5.6. A face f of FCVD*(S) in an impossible situation where f ∩HVD(S)
is disconnected. Two variants with respect to the internal edge e: (a) e is
outside f ; (b) e is on ∂ f .

Lemma 5.2.7. (a) Let p be a point outside FCVD*(S), and let aa′ be a segment
in S such that p∈ hreg(a). Then the entire segment (pa∩hreg(a)) is outside
FCVD*(S).

(b) Let p′ be a point in FCVD*(S), and let aa′ be a segment in S such that
p′ ∈ fcreg(a). Then the entire segment (p′a∩ fcreg(a)) is in FCVD*(S).

Proof. By Lemma 5.2.1, (pa∩hreg(a)) and (p′a∩ fcreg(a)) are segments.
(a) Let q be a point on pa∩hreg(a); see Figure 5.5a. Clearly, Dh(q)⊆ Dh(p).

Since p 6∈ FCVD*(S), it follows that r f (p) > rh(p) and, in consequence, there
exists a segment bb′ ∈ S such that b,b′ 6∈ Dh(p). Since Dh(q) ⊆ Dh(p), points b
and b′ are also outside Dh(q). Thus, q 6∈ FCVD*(S).

(b) Let q′ be a point in p′a∩ fcreg(a); see Figure 5.5b. Since p′ ∈ FCVD*(S),
we have that r f (p′)≤ rh(p′) and thus each segment from S has at least one endpoint
outside D f (p′) or on its boundary. Since D f (q′) ⊂ D f (p′), the same holds for
D f (q′). Thus, D f (q′)⊂ Dh(q′), that is, q′ ∈ FCVD*(S).

The following two lemmas analyze the intersection of a face of FCVD*(S)
with HVD(S) and FCVD(S). In particular, we characterize connectedness and
non-emptiness of such intersections, the properties that enable us to efficiently
compute the faces of FCVD*(S) in Section 5.3.

Lemma 5.2.8. For a face f of FCVD*(S), both f ∩HVD(S) and f ∩FCVD(S)
are connected.

Proof. Suppose for the sake of contradiction that f ∩HVD(S) is disconnected, see
Figure 5.6. Then there is a face h of hreg(a) such that f ∩ ∂h has at least two
connected components. By [66, Property 3], ∂h contains exactly one internal edge
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e, e ⊆ bh(a,a′). By the definition of a face of FCVD*(S), e cannot intresect the
interior of f ; it can only border f or it must be outside f , see Figure 5.6a and b.

Consider the first connected component of f ∩ ∂h that follows e in a counter-
clockwise traversal of ∂h. Let the endpoints of this component be called x and y (in
the order of the traversal), see Figure 5.6. Let z be the first point of f encountered
as we continue traversing ∂h counterclockwise beyond y. That is, z is a point in
another connected component of f ∩ ∂h. Consider the portions of ∂ f and ∂h re-
spectively from point y to point z. The portion of ∂ f from y to z is inside h. The
portion of ∂h from y to z consists solely of pure edges. Thus a point p in this por-
tion of ∂h infinitesimally close to y is outside FCVD*(S). Then by Lemma 5.2.7a
pa∩h is outside of FCVD*(S). We obtain a contradiction since (pa∩h)∩ f is not
empty.

The proof for f ∩FCVD(S) is similar. In particular, if f ∩FCVD(S) is dis-
connected, then f ∩ ∂h is disconnected, for a face h of fcreg(a). Similarly to the
above, by Lemma 5.2.3 and Lemma 5.2.1b, there is a point p on a pure edge on
∂fcreg(a), such that p 6∈ FCVD*(S), and the supporting line of the segment pa in-
tersects f inside fcreg(a). Let p′ be a point in this intersection. Then point p∈ p′a,
p ∈ fcreg(a) and p 6∈ FCVD*(S), which contradicts Lemma 5.2.7b.

a

p

f

(a)

fp′

a

(b)

Figure 5.7. Illustration for the proof of Lemma 5.2.9. An impossible situation
where a face f of FCVD*(S) (shaded) is such that (a) HVD(S)∩ f is empty;
(b) FCVD(S)∩ f is empty.

Lemma 5.2.9. For a face f of FCVD*(S), either f ∩HVD(S) or f ∩FCVD(S) is
non-empty. If f is bounded and one of f ∩HVD(S), f ∩FCVD(S) is empty, then
f belongs to a component of FCVD*(S) with multiple faces.

Proof. To prove the first part of the statement, recall that any vertex on the bound-
ary of a component of FCVD*(S) is incident to an edge of HVD(S) or of FCVD(S)
within that component. Same holds for h- and fc-vertices on the boundary of a face
of FCVD*(S) (but not for the mixed vertices). Thus we need to show that a face
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Figure 5.8. Illustration for the proof of Lemma 5.2.10. A bounded component
c of FCVD*(S) that does not contain a vertex of HVD(S) or of FCVD(S): (a)
an impossible situation; (b) the only possible situation.

f of FCVD*(S) has at least one h- or fc-vertex on its boundary. Suppose to the
contrary, that ∂ f contains only mixed vertices. These mixed vertices cannot all
lie on the bisector of the same segment in S. But between any pair of consec-
utive mixed vertices incident to bisectors of different segments, ∂ f must cross a
pure edge separating the regions of these segments in one of the diagrams. Such
crossing corresponds to an h- or an fc-vertex on ∂ f . We obtain a contradiction.

Now we prove the second part of the statement. Suppose for the sake of contra-
diction that f is bounded, f ∩HVD(S) is empty, and f is a single-face component
of FCVD*(S). Since f ∩HVD(S) is empty, f is entirely contained in hreg(a) for
an endpoint a of some segment aa′ ∈ S. Since segments in S do not share end-
points, no pure edge of HVD(S) can overlap with an edge of ∂FCVD*(S) (they
can only intersect in one point). Then there is a point p ∈ hreg(a) \ f such that
pa intersects f and p 6∈ FCVD*(S) (see Figure 5.7a). But by Lemma 5.2.7a, since
p 6∈ FCVD*(S) the entire segment (pa∩hreg(a)) must be outside FCVD*(S). We
obtain a contradiction.

The symmetric statement about f ∩FCVD(S) can be shown as follows. Sup-
pose that f ⊂ fcreg(a), see Figure 5.7b. Similarly to the above, edges of ∂ f and
∂fcreg(a) do not overlap. Pick a point p′ ∈ f . By Lemma 5.2.7b, the entire segment
p′a∩ fcreg(a) lies in f . Recall that a 6∈ fcreg(a) (since segments in S do not share
endpoints), and thus f must intersect FCVD(S). We obtain a contradiction.

Finally, in the next lemma, we explore a special type of single-face components
of FCVD*(S): the ones that contain no vertices of HVD(S) or FCVD(S). The
faces that correspond to bounded components of this type create a major difficulty
in computing FCVD*(S).

Lemma 5.2.10. Let c be a component of FCVD*(S) that contains no vertex of
HVD(S) or FCVD(S). If c is bounded, then c contains exactly one intersection of
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two pure edges (one of HVD(S), and one of FCVD(S)), and ∂c is a quadrilateral.
If c is unbounded, then c contains an unbounded portion of a pure edge of either
HVD(S) or FCVD(S).

Proof. Since c does not contain any mixed vertex of HVD(S) or FCVD(S), by
Lemma 5.2.5, c does not intersect any internal edge of the diagrams. Thus ∂c may
only contain h- and fc-vertices (no mixed vertices). Further, the interior of c is a
single face f of FCVD*(S) ( f = c).

Suppose first that c is bounded. Lemmas 5.2.8 and 5.2.9 imply that f ∩HVD(S)
is, respectively, connected and non-empty. Together with the fact that f contains no
vertices of HVD(S), this implies that f ∩HVD(S) is an (open) line segment, whose
endpoints are exactly the two h-vertices on ∂c. By the analogous argument for
f ∩FCVD(S), ∂c has exactly two fc-vertices. Therefore ∂c = ∂ f is a quadrilateral.
See Figure 5.8b.

Let eh and e f denote respectively the open line segments f ∩HVD(S) and f ∩
FCVD(S); see Figure 5.8. Let t be the point of intersection between the supporting
lines of eh and e f . We will show that t ∈ f . Note that it is impossible that an h-
vertex is followed by the other h-vertex on ∂c (see Figure 5.8a), as it would imply
that eh and e f lie entirely on ∂c, thus f ∩HVD(S) would be empty (as well as
f ∩FCVD(S)), what contradicts Lemma 5.2.9. Thus the different type of vertices
interleave on ∂ f (see Figure 5.8b), which implies that t ∈ f . This completes the
proof of the first statement.

Now suppose that c is unbounded. Note that ∂c consists of at least two edges,
and c is convex (see Corollary 5.2.2). Thus there are two unbounded edges on ∂c
that have different supporting lines. Denote these edges as e and g. If c would
contain no unbounded portions of pure edges of HVD(S) or FCVD(S), then both
e and g would be contained in hreg(a) and in fcreg(b), for some endpoints a and b
of segments in S. But then both e and g must be portions of bh(a,b). We obtain a
contradiction.

We have explored different types of components of FCVD*(S), and we saw
that a component may or may not be comprised of multiple faces, may or
may not contain a vertex of HVD(S) or FCVD(S), and it may or may not be
bounded. The cumulative complexity of all components that either contain mul-
tiple faces, or contain a vertex of HVD(S) or FCVD(S), or are unbounded, is
O(|HVD(S)|+ |FCVD(S)|) (see the proof of Theorem 5.2.1 in Section 5.2.3).
However, the bounded single-face components that do not contain a vertex of
HVD(S) or FCVD(S) (i.e., the quadrilateral components of Lemma 5.2.10) do
not fall under this bound. We bound their number in the next section. Identifying
these components poses the main challenge to our algorithm in Section 5.3.
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5.2.3 Complexity of FCVD*(S)

With some abuse of notation, we denote by |HVD(S)|, |FCVD(S)| and
|FCVD*(S)| respectively the number of edges of HVD(S), FCVD(S), and
∂FCVD*(S). We aim to connect |FCVD*(S)| with |HVD(S)| and |FCVD(S)|.

We classify the segments in S with respect to a portion of a fixed pure edge
of HVD(S). Let e be a connected portion of pure edge of HVD(S), that separates
hreg(a) and hreg(b), for two segments aa′,bb′ ∈ S. In particular, e⊆ bh(a,b). For
the rest of this section, it is convenient to perform a rotation of the coordinate sys-
tem so that e is horizontal. Let u and respectively v be the left and right endpoints
of e.

If u is a mixed vertex of HVD(S), we redefine u as a point on e infinitesimally
to the right, so that u is in the boundary of only hreg(a) and hreg(b). We proceed
analogously with v.

The Hausdorff disks Dh(u) and Dh(v) have a,b on the boundary, they contain
aa′, bb′, and they do not contain any other segment of S. The same holds for the
Hausdorff disk of any point of e. Hence, every segment cc′ ∈ S \{aa′,bb′} can be
classified as follows (see Figure 5.9, left):

• cc′ is of type out if both c and c′ are outside Dh(u)∪Dh(v);

• cc′ is of type in if either c or c′ is contained in Dh(u)∩Dh(v) and the other
endpoint is outside Dh(u)∪Dh(v);

• cc′ is of type left if either c or c′ is contained in Dh(u)\Dh(v) and the other
endpoint is outside Dh(u)∪Dh(v);

• cc′ is of type right if either c or c′ is contained in Dh(v)\Dh(u) and the other
endpoint is outside Dh(u)∪Dh(v);

• cc′ is of type middle if either c or c′ is contained in Dh(u) \Dh(v) and the
other endpoint is contained in Dh(v)\Dh(u).

For any point p ∈ e, we use p` and pr to denote two points in e infinitesimally
close to p and lying to the left and right of p, respectively. Additionally, let Me

bis
denote the set of segments cc′ ∈ S of type middle for edge e such that e intersects
an internal edge of FCVD(S) separating fcreg(c) from fcreg(c′). Notice that this
internal edge is a portion of bh(c,c′). We also set me

bis = |Me
bis|.

Let mbis denote the total number of pairs formed by a pure edge e of HVD(S)
and a segment cc′ ∈ S such that cc′ ∈Me

bis.

Lemma 5.2.11. Let e be a portion of a pure edge of HVD(S). The number of faces
of FCVD*(S) intersected by e is at most 1+me

bis.
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Figure 5.9. Left: From top to bottom, the types of the dotted segments
are middle, left, in, right, and out. Right: Illustration for the proof of
Lemma 5.2.11.

Proof. Let e′ be the left-most portion (if any) of the interior of e contained in
FCVD*(S), and let w be its right endpoint. Since w ∈ FCVD*(S), each segment
from S has at least one endpoint inside Dh(w). Let cc′ be a segment in S such
that wr ∈ fcreg(c). Since wr /∈ FCVD*(S), both c and c′ are outside Dh(wr). This
implies that one of c or c′ (say, c) lies in the portion of the boundary of Dh(w)
contained in Dh(u), and the other endpoint lies outside Dh(w) (see Figure 5.9,
right). Consequently, for any point t in wrv, Dh(t) does not contain c. Suppose that
there are more portions of e contained in FCVD*(S), and let e′′ be the left-most
one. Then, for any point t in e′′, Dh(t) contains c′ but not c. In particular, c′ lies in
Dh(v)\Dh(u) and cc′ is of type middle for e. Hence, bh(c,c′) intersects e at a point
q leaving e′ to its left and e′′ to its right. If q lies on an internal edge of FCVD(S)
separating fcreg(c) from fcreg(c′), then cc′ ∈Me

bis and we assign e′′ to cc′.
Otherwise, q lies in fcreg(d), for some dd′ ∈ S \ {aa′,bb′,cc′}. Since wr ∈

fcreg(c), the segment wrq crosses at least one edge of FCVD(S). We start travers-
ing the segment wrv starting from wr. Suppose that we leave fcreg(c) and we
enter fcreg( f ), for some f f ′ ∈ S. Notice that this happens before we reach
e′′. Since w ∈ FCVD*(S), wr /∈ FCVD*(S) and f 6= c′, the point f does not
lie in Dh(u)∩Dh(v), Dh(v) \Dh(u) or outside Dh(u)∪Dh(v). Hence, it lies in
Dh(u) \Dh(v). Furthermore, since e′′ ⊆ FCVD*(S), f f ′ is of type middle and,
for any point t in e′′, Dh(t) contains f ′. Hence, bh( f , f ′) intersects e at a point q′

leaving e′ to its left and e′′ to its right. If q′ lies on an internal edge of FCVD(S)
separating fcreg( f ) from fcreg( f ′), then f f ′ ∈Me

bis and we assign e′′ to f f ′. Oth-
erwise, we continue traversing wrv. The left endpoint of e′′ is in the farthest-color
region of a point in Dh(v) \Dh(u). Thus, as we traverse wrv and simultaneously
FCVD(S), at some point we cross an edge of FCVD(S) separating the farthest-
color region of a point in Dh(u)\Dh(v) from the farthest-color region of a point in
Dh(v)\Dh(u). This is only possible when this edge is an internal edge of FCVD(S)
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separating the regions of two endpoints of a segment of type middle. We assign ee′

to this segment in Me
bis.

Next, we select the right endpoint of e′′ and perform the same analysis. By
repeating the same argument until we reach v, we obtain an assignment of the
portions of the interior of e contained in FCVD*(S) (except for e′) to segments
in Me

bis. Furthermore, in this assignment no segment is charged more than one
portion. This completes the proof of the lemma.

Theorem 5.2.1. Let S be a set of n segments in the plane in general position. Then
|FCVD*(S)|= O(|HVD(S)|+ |FCVD(S)|+mbis).

Proof. Consider a face f of FCVD*(S). By Lemma 5.2.8, f ∩HVD(S) is a con-
nected graph. Each vertex of this graph (if any) has degree three, since it is a vertex
of HVD(S). By Euler’s formula the number of h-vertices on ∂ f , is O(H+1), where
H is the number of vertices of HVD(S) inside f . Analogously, the number of fc-
vertices on ∂ f is O(F +1), where F is the number of vertices of FCVD(S) inside
f .

Any vertex on ∂ f that is neither an h-vertex nor an fc-vertex, is a mixed vertex
of either HVD(S) or of FCVD(S). Clearly, each pure vertex of HVD(S) and of
FCVD(S) lies in at most one face of FCVD*(S), and each mixed vertex of one of
these diagrams lies on the boundary of exactly two faces of FCVD*(S). Thus the
total complexity of the boundary of all components of FCVD*(S) that contain at
least one vertex of either HVD(S) or of FCVD(S) is O(HVD(S)+FCVD(S)).

What remains is to bound the number of components of FCVD*(S) that do not
contain a vertex of HVD(S) or of FCVD(S), and whose complexity is thus O(1),
see the above argument of Lemma 5.2.10. We consider separately the unbounded
and the bounded components of this type. The total number of unbounded ones is
O(|HVD(S)|+ |FCVD(S)|): by Lemma 5.2.10, each such unbounded component
contains an unbounded portion of an edge of HVD(S) or FCVD(S), and clearly
one edge can correspond to at most one component. By Lemma 5.2.10, each
bounded component of FCVD*(S) with no vertex of HVD(S),FCVD(S) inter-
sects exactly one pure edge of HVD(S), and this intersection is connected. Thus
the number of such components of FCVD*(S) can be upper-bounded by the to-
tal number of intersections of all pure edges of HVD(S) with FCVD*(S). By
Lemma 5.2.11, this is O(|FCVD(S)|+ |HVD(S)|+mbis).

Summing up the total complexity of the boundary for all types of components
of FCVD*(S) implies the claim.
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5.3 Computing FCVD*(S)

Recall from Section 5.2.2 that any unbounded component of FCVD*(S) corre-
sponds to a stabbing line for S. All the stabbing lines and the corresponding
components of FCVD*(S) can be found in O(n logn) time [36]. From now on
we assume that S has no stabbing line, and therefore all components and faces of
FCVD*(S) are bounded.

5.3.1 General algorithm

By Lemmas 5.2.5, 5.2.9 and 5.2.10, any bounded face f of FCVD*(S) has at least
one of the following properties: (1) f is incident to a mixed vertex of HVD(S) or
FCVD(S), (2) f contains a pure vertex of HVD(S) or FCVD(S), or (3) f contains
exactly one segment of a pure edge of both HVD(S) and FCVD(S). Our algorithm,
described in Figure 5.10, has three parts. All faces of type (1) are computed in the
first part (Steps 1–7). Among the faces that have not been computed yet, the ones
that are of type (2) are computed in the second part (Steps 8–12). After that the
faces that satisfy only property (3) are left, and they are computed in Steps 13–14.'

&

$

%

Algorithm Computing FCV D∗(S)
1. compute HVD(S) and FCVD(S);
2. for each mixed vertex v of HVD(S) or FCVD(S) do
3. if v ∈ ∂FCVD*(S) then
4. for each face f of FCVD*(S) incident to v;
5. if f has not been visited yet then
6. trace ∂ f starting from v;
7. mark all vertices of HVD(S) and FCVD(S) in f ;
8. for each non-marked pure vertex u of HVD(S) or FCVD(S) do
9. if u ∈ FCVD*(S) then
10. let f be the face of FCVD*(S) that contains u;
11. find a point on ∂ f and trace ∂ f ;
12. mark all vertices of HVD(S) and FCVD(S) in f ;
13. for each segment e of a pure edge of HVD(S) that is outside the

computed faces of FCVD*(S) do
14. compute all faces of FCVD*(S) that intersect e;

Figure 5.10. Algorithm to compute FCVD*(S).

We next make some remarks about the first two parts of the algorithm in Fig-
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ure 5.10.
Steps 3 and 9 are simple, after HVD(S) and FCVD(S) are computed and pre-

processed for point location queries. For example, if v is a vertex of say HVD(S),
we first locate it in FCVD(S). Once we obtain a segment aa′ ∈ S such that
v ∈ fcreg(aa′), we can compare the Hausdorff and farthest-color radii of v in con-
stant time.

The loop in Step 4 performs exactly two iterations, since each mixed vertex on
∂FCVD*(S) has exactly two incident faces of FCVD*(S) (see Section 5.2.2).

In Step 11, given a point u inside face f , we proceed as follows to find a point
on ∂ f . We first locate u in both HVD(S) and FCVD(S). Then we trace in both
diagrams the vertical ray originating at u, until we reach the boundary of f . To
perform this efficiently, we preprocess HVD(S) and FCVD(S) for ray-shooting
queries.

The third part of the algorithm (Steps 13–14) is discussed in Section 5.3.2, its
correctness in Section 5.3.3, and its time complexity in Section 5.3.4.

5.3.2 Searching in a pure edge of HVD(S)

In this section, we present an algorithm to compute all faces of FCVD*(S) inter-
sected by a given portion of a pure edge of HVD(S).

Due to the assumption that S does not have any stabbing line, all faces of
FCVD*(S) we are searching for are bounded. Thus, the input portion of a pure
edge of HVD(S) is assumed to be a line segment. The algorithm is given as a
pseudocode in Figure 5.12.

Without loss of generality, we assume that the input segment e = uv is hori-
zontal, and that u is to the left of v. The algorithm assumes that, if e is shrunk
infinitesimally from both sides (see Step 1), the resulting segment urv` has both
endpoints outside FCVD*(S). To proceed with the description of the algorithm,
we need to introduce some notation. For convenience, we assume that the segment
uv is already shrunk.

Let e = uv be a line segment on a pure edge of HVD(S) separating hreg(a) and
hreg(b), such that u and v are outside FCVD*(S). Additionally, if the segment ab
intersects the interior of e, this intersection divides e into two portions, which we
process separately. Note that neither u nor v are mixed vertices of HVD(S) (since
uv is the result of shrinking a portion of a pure edge of HVD(S) from both sides).

We classify the segments in S \ {aa′,bb′} with respect to uv as segments of
types left, right, middle, in, out, as in Section 5.2.3 (see Figure 5.9). Using this
classification, for any point w in e, we define type(w) as a set containing one el-
ement per each cc′ ∈ S such that w ∈ fcreg(cc′). The elements of type(w) are
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defined as follows: Let cc′ be a segment in S such that w ∈ fcreg(cc′). If cc′ is not
of type middle, then we add the type of cc′ to type(w). If cc′ is of type middle,
then either c or c′ (say, c) is contained in Dh(u)\Dh(v), and the other endpoint (c′)
is contained in Dh(v)\Dh(u). We further differentiate the classification middle as
follows: If w lies on bh(c,c′), then mm ∈ type(w). Otherwise, if w ∈ fcreg(c), then
ml ∈ type(w); if w ∈ fcreg(c′), then mr ∈ type(w). When we need to specify cc′,
we do as follows: Imagine that w ∈ fcreg(cc′) and cc′ is of type in. Then we say
in ∈ type(w) caused by cc′.

Further, we use l̃ to denote types left and ml, and we use r̃ to denote right and
mr.

Definition 24. A point w in e is a changing point if {r̃, l̃} ⊆ type(w) (see Fig-
ure 5.11).

u v

a

b Dh(v)

Dh(u)

w

Df(w)

Figure 5.11. w is a changing point (not in FCVD*(S)).

A changing point might or might not be in FCVD*(S). Note that a changing
point w is an intersection point between a pure edge of HVD(S) and a pure edge of
FCVD(S). Intuitively, at w the point giving the farthest-color radius changes from
being in Dh(v)\Dh(u) to being in Dh(u)\Dh(v), i.e., r̃ ∈ type(w`) and l̃ ∈ type(wr)

(see Figure 5.11). It is easy to see that a point w′ where a change in the other
direction happens is of type mm, i.e., w′ is in the intersection between a pure edge
of HVD(S) and an internal edge of FCVD(S). Then we have the following.1

Observation 5.3.1. (a) If e intersects a face of FCVD*(S) in a segment e′, then
there exists a point w in e′ such that in ∈ type(w) or w is a changing point. (b) If
there is a point w∈ e such that out ∈ type(w), then e does not intersect FCVD*(S).
(c) If there is a point w ∈ e such that in ∈ type(w), then w ∈ FCVD*(S).

1Even though Observation 5.3.1 is the base of the algorithm Search-In e, it is actually not needed
to prove its correctness, given in Lemma 5.3.3, because Lemma 5.3.3 in a way reproves Observa-
tion 5.3.1. Therefore, we omit the proof of Observation 5.3.1.
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Thus, it is enough to examine the changing points of e, and the points w such
that in ∈ type(w). To find such points, we use the find-change query subroutine,
defined next. When dealing with a subsegment ts of e, or a pair (t,s) of points in
e, we write the left-most point first.

Definition 25 (Find-change query). The input of the query is a pair (t,s) of points
in e, such that type(t) contains r̃ but not l̃, and type(s) contains l̃ but not r̃. The
query returns a point w in the segment ts such that one of the following holds: (i)
w is a changing point; (ii) in ∈ type(w); (iii) out ∈ type(w).

For the sake of clarity, we defer the proof that the find-change query is well-
defined, as well as the proof of correctness of the remaining pieces of the algorithm,
to the next subsection.'

&

$

%

Algorithm Search-In e = uv
1. uv←urv`; (∗ shrink the segment uv infinitesimally ∗)
2. if r̃ is the only element in type(u) and l̃ is the only element in

type(v) then
3. perform a find-change query on (u,v);
4. let w be the point returned by the query;
5. if out ∈ type(w) then
6. return;
7. if w ∈ FCVD*(S) then
8. trace ∂ f , where f is the face of FCVD*(S) that contains w;
9. let q,q′ be the points of ∂ f ∩uv, where q is to the left of q′;
10. else (∗ w is a changing point in uv and w /∈ FCVD*(S) ∗)
11. let q,q′ both be w;
12. Search-In uq;
13. Search-In q′v;
14. return;
15. else return;

Figure 5.12. Algorithm to compute all faces of FCVD*(S) intersected by
e = uv.

We are now ready to describe our algorithm Search-In e, which computes all the
faces of FCVD*(S) intersected by e. The algorithm is illustrated in Figure 5.12;
it uses the characterization from Observation 5.3.1. At any time, the algorithm
processes a subsegment of e. It first shrinks e infinitesimally to ensure that its
endpoints do not belong to FCVD*(S) (Step 1). Then it performs a check that
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allows to eliminate some execution paths, when it is guaranteed that e does not
intersect FCVD*(S). If the check is passed, the search continues as follows. It
performs a find-change query on uv that returns a point w (Steps 3–4). If out ∈
type(w), the algorithm stops (Step 6), since it is guaranteed that e∩FCVD*(S)= /0.
Otherwise, the algorithm proceeds. In case w is in FCVD*(S), the face containing
w is traced (Step 8). In both cases (w is in FCVD*(S) or not), the algorithm
calls itself recursively for two disjoint subsegments uq and q′v of e (Steps 12–13).
Initially, the algorithm is called for e = uv.

We remark that the faces of FCVD*(S) intersecting e are not found in a left-
to-right or any other “natural” order, as the find-change query finds some point of
the desired property. This is the reason why, after finding a changing point w ∈ e,
the algorithm continues searching on both sides of w. We remark as well that, at
every recursive call of the algorithm, the function type(·) is re-defined according
to the extremes of the segment on which the procedure is called. Therefore, for a
point x ∈ e, the value of type(x) may change as the algorithm proceeds.

5.3.3 Correctness

We now prove that the algorithm presented in Sections 5.3.1 and 5.3.2 is correct.
First we show that Find-change query is well-defined:

Lemma 5.3.1. If the pair (t,s) satisfies the conditions of the input of Find-change
query, then there exists a point w in the segment ts such that w is a changing point,
in ∈ type(w), or out ∈ type(w). (See the proof in Section A.2 of the Appendix.)

The following lemma refers to Step 2 of the algorithm Search-In e:

Lemma 5.3.2. Let e = uv, where u,v /∈ FCVD*(S). If there is an element x in
type(u) such that x 6= r̃ or there is an element y in type(v) such that y 6= l̃, then
uv∩FCVD*(S) = /0.2

Proof. Recall that, if a point w belongs to FCVD*(S), then Dh(w) contains at least
one endpoint of every segment in S. Since u /∈ FCVD*(S), each segment cc′ ∈ S
such that u ∈ fcreg(cc′) has both endpoints outside Dh(u). Therefore in /∈ type(u),
l̃ /∈ type(u), and mm /∈ type(u). Analogously, since v /∈ FCVD*(S), we have that
in /∈ type(v), r̃ /∈ type(v), and mm /∈ type(v). On the other hand, observe that the
Hausdorff disk of any point in e is contained in Dh(u)∪Dh(v). This implies that,
if out belongs to type(u) or type(v), then uv∩FCVD*(S) = /0.

2Note that it is not always possible to shrink uv infinitesimally so that type(u) and type(v)
consist of one element each. In particular, this is not possible when uv lies on an edge of FCVD(S),
and this situation does not contradict our general position assumption.
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The following lemma proves that the algorithm Search-In e is correct:

Lemma 5.3.3. The algorithm Search-In e computes all faces of FCVD*(S) inter-
sected by e. (See the proof in Section A.2 of the Appendix.)

5.3.4 Running time

Below we analyze the time complexity of the algorithm to compute FCVD*(S),
and thus the time complexity to solve the stabbing circle problem.

We start with the following result concerning the find-change query.

Lemma 5.3.4. A find-change query can be performed in O(log2 n) time.

Proof. For a pair (t,s) of points, we perform the find-change query as follows. We
use a point-location data structure for FCVD(S), such that the point location for
a query point q is performed by a sequence of O(logn) atomic questions of the
form “is q above or below (respectively, to the left or right of) a line `?” (e.g., the
data structure by Edelsbrunner et al. [39], or the one by Kirkpatrick [49]). Notice
that, in our case, instead of a fixed point q, we only have a pair (t,s) such that the
segment ts contains a desired point (a changing point, a point of type in or a point
of type out). An atomic question is processed as follows. If ts∩ `= /0, the answer
is the same for any point in ts, and we continue with the pair (t,s). Otherwise,
let point p be ts∩ `. First, the standard point location for p gives us type(p). If
r̃ ∈ type(p) and l̃ 6∈ type(p), we continue with the pair (p,s). Symmetrically, if
l̃ ∈ type(p) and r̃ 6∈ type(p), we continue with the pair (t, p). If type(p) = {mm},
then we continue with either (p,s) or (t, p). Otherwise, we stop the procedure, and
return p. Clearly, this happens in one of the following cases: (i) {l̃, r̃} ⊆ type(p);
(ii) in ∈ type(p); or (iii) out ∈ type(p).

Answering one atomic question within the procedure takes O(logn) time, and
the whole find-change query takes O(log2 n) time.
A similar idea of simulating a point location for an unknown point is used in
Cheong et al. [23], and in Cheilaris et al. [22, Section 7].

By an argument similar to the proof of Lemma 5.2.11, we can show that the
running time of Search-In e is related to me:

Lemma 5.3.5. Let e be a segment on a pure edge of HVD(S). The number of
changing points in e is O(1+me).

Lemma 5.3.6. Let e be a segment on a pure edge of HVD(S), and cc′ be a segment
in S.
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u u′ v′ v

(a)

u′ v′u′′ v′′

(b)

Figure 5.13. Illustration for the proof of Lemma 5.3.6.

(a) If cc′ is of type middle for a segment e′ ⊂ e, then cc′ is of type middle for e.

(b) Let e′,e′′ be two disjoint subsegments of e. Then cc′ is of type middle for at
most one of e′,e′′.

Proof. Let e = uv, e′ = u′v′, and e′′ = u′′v′′.

(a) If cc′ is of type middle for e′, then one of its endpoint is in Dh(u′)\Dh(v′) and
the other one is in Dh(v′) \Dh(u′) (see the two gray areas in Figure 5.13a).
These areas are contained in Dh(u) \Dh(v) and Dh(v) \Dh(u), respectively
(shown with tiling pattern in Figure 5.13a).

(b) If cc′ was of type middle for both e′ and e′′, then one of its endpoints would
lie in both Dh(u′) \Dh(v′) and Dh(u′′) \Dh(v′′). But these two areas do not
intersect (see the shaded and the tiled area in Figure 5.13b), which yields a
contradiction.

The next lemma allows to bound the total time of all executions of Step 11 of
Computing FCVD*(S):

Lemma 5.3.7. Let f1, f2, . . . , fk be the faces of FCVD*(S). The total number of
edges of HVD(S) and FCVD(S) intersected by these faces is O(k+ |HVD(S)|+
|FCVD(S)|). See the proof in Section A.2 of the Appendix.

We are finally ready to prove the main theorem of this section.
Let m denote the number of pairs formed by a segment aa′ ∈ S and a pure edge

e of HVD(S) such that aa′ is of type middle for e. Let THVD(S) and TFCVD(S)
denote the time to compute HVD(S) and FCVD(S), respectively.
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Theorem 5.3.1. Let S be a set of n segments in the plane in general position.
Then, FCVD*(S) can be computed in time O(THVD(S)+TFCVD(S)+(|HVD(S)|+
|FCVD(S)|+m) log2 n).

Proof. Computing HVD(S) and FCVD(S) (Step 1 of Computing FCVD*(S)) re-
quires time THVD(S)+TFCVD(S).

After computing the diagrams, in time O(|HVD(S)| logn) and
O(|FCVD(S)| logn) we can preprocess them to answer point-location queries in
O(logn) time. Then Steps 3 and 9 of the algorithm require logarithmic time.

We also preprocess HVD(S) and FCVD(S) to answer ray-shooting queries in
O(logn) time. The preprocessing can be done in time O(|HVD(S)| logn) and
O(|FCVD(S)| logn), respectively [20]. After such preprocessing, Step 11 re-
quires O((1+ I( f )) logn) time, where I( f ) is the number of edges of HVD(S)
and FCVD(S) intersected by f (see Section 5.3.1 for more details on Step 11).
By Lemma 5.3.7, the total time spent for Step 11 is O((|HVD(S)|+ |FCVD(S)|+
|FCVD*(S)|) logn).

After a point on ∂ f is known, ∂ f can be traced in HVD(S) and FCVD(S) in
a standard way. Thus the total time required for tracing the boundary of all the
faces of FCVD*(S) (in Steps 6 and 11 of Computing FCVD*(S), and Step 8 of
Search-In e) is O(|HVD(S)|+ |FCVD(S)|+ |FCVD*(S)|).

Therefore, the total time complexity of Steps 2–12 of Computing FCVD*(S)
is O((|HVD(S)|+ |FCVD(S)|+ |FCVD*(S)|) logn).

The third loop (Steps 13–14) of Computing FCVD*(S) performs
O(|HVD(S)| + |FCVD(S)|) iterations. Indeed, the number of faces com-
puted in Steps 2–12 is O(|HVD(S)|+ |FCVD(S)|), and each face has connected
intersection with HVD(S) by Lemma 5.2.8.

In Step 14, Search-In e= uv is called. Search-In e calls itself recursively for two
subsegments of e if and only if the find-change query for e returned a point w ∈ e
(w 6= u,v) such that at least one of two conditions hold: (1) w belongs to a face f of
FCVD*(S), or (2) w is a changing point. If (1) holds, the two segments uq and q′v
for which the algorithm is called recursively do not intersect f . We charge the two
recursive calls to f . Otherwise, w is a changing point for uv, and we charge these
two calls to w (note that uq and q′v do not contain w in their interior, so w will not
be charged any other call in future iterations of the algorithm). Therefore, the total
number of recursive calls caused by Search-In e = uv is proportional to the number
of changing points in uv plus the number of faces of FCVD*(S) intersected by uv.
By Lemma 5.2.11, the latter number is proportional to the former one. Thus the
number of (recursive) calls of Search-In performed on portions of e is O(1+me).
Summing up me for all pieces of edges of HVD(S) on which the procedure is called
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(a) (b) (c)

(d) (e)

Figure 5.14. All possibilities for the stabbing circles of minimum and maxi-
mum radius.

results in O(m) due to Lemma 5.3.6. Since any face of FCVD*(S) computed
by Search-In e intersects only one edge of HVD(S) and one edge of FCVD(S)
and its boundary has constant complexity (see Lemma 5.2.10), Step 8 requires
constant time. Therefore, one execution of Search-In e, except for the recursive
calls, is dominated by the find-change query, and thus requires O(log2 n) time (see
Lemma 5.3.4). This globally amounts to O((|HVD(S)|+ |FCVD(S)|+m) log2 n)
time for Steps 13–14 of Computing FCVD*(S).

The next lemma shows how to find the largest and smallest stabbing circles,
once FCVD*(S) is known. We observe that, in some cases, the stabbing circle
of minimum radius does not exist, because any stabbing circle can be shrunk by
decreasing its radius or slightly moving its center. Moreover, the “limit” circle is
not stabbing because the closed disk induced by the circle contains both endpoints
of a segment in S (see Case 1c of the proof below). Similarly, it is easy to see
that the stabbing circle of maximum radius never exists, since any stabbing circle
can be slightly enlarged, but the “limit” circle is not stabbing. In these cases, even
though these circles are not stabbing, to simplify the notation we call these “limit”
circles the stabbing circles with infimum or supremum radius.

Lemma 5.3.8. After computing FCVD*(S), the stabbing circles of minimum (or
infimum) and supremum radius can be determined in time O((|FCVD*(S)|+
|HVD(S)|+ |FCVD(S)|) logn).
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Proof. We list all the possibilities for such circles below; see Figure 5.14.
Given a segment aa′ and a circle c, we call “red" the endpoint of aa′ which

is closer to the center of c, and we call “blue" the other endpoint (ties are broken
arbitrarily). Notice that, if c is stabbing, then the red endpoint of aa′ lies inside the
closed disk induced by c, and the blue endpoint lies outside. Standard geometric
arguments show the following.

1. The stabbing circle of minimum or infimum radius is a circle passing
through:

(a) Two red points that are diametrically opposite. In this case the center
of the circle is at the intersection point between an edge of FCVD(S)
separating two regions fcreg(a) and fcreg(b) (for some aa′,bb′ ∈ S),
and the segment connecting a to b. This is a stabbing circle of minimum
radius.

(b) Three red points. The center is at a vertex of FCVD(S). This is also a
stabbing circle of minimum radius.

(c) Two red points and one blue point. The center is on the boundary of
FCVD*(S). This is a stabbing circle of infimum radius.

2. The stabbing circle of supremum radius is a circle passing through:

(a) Three blue points. In this case the center of the circle is at a vertex of
HVD(S).

(b) Two blue points and one red point. The center is on the boundary of
FCVD*(S).

The stabbing circles with minimum (or infimum) and supremum radius can thus
be found by checking the vertices of HVD(S) or FCVD(S) lying in FCVD*(S),
the edges of FCVD(S) intersecting FCVD*(S), and the boundary of FCVD*(S).
Since in all cases the radius of the corresponding circle can be computed in
O(logn) time, the claim follows.

As a conclusion, we put together the above results and connect them with the
stabbing circle problem as stated in Section 1.4. By Lemma 5.2.6, distinct faces
of FCVD*(S) correspond to combinatorially different stabbing circles. Thus, the
above results yield the following:

Corollary 5.3.1. Let S be a set of n segments in the plane in general position. All
the combinatorially different stabbing circles for S, and the ones with minimum
and maximum radius, can be computed in O(THVD(S)+TFCVD(S)+(|HVD(S)|+
|FCVD(S)|+m) log2 n) time.
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5.4 Parallel Segments

Let S be a set of parallel segments. The goal of this section is to prove the following
theorem.

Theorem 5.4.1. The stabbing circle problem for a set S of n parallel segments in
general position can be solved in O(n log2 n) time and O(n) space.

We prove Theorem 5.4.1 using Theorem 5.3.1 and Corollary 5.3.1. Since the
segments in S are parallel, they must by pairwise disjoint, and thus HVD(S) is
an instance of abstract Voronoi diagrams; hence, |HVD(S)| is O(n) and THVD(S)
is O(n logn) [50]. In Section 5.4.1 we show that |FCVD(S)| is also O(n) and
TFCVD(S) is O(n logn). In Section A.2.1 (in the Appendix) we show that m=O(n).
Thus, the algorithm of Section 5.3 for this particular case has time complexity
O(n log2 n), and we derive Theorem 5.4.1.

5.4.1 The farthest-color Voronoi diagram for a set of parallel seg-
ments

Lemma 5.4.1. If all segments in S are parallel, then for each aa′ ∈ S, bh(a,a′)
contributes at most one internal edge to FCVD(S).

Proof. Suppose for the sake of contradiction that there are two internal edges e and
e′ in FCVD(S) which are portions of bh(a,a′). Assume without loss of generality
that the segments in S are vertical, thus, bh(a,a′) is horizontal, and e is to the left of
e′. Let v,u ∈ bh(a,a′) be the mixed vertices that are respectively the right endpoint
of e and the left endpoint of e′. The farthest-color disk D f (v) contains an endpoint
of every segments in S, and ∂D f (v) passes through points a,a′ and an endpoint b of
some segment bb′ ∈ S. Observe that bb′ is to the left of aa′, and bb′∩D f (v) = {b}
(see Figure 5.15 (left), where fcreg(aa′) is shown shaded, and bh(a,a′) is shown
dashed). Since u is to the right of v, the closed disk centered at u with radius d(u,a)
does not contain b nor b′, thus, u 6∈ fcreg(aa′). We obtain a contradiction.

Lemma 5.4.2. If all segments in S are parallel, the structural complexity of
FCVD(S) is O(n).

Proof. By Lemma 5.2.4, the number of unbounded faces of FCVD(S) is O(n).
Since all segments in S are parallel, by Lemma 5.4.1, the number of all internal
edges in FCVD(S) is at most n. By Lemma 5.2.2, every bounded face of FCVD(S)
has an internal edge on its boundary, thus there are at most 2n bounded faces in
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Figure 5.15. Left: Illustration for the proof of Lemma 5.4.1. Right: Illustra-
tion for the proof of Lemma 5.4.3.

FCVD(S). Thus, FCVD(S) is a planar graph with O(n) faces whose vertices have
degree three. By Euler’s formula, |FCVD(S)|= O(n).

Lemma 5.4.3. If all segments in S are parallel, then FCVD(S) can be computed
in O(n logn) time.

Proof. Assume without loss of generality that the segments in S are vertical. We
use the divide-and-conquer technique: We divide S by a vertical line into two
halves, Sle f t and Sright , and recursively compute FCVD(Sle f t) and FCVD(Sright).
Below we prove that the merge curve between FCVD(Sle f t) and FCVD(Sright) is
y-monotone. Such a y-monotone merge curve can be constructed in O(n) time by
standard arguments on the divide-and-conquer construction of Voronoi diagrams,
see e.g., [10]. The claim follows.

Suppose, for the sake of contradiction, that the merge curve is not y-monotone,
that is, there are two points p,q on the merge curve with the same y-coordinate.
Since p and q lie on the merge curve, the farthest-color radius of p with respect to
Sle f t equals the farthest-color radius of p with respect to Sright , and the same holds
for q. Let ` be the horizontal line through p and q. We redefine p and q as the
left-most and second left-most points on ` that lie on the merge curve, respectively.
In FCVD(S), the point at minus infinity on ` lies in the farthest-color region of a
segment from Sright . Thus p lies on the boundary between fcreg(aa′) (to the left
of p) and fcreg(bb′) (to the right of p) such that aa′ ∈ Sright and bb′ ∈ Sle f t ; see
Figure 5.15 (right). Then the farthest-color disk D f (q) intersects or touches bb′,
and touches a segment cc′ ∈ Sright . But in this case cc′ is outside the farthest-color
disk of p. We obtain a contradiction.
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5.5 Segments with the Delaunay property

We say that S satisfies the Delaunay property if its segments are edges of the Delau-
nay triangulation of some set of points. Let us assume that S satisfies this property.

Lemma 5.5.1. FCVD(S) is a tree of O(n) complexity.

Proof. We show that FCVD(S) for such a segment set S is an instance of the
farthest abstract Voronoi diagram (FAVD); the claim then follows automatically
from [58]. To prove that FCVD(S) is FAVD, we consider the nearest-color
Voronoi diagram of S, which reveals the nearest site (segment in S), where the
distance from a point p ∈ R2 to some aa′ ∈ S is min{d(p,a),d(p,a′)}. We need to
prove that the system of bisectors for farthest/nearest color Voronoi diagram sat-
isfies the following axioms: (1) each bisector is an unbounded Jordan curve; (2)
any two bisectors intersect finite number of times; (3) regions of the nearest-color
Voronoi diagram are (a) non-empty, (b) path-connected, and (c) cover R2. Note
that the nearest-color Voronoi diagram is related to the nearest-point Voronoi dia-
gram of all endpoints of S: the region of aa′ ∈ S in the former diagram is the union
of the regions of a and a′ in the latter.

Our bisector system satisfies axioms (2), (3a) and (3c) since so does the bisector
system of the nearest/farthest point Voronoi diagram. Further, since each aa′ ∈ S is
an edge of the Delaunay triangulation of all endpoints of S, the regions of a and a′ in
the nearest-point Voronoi diagram are adjacent, thus their union is path-connected,
implying axiom (3b). A bisector in our system satisfies axiom (1), since it separates
two unions of pairs of adjacent regions in the diagram of four points.

The faces of FCVD(S) near infinity coincide with the faces of the farthest-
segment Voronoi diagram of S, thus, their sequence at infinity can be computed
in O(n logn) time by divide and conquer (and other methods) [64]. Based on this
observation, it is simple to derive a divide and conquer algorithm for FCVD(S).
(Note that the approach in [58] yields an expected O(n logn) time algorithm for
FCVD(S).)

Lemma 5.5.2. FCVD(S) can be constructed in O(n logn) time and O(n) space.

Let bh(a,b) denote the bisector of a and b.

Lemma 5.5.3. For a point p ∈ R2, let rp be the open ray with origin at p and
direction −→ap, where a is the endpoint of aa′ ∈ S such that p ∈ fcreg(a). Let p 6∈
bh(a,a′). If rp∩bh(a,a′) = {q}, then fcreg(aa′) contains the open segment pq, as
well as one of the two (unbounded) portions of bh(a,a′) starting at q. Otherwise,
rp ⊂ fcreg(aa′).
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Figure 5.16. (a) rp∩bh(a,a′) = /0 and Dp ⊂ Dx. (b) rp∩bh(a,a′) = {q} and
Dq` ⊂ Dy.

Proof. For any point z ∈ R2, let Dz be the disk centered at z of radius d(z,a); see
Figure 5.16.

Suppose that rp does not intersect bh(a,a′). Since p ∈ fcreg(a), disk Dp con-
tains an endpoint of every segment in S. For a point x ∈ rp,x 6= p, Dp ⊂ Dx.
Thus Dx contains in its interior an endpoint of every segment in S \ {aa′}, that
is, x ∈ fcreg(a)⊆ fcreg(aa′).

Suppose next that rp intersects bh(a,a′) in a point q. For any point x ∈ pq,
x 6= p, we have x ∈ fcreg(a) ⊂ fcreg(aa′) by the above argument. In particular,
disk Dq contains an endpoint of every segment in S. Point q breaks bh(a,a′) into
two rays ru and r`, which are respectively above and below q (see Figure 5.16b),
and aa′ breaks disk Dq into two parts Dqu and Dq` that are above and below aa′

respectively. (We assume that aa′ is not vertical, otherwise the above/below rela-
tion can be replaced by left/right.) Observe that, if fcreg(aa′) does not contain ru
(resp., r`), then Dq` (resp., Dqu) contains an endpoint of some segment in S\{aa′}.
If fcreg(aa′) contained neither ru nor r`, there would be an endpoint of a segment
in S\{aa′} inside Dq`, and an endpoint inside Dqu. A contradiction to aa′ being an
edge of the Delaunay triangulation of the set of endpoints of S.

Lemma 5.5.4. FCVD(S) can be preprocessed in O(n logn) time and O(n) space
so that a find-change query is answered in O(logn) time.

Proof. By Lemma 5.5.1 FCVD(S) is a tree, and thus the centroid decomposi-
tion [22] can be built for it in O(n logn) time, and used to answer the find-change
query. See Section 3.2.1.

To perform a query, we follow a root-to-leaf path (of length O(logn)) in the
tree of the centroid decomposition, at every node of the path one of the node’s
three subtrees is to be chosen. We can make a decision related to one node in O(1)
time, thus answering a find-change query in O(logn) time. Indeed, Lemma 5.5.3
if applied to v and each of the three regions of FCVD(S) incident to v, induces a
decomposition of R2 into three regions of O(1) combinatorial complexity, each of
which contains one subtree of v in FCVD(S), see Figure 5.17a. Out of these three
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Figure 5.17. (a) set S = {aa′,bb′,cc′} (black); FCVD(S) (gray); the decom-
position of R2 induced by its vertex v (red, dashed); (b) Illustration for the
proof of Lemma 5.5.6

regions, in constant time we choose the only one that may contain the answer to
the find-change query.

We next bound the parameter m in Theorem 5.3.1.
Consider a pure edge e = uv of HVD(S) separating hreg(a) and hreg(b), for

two segments aa′,bb′ ∈ S. Then e ⊆ bh(a,b). We assume that segment ab is
vertical with a on top of b, and that ab does not intersect the interior of e (otherwise
e could be broken into two parts, considered separately). For any segment cc′ ∈ S,
we denote its supporting line by `(cc′).

Lemma 5.5.5. If cc′ ∈ S is of type middle for S, then `(cc′) lies either above both
aa′,bb′ or below them.

Proof. One endpoint of cc′ is in Dh(u) \Dh(v), and the other in Dh(v) \Dh(u).
These two areas are separated by the vertical line `(ab), so cc′ is not vertical.

We first prove that it is impossible that a,b,c,c′ are in convex position with c
and c′ not consecutive along the convex hull of the four points. Assume otherwise.
The center of the circle through a,b and c lies on e; hence c′ is outside this circle.
Thus a and b are adjacent in the Delaunay triangulation of a,b,c,c′. Since this
triangulation is plane, c and c′ are not adjacent, and therefore they are not adjacent
in the Delaunay triangulation of all endpoints of S; a contradiction.

Since c′ (resp., c) is outside the circle through a,b and c (resp., c′), the convex
hull of a,b,c,c′ cannot be a triangle with c′ (resp., c) in its interior. Hence, a
and b are on the same side of `(cc′). Recall that a′ and b′ lie in Dh(u)∩Dh(v).
Segment cc′ either does not intersect Dh(u)∩Dh(v), or it divides Dh(u)∩Dh(v) in
two portions, and both a,b lie in one of them. In both cases, the claim follows.

Lemma 5.5.6. If S satisfies the Delaunay property and all segments in S are of the
same length, then an edge e of HVD(S) has at most two segments of type middle.
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Proof. We show that there is at most one segment of type middle whose supporting
line is above aa′,bb′. Then the claim follows from Lemma 5.5.5.

Suppose for contradiction that cc′,dd′ are segments of type middle for e such
that `(cc′) and `(dd′) lie above aa′, bb′. A vertical ray shot from a hits both cc′

and dd′. Assume that it hits cc′ first. Let D denote the disk through c,c′,a. See
Figure 5.17b. Since cc′ is a Delaunay edge, cc′ and dd′ are pairwise disjoint, and a
and at least one of d,d′ are on opposite sides of cc′, disk D contains none of d,d′.

We have ∠dad′> π/2: it is greater than the angle β formed by the two tangents
to Dh(u) and Dh(v) at a (see blue dashed lines in Figure 5.17b) and β ≥ π/2 by
our assumption that segment ab does not intersect e in its interior. Let s(cc′) be
the closed strip formed by two lines perpendicular to `(cc′) and passing through c
and c′ (tiled area in Figure 5.17b). We have: d,d′ are outside D; d,d′ are separated
by `(ab); ∠dad′ > π/2; and `(dd′) lies above cc′. All this together imply that
d and d′ lie outside s(cc′) and on different sides of it. Thus d(d,d′) < d(c,c′);
a contradiction.

Recall now Theorem 5.3.1, and recall that |HVD(S)| = O(n) and THVD(S) =

O(n logn), since the segments in S are disjoint. By Lemma 5.5.4, T f c = O(logn);
by Lemma 5.5.2, |FCVD(S)| = O(n) and TFCVD(S) = O(n logn). If all segments
in S are parallel, then m = O(n), see Section A.2.1. By Lemma 5.5.6, m is also
O(n) if the segments in S have the same length. We conclude:

Theorem 5.5.1. If S satisfies the Delaunay property and either all segments in
S are parallel, or all segments in S are of equal length, then the stabbing circle
problem can be solved in O(n logn) time and O(n) space.

Summary

The main result of this chapter is the connection between cluster Voronoi diagrams
and the stabbing circle problem, and the method to solve the stabbing circle prob-
lem based on this connection.

For the case when all segments are parallel, we prove that our method works
in O(n log2 n) time, which improves considerably upon the best previously known
bound, which was O(n2).

For segments that are disjoint edges of the Delaunay triangulation of some set
of points (in this case we say that these segments satisfy the Delaunay property),
and in addition that either have equal length, or are parallel to each other, we show
that the stabbing circle problem can be solved in optimal O(n logn) time.
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For the case of arbitrary segments, we note that the stabbing circle problem can
be reduced to the problem of stabbing plane for a set of segments in R3. The latter
problem can be solved in O(n2) time [38]. Since a matching Ω(n2) lower bound
on the number of combinatorially different stabbing circles is known [27], this is
the tight worst-case time complexity for the stabbing circle problem.

In addition, we study the farthest-color Voronoi diagram for a family of pairs
of endpoints of a segment set S. We prove: (1) If all segments in S are parallel to
each other, the farthest-color Voronoi diagram on their endpoints has O(n) combi-
natorial complexity and can be constructed in O(n logn) time. (2) If the segments
in S satisfy the above Delaunay property, then the farthest-color Voronoi diagram
is an instance of the farthest abstract Voronoi diagram [58]. Thus its combina-
torial complexity is O(n). (3) For segments satisfying the Delaunay property we
give an algorithm to construct the farthest-color Voronoi diagram in deterministic
O(n logn) time.



Chapter 6

Conclusion and Future directions

This dissertation has studied certain cluster Voronoi diagrams from the perspec-
tive of their construction algorithms and algorithmic applications. We focused on
the (planar) Hausdorff Voronoi diagram and the farthest-segment Voronoi diagram,
and additionally of the farthest-color Voronoi diagram (for particular inputs). The
construction techniques we explore include two variations of the randomized incre-
mental construction [26, 35, 48] and the linear-time divide-and-conquer technique
of Aggarwal et al. [3, 51].

We have investigated the randomized incremental construction (RIC) paradigm
for the Hausdorff Voronoi diagram (HVD). We presented the following algorithms:
(1) a RIC for the HVD of non-crossing1 clusters, based on point location; (2) a clas-
sic RIC for the HVD of non-crossing clusters (variants for a conflict graph and a
history graph); and (3) a classic RIC for the HVD of arbitrary clusters, using a con-
flict graph. The expected time complexity of the first two algorithms is respectively
O(n log2 n) and O(n logn+ k logn logk), where k is the number of input clusters,
and n is the total number of points in all clusters. The third algorithm runs in ex-
pected O((m+ n logk) logn) time and O(m+ n logk) space, where m is the total
number of crossings between clusters. These results improve the state of the art
on algorithms for constructing the Hausdorff Voronoi diagram with zero or small
number of crossings. A small number of crossings was the case of interest in our
motivating applications.

For the farthest-segment Voronoi diagram, we showed that it is possible to con-
struct the diagram of n segments in O(n) time, once the sequence of its faces at
infinity is known. This result augments the Aggarwal et al. technique, granting it
the ability to handle Voronoi regions with multiple faces.

We pointed out the connection between the stabbing circle problem and two

1For the definition of non-crossing clusters and the number of crossings, refer to Definition 7.
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cluster Voronoi diagrams (the Hausdorff and the farthest-color Voronoi diagram).
This is an important algorithmic application for these two diagrams. It implies a
method to solve the stabbing circle problem. We prove that our method results in
efficient algorithms for the certain sets of segments, i.e., when segments: (1) all
are parallel to each other, (2) all are parallel to each other and satisfy the Delaunay
property,2 or (3) all have the same length and satisfy the Delaunay property. The
time complexity of our algorithms is O(n log2 n) for the first case, and O(n logn)
for the two other cases. This considerably improves the known result prior to this
dissertation.

In addition, we explored the farthest-color Voronoi diagram in the special cases,
inspired by the stabbing circle problem. In particular, clusters are endpoints of
segments, that are either all parallel to each other, or that satisfy the Delaunay
property. We proved that the combinatorial complexity of the diagram in these
cases is O(n), and derive O(n logn) time construction algorithms.

6.1 Future directions

The results in this dissertation open several directions for further research. Some
of them are listed below.

Directions regarding the Hausdorff Voronoi diagram

There is still a gap in the complexity of constructing the HVD of non-crossing clus-
ters between our O(n logn+ k logn logk) expected-time algorithm and the well-
known Ω(n logn) time lower bound. An open problem is to close or reduce this
gap. It is interesting that in the L∞ metric a simple O(n logn) time O(n) space
algorithm is known [67], which is based on a two-phase plane sweep.

Further, the concept of the Hausdorff Voronoi diagram is not restricted to clus-
ters of points: we can generalize it to clusters of other simple objects, e.g., clusters
of line segments or polygons. Such generalizations can be useful for the applica-
tions in VLSI computer-aided design [46]. More generally, it can be interesting
to extend the framework of abstract Voronoi diagrams to handle clusters of sites,
rather than individual sites. This was successfully accomplished for higher-order
Voronoi diagrams [13].

2A set of segments satisfy the Delaunay property if all segments are edges of the Delaunay
triangulation of some set of points, see Section 5.5.
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The stabbing circle problem

Chapter 5 presents a solution to the stabbing circle problem as an application of
cluster Voronoi diagrams. What is left behind the scene is a Ω(n logn) lower bound
for finding the stabbing circle of minimum radius [30]. Several questions are open
regarding the stabbing circle problem.

One open problem is to find an algorithm that would operate more directly
with FCVD*(S), rather than searching for the candidate points which may or may
not lie in FCVD*(S). Such algorithm would better use the connection between the
problem and cluster Voronoi diagrams. It would be desirable that the complexity of
the solution would match better the complexity of the problem. Such an approach
would be efficient when |FCVD*(S)| is linear, as opposed to particular cases when
the technical conditions on segments of type middle hold (see Lemma A.2.1 and
Lemma 5.5.6).

Another interesting question for further investigation is how simple the follow-
ing decision problem is: Given an arbitrary set of segments in the plane, decide
if this set has at least one stabbing circle. Using our result in Chapter 5 we can
answer this question in O(n2) time; however, together with answering this ques-
tion our technique provides much more information, i.e., all the combinatorially
different stabbing circles, and the ones with minimum and maximum radius. Is
it possible to answer solely the decision problem in o(n2) time? This question is
twofold: Working towards a positive answer means to design a new algorithm for
the decision problem. Alternatively, working towards a negative answer would in-
clude, as a major step, proving that the decision part of the stabbing circle problem
in 3SUM-hard [43].

Preprocessing of proximity graphs for segment queries

Throughout this dissertation, multiple times there appeared a need for efficient
queries that can be formulated as follows. Given a Voronoi diagram, and an edge
e of another Voronoi diagram, find a point on e that satisfies certain conditions
regarding the first Voronoi diagram. The examples of such queries in this disser-
tation include the parametric point location, the segment query, and find-change
query. See Definitions 10, 11, and 25 respectively. In fact the time complexity of
the algorithms in Chapters 3 and 5 depend on how fast such queries are performed.

The segment queries that have arised in our work can be seen as a general-
ization of the point location queriy which is the most widely used and demanded
query when manipulating geometric and proximity structures. In case the Voronoi
diagram under consideration is a tree, we were able to preprocess the diagram for
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efficient segment and find-change queries, based on centroid decomposition, see
Section 3.2.1. This resulted in an O(n logn) time algorithm to preprocess the cor-
responding Voronoi diagram (respectively, the farthest-point Voronoi diagram, and
the farthest-color Voronoi diagram) for answering the above segment queries in
O(logn) time. This matches the standard optimal results for point location [49, 32],
although the segment queries are substantially more difficult. An interesting and
important question is to drop the assumption that the Voronoi diagram is a tree and
design a general preprocessing technique that would work for any plane straight-
line proximity graphs.
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[54] Chi-Yuan Lo, Jiří Matoušek, and William Steiger. Algorithms for ham-
sandwich cuts. Discrete & Computational Geometry, 11(4):433–452, 1994.

[55] Daniel N. Maynard and Jason D. Hibbeler. Measurement and reduction of
critical area using Voronoi diagrams. In Advanced Semiconductor Manufac-
turing Conference and Workshop, 2005 IEEE/SEMI, pages 243–249, 2005.

http://hal.inria.fr/inria-00071561/PDF/RR-5023.pdf


136 Bibliography

[56] Nimrod Megiddo, Arie Tamir, Eitan Zemel, and Ramaswamy Chan-
drasekaran. An O(n log2 n) algorithm for the kth longest path in a tree with
applications to location problems. SIAM J. Comput., 10(2):328–337, 1981.

[57] Kurt Mehlhorn, Stefan Meiser, and Colm Ó’Dúnlaing. On the construction of
abstract voronoi diagrams. Discrete & Computational Geometry, 6(1):211–
224, 1991.

[58] Kurt Mehlhorn, Stefan Meiser, and Ronald Rasch. Furthest site abstract
Voronoi diagrams. Internat. J. Comput. Geom. Appl., 11(6):583–616, 2001.

[59] Ketan Mulmuley. Computational geometry: An introduction through ran-
domized algorithms, volume 54. Prentice-Hall Englewood Cliffs, NJ, 1994.

[60] Atsuyuki Okabe, Barry Boots, Kokichi Sugihara, and Sung Nok Chiu. Spatial
tessellations: concepts and applications of Voronoi diagrams, 2nd Ed. John
Wiley & Sons, 2000.

[61] Evanthia Papadopoulou. Critical area computation for missing material de-
fects in VLSI circuits. IEEE T. Comput. Aid. D., 20(5):583–597, 2001.

[62] Evanthia Papadopoulou. The Hausdorff Voronoi diagram of point clusters in
the plane. Algorithmica, 40(2):63–82, 2004.

[63] Evanthia Papadopoulou. Net-aware critical area extraction for opens in
VLSI circuits via higher-order Voronoi diagrams. IEEE T. Comput. Aid D.,
30(5):704–716, 2011.

[64] Evanthia Papadopoulou and Sandeep K. Dey. On the farthest line-segment
Voronoi diagram. Int. J. Comput. Geom. Ap., 23(6):443–459, 2013.

[65] Evanthia Papadopoulou and Der-Tsai Lee. Critical area computation via
Voronoi diagrams. Computer-Aided Design of Integrated Circuits and Sys-
tems, IEEE Transactions on, 18(4):463–474, 1999.

[66] Evanthia Papadopoulou and Der-Tsai Lee. The Hausdorff Voronoi diagram
of polygonal objects: a divide and conquer approach. Int. J. Comput. Geom.
Ap., 14(6):421–452, 2004.

[67] Evanthia Papadopoulou and Jinhui Xu. The L∞ Hausdorff Voronoi diagram
revisited. Int. J. Comput. Geom. Ap., 25(2):123–141, 2015.



137 Bibliography

[68] Evanthia Papadopoulou, Jinhui Xu, and Lei Xu. Map of geometric mini-
mal cuts with applications. Handbook of Combinatorial Optimization, pages
1815–1869, 2013.

[69] Evanthia Papadopoulou and Maksym Zavershynskyi. The higher-order
Voronoi diagram of line segments. Algorithmica DOI 10.1007/s00453-014-
9950-0, 2014.

[70] Franco P. Preparata and Michael I. Shamos. Computational Geometry: An
Introduction. Springer-Verlag New York, Inc., 1985.

[71] William Pugh. Skip lists: a probabilistic alternative to balanced trees. Com-
mun. ACM, 33(6):668–676, 1990.

[72] Jacob T. Schwartz and Micha Sharir. A survey of motion planning and related
geometric algorithms. Artificial Intelligence, 37(1):157–169, 1988.

[73] Raimund Seidel. New Trends in Discrete and Computational Geometry, chap-
ter Backwards Analysis of Randomized Geometric Algorithms, pages 37–67.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1993.

[74] Raimund Seidel. The nature and meaning of perturbations in geometric com-
puting. Discrete Comput. Geom., 19(1):1–17, 1998.

[75] Michael I. Shamos and Dan Hoey. Closest-point problems. In Foundations of
Computer Science, 1975., 16th Annual Symposium on, pages 151–162. IEEE,
1975.

[76] Micha Sharir. The Clarkson-Shor technique revisited and extended. Comb.
Probab. Comput., 12(2):191–201, 2003.



138 Bibliography



Appendix A

Complementary material

A.1 Appendix for Chapter 4: Computing the Order-
(k+1) Subdivision within an Order-k Voronoi Re-
gion

Let f be a face of the order-k Voronoi region k-reg(H), H ⊂ S, |H| = k. Let
S f ⊆ S \H consist of segments that induce the boundary ∂ f . Consider the order-1
Voronoi diagram of S f within f , V1(S f ). As shown recently [69], V1(S f ) is a tree
structure, and the sequence of its faces along ∂ f forms a Davenport-Schinzel se-
quence of order 4 (order 2 for non-intersecting segments). We can compute V1(S f )

in time linear in the complexity of ∂ f by slightly adapting the algorithms in the
previous sections. This directly implies that the order-k Voronoi diagram of S can
be computed in O(k2n+ n logn) time, improved from O(k2n logn), by iteratively
computing higher-order diagrams, starting at V1(S).

The boundary ∂ f can be viewed as a sequence of arcs, where each arc is a
portion of the bisector b(s,s′) between a segment s ∈ H and a segment s′ ∈ S f ; see
Figure A.2. An arc is delimited by two consecutive Voronoi vertices on ∂ f , or is
unbounded in one or two directions.

For a point x ∈R2 and a segment s ∈ S, we let r̂(x,s) denote a line segment that
realizes the Euclidean distance between x and s. Figure A.1 shows r̂(x,s) dashed.
The following is a well-known property of the segment bisectors, which is the basis
of the applicability of the algorithm of Section 4.4 to this setting.

Remark A.1.1. Let s,s′ be two line segments and b(s,s′) be their bisector. For any
point x ∈ R2 such that d(x,s) > d(x,s′), the line segment r̂(x,s) intersects b(s,s′)
in exactly one point. See Figure A.1.

139
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x

r̂(x, s)

s′

s

z

b(s, s′)

Figure A.1. Segments s,s′; b(s,s′) intersects r̂(x,s) (dashed) in point z

Similarly to the case of farthest-segment Voronoi diagram, the main object of
our algorithms is an arc sequence F . Sequence F can be a subsequence of ∂ f ob-
tained by deleting several arcs, or an augmented subsequence of ∂ f , obtained from
a base subsequence by a number of operations, which are insertions of original
arcs and merging with other augmented subsequences of ∂ f . Such arc sequences
are not necessarily connected, however, our algorithm will be operating with their
connected components. Thus, unless clearly stated otherwise, we assume an arc
sequence to be connected.

Basic operations with arc sequences and their Voronoi diagrams

Arc deletion. Let F be a subsequence of ∂ f such that F has at least two maximal
arcs. For an arc β ∈ F , β can be deleted F as follows. Suppose first that β has
two neighbors α,γ in F . To delete β we remove its incident Voronoi vertices and
extend α and γ along the corresponding bisectors. Two cases are possible: (1)
the extended α and γ intersect, creating a new Voronoi vertex; or (2) they do not
intersect, so the incident Voronoi edges become unbounded. In case (1), the arc
sequence F 	β is a subsequence of ∂ f that has same arcs as F except β. In case
(2), one of the following happens: (a) If F was a closed curve, then after deletion
of β it becomes unbounded curve, and we do the necessary renaming so that the
resulting arc sequence F	β has γ as the first arc, and α as the last arc. (b) If F was
an unbounded curve, then the deletion of β breaks it into two curves, considered
as two separate arc sequences F1 and F2, such that F1 coincides with F from its
beginning until the arc α, and α is unbounded; arc sequence F2 coincides with F
from γ (that is made unbounded) till the end of F .

Lemma A.1.1. An arc sequence F, which is a subsequence or an augmented sub-
sequence of ∂ f may consist of at most two connected components.

Proof. We prove the statement by induction on k, the order of the diagram, and
thus the number of line segments in set H. We first prove the base case for H = {s}
(k = 1).
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(a) (b) (c) (d)

Figure A.2. Two line segments and (a) their order-2 Voronoi region; (b) the
first opening of the boundary after removing two elements; (c) the disconnec-
tion of the boundary into two connected components; (d) removing one of the
two segments does not reduce the number of connected components

Consider two consecutive arcs α and γ of Fi that are not incident to each other,
but they both extend to infinity. The unbounded portion of α towards infinity corre-
sponds to an unbounded portion of b(p,s1) for an endpoint p of sα and an endpoint
s1 of s. Similarly, the unbounded portion of γ is induced by an endpoint q of sγ and
s1, corresponding to b(q,s1). But then p,s1,q must be on the convex hull of sα,s,sγ

in this order, thus, p and q must lie at opposite sides of the line l through s. Since
any pair of consecutive unbounded arcs on ∂Fi must be induced by segments with
endpoints at opposite sides of l, and since l has exactly two sides, we can have at
most two such pairs of consecutive unbounded arcs along ∂Fi. Thus, ∂Fi can have
at most two components.

Suppose the claim is true for a cluster H of k segments. Assume for the sake of
contradiction that there is a cluster H of k+1 line segments, for which there exists
a set of singleton-neighbors N such that the boundary of the Hausdorff region of
H has at least three connected components. Each of the connected components
separates H from at least one element of N. Now, if we remove a line segment
from H, the Hausdorff region of H can only grow (see Figure A.2c,d), thus, no
two connected components of its boundary may unite. No connected component
may disappear, since the singletons in N, which are separated from H by these con-
nected components, remain. Thus, the number of connected components remains
at least three for a cluster of size k. We obtain a contradiction.

If during the deletion process the arc sequence breaks in two components then
we are initially computing two different overlapping diagrams, one for each com-
ponent. If the arc that caused the splitting is re-inserted, these diagrams are merged
into one. In the following, we consider a connected arc sequence, and define its
Voronoi diagram in the same spirit as in Section 4.2.

Let F be a connected arc sequence. F breaks R2 into two connected domains;
we let D(F) be the one of these domains that contains H. Note that H never
intersects F , and thus our definition is correct.
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sα

s1

α1

b(s1, sα)

x

α2
α3

s2

b(s2, sα)

Figure A.3. Arcs α1,α2,α3, their attainable regions (tiling pattern); a point
x attainable from α1 and the segment r̂(x,sα)

A point x ∈ D(F) is said to be attainable from arc α ∈ F , if d(x,sα) is realized
as a segment passing through α. Figure A.3 depicts the arcs α1,α2,α3 as bold gray
portions of corresponding bisectors; the dashed black segment is r̂(x,sα). Similarly
to Section 4.2, we define attainable region R(α) of arc α as the locus of points
attainable from α. It is easy to see that the analog of Remark 4.2.1 holds for this
setting, see Figure A.3.

Let d(x,α) = d(x,sα), if x is attainable from α, and d(x,α) = ∞, otherwise.
V1(F) is a subdivision of D(F) indused by the regions defined for each α ∈ F :
reg(α) = {x ∈ D(F) | d(x,α) < d(x,γ),∀γ ∈ F,γ 6= α}. Analogously to the proof
of Lemma 4.2.1, ∪α∈F(reg(α)) = D(F).

The graph structure of V1(F) is a collection of trees. If we consider an artificial
point at infinity and connect to it all unbounded bisectors, including the unbounded
sides of F , then V1(F) is a tree.

An arc bisector b(α,γ) (sα 6= sγ) is a semicurve defined as b(sα,sγ)∩D(F).
For sα = sγ, we can define an artificial bisector b(α,γ) using a point x on an arc
β between α and γ visible from sα. Let b(α,γ) be the ray r emanating from sβ,
realizing d(sβ,x), extending towards infinity away from sβ.

Both the randomized and the deterministic algorithm can now be directly ap-
plied obtaining a linear construction algorithm for V1(F). There are two important
arc removals and re-insertions: a simple one that converts ∂Fi into an open curve;
and a crucial one that splits the open ∂Fi into two components. The re-insertion of
this arc, requires time linear in the size of A1

i and A2
i to merge the two diagrams.

In the randomized algorithm this is performed once. Similarly in the deterministic
algorithm, an arc can participate in such an operation at most once (see Theo-
rem A.1.1).

Note that ∂F∗i need not be explicitly computed. Any arc bisector incident to
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∂F∗i intersects it after its origin, and no two neighboring bisectors can intersect
before ∂F∗i . Thus, we can create the tree structure of V1(A∗i ) without computing its
enclosing boundary.

Theorem A.1.1. The order-(k+1) subdivision in a face F of the order-k Voronoi
diagram can be computed in time proportional to the complexity of ∂F.

Proof. We only clarify some technical details that differ from Section 4.4. In Step 4
we apply the combinatorial lemma of [3] to T (A∗i ), which denotes the graph struc-
ture of V1(A∗i ). Recall that the root of T (A∗i ) is an artificial point at infinity of arbi-
trary degree d, however, the combinatorial lemma assumes that all internal nodes
are of degree 3. We can easily enforce this condition by inserting d− 1 artificial
nodes of degree 3 each, that would connect the children of the root. The artifi-
cial nodes have no effect in the algorithm that applies the combinatorial lemma
(see [51]), and Lemma 4.4.2 is satisfied. This operation at most doubles the nodes
of the tree, and thus, it has no effect in the complexity of the algorithm.

Another difference is the rebuilding operation, which in Step 7 may unite two
connected components of ∂Fi, and their Voronoi diagrams, into one. In the re-
cursion tree of the deterministic algorithm, each path from the root to a leaf cor-
responds to a specific permutation Ah of the set A. By Lemma A.1.1, for any
permutation of A (and thus for any path in the recursion tree) there is at most one
arc that disconnects ∂Fi into two connected components. Each original arc corre-
sponds to one leaf of the recursion tree, and thus, to only one such path. Thus,
each original arc participates in at most one of the expensive rebuilding operations.
Each rebuilding operation takes time linear in the number of arcs participating in
it, which is in turn linear in the number of original arcs involved. Therefore, in
total during the whole execution of the algorithm, the rebuilding operations take
time O(h).

Theorem A.1.1 includes updating a nearest-neighbor segment Voronoi diagram
after the deletion of one segment in time proportional to the complexity of the
deleted region.

A.2 Appendix for Chapter 5

Proof of Lemma 5.3.1

Lemma 5.3.1. If the pair (t,s) satisfies the conditions of the input of Find-change
query, then there exists a point w in the segment ts such that w is a changing point,
in ∈ type(w), or out ∈ type(w).
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Proof. There are five generic types for the points of e, namely {in,out, l̃, r̃,mm}.
The only situation where the lemma is not fulfilled is the following: segment ts
is partitioned into subsegments of points whose only type is either r̃ or l̃, and two
consecutive such subsegments are separated by a point having mm as type. In this
case, when traveling along ts from left to right, we first find a subsegment of points
containing t whose only type is r̃, then a point w having mm as type, and then a
subsegment of points (possibly containing s) whose only type is l̃. We next argue
that in this situation w is a changing point.

Suppose that mm with multiplicity one is the only element in type(w) (due to
our assumption that no four endpoints of segments in S are cocircular, mm cannot
be in type(w) with multiplicity greater than one). Let cc′ be the segment in S such
that mm∈ type(w′) caused by cc′. We assume that c′ is contained in Dh(u)\Dh(v),
and c in Dh(v)\Dh(u). Then w ∈ fcreg(cc′) and the farthest-color disk D f (w) has
on the boundary c, c′, and no other endpoint of any segment in S. Consequently,
w` ∈ fcreg(c′). This implies that type(w′`) = {ml}, which contradicts the fact that
the subsegment to the left of w has only type r̃. Thus, there is another element in
type(w) apart from mm, and this element can only be r̃. Arguing analogously with
wr, we find that l̃ ∈ type(w).1 We conclude that w is a changing point.

Proof of Lemma 5.3.3

Lemma 5.3.3. The algorithm Search-In e computes all faces of FCVD*(S) inter-
sected by e.

Proof. Let e = uv. Segment uv satisfies the input condition of the algorithm: If
uv is shrunk infinitesimally from both sides, its endpoints are outside FCVD*(S).
This follows from Steps 13–14 of the algorithm Computing FCVD*(S).

The condition checked in Step 2 of the algorithm is justified by Lemma 5.3.2:
If the condition is not satisfied, then uv∩FCVD*(S) = /0 and we can safely stop
the search at Step 15. Otherwise, the input conditions of the find-change query are
satisfied.

By Lemma 5.3.1, the find-change query is well-defined, and there are three
possible outputs when we perform it on (u,v). If the query returns a point w such
that out ∈ type(w), then e∩FCVD*(S) = /0. In this case, the algorithm stops (see
Steps 5–6). Otherwise, a face of FCVD*(S) containing w is traced if and only if
w ∈ FCVD*(S).

1At this point, it is also possible to derive a contradiction to the general position assumption that
no four endpoints of segments of S are cocircular. However, for the sake of generality, we refrain
from relying on this assumption.
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The algorithm is called recursively for two subsegments of uv, which are uq and
q′v (Steps 12–13). We now show that each of these subsegments satisfies the input
condition of the algorithm. Indeed, points ur and v` are outside FCVD*(S) because
uv was satisfying this condition in the first place. Points q and q′ are determined
in Step 9 or Step 11, depending on the condition in Step 7. In particular, if the
condition is satisfied, i.e., w lies in a face f of FCVD*(S), then e∩ f is a line
segment (see Lemma 5.2.10). In this case, Step 9 is executed, and it assigns to q
and q′ the left and right endpoints of the segment e∩ f , respectively. This implies
that q` and q′r are outside FCVD*(S). Otherwise, Step 11 assigns both q,q′ to w
and, since w is not in FCVD*(S), neither are w`,wr.

In Theorem 5.3.1, we analyze the running time of the algorithm, and in partic-
ular we prove the algorithm terminates.

Proof of Lemma 5.3.7

Lemma 5.3.7. Let f1, f2, . . . , fk be the faces of FCVD*(S). The total number of
edges of HVD(S) and FCVD(S) intersected by these faces is O(k+ |HVD(S)|+
|FCVD(S)|).

Proof. Let I denote the total sum ∑
k
i=1 I( fi), where I( fi) denotes the number of

edges of HVD(S) and FCVD(S) that are intersected by fi. We need to show
that I = O(k + |HVD(S)|+ |FCVD(S)|). By Lemma 5.2.8, for each face fi,
fi∩HVD(S) is a connected component. Such connected component can be either
(1) a portion of a single edge of HVD(S); or (2) a component containing portions
of at least two edges. Depending on this, we call face fi a type-1 face, or a type-2
face respectively. Let t be the number of type-1 faces, and r be the number of
type-2 faces; then t + r = k. Clearly, all type-1 faces contribute t to the total sum I.
Further, one edge of HVD(S) intersects at most two type-2 faces. Thus all type-2
faces contribute at most 2 ∗ |HVD(S)| to I. Since t ≤ k, HVD(S) contributes at
most k+ 2 ∗ |HVD(S)| to I. By an analogous argument, FCVD(S) contributes at
most k+2∗ |FCVD(S)| to I. The claim follows.

A.2.1 Segments of type middle for a set of parallel segments

The key result of this subsection is the following:

Lemma A.2.1. A segment gg′ ∈ S is of type middle for at most one pure edge of
HVD(S).

We first prove an easy property of the segments of type middle:
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Lemma A.2.2. Suppose that all segments in S are vertical. Let e be a pure edge
of HVD(S) in the boundary of hreg(a) and hreg(b), for two segments aa′,bb′ ∈ S.
Suppose that segment gg′ ∈ S is of type middle for e. Then:

(a) x(a) 6= x(b).

(b) min{x(a),x(b)}< x(g)< max{x(a),x(b)}.

Proof. To prove (a), we suppose for the sake of contradiction that x(a) = x(b).
Then e is horizontal. Let u and respectively v be the left and right endpoints of e.
Since the segment gg′ is of type middle, it has one endpoint to the left of the line
x = x(a), in Dh(u)\Dh(v), and the other endpoint to the right of the line x = x(a),
in Dh(v)\Dh(u) (see Figure A.4, left). This contradicts the fact that gg′ is vertical.

To prove (b), we suppose without loss of generality that x(a)< x(b). Then e is
not horizontal, and we denote by u and respectively v the top and bottom endpoints
of e.

For any disk D, we can divide its boundary ∂D into the left-most point of ∂D,
the open circular arc containing the upper half portion of ∂D (called top chain), the
right-most point of ∂D, and the open circular arc containing the lower half portion
of ∂D (called bottom chain). Since aa′ is vertical and Dh(u) contains both a and a′,
a is not the left-most or right-most point of ∂Dh(u). Suppose that a belongs to the
top chain of ∂Dh(u). Then we deduce that y(a′)< y(a). Since Dh(v) also contains
both a and a′, we get that a belongs to the top chain of ∂Dh(v). So a belongs to
the top (resp., bottom) chain of ∂Dh(u) if and only if a belongs to the top (resp.,
bottom) chain of ∂Dh(v). The same argument applies to b.

Now there are several possibilities, depending on a and b being in the top or
bottom chains of ∂Dh(u) and ∂Dh(v). The arguments for all cases are similar, so
we only explain the case where a and b belong to the top chains of ∂Dh(u) and
∂Dh(v). In this case, u and v lie in the portion of bh(a,b) below the lines y = y(a)
and y = y(b) (and recall that y(u) > y(v)) (see Figure A.4, center). Either g or g′

lies in Dh(u)\Dh(v), so in particular in the portion of Dh(u) above the segment ab.
Since a and b belong to the top chain of ∂Dh(u), this portion lies between the lines
x = x(a) and x = x(b). Thus we obtain x(a)< x(g)< x(b).

We are now ready to prove Lemma A.2.1.

Proof of Lemma A.2.1. We assume that all segments in S are vertical. We proceed
by contradiction. So let us assume that the segment gg′ is of type middle for two
pure edges of HVD(S), namely e1 and e2. Let e1 be in the boundary of hreg(a)
and hreg(b), for two segments aa′,bb′ ∈ S (see Figure A.4, right). Analogously,
e2 is in the boundary of hreg(c) and hreg(d), for two segments cc′,dd′ ∈ S. By
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Dh(u)
Dh(v)

Dh(u)

a

b

u

bis(a, b)
a

g′
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b
Dh(u1)

Dh(v1)

Figure A.4. Left: Case where x(a) = x(b). Center: Either g or g′ lies in a
portion of Dh(u) between the lines x = x(a) and x = x(b). Right: The segment
gg′ is of type middle for e1.

Lemma A.2.2a, x(a) 6= x(b) and x(c) 6= x(d). Without loss of generality, we sup-
pose that x(a)< x(b) and x(c)< x(d). We also assume that y(g)< y(g′).

Consider the disk having a,b and g on the boundary; this disk corresponds to a
disk Dh(w1), for some point w1 on the edge e1. Analogously, the disk having c,d
and g on the boundary corresponds to a disk Dh(w2), for some point w2 on e2.

Since, by Lemma A.2.2b, x(a) < x(g) < x(b), the line x = x(g) intersects
∂Dh(w1) twice. One of these intersection points is g, and we next show that the
second intersection point, called t1, is above g. Since the line through a and b
leaves g and g′ on opposite sides, and since x(a) < x(g) < x(b), the segment ab
intersects the segment gg′. The intersection point lies above g and, by convexity,
it is contained in Dh(w1). This implies that g is in the bottom chain of ∂Dh(w1)

and, consequently, t1 is above g (see Figure A.5, left). Analogously, the second
intersection point t2 between ∂Dh(w2) and x = x(g) also lies above g. Without loss
of generality, we assume that y(t1)≥ y(t2). We divide the rest of the argument into
several cases.

g

t1

t2

Dh(w1)

Dh(w2)

d g

t1

t2

Dh(w1)
Dh(w2)c

c′
d′

g

Dh(w1)

Dh(w2)

a
d′

t1

t2

d

a′

Figure A.5. Left: Case where the four segments are distinct and the second
intersection point between ∂Dh(w1) and ∂Dh(w2) is to the left of x = x(g).
Middle: Case where the four segments are distinct and the second intersection
point between ∂Dh(w1) and ∂Dh(w2) is to the right of x = x(g). Right: Case
where a = c′.
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We start by considering the case where the four segments aa′,bb′,cc′, and dd′

are distinct. Because w1 is in the boundary of hreg(a) and hreg(b) and the four
segments are distinct, Dh(w1) contains at most one of {c,c′} and at most one of
{d,d′}. Analogously, Dh(w2) contains at most one of {a,a′} and at most one of
{b,b′}. Consequently, none of Dh(w1),Dh(w2) contains the other, and ∂Dh(w1)

and ∂Dh(w2) intersect at g and at a second point. If this second point lies to the left
of the line x = x(g), then the portion of Dh(w2) to the right of x = x(g) is contained
in Dh(w1) (see Figure A.5, left). Consequently, dd′ is in Dh(w1), yielding a con-
tradiction. If the second intersection point between ∂Dh(w1) and ∂Dh(w2) lies to
the right of the line x = x(g), then cc′ is in Dh(w1) (see Figure A.5, center). If the
intersection point lies on x = x(g), then y(t1) = y(t2), and we obtain that Dh(w1)

contains cc′ or dd′.
Let us look at the remaining cases. Since x(a)< x(g)< x(b) and x(c)< x(g)<

x(d), the intervals (x(a),x(b)) and (x(c),x(d)) have non-empty intersection. This
implies that aa′ 6= dd′ and bb′ 6= cc′ (and obviously aa′ 6= bb′ and cc′ 6= dd′). There-
fore, the two remaining cases are aa′ = cc′ and bb′ = dd′. We divide the first one
into two subcases, namely, a = c and a = c′.

If a = c, the second intersection point between ∂Dh(w1) and ∂Dh(w2) is a,
which lies to the left of the line x = x(g). If bb′ 6= dd′, then dd′ is contained in
Dh(w1), yielding a contradiction. If bb′ = dd′, then, since b lies on ∂Dh(w1) and d
lies on ∂Dh(w2), we have that b 6= d. But then b = d′ lies on the portion of ∂Dh(w1)

to the right of x = x(g), that is, outside Dh(w2), yielding a contradiction.
If a = c′, due to the assumption that y(t1) ≥ y(t2), we have that a is in the

bottom chain of ∂Dh(w1) and a′ = c is in the top chain of ∂Dh(w2) (see Figure A.5,
right). Then the second intersection point between ∂Dh(w1) and ∂Dh(w2) lies to
the left of x = x(a), and we also have that dd′ is in Dh(w1) (if bb′ 6= dd′) or that d′

is outside Dh(w2) (if bb′ = dd′).
In the last case, bb′ = dd′. This case is symmetric to the previous one, and it

also yields a contradiction.
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