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In the twenty-first century the
robot will take the place which
slave labor occupied in ancient
civilization. There is no reason at
all why most of this should not
come to pass in less than a century,
freeing mankind to pursue its
higher aspirations.

Nikola Tesla (1856 - 1943)

Robots of the world! The power of
man has fallen! A new world has
arisen: the Rule of the Robots!
March!

R.U.R (1920)
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Abstract

Although robotics research has seen advances over the last decades robots are
still not in wide-spread use outside industrial applications. Yet a range of pro-
posed scenarios have robots working together, helping and coexisting with hu-
mans in daily life. In all these a clear need to deal with a more unstructured,
changing environment arises.

I herein present a system that aims to overcome the limitations of highly
complex robotic systems, in terms of autonomy and adaptation. The main focus
of research is to investigate the use of visual feedback for improving reaching and
grasping capabilities of complex robots. To facilitate this a combined integration
of computer vision and machine learning techniques is employed.

From a robot vision point of view the combination of domain knowledge from
both imaging processing and machine learning techniques, can expand the capa-
bilities of robots. I present a novel framework called Cartesian Genetic Program-
ming for Image Processing (CGP-IP). CGP-IP can be trained to detect objects in the
incoming camera streams and successfully demonstrated on many different prob-
lem domains. The approach requires only a few training images (it was tested
with 5 to 10 images per experiment) is fast, scalable and robust yet requires
very small training sets. Additionally, it can generate human readable programs
that can be further customized and tuned. While CGP-IP is a supervised-learning
technique, I show an integration on the iCub, that allows for the autonomous
learning of object detection and identification.

Finally this dissertation includes two proof-of-concepts that integrate the mo-
tion and action sides. First, reactive reaching and grasping is shown. It allows
the robot to avoid obstacles detected in the visual stream, while reaching for the
intended target object. Furthermore the integration enables us to use the robot
in non-static environments, i.e. the reaching is adapted on-the-fly from the vi-
sual feedback received, e.g. when an obstacle is moved into the trajectory. The
second integration highlights the capabilities of these frameworks, by improving
the visual detection by performing object manipulation actions.
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Chapter 1

Introduction

In the last century robots have transitioned from science fiction to science fact.
After centuries of imagining automated machines that would help humans, the
last few decades brought into existence an ever growing number of these pro-
grammable appliances. The field of robotics developed from interdisciplinary
research in the fields of electronics, mechanics and computer science, with the
first prominent robots, such as the famous Unimate [Devol, 1961] and Shakey
[Nilsson, 1969, 1984], appearing in industry and academia during the 1960s.

While there are thousands of robotic systems fulfilling automation tasks in
factories nowadays, robots are not yet in wide-spread use outside of industrial
applications. The research of the robotics community has shifted more and more
towards other areas of utilization, for example, the use of robots in household or
healthcare settings. For robotic systems to perform tasks in such environments,
which are not specifically designed for robots, a better understanding of the sit-
uation is required. Creating robots that can perceive or ‘see’ their surroundings
is an important prerequisite to allow for more adaptive and more autonomous
operation of robotic systems, especially in dynamic environments. For example,
when robots are working close to or in cooperation with human beings.

The main aim of this dissertation is to overcome some of the limitations of
current robots in such settings. Focus is put on our complex humanoid robot and
its object manipulation skills in unstructured environment. As a better perception
and coordination between sensing and acting is expected to be one of the key re-
quirements to increase current robotic capabilities [ Ambrose et al., 2012; Kragic
and Vincze, 2009]. In this document, I present a novel approach to robotic vision
and describe its integration with the motion side. This method was developed,
deployed and demonstrated on a real robotic platform, the iCub.



Overview

This dissertation covers quite distinct areas of research, namely machine learn-
ing, computer vision and motion generation, but aims to combine those into an
integrated, working system on a real robotic platform. After a short introduction
and historical overview of robotic systems in Chapter 1, Chapter 2 shows how
and why these various areas of research are related, as well as how I integrated
them.

To enable the goal of having a system that can, on one hand improve the
actions performed by using visual feedback, and on the other, improve also the
visual perception by performing manipulation actions, a flexible way of repre-
senting, learning and storing of visual object descriptions is needed. Chapter 3
describes icVision and CGP-IP, two frameworks and a novel approach, developed
during the course of this PhD project, to provide our robot with exactly those
capabilities. CGP-IP allows for the learning of object detectors from very small
datasets — the experimental results are achieved with using only between 5 and
20 images for training — making it quite easy to be deployed quickly on robotic
platforms. Chapter 3 furthermore includes a novel approach to learn spatial per-
ception, i.e. enabling the robot to estimate distances without the need for special
stereo camera setups, depth cameras or lasers. Again the focus is on how to learn
this on a complex robotic platform with small datasets.

Chapter 4 is describing the action side required for eye-hand coordination.
The main contribution is the development of a simple grasping subsystem, the
interfaces with other tools developed at IDSIA, namely MoBeE and TRM, the in-
vestigation of recorded human motions using ML, as well as, how to control a
complex robot from limited and noisy user inputs, e.g. biosignals such as elec-
tromyography (EMG) recordings.

Based on the description of the perception and actions sides, Chapter 5 details
the integration of those subsystems. My experimental results show that (and
how) the visual detection can be used to improve the robot’s actions, especially
to create reactive reaching capabilities not previously seen on the iCub. This
enables the robot to avoid dynamic obstacles while reaching for target objects.
The robot’s ability change the environment in turn creates novel observations
leading to better classification of the objects in the scene. The second part of
the integration experiments show how through this interaction, based on a set
of pre-defined actions, the robot can learn a better visual representations.

Finally Chapter 6 concludes this dissertation and provides comments on some
possible future research avenues to pursue.
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1.1 Background: Robots and Robotic Systems

Robots and robotic research has seen an increase of interest from the general
public over the last few years. The recent acquisition of robotics companies by
Google, the increasing number of news articles and discussions about the use
of aerial drones in the media, and the promise of self-driving cars, all play their
role in how the general public perceives robots. New developments, such as from
robotics challenges that “[ push] beyond the boundaries of current technological
systems” (such as Defense Advanced Research Projects Agency (DARPA) in the
United States), especially in the area of robotics, have promised and delivered
fully integrated systems [Lima et al., 2014]. The developed advanced robotic
capabilities, sometimes quite bizarre-looking, all lead to extensive worldwide
coverage, most recently with the videos high-lighting the capabilities of the Atlas
humanoid robot (see Figure 1.4). All these robots perform complex operations
— like traversing a variety of terrains robustly, using tools, such as, a power drill
and sledgehammer - in contrast to plain “industrial robotics” tasks, which are
performed on factory floors all over the world. Coincidentally, these involved
behaviours are the skills very commonly possessed by robots in science fiction.
Probably more than any other technology, with maybe the exception of space-
ships, robots have been imagined in books and movies long before the first of
these ‘mechanical helpers’ were built in research labs or deployed for factory
automation. In fact tales of automatic machines and artificial people are found
commonly all throughout history. The term automata has been used throughout
history all around the world to describe ‘self-operating machines’.

The word stems from Greek aUtéuatov, meaning “acting of one’s own will”.
The first use can be traced back all the way to Homer, who describes automatic
door opening systems and self-propelled, wheeled tripods [Homer and Fagles,
1990]. There are many examples of automata and artificial men in mythology,
e.g. the Greek god Hephaestus built automata of metal to help him build the
weapons in his workshop (supposedly located below Mount Etna). Other note-
worthy tales include the Jewish golems and Norse giants, both made out of clay.
Dreamers, inventors and thinkers throughout the times have attempted to design
such machines, often resembling humans or animals in form, including Ancient
China, Ancient Greece, and Ptolemaic Egypt [Wikipedia, 2014]. Prominent early
examples include, the artificial pigeon of Archytas (fifth century BC), the organs
and water-clocks with moving parts by Ctesibus (third century BC), and a ‘speak-
ing’ automaton by Hero of Alexandria (first century BC).

One of the earliest recordings of a humanoid robot can be found in the man-
uscripts of Leonardo da Vinci. Around 1490 he sketched and described in detail
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Figure 1.1. Leonardo da Vinci’s mechanical knight: sketches on the left, rebuilt
and showing its inner workings on the right. (Courtesy: Wikipedia/E. Moller)

the workings of his ‘mechanical knight’ [Rosheim, 2006]. It consisted of three
degrees-of-freedom (DOF) legs and arms with four DOF (Figure 1.1).

Robots in Science Fiction

These early stories resemble what we nowadays imagine a robot to be and what
we would like a robot to do. There exist many interpretations of what a robot is
— the Oxford English Dictionary provides a good definition of the word:

* a machine capable of carrying out a complex series of actions automatically,
especially one programmable by a computer

— (Especially in science fiction) a machine resembling a human being and
able to replicate certain human movements and functions automatically

— person who behaves in a mechanical or unemotional manner

The word itself stems from the Czech word robota meaning ‘forced labour’
or ‘servitude’. Its first is nowadays typically traced back to the early twentieth
century and accredited to Czech writer Karel Capek [1920]. His play “R.U.R:
Rossum’s Universal Robots”, published in 1920, premiered in January 1921 in
Prague before spreading quickly all over Europe and the USA (see cover and
poster of the play in Figure 1.2). Against the backdrop of the industrial revo-
lution and the start of mass production it tackles the issues, ethics and impacts
of technological progress on society. It became famous and influential quite fast
with its thought-provoking and controversial look at the influence of the assem-
bly line to society.
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The word robot was applied to artificial beings, made out of synthetic or-
ganic matter — which today would be more referred to as cyborgs or androids —
to replace factory workers and reduce the cost of production. Its dark outlook
— in the play the robots start to rebel and extinguish the human race - is in-line
with other similar stories, such as most famously Mary Shelley’s “Frankenstein”,
describing a certain phobia against technology and it eventually surpassing hu-
mans. While technology has shown capabilities far beyond what humans can do,
from the telephone to computers, robots and their abilities to outperform manual
labor have led to a certain anxiety in the general public.

In motion pictures robots appeared already in, what is nowadays considered
the first feature length science fiction movie, the 1927 silent film “Metropolis”
directed by Austrian filmmaker Fritz Lang. In it a robot is built to look like a
human being, and disguised as such, carries out the creators strive for revenge.

Robots have since been depicted in a wide variety of movies and in various
forms. Notable examples are the on-board intelligence HAL in the 1968 movie
“2001: A Space Odyssey” by Stanley Kubrick, and the intelligent talking bombs
from “Dark Star” (1974). From R2-D2 and C-3PO the robot team in George
Lucas’ 1977 movie “Star Wars”, and Marvin the Paranoid Android from the 1981
TV series “The Hitchhiker’s Guide to the Galaxy” all the way to Bender in the
1999 TV series “Futurama”.

Astro Boy ( #87 ~ L. Tetsuwan Atom or Mighty Atom in Japanese) is the
main character in manga stories, comics and TV shows of the same name, created
by Osamu Tezuka. It is a powerful robot built by Dr. Tenma, a Japanese scientist,
with the aim to replace his son, who died in an accident. While Tenma realises
that the robot will not be able to fill the void the death of his son left and sells
him, Astro is then taken care of by Prof. Ochanomizo, who soon realises that

Figure 1.2. The cover of the first edition book of R.U.R published in 1920 (left).
A poster of the ‘R.U.R’ stage performance in New York, 1939 (right).
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Astro has superior powers and skills, as well as the ability to experience human
emotions. The stories then show the robot fighting crime, evil, and injustice. The
villain are mostly robot-hating humans, robots gone berserk, or alien invaders.

The series is set in a futuristic world, an ’analog’ where robots co-exist with
humans. It was created prior to Japan having a reputation for science and tech-
nology that it has gained since. Although the stories were aimed at children they
cover societal and political topics. The world described with its advanced tech-
nological progress is threatening to radically transform human culture. Not only
does it discuss the loss of many human jobs to robots, but also the social up-
heaval both from the now unemployed workers but also the robots themselves,
that having become so sophisticated want to be recognise as another sentient
species. The robots (and the humans who support them) often face a fierce po-
litical and social struggle to secure robot rights against humans who, fearful of
change, often offer violent resistance. Astro Boy, however, serves as a bridge
between humans and robots, fighting to defend both and establish peace and
friendship between them. Astro Boy has clearly had an impact on society, espe-
cially in Japan. When talking to Japanese roboticists, the helpful robot is very
often a topic of discussion. Many of them started their research by trying to
create artificial helpers, just like shown in the stories, explaining the “rampant
robophilia” [Morton, 2014].

In the US the counterpart would be Rosie from the 1962 animated TV show
“The Jetsons”. Rosie is the household robot of the Jetson family, performing a
variety of housework tasks and even some parenting. While she is portrayed as
a strong authoritarian character, the family loves her and would never trade her
for the newer model available. It again influenced a generation of kids interested
in science and technology. In contrast to the technological progress leading to
social issues, herein robots and how they are perceived and ‘humanised’ by the
family is the main discourse.

Eventually every review of robots in science fiction and also every introduc-
tion to robotics will need to discuss the works by Isaac Asimov. Between 1950
and the late 1980s he authored many books on the topic of robots and robotics
research. He realised that the clash between what was pre-programmed and
what humans expected of, wanted from and feared in their robots was an in-
teresting area to generate stories. Most of his writings touch the subject of the
“Three Laws of Robotics” and their short-comings. These laws are encoded in
“positronic brains” and are the following [Asimov, 1942]:

1. A robot may not injure a human being or, through inaction, allow a human
being to come to harm.
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2. A robot must obey the orders given to it by human beings, except where
such orders would conflict with the First Law.

3. A robot must protect its own existence as long as such protection does not
conflict with the First or Second Law.

Later in his books a Zero-th Law was introduced, which aims at not allowing
humanity, not just single individuals, come to harm through a robots actions or
inaction. While these tales were probably meant as a parable on what it means to
be human in a more and more technologically-driven world, they have influenced
the perception of robots in the public.

In almost every story the three laws lead to specific, ‘interesting’ issues, aris-
ing just because of the strictness of these laws and the ill-defined terms used. Yet
we, as roboticists, get asked quite often why current robot systems do not have
those laws embedded (putting aside the issues of implementing these, e.g. cur-
rent vision system have a really hard time to decide whether a set of pixels is a
human or not). This rather interesting reaction would be interesting to research
from a psychological and human-robot-interaction perspective.

To some extent robots remain still in the realm of science fiction today. Al-
though there has been much written about robots and tasks envisioned for these
advanced machines, robotics research is still a long way from these autonomous,
fully capable devices. They may have appeared in factory floors as already in-
troduce by “R.U.R.”, but they continue to be very specific machines, instead of
the envisioned ‘mechanical men’ able to perform a wide variety of tasks. Yet
the robots built in research labs continue to be shaped by expectations created
by fiction. On the other hand these tales also shape the expectations of what
robots should and are able to do in the mind of the general public. This espe-
cially leads to the underwhelming sensation that movies and demonstration of
robotics research leave within non-roboticists. A current example can be found
in the coverage in the media and the comments on blogs and internet forums
regarding the DARPA Robotics Challenge trials. It is seen that the expectations
were clearly higher, though they vary a lot between different audiences.
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Robots in Industry and Research

The research field of robotics came about by combining the progress in a vari-
ety of research disciplines. Interdisciplinary research in the fields of electronics,
mechanics and computer science, led to the first robots to appear in academic
labs and industry. George Devol was granted the first patent on an actual robotic
system in 1954. Together with Joseph Engelberger he created Unimation Inc.,
the company which sold their Unimate robots. It is generally considered the first
commercial, industrial robot and was used on General Motors’ assembly line
starting in 1961. It consisted of a mechanical arm that was mounted on rails
and had its motion encoded magnetically on a rotating drum [Devol, 1961]. The
main use of this robot arm was transporting and welding of die castings onto
car bodies, a dangerous job to the human workers who could be poisoned by
the gasses or are in danger of losing a limb. This already shows what the aim of
most industrial robotics is: taking over jobs that are “dull, dirty, or dangerous” to
humans. Today automobile manufacturers are still the largest users of robots as,
e.g. to assemble cars, although recent years saw an increase in robotic labour for
other tasks, such as, domestic cleaning (‘boring’), exploration of the solar system
or hard-to-reach places on Earth (‘inaccessible’).

In industry, the vision of Devol and Engelberger of robots automating a wide
variety of production tasks is nowadays a reality. Millions of robots are used in
factory floors all over the world and perform a variety of repetitive tasks; they
build or handle the majority of products we buy today. Companies such as ABB
or KUKA provide these descendants of the Unimate, usually referred to (indus-
trial) robot arms or manufacturing robots. These ‘manipulators’ are generally
mounted on a fixed base and provide a high-speed, high-precision work unit. To
ensure safety the robot acts in a very structured environment and humans are
not allowed within its vicinity. The Stanford arm, designed in 1969, was the first
6-axis arm. It allowed to follow arbitrary paths in the operational space. Later
the MIT arm, designed by the same roboticist, built on the previous iteration
and eventually the design was sold to Unimation. Further developed lead to the
marketable product called “Programmable Universal Machine for Assembly” or
PUMA (Figure 1.3).

In Europe ABB Robotics and KUKA Robotics brought similar robots to the
market in the 1970s. Interest in robotics increased in the late 1970s, with many
companies entering the market, leading to a peak in 1984 when Unimation was
sold and became Stdubli-Unimation. Since then the market has solidified and
robotic arms sales rankings are now lead by Japanese companies with only a
handful of others to survive (including ABB, KUKA and Comau).
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The same technology was also applied in riskier scenarios, such as, nuclear
facilities, where the arms were used for loading fuel and facility maintenance.
Another area was and still is the exploration of space. In the 1970s the first
design for the NASA Space Shuttle (officially called ‘Space Transportation Sys-
tem’ or short STS) included plans for a remote manipulator system. A Canadian
consortium designed a robotic arm that could deploy and retrieve space hard-
ware from the payload bay of the orbiter. On November 13, 1981 mission STS-2
deployed the Canadian-built robot arm, named Canadarm for the first time. In
2001 an iteration of this arm, named Canadarm2 (see Figure 1.3), was delivered
to the International Space Station to support assembly in space. It is a 17 metre-
long arm and is still in use, for routine operations to move supplies, equipment,
capturing and docking of resupply spacecraft and even astronauts.

Robotics, as mentioned above, can be traced back even to ancient human
stories. Research into robotics, as we see it nowadays, blossomed around the
middle of the 20th century. In 1948 Norbert Wiener formulated the principles
of cybernetics, in which he laid the theoretical foundation for servo motors and
mechanisms, automatic navigation, analog computing, and reliable communi-
cations [Wiener, 1948]. His works started a lot of scientific endeavours into
understanding life and creating artificial, intelligent ‘machines’ and is arguably
the basis of practical robotics.

The famous Shakey, created at the Stanford Research Institute (SRI, now
called SRI International) [Nilsson, 1969, 1984] in the 1960s, is commonly con-
sidered one of the first general-purpose mobile robots with the ability to reason
about its own actions. Mobile robots, in contrast to robotic arms, are a class
of robots that can move through its surroundings by some means of locomo-

Figure 1.3. Early examples of industrial robot arms on the left: the Unimate and
PUMA robots created by Unimation. On the right the Canadarm2, in use on the
International Space Station, here shown while ‘catching’ the HTV un-piloted
resupply vessel.
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tion. The development of Shakey resulted in several notable results that had
wide impact on the fields of robotics and artificial intelligence, as well as com-
puter science in general. Some of the more notable results include: the develop-
ment of the A* search algorithm, which is widely used in pathfinding and graph
traversal; the process of plotting an efficiently traversable path between points
[Hart et al., 1968]; the Hough transform, which is a feature extraction technique
used in image analysis, computer vision, and digital image processing [ Duda and
Hart, 1972]; and the visibility graph method for finding Euclidean shortest paths
among obstacles in the plane [Lozano-Pérez and Wesley, 1979].

SRI published a 24-minute video in 1969 entitled “SHAKEY: Experimenta-
tion in Robot Learning and Planning” and in its honour the Association for the
Advancement of Artificial Intelligence (AAAI) nowadays awards trophies, named
Shakeys, once a year to the best robot and artificial intelligence videos published.
Avideo describing our work at IDSIA on motion planning for complex, bi-manual
tasks with the iCub was awarded a Shakey in 2013.! In the 1980s the digital
revolution, yielding programmable personal computes and embedded systems,
kick-started the creation of robotic systems and their use in large scale indus-
trial production. As mentioned, robotic arms are fulfilling automation tasks in
factories all over the world nowadays. In recent years the field is moving to-
wards other areas of utilization, where a structured, static environment can not
be assumed and therefore autonomy and adaptation are of importance.

A field of robotics that can highly benefit from increased autonomy in robotic
systems is (robotic) space exploration. In space all communication is limited
by high-latency, low-bandwidth channels to Earth. Therefore all spacecraft cur-
rently in use are designed to act autonomously whenever possible. These in-
clude usually tasks like antenna pointing, star tracking, and failure recovery. The
first extra-terrestrial surface exploration in the 1970s done by the Soviet rovers
exploring the Moon used a 5-man team of “drivers” on Earth to tele-operate
the robot [Huntress et al., 2003]. In 1997 the Sojourner rover became the first
robot to autonomously drive on another planet. Its capabilities included a semi-
autonomous, purely-reactive terrain navigation [Mishkin et al., 1998]. The cur-
rent Mars Exploration Rovers (MER) were given incremental software updates
during their (exceptionally long) stay on Mars, providing also more intelligence
on-board. For example, currently visual pose estimation, target investigation and
tracking, can be done fully autonomously on Mars. Recently also autonomous
science detection [Bajracharya et al., 2008]. These were especially useful dur-
ing dust devil detection, where on-board image analysis was used to detect and

Video: http://www.aaaivideos.org/2013/06_task_relevant_roadmaps/
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photograph relevant science events and if successful transfer those images back
to Earth [Castano et al., 2008].

Reliable robots are needed, not just for space but also in other areas. Espe-
cially when one takes the robots out of their safety cages, or prepared settings on
the factory floors. It has proven hard to make robots that can work around hu-
mans. This is of particular interest for domestic robots. While there are nowadays
already millions of robot vacuum cleaners wandering the homes of people, they
are not very autonomous or adaptable. They still are rather ‘dumb’ and require a
‘safety fence’ (defining the area of operation) and cannot deal with with a variety
of situations encountered in a normal household, such as, changes of floor types
(carpet/hardwood/...), pets, dirty laundry left on the floor. The use of more com-
plex robots in household settings has been proposed, for example, ranging from
cleaning tasks, grocery shopping to helping in care facilities and even hospitals.
These involve the robots working around humans — assisting and coexisting — in
daily life situations. The challenges within these scenarios stem form the need
to adapt autonomously to the behaviour of dynamic, hard-to-predict entities. In
addition these environments tend to be made for humans, unlike on the factory
floor, where a focus is put on making the setting robot-friendly, for example, fixed
lighting, no-go zones for humans, semi-fixed positions, and so forth.

State-of-the-art humanoid robots such as Honda’s Asimo [Sakagami et al.,
2002], NASAs Robonaut and R2 [Bluethmann et al., 2003; Diftler et al., 2011],
Toyota’s Partner Robots [ Takagi, 2006], Justin and TORO [Ott et al., 2012] from
the German Aerospace Center (DLR), Atlas by Boston Dynamics (an iteration of
PETMAN [Nelson et al., 2012]), and not least the iCub [ Tsagarakis et al., 2007 ]
are stunning features of engineering (Figure 1.4).

These robots are capable of producing complex, repeatable motions allowing
them to walk, run and manipulate delicate objects such as musical instruments
[Kusuda, 2008; Solis and Takanishi, 2011]. The caveat is that every last detail
of these behaviours is currently programmed by hand (often with the help of ad-
vanced tools, such as for example, Aldebaran’s Choregraphe). As a result those
resourceful machines, full of capabilities, are not yet realising their full potential
due to the complexity of programming them in a flexible way. At the same time
the development of common platforms leads to robust and reusable techniques
for certain sub-problems, such as, basic perception, navigation — including local-
ization and mapping — and even control and manipulation. There is a common
consensus that the next big leap in robotics will come by adding higher capacity
to adapt for the robots to changes in the environment or to unexpected circum-
stances.
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Current state-of-the art robotic systems are still very limited in their abilities
to adapt. Along with the concept of adaptiveness comes the notion of acting au-
tonomously. To exploit the full versatility of an advanced robot, a broad spectrum
of actions is required. In recent years the interest of the robotics community in
Artificial Intelligence and Machine Learning techniques as tools to build intelli-
gent robots has increased. At the same time, the ML community has shown an
increased interest in robots as an ideal test bench and application for new al-
gorithms and techniques [Konidaris, 2013]. It uses these techniques, and tests
them, in a physical entity and real environments to interact/move in.

This ‘embodiment’ - i.e., the claim that having a body that mediates percep-
tion and affects behaviour plays an integral part in the emergence of the various
parts of human cognition — is seen as an important condition for the development
of cognitive abilities in robots (see Chapter 2.1).

Figure 1.4. Examples of state-of-the art humanoid robots: Asimo (Honda), Co-
man (IIT), Justin (DLR), Partner (Toyota), Robonaut R2 (NASA/GM), REEM-C
(PAL), Romeo (Aldebaran), Valkyrie (NASA).
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Pushing beyond the state-of-the art in real-world applications

In many industrial nations robots are performing a vast selection of automation
tasks. These though are performed in very well-defined, clean environments,
such as factory floors. In the last years a clear trend to create more and more
adaptive and autonomous robotic systems. The aim to push beyond the state-
of-the art robotic systems and away from industrial robotics can clearly be seen
when looking at the research projects funded all over the world.

Already mentioned briefly above DARPA in the US is funding research projects
to push beyond the state-of-art in robotics. Mainly with the goal to build systems
that can actually perform a variety of operations in a wide range of scenarios. Itis
worth mentioning that although DARPA is a US government body, international
participation in trials and projects is quite common and encouraged. The recent
DARPA grand challenge is open to roboticists from all over the world, and the
Japanese team SCHAFT won the first round of trials. The finals are scheduled
for mid-2015.

The appearance of robotic systems, as envisioned in books and movies, was
followed with the disappointment that the real-world systems were far away from
the described marvels in fiction. They do certain things that humans cannot
do for themselves, like exploring space, or perform specific tasks better than
humans, like picking up thousands of pieces from a conveyor belt every day. Yet
reliable robot systems — especially ones similar to those described in fiction —
have not yet appeared. It has proven to be hard to build autonomous systems
that can deal with the uncertainty of the sensing and other issues of the real-
world. Although there are around 10 million robotic vacuum cleaners roaming
the floors, these robots seem still pretty stupid.

To push beyond the state-of-the art for fully integrated robotic systems DARPA
has had a variety of research calls, grants and projects. The list of DARPA spon-
sored robotics projects is long, with the most prominent in the last years being:

* DARPA Urban and Grand Challenges, which highlighted the autonomous
driving capabilities of cars, (2004-2012)2

* Revolutionizing Prosthetics program, leading to the DEKA/"Luke" Arm project,
which developed dexterous, prosthetic, robotic devices for lower arm am-
putees, (2006-2014)

2Prior cars had shown impressive features of self-driving: driving for hundreds of kilometres
on paved, structured highways, at high speeds, with quickly moving obstacles, solely relying on
vision [Dickmanns, 1997].



14 1.1 Background: Robots and Robotic Systems

* BigDog/LS3 robot, which was developed as a legged support system for
military squads (‘robotic mule’), (first contract in 2009)

* Atlas project, which created a bipedal humanoid (unveiled 2013) to be
used in,

* DARPA Robotics Challenge, which aims to improve the use of robots in
disaster response scenarios (2012-2015)

For robots to become useful and perform far wider ranges of interesting tasks,
they do not necessarily have to become fully autonomous. Robots are far away
from mimicking human-like perception and action skills, yet they can be seen as
extending human capabilities. One thing that will be seen in the future is that,
more and more humans will come and work together with robots to fulfil tasks
they cannot do alone, or otherwise do so easily.

There are currently still no robotic systems available that perform autonomous
dexterous manipulation (or do so only in very limited settings). The fields of
robotics and computer/robotic vision have recently seen a steep increase of ded-
icated funding. In the US DARPA is investing a lot of resources (as mentioned
above), in Europe a recent funding scheme was started (“SPARC”) and referred
to as “the biggest civilian robotics research programme in the world”.® Previ-
ously projects like, for example, eurathlon, were trying to test robotic systems
outside of lab conditions, in the real world. In the last year the EU funded two
more projects that are focussing on developing robotic systems for real-life ap-
plications, namely

e Eurathlon*: a outdoor robotics competition, which invites teams to test
the intelligence and autonomy of their robots in realistic mock emergency-
response scenarios

e RoCKin’: split into a work and home scenario, this project aims to build
more robust, dependable robots

 EuRoC®: which focuses on developing smarter industrial robots and build-
ing connections between industry and research

Also in Australia the government recently provided funding for the creation
of a Centre of Excellence in Robotic Vision’, to “solve robotic vision once and

3http://sparc- robotics.eu/
*http://www.eurathlon.eu/site/
Shttp://rockinrobotchallenge.eu
®http://euroc-project.eu/
“http://roboticvision.org/


http://sparc-robotics.eu/
http://www.eurathlon.eu/site/
http://rockinrobotchallenge.eu
http://euroc-project.eu/
http://roboticvision.org/
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for all”, following their investment into the Centre of Excellence for Autonomous
Systems®, which ran until 2010.

At IDSIA the iCub robot, a state-of-art high degree-of-freedom (DOF) hu-
manoid, is available (see Figure 1.5) which was specifically designed for object
manipulation research in robotic systems. The history of robotics shows that the
expectations tend to be higher than what is currently possible. This is even more
so the case when using humanoid robots. The iCub is far from having the ca-
pabilities described in science-fiction. While there are many topics to address in
research to build ‘intelligent robots’, the overarching goal of this research is to
extend the capabilities of our experimental platform. Particularly the interest lies
in enabling a better perception and a tighter integration of the perception and
actuation sides for more autonomous and more adaptive behaviours.

8http://www.cas.edu.au/

Figure 1.5. Our research platform, the iCub humanoid robot.


http://www.cas.edu.au/
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Chapter 2

Towards Autonomous Object
Manipulation in (Humanoid) Robots

One of the most important problems in robotics currently is arguably to improve
the robots’ abilities to understand and interact with the environment around
them: a robot needs to be able to perceive, detect and locate objects in its sur-
rounding and then be able to plan and execute actions to manipulate these.

To decide and act in unstructured environments, the robot needs to be able
to perceive its surroundings, as it is generally not feasible or possible to provide
the robot with all the information it needs a priori. This might be because of
hardware limitations, such as limited storage space, or because the information
is simply not available or unknown at the time (the most striking example for
this is robotic space exploration). Therefore to extend robotic applications the
need for more autonomous, more intelligent robots arises. Sensory feedback,
that is the robot’s perception, is of critical importance. Creating a useful percep-
tion system is still a hard problem, but required for acting in a purposeful, some
might say ‘intelligent’, way. In order to work naturally in human environments
robots will need to be much more flexible and robust in the face of uncertainty
and incomplete or previously unseen observations. The main aim is to answer
the question, whether it is possible (and if so how) for a humanoid robot to use
vision and visual feedback to improve, not just its perception, but also its reach-
ing, grasping and (general) manipulation skills. Sensory information collected
might be incomplete or inconsistent demanding means of managing uncertainty.
Research in the fields of Al and ML has extensively explored ways of dealing with
incomplete information in the last decades. On the other hand a wide range of
sensors have been used to build models of the environment the robot is placed in.
Yet visual feedback, though it tends to be harder to interpret than other sensory

17



18 2.1 Background

information, is a very promising and active research area. A good motivation
is that our world is built around (human) visual perception, which also means
that to allow ‘natural’ interaction of robots it needs to be able to understand its
environment based on the camera images it receives.

Another aspect that makes human interactions seem ‘natural’ is our capability
of adapting to changing circumstances during action execution. In a robot con-
text this is important, as even if the environment can be perceived precisely, it
will not be static in most (interesting) settings. For this reason the robot needs to
embody a certain level of adaption also on the motor side. This flexibility could
again be provided by AI and ML techniques, leading to robots capable of reach-
ing, grasping and manipulating a wide range of objects in arbitrary positions.
To enable more autonomous object manipulation, more specifically how to en-
able some level of eye-hand coordination to perform actions more successfully,
is of high interest to the robotics community (see e.g. NASA's Space Technology
Roadmap calls for “Real-time self-calibrating hand-eye System” [Ambrose et al.,
2012]).

2.1 Background and Related Work

Object manipulation in real-world settings is a very hard problem in robotics, yet
it is one of the most important skills for robots to possess [Kemp et al., 2007].
Through manipulation they are able to interact with the world and therefore be-
come useful and helpful to humans. Yet to produce even the simplest human-like
behaviours, a humanoid robot must be able to see, act, and react continuously.
Even more so for object manipulation tasks, which require precise and coordi-
nated movements of the arm and hand. The understanding of how humans and
animals control these movements is a fundamental research topic in cognitive-
[Posner, 1989] and neuro-sciences [Jeannerod, 1997]. Despite the interest and
importance of the topic, e.g. in rehabilitation and medicine, the issues and the-
ories behind how humans learn, adapt and perform reaching and grasping be-
haviours remain controversial. Although there are many experimental studies
on how humans perform these actions, the development of reaching and grasp-
ing is still not fully understood and only very basic computational models exist
[Oztop et al., 2004]. Vision is seen as an important factor in the development
of reaching and grasping skills in humans [Berthier et al., 1996; McCarty et al.,
2001]. For example, imitation of simple manipulation skills has been observed
already in 14-month-old infants [ Meltzoff, 1988]. Current robots in contrast are
only able to perform (simple) grasps in very limited, specific settings.
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Artificial Intelligence, Machine Learning and Robotics

The research in the fields of Artificial Intelligence (AI) and robotics were strongly
connected in the early days, but have diverged over the last decades. Although Al
techniques were developed to play chess on a level good enough to win against
(and/or tutor) the average human player [Sadikov et al., 2007], the robotic ma-
nipulation of a chess piece, in contrast, the creation of intelligent machines has
lacked quite a bit behind the algorithmic side. It is still not feasible to control a
robot on a similar level of precision, adaptation and success as a human — not
even comparative to children level. To produce even the simplest autonomous,
adaptive, human-like behaviours, a humanoid robot must be able to, at least:

* Identify and localize objects in the environment, e.g. the chess pieces and
board

* Execute purposeful motions for interaction, e.g. move a piece to a desired
position

At the beginning of Al research a clear goal was to build complete, intelligent,
autonomous robotic system [Russell and Norvig, 2010]. As with the example of
the above example of chess, it has proven to be quite challenging. Not helping
the cause was the fractioning of the fields into many distinct facets of research.
While there was progress in each of the sub-fields and the both disciplines (Al
and robotics) separately, it has now become clear that a closer integration is again
needed. There has been a renewed interest, from both research communities, to
work together again towards the goal of intelligent robotic systems.

The field of robotics has clearly matured over the last few years. Current hu-
manoid robots are stunning feats of engineering as mention above. To embed
this systems with some sense of ‘intelligence’ and use the full versatility of ad-
vanced robotic systems, a bigger collaboration with the research community in
Artificial Intelligence and Machine Learning is required.

The idea of the ‘embodied mind’ stems from philosophy. It claims that the na-
ture of the human mind is determined by the form of the human body. Philoso-
phers, psychologists, cognitive scientists, and artificial intelligence researchers
who study embodied cognition and the embodied mind argue that all aspects
of cognition are shaped by aspects of the body. The embodied mind thesis is
opposed to other theories of cognition.

Embodied cognition reflects the argument that the motor system influences
our cognition, just as the mind influences bodily actions. Roboticists have ar-
gued that to understand intelligence and build artificial system that comprise



20 2.1 Background

intelligence can only be achieved by machines that have both sensory and motor
skills. Furthermore they need to be interacting with the world through a body.
This ‘embodiment’ is seen as an important condition for the development of cog-
nitive abilities both in humans and robots [Brooks, 1999; Wolpert et al., 2001;
Pfeifer et al., 2007]. The insights of these robotics researchers have in return
also influenced philosophers.

Machine Learning algorithms, have been applied in experimental robotics to
acquire new skills, however the need for carefully gathered training data, clever
initialization conditions, and/or demonstrated example behaviours limits the au-
tonomy with which behaviours can be learned. To build robots that can perform
complex manipulation skills that help users in their activities of daily living (ADL)
is the aim of various research projects [Cangelosi et al., 2008; GeRT, 2012; THE,
2012; WAY, 2012].

Robot Learning: Cognitive, Developmental and Evolutionary Robotics

As mentioned above the programming of these highly complex robot systems is
a cumbersome, difficult and time-consuming process. Current approaches tend
to describe each precise movement in detail, allowing little to no flexibility or
adaptation during execution. This obviously has issues with scaling to highly
complex robots in complicates settings. Therefore the robotics community has
focused on methods to provide robots with the ability to act autonomously, adapt
or ‘learn’ how to behave without the need of hard-coding every possible outcome.

Autonomous robots research is aimed at building systems that do not require
the pre-programming of every possible situation encountered. Many kinds of
robots have some degree of autonomy and different robots can be autonomous
in different ways. In fields, such as, for example space exploration, a high degree
of autonomy is desirable. An autonomous robot might through learning also
acquire new capabilities to adapt to changing environments. In resemblance to
the “Three Laws” by Asimov, autonomous robots refer to systems that have the
following abilities [ Chu, 2011]:

e Gain information about the environment (Rule #1)
* Work for an extended period without human intervention (Rule #2)

* Move either all or part of itself throughout its operating environment with-
out human assistance (Rule #3)

* Avoid situations that are harmful to people, property, or itself unless those
are part of its design specifications (Rule #4)
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* Maintain its own survival at the expense of the previous rules (Sentient
Robot Mandate) (Rule #5)

* Learn or gain new capabilities like adjusting strategies for accomplishing
its task(s) or adapting to changing surroundings (Rule #6)

In the early 90s of the last century Behavioural Robotics (or behaviour-based
robotics) was introduced as a way to deal with more and more complex robots
and application areas [Brooks, 1991]. This research area focuses on flexible
switching mechanisms to change the robots main behaviours based only on a
very simple internal model. The basic idea is that close (and probably simple)
sensor-motor connections can result in behaviours that appear complex and so-
phisticated. Due to the fact that these models used a simple approach, rather than
a computational complex model and the relatively low cost of development, pop-
ularised this approach in the mid-1990s. This paradigm has had a wide range
of application in multi-robot teams [Balch and Arkin, 1998] yet the scaling to
complex robots, such as humanoid, has not been successful so far.

Robot Learning generally refers to research into ways for a robot to learn cer-
tain aspects by itself. Instead of providing all information to the robot a priori,
for example, possible motions to reach a certain target position, the agent will
through some process ‘learn’ which motor commands lead to what action. The
research field is placed at the intersection of machine learning and robotics and
studies how robots can acquire new skills through experimentation. The ear-
lier mentioned ‘embodiment’ plays an important role here. Example include the
learning of sensorimotor skills (for example locomotion, grasping, object ma-
nipulation), as well as interactive skills such as manipulation of an object in
collaboration with a human. In addition the learning of linguistic skills, espe-
cially the grounding of words or phrases in the real world, is of interest to the
research community. The field of ‘robot learning’ is closely related to other disci-
plines, for example, adaptive control. Learning in realistic environments requires
algorithms that can deal with high-dimensional states, e.g. to detect events in
the stream of sensory inputs, change and uncertainty. Note that while machine
learning is nowadays often used for computer and robot vision tasks (like in this
dissertation), this area of research are usually not referred to as ‘robot learning’.
The fields of Cognitive Robotics, Developmental Robotics and Evolutionary Robotics
emerged with the specific aim to investigate how robots can ‘learn’ for themselves
and thereby generate more autonomous and adaptive capabilities.

In Cognitive Robotics [ Asada et al., 2001 ] the aim is to provide robots with cog-
nitive processes, similar to humans and animals. An integrated view of the body
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is taken, including the motor system, the perceptual system and the body’s inter-
actions with the environment. The acquisition of knowledge, may it be through
actions (e.g. motor babbling) or perception is a big part of cognitive robotics re-
search. Another is the development of architectures for these tasks. A variety
has been proposed [Burgard et al., 2005; Shanahan, 2006; Vernon et al., 2007a;
Chella et al., 2008; Wyatt and Hawes, 2008], but the promised improvements in
robotic applications still need to be shown. This can be attributed to the varying
definitions of cognition and the complex human cognitive system, whose work-
ings are still not fully understood. To build cognitive architectures two distinct
approaches have been tried. The research seems to mainly focus on top-down
architectures. A bottom-up approach has been described as more suitable for
the use with robots (e.g. the proposed iCub cognitive architecture [Vernon et al.,
2007b]).

Developmental Robotics [ Asada et al., 2001; Weng, 2004; Kuipers et al., 2006;
Meeden and Blank, 2006; Asada et al., 2009] is aiming to put more emphasis on
the development of skills. It is an interdisciplinary approach to developmental
science. It differs from the previous approaches, as the engineer only creates the
architecture and then allows the robot to explore and learn its own representa-
tion of its capabilities (sensory and motor) and the environment. As above, the
body and its interactions with the environment are seen as being fundamental
for the development of skills. Aims are to build adaptive robotic systems by ex-
ploration and autonomous learning, i.e. learning without a direct intervention
from a designer [Lungarella et al., 2003]. Here interesting areas to explore are
selected by building on previous knowledge, while seeking out novel stimuli.

Evolutionary Robotics [Harvey et al., 1997; Nolfi and Floreano, 2000; Don-
cieux et al., 2011] is another approach to add adaptiveness and developmental
processes to robots. It emerged as a new approach to overcome the difficulties of
designing control systems for autonomous robots: (a) coordinating the (increas-
ing) number of DOF both in mechanics and control is hard, especially since the
complexity scales with the number of possible interactions between parts (see
‘Curse of Dimensionality’ [Cliff et al., 1993]) (b) the environment and how the
robot interacts with it are often not known before. Its main focus is on evolve
a control system based on artificial neural networks. These neuro-controllers
(NQ), inspired by the neuron activity in the human brain, have been shown to
work in a wide range of applications [Nolfi et al., 1994; Dachwald, 2004; Leitner
et al., 2010]. An important issue is that to ‘learn’ behaviours, a large number of
iterations (or generations) is required. This works fine in simulation but is hard
to achieve on a real robotic platform. Nolfi et al. [1994] showed that evolving
a NC on hardware is, while time consuming, feasible, at least for simple mobile
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robots. Hybrid approaches, where NCs are trained first in simulation and then
transferred to the real hardware, seem preferential. The performance of the con-
trollers in the real world can then be used to improve the simulation [Bongard
et al., 2006]. How to effectively train and apply NCs to real, high-DOF hardware
is still an open research question.

Other Approaches to robot learning have been developed in the past. The
area of Reinforcement Learning (RL) [Sutton and Barto, 1998; Kormushev et al.,
2013] has appealed to many roboticists, especially for learning to control com-
plex robotic systems. A general RL algorithm and the means to inform the robot
whether its actions were successful (positive reward) or not (negative reward) is
all that is required. RL and its applicability to humanoid robots has been inves-
tigated by Peters et al. [2003]. Imitation Learning or Apprenticeship Learning
is of importance in human skill development as it allows to transfer skills from
one person to another. In robotics Robot Learning from demonstration or Pro-
gramming by Demonstration is a similar paradigm for enabling robots to learn
to perform novel tasks. It takes the view that an appropriate robot controller can
be derived from observations of a another agent’s performance thereof [Schaal,
1999]. This approach though requires a prior to start with, usually a human con-
trolling the robot to perform the given task. More formally the training examples
obtained are limited by the performance of the teacher, which can lead to sub-
optimal performance. While learning the reward function can lead to adaptation
to changes in the task, like e.g. new goal states, this though is quite limited es-
pecially in highly-complex robots, where finding how to control the robot is an
issue.

2.2 Understanding the Environment

To be useful in the above proposed scenarios a robot must be able to see, act,
and react continuously. Perception is a key requirement in order to purposefully
adapt robot motion to the environment, allowing for more successful, more au-
tonomous interactions. The first important step towards this is to understand the
environment the robot is embedded in. Coming back to the example of playing
chess, this would compare to finding the chess board and each of the chess pieces
(e.g. in a camera image) or even just to to realise that there is a chess board and
pieces in the scene.

Vision and the visual system are the focus of much research in psychology,
cognitive science, neuroscience and biology. A major problem in visual percep-
tion is that what individuals ‘see’ is not just a simple translation of input stimuli
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(compare optical illusions). One important area of research to build robots that
can understand their surroundings is the development of artificial vision systems.

Computer Vision — sometimes referred to as Robot Vision when applied in a
robotic system — generally describes the field of research dealing with acquiring,
processing, analysing, and understanding images in order to produce decisions
based on the observation. The fields of computer vision and Al have had close
ties in the beginning, but have gone separate ways over the last decades. A trend
to reunite those fields again is emerging.

While there does not exist a clear definition of the areas of computer vision
and image processing, the latter is commonly seen to refer to a subsection of com-
puter vision. Image processing techniques generally provide ways of extracting
information from the image data and can be grouped into the following cate-
gories: pre-processing (e.g. noise reduction, enhancement, scaling, etc.), feature
extraction (e.g. lines, edges, interest points, etc.), segmentation (e.g. separating
fore- and background), and high-level processing (e.g. recognition and decision
making) [ Gonzalez and Woods, 2006]. Another important topic in computer vi-
sion is ‘image understanding’. With the aid of geometry, physics, statistics, and
learning the goal is to mimic the abilities of the human (visual) perception sys-
tem.

Research into vision for the special requirements of robotic systems is referred
to as robot vision or machine vision [Horn, 1986; Hornberg, 2007]. For example,
visual feedback has extensively been used in mobile robot applications, for obsta-
cle avoidance, mapping and localization. With the advancement of humanoids
and the increased interest in working around humans, object detection and ma-
nipulation are more and more driving the development of robot vision systems.
An important problem is that of determining whether or not the image data con-
tains some specific object, feature, or activity. While this has been researched for
quite some time already, the task seems harder than expected and no solution
for the general case of detecting arbitrary objects in arbitrary situations exists.
From a robot vision point of view, this means that the robot is required to detect
previously unknown objects in its surroundings and be able to build models to
memorise and identify them in the future. Most of the work is heavily relying
on artificial landmarks and fiducial markers to simplify the detection problem.
Furthermore existing methods can at best solve it for specific objects (simple ge-
ometries, faces, printed or hand-written characters, or vehicles) and in specific
situations (in terms of well-defined illumination, background, and pose of the
object wrt. the camera). For a detailed introduction and overview of the foun-
dations and the current trends the reader is referred to the excellent survey by
Kragic and Vincze [2009].
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2.3 Interacting With the Environment

Computer vision has become a more and more prominent topic of research over
the past decades, also in the field of robotics. Like humans and animals, robots
are able to interact with the world around them. While most robot vision re-
search tends focus on understanding the world from just passive observations,
these interactions with the environment provide and create valuable information
to build better visual systems. Connecting manipulation commands with visual
inputs allows for a robot to create methods to actively explore its surroundings.
These connections between motor actions and observations exist in the human
brain and are an important aspect of human development [ Berthier et al., 1996].

Only after the scene is observed and the robot has an idea about which objects
are in the environment, can it start interacting with these in a safe fashion. In the
chess example, even if the state of the board and where it is located are known,
to move a certain chess piece from one field to another without toppling other
pieces is still a hard problem by itself. In fact, children even at a very young
age, have significantly better (smoother, more ‘natural’, ‘fluent’ and controlled)
hand movements than all currently available humanoid robots. But manipulating
arbitrary objects is not a trivial thing, even for humans. The development of hand
control in children, for an apparently simple, prototypical precision grasp task
is not matured until the age of 8-10 years [Forssberg et al., 1991]. Moreover,
complexity, as can be seen by the number of neurons comprising the control
of the arm and hand, is staggeringly high. Even after manipulation skills have
been learnt they are constantly adapted by an perception-action loop to yield
desired results. In infants various specializations in the visual pathways may
develop for extracting and encoding information relevant for visual cognition, as
well as, information about the location and graspability of objects [Johnson and
Munakata, 2005]. This hints at the very close integration of vision and action in
the human brain.

In recent years good progress was made with robotic grasping of objects.
The various manipulators, mainly hands and grippers, and techniques clearly
improved. Also novel concepts of ‘grippers’ have been designed and some are
quite ingenious solutions to a number of issues. One such example is the gran-
ular gripper made by Brown et al. [2010], which is made out of grounded cof-
fee beans which are able to ‘flow’ around the object and then fixed in position
by creating a vacuum. This concept has recently been extended to a full sized
elephant-trunk-style arm [Cheng et al., 2012]. Also in terms of how to grasp
objects with regular grippers and ‘hands’ recent results highlight the advanced
state of research in grasping. For example, Maitin-Shepard et al. [2010], with
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their research showed that robots are able to pick up non-rigid objects, such as,
towels. Their robot is able to reliably and robustly pick up a randomly dropped
towel from a table by going through a sequence of vision-based re-grasps and
manipulations-partially in the air, partially on the table. In the DARPA ARM
project, which aims to create highly autonomous manipulators capable of serv-
ing multiple purposes across a wide variety of applications, NASA's JPL winning
team showed an end-to-end system that allows the robot to grasp diverse ob-
jects (e.g. power drill, keys, screwdrivers, ...) from a table [Hudson et al., 2012;
Hebert et al., 2012]. On the other hand Saxena et al. [2008] have presented a
way for a robot to learn, from only a small number of real world examples, where
good grasping points are on a wide variety of previously unknown objects.

All this has lead Dr. Pratt, manager of robotics related research projects at
DARPA, to his somewhat controversial statement of "Grasping is solved"! at IROS
in 2012. While this might be a bit too optimistic it seems like the research is
at a good enough state to have better system integration. The direct interface
between various components, which makes robotics such a hard but interesting
field, clearly needs to improve to allow for robust object manipulation. Only by
combining sensing and control of the whole robotic platform a fully functional
‘pick-and-place’ capable system will appear. To allow for a variety of objects to
be picked up from various positions the robot needs to see, act and react within
a control system in which these elements are tightly integrated.

A must read for roboticists is ‘Robotics, Vision and Control’ [Corke, 2011]. It
puts the integration of these three components in the spotlight. Also it describes
common pitfalls and the issues that arise with integration.

2.4 Proposed Approach

The goal of this dissertation is to improve the skills of the iCub humanoid. To
create better ‘perception’, ‘motion’ and ‘coordination’ and deal with uncertainties
I use various machine learning (ML) and artificial intelligence (AI) techniques to
support both perception and movement. IDSIA is investigating how rewards and
motivation effect the development of complex actions and interactions between
an (embodied) agent and the environment.?

My aim is to improve adaptivity and autonomy in robot grasping based on
visual feedback to close the loop and perform grasping of objects, while adapting
to unknown, complex environments. The main goal is to answer the question,

Plenary at IROS 2012: http://www.iros2012.org/site/node/13
2Funded mainly by the European Union grant ‘IM-CLeVeR’ [Baldassare et al., 2009].
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Figure 2.1. Overview of IDSIA’s current research towards a functional eye-hand
coordination on the iCub humanoid. The object detection and identification is
currently solely based on the camera images (2D) received. The object localiza-
tion uses the information from the two cameras to calculate an operational space
(3D) position. This is the same space in which collision avoidance is applied
and the world is modelled. The object model contains the information of how
to detect the object in the 2D images (see Section 3.3.1) and a fixed 3D geome-
try. The motion generation and action repertoire can use the full configuration
space of the humanoid (41 DOF).

whether it is possible (and if so how) for a humanoid robot to use vision and
visual feedback to improve, not just its perception, but also its reaching, grasping
and (general) manipulation skills.

At first a rough sketch of subsystems and their interfaces was designed. Over
the course of this dissertation it evolved into what is shown in Figure 2.1, which
provides an overview of the modules built for eye-hand coordination capabilities
on the iCub. Chapter 3 describes in more detail the background and previous
approaches in computer and robot vision. It also contains the description of the
robot vision frameworks created and techniques developed for and implemented
on our iCub. Building on existing YARP infrastructure these frameworks provide
the tasks shown in the top row of the figure (green), namely the modules for the
detection and identification of objects (in the images), as well as, the localiza-
tion (in 3D Cartesian space). The new architecture allows not just for a simple
reusable object detection, but also provides a simple way of learning these based
on only very small training sets. In connection with icVision, data can be collected
on the real hardware and the learned results directly executed.
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The bottom half of the diagram, in yellow, shows the action and motion side.
To generate motion using machine learning techniques a crucial feature is avoid-
ing collisions, both between the robot and the environment and the robot and
itself. Chapter 4 describes the developed techniques to control the iCub at IDSIA
in the last few years. It includes some background and previous approaches in
this area. The first part of this chapter describes the modules of collision avoid-
ance and motion generation, which were developed mainly by my colleagues. My
contribution was to make all these modules work together, especially with the
visual inputs; more details can be found in Frank [2014]. Building upon those
systems human motion is investigated as a way of tele-operating and interacting
with the complex humanoid.

All these subsystems are supported by memory (in blue) enabling the persis-
tent modelling of the world and providing a repertoire of actions. Again how
to interface these systems, and the various requirements are of importance, as
memory plays a crucial part for the integration of the whole system and building
autonomous humanoids.

Chapter 5 describes how these two sides, the perception and the motion, are
integrated and used together to generate a proof-of-concept for a level of eye-
hand coordination not previously seen on the iCub.

Most of these are also on-going research areas at IDSIA to further improve
the existing frameworks and (sub-)systems.

2.5 Experimental Platform: The iCub Humanoid

While I hope that my work can be applied to various robotic platforms, the main
focus was to implement the research on the iCub humanoid robot [Tsagarakis
et al., 2007] (depicted in Figure 1.5). It is an open-system robotic platform de-
veloped during various European projects.®> The robot is based on an anthro-
pomorphic design with dimensions similar to that of a three-and-a-half year old
child. In its complete configuration it is currently standing 104cm tall and weighs
around 22kg (Figure 2.2).

The iCub was designed by several European universities under the coordina-
tion of the Italian Institute of Technology (IIT) during the RobotCub project. The
initial funding was 8.5 million Euro within the European Commission’s Seventh
Framework Programme (FP7, Unit 5 - Cognitive Systems and Robotics)* and ran
for sixty-five months from 1 September 2004 until 31 January 2010. The consor-

3The official iCub website: http://www.icub.org
*http://cordis.europa.eu/fp7/ict/cognition/home_en.html
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tium was composed of 10 European research centres (in Italy, Portugal, Sweden,
Switzerland, and the UK) and complemented by three research centres in the
USA and three in Japan, all specialists in robotics, neuroscience, and develop-
mental psychology.

The robot is a completely open system, with the software and documenta-
tion being open-source and even the hardware design released under the GNU
General Public License (GPL). The names RobotCub (of the initial project) and
iCub (of the final robot platform) are partial acronyms, with cub standing for
“Cognitive Universal Body”.

The motivation behind the strongly humanoid design is the “embodied cog-
nition” hypothesis, in particular that human-like manipulation plays a vital role
in the development of human cognition. A baby learns many cognitive skills by
interacting with its environment and other humans using its limbs and senses,

Figure 2.2. The iCub in its full configuration mounted on a supporting frame
during the ‘Veni, Vidi, Vici” Summer School.
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Figure 2.3. The setup used to operate the iCub at the IDSIA Robotics Lab. The
pcl104 handles the on-board data processing and controls the motors via CAN-
bus. The icubServer is running the YARP server and is the router into the IDSIA-
wide network and the internet. Dedicated computers for vision (icubVision)
and collision avoidance (MoBeeBox) are used.

and consequently its internal model of the world is largely determined by the
form of the human body. The robot was designed to test this hypothesis by al-
lowing cognitive learning scenarios to be acted out by an accurate reproduction
of the perceptual system and articulation of a small child. In short, the robot was
constructed this way so that it could interact with the world in the same way a
child does [Metta et al., 2008].

The robot is controlled by an on-board PC104 controller which communi-
cates with actuators and sensors using CANBus. The robot was not designed
for fully autonomous operation, and is consequently not equipped with onboard
batteries or computational resources necessary for this. Instead an umbilical ca-
ble provides power to the robot and a local-area-network (LAN) connection. The
software library is largely written in C+4 and uses a middleware called YARP (Yet
Another Robotics Platform) [Metta et al., 2006]. It provides functionality for the
external communication via Gigabit Ethernet with the off-board software imple-
menting higher level functionality. Figure 2.3 sketches the distributed computing
system used at IDSIA to operate the robot. More information about setup and
configuration, as well as the code base, can be found on the iCub Wiki,”> where
researchers, from a large collection of research labs using the robot, contribute
and build up a knowledge base.

On the actuation side it uses harmonic drives (with a ratio of 100:1 for all ma-

>iCub Wiki URL: http://wiki.icub.org
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jor joints) together with a brushless, frameless motor. To reduce the moment of
inertia the motors are placed close to the body and the robot’s motion is actually
driven by teflon-coated steel tendons (with the exception of the six actuators used
for the head). The cables are routed in a rather complex way via idle pulleys to
transmit the torque to the joint. Joint angles are measured using Hall-effect sen-
sors and the robot is equipped with force-torque sensor both in the left and right
upper arm. The finger tips are equipped with touch sensors, and a distributed
capacitive sensor skin is being developed Billard et al. [2013].

The initial design was aiming for complex and dexterous object manipulation
and therefore limiting the robot to only be able to crawl on the floor. Since the
first robots were constructed the design has undergone several revisions and im-
provements, for example smaller and more dexterous hands, and lighter, more
robust legs with greater joint angles. Other forms of locomotion, mainly bipedal
walking rather than just crawling, were only recently considered and mechanical
updates are currently tested at IIT and planned to be incorporated in future ver-
sions [Tsagarakis et al., 2009]. Various different configurations of the robot are
possible, for example, a variety of labs are using just the upper body for investi-
gating object manipulation within their on-going research projects [ Metta et al.,
2010]. Currently more than twenty iCubs are available in various laboratories,
mainly in Europe, but also in the USA, Turkey and Japan.

In its current version, the robot has 53 actuated degrees of freedom (DOF)
— the setup at IDSIA does not contain legs, therefore reducing the robot to a 41
DOF system. The DOF are distributed the following:

* 7 DOF per arm, 3 for the orientation (roll-pitch-yaw) of the hand, 3 for the
shoulder and 1 for the elbow

* 9 DOF per hand (3 for the thumb, 2 for the index, 2 for the middle finger,
1 for the coupled control of the ring and little finger, 1 for adduction/ab-
duction)

6 DOF in the head (3 for the neck and 3 for the cameras)

3 DOF in the torso/waist

* 6 DOF per leg

A variety of sensors are integrated into the robot. It is one of the key features
of the platform, as a complex sensory system enables the investigation of the ‘em-
bodiment’ theory and algorithms that exploit and integrate different modalities
(e.g. sensor fusion, multimodal calibration and multimodal perception).

The sensory system is sketched in Figure 2.4 and consists of the following:
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* two microphones installed in the ‘ears’ (assisted by mechanical structures
similar to human earlobes) of the robot

* inertia measurement unit (IMU) in the head, containing three gyroscopes,
three linear accelerometers and a compass. It provides a proprioceptive
sense of orientation (and angular acceleration, though very noisy and hardly
used in practice)

* for proprioception all motors and joints are equipped with angular en-
coders, as mentioned above.

* custom 6 axis force/torque sensors are mounted in the arms and legs

* tactile sensing is available on the hands based on capacitive technology
sensors (12 in each fingertip and 48 on the palm)

* two colour cameras (Pointgray DragonFly), in a swivel mounting are built
into the head, where the eyes would be located. These are the main sensors
for the work at IDSIA. They each provide a 640x480 pixel colour image
which are streamed to the network roughly 12-15 times per second.

In addition it also has lines of red LEDs mounted behind the face panel, rep-
resenting mouth and eyebrows and allowing for facial expressions. A variety of
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Figure 2.4. A schematic overview of the sensory system of the robot.
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Figure 2.5. The iCub provides a variety of facial expressions to be used in human-
robot-interaction scenarios. On the right the new face allowing for even higher
expressiveness (currently in development at IIT).

expressions are already available and at IDSIA they are extensively used during
interactive demos, human-robot interaction research and the shooting of iCub
research videos. Currently a new head is under development at IIT, which when
finished, will allow for an even more expressive face (Figure 2.5).

The iCub is an excellent experimental platform for cognitive and sensorimo-
tor development and embodied artificial intelligence [Metta et al., 2010] and
was designed to investigate human-like object manipulation, requiring the non-
linear control of the physical degrees of freedom. The robot’s movements need
to be coordinated with feedback from visual, tactile, and acoustic® perception.
Of interest is also to test a wide variety of learning theories. For example, the
development of cognition, especially through interaction with the environment
based on intrinsic motivation is an on-going research theme on the iCub [Natale
et al., 2013; Baldassare et al., 2009]. Furthermore investigating the scalability
of machine learning methods towards such complex systems interacting with the
real-world is an active research area [Levinson et al., 2010; Sicard et al., 2011;
Leitner et al., 2012f; Frank et al., 2014].

6Acoustic feedback might be used during object manipulation to assess if a grasp was success-
ful or not.
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Chapter 3

Robot Perception

An emphasis during the research presented herein has been put on investigating
visual perception on our humanoid robot. The term refers, in humans and ani-
mals, to the ability to interpret their environment based on the information from
visible light reaching the eyes. In robotic applications, to imitate eyes, cameras
are used to capture the light of the environment enabling visual sensing. The
reason for the focus on vision is twofold, firstly the sensing capabilities of robotic
platforms (cameras are cheap) and secondly, vision is the most important sense
for humans. Another reason is that with a humanoid robot, such as the iCub
at IDSIA, a natural tendency exists to be inspired by human perception and be-
haviour. A lot of my research work focussed on building a framework for per-
ception that allows rapid prototyping of detectors, as well as, the autonomous
learning of these. The system is roughly based on the description of human per-
ception by Marr [1982]. The various experiments performed during the course
of my doctoral research are described after a section introducing the basics in
computer and robot vision. These experiments have already been published in
peer-reviewed conferences or journals (references are provided).

3.1 Background

Perception is a key requirement in order for robots to be useful in a wide range
of scenarios, such as the ones proposed and mentioned above. A robot must
be able to see, act, and react continuously, to purposefully adapt its motion to
the environment, allowing for more successful, more autonomous interactions.
An important skill for any robotic system is the ability to sense its environment.
This is of value even in tele-operation or other non-autonomous operating sce-
narios. Its though most valuable when the machine needs to — all by itself —

35
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make sense of what it is sensing. During my research at IDSIA the focus was on
understanding the closer environment of the robot, aiming to detect objects the
robot is interacting with. This is done by using the only available visual sensors
on the iCub, two colour cameras (Figure 3.1). Other sensors are available (see
Section 2.5), most notably, touch sensors in the finger tips. While other labs have
put more focus on tactile feedback (e.g. [Argall et al., 2010]), we aim to better
integrate further sensors into our framework in the future and concentrate first
on enabling the robot to ‘see’ the objects it needs to interact with.

Most humanoid robots, have to use cameras to visually perceive the envi-
ronment, whereas in mobile robots the use of depth-cameras has become the
norm. Various systems that provide depth information exists nowadays: ranging
cameras, flash LIDAR, time-of-flight (ToF) sensors, and RGB-D cameras. While
my focus lies on visual perception based on our robots camera system, a quick
overview of alternative sensors and techniques is given here. In mobile robot ap-
plication laser! scanners and LIDAR are commonly used for research in the area
of “Simultaneous localization and mapping” (SLAM). This research field aims to
allow robots to construct a map of an unknown environment while at the same
time keeping track of the robot’s location in the environment (a more detailed
description, with a focus on visual SLAM, can be found in the “Object Localiza-
tion” section further down or in Thrun et al. [2002]). Laser scanners are also
used in space. For example, to dock with the International Space Station, the
spacecraft with resupplies (usually un-piloted), needs to manoeuvre carefully
to specific positions along the ‘docking trajectory’. A laser scanner is used in
order to determine the craft’s relative position to the station, to allow for an au-
tonomous approach. LIDAR, which stands for “LIght Detection And Ranging”, is
an extension to a standard laser scanner which analyses the reflected light more
thoroughly. Such systems are used in robotics for a variety of perception tasks,
such as, e.g. object classification [Himmelsbach et al., 2008]. This is due the
fact that LIDAR technology can provide three-dimensional elevation maps of the
surroundings, high precision distance (and velocity) information, an important
component for landing robotic spacecraft on planetary surfaces [Amzajerdian
et al., 2011]. Recent structured light has been increasingly employed to detect
objects and humans in robotic applications. These RGB-D camera systems pro-
vide a per pixel depth information (depth image). To calculate the depth an
invisible light pattern is projected onto the scene, its deformation as seen by the
sensor provides a depth estimate [Fofi et al., 2004].

!The term laser originated as an acronym for “light amplification by stimulated emission of
radiation” but is now commonly used as a noun.
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Robot Vision

Animals and humans are exposed to vast amounts of visual inputs in their daily
lives. From this they seem to effortlessly extract the relevant knowledge about
the world, learn the objects in a complex visual environment without any super-
vision and recognise them later on. Robots so far have not been able to perform
as well with the large amount of visual input data.

Vision and the visual system are in the focus of research in psychology, cogni-
tive science, neuroscience and biology. A major problem in visual perception is
that what individuals ‘see’ is not just a simple translation of input stimuli (com-
pare optical illusions). The research of Marr in the 1970s led to a theory of vision
using different levels of abstraction, from a two-dimensional visual array (pro-
jected onto the retina) to a three-dimensional description of the world as output.
The stages include: a 2D sketch of the scene (using feature extraction), a sketch
of the scene (using textures to provide more information) and a 3D model of the
world [Marr, 1982].

Research on perception has been an active component for developing artifi-
cial vision systems, in industry and robotics. Computer Vision generally describes
the field of research dealing with acquiring, processing, analysing, and under-
standing images in order to produce decisions based on observations. As a sci-
entific discipline, computer vision is concerned with the theory behind artificial
systems that extract information from a variety of image data, such as video se-
quences, views from multiple cameras, or multi-dimensional/spectral data, e.g.
from a medical scanner. The fields of computer vision and Al have close con-
nections, e.g. autonomous planning or decision making for robots require infor-
mation about the environment, which could be provided by a computer vision
system. Al and computer vision share other topics such as pattern recognition
and learning techniques. Furthermore computer vision spawned a multitude
of research sub-domains, such as, scene reconstruction, event detection, object

Figure 3.1. The ‘eyes’ of the iCub, with and without face/head cover.



38 3.1 Background

recognition, motion estimation, etc. The following is a short list of examples,
where computer vision is applied nowadays:

» Navigation, e.g., by an autonomous vehicle or mobile robot;

* Detecting events, e.g., for visual surveillance or people counting;

* Organising information, e.g., indexing databases of images and videos;
* Modelling objects or environments, e.g., medical image analysis;

* Interaction, e.g., for human-robot interaction (HRI), and

* Automatic inspection, e.g., in manufacturing applications.

In computer vision research a subfield, named ‘image processing’ [ Gonzalez
and Woods, 2006], is dealing mainly with the lower level of perception. The tech-
niques in this field generally provide ways of extracting information from the im-
age data and can be grouped into the following categories: pre-processing (e.g.
noise reduction, enhancement, scaling, etc.), feature extraction (e.g. lines, edges,
interest points, etc.), segmentation (e.g. separating fore- and background), and
high-level processing (e.g. recognition and decision making). Another impor-
tant topic in computer vision is ‘image understanding’. With the aid of geometry,
physics, statistics, and learning the goal is to mimic the abilities of the human
(visual) perception system.

Research into vision for the special requirements of robotic systems is referred
to as robot vision or machine vision [Horn, 1986; Hornberg, 2007]. For example,
visual feedback has extensively been used in mobile robot applications, for ob-
stacle avoidance, mapping and localization [Davison and Murray, 2002; Karls-
son et al., 2005]. Active Vision, another area of research in computer vision,
investigates how actively changing the viewpoint of camera(s) can lead to better
perception systems [ Aloimonos et al., 1988]. One needs to be aware that active
vision does not mean active sensing, but merely how the motion of the observer
can be included when addressing vision problems. Active Vision does also not
include how manipulating the environment can lead to improved performance.

With the advancement of humanoids and the increased interest in working
around humans, object detection and manipulation are more and more driving
the development of robot vision systems. Furthermore there exists a natural ten-
dency to be inspired by human perception, in which vision plays a primary role,
and behaviour, especially when working with humanoid robots. An important
problem is that of determining whether or not the image data contains some
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specific object, feature, or activity. While this has been researched for quite some
time already, the task seems harder than expected and no solution for the gen-
eral case of detecting arbitrary objects in arbitrary situations exists. Most of the
work is heavily relying on artificial landmarks and fiducial markers to simplify
the detection problem. Furthermore existing methods can at best solve it for
specific objects (simple geometries, faces, printed or hand-written characters, or
vehicles) and in specific situations (in terms of well-defined illumination, back-
ground, and pose of the object wrt. the camera). For a detailed introduction and
overview of the foundations and the current trends the reader is referred to the
excellent survey by Kragic and Vincze [2009].

Object Detection

To detect an object from vision it is important to know some background infor-
mation about the physical phenomena and the working of the sensors. Object
detection, especially edge and pixel-wise detection is a subjective task. While
one can use human separation as ground truth, different observers will generate
different ‘masks’. This makes a quantitate comparison in real-world scenarios
very hard.

Light and Color

The light that reaches our eye or the camera of the robot is not emitted from the
object itself but is dependent on the illumination of the scene and the reflectivity
of the material. Light itself is an electro-magnetic radiation. Human perception
of the radiation is limited to the bandwidth between 400 and 700 nm (4000 —
7000 A). The spectrum is shown in Figure 3.2, with wavelengths below 400 nm
termed ultra-violet and those above 700 nm infra-red. Without going too much
into the physical details the most common source of light is the emission from
a hot body — such as our sun or a light bulb. This is generally modelled as a
blackbody radiator, for example, the Sun has a surface temperature of about
6500 K and a radiation peak in the visible spectrum at about 450 nm.

Our eyes’ peak sensitivity has evolved to be aligned very closely to the peak
of our sun’s spectrum - actually the filtered spectrum due to the Earth’s atmo-
sphere. Absorption occurs in all materials, though at different levels. Another
important aspect of the light received from an object is its (surface) reflectivity. A
long list of material reflectances have been experimentally determined and cata-
logued. Out of these physical phenomena described the definition of colour and
brightness follow. While there exists a physical description in terms of power
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and wavelength, the latter two are more subjective properties. In Figure 3.2 the
colours blue, green, yellow, orange and red are seen in the 400-700nm band.
The human perceptual system senses the radiation by using two types of light
sensitive cells in the eyes. The retina of has a central or foveal region which is
only 0.6 mm in diameter and contains most of the 6 million cone cells. These are
unevenly distributed between red, green and blue (roughly 65%, 33% and 2%
respectivly). We unconsciously scan our high-resolution fovea over the scene to
build a large-scale mental model of the world around us. In addition there are
120 million motion sensitive rod cells distributed over the retina.

Cone cells respond to particular colours and provide us with our normal day-
time vision. Rod cells are much more sensitive than cone cells but respond to
intensity only and provide the main vision at night. The brightness associated
with a particular wavelengths is known as luminosity and is measured in units
of lumens per watt. For our daylight cone-cell vision the luminosity as a function
of wavelength has been experimentally determined, tabulated and forms a stan-
dard, published by the Commission Internationale de L'Eclairage (CIE) in 1931,
that represents the average human observer (Figure 3.3 shows the difference
between a human and a CCD camera).

The analogue of the retina in computer vision is the light-sensitive sensor
inside the camera. It is usually a silicon chip with a multitude of photosites, each
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Figure 3.2. The electro-magnetic spectrum with the visible light expanded.
Courtesy: Wikimedia Commons
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in the order of 1 —10um. These produce an output signal that is proportional to
the light intensity at its area. Colour cameras usually cover the photosites with
filters, passing either red, green or blue light. CIE also defined the following
wavelengths for these so called primary colours, red (R) at 700 nm, green (G)
546.1 nm and blue (B) 435.8 nm. Already in the 17th century it was discovered
that white light is a mix of various colours. Generally any colour space is a 3-
dimensional space that contains all possible colours and all levels of brightness
[Gonzalez and Woods, 2006]. Note though that the fixed primary colours are
not able to produce all colours if they can not vary their wavelength. The most
commonly used space is the RGB space, yet other spaces exist, e.g. HSV using
Hue, Saturation and Value/Lightness.

Human perception seems to be better at dealing with colours in terms of hue
and saturation, or also called chromaticity (Figure 3.4 shows the CIE chromatic-
ity diagram). Hue is referring to the dominant colour as perceived by an observer,
i.e. when we call an object as ‘red’ we are referring to its hue. Saturation on the
other hand is defining the purity of the colour. The pure spectrum colours are
fully saturated, i.e. no white light is mixed in. In HSV, the intensity dimension
is named either V for value or L for lightness though these are computed quite
differently. Furthermore studies show that our perception of white is adaptive.
Allowing us to tune out tune out various effects of scene illumination and light-
ing. Our perception adapts so that the integral (or mean) over the entire scene
is grey.

All of this poses real problems for a robot using colour images for visual per-
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Figure 3.3. Luminosity curve for standard human observer. The difference to a
silicon CCD camera can be seen (from [Corke, 2011]).
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ception. In addition camera systems are available also in other spectra, such as,
infra-red or ultra-violet cameras, as well as, hyper-spectral cameras, that sample
the incoming radiation at many points.

Images from Cameras

To understand how the camera image is created one needs to understand the
camera’s setup. The light passes through the camera before it is collected by
the sensor. A very basic camera model, the pinhole camera model (Figure 3.5),
is commonly used to explain the geometric relation between the scene and the
sensed image.

Figure 3.4. The CIE chromaticity diagram. It shows the pure (mono-chromatic,
saturated) colours along its periphery. Approaching the centre colours become
less saturated, i.e. whitish or greyish. (Courtesy: Sencore.com / CIE)

(x,y,2)

(X1, ¥1,21)

Figure 3.5. Original pinhole camera model
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The light from the scene passes through the pinhole and is projected on the
rear of the box, which is called the projection plane I. This defines the following
geometric relationship:

X, =2 F, (3.1)
Z

y, = J;’ £, (3.2)

2 =f (3.3)

In the central-projection model, the projection plane I lies between the pin-
hole and the scene at a distance f (referred to as focal length) without affecting
these geometric relationships. For images the values of interest are the coordi-
nates along the projection plane I. Using similar triangles it can be shown that
a point at the world coordinates P = (X,Y, Z) is projected into I as p = (x, y) by

X Y

To further ease processing, the origin of the coordinates on the plane I are usually
displaced to be at one of the corners. These pixel coordinates are usually referred
to as u (along the X axis) and v (along the Y axis). The homogeneous coordinate
of the world point P in pixel coordinates is p = (u’, v/, w’). In matrix form,

u f. 0 X X
vVil=[0 f, ¥l |y
w 0 0 1 4

or more commonly written as
p=K-P (3.5

The matrix K is representing the intrinsic parameters of the camera used, P the
position of the point in the world and p the coordinates of the point on the image
plane. The non-homogenous pixel coordinates are thenu =u’/w’ and v =v'/w'.
This representation allows to specify different focal lengths for the planes X and
Y. This is specially useful for CCD cameras, where the pixels are not necessarily
squared, resulting in different projection planes.

This model though is generally too simple for the use in robotics. Lenses
are used in combination with the cameras to collect more light and to create a
different field-of-view (e.g. fish-eye lenses). This though leads to a distortion of
the image, which is depending on the type of lens used. The distortion of the
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iCub camera system can be seen in Figure 3.6. If the distortion parameters are
known the received image can be ‘un-distorted’. Camera calibration methods,
such as the one provided by OpenCV (based on Zhang [2000]; Bouguet [2014])
allow to estimate the parameters. OpenCV also provides a function to un-distort
images using the estimated values.

Correcting for distortion will yield non-rectangular images. A common ap-
proach therefore is to discard some points to keep a rectangular image or fill up
the empty pixels (after projection) with black or white pixels.

Images do not have to be represented like this. Another commonly used rep-
resentation in computer vision consists methods that represent visual informa-
tion with a space-variant resolution inspired by the visual system of mammals.
This so called log-polar imaging has been studied for a a while and has shown
interesting results in robots, mainly the ones where real-time constraints make
it necessary to utilize resource-economic image representations and processing
methodologies [ Traver and Bernardino, 2010].

Feature Detection

Once an image is generated by the sensor it needs to be processed. There ex-
ists a vast body of work on all aspects of image processing, using both classical
and machine learning approaches, Gonzalez and Woods [2006] provides a great
overview. For detecting the content of an image, feature detection is an important
and commonly used approach. Human designed solutions such as SIFT [Lowe,
1999], SURF [Bay et al., 2006], FAST [Rosten et al., 2010] and ORB [Rublee
et al., 2011], use statistical methods to detect and describe interesting features

Figure 3.6. The distortion introduced by the system is clearly visible in this iCub
camera image
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(i.e. local properties) within an image. These features are a brief yet compre-
hensive representation of the image or scene that possess the property of being
interesting and repeatable. Technically, the features are patches of the image,
yet to get these robust features, first interest points are found in the image. Lo-
cal image features (also called local descriptors) are the entities that capture the
information of the region around these interest points. These descriptors have
proven to be resistant to occlusions, local deformations of the objects, variation in
illumination conditions, and background clutter [ Mikolajczyk and Schmid, 2003;
Agarwal and Roth, 2002].

The feature descriptors represent a feature as a vector of fixed size. Vari-
ous ways of extracting this description exist and each method uses their own
methodology. However, they all attempt to be robust against changes in lighting,
rotation, scale, and viewpoint. Therefore, the feature descriptor of the three dif-
ferent methods expresses the same information about the feature: details of the
pixel of interest, the neighbouring area (patch), its orientation and its scale.

Image Classification

Determining whether image data contains a specific object or scene is an impor-
tant problem in robotic vision. This has been researched for quite some time but
the task seems harder than expected. No solution for the general case, i.e. detect-
ing arbitrary objects in arbitrary situations, exists [Kemp et al., 2007]. Problems
arise because of real-life environmental impacts, such as, changing light condi-
tions, incomplete or inconsistent data acquisition [Kragic and Vincze, 2009]. An
overview of various approaches can be found in the recent survey by Cipolla et al.
[2010].

Image classification usually refers to ‘tagging’ a picture with a label, such as
‘car’, ‘tree’, or human face’. Generally these provide not a per-pixel information
but a more semantic information about the scene depicted. Most of the state-
of-the-art object detection applications are using features as described above,
maybe with extensions for higher robustness [Stiickler et al., 2013]. For real-
time object tracking in video frames contour-based trackers are often used [Panin
et al., 2006]. Machine learning has been used in a variety of ways to facilitate
image classification. From learning interesting and relevant features [Vafaie and
De Jong, 1992; Rosten and Drummond, 2006 ] to more biologically-inspired deep
learning for neural networks, i.e. hierarchical artificial neural networks where
each layer performs specific tasks helping to perform the final image classification
not unlike what we believe the visual cortex does [Jarrett et al., 2009; Ciresan
et al., 2011].
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Image Segmentation

While classifying an image provides a label (or multiple) for an image, image
segmentation on the other hand provides pixel-wise information. It refers to the
process of separating foreground from background, one object class from the
background, or one object class from others. More general the image is par-
titioned into groups of non-intersecting regions. Segmentation is an essential
step in low-level vision, as well as robotics. An overview of image segmentation
techniques and a theoretical discussion can be found in Pal and Pal [1993]. It is
the nowadays one of the most common approaches to perform object detection
in vision task related to object manipulation. However, image segmentation is
especially challenging when the objects are static, occluded or the background
model is not known.

Also for image segmentation task machine learning has been used extensively,
in recent years deep-learning has shown to be a viable option also here [Masci
et al., 2013].

Object Localization

For applications in object manipulation, perception needs to also tackle the issue
of localization. Only once a feature or object is successfully detected in multiple
camera images, it can then be localized and placed into a model of the environ-
ment. ‘Spatial Perception’, as this is known, develops in humans over time from
observation and interaction with the world. Research in neuro-science shows
clear trends on what changes during this development, but how these changes
happen is not understood [Plumert and Spencer, 2007]. There is also evidence
showing that the metric precision changes systematically over time (from 2-11
year old kids) [Schutte et al., 2003].

Stereo vision systems use two images taken from different angles to obtain a
distance measure [Hartley and Zisserman, 2000]. The localization of objects in
the environment is required for use in combination with on-line motion planning
for object manipulation tasks on humanoids. In the humanoid robot scenario a
method, which is able to cope with motion in the robot’s head, gaze and upper
body, is required.

While projective geometry approaches work well under carefully controlled
experimental circumstances, they are not easily transferred to robotics applica-
tions though (as seen by the out-of-the-box localization capabilities of the iCub
[Pattacini, 2011]). In projective geometry the parameters that define a camera
position with respect to a scene are called the camera’s extrinsic parameters. Us-
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ing the extrinsic and intrinsic parameters (Eq. 3.5) it is possible to fully locate the
object in the 3D world. The extrinsic parameters define the pose of the camera,
translating and rotating the previously defined coordinate system that originates
in the pinhole of the camera. It is now possible to map a point in the world to
a pixel in an image. Using the camera position (t), orientation (R) and intrinsic
parameters (K), the mapping is defined as:

p;r =K[R|t]p (3.6)

When localizing an object the approach is the inverse of what is described
above, i.e. one wants to determine the objects position in the world based on
where the pixel is in the image. For this multiple camera images taken from
different viewpoints are necessary as a single image will not be able to yield a
single result. Figure 3.7 depicts how any point along the ray from the origin will
lead to the same projection into I.

In computer vision this research area is usually referred to as ‘Stereo Vision’
or ‘3D reconstruction’. Stereo vision focusses more on the aspect of using two
cameras in parallel. To obtain a distance measure the relative displacement of a
pixel between the two images is used. Cameras that photograph the same scene
from two different locations provide different 2D projections of the 3D scene. If
the ‘intrinsic parameters’ that specify each camera’s projection from 3D to 2D, as
well as the ‘fundamental matrix’ that is the rigid-body transformation between
the two cameras’ coordinate systems, are known, and if there are some features
of the scene that can be identified in both images, then the 3D locations of those
features can be triangulated. Hartley and Zisserman [2000] provides a thorough
review of approaches based on this principle.

More general in 3D reconstruction multiple images, also from the same cam-
era, are used to build a model of the scene. Epipolar geometry is dealing with
the geometry of stereo vision. The epipolar plane defined by the origins of each
perspective (O and O’) and the point in the real world. Figure 3.7 shows how
the two projection points, p; and p,,, lie in the plane. All the points which could
result in p; are along the projection line or ray. The projection of these points
into the other camera form a line in its projection plane I’, this is the epipolar
line e,.

When working with images, only p; and p, are known, but converting a
point position from the Cartesian to the unnormalized homogeneous coordinate
system is simple. Using the intrinsic parameters of the camera:

pr =Kpo
K_lpI/ - p0/ (3.7)
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And a transposed point:

p; =(Kpo)"
p; =pjK’
p/K T =p} (3.8)

Hence, the constrain that relates two different perspectives given a trans-
lation and rotation (Essential matrix) can now be expressed using only image
coordinates:

ng Por =0
p, K TEK'p, =0
p,Fp, =0 (3.9)

Equation 3.9 defines the fundamental matrix, as F = K~ ' EK~!. There are dif-
ferent ways to find the Fundamental matrix, but they all depend on the intrinsic
parameters of the camera and a minimum number of matching points visible
from each perspective.

Related fields of research are visual SLAM (or VSLAM) and ‘Structure from
Motion’ (SfM). There has been intense research into VSLAM (visual SLAM) in
the last decade (e.g. [Karlsson et al., 2005; Davison et al., 2007]). VSLAM uses
primarily visual sensors, because of the increasing availability and low cost of
cameras. SLAM can be thought of as a ‘chicken or egg’ problem: An unbiased map
is needed for localization while an accurate pose estimate is needed to build that
map. This is the starting condition for iterative mathematical solution strategies.

p
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Figure 3.7. How different 3D points produce the same projection point p; in
the image is shown on the left. The right shows how a second image provides
the additional information to determine the correct position in the world.
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Structure from motion (SfM) is a range imaging technique and commonly
refers to the process of estimating 3D structures from image sequences. In bi-
ology it is used to describe the phenomenon by which humans can recover 3D
information and structure from the 2D (retinal) projection. Finding structure
from motion presents a similar problem as finding structure from stereo vision.
In both instances, the correspondence between images and the reconstruction of
3D object needs to be found.

While traditional stereo vision approaches, based on projective geometry,
have been proven effective under carefully controlled experimental circumstances,
they are not ideally suited to most robotics applications. Intrinsic camera pa-
rameters and the fundamental matrix may be unknown or time varying, and
this requires the frequent repetition of lengthly calibration procedures, wherein
known, structured objects are viewed by the stereo vision system, and the re-
quired parameters are estimated by numerical algorithms. The iCub’s visual sen-
sory system is a pair of cameras mounted in the head in a human-like fashion
(see Figure 3.8), providing passive, binocular images.In the following discussion,
CSL and CSR refer to the local reference frames of the left and right cameras re-
spectively, the reference frame of the body is CSBody, but as it is mounted at a
fixed point this is also the reference frame chosen for the environment. Therefore

3-DOF Eyes
: vergence
| pan/tilt

3-DOF Torso

CSWorld

Figure 3.8. The relevant coordinate frames for object localization on the iCub.
Cameras located at the origin of CSL/CSR are used to express the position of
objects with respect to the CSWorld.
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CSWorld denotes the common environmental reference frame, in which we seek
to express object locations. Assuming a solution to the standard stereo vision
problem, applying it to a real physical robot to facilitate object manipulation re-
mains a challenge. In many robotics applications, it is somewhat inconvenient to
express the environment with respect to a camera. For example, from a planning
and control standpoint, the most logical choice of coordinate system is CSWorld,
the reference frame at the base of the manipulator, which does not move with
respect to the environment. In order to transform coordinates from CSL or CSR
to CSWorld, such that we can model objects and control the robot in the same
frame of reference, an accurate kinematic model of the robot is required. If such
a model is available, it must be carefully calibrated against the actual hardware,
and even then its accuracy may be limited by un-modelled nonlinearities.

Several different localization systems have previously been developed for the
iCub. A popular representation for (stereo) vision research is based on log-polar
transformed images. This biologically inspired approach first applies a transfor-
mation to the camera images before typical stereo vision algorithms are used.
The available module currently supports only a static head, i.e. it puts the object
position in the CSL/R coordinate frame. The ‘Cartesian controller module’ pro-
vides another basic 3D position estimation functionality [Pattacini, 2011]. This
module works well on the simulated robot, however its performance on the hard-
ware platform is weak, this is because of inaccuracies in the robot model and
camera parameters. The most accurate, currently available localization mod-
ule for the iCub exists in the ‘stereoVision’ module providing centimetre accu-
racy. Unlike the presented log-polar approach, this module employs the entire
iCub kinematic model, providing a position estimate in the CSWorld coordinate
frame. The module requires the previously mentioned ‘Cartesian controller’ and
uses tracking of features to improve the kinematic model of the camera pair by
estimating a new fundamental matrix continuously. The precision of all of these
approaches depends upon an accurate kinematic model of the iCub. A very accu-
rate model, or estimation of the model, is therefore necessary. While the spatial
perception problem could, in theory, be solved numerically, in practice though,
no precise enough kinematic model is available for the iCub. For other robots,
such as Holland’s fully anthropomorphic CRONOS [Holland and Knight, 2006],
no useful kinematic model exists. Therefore the focus is on solving the spatial
perception problem on the real hardware. In fact a precise learning of spatial
perception could in turn be used to build an accurate kinematic model.

There exists currently no module estimating the kinematics of the iCub, for
other robotic systems this has been done: visual feedback to learn the model of
a holonomic wheeled robot [Gloye et al., 2005] and learn the model of a legged
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robot using low-dimensional sensory feedback [Bongard et al., 2006]. Yet no
approach has been shown with high-dimensional sensory information (such as
images).

In robot learning, especially imitation learning, various approaches have been
investigated to tackle these problems. Sauser and Billard [2005] have investi-
gated the problem of reference frame transformations from a neuroscience per-
spective. They were able to imitate gestures from a teacher on a Hoap-2 hu-
manoid robot with external fixed cameras. Though promising their approach
has so far not been extended to systems with non-stationary cameras.
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Figure 3.9. Overview of the icVision architecture. It consists of loosely-coupled
modules to provide a simple framework for developing computer vision solu-
tions and enabling integration of the research directly on the iCub hardware.
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3.2 icVision: Framework for Robot Vision and Cog-
nitive Perception

At IDSIA over the last years I developed the icVision framework [Leitner et al.,
2012c, 2013b]. It aims to be a tool (or more a suite of tools) for an easier devel-
opment, testing and integration of the on-going computer vision research into
the real hardware. One of the main design goals is to allow rapid prototyp-
ing and testing of vision software on the iCub and reduce development time by
removing redundant and repetitive processes. icVision is implemented in C++,
open-source and uses YARP as middleware and OpenCV as framework to perform
the underlying image processing.

The design principle behind icVision is to provide standardised interfaces to
the most relevant parts of the robot with regards to computer vision. It focusses
on a modular design that allows to quickly test different implementations for
detection, tracking and classification.

One example of a work-flow through some icVision modules shows the 3D
localisation of objects in real-time on the hardware (see Figure 3.10). The var-
ious filter modules provide means to detect objects in the images. This can be
learned as shown later in this chapter. On the other hand they can also be pre-
programmed detectors, such as haar-like face detectors, or even trained neural
networks. The only constraint is that they provide the expected interfaces. By
providing wrappers and class stubs, the development time of such modules is
greatly reduced. The 3D location wrt. the robot’s reference frame is performed
in a module that as an input just needs pixel coordinates in both images and a
time stamp. The module has access to the robot’s joint encoders and a model,
either known or leaned, and with those is able to estimate the position of the ob-
ject. It interfaces with the MoBeE environment, through a YARP port to place a
geometry into the robot’s world model enabling the robot to, for example, avoid
colliding with them during operation.

The framework allows for the quick swapping of these modules by being able
to connect/disconnect these YARP ports on the fly. It also is possible to deal with
hyperspectral input images, and theoretically also with multiple sources of sens-
ing (multi camera setups, RGB-D cameras, etc.). A simple GUI was developed
to quickly turn filters on and off on the hardware. While currently the pipeline
is using mainly single feature detecotrs, in the future this should be extended
to connect and stack various filters together. A decent overview of some of the
experiments done using the framework can be found in Leitner et al. [2013a].
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Architecture

icVision is a distributed framework for running robot vision modules (see Fig-
ure 3.9). The 3D localization is done the following: At first the camera images
are acquired from the hardware via YARP Metta et al. [2006]. The goal of YARP
is to minimise the effort devoted to infrastructure-level software development,
especially for humanoid robots and within the iCub research and projects. It
facilitates code reuse, modularity and hopes to maximize code exchange and
collaboration. The main features of YARP include support for inter-process com-
munication (IPC), basic image acquisition and processing, as well as a class hi-
erarchy to ease code reuse across different hardware platforms. It is currently
used and tested on Windows, Linux, Mac OS and QNX6. Communication be-
tween modules in YARP is done using the Observer pattern. The information
is delivered to any number of observers to a “Port” . These can be any number
of processes distributed across any number of machines over a network. These
ports area “an active object managing multiple connections for a given unit of
data either as input or output” [Metta et al., 2006]. For icVision image ports
are created for each module. Apart from the main modules these are the filters
for a specific object detection and identification. Communication is controlled
by YARP and can be either via TCP or UDP (or IPC when running on the same
machine).

In the framework the colour images received from the hardware are con-
verted into greyscale, as well as split into RGB and HSV channels. They are then
distributed via the previously mentioned ports to all (active) icVision filters. Each
filter then processes the images received by applying OpenCV functions with the
aim of segmenting the object (see Section 3.3.1 for more details on how this can
be learned). The output of this is a binary image, segmenting the object to be
localized. A blob detection algorithm is run on these binary images to find the
(centre) location of the detected object in the image frame. The position of the
object in both the right and left camera images is sent to the 3D localization mod-
ule, where together with the robot’s pose, a 3D location estimation is generated.
The last step places the object in the existing world model (see Figure 3.10).

To further facilitate the reuse of the code the icImage class is provided. It
is a wrapper for the OpenCV functionality (over 60 functions are used by the
Cartesian Genetic Programming for Image Processing — CGP-IP — framework, see
next section) and memory management within the icVision framework, it also
enables a quick and pain-less swapping between C#and C++ code.
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ing an object in operational space.
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3.3 Visual Perception and Object Detection

Object detection is not yet solved in a general sense, as mentioned earlier (Sec-
tion 2.2), yet it is a very important issue to enable autonomous grasping. A hard
problem on the iCub in particular although there has been some recent progress,
especially from the lab at IIT [Ciliberto et al., 2011a; Fanello et al., 2013; Gori
et al., 2013]. For autonomous object manipulation with humanoid robots it is
of importance to detect and identify the objects to interact within the environ-
ment. This is still a challenging problem in robotics, especially in settings where
lighting varies, viewing angles change and the environment can be described
as ‘cluttered’ (i.e. lots of different objects in the scene, partly obstructing each
other). Given the maturity of the field of image processing, it should be possible
to construct programs that use much more complicated image operations and
hence incorporate domain knowledge.

A technique based on Cartesian Genetic Programming (CGP) [Miller, 1999,
2011] was developed allowing for the automatic generation of computer pro-
grams for robot vision tasks. A large subset of the functionality of the freely
available OpenCV image processing library [ Bradski, 2000] are used as building-
blocks of these programs. The implementation provides an effective method to
learn (unique) object detection modules. If the training set is chosen correctly,
even different lighting conditions are no longer problematic.

Background: Cartesian Genetic Programming (CGP)

A genetic algorithm (GA) [Holland, 1975] is a search technique inspired by Dar-
winian evolution. It is one of the three primary research areas under the common
umbrella of evolutionary computation, with the other two being evolutionary
programming [Fogel et al., 1966] and evolution strategies [Rechenberg, 1965;
Schwefel, 1965]. Genetic Programming is a GA applied to solve specific problems
by generating formulae or programs; most commonly to find the right parameters
to minimize (or maximize) an arbitrary function F(X;,X,,...,X,), with n € N*,
These parameters can be of arbitrary nature and do not need to be known before-
hand, as GP is a black-box optimiser. More precisely GP is a “probabilistic search
algorithm that iteratively transforms a set (called a population) of mathematical ob-
jects (typically fixed-length binary character strings), each with an associated fitness
value, into a new population of offspring objects using the Darwinian principle of
natural selection and using operations that are patterned after naturally occurring
genetic operations, such as crossover (sexual recombination) and mutation” [Koza,
1992]. Each GP consists of a population P = {I,,...,I,,} of m € N* individuals
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and a fitness function f (I) which specifies how well each individual I € P per-
forms (solves the problem, i.e. minimizes/maximizes F(.)). Generally the fitness
function f(.) is assumed to return a single value in R. Each individual I is fur-
thermore made up of a list of genes, with length | € N*, I = {g/4, ..., g;;}, which
represent (or can be mapped to) the the unknown parameters X;,...,X,. This
representation is usually referred to as the genotype of the individual. Herein the
genes are defined to be either of N or R. The GP algorithm creates a new popu-
lation P’ from the current one by changing the individuals through selection, re-

combination and mutation of the genes, P %, P’. The GP terminates once a suf-
ficient number of individuals is tested or the best individual I, = argmin, . f (I)
is found to be sufficiently fit. GP has been applied successfully in many areas,
including medicine and bioinformatics [Handley, 1993] and even as a hyper-
heuristic [ Oltean, 2005]. Furthermore GP has often been used to solve problems
in image processing [Spina et al., 2009], however previous attempts typically
use a small set of mathematical functions to evolve kernels, or a small number of
basic image processing functions (such as erode and dilate). Given the maturity
of the field of image processing, it should be possible to construct programs that
use much more complicated image operations and hence incorporate domain
knowledge.

In this section, a technique based on Cartesian Genetic Programming (CGP)
is presented. It allows for the automatic generation of computer programs us-
ing a large subset of the OpenCV image processing library functionality [ Bradski,
2000]. The design choices for the approach are intended to match human design
choices — hence the use of an industry standard API, the generation of code in
standard programming languages and the inclusion of additional domain knowl-
edge. The efficacy of this approach is demonstrated in Section 3.4. The results
from several different domains — basic image processing, medical imaging, ter-
rain classification, object detection in robotics and defect detection in industrial
application — are presented.

Cartesian Genetic Programming (CGP) is a form of Genetic Programming
(GP), an evolutionary algorithm (EA), in which programs are encoded in partially
connected feed forward graphs. CGP grew from a method of evolving digital cir-
cuits developed by Miller et al. [1998]. However the term “Cartesian genetic pro-
gramming” first appeared in [Miller, 1999] and was proposed as a general form
of genetic programming in [Miller and Thomson, 2000]. It is called ‘Cartesian’
because in its very first form it represented a program using a two-dimensional
grid of nodes [Miller, 2011], different from previous “tree-based” GP approaches
[Cramer, 1985].
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The genotype, given by a list of nodes, encodes the graph. For each node
in the genome there is a vertex, represented by a function, and a description
of the nodes from where the incoming edges are attached. This representation
has a number of interesting properties. For instance, not all of the nodes of a
solution representation (the genotype) need to be connected to the output node
of the program (the phenotype). As a result there are nodes in the represen-
tation that have no effect on the output, a feature known in GP as ‘neutrality’.
This has been shown to be very useful in the evolutionary process [Miller and
Smith, 2006]. Also, because the genotype encodes a graph, there can be reuse
of nodes, which makes the representation distinct from a classically tree-based
GP representation. The general form is shown in Figure 3.11, and an example
from the proposed framework CGP for Image Processing (CGP-IP) is visible in
Figure 3.13. Dickmanns et al. [1987] presented an alternative approach, also al-
lowing reuse and even loops. CGP has previously been used for image processing
tasks. Several examples can be found in [Sekanina et al., 2011].

A basic genetic algorithm works as follows (see also Figure 3.12 for refer-
ence): Initially, a population of candidate solutions P is generated randomly.
This population consists of a (in most cases) fixed number of individuals (m),
who in turn are defined by their genome, as described above. These are at first
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Figure 3.11. The general form of CGP. It is a grid of nodes whose functions are
chosen from a set of primitive functions. In what follows, n, n,,n;,n, and a are
natural numbers. The grid has n. columns and n, rows. The number of program
inputs is n; and the number of program outputs is n,. Each node is assumed to
take as many inputs as the maximum function arity a. Every data input and node
output is labeled consecutively, which gives it a unique data address specifying
where the input data or node output value can be accessed [Miller, 2011].
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randomly generated, i.e. each gene g;, with i € 1, m is initialized with a random
value (see Figure 3.12a, where each gene is represented by an either white or
black vertical stripe).

Following the creation of the population each of these individuals is tested
to see how well it performs the given task, i.e. in our case segment the object of
interest from the rest of the scene in a set of test images. This is generally known
as evaluating the ‘fitness function’ f (I). It is used to assign a numeric score to
each individual in the population, f : I — R. Generally, the lower this error,
the better the individual is at performing the task. The individuals are ranked
according to this metric (Figure 3.12b).

The next step generates a new population P’ from the old population P. This
is done by taking pairs of the best scored genotypes and performing functions
analogous to recombination and mutation. In the case presented herein, as is
common in CGB only one (the fittest) individual is used to generate offsprings
only by mutation (Figure 3.12c). Herein a 1+4 evolutionary strategy is used, i.e.
|P| = 5. Four offsprings are created from the best individual and are replacing
the lowest performing individuals in the new population P’ (Figure 3.12d).

This process is then repeated, i.e. fitness scores are calculated for these new
individuals, using the fitness function. The process of test and generate is re-
peated until a stop condition is satisfied, i.e. a very close to perfect solution is
found or until a certain number of individuals have been evaluated.

Many GP approaches work as convolutional filters, in the sense that the GP
generates a kernel or convolution matrix. In this type of approach, a sliding
window (using the kernel size) moves across an image. At each pixel location, an
evolved expression takes the in neighbouring pixels’ values, and computes a new
value for the centre pixel [Gonzalez and Woods, 2006]. Typically these programs
operate at a mathematical level, where operations such as +, —, x and + are used
[Harding, 2008]. Implementations on Field Programmable Gate Arrays (FPGAs)
for noise reduction, use a mixture of binary operations (e.g. OR, XOR, AND,
etc.) and mathematical functions [Slany and Sekanina, 2007]. Similarly, Wang
and Tan [2011] also uses a mixture of function types, in this instance binary and
some basic morphological operations, such as dilate. The first demonstration of
CGP-IP in Section 3.4 revisits the noise reduction problems.

GP has also been applied to the generation of ‘features’ to be used in feature
detection. For example in finding corners [ Seo and Kim, 2010], or object specific
features [ Szymanski et al., 2002; Tackett, 1993; Yu and Bhanu, 2006], or ‘inter-
esting’ features that are comparable to SIFT [Trujillo and Olague, 2008, 2009;
Watchareeruetai et al., 2008].

GP has been applied to the problem of classifying images in many different
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domains. For example, adding loops to GP enabled Wijesinghe and Ciesielski
[2007] to classify simple shapes using just primitive mathematical operators. Us-
ing a simple function set, but operating on a large number precomputed statistics,
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Figure 3.12. lllustration of a typical iteration for an evolutionary search using
(Cartesian) Genetic Programming.



60 3.3 Visual Perception and Object Detection

Zhang et al. [2003] were able to perform domain-independent and multiple class
object recognition. This paper also has a good overview of previous work in ob-
ject detection in GP. Terrain classification using GP has been applied to satellite
imagery [ Silva et al., 2010], including work on hyper-spectral images [Uto et al.,
2009]. In Section 3.4, experiments with CGP-IP classifying terrain in a space
robotics application are included.

As mentioned above, segmentation is the process of separating foreground
from background, or one object class from the background. Using GB Spina
et al. [2009] evolved programs to perform segmentation based on features calcu-
lated from partially labelled foreground and background. In an approach similar
to CGB Shirakawa and Nagao [2007] evolved segmentation programs that use
many high-level operations such as mean, maximum, minimum, Sobel, Lapla-
cian, sum and product. This approach is probably the most similar to CGP-IP In
later work, the technique was successfully applied to texture classification [Shi-
rakawa et al., 2009]. In the domain of medical imaging, Poli [1996] used GP
with basic mathematical operators, working at a per pixel level to segment fea-
tures from MRI scans. CGP-IP is demonstrated on two medical imaging problems
for classification (Section B.1-B.2).

3.3.1 Cartesian Genetic Programming for Image Processing

Cartesian Genetic Programming for Image Processing (CGP-IP) draws inspira-
tion from much of the previous work in the field. As will be demonstrated, it
uses a mixture of primitive mathematical and high level operations. It uses CGB
which appears to be a popular choice for the representation in this domain. It
encompasses domain knowledge, and could even be easily adapted to include
the findings from previous work in its function set. CGP-IP implementation can
handle colour images with multiple channels, which is a key difference to much
of the previous work, which focused on the use of grey scale images. Treatment
for colour images is to separate them into RGB (red, green and blue) and HSV
(hue, saturation and value) channels, and provide these as available inputs. Each
available channel is presented as an input to CGP-IB and evolution selects which
inputs will be used, as all functions operate on single channel images. Our im-
plementation generates human readable C#or C++ code based on OpenCV to be
run directly on the real hardware — using our icVision framework. An illustrative
example of a CGP-IP genotype is shown in Figure 3.13, Figure 3.21 shows the
actual operations in one of the evolved filters. The first three nodes obtain the
components from the current test image (e.g. grey scale version, red and green
channels). The fourth node adds the green and red images together. This is then
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dilated by the fifth node. The sixth node is not referenced by any node connected
to the output (i.e. it is neutral), and is therefore ignored. The final node takes
the average of the fifth node and the grey scale input.

Node Representation Compared to classical CGB CGP-IP needs additional val-
ues encoded in each node. This is because the available functions often require
one or more parameters, and these parameters have requirements as to their type
and range. Hence, each node in a CGP-IP graph contains the following elements:

Function: Integer representing a function from the set of available func-
tions.

Connection 0: Integer representing how many nodes back in the current
graph this node should connect to obtain the first input to the function.

Connection 1: Integer representing how many nodes back in the current
graph this node should connect to obtain the second input to the function.

Parameter 0: Real number, typically used as a constant value.

Parameter 1: Integer in the range -16 to +16, used as a parameter to an
image operation.

Parameter 2: Integer in the range -16 to +16, used as a parameter to an
image operation.

Gabor Filter Frequency: Integer in the range O to 16, used as a parameter
for Gabor filter operations.

Gabor Filter Orientation: Integer in the range -8 to 8, used as a parameter
for Gabor filter operations.

Figure 3.13. Example illustration of a CGP-IP genotype.
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If a relative address extends beyond the extent of the genome it is connected
to one of the inputs. Which input image that is, is determined by specialised
‘Image Input’ functions provided (INB INPBE SKIP). These manipulate a pointer
that indexes the available inputs and return the currently indexed input. Harding
et al. [2010a,b] provide a full description. This makes sure that the genomes do
not run into problems with non-valid input images or connections to unavailable
nodes. It ensures that every node returns an image output every time it is called.
The overall output of the evolved filter is taken from the last node in the genome
(compare Figure 3.13).

All genes in the genotype have an equal probability of being mutated. The
type of mutation that occurs depends on the type of gene being mutated. For the
function genes, a new function is selected at random from the available functions.
The connection genes are mutated to a new value from 1 to the length of the
genotype. For the Gabor Frequency, a random integer between 0 and 16 is used.
For the Orientation, mutation selects an integer between -8 and 8. The mutation
for the ParameterO gene is slightly more complicated. If that gene is selected for
mutation, with equal probability it will be set to either a random value between
-255 and 4255, or noise (maximum of +/-10%) will be added. Some commands
from the function set require certain parameters to be either even or odd. These
issues are handled in the icImage class, which converts the parameter if needed.
This again makes sure that each node will return an image output every time it
is called.

In addition to the program graph, the genotype also includes a real number
value that is used for thresholding during binary classification problems. The
threshold has a range of 0 to 255. During mutation, this parameter is modified
with a 1% probability, and uniform noise of +/-10% is added.

The genotype for CGP-IP contains a large number of elements that need to
be evolved. Such a complex representation would normally be considered too
large to efficiently evolve, however the results shown in Section 3.4 indicated
otherwise. Although further investigation is required, it is suggested that this
complexity increases neutrality (which is understood to be useful to CGP) and
also increases the flexibility of the function set (leading to an increase in the num-
ber of possible solutions). A large number of more specialised parameters in each
node avoids the necessity to perform casting and interpretation of an arbitrary
set of values in each node, which aids readability. Further, the specialization of
the parameters enables mutation to act appropriately.

Executing the genotype is a straightforward process. First, the active nodes
are identified to perform the genotype-phenotype mapping. This is done recur-
sively, starting at the output node, and following the connections used to provide
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the inputs for that node. In CGP-IP the final node in the genotype is used as the
output. Details of the decoding stage are shown in Algorithm 1. It needs the
current individuals genotype G and returns the number of nodes used (n,) and
to be processed (it also stores their addresses in a nodes-to-process set NP). The
pseudo-code requires a few variables € N* unless otherwise specified, such as L,,
which is the length of each individual’s genome, M, the number of nodes avail-
able, n,, which is the number of genes representing a single node, n,, which is
the number of output nodes, n;, defining the number of input nodes, NG is a
temporary storage for the genes of a node. The first genes of each node define
the connections to other nodes, with the function itself being defined by the last
gene of each node, i.e. it is stored in NG[n,, —1].

Next, the phenotype can be executed on an image. The input image (or im-
ages) are used as inputs to the program, and then a forward parse of the phe-
notype is performed. If the problem is a binary classification, the output image
is then thresholded. The complete methodology can be found in Algorithm 2. It
requires again the genotype G but in addition also requires the input image to
be processed (INP). CGP is also efficient in the sense that only active nodes are
computed, and that the results from these nodes are stored and reused.

Fitness Functions

Depending on the application, two different fitness functions are available in
CGP-IP For all fitness measures, a lower value indicates a better solution (with 0
being a perfect score).

Type A: Basic Image Filtering and Processing For many problems, the simplest
fitness function is to compute the difference between the image output by an
evolved program and a target image on a per pixel basis. In CGP-IB if this method
is used the fitness of an individual is the average error for all pixels in all images
in the training set.

Type B: Binary classification For binary classification problems, the output im-
age from the GP is thresholded and treated as a binary image. The threshold
value is evolved as part of the individual’s genotype. This is then compared to
the target image on a per-pixel basis using the Matthews Correlation Coefficient
(MCC) [Matthews, 1975], which has previously been observed to be useful for
classification problems solved using CGP [Harding et al., 2012]. First the ‘confu-

2The MCC has been compared against other common measures in GP classification by Hard-
ing, however this work was performed under an industrial non-disclosure agreement and there-
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Algorithm 1 Determining which nodes need to be processed

1: NodesToProcess(G,NP) {return the number of nodes to process}
2: for all i such that 0 <i < M do {Initialize}

3. NU[i] < FALSE

4: end for

5: for all i such that L, —n, <i < L, do {Set all output nodes to true}
6: NU[G[i]] « TRUE

7. end for

8: for all i such that M —1 > i > n; do {Find active nodes}

9: if NU[i]= TRUE then

10: index < n,(i —n;)

11: for all j such that 0 < j < n,, do {store node genes in NG}
12: NG[j] <« G[index + j]

13: end for

14: for all j such that 0 < j <Arity(NG[n,—1]) do

15: NU[NG[j]] « TRUE

16: end for

17:  end if

18: end for

19: n,=0

20: for all j such that n; < j < M do {store active node addresses in NP}
21: if NU[j]= TRUE then
22: NP[n,] «j

23: n,<n,+1
24: endif
25: end for

26: return n,

sion matrix’ is found, which is the count of the true positives (TP), false positives
(FP), true negatives (TN), and false negatives (FN). In the case of object detec-
tion in images, these are measured on a per pixel basis. Once these values are
found the MMC is calculated as follows:

TPxTN—FPXFN
MCC=

~ (TP +FP)(TP + FN)(TN + FP)(TN + FN)

An MCC of 0 indicates that the classifier is working no better than chance.
A score of 1 is achieved by a perfect classifier, —1 indicates that the classifier is

fore details cannot be published.
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Algorithm 2 Decoding CGP to get the output

1: DecodeCGP(G,INP,n,,NP,0O)
2: for all i such that 0 <i < n; do {Initialize}
3: o[i] < INPJ[i]
4: end for
5: for all j such that 0 < j < n, do
6: n« NP[j]—n;
7:  index < n,n
8: for all i such that 0 <i < n, —1 do {store data needed by a node}
9: in[i] « o[G[index +1]]
10: end for
11:  f = G[index + n, — 1] {get function gene of node}
12:  o[n+n;]=NF(in, f) {calculate output of node}
13: end for
14: for all j such that 0 < j <n, do
15: O[j] « o[G[L,—n, +]]
16: end for

perfect, but has inverted the output classes. Finally, the fitness of an individual
is given by:
fitness=1—|MCC]|,

with values closer to 0 being more fit.

The MCC is insensitive to differences in class size, making it a nice choice
for many binary classification tasks. The confusion matrix also allows for easy
calculation of the classification rate as a percentage of correctly classified pixels.
The MCC is also a good choice as it seems very suitable to evolve detectors that
can work with noise and imprecise maps. This is especially beneficial with data
coming from human classification, see e.g. the big blocks used as ground truth
and as input masks during various experiments.

A similar, commonly used metric for image segmentation is the F-measure
(the harmonic mean of the precision and recall scores).

Domain Knowledge

One of the main benefits of Genetic Programming is the ability to easily in-
clude domain specific knowledge. This can be performed in two ways. The
first method, which is also applicable to other machine learning techniques, is to
provide useful pre-processed inputs. The other method is to provide GP with do-



66 3.3 Visual Perception and Object Detection

main specific knowledge through an appropriate function set. In this approach,
both methods are used.

High Level Operations Previous work on imaging processing with GP can be
divided into two groups. The first group operates on a convolutional approach.
Here, a program is evolved that operates as a kernel. For each pixel in an image,
the kernel operates on a neighbourhood and outputs a new pixel value. This is
also the typical approach when other machine learning approaches are applied
to imaging. In GB the kernel is typically an expression composed from primi-
tive mathematical operators such as +,—, x and +. For example this approach
was used to evolve noise reduction filters [Harding and Banzhaf, 2008, 2009;
Martinek and Sekanina, 2005]. In Harding [2008], many different image pro-
cessing operations (e.g. dilate, erode, edge detection) were reverse-engineered.

The second group operates on a functional level, where image operations
such as dilate and erode are applied to an entire image. This is an obvious
method to insert domain knowledge into evolved programs, as now operations
that are known to be useful can be used without having to re-evolve the same
functionality. CGP-IP combines both these methods. The function set not only
contains high-level image processing functions, but also primitive mathematical
operations. A complete list of the functions available in CGP-IP can be found in
Appendix A.

The primitive operators also work on entire images, i.e. addition will produce
a new image adding the values of corresponding pixels from two input images.
However, this method does not directly allow for kernel-style functionality to be
found. Instead, GP has to use a combination of shifts and rotations and other
existing kernel methods to get information about a pixel’s neighbourhood. This
is similar to the methods proposed to allow for efficient parallel processing of
images on Graphics Processing Units (GPUs) [Harding, 2008].

Working at the functional level allows for the easy inclusion of many standard
image processing operations. In CGP-IP a large number of well known primitive
operations from the OpenCV library are available to the evolutionary process.
Additionally, higher level functions such as Gabor filtering are available.

Using OpenCV we can also be confident about using high quality, high speed
software. In CGP-IB individuals are evaluated at the rate of 100s per second on
a single core. This makes it both efficient to evolve with, but also means that the
evolved filters will run quickly if deployed.

CGP-IP can also use functions such as SIFT, SURF and Hough transforms.
These are well known to be useful in object recognition. It should be noted
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that these functions do not produce full images and can be very computationally
expensive, especially when run on inappropriate images. Therefore, they are
excluded from the function set for now. Future work will aim to add these in a
proper manner.

Colour Space and Hyper-spectral Imaging Much of the previous work on imag-
ing with GP has focused on the use of grey scale images. Often this is for perfor-
mance considerations. But also this is out of consideration for how the images
will be handled within the program.

In convolutional approaches on grey scale images, the evolved program will
be given nine inputs representing the neighbourhood pixel values of a given lo-
cation. The program will output a single value that represents the pixel value
for that location. Expanding this to colour would require either treating each
neighbouring value as a vector representing each of the colour channels (e.g.
R,G,B) or increase the number of inputs (from 9 to 27 in the case of a simple
colour image). By representing the colours in a vector, GP would need to be
given appropriate functionality to use individual channels. Unless the represen-
tation allowed mixed data types, it is hard to think of a simple and robust method
that would allow this Harding et al. [2012]. Further, treating each pixel as a vec-
tor may unnecessarily increase processing time. For example, if only one colour
channel was needed to solve the problem, the other elements of the vector would
still need to be processed, and stored.

Using a large neighbourhood introduces scaling problems, especially if a large
number of inputs need to be considered. It is easy to imagine the GP programs
would need to be large with a complex structure, and that this would be diffi-
cult to evolve. Similarly, approaches such as Neural Networks, would also need
strategies to cope with a large number of inputs.

Both these issues would further be compounded if hyper-spectral or layered
images were used. For example, in the ICPR dataset (see Section 3.4), colour
images produced by different processes are provided, combining the different
layers (which are also colour images) would require GP to process either 9 ele-
ment vectors, or handle 81 inputs in the case of a simple convolutional method
working on a 3x3 kernel.

In CGP-IB all functions operate on single channel images. Each available
channel is presented as an input to CGP-IB and mutation selects which inputs
will be used. It is also common to use different colour spaces when perform-
ing image processing. Images are typically considered, to be composed of Red,
Green and Blue channels (the common colour space used in display devices and
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file storage). However, other colour spaces such as HSV (Hue, Saturation and
Brightness) have useful properties that may be exploited by GP For example,
colour space is important in skin tone detection as skin has a limited range of
hues [Forsyth and Fleck, 1997]. In CGP-IP the default treatment for colour im-
ages is to separate them into both RGB and HSV channels, and provide these as
available inputs. A grey scale version of the image is also provided.

Function Set Each node can perform one function. Evolution, through the
change of the genome, defines which one of over 60 unique functions is exe-
cuted at each node. To include domain knowledge OpenCV is used to provide
relevant functions. Tables A.1 and A.2 in Appendix A, list the functions available
in CGP-IP The function set is considerably larger than those typically used with
GP approaches. This does not appear to hinder evolution, and again we spec-
ulate that the increased number of functions provides greater flexibility in how
the evolved programs can operate.

Parameters As with other CGP implementations, CGP-IP does not require many
parameters to be set. The main parameters are:

* Graph length (i.e. the number of nodes in the genotype), which is set to
50 in this case.

* Mutation rate, 10% of all genes in the graph are mutated when an offspring
is generated. The threshold parameter is mutated with a probability of 1%.

¢ Size of mutations

* Number of islands, this depends on the available computing resources. It
has been shown that the population can be split into separate islands to im-
prove the performance of evolutionary algorithms [Ampatzis et al., 2011].
CGP-IP has been tested successfully from 1 to 24 islands. For all the exper-
iments shown here, 8 islands are used.

* Number of individuals per island, which is set to 5 in keeping with the
typical 1+4 evolutionary strategy used with CGP

* Synchronization interval between islands. Here each island compares their
best individual to the server’s individual every 10 generations.

It is important to note that in the work presented herein the parameters have
not been optimized other than by casual experimentation. It may be possible to
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improve the performance of CGP-IP by more carefully selecting these parameters.
In particular, the mutation rate, genotype size and number of islands are expected
to be the most important parameters to adjust.

All parameters are kept constant throughout the experiments presented be-
low. Again, whilst it may be possible to improve performance for a given problem
by optimising the parameters. The apparent parameter robustness is an impor-
tant feature of this technique.

Accelerating Performance

Image processing is computationally expensive, and this makes the fitness evalu-
ation the bottleneck in performance. In CGP-IP several different approaches can
be used to address this problem.

Caching As CGP is a graph, it often uses the output values of a node more
than once. See Figure 3.13 for an example. Storing the output of a function in
memory for later use reduces processing time. This optimization is inherent to
the CGP representation.

Similarly, it is possible to cache the results of an image processing operation
on an image and store this for later use. In CGP-IB as much caching is done as
possible to reduce the CPU load.

Distributed Computing As in previous work on CGP [Harding et al., 2012], a
parallel evolutionary strategy is employed. Multiple islands are used, where each
island runs a 1+4 evolutionary strategy. At frequent intervals, the best individual
per island is synchronised with a server. If the server contains a better individual,
the island downloads a copy of that individual. If the island’s best individual is
better, then it uploads that to the server for other islands to use.

The use of distributed computing allows the processing to be spread across
multiple computers. The parallel island evolutionary model has also been shown
to improve evolvability.

GPUs Image processing is well suited to the parallel architecture of GPUs. Pre-
vious work has shown that when evaluating GP programs on images using GPUs
a substantial speedup can be realised [Harding and Banzhaf, 2011]. However,
the current version of OpenCV does not fully support GPUs. Future work aims at
extending the CGP-IP capabilities to exploit GPUs.
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Pruning Generated Programs Our implementation of CGP-IP generates human
readable C#or C++ code based on OpenCV. Although CGP offers bloat free evo-
lution, it often appears to leave redundant nodes in the evolved program. Exam-
ples of redundant nodes include operations that add O to every value, or produce
a uniformly black image. Whilst the neutrality is important in the genotype, in
the phenotype (i.e. the evolved program) it is undesirable.

Optimizing the generated code is performed by a pruning method, which
identifies unnecessary operations. The process is as follows: for each active node
in the CGP program, replace it with a NOP and re-run the fitness evaluation. If the
fitness does not change (or improves), leave the modification in place, and move
to the next node. If the fitness degrades, replace the instruction with a node that
generates a completely black image, and retest. Again, keep the change if it does
not affect the program’s output. If it does alter the fitness, a final substitution
attempt is made with a white image. If all of these changes degrade performance,
the original operation is restored. It is typically found that this process reduces
the number of used instructions, and hence reduces the execution time of the
evolved program.
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3.4 Experiments and Results: Detection

This section demonstrates the applications for CGP-IP. It contains descriptions of
the experiments performed and results achieved. Several different domains were
tested in a variety of experiments, applying CGP-IP with the same configuration,
except for the fitness function for some tests, to various datasets (unless explic-
itly mentioned otherwise). The scenarios range from basic image processing
(noise reduction), mitosis detection to robotic applications. In addition, CGP-IP
was tested with images in the medical domain, these results can be found in
Appendix B.

(a) Image corrupted with salt
and pepper noise.

(c) Image corrupted with (d) Output of the evolved filter.
Gaussian noise.

Figure 3.14. Example result for noise removal for both ‘Salt and Pepper’ (a,b)
and Gaussian noise (c,d).
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3.4.1 Basic Image Processing: Noise Reduction

To demonstrate the capabilities of CGP-IP the well-studied noise reduction prob-
lem is visited. Several key examples using CGP exist (e.g. [Harding, 2008; Smith
et al., 2005; Vasicek and Sekanina, 2007; Martinek and Sekanina, 2005]). These
examples all use mathematical and logical operators to define a simple convolu-
tion operation. The experiment shows CGP-IP addressing both ‘salt and pepper’
and Gaussian noise.

The fitness of an individual is the average pixel difference between the output
and the expected image (i.e. Type A). Ten experiments were run for each type
of noise. Programs were trained on 4 images, and tested on 6 unseen images.
For the ‘salt and pepper’ noise removal, 5% of the pixels are corrupted by setting
them to either black or white. For the Gaussian noise problem, noise was added
with standard deviation o = 16.

From Table 3.1, it can be seen that CGP-IP compares well to previously pub-
lished techniques. It is hard to do an exact comparison of the results as previous
work may use a different subset of the images, for example in the Gaussian noise
validation set, the mean pixel error per image varies from 8.6 to 14.4, suggesting
that the results are highly dependent on the image being processed. Figure 3.14
shows that the evolved filters remove most of the noise, with only a small amount
remaining.

Table 3.1. Fitness results for the noise removal problem. The fitness of an in-
dividual is the average pixel difference between the output and the expected
image. Results are comparable to previous work on this problem; CGP on GPU
[Harding, 2008], CGP on FPGA [Martinek and Sekanina, 2005], IRCGP and
ECGP [Smith et al., 2005]

Approach Salt and Pepper | Gaussian
CGP-IP (Average) 0.57 11.00
CGP-IP (Std. dev.) 0.16 0.53
CGP-IP (Best) 0.41 9.58
CGP on GPU (Average) | 0.39 n/a

CGP on FPGA (Best) 0.48 6.43
IRCGP (Best) n/a 6.32
ECGP (Best) n/a 6.32
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3.4.2 Industrial: Detecting Surface Defects in Steel Production

Automated detection of defects from imaging is a common application of com-
puter vision. Figure 3.15 shows the results of a trained CGP-IP individual on a
set of defects encountered during the manufacture of steel. These are images
unseen during training. Training was performed on 50 images, containing a va-
riety of defects. For testing another set of 50 images was used. The supplied
‘region of interest’ (second column) only crudely, and sometimes misleadingly,
labels the data. However, CGP-IP is able to quickly learn a program to identify
the exact regions in the input image that contain the defects (third column). The
evolved C#program for the defect detection is relatively simple (Listing 3.1). The
program can be easily inspected, and modified, by engineers. The code is also
simple enough to be reimplemented onto different optical inspection hardware.
The evolved program is also able to operate at high speeds (in this case under 1ms
per image), which is beneficial in a continuous production environment. To fur-
ther facilitate the reuse of the code the icImage class (of the icVision framework)
is used to encapsulate the image operations and wrap OpenCV functionality.

Listing 3.1. The generated C#code for detecting steel defects visually.

1 public icImage RunFilter() {

2 icImage nodel = InputImages[O];

3 icImage node2 = nodel.sobelx(3);

4 icImage node3 = node2.unsharpen(-3, 1);

5 icImage node5 = node2.dilate(1);

6 icImage node6 = node5.canny(0.1);

7 icImage node7 = node6.max(node5);

3 icImage node8 = new icImage(-0.34d, ImageWidth, ImageHeight);
9 icImage nodel® = node3.min(node7);

10 icImage nodel3 = node8.add(nodel0);

11 icImage nodel8 = nodel3.sobelx(1l);

12 icImage nodel9 = nodel3.unsharpen(10, 3);
13 icImage node35 = nodel8.dilate(1);

14 icImage node47 = nodel9.max(node35);

15 icImage node49 = node47.localMax(1);

16 return noded49.threshold(140.2045f);

17}
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Figure 3.15. Examples from the steel defect dataset. In the first column are the
input images, the second column contains the ‘region of interest” where the
defect has been labelled and the third column shows the output from CGP-IP.

3.4.3 Terrain Classification: Recognising Terrain from Mars Ex-
ploration Rover (MER) Images

As a first example more aimed at robotics, CGP-IP is applied to visual detection
and identification of rocks and rock formations in images from Mars rovers. Au-
tomatically classifying terrain such as rocks, sand and gravel from images is a
challenging machine vision problem. Using data from mobile robots (on other
planets) our system learns classifiers and detectors for different terrain types
from hand-labelled training images. The learned program outperforms currently
used techniques for classification when tested on a panorama image collected
by the Mars Exploration Rover Spirit. This was presented at the International
Symposium on Artificial Intelligence, Robotics and Automation in Space [Leitner
et al., 2012b].

In mobile robotics terrain classification is of interest to allow for more au-
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tonomous decision making about traversing. Identifying obstacles and suitable
surfaces to drive on is important in order to prevent the robot getting stuck, whilst
avoiding damage. A particularly interesting example can be found in robotic
space exploration, which imposes some additional constraints. For example, the
issue of having to do image processing on a low power system, without relying
on high-latency, low-bandwidth communication to remote processing on Earth.
A review of current approaches can be found in Bajracharya et al. [2008].

Halatci et al. [2008] have previously published work on classifying terrains
for planetary rovers from images and also from vibrations sensed at the vehicle.
They aim to classify three separate classes of terrain during a field test: rocks,
beach grass and sandy terrain. Both low and high level features were used for
classification. Using the vision approach alone they achieve an average accuracy
of 77%, which was increased to 84% by fusing the vibration data with the image
data. Their classification is reported to take approximately 29 seconds per 512 x
512 pixel frame on a Pentium 1.8 Ghz desktop PC.

Shang and Barnes [2012] investigated terrain classification from visual in-
formation only. They investigated fuzzy-rough feature selection together with
support-vector-machines to classify terrain in the McMurdo panorama image, col-
lected by the Spirit rover. The (composed) image in approximately true colour
is publicly available from NASA.? It consists of 1,449 separate images and rep-
resenting a raw data volume of nearly 500 megabytes.

It shows the surroundings of the rover and includes dark, porous-textured
volcanic, as well as, brighter and smoother-looking rocks. These are embedded
in a sandy terrain with ripples and gravel (mixture of small stones). In their paper
several classes of terrain were defined and hand labelled, then a low-level feature
extraction was applied to generate 36 features per pixel. An SVM is then used
to classify the pixel based on those features. With their technique a classification
of up to 92% was achieved on hand-selected parts of the panorama. No runtime
information is given for generating those 36 local features and classifying the
terrain. CGP-IP is used to perform a similar, binary classification of rocks and
sand in images extracted from the Mars rover panorama.

Eight images were manually labelled (as there are no publicly available datasets),
with six used for training and two used for validation. The MCC fitness function
(Type B) was used.

CGP-IP was able to find programs that discriminate between the two terrain
types, and the statistical results can be found in Table 3.2. As we used differ-
ent datasets to previously published work, we cannot compare directly — but it

3http://pancam.astro.cornell.edu/pancam_instrument/mcmurdo_v2.html
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Table 3.2. Results for the Mars terrain dataset for classifying rock and sand.
Classification rate is per-pixel. Ten runs were performed. The average number
of evaluations to convergence was found to be 8,538.

% Classification Accuracy | MCC (Fitness)
Average 90.3 0.78
Minimum | 81.6 0.61
Maximum | 93.6 0.86
Std. Dev. | 3.63 0.07

appears this approach is competitive with prior work. Figure 3.16 shows the
validation images from the highest performing individual. The evolved program
also picks out rocks not labelled in the original image. Inspecting the training
data, this is also observed there — again suggesting CGP-IP is tolerant to poorly
labelled data.

Speed and simplicity of processing is important in many embedded systems.
On a single core of a modern desktop PC, the evolved filters run within 2ms, and
as the program is largely linear in form, the memory requirements are low. This
may make this approach highly suitable for implementing in constrained com-
puting environments. The simplicity of the solution can be seen in Listing 3.2.

=l *

(a) Input image. (b) Expected output. (c) Predicted output.
-- r
T
(d) Input image. (e) Expected output. (f) Predicted output.

Figure 3.16. Examples of evolved filters from the Mars terrain dataset.
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Listing 3.2. The generated C#code for detecting a specific type of rock.

1 public override GpImage RunFilter() {

2 icImage node® = InputImages[6].absdiff(InputImages([2]);
3 icImage node4 = node®.normalize();

4 icImage node5 = InputImages[1];

5 icImage nodel2 = InputImages[0].shiftRight();
6 icImage nodel4 = node4.sub(nodel2);

7 icImage nodel6 = node4.subc(-4.8662);

8 icImage node20 = nodel6.max();

9 icImage node2l = nodel4.erode(3);

10 icImage node23 = node5.absdiff(node20);

11 icImage node32 = node2l.sqrt();

12 icImage node35 = node23.erode(1l);

13 icImage node4l = node32.localMax(2);

14 icImage node49 = node35.add(node4l);

15 return node49.threshold(92.06558f);

16}

In the example, InputImages is an array of type icImage. The elements
in the array are: Grey Scale version of the colour input image, the Red, Green
and Blue components and the Hue, Saturation and Value components. Hence
InputImages[6] is the Value component, and InputImages[1] is the Red com-
ponent of the original, colour input image.

Learning to Classify Terrain From Images The same 5 segmentation classes as
defined by Shang et al. [2011] to classify the terrain from visual inputs are used
here. Instead of hand-labelling all test images their results are employed to train
our classifiers. The slices, taken from the full panorama, used in their publication
vary in size from 400 x 400 to 600 x 600 pixels.

Figure 3.17 shows the segmentation performed by CGP-IP in two sections of
the panorama. Gravel is shown in yellow, sand in blue. Various types of rocks are
detected and shown in green, red and purple. Our approach is quite fast as each
class needs about 50 — 150ms per slice. To speed up execution those could be
performed in parallel. In comparison Halatci et al. [2008] require 29 seconds for
a512x512 image frame. In Shang et al. [2011] 816 labelled feature patterns are
needed to perform the classification and no runtime information is given. Only
7 hand-labelled slices are used as inputs to learn the segmentation. An increase
in number of hand-labelled data is believed to allow for higher accuracy. Since
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Figure 3.17. Example of terrain classification task from a small section of the
panorama (left) in comparison with the results from Shang et al. [2011] (centre).
The right shows the results from the classification performed by CGP-IP.

there is no dataset with ‘ground-truth’ available it is therefore hard to objectively
compare the accuracy of the various methods. Especially the definition of sand
vs. gravel vs. small rock can be tricky. This is visible in Figure 3.17, where these
areas vary quite a bit between the two solutions.

3.4.4 Robotics: Object Detection with the iCub Humanoid

Vision in robotic systems is a challenging problem. In industrial robotics, scenes
tend to have well controlled lighting and the objects being examined are well
characterized. Further, the lighting and viewing angles can be optimized to meet
the vision requirements. For robots that work in more ‘real world’ environments,
lighting and viewing angles are often variable. Such vision systems are expected
to work in cluttered environments, with lots of different objects visible in the
scene. CGP-IP is applied to detect objects in images supplied by the iCub’s cam-
eras. The approach is able to work robustly in different lighting conditions, and
when the target object is moved or rotated.

To train CGP-IB a number of images are collected from the iCub cameras. For
each frame, the target object (and other objects in the scene) are repositioned.
Hence our training set implicitly contains multiple views of the object with differ-
ent angles, scales and lighting conditions. Each image in the training set is then
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(a) Input image used for train-(b) Expected output for train-
ing. ing example.
@ ’f‘.@ a

(c) Example validation input (d) Expected output. (e) Output of the evolved fil-
image. ter.

¥

Figure 3.18. Experimental result for the block detection with the iCub cameras.
A single training image was used (a). (e) shows the output of an evolved filter
that accurately segments out the red blocks.

hand segmented to highlight the target object. It should be noted that a rough
segmentation still allows CGP-IP to learn efficiently, which reduces the need to
spend time performing an accurate segmentation. The filters are trained to pro-
duce a binary classification (i.e. target object and, not object) using the MCC
based fitness function (i.e. Type B).

The first dataset tested was to detect toy blocks. Although these blocks have
highly saturated colours, and an obvious solution would be a simple colour filter,
the evolved filter has to discriminate the blocks from other objects in the scene
that have the same colours. As expected, this problem is trivial for CGP-IP to
solve. For training, only one (similar) image was used, as shown in Figure 3.18.
Validation was performed on 4 other images. In each image the blocks are ran-
domly placed. In the first run, CGP-IP was able to obtain a fitness score of 0.0647
(99.8% classification accuracy) on the validation images in just 20,000 evalua-
tions. The few false-positives in the pixel classification could be easily removed
by manually adding a median filter to the program.

As the problem is relatively simple, the generated program is also simple
to understand: Listing 3.3 shows the program to use both the Red component



80 3.4 Experiments and Results: Detection

Listing 3.3. The generated C# code for detecing toy blocks.

1 public icImage RunFilter()

2 A

3 icImage node2 = InputImages[1l].mulc(1.295);
4 icImage node8 = InputImages[4].shift(-3, 0);
5 icImage nodel® = InputImages[4].min(node8);
6 icImage nodell = InputImages[4].sub(node2);
7 icImage nodel3 = nodel0®.shift(1l, 0);
8 icImage nodel4 = nodel3.gauss(5);
9 icImage nodel9 = nodel4.mul(nodeld);

10 icImage node32 = nodell.localAvg(4);
11 icImage node43 = node32.shift(14,-14);
12 icImage node49 = nodel9.avg(node43);
13 return node49.threshold(195.4248f);
14}

(InputImages[1]) and the Hue component (InputImages[4]) of input. The
shift functions are used to produce edge detectors, whilst the gauss operation
smooths the images. It should be noted that the output is inverted (the predicted
classes are flipped around), but the MCC score for the fitness function allows for
this scenario. The evolved program could be slightly modified to correct this by
changing the final threshold operation to a thresholdInverse.

-

Figure 3.19. Training images for learning of filters for the iCub. The set on the
left shows the images from the camera. The set on the right shows the binary
classification as determined by a human, where a particular box is highlighted
in white. For each frame the position of the items on the table is shuffled.
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Figure 3.20. Example images of an evolved filter running in real time on the
iCub. Considering the limitations of the training set, the evolved filters show
good ability to generalise to variations in lighting, scale and rotation. Full video
at: http://www.youtube.com/watch?v=xsz0Cj4AleA

The training set for texture objects problem are shown in Figure 3.19. To
train, a number of images are collected from the iCub cameras. In each one
the target (and other objects) is repositioned. Hence our training set implicitly
contains multiple views, different angles, scales and lighting conditions. Nine
training images were used, with a single object of interest per image (training
a single filter). Figure 3.20 shows some examples of the evolved filter running

Listing 3.4. The generated code from CGP-IP for detecting the red tea box.

1 icImagex TeaBoxDetector::runFilter() {

2 icImage *node® = InputImages[0];

3 icImage *nodel = InputImages[1];

4 icImage *node2 = nodeO->erode(1l);

5 icImage *node3 = node2->ShiftDown();

6 icImage *node4 = nodeO->absdiff(node2);
7 icImage *node5 = node@->avg(node2);

8 icImage *node8 = nodel->erode(3);

9 icImage *node9 = node3->sub(node8);

10 icImage *nodel2 = node4->add(node4);

11 icImage *nodel3 = node5->min(nodel2);

12 icImage *nodel6 = nodel3->absdiff(node9);
13 icImage *node24 = nodel6->sub(node9);

14 icImage *node25 = node24->gauss(15);

15 icImage *node38 = node25->gauss(15);

16 icImage *node39 = node38->threshold(64);
17 return node89;

18}
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on the robot (see Listing 3.4). It can be seen that the evolved filter is able to
cope with variations in scale, orientation and lighting. Each filter for detecting
objects can also be visualized as a graph, as in Figure 3.21) for the detection of
a blue cup. Unique programs, allowing for identification as well as detection,
were evolved for a variety of objects of interest, e.g. different cups, tin cans, kids
blocks and tea boxes.

Figure 3.21. The filter’s workflow is clearly visible when represented as a graph
structure. It allows an engineer/programmer to see the operation performed at
each node. The top-most picture shows the final output, the binary segmentation
for a single object (a blue cup in this case).
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Robot Hand Detection on Humanoids CGP-IP was then applied to detect the
robot’s own hands and fingers in the images — an important prerequisite for eye-
hand coordination and a rather complex object to visually segment. Previous
approaches make use of external systems or markers to provide the position of
the hand. The detection of hands in robotics has so far been mainly focused
on detecting human hands in camera images. For example, Kolsch and Turk
[2004] presented a method for robustly classifying different hand postures in
images. These approaches usually use the quite uniform colour of the skin [Zhu
etal., 2000], motion flow [ Cutler and Turk, 1998 ] and particle filtering [Isard and
Blake, 1998]. In contrast, the method herein using CGP-IB it does so solely using
its own camera images and does not require any external systems or markers.
These results were first shown at the Congress on Evolutionary Computation
[Leitner et al., 2013c].

At first the approach was verified by visually detecting the hands of the Nao
robot, which are of a less complex design and also simpler in appearance (more
details about the Nao detection can be found in Leitner et al. [2013c]). In com-
parison to the Nao’s hand, the iCub sports a rather complex end-effector (Fig-
ure 3.22).

Figure 3.22. The iCub’s hands and fingers are quite complicated mechanically
and complex to detect visually.



84 3.4 Experiments and Results: Detection

The detection of the mechanically complex hands and fingers seems to be a
much harder computer vision task. These are the most complex objects so far
detected with evolved CGP-IP filters. There has only been one previous effort
to apply machine learning to detect the iCub’s hands [Ciliberto et al., 2011b].
As above, we collect a dataset from the real robot. This time the images were
gathered while the robot was moving its arms around, in the visible workspace.
A handful of pictures was hand-labeled and used as a training set.

The detection of the hand is split into two separate problems: the identifica-
tion of the fingertips only, and, secondly of the full hand. This separation allows
us to create a finer level of control for tasks, such as, grasping, that involve con-
trolled motion of the fingers.

The fingertips are made out of a black rubber protecting the touch sensors
within. Figure 3.23 shows the result of an evolved filter detecting the fingertips
of the iCub’s hands. To make sure that the solution is not just identifying any
black part the images contain black objects in the background, such as, chairs
and computer cases. Due to the stochastic nature of the evolutionary approach
we ran multiple tests. The best solution (out of 10 test runs) for filtering out
the fingertips was found rather quickly; after only a bit more than 8 minutes of
evolution on a standard desktop PC (about 55,000 individual evaluations).

To detect the full hand is a more complicated task. Here we used 10 images
to train the filter and an additional four to validate each solution against unseen
data. For this more complicated task the evolution of the best solution (out of
10 tests) took more than 5,700, 000m evaluations (about a hundred times more
than for the fingers alone), taking about 12 hours on a desktop computer. In
Figure 3.23 the performance of the learnt filter is shown. Generally a very good
detection can be seen, although there are some minor issues. For example, a
reduced level of detection can be seen around the edges of the frame. As we will
be gazing upon a specific object we want to manipulate, the precise control will
be of importance when the hand reaches close to the centre of the image frame.
Another issue seems to be the striking difference in visual appearance between
the front and back side of the hand. This can be seen in the second to the right
image in the middle row of the figure. Again in most of the planned scenarios
for object manipulation the back of the hand will be visible. Therefore we do not
see this as an important issue. Furthermore if a more thorough detection, also of
the front side, is required another separate filter just for the front can be evolved.
By combining the two separate detectors, for the fingertips and the hand, we get
a very precise, almost full identification of the iCub’s hands. Separate programs
resulted in better detection of the fingers and the hand (Figure 3.23).
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Figure 3.23. The detection of the iCub’s own fingertips and hands. Green indi-
cates correct detection, red and blue respectively show not and wrongly detected
pixels.

3.4.5 Robotics: Autonomous Learning of Object Detection

CGP-IP is based on a supervised learning technique, i.e. it needs a set of hand-
labeled training samples. Only recently researchers started to look at the ques-
tions how a robot can learn to recognise objects in a largely autonomous fashion
[Kim et al., 2006], how learning can be made fully online [Kirstein et al., 2008],
and how the need for a human teacher can be minimised [ Gatsoulis et al., 2011].

In collaboration with the Frankfurt Institute of Advanced Studies (FIAS) and
building on CGP-IP the design of a autonomous vision system, that tries to an-
swer these questions on the iCub, was started. Together we developed a tech-
nique for our humanoid robot to learn object representations by itself. The
developed visual system actively explores the unfamiliar environment and pro-
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vides the robot with the ability to learn visual representation for objects in the
scene in an autonomous fashion. A prototype version of this system was pre-
sented at the International Conference on Developmental Learning and Epige-
netic Robotics (ICDL/EpiRob) [Leitner et al., 2012a]. The following experiment
show the achieved results using a combination of techniques required to create
a more autonomous learning system for CGP-IP:

* To allow for autonomous generation of these unique identifiers a biologi-
cally inspired scene exploration approach is applied, then

* a feature based approach is deployed to create segmented images around
a salient point, and finally

* this pre-segmentation provides the needed inputs to CGP-IP for learning
robust filter using the same approach as in the previous experiments.

Scene Exploration for Autonomous Learning

A scene exploration approach is applied to find the majority of the objects in the
workspace. To do so the robot looks around using a attention mechanism, i.e. the
robot looks at objects, one after the other, based on the saliency of their features.
Together with a stereo segmentation scheme this exploration technique avoids
manual supervision for segmenting the objects in the scene required for training
CGP-IP

Bottom-up attention mechanism A neuro-morphic model developed by Itti et al.
[1998] is employed. It aims to identify the elements of a visual scene that are
likely to attract the attention of human observers. In this model the ‘stimulus
conspicuity’ over the visual scene are topographically encoded in the form of a
saliency map using a bottom-up control strategy. The different visual features
that contribute to attentive selection of a stimulus (colour, intensity, orientation,
motion etc) are combined into one single two dimensional map integrating the
normalised information from the individual feature maps into a global measure.

Images from both the eyes are processed to obtain saliency maps which assign
a salience value to each pixel in the image. These maps are used by the decision
module to select the single most salient point in the scene (Figure 3.24a) and
gaze upon it before segmentation can begin. As this technique is quite robust
to variations, the same point will be selected at every run if the scene does not
change. To avoid this and actually be able to detect different objects, a temporary
inhibition of the saliency map around the winning location is applied. This is



87 3.4 Experiments and Results: Detection

done by subtracting a Gaussian kernel at that location in the map, effectively
creating a highly non-salient point. Recently visited location will be inhibited, in
decreasing order, to avoid bouncing back between the two most salient points in
the scene and find the next most salient object.

Top-down modification of attention In order to avoid constant switching be-
tween the two most salient locations, we also introduce a top-down inhibition of
recently visited locations. To this end, the absolute 3D coordinates of the visited
locations are saved in the memory and they are mapped onto the pixel coordi-
nates on images from the cameras in their current positions to know the locations
for inhibition on saliency map. In our experiments, a list of the 5 most recently
visited locations is maintained and close-by points are inhibited for the next gaze
shift (Figure 3.24b).

Feature-based Pre-Segmentation

The feature detection is performed by the FAST corner detection algorithm, as
it provides both fast and high quality features [Rosten et al., 2010]. The local
descriptors were then calculated using Gabor wavelets.

Feature Extraction Gabor wavelets for calculating the features which are con-
volution kernels having the shape of plane waves restricted by a Gaussian en-
velope function as suggested by Wiskott et al. [1997]. The choice is also moti-
vated by the fact that these functions have similarity in shape to the the receptive
field of simple cells found in the visual cortex of vertebrate animals [Pollen and
Ronner, 1981; Jones and Palmer, 1987]. At each interest point a 40-dimensional
feature vector is extracted, which is referred to as “Gabor-jet”. This vector results

A

Figure 3.24. (a) Saliency map and the winning location (blue circle). (b) Loca-
tions of the objects on the table and already gazed upon locations.
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from filtering the image with Gabor wavelets of 5 scales and 8 orientations. A
Gabor-jet _¢ obtained by convolving a small patch of an image at a given location
x with Gabor wavelet with a specific orientation and scale can be mathematically
described by the following equation:

F1x) = (151 )(x) (3.10)
The complex Gabor wavelets 1) ;(x) are defined as

2

k. —k.%x? . —o2
lpj(x):éexp( 2;_2 )[exp(lij)—exp( 7 )] (3.11)

where x is image location and k; is the wave vector. Hence, 1 ;(x) that is located
at x has the shape of plane waves with wave vector k; restricted by a Gaussian
envelope function (for details see Leitner et al. [2012a] or Wiskott et al. [1997]).

Feature Matching The extracted features were then matched between the two
camera images. This is required as the stereo information allows to better seg-
ment the object from the background. Correspondence between the left and right
eyes is calculated by comparing the local descriptors around each feature using
normalised Euclidean inner product.

To segment a potential object (at the centre of the robot’s gaze) the extra
information by the second camera is incorporated. Correspondences are found
between features detected in the left and right images by exhaustively compar-
ing the Gabor-jets extracted at interest points. The normalised Euclidean inner
product is applied to define the similarity between two jets ¢, and %,:

flez
1A A

Each interest point in the left image is associated with the best matching interest
point in the right image if the similarity S between the two jets is above a preset
threshold (0.95 in these experiments). Figure 3.25 shows the result of such a
matching during an experiment.

S( A, %) = (3.12)

Stereo Segmentation The matched interest points are clustered into groups,
using a greedy scheme based on their location in the image and disparity. Fig-
ure 3.26 shows two examples of this clustering, with cluster of dots of different
colours belong to different objects. The object at the centre of the gaze is seg-
mented (white dots) from other objects using spatial location and depth. This
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feature segmentation only provides a rough estimate for the correct binary seg-
mentation.

To refine the segmentation the features are separated into on-object and
outside-object categories (white vs. other colours). A minimum bounding rect-
angle enclosing on-object locations with an additional 20 pixel margin on every
side is considered for the pre-segmentation (Figure 3.26b). These masks are then
being used to build a training set for our CGP-IP based learning approach. The
pre-segmented image can also be sent as input to the non parametric recursive
watershed segmentation algorithm [Wegner et al., 1995] in OpenCV to provide
the pixels belonging to the object (Figure 3.26¢). The result of this algorithm is
then comparable with the CGP-IP technique.

Training For Robust Image Segmentation

CGP-IP is a supervised learning technique. An obvious limitation is that the train-
ing images need to be provided. In our first object detection experiments with
CGP-IP on the robot these images were hand-labelled in a rather tedious and
time-consuming fashion. We noticed that the area specified by the labels did not
need to be very precise as our technique seems to be robust to some errors in the
provided bounding labels. The evolved solution was able to segment the object
according to its outline rather than the label provided.

Extracting information from an image that allow for robust object detection
is not an easy task. Figure 3.27 shows the same tea box and the FAST features
extracted in two frames roughly 5 seconds apart. The features are quite different,
making it hard to know whether this object is the same in both images.

To overcome this we use the features detected as rough segmentation and to

Figure 3.25. Feature matching between left and right camera images.
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build a training set for our CGP-IP approach. A handful of examples, in which
the object of interest has been correctly segmented, are used as a training set for
CGP-IP. The selection of this training set is of importance for the capabilities of
the found solution. If chosen correctly, the resulting programs are very robust
to changing light conditions, as shown previously for segmenting a tea box (Fig-
ure 3.20). CGP-IP quickly learns, in about 1000 evaluations, how to segment
the green tea box. The evolved program detects the object with the same filter in
both images allowing for unique identification (Figure 3.27) . The resulting C++
code, shown in Listing 3.5, performs the detection on the hardware in real-time
(below the frame update of our robot’s cameras). As these evolved programs
are largely linear in form, the memory requirements are low. Speed and simplic-
ity of processing is important in many embedded systems, making this approach
suitable for implementation in constrained computing environments.

Once the training is complete, the learned identifiers are tested by placing the
objects in different locations on the table, including different poses and varying

Example 1 - i Example2
. “H.,. | i
™ - = - e
A “N, 1= 2 ¢ :.&
1. fxz,;.;,‘«z E
) 2 s
" \ %
| 0 e

C

Figure 3.26. Two examples of creating pre-segmentation masks. (a) First the
features, for which a matching exists, are clustered by location. (b) These clusters
are the initialization for segmentation (based on the convex hull of the features
detected). The grey area depicts the minimum bounding rectangle plus an extra
20 pixel margin. (c) The segmented object by using a watershed algorithm.
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Figure 3.27. The FAST features (in white) found of an object is seen in the first
two images. The tea box as detected with a learned filter using CGP is visible in
the last two images. The binary output of the filter is used as a red overlay.

Listing 3.5. The generated code from CGP-IP for detecting the green tea box.

1 icImage GreenTeaBoxDetector::runFilter() {

2 icImage node® = InputImages[6];

3 icImage nodel = InputImages[1];

4 icImage node2 = node0.absdiff(nodel);

5 icImage node5 = node2.SmoothBilataral(1l);
6 icImage nodel2 = InputImages[O];

7 icImage nodel6 = nodel2.Sqrt();

8 icImage node33 = nodel6.erode(6);

9 icImage node34 = node33.log();

10 icImage node36 = node34.min(node5);

11 icImage node49 = node36.Normalize();

12 icImage out = node49.threshold(230.7218f);
13 return out;

14}

lighting conditions. The learned programs can also be used to build a model of
the environment. This is described in more detail further down (Figure 5.1).
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This section detailed the CGP-IP implementation, a technique for performing
object detection by image segmentation. First the efficacy was shown on stan-
dard benchmark test (noise removal) before looking closer at object detection
in robotic applications. The aim for a robust (e.g. to changing light conditions),
readable (producing C++ code) and adaptive (relearn - improve with updated
observations) system was shown. It is worth mentioning that object detection,
identification, and tracking in CGP-IP is currently implemented to use only single
frames. The performance can most likely be increased further by using informa-
tion from multiple, sequential images, such as, optical flow, motion tracking, or
just simply propagating information about the segmentation to the next frame.

To further improve the detection manipulation plays an important role. A
prerequisite, the need to know where the object is in the world (with respect to
the robot), is explained in the next section.
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3.5 Spatial Perception and Object Localization

To localize objects in the environment the iCub has to rely solely on a visual
system based on stereo vision, similarly to human perception. Its cameras are
mounted in the head of the robot therefore the method for localization must be
able to cope with motion to work while the robot is controlling its gaze and upper
body for reaching. As part of my thesis work I investigated how spatial repre-
sentation can be learned using visual perception only [Leitner et al., 2012d,f].
A machine learning based approach to enable spatial perception based on vision
is proposed herein. It provides a humanoid robot with a method to estimate the
position of objects relative to itself in 3D Cartesian space.

The most logical choice of coordinate system, from a planning and control
standpoint, in our case, is a world reference frame originating from the robot’s
hip (CSWorld). To transform coordinates from the eyes to the world coordinates
an accurate kinematic model of the robot is necessary.

While approaches based on projective geometry have been proven effective
under carefully controlled experimental circumstances, they are not easily trans-
ferred to robotics applications. For the iCub platform several approaches have
previously been developed. One of these methods is a biologically inspired ap-
proach mimicking the human retina [Traver and Bernardino, 2010]. Another,
the ‘Cartesian controller module’, provides basic 3D position estimation func-
tionality [Pattacini, 2011] and gaze control. This module works very well on the
simulated iCub, however on the hardware platform multiple sources of noise and
errors exist. It therefore generates absolute errors in the 2-4 cm range, in an area
where the humanoid can reach and manipulate objects.*

Machine Learning Approach

Two biologically inspired machine learning approaches were investigated on how
well they can ‘learn’ spatial perception on a humanoid - a feed-forward artificial
neural network (ANN) and a genetic programming (GP) approach. Both these
techniques use supervised learning, i.e. they require a dataset including both
inputs and outputs (the ‘ground truth’). More formally, the task is to estimate
the position of an object p € R? in the robot’s reference frame (CSWorld) given
an input, also called feature vector, v € R". This vector contains the state of
the robot as described by 9 joint encoder values (i.e. the nine controlled DOF)
and the observed position of the object to be localized in both camera images.
Two different sizes of v are used in our experiments, v € R'3, where the visual

“Even bigger errors are seen at the edge of the frame or further away from the robot.
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information is represented by the u,v coordinates in each eye, and v € R?!,
where additionally visual information (the bounding rectangle) is provided to
the ANNSs.

Artificial Neural Networks Approach An ANN is an information processing
technique inspired by the way the human nervous systems processes informa-
tion. Inspired by the neurons in human brains, which receive signals — electric
impulses transmitted by chemical processes — from other neurons, modify the
signals and forward them to their connections. An artificial neuron in compari-
son is a computational unit with many inputs and one output. The neuron ‘fires’
based on the input pattern received (Figure 3.28). The key difference of artificial
neural networks is in the structure of the system. They are a network of inter-
connected firing neurons, with the important possibility to be trained. Neural
networks, especially because of the power to derive meaning from complicated
or imprecise data, have been used in a variety of applications.

A feed-forward ANN consisting of three layers — one input layer, a hidden
layer, and an output layer — is used to predict the location (Figure 3.29). This
structure of an ANN is sometimes also referred to as a multi-layer perceptron
[Rosenblatt, 1961; Fausett, 1994]. Each input, in our case image coordinates
and robot pose information, arrives at an input node in the input layer of our
ANN. As our network is fully connected this input is then provided to every node
at the hidden layer. Each connection has a weight attached to it. In addition to
all inputs, each hidden node also has a connection to a bias node (i.e. a node
with constant value of 1). Similarly the output value of every hidden node is
then provided to the output node. These connections are again weighted. Each
output node is also connected to a bias node. In mathematical terms each node
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Figure 3.28. Model of a human brain cell (neuron, A) and an artificial neuron
(B) used in Artificial Neural Networks (ANNs). (Image taken from Maltarollo
et al. [2013])
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in the hidden and output layer performs the following operation:
u :WO+ZWiXi (3.13)
1

where u is the output of the node, n € N* is the number of the neurons in the
previous layer, w; the weight related to the i-th connection and x; the output
value of the i-th node in the previous layer. w, is the weight related to the bias
node. All the weights w and outputs x and u are in R, most commonly within
[—1,1].

The hidden and output layer neurons have a sigmoidal activation function of
the following form to calculate their respective outputs:

1
1+e

o(u) = (3.14)

where u is the output calculated according to Eq. 3.13. We chose each ANN’s
output layer to be of only one single neuron. The output of this node is the

Inputs Hidden Output

Left Img

Right Img

-
L

Robot Pose

Figure 3.29. The model of the feed-forward ANN used for location prediction
herein. The inputs are based on computer vision and the state of the robot,
depicted on the left. These input neurons are connected to a hidden layer of
neurons, which in turn are connected to the single output unit. This unit predicts
the position of the object in one axis (of the 3D Cartesian space). (Note: Bias
nodes and connections are omitted.)
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Table 3.3. A typical entry from the dataset (in this case from reference point RP;)
and the limits used to scale the feature vector v for the neural network.

ImageL
X Y X Y | width | height
v| vy | W Vs Vs Vs Vs

RP; | 479 | 411 | 429 | 401 | 99 25
max | 640 | 480 | 640 | 480 | 640 480

min | O 0 0 0 0 0
ImageR
X Y X Y | width | height
Vi Ve V7 Vg Vo V1o Y

RP; | 503 | 437 | 477 | 429 80 27
max | 640 | 480 | 640 | 480 | 640 480

min | O 0 0 0 0 0

Neck Eyes Torso
0 1 2 3 4 5 0 1 2
V| Viag [ Vis [Via | Vis Vie | Viz | Vis | Vio | V2o

RP; | -10.0| 0.0 0.0|-199|-199]|0.0|-0.1|-9.9 |10.1

max | 25 25 | 10 20 15 5 20 | 20 | 50
min | -25 |[-25|-10| -20 -15 0 | -20 | -20 0

estimated position along one Cartesian space axis. Therefore to estimated the
full 3D position three separate networks are required.

ANN Training The neural network approach requires a pre-processing step, in
which the dataset (input vector) is scaled using the limits for each of the 21 pos-
sible inputs as given in Table 3.3 & 3.4 to calculate values in the range [—1,+1].
The limits are based on to the retrieved image size for the 6 values in each image,
and the joint limits (i.e. range of motion) of the robot, for the encoder values. For
training the network the (scaled) dataset was first randomly split into a training
(80% of the data) and test set (20%). This is done to be able to check whether
the results obtained via learning over-fitting on the training set or can generalize.

The ANNs were trained using the standard error back-propagation algorithm
with the datasets collected. According to Russell and Norvig [2010] it is “the
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Table 3.4. A typical entry from the dataset (again from reference point RP;)
showing the location vector p and its limits.

Location
X Y Z

p Po P1 P2

RP; || 0.42 | 0.27 | -0.12
max || 0.6 0.3 -0.2

min || 0.1 | -0.7 | -1.2

most popular method for learning in multilayer networks [...] was first invented
in 1969 by Bryson and Ho [Bryson and Ho, 1969], but was largely ignored until
the mid-1980s.”. Schmidhuber has surveyed the historical origins further since
then and found that minimisation of error by gradient descent has been discussed
for decades — e.g. continuous form of back-propagation was derived in the early
1960s [Kelley, 1960; Bryson, 1961; Dreyfus, 1962], Linnainmaa [1970] first de-
scribed an explicit, efficient method for arbitrary, discrete networks — the com-
munity agrees that it was first applied to neural networks in the 1980s [Werbos,
1982]. This method is a generalization of the delta-rule and requires the acti-
vation function of the neurons to be differentiable and consists of two phases:
(i) a forward propagation and (ii) a weight update phase. In phase one inputs
from the training dataset are propagated through the network using the current
weights for each connection. The output is then compared to the ground truth,
the known result for the provided inputs. The error between the correct and
predicted output is then used to calculate a gradient at each connection, which
defines how the weights will be updated.

Genetic Programming Approach The second machine learning technique used
to estimate the object’s location is using an evolutionary search approach. GP is
used to find expressions mapping the inputs to the outputs (3D coordinates).
‘Eureqa’ [ Schmidt and Lipson, 2009], a freely available software for GP is used
to find results. It produces compact, human readable expressions from datasets
employing the above mentioned techniques. In previous work, this implementa-
tion has been shown to be particularly capable in using data generated from real
world experiments and observations. For most parameters the default settings
were used. These including a population of 64 individuals, a crossover rate of
0.5 and a mutation rate of 1.5% and the mean square error as fitness metric.
The input values do not have to be scaled in this approach and can remain in the
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original form. As with the neural network regression, data was shuffled and then
split into training and validation sets. The mathematical functions available to
GP are listed in Table 3.5.

Collecting the Dataset

To learn about more than one state and hence get the ability to generalise, the
dataset needs to contain points, where the robot is in various configurations look-
ing at objects at various locations. A dataset of reference points (RPs) was col-
lected on the real hardware to train the ANNSs.

First we moved the iCub to a randomly selected pose, then the robot’s state

Table 3.5. The mathematical functions available for the Genetic Programming
(GP) method to select from.

add | subtract | multiply | devide
power sqrt exp log

sin sinh cos cosh

tan tanh asin acos
atan2 min max abs

Distribution of Reference Points on the Table

Y Axis ()
Distance from the robot

0.18;

0.12 0.24 0.36 0.48 0.60

Robot Reference X Axis (m)
Frame Offset (x,)

Y:-0175m

X: 0.385m

Figure 3.30. The distribution of the reference points which were collected on
the table. The position the iCub with respect to the table is indicated and the
robot’s reference frame offsets to the table are specified.
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and the location of the object in the camera frame, provided by the icVision frame-
work (either from a hand-coded or learned filter), were recorded. The robot
would then move about and another data point, with the object still at the same
RE but from a different view, was registered. Figure 3.30 shows the distribution
of the RPs on the table. Some positions are missing data as the robot was unable
to see the LED in both camera images in all the randomly selected poses for these
points. At first these positions were hand measured and every few movements
the object of interest was moved to another RBE while later on the process was
automated by including another robot which would place the object at arbitrary
3D locations in the shared workspace.
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3.6 Experiments and Results: Localization

Multiple experiments were run to showcase the proposed method for learning
spatial perception on the iCub. Although the humanoid operates in a full 3D en-
vironment, in most of the scenarios we intend to work with, for now, objects will
be placed on a table in front of the robot. Therefore, the problem, at first, is sim-
plified, as we can assume a constant height for the estimation. This experiment
was conducted, to show that the proposed learning approach is feasible. After
sufficient performance was shown on the limited setup, a full 3D experiment
was performed as well. In this case another robot provides the ground truth by
placing the object at arbitrary locations in the shared workspace.

3.6.1 Learning to Localize Objects on a Table

The first experiments focusses on the feasibility of the approach, which does not
require an explicit robot model nor a time-consuming stereo camera calibration
procedure. A simplified setup, in which only 2D positions on the table need to
be estimated, was chosen to start with. To learn the ability to generalise what it
learns, the robot needs a dataset representing various configurations and object
locations on the table. The first approach was to place a single object at different
known positions on the table and collect data. To simplify the image processing,
a bright, red LED was used. The LED was placed to mark the reference point,
while the iCub moved into different poses. For each pose the joint angles and
camera images were collected. After collecting data for a number of poses, the
LED was moved to another position in a rather tedious and manual way. The
detection and collection process was then repeated. The dataset contains 32
RPs on the table, with more than 30 robot poses per point. They lie in a region
where the iCub is able to reach with its arms and were distributed in a grid with a
spacing of 6 cm. One should not that although the system was trained with only
one specific object, arbitrary objects can be localized by the deployed system.

To improve the data collection a chess board was used generating multiple
RPs per robot pose of the iCub. The board was placed on the table (at a known
location) in front the robot. Due to its size it was completely visible in both
images only in a small subset of poses, and hence there were correspondence
problems between the left and right images. So again this did not allow for a
very large dataset to be collected (see statistics in Table 3.6).

As described above, two separate networks were trained to predict the co-
ordinates on the X and Y axes independently. This approach was chosen as it
allowed for faster learning (i.e. less generations needed to yield the results) and
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Table 3.6. The statistics of the collected datasets for two different setups, one
where the objects are localized on a table in front of the robot (2D), and the
second one where the Katana robot is used to collect a full 3D dataset.

Table (2D) | Katana (3D)
Data Points 965 1034
Reference Points (RPs) 32 45

the ability to run the learning in parallel. On average about 1700 epochs were
needed per network for its prediction error to converge. After training the net-
work produces estimates with an average accuracy of 0.8 cm, with lower separate
errors on the axes (see Table 3.8).

The GP method, while converging faster than the neural network, performs
at a lower average accuracy of 3.3 cm. Although this performance is worse than
the ANN, it is still sufficiently accurate to allow for simple reaching and grasping
tasks on the iCub. However, there are a number of advantages to be consid-
ered. The output is in a human-readable form, which can easily and quickly be
transferred and tested on the robot (Table 3.7 shows the evolved equations). An
interesting observation is that only one of the camera images is used (features
v, and v;). This allows to reduce the (complete) runtime of the estimation as
only one images needs to be processed with object detection algorithms before
the expression can be evaluated.

Table 3.8 compares the position prediction errors of the ANN and GP tech-
niques. It shows that the neural network is performing better during learning,
which can also be seen in Figure 3.31. It shows the difference between actual
location and estimated position for each of the entries in the dataset. Both ap-
proaches perform similarly when generalising to unseen data (i.e. the test set).
The ANN training necessitates a longer runtime, as the back-propagation algo-
rithm repeats to update the neural network until the network performance is
satisfactory. Both approaches were transferred to the iCub to perform real time

Table 3.7. The equations for the position estimation in the table case (2D) as
generated by the GP learning approach.

x= 17.81-0.01906 v; +0.1527 v, +0.1378 v, + 0.01108 v,
_0.0296 Vll - 0.1207 V12

y = 1.1242240+ 0.1295921 v;,+ 0.1156011 vg + 0.01695235 v,
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distance estimation of objects and to allow for further verification of the off-line
trained results. The object position in the images and joint encoder values were
provided to both the trained neural network and the GP evolved formulae, to
allow easy comparison of the position predictions.

The validation results were obtained using locations on the table and poses
that were not in the original training nor test set. It was found that the GP
out-performed (average error of 2.7 cm) the ANN (average error of 3.5 cm) on
localization. Both techniques performed slightly worse than a fully calibrated
iCub’s ‘stereoVision’ module (1.8 cm accuracy). The performance on the relative
error, i.e. where the target object was moved by small increments away from a
central point, was high for both implementation with the ANN yielding slightly

Table 3.8. Estimation accuracy on the table dataset for both machine learning
techniques, ANN and GP.

ANN GP
Average Error 2D (cm) | 0.846 | 3.325
Standard Deviation 2D (cm) | 0.504 | 2.210
Average Error X (cm) | 0.540 | 2.028
Standard Deviation X (cm) | 0.445 | 1.760
Average Error Y (cm) | 0.5433 | 2.210
Standard Deviation Y (cm) | 0.4304 | 1.716

ANN Estimated Positions vs. Measured Positions GP Estimated Positions vs. Measured Positions
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Figure 3.31. The estimated object position on the table (blue dots) vs. the mea-
sured object position (red blocks) for the machine learning approaches: on the
left the result obtained from artificial neural networks (ANN), on the right the
results using genetic programming (GP). To clarify which ground truth these
estimates belong to a line connects them.
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Table 3.9. The relative estimation errors (in cm) for both approaches, when
estimating the position using fixed poses of the robot and object locations not
in the training nor test set.

ANN GP current iCub
dX dY | estX estY | estX estY | estX estY
0O +2|010 193|051 2.28| 0.0 2.17
0 41010 0.78| 0.30 0.91 | 0.05 1.0
0 0 0 0 0 0 0 0
0 -1 1003 1.14 | 0.31 1.35| 0.03 1.07
0 -2 [ 0.11 2.08| 0.61 2.40| 0.03 2.07
+2 O0 [(1.70 0.01 {1.93 0.57|2.01 0.17
+1 O [(0.71 0.10 {0.81 0.34 (092 0.11
0 0 0 0 0 0 0 0
-1 0 099 0.21 |1.12 0.11 | 1.17 0.06
-2 0 |1.98 0.30|2.24 0.34|2.33 0.1
" Polsition Esi:.imation E]lfrors on t}‘]e iCub

Y-Axis (cm)

22 24 26 28 30 32
X-Axis (cm)

Figure 3.32. The relative localization errors on the real hardware. The ground
truth is shown in black, the circles represent the learning approaches, ANN
(empty circle) and GP (filled). Results from the iCub ‘stereoVision” module is
plotted in green.

better results (see Table 3.9 and Figure 3.32). The results of the current iCub
localization module are added for comparison.

To test these approaches under moving conditions, we scripted the robot to
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move a given trajectory and recorded the position estimates for an object at a
fixed location. The errors were tested for using only head/neck joints, for only
using torso and for a combination of both all ranging 2-4cm. Higher errors were
observed when moving faster, leading to the believe that mainly it is an issue
with getting the images from both cameras synchronised. Test with a moving
test object were also performed, the error though is harder to measure when
both objects are moving (without the use of an external camera system, such as
VICON), therefore only visual verification was possible.’

3.6.2 The Right Size of the Hidden Layer

To find the appropriate number of neurons for the hidden layer experiments with
various hidden neurons were performed. The number of hidden neurons achiev-
ing the lowest estimation errors was then selected. Figure 3.33 shows that at
around 10 neurons in the hidden layer a lower average prediction error can be
achieved. This experiments operated on a reduced dataset with only one axis.
The networks were trained on the dataset and the errors reported are on the 20%
validation set. The errors were averaged over ten runs, i.e. with ten trained net-
works all having the same number of hidden neurons. For prediction along one
axis the lowest average error was found with ten hidden neurons and is about
0.8 cm.

>A video showing object localization while both the iCub and the object are moving is available
at https://www.youtube.com/watch?v=xsz0Cj4AleA.
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Figure 3.33. The estimation errors when training ANNs with varying number of
hidden neurons. A reduced dataset with only one axis is used. The error bars
show the minimal and maximal errors found over 10 trials.
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3.6.3 Learning to Estimate 3D Object Positions

To automate and speed up the data collection and extend it beyond the 2D table,
a high precision robotic arm was used. The 5 DOF Katana arm by Neuronics AG
[2008], places an object at an arbitrary 3D position in the workspace it shares
with the iCub. While the iCub moves about, it observes the object, and the robot
‘learns’ how to relate its pose and visual inputs to the object location in Cartesian
coordinates (as before). To provide the humanoid with the information to learn
from, the ground truth is provided by the precise inverse kinematics of the indus-
trial robotic arm. That means, the output vector of our dataset p is taken from the
Katana arm, which provides its end effector position in mm accuracy. To collect
the dataset both robots move to randomly selected poses allowing for a random
sampling of the configuration space. More than 1000 points were recorded in
a fraction of the time it took collect a similar dataset by hand (see Table 3.6).
As now two robots are sharing the same workspace, while acting independently,
special precautions need to be taken to avoid collisions. To do this, MoBeE, an
open-source software system, which provides real-time collision avoidance based
on geometric calculations is employed (see Figure 3.36; a more detailed descrip-
tion can be found in Chapter 4.2). Note that for learning spatial perception, a
very precise kinematic model of the iCub is not required. For example, one could
imagine to replace the model with a simplification, that just uses the 9DOF of the
iCub. In fact, even a box or single sphere, covering the whole robot is sufficient.

The feature vector v € R?! is defined to contain the state of the robot as
described by 9 joint encoder values and the observed position of an object in both
camera images. The position is described by the centre of the detected object in
the image plane (X and Y coordinate) and additionally by the bounding box of the
detected object (upper-left corner, width and height). In the experiments though
no clear evidence was found that this extra information helps to better predict
the position. If more information about the object would be known, like e.g. its
size, then this information will clearly have value for estimating the distance. A
typical segmentation is shown in Figure 3.34, with the bottom showing the object
and its bounding box, defining the values to be added for both the left and right
camera image.

Three separate ANNs were trained to predict the position along single axes,
each containing 10 hidden neurons. As mentioned earlier the neural network
approach requires a pre-processing step, in which the dataset (input vector v) is
scaled to values in the range [—1,+1]. The output of the neural network is in
the same limited range and needs to be un-scaled. For training the network the
(scaled) dataset was first randomly split into a training (80% of the data) and test
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Figure 3.34. The upper row shows both camera images (left and right) perceived
at the iCub (Note: while the camera images are shown in greyscale here the
technique presented uses the raw RGB images provided by the robot). The
lower one shows the results after processing. The object is segmented out and
a bounding box is calculated (shown in bright grey).

set (20%). The independent training for each axis allows for parallel evaluation
and reduces the complexity of each ANN. On average 1800 epochs were needed
for the prediction error of the ANNs to converge, which is, as expected, very
similar to the time needed to train for the table (2D) case. The back-propagation
technique was again using a learning rate of 0.35 and a momentum of 0.1.

Figure 3.35 shows on the left three plots, one per axis, visualising the location
and prediction error per sample in the dataset. The dataset was sorted by loca-
tion in this figure, to highlight that multiple samples per location were collected.
Overall the ANNs seem to quite nicely predict the position of the object. The
average error on the dataset is 15.9 mm for the X-axis, 43.1 mm for the Y-axis
and 37.3 mm for the Z-axis. This is also in the error range of current localization
methods available for the iCub. The errors reported are the average of 10 learn-
ing runs. A few prediction outliers can be seen which might result from errors
during the collection of data points (e.g. when a data point was collected while
a collision was prevented and the robots were reset to a safe pose).

On the right, to better visualise where the prediction errors are largest, the
difference between actual and predicted locations are again plotted for the XY
and XZ 2D plane respectively (compare also with Figure 3.31). It can be seen
that the dataset is not evenly distribute over the 3D space. This is due to the in-
dependent and random movements of the Katana and the iCub robot. A dataset
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Table 3.10. Comparing the errors measured with the ANN machine learning

method herein to the previous 2D case.
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Figure 3.35. The predictions for the three separate ANNs (red) compared with
the ground truth (green) in the full 3D perception case. On the left the estimated
object positions (blue dots) are plotted against the ground truth (red blocks)
Note: The values are in the coordinate frame of the Katana robot.
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containing more points and distributed better throughout the workspace is ex-
pected to allow for improved prediction. In addition, Table 3.10 shows the aver-
age errors per axis and compares the results with the previous experiment. The
ANNs were then again transferred onto the iCub to perform real time distance es-
timation of objects and to allow for further verification. The learned localization
was tested by reaching for the red block held up by the Katana manipulator (seen
in Figure 3.36). The estimated position from the ANNs was directly fed into the
existing operational space controller [Pattacini, 2011] the provided operational
space controller, enabling the iCub to reach for objects (Figure 3.37).
Differences in accuracy between the off-line training and real world valida-
tion were observed (as seen in Figure 3.32). There seems to be a systematic error
of about 3-4 cm, when trying to estimate the position of objects in areas where
training cases exist. In addition the pixel errors for the detection increase when
objects are not in the centre of the frame, this is most likely due to the training
set only containing pictures where the robot gazes upon the red block. In fu-
ture work we intend to investigate this further. The results of the experiments
presented in this section for learning object localization, based on this first 3D

u.\:

Figure 3.36. iCub and Katana arm models loaded into the MoBeE (top) to per-
form collision detection for both robots, while working in a shared workspace.
The bottom picture shows the real scene.
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dataset, show that the method can be scaled to perform full 3D estimation.

The results show that the iCub can learn simpler ways to perceive the location
of objects than the human engineered methods. Both approaches provide simple
and fast methods that can be used in real time on the robot. A future research
topic will be the investigation of how this framework can be used to on-line learn
the spatial perception, for example in ego-sphere and arm reach. This would
enable the autonomous calibration of the full hand-eye system, an important
issue in many areas [Ambrose et al., 2012; Kragic and Vincze, 2009]. As the
learnt models are ‘light weight’ they could easily be incorporated into embedded
systems and other robotic platforms.

Figure 3.37. The object’s position is estimated and the world model of the iCub
is updated. The evolved formula is used to calculate the position on the table
based on the input images and the current encoder positions. Note: The cup
is placed directly under the arm, due to the parameters of the camera and the
different perspective this is hard to see.
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Recap

To recap, in this chapter icVision and CGP-IP, two frameworks and a novel ap-
proach to provide our robot with flexible object detection capabilities is described.
It furthermore details a technique to learn spatial perception without the need
of exhaustive calibration or depth sensing.

The main contributions are:

* icVision: I built a framework to enable a wide variety of computer vision
tasks on the iCub. It includes a variety of abstract modules, which can
easily be swapped, even on the fly. It enables to use a variety of machine
learning approaches directly on the hardware.

* CGP-IP: based on previous work on Cartesian Genetic Programming (CGP)
this framework was created by myself to allow for the learning of object
detectors from very small datasets, on the real hardware and based on
domain knowledge provided by OpenCV. Results presented show that using
between 5 and 20 images CGP-IP can learn visual object detectors. Due to
the small training set, it is quite easy to learn the filters and deploy them
on a robotic platform, in connection with icVision.

* Robots training each other: by using a precise robot to teach the iCub about
spatial perception the task of creating training sets for experiments using
standard off-the-shelf machine learning techniques was automated. To my
knowledge this is the first time that something like this has been done.
While the proof-of-concept for learning spatial perception on the humanoid
requires another robot, the approach is flexible enough to allow for online,
life-long adaptation and learning on the iCub.



Chapter 4

Motion Generation and Learning

Even with great advances in sensing technologies, the robot still needs to control
its motion to perform manipulation tasks. Directly programming robots by writ-
ing code can be tedious, error prone, and inaccessible to non-experts. While this
explicit model-based control is still the primary approach — which works very
well if the world’s state is known and predictable - it has limitations when it
comes to uncertainties. Robots, used in a human environment, cannot expect to
estimate the state of the surroundings with certainty. It seems almost inevitable
that learning will play an important role in robot manipulation. Through learn-
ing, robots may be able to reduce the burden of programming and in addition
continue to adapt even after being deployed, creating some level of autonomy.
As our platform is a highly complex system, learning instead of direct program-
ming are deemed to be the most suitable. When attempting to create behaviours
on a complex robot like the iCub, state-of-the-art machine learning and control
theories can be tested and shortcomings can be discovered and addressed. For
example, Hart et al. [2006] showed that a developmental approach can be used
for a robot to learn to reach and grasp.

The issue of uncertainty in real-world applications has been addressed with
robust closed-loop controllers using sensory feedback. For example, Piatt et al.
[2006] and the Robonaut group at NASA/JSC and Hart et al. [2006] at UMass
Ambherst have explored ways to learn and compose real-time, closed-loop con-
trollers in order to flexibly perform a variety of autonomous manipulation tasks
in a robust manner. Edsinger and Kemp [2006] at MIT often use hand-coded
behaviour-based controllers that specify tasks in terms of visual or other sensory
feedback driven control. Another important issue with learning in real robotic
systems though is the need to provide some safeguard in case of a ‘bad’ command
is sent during a trial-and-error phase.
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4.1 Background: Robot Motion Creation & Control

Only after the robot knows which objects are in the environment and where they
are located can it start to interact with them. The Path Planning Problem is
an important problem in robot motion research. It denotes the issue to find mo-
tions that pursue a defined goal, e.g. reaching, while deliberately avoiding obsta-
cles and other constraints. Solving this problem is critical to deploying complex
robots in unstructured environments. An overview of interesting approaches to
motion planning can be found in the textbook “Planning Algorithms” [LaValle,
2006]. To solve the path planning problem is generally expensive, therefore
robots controlled this way are typically very deliberate and slow. This is often
perceived during robotics demos (e.g. at recent DARPA Robotics Challenge Tri-
als), where one can see them ‘think’ first, often for quite a bit, before a motion
is executed, as e.g. seen for manipulators with many DOE even with fast re-
planning [Baginski, 1999].

A more reactive approach, instead of the ‘think first, act later’ paradigm,
emerged in the 1980s. A variety of approaches have been applied to quickly
generate control commands, without searching the robot’s configuration space
[Khatib, 1986; Brooks, 1991; Schoner and Dose, 1992]. All these use local infor-
mation from the workspace, and transform it into motor commands according to
some heuristics. It is therefore not surprising that these approaches excel at fast,
reactive obstacle avoidance while they have trouble with global planning tasks.
Because of this such approaches have become popular in the context of safety
and human-robot interaction [De Santis et al., 2007; Dietrich et al., 2011].

Generally the approach is to start with low complexity control, such as, con-
trolling the robot’s gaze and slowly include more DOF until the full arms are
controlled for reaching. This has been extensively investigated previously, also
on the iCub, e.g. using a combination of open and closed loop control [Natale
et al., 2007; Nori et al., 2007] and motor babbling [Caligiore et al., 2008]. To
advance towards the goal of general object manipulation, where a robot can au-
tonomously manipulate any given object within its workspace, it would ideally
encode and reuse knowledge in terms of task features that are invariant to the
object. Confronted with a novel instance of a specific task the robot needs to es-
tablish appropriate correspondences between objects and actions in its repertoire
and their counterparts in the current task.

Once a possible action or motion is found to reach for a certain object, the
actual manipulation is yet another problem to solve. This is not a trivial thing,
even for humans. For example, research shows that even a prototypical precision
grasp task is not matured until the age of 8-10 years [Forssberg et al., 1991].
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Moreover, complexity, as seen by the number of neurons comprising the control
of the arm and hand, is staggeringly high. Recent results though highlight the
progress and advanced state of research in robotic grasping [ Carbone, 2013].

4.2 MoBeE and Collision Avoidance

Over the last years “Modular Behavioural Environment” or MoBeE was developed
at IDSIA under the lead of fellow PhD student Mikhail Frank [2014]. It is a
novel framework for robots, from simple robotics arms to complex humanoids,
which integrates elements from planning and control, facilitating the synthesis
of autonomous, adaptive behaviours.

The main contribution of MoBeE for the iCub is to prevent collisions, both
with itself and with objects in its surroundings. As the robot does not contain
a tactile skin, which would provide feedback of (unwanted) world interactions,
a software module was developed that provides a similar ‘sensory’ system. At
the core of MoBeE is “a parsimonious, egocentric, kinematic model (figure 4.1),
which does collision detection while driven by the state of the actual hardware”
[Frank, 2014]. MoBeE is intended to enable machine learning research on real
robotic systems. The system allows to send random signals to the robot without
the robot getting ‘hurt’. This is especially useful for techniques that try to learn
to interact with the world and are based on a trial-and-error paradigm, such as,
for example, reinforcement learning.

MoBeE has a similar design philosophy to YARP and also aims for transparency
and modularity in its subsystems. This allowed to extend the behaviour to the
multi-robot setup used for the experiment in the Section 3.6.3. It has an ap-
proximate complexity of the computation of O(n*m), where n is the number of
objects in the robot model and m the number of objects in the environment. For
this detection the Software Library for Interference Detection (SOLID) [van den
Bergen, 2004] is used. It provides highly optimized code for geometric compu-
tations (supporting primitives, Minkowski sums, and polyhedra).

MoBeE aggregates contributions from three separately running parts: the
Sensor, Agent, and Controller. The Sensor provides information about the state
of the world to MoBeE — see the previous chapter for a detailed description of
how icVision provides object information. The Agent communicates planned mo-
tions to MoBeE periodically. The Controller plays ‘man-in-the-middle’ between
the Agent and the real hardware, suppressing the Agent’s commands when nec-
essary, i.e. when an impeding (unwanted) collision is detected. At first developed
as a simple switching control this system over the last years evolved into a more



114 4.2 MoBeE and Collision Avoidance

complicated but also more adaptive approach of using virtual force fields (as sug-
gested first by Borenstein and Koren [1989]) to avoid colliding. MoBeE’s creation
started out of three primary ideas and requirements for our research. These in
turn laid the foundation for its first components [Frank et al., 2012], namely:

1. A kinematic model of the robot and workspace (World Model).

2. A port filter that allows it to act as a proxy between an arbitrary control
module and the robot.

3. A collision avoidance/response behaviour.

The system works as follows: A controller, connects to the proxy created at
runtime (instead of the direct YARP interfaces of the robot) and can then start
controlling the robot. MoBeE uses the state messages arriving from the real hard-
ware to update the kinematic model and performs real-time collision detection
computations based on these. When an impeding collision is detected the robot
is stopped and the proxy is closed. Then the defined reflexive collision behaviour
is triggered and the controller module is notified. Once the the system is recov-
ered from the dangerous configuration the reflex stops and the controller can
continue to use the robot, this way successfully preventing impeding collisions.

Figure 4.1. MoBeE has at its core a kinematic model of the robot. On the left the
model for the Katana is shown, on the right the one for the iCub. It is driven by
the encoder information from the real hardware. The geometries are constantly
checked for intersection, in which case the robot’s current motion is stopped
because of impeding (self)collision.
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An improved approach is currently used where each object in the world model
is having a virtual force field surrounding it. These forces are accumulated and
used to ‘push’ the robot away from potentially dangerous interactions. For this
the forward kinematics together with the Jacobian are used to calculate the con-
trol signals for each individual joint. The details can again be found in Frank
[2014]. In addition this approach allows us to send fictional forces to selected
makers of the robot in the world model — such as the left or right end effector —
to create some more human-like motions with just a single force control of the
robot.

At the IM-CLeVeR demo a low-level reactive controller was coupled with a RL
framework to find ‘interesting’ states through interaction with the environment.
We showed that the robot can learn models to represent large regions of the
iCub’s configuration space [Frank et al., 2014].

4.2.1 Movement in a Shared Workspace

Multiple robots sharing the same workspace, may it be in cooperation or com-
petition, have been investigated previously. The research is usually focused on
mobile robotics for exploration scenarios [ Burgard et al., 2005], as area coverage
is seen as one of the canonical problems. Cooperating mobile robots have been
researched for diverse applications, such as, outdoor and indoor surveillance op-
erations [Moors et al., 2005], cleaning [Forlizzi and DiSalvo, 2006], and space
exploration [Leitner, 2009].

Surprisingly little work has been done on multi-robot setups with humanoids.
The main focus seems to be on shared workspaces with humans. This field of hu-
man robot interaction (HRI) is growing, e.g. Dautenhahn and Saunders [2011]
nicely describes the current research trends. In the last years the work on hu-
manoids, while controlling both arms to, e.g. perform bimanual grasping, has
become more prominent. Gharbi et al. [2009] presented a roadmap approach
for path planning using both arms of the DLR Justin robot [Ott et al., 2006]. It
allows to plan object manipulation motions, based on decomposing the system
into kinematically independent parts, without the two arms colliding or inter-
fering with each other. Only recently cooperation has also become of interest
for humanoid robots and robotic helpers geared towards the use at home. A
dual-robot setup was shown by TUM using their PR2 James and humanoid robot
Rosie (based on Justin) making pancakes [Beetz et al., 2011]. In their setup
the workspace of the two robots is overlapping only for a very little part of the
demonstration space and therefore collision avoidance between robots is mainly
ignored.
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We at IDSIA are interested in robotic applications with drastically changing,
unpredictable, unstructured environments. To do this we want to have multiple
agents, either robots or humans, sharing a common workspace, in which collision
avoidance becomes critical. The aim is for the iCub to learn to interact in such an
environment, act out pre-defined tasks, and adapt to changes in the environment,
introduced by the Katana manipulator arm. One such setup, in which two robots
are facing and teaching each other, has been briefly mentioned in the previous
chapter (Figure 3.36).

An obvious challenge in the multi-robot scenario is to prevent the robots from
colliding with each other, or indeed, with themselves and other parts of the sur-
roundings. Collisions are likely to lead to damage to either the robot or the envi-
ronment, leading to time-consuming maintenance. One approach to tackle this
problem of multiple robots interfering and colliding while in the same workspace
is to plan ahead of time. Algorithms that take this approach are generally called
‘Path Planning’ or ‘Motion Planning’ algorithms, as they plan and validate feasi-
ble motions, which can later be passed to the robot as reference trajectories. For
multi-robot settings a good and thorough introduction to collision avoidance and
detection problems has been published by Gill and Zomaya [1998]. Akella and
Hutchinson [2002] investigated collision-free trajectory coordination, in indus-
trial applications, where the trajectories of the (homogenous) robots were pre-
defined and known and coordinating these was the main issue. Multiple robot
arms and generation of non-colliding paths while, e.g. passing it from one arm
to another were explored by Koga and Latombe [1994].

Alternatively the robot can react to impending collisions as they are predicted
(as in the case of some of the above listed works). MoBeE allows to build such a
framework also for a multi-robot configuration. As a YARP module, it can easily
be used with any robot, as long as YARP drivers have been implemented. The
iCub drivers are included in the standard version but for the Katana, they needed
to be added. The basic driver was developed previously [Kaufmann, 2010] and
was adapted to work with the current YARP version. Due to the open-source
design this could be done rather modular, building on various wrappers for the
Katana API [Neuronics AG, 2008]. For the spatial learning setup a few parts
needed to be created and/or adapted, namely:

¢ add a kinematic model of the Katana arm
* allow to load two models side by side and

* add a collision response for the second robot
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The robot model can be specified via an XML configuration file, using the
“Zero Position Displacement Notation” [Gupta, 1986 ], which is significantly less
complex and more intuitive than the popular convention by Denavit and Harten-
berg [1955]. Due to the lower complexity of the Katana arm the XML file is short
and easy to read. The reflex behaviour was a bit tricker to modify, mainly because
the parameters used for the two robots had to be tuned to be synchronous.

Allowing our iCub to interact with other robots opens up a range of potential
research avenues. In the previous chapter it was shown how the iCub can learn
spatial perception from another teaching robot. Emphasise was put on learning
positions in the (rather limited) area the robot is able to reach. There the location
is precise enough to allow the iCub to grasp and manipulate objects. MoBeE was
a key component in the success of this work. Without it, the iCub would only be
able to learn about objects that were far away, or in a constrained region — such
as on the surface of a table [Leitner et al., 2012e].

4.3 Action Repertoire: Task-relevant Roadmaps

The kinematic model in MoBeE was extended into pose/path planning applica-
tion under the lead of Marijn Stollenga. The system is combining inverse kine-
matics, i.e. find a robot pose q,,, € C, where C describes the robot’s configura-
tion space, that satisfies some operational space constraints, with planning, i.e.
find a feasible configuration-space trajectory, Q C C, which is the curve from the
current pose, g, iq and the target pose g4 -

At IDSIA we pursue this with Natural Gradient Inverse Kinematics (NGIK).
An approach developed that benefits from a recent and powerful black-box op-
timization algorithm, called Natural Evolution Strategies (NES) [Glasmachers
et al., 2010]. In line with ideas from current planning literature [ Berenson et al.,
2009, 2011], we too define task spaces, which are covered iteratively by applying
NGIK. The resulting sample set, comprising a family of task-related poses, is in-
terpolated to yield a Task-relevant Road Map (TRM) [Stollenga et al., 2013]. To
build TRMs, NGIK iteratively optimizes postures covering task-spaces expressed
by arbitrary task-functions, subject to constraints expressed by arbitrary cost-
functions, transparently dealing with both hard and soft constraints. TRMs are
grown to maximally cover the task-space while minimising costs. Unlike Jaco-
bian methods, our algorithm does not rely on calculation of gradients, making
application of the algorithm much simpler. In our experiments NGIK outperforms
recent related sampling algorithms, winning also a ‘Shakey’.!

IThe demo won the AAAI Best Student Video Award: http://youtu.be/N6x2elZf_yg


http://youtu.be/N6x2e1Zf_yg
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During the recent IM-CleVeR final demo we showed that MoBeE also enables
the robot to ‘learn’ to plan motions using reinforcement learning (RL) and ‘ar-
tificial curiosity’. While these fields usually are employed in toy-scenarios, e.g.
navigation in a simple maze, in our case we embody it into the real high-DOF
robotic hardware. But searching the configuration space of a complex, high DOF
robot, such as a humanoid is a computationally expensive procedure. Our frame-
work tackles complex IK and planning at the same time by combining NGIK with
an iterative roadmap construction strategy. It finds a family of postures that are
optimized under constraints defined by arbitrary cost-functions, and at the same
time maximally covers a user-defined task-space. Connecting these postures cre-
ates a rather dense, traversable graph, which we call roadmaps. In other words,
the task-relevant constraints are built directly into the TRM, and motion planning
is reduced to graph search. This allows us to build TRMs that can perform useful
tasks in the 41-dimensional configuration space of the upper body of the iCub hu-
manoid. Additionally these maps can be stored to create an action repertoire that
can be recalled when a certain tasks needs to be executed. Details about NGIK
and TRM can be found in Frank [2014] and Stollenga et al. [2013]. Figures 4.3-
4.5 show time-lapse snapshots of motions, planned within TRMs. They provide
an idea of what kind of motions can be generated.

Figure 4.2. A Task-relevant Road Map for the hand is visualized in the robot'’s
workspace. Each dot indicates the position of the right hand in one of the found
poses. The position is varied while the hand orientation is constrained: on the
left the palm faces side-ways, on the right the palm is restricted to be facing
downwards.
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Figure 4.3. ‘Curiously inspect something small’: the 3D position of the hand is
constrained, and the task space is its angle with respect to the gaze direction.
The resulting map rotates the hand (and any grasped object) in front of the eyes.

Figure 4.4. 'Push over’: the height and relative position/orientation of the hands
is constrained, and the 1D task space is to move them left/right. The resulting
map allows the robot to push a large object to the side.

Figure 4.5. Reach into: the robot is constrained not to collide with the box, and
the task space is the 3D workspace for the hand. The resulting map allows the
robot to pick/place from/into the box.
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4.4 Action Repertoire: Grasping

Robotic grasping is an active and large research area in robotics. One of the
problems with grasping is that robot grasping is generally very sensitive to how
accurate is the pose estimation of the object to manipulate. Even a small error
in the estimated pose may cause the planned grasp to fail. Several methods
for robust grasp planning exploit the object geometry or tactile sensor feedback.
However, object pose range estimation introduces specific uncertainties that can
also be exploited to choose more robust grasps.

Grasp planning methods that explicitly considers the uncertainties on the
visually-estimated object pose for known shapes have recently been investigated.
Very recently a grasp planner has been proposed using a particle filter to estimate
the object probability distribution to select robust grasps observed as a—possibly
sparse—point cloud. The points of the cloud are usually not uniformly distributed
over the surface of the object, and are a function of the viewpoint. Additionally
textures over the object surface can lead to irregularities and more uncertain-
ties, when using stereo-vision algorithms based on robust feature-point match-
ing. Consequently the pose estimation may be more accurate in some directions
and contain unavoidable ambiguities. Such an approach was recently tested on
the iCub and its stereo cameras [Saut et al., 2014].

LEOGrasper is our light-weight, easy-to-use, one-shot grasping system for the
iCub. It has been used extensively at IDSIA, not just during experiments but also
especially for the various video shots (Figure 4.6).? While it is not a planner for
grasping, it can be configured to perform a variety of grasps. Each grasp requires
to close the fingers in a coordinated fashion to be successful. These different

2Source code available at: https://github.com/Juxi/iCub/

Figure 4.6. Grasping a variety of objects, such as, tin cans, tea boxes and cups.


https://github.com/Juxi/iCub/

121 4.5 Learning Motion from Humans and Bio-Signals

coordinated motions of all the fingers in unison are pre-programmed, for actions
such as a power grasp, pinch grasp or even just a pointing gesture. The iCub
incorporates touch sensors on the fingertips. Due to the high noise of these, they
are not used to provide information about the contact with an object. Instead the
errors reported by the PID controllers, for the motors of each digit, are employed
to indicate that the motors should stop.

4.5 Learning Motion from Humans and Bio-Signals

Further input about motion generation was provided by two EU projects, WAY?>
and STIFF.* Both take a closer look at how human motion is generated and how
we control our actions. The goal is to transfer this knowledge into robotic sys-
tems, e.g. to allow better control and/or tele-operation.

The goal of the STIFF project was to equip a highly biomimetic robot hand-
arm system with the agility, robustness and versatility that are the hallmarks of
the human motor system, by understanding and mimicking the variable stiffness
paradigms that are so effectively employed by the human central nervous system.
A key component of this study will be the anatomically accurate musculoskeletal
modelling of the human arm and hand. IDSIAs role was to investigate ways of
extracting the ‘policy’ a human is following, from information collected about
the motion (e.g. trajectory, velocity, ...).

The WAY project addresses the scientific problem of recovery of hand func-
tion after amputation or neurological disabilities like spinal cord injury,brachial
plexus injury, and stroke. It introduces several conceptual novelties which ex-
plicitly take into account and overcome the limited band-width in actual Brain-
Neural Communication Interfaces (BNCI). IDSIA’s contribution was to investigate
how bio-signals, such as EMG or EEG, can be classified and further be used to
control robotic systems.

Extracting Human Cost Functions from Observations

The main aim of the STIFF project was to answer the question: How can we
transfer principles of human arm movement to a robot?

The first step was to look at methods for extraction of these principles from
measured (human) arm trajectories. Our partners in this project were aiming to
model the full 139 human arm muscles (TU Delft) on one side and building a 52

3Project: Wearable interfaces for hAnd function recoverY (WAY) FP7 contract #288551
“*Project: Enhancing biomorphic agility through variable stiffness (STIFF) #231576
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Figure 4.7. This visualization tool provided by UPD is showing the trials per-
formed by one individual during the test session. The figure can roughly be
split into three columns separating the runs performed in three different en-
vironments. The upper half shows the trajectories (XY, YZ, and XZ), whereas
the lower half shows the velocities and forces vs. time (the active parts are
coloured).)

DOF robot arm using antagonistic muscles on the other side (German Aerospace
Agency, DLR). Instead of directly mapping the muscles to motors, a meaningful
high-level principle from the human motion data is extracted, which in turn can
be implemented on the DLR hand-arm system (HASy).’

The experiments were carried out at Joe McIntyre’s lab at UPD in Paris. In
this task a human subject is moving a robotic arm, which records the forces and
movements, and is able to introduce systematic perturbation forces in catch trials.
The subjects were tasked to steer the end effector from one point to another
along a curved surface. In addition they were told to put a constant force onto
the surface while moving to the end point.

The data received from UPD contains the test runs from 11 subjects with
roughly 50 runs per person performed in three different scenarios: large disc -
large radius, large disc - small radius, small disc - large radius. In a visual analysis
of the data the team from UPD found some interesting trajectories: throughout

Shttp://www.dlr.de/rm/en/desktopdefault.aspx/tabid-5486/8995_read-16713/
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Figure 4.8. Showing the trials performed by all individuals in one environment.
The interesting behaviour can be seen in the upper left corner of every plot.

the 11 test subjects (and all three setups) the trajectory for the upward and down-
ward motion differ in the upper left section of the sphere. Figure 4.8 shows all
trajectories for 10 subjects on the same setup (large disc - small radius). It can
also be seen that the subjects are using individual strategies to reach the goal
position, which can be categorized roughly into two groups: some subjects fol-
low an arc (in the frontal plane) to reach the points on the circle, whereas some
others are trying to reach the point via a line. But note that even within the trials
of one subject switching between arcs and lines could be observed (for example,
the last plot on the bottom row).

The aim was to generate various controllers for a simulated robot arm that
would be able to generate similar behaviour to that observed in the human trials.
Also to compare the human performance to an ‘optimal’ model, in which we
find controllers that perform the same task, but while attempting to the time to
completion and the effort required. Using evolutionary algorithms, controllers
that generate signals to move the end-point in addition to scaling factors for
the stiffness are created. For these scaling factors the underlying assumption
that there exists a constant equilibrium point position is used. The controllers
themselves are simply a function of time.

Here, where the task is to operate in 3D, two stiffness ellipses are used, each
with a different scaling factor to represent an anisotropic 3D ellipsoid. The two
stiffness ellipses can be considered as ellipses in the XY and XZ directions. With
the ellipses rotated to point towards the shoulder (which is at the origin of the
reference frame).
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Search Technique Similar search algorithms to the ones used for image pro-
cessing earlier on were applied to find the force and stiffness profiles (namely
GP and CGP). The goal was to find a controller C(t), for which, in the simula-
tions here, five different control signals are needed. Three signals are used to
modify the forces applied to the endpoint Fy, F, and F, and two to scale the
stiffness ellipses A;,, A,. The outputs from the controller are a function of time,
leading to a trajectory performed by the endpoint of the robotic arm.

The genotype of each individual contains lists of parameters for Gaussian
functions, where one list is needed per dimension of control. Each list contains
a variable number of these parameters, which are then evolved throughout the
run. The five dimensions of the controller C(t) are each defined by the sum of
Gaussian functions,

n

1 2 /0 2
u(t) = Z Ume_(t_“i) /2] (4.1)

i=1

The number of functions per list, represented by n in the previous equation,
can vary over time as regulated by the evolution. The controller’s complexity
increases with the number of functions (Gaussians) that are summed together,
hence the more functions used the more complicated the controller can become.
To prevent the controllers becoming unnecessarily complex, mutation removes
Gaussians with a higher probability than it adds them.

More formally the evolutionary search is trying to find an individual consist-
ing of 5 lists of genes, I = {Ly, Ly, L,, L, Lv}, which represent the parameters
for the controller, where L; = {(go’o, gw), O S, gn’“)}.

A conventional evolutionary strategy was used as algorithm. In this approach,
the best individual from a small population P is used as a parent to generate
four offspring. Each of these candidate individuals is tested, and the best one
replaces the parent. If the best offspring has the same fitness as the parent, then
it becomes the parent.

Fitness function A fitness function, sometimes also referred to as cost function,
is used to evaluate a candidate solution’s performance. Here we use the following
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Where the terms are defined the following:

e The normal force error (first term) is the sum, over each simulation time
step, of the difference between the average of the human applied force,
normal to the surface, and the force control outputs of the evolved con-
troller, also normal to the surface.

e The equilibrium position error (second term) is the sum of the distance
between the virtual position, assuming a fixed depth, and the calculated
virtual position using the scaled stiffness ellipse from the controller.

* The position error (third term) is the sum of the distance between the po-
sition recorded in the human trials and the controller’s position.

e The surface error (last term) is the sum of the distance of the controller’s
position to the spherical surface (radius). (This not-touching-the-surface
error is penalized comparatively large to the other errors.)

The changing of the weights w,_, adapts how much emphasis the fitness func-
tion places on those error terms. As with the previous deliverables in the STIFF
project, the controllers are time dependent. Some pre-processing was needed to
get the human trial data into a form suitable to work with for the fitness func-
tion. The trial runs were trimmed to only include data from when the human
test-subject started and stopped moving. The data per trajectory, per individual
were averaged together by firstly re-sampling the data into a consistent number
of data points, and then averaging over the data of multiple trials.
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Figure 4.9. The results of two of the EA runs generating controllers that would
follow almost exactly the human trajectory. On the bottom it shows for those
two cases (upward and downward) the forces applied and the stiffness scaling
factors evolved.

Results From Matching the Human Data in One Quadrant To start with, con-
trollers that would be able to control the robot arm to use a trajectory and (nor-
mal) force profile as close as possible as the human measured data were evolved.
These runs aim to generate a more and more optimized model of the stiffness
adaption to come closer to the human performance. The control output u(t) and
the scaling factors are functions of time here. The evolution was done for specific
trials generating specialized feed-forward controllers for specific tasks. The first
controllers to be evolved were designed to allow for a very precise reconstruc-
tion of the human trajectory and normal force applied (Figure 4.9). This was
achieved rather quickly and showed that the chosen approach is feasible.

Results in One Quadrant Without Matching Human Data (‘Optimal Control’)
The next try involved a controller, which has just the same high-level information
as the humans have: its aim is to go from point A to point B while following the
surface of the sphere. The controller in this case does not have to follow the same
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Figure 4.10. Plot of an evolved controller performing a full circle trajectory. It
tries to optimize the control, i.e. minimize the normal force.

trajectory as the human subjects, but it tries to minimize the time and forces.
Stiffness scaling is not used for these controllers. For this the fitness function
was simplified to:

T
f =ZFn(t) xwy+ (sum of forces)
t=0
T
Z Ip(t)—p,| *xwy+ (sum of distance to target)
t=0
T
Z |[p(t) —R|*wq (surface error)
t=0

Results for Full Circle Controller Without Matching Human Data (‘Optimal
Control’) This is an intermediate step towards the overall goal of generating
a controller that would be the single control for all trajectories by the human.
Trying to find if one control policy can be found that describes the whole range
of human movements is though a harder problem than the one tackled above.
Here we are trying to see if we can find a controller based on the optimized model
that would generate a trajectory to follow (in a clockwise fashion) the targets (see
Figure 4.10). Only one direction was used and a speedup was gained because the
evolution does not need to compare each controller with the human trajectory.
When evolving the optimal controller to operate in multiple quadrants, only one
direction of motion (clockwise) was used. During evolution, only the behaviour
in three quadrants contributed to the fitness with the remaining quadrant (top-
left) being used to show how the behaviour generalised.
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Towards A Single Controller For Multiple Human Trajectories Another step
forward is to test a single controller on multiple trajectories (e.g., up and down
in a specific quadrant). Based again on the assumption that humans would not
change their behaviour for the different task. The interesting question to further
study is ‘how does the one unique policy look’? And can we find it with our
controllers? Finally the goal for the future is to look for a controller that is able
to steer the endpoint through all four quadrants, matching the human trajectory
and forces.

The first try to find such a single control for multiple paths was to evolve the
controller over two trajectories (up and down) in a single quadrant. One attempt
is shown in Figure 4.11, where it can be seen that the forces (over time) are
the same for both trajectories, however this leads to quite different trajectories
because of the surface restrictions and the different starting points. The results
are of very poor quality (including not reaching or ending at the target) and this
appears to be because the basic control as a function of time u(t) does not provide
enough information about the current task. Clearly the strategies that humans
employ to control their motion (and how to apply force) are more complex than
just a simple time-dependent control. A possible solution to find the a solution
that might approximate the underlying principles is to provide the controller
with more information about the task to be solved. Another possibility is that
the model we use does not adequately capture the dynamics of the human arm,
and so is unable to replicate the results. Using an alternative robot arm model
may therefore be necessary.

For a second try one could evolve controllers, where the emitted forces are a
function of distance in [x, y,z] from the target position u(6X), whereas the stiff-
ness scaling factors are a function of the current position. This approach required
extending the Gaussian kernel representation to accept higher-dimensional input
parameters. This more flexible approach may be interesting to investigate in fu-
ture work. This significantly alters the search algorithm used, and is currently a
work in progress.

Discussion During the STIFF project a focus was put on on generating con-
trollers that in simulation of specific tasks achieve comparable results to the
recorded human motion. The human performance measurements at UPD de-
fined a task aimed to help describing arm stiffness behaviours. We tested the
approach chosen on various parts of the dataset received from UPD. This was
based on a simple controller and was used previously to describe some aspects of
human stiffness. We demonstrate here that our evolutionary algorithm approach
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is capable of generating a controller for the simulated robot arm, following the
human trajectory and matching the human applied forces in 3D. The controller
outputs both force control signals and values that alter the cost function’s inter-
pretation of how stiffness is being utilized.

These simple controllers were not capable enough though to generate a sin-
gle control policy for multiple trajectories. They are not able to describe what
strategy humans are following, yet it is believed that this research might allow
to describe certain aspects of why the trajectories differ in one quadrant. This
will need further investigation and possible more experimentation with human
test subjects.

k down

Figure 4.11. The left side shows the force and stiffness scaling profile used for the
controller in both test runs. The trajectories generated for the upward and down-
ward motion can be seen on the left side in black (with the human trajectory in

red).
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Bio-signal Processing

The WAY project investigates new ways to link the brain with upper limb aids.
It hopes to restore a physiological bidirectional link between artificial aids and
patients, to improve the ability of users to perform activities of daily living (ADL)
and thus to attain enhanced autonomy and quality of life. The aim is to employ
already available sensorized hand assistive devices — i.e., a dexterous prosthe-
sis and an exoskeleton built at the Scuola Superiore Sant’/Anna in Pisa — and
by developing non-invasive wearable interfaces designed for bidirectional data
flow of sensory information and motor commands (Figure 4.12). WAY hopes
to bridge several currently disjointed scientific fields and is therefore critically
dependent on the collaboration of engineers, neuroscientists and clinicians. The
WAY project investigated ways for improving classification accuracy of electromyo-
graphy (EMG) pattern recognition in different limb postures.

The term biomedical signal or bio-signal generally refers to any electrical
impulse acquired from an organ or part of the human body that represents a
physical variable of interest [ Merletti and Parker, 2004 ].. Like other signals, it is
considered a function of time and described in terms of its amplitude, frequency
and phase. The EMG signal represents the stimulus sent to achieve a certain
neuromuscular activity. An EMG sensor measures electrical currents generated
in a muscle during its activation. The signal itself stems from the control of the
muscles by the nervous systems and is dependent on the anatomical and phys-
iological properties of muscles. Furthermore the signal collected contains noise
acquired while traversing through varying tissues. In addition the collection of
the signal by the electrode most likely contains the signal from multiple motor
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Figure 4.12. On the left the vision at the start of the project, a prosthetic stump,
connected to an artificial hand prosthetic hand with embedded touch sensors,
on the right the new prototype of the exoskeleton developed within the WAY
project, to be used in human trials.
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units, generating interference and signal interactions.

The first documented research on electricity and its relation to muscles is
the experiments by Francesco Redi [1686]. In the mid-1600 he discovered that
highly specialised muscles in the electric ray fish are generating electricity. In
the 18th century the famous experiments by Luigi Galvani showed that elec-
tricity could also be used to stimulate muscle contraction [Galvani, 1791]. The
first recording of electrical activity during voluntary muscle contraction was per-
formed by Etienne-Jules Marey [ 1890], who also introduced the term electromyo-
graphy. In the 20th century ever more sophisticated methods of recording the
signal were invented, with the first surface EMG (or sSEMG) electrodes being used
by Hardyck et al. [1966].

There are two methods to collect EMG signals, directly in the motor units
with invasive electrodes or with non-invasive, surface attached electrodes. Both
methods have their own advantages and disadvantages. We are focussing on
SEMG herein and during the WAY project. The comparatively easy setup has
the drawback of increased noise, motion artefacts and possible readout failures
when losing the contact to the skin. EMG has previously been used in medicine
to measure the rehabilitation in case of motor disabilities, but only recently has
it been identified as a possibly useful input in applications, such as, prosthetic
hand control, grasp recognition and human computer interaction (HCI) [Cipriani
et al., 2011].

Machine Learning for EMG

Machine learning techniques have already been used to classify EMG signals from
one subject or one instrument previously. Of interest nowadays is to compare
how well these techniques perform with multiple subjects, as well as, collected
with multiple instruments. Furthermore we investigate how classification can
still be achieved with limited available training data. This is of interest, not
just to allow flexibility in who is controlling the robot but also in other areas
of application, such as rehabilitation or prothesis control. It is important to not
exhaust (or annoy) the subjects, amputees or people with other impairments,
with too much training. Reaz et al. [2006] published an overview of techniques
applied to the problem of detection, classification and decoding EMG signals.

The NASA JPL developed BioSleeve [Wolf et al., 2013] contains an array of
electrodes and an inertia-measurement unit that can easily be put onto a subjects
forearm. The detection is using a learning approach (multi-class support-vector-
machines) to decode static and dynamic arm gestures.
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EMG Measurement

The collection of EMG signals on the operator allows to control the robot’s grasp
by performing the grasp itself. To necessary signals are collected using surface
electrodes mounted on the operator’s lower arm (Figure 4.14). In this figure you
can also see the accelerometer placed at the back of the hand (or the wrist) of the
subject. To collect the data a system called BITalino was employed (also visible in
the picture). It is developed and produced by the Instituto de Telecomunicagoes
in Portugal and their spin-off PLUX.® It is a small stand-alone embedded system
with its own battery, allowing to collect up to 8 data channels without cables run-
ning from the subject to the computer. The channels, which can be either EMG
or electrocardiography signals, accelerometer data or luminosity information are
transferred from the system via Bluetooth to a computer in real-time. With this
signal the intent to grasp an object can be detected. This results in a command
to the robot to perform the equivalent action (using the subsystem mentioned
above).

This human motion detection using the bio-signals was tested together with
the integration of the visual perception from Chapter 3 and our safety/world
model from Section 4.2.

Experiments: Remote Control of the iCub With Signals Collected
From the Operator

The tele-operation of complex robots remotely is of interest for a variety of ap-
plication areas, from space exploration to handling radioactive materials, from
bomb disposal to disaster response scenarios (as selected for the DARPA Robotics
Challenge). In every tele-robot system time lag and the connection bandwidth
will limit a full immersion of the operator. Therefore to ensure a safe operation
various modules need to take over certain aspects on the robot side. These mod-
ules, mainly, the low-level control, obstacle avoidance and obstacle detection are
integrated into a full system.

Two separate setups were tested to show that the humanoid can be con-
trolled safely by means of (rather noise) bio-signals from a remote operator. In
both cases self-collisions and collisions with the environment were completely
avoided.

®Webpage: http://bitalino.com/
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Remote Control using Accelerations

The setup was tested at first with a standard 6-axis gamepad to show the efficacy
of our approach and control system (Figure 4.13 shows this in action). The two
sticks on the pad are used to control each of the two arms respectively. Up/down,
left/right motions of the sticks would apply fictional (operational space) forces
(relative to the stick displacement) to the robot’s end effector. To force the arms
forwards (away from the body) or back, two more buttons (triggers on the back-
side of the pad) were incorporated. The ‘forcing’ of the dynamical system to
control the robot’s arm in operational space is using the the same method as
the virtual force fields for obstacle avoidance. Here an additional virtual force is
added based on the operator’s signal.

Various test subjects were allowed to control the robot, without receiving
too much information on how the system or controller works. After their initial
fear that they could break the robot and the realization that the robot would
prevent all impeding collisions, they were enjoying to control the both arms of
the robot simultaneously. To test how an operator could perform ADL remotely,
functionality to trigger a grasp was added. This was simply done by pressing one
of the gamepad buttons, which would then send the appropriate command to
the LEOGrasper.

Moreover to create a better, more intuitive user interface a LEAP sensor was
employed instead of the gamepad. This sensor developed by Leap Motion Inc. is
a small USB peripheral device designed to be used as a novel input method for
computers. Similar to the structured light sensors described earlier, it contains
two monochromatic IR cameras and three infrared LEDs that project a 3D pattern

Figure 4.13. The iCub being controlled by a standard 6-axis gamepad (left) and
a Leap Motion sensor (right) (video available at: http://www.youtube.com/v/
5i16tA0b922g).
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into the workspace.” The output is the 3D position of hands and some basic
information about the gestures executed.

The test subjects were able to place the robot’s hand close to targets speci-
fied by us. They also realised quickly that the robot is able to react to changing
environments. This lead to them being less scared of breaking the robot and try-
ing more complex actions. The next chapter goes a bit more into the details of
how this was then extended to function in cluttered and non-static environments
(e.g. Figure 5.2 shows MoBeE and its information about impeding collisions, and
Figure 5.3 shows a sequence revealing the robot’s motion). For this the objects
and obstacles need to be detected and tracked prior to be avoided. This is done
using the icVision subsystem. The created interfaces between MoBeE and icVision
allow for a continues visual based localization of the detected objects to be propa-
gated into the world model. This very basic ‘eye-hand coordination’ allows for an
adaptation to changing circumstances, while executing the behaviours specified
by the operator, improving the usability of the whole system.

EMG and Accelerations

This next experiment employs the recorded bio-signals of the operator (the arm’s
accelerations and the EMG signals) to control the iCub humanoid. Instead of the
gamepad used previously a 3-axis accelerometer was connected to the BITalino
system. It was placed on the operator’s hand (back) or wrist for some individu-
als. The BITalino was furthermore facilitated to collect the EMG signal measured
at the extensor digitorum communis (see the electrodes in Figure 4.14). The dif-
ferential between the two electrodes is measured and sent back via Bluetooth, a
third electrode is used as reference/neutral and is attached around the elbow.

The low-pass filtered accelerations of the arm are used directly to ‘force’ the
end-effector, similar like with the gamepad in the previous experiment. In addi-
tion the EMG readouts are used to trigger a closing or opening of the iCub’s hand.
A simple mean-average-value (MAV) thresholding was used, which seemed to
reasonable for most subjects after a quick manual tweaking of the MAV thresh-
old. The opening and closing though required to be more forced than a regular
use of the hand to provide a better signal-to-noise ratio.

This was tested with a handful of subjects at IDSIA. While the setup is less
comfortable than the gamepad, a certain sense of excitement was clearly visible
in the subjects. The motion of the arm though produced a rather noisy signal,
yet because of the mechanisms in place (mainly MoBeE) this is not dangerous

This video shows the pattern as recorded with a webcam: http://www.youtube.com/v/
UI5EBzU_QgM
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for our robot. The reasons for the noise are most likely the motion of electrodes
on the skin (or even detachment from the skin), some interference in the cables
while they are being moved around, and last but not least the change of the EMG
signal due to the change in the dynamics of the system (e.g. counteracting gravity
effects the muscle contraction therefore the signal). While the WAY project has
concluded, it would still be interesting to use machine learning techniques to
classify more robustly both the acceleration data and the EMG signal (probably
of more channels). Especially of interest would be the separation of different
grasp types.

Herein a system enabling an operator to control the end-effector of a complex
humanoid using either a gamepad or an accelerometer attached to his/her arm.
The robot then performs the equivalent operation, while still avoiding obstacles
and collisions. A simple EMG measurement can be used to trigger grasps. This
setup worked very well for when the user was placed behind the actual robot,
when the operator was facing the robot, a few test subjects had issues because
from their point-of-view the right stick would control the left arm. It was seen
that the control of the arm alone yields only a very limited reach space for our
humanoid robot. An intuitive way to control also the torso would clearly improve
this.

Figure 4.14. The setup for collection of one of the bio-signal (in this case, EMG
signals and accelerations of the hand) at IDSIA. The data is collected by the
BliTalino sensor, which sends the data via Bluetooth to the operator’s computer.
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Recap

In this chapter the action side required for eye-hand coordination is described.
The main contributions apart from the interfaces developed for other tools cre-
ated at IDSIA, namely MoBeE and TRM (these are pre-requisites for the coordi-
nation detailed in the next chapter), are:

* LEOGrasper: the development of a simple grasping subsystem, based on
previous experiments in Matlab by Leo Pape. This flexible implementation
in C++ was created, consisting of simple interfaces to MoBeE and the robot.
It has recently been stress-tested during the USI Ten-Year-Informatics event.

* Human Motion Decoding: the investigation of collected data from human
motions. The data was collected mainly at the partner institutions of the
STIFF and WAY projects. Various machine learning techniques were used
to decode the recorded sequences and use it as a control input for our
complex humanoid. A pure time-dependent decoding seems to not yield
the required results, other options will have to be pursued in the future.



Chapter 5

Integration and Sensorimotor
Coordination

Although there exists a rich body of literature in computer vision, path planning,
and feedback control, wherein many critical subproblems are addressed indi-
vidually, most demonstrable behaviours for humanoid robots do not effectively
integrate elements from all three disciplines. Consequently, tasks that seem triv-
ial to us humans, such as picking up a specific object in a cluttered environment,
remain beyond the state-of-the-art in experimental robotics.

It is becoming increasingly clear that robotic systems will need to exhibit
sophisticated capabilities in the future for the tasks they are proposed to perform.
This will require advances along the complete processing ‘pipeline’, from sensing
through to learning and interaction.

Sensory feedback is of critical importance to decide and act in unstructured
environments. Robots require the ability to perceive their surroundings, as it is
generally not feasible or possible to provide all the information needed a priori
(the most striking example being robotic space exploration). Creating a func-
tional perception system is a hard, but important, problem. It is a prerequisite
for robots to act in a purposeful, ‘intelligent’ way. In Chapter 3 a technique that al-
lows for visual perception based on a machine learning approach was presented.
It also enables the continues adaptation and update of the object detection fil-
ters. Clearly vision is an important thing for a humanoid robot, but it needs
to be closely integrated into the control and motion sub-system (as described
in Chapter 4). To facilitate more autonomous and more adaptive behaviours a
close integration of computer vision and control modules is developed and im-
plemented to ‘close the loop’.
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5.1 Background: Coordination and Adaptation

The main aim of my doctoral research is a closer integration of the sensory and
motor sides and creating an closely tied action-perception loop. Interfaces be-
tween MoBeE and icVision allow for a preliminary visual based localization of
the detected objects and placement of them into the world model. Currently
very simple operational space control is employed to move the arm to the tar-
get object. This, rather open-loop control, is the first step towards visual guided
reaching and grasping of objects with the iCub. It enables the robot to detect
an object in the visual frame then localize it in Cartesian coordinates and even-
tually executing a reach, with either the existing operational space controller or
our TRM approach. While this approach is already a step forward of current sys-
tems, it requires a very accurate calibration of both camera and mechanical links
to be successful. However some mechanical non linearities still cannot be taken
into account.

Sensorimotor Development is aiming to learn a basic eye-hand coordination.
This type of coordination for robotics has previously been investigated using ex-
tra sensors like LASERs or other helpers mounted on the end-effector, such as,
LEDs, bright coloured symbols or markers, etc. Langdon and Nordin [2001 ] have
shown this on a simple humanoid robot using GP techniques. Hulse et al. [2009]
had shown that machine learning to grasp a ball with a robot arm is possible. Yet
only the ball, not the arm was visually detected. Another approach to detect hand
gesture directly, using a coloured glove and machine learning was presented by
Nagi et al. [2011]. Various methods for learning this sensorimotor mapping have
been investigated [Hoffmann et al., 2005; Hiilse et al., 2010]. These lead to bi-
ologically inspired mappings, yet applying these directly to control the robot is
still an issue. Adaptation is needed for precise object manipulation, as highly ac-
curate models of the world and also of the robotic system can not be assumed in
most interesting scenarios. An estimation of the robot kinematics might help in
generating more precise motions. So far no module exists to estimate the kine-
matics of the iCub, this is partly due to the openly available CAD models and
thorough calibration procedures that need to/should be applied regularly. For
other robotic platforms machine learning has been used to estimate the kine-
matic model, e.g. Gloye et al. [2005] used visual feedback to learn the model
of a holonomic wheeled robot and Bongard et al. [2006] used low-dimensional
sensory feedback to learn the model of a legged robot.

Another often used option to track and detect the position of the robots
end-effector are external motion capturing and imaging systems (e.g. [Oikono-
midis et al., 2011; Ehara et al., 1995]). Recently, the German Aerospace Agency



139 5.1 Background: Coordination and Adaptation

(DLR) has investigated methods for better position estimation for their humanoid
robot. Using RGB-D (Kinect) and a stereo camera approach both combined with
a model-based technique, their system was able to qualitatively decrease the er-
ror from the pure kinematic solution [Porges et al., 2012]. An earlier approach
describes a simple 5DOF arm being controlled by a trained neural network and
visual feedback. The robot is using a calibrated, fixed stereo camera pair to
move the end effector to a goal position [Kuperstein and Rubenstein, 1989]. A
drawback of this early implementation was not able to avoid fixed or moving
obstacles.

Interesting research towards sensorimotor coordination on a humanoid arm
were described in Tuci et al. [2010]. Using continuous-time recurrent non-linear
networks are used in to control and classify object shapes. While the approach
was so far only tested in simulation where there are no constraints and collisions
are not a problem, it seems that this approach together with MoBeE might lead
to interesting research avenues in the future.

The idea to combine the planning of motions with vision is not novel, in
fact it’s a intuitively quite clear that this is a very useful skill for any robot to
posses. In the past such sensorimotor coordination has been investigated from
various aspects. For example, obstacle avoidance for humanoid (soccer) robot
was developed based on the detection of very simple objects (fixed colour, fixed
form) and a behaviour-based action stack [McGill et al., 2012]. The obstacle
avoidance though is solely in the plane and leads only to simple navigational
actions, not complex human-like motions.

Already earlier Dickinson et al. [1993] were using a layered object detection
approach to coordinate between actions and vision. This work, like many others,
has tried to re-plan the robot’s action when a new object is detected, and use only
reactive vision. This leads to a turn-based motion of the robot, where each new
observation usually leads to a re-planning phase. As mentioned already, visual
feedback control of complex robots in complex environments is still a challenge
in robotics [Kemp et al., 2007].

The approach described herein tries to overcome the strict constraints on ob-
jects and robots, especially on the use of discrete, behaviour-based architectures
with re-planning steps.

5.1.1 Integration

Even when sufficient manipulation skills are available these need to be constantly
adapted by an perception-action loop to yield desired results. “Robotics, Vision
and Control” by Corke [2011] describes common pitfalls and issues when trying
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to build such systems with high levels of sensorimotor integration. To allow for
a variety of objects to be picked up from various positions the robot needs to
see, act and react within an integrated control system. For example, methods
enabling a 5 DOF robotic arm to pick up objects using a point-cloud generated
model of the world and objects are available to calculate reach and grasp be-
haviours [Saxena et al., 2008]. A technique for robots to pick up non-rigid ob-
jects, such as, towels was presented [Maitin-Shepard et al., 2010]. It allows to
reliably and robustly pick up a towel from a table by going through a sequence
of vision-based re-grasps and manipulations-partially in the air, partially on the
table.

In the DARPA ARM project, which aims to create highly autonomous manipu-
lators capable of serving multiple purposes across a wide variety of applications,
the winning team showed an end-to-end system that allows the robot to grasp
and pick-up diverse objects (e.g. a power drill, keys, screwdrivers, ...) from a
table by combining touch and LASER sensing [Hudson et al., 2012].

Visual Servoing [Hutchinson et al., 1996; Chaumette and Hutchinson, 2006 ]
is a commonly used approach to closed-loop vision based control of robotic sys-
tems — i.e. some level of hand-eye coordination. It has been shown to work as
a functional strategy to control robots without any prior hand-eye calibration
[Vahrenkamp et al., 2008].

5.2 Closing the Action-Perception Loop

The sensory and motor sides establish quite a few capabilities by themselves, yet
to grasp objects successfully while avoiding obstacles they need to work closely
together. The continues tracking of obstacles and the target object is required to
create a reactive reaching behaviour which adapts in real-time to the changes of
the environment.

Interfaces between MoBeE and icVision were created and allow for a continues
visual based localization of the detected objects to be propagated into the world
model. The evolved filters for each object and the hand can be used to update the
positions. This basic approach to eye-hand coordination allows for an adaptation
while executing the reaching behaviour to changing circumstances, improving
the autonomy of the humanoid robot.

Already in Chapter 2 an overview of the on-going research towards a func-
tional eye-hand coordination system on the iCub at the IDSIA Robotics Lab was
show (Figure 2.1). The various modules (grey boxes) described in the previ-
ous chapters were developed during the last years and represent the subsystems:
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perception (green), action (yellow) and memory (blue). To recap the various
modules are:

* Object Models, Detection and Identification: as mentioned earlier, the detec-
tion and identification of objects is a hard problem. To perform these tasks
CGP-IP is providing an approach to learn visual object detection. The re-
sulting programs perform the (binary) segmentation of the camera images
for specific objects.

* Object Localization: by using the image coordinates of the detected object
from the two cameras together with the current robot’s pose, the position
of the object can be estimated in Cartesian space wrt. the robot’s reference
frame. Instead of a calibration for each single camera, the stereo system
and the kinematic chain, a module that learns from a training set is incorpo-
rated, as shown in Section 3.5. After the location of an object is estimated,
the world model is updated, i.e. the a priori known geometry of the object
is placed correctly.

* World Model, Collision Avoidance and Motion Generation: the world model
keeps track of the robot’s pose in space and the objects it has visually de-
tected. Figure 5.1 shows this model including the robot’s pose the static
table, and the objects localized from vision. MoBeE is used to safeguard
the robot from unwanted interactions with these geometries in the world
model. It furthermore allows to generate motion by ‘forcing’ the end-
effector in operational space, e.g. towards an object to be pickup up.

* Action Repertoire: herein we only use a light-weight, easy-to-use, one-shot
grasping system described in Section 4.4. More actions and tasks, as gen-
erated by our TRM approach, should be included in future works. One can
even envision them to be created on the fly during the robot’s operation.

The aim is to generate a pick-and-place operation for the iCub. For this, func-
tional motion and vision subsystems are integrated to create a closed action-
perception loop. The vision-side detects and localizes the object continuously,
while the motor-side tries to reach for target objects, while avoiding obstacles.
A grasp is triggered when the hand is near the object.

The integration requires to specify clear interfaces between those modules,
while ensuring that the dependencies do not hinder a real-world, real-time ap-
plication of the whole system. A typical workflow can be imagined to go like
this: A new set of images is received from the cameras at the icVision framwork.
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The images are sent to all active filters. These filters perform the object segmen-
tation and provide as outputs, a binary image (single-channel), as well as, some
numerical information, such as the size and location of blobs, their estimated 3D
position based on the icVision localization abstraction, and more minor details.
The estimated position can be from the learned system presented earlier or the
IIT provided library. Each filter sends this information (together with an object
ID) to MoBeE, which in turn updates the world model with a pre-defined geome-
try. Any on-going control of the robot, through the MoBeE proxies will now ‘feel’
a force from the detected objects to avoid collisions.

5.3 Experiments & Results

The first experiment shows that the herein presented system is able to reactively
move the arm out of harms way when the environment changes. We then show
how we can use this system to reactively reach and grasp these objects when
we change their type from ‘obstacle’ to ‘target’, therefore changing the fictional
forces calculated. Lastly an experiment is described which combines the detec-
tion, localization and actions to pick up an object and further improve the learned
CGP-IP classifier by doing so.

Figure 5.1. World model generated in the MoBeE framework using the output
from learned filters. The inset shows the camera image.
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5.3.1 Avoiding a Moving Obstacle

Static objects in the environment can be added directly into MoBeE’s world model.
Once, e.g. the table, is in the model, actions and behaviours are adapted due to
computed constraint forces. These forces, f;(t) in (1), which repel the robot from
collisions with the table, governs the actual movement of the robot. This way we
are able to send arbitrary motions to our system, while ensuring the safety of
our robot (this has recently been shown to provide a good reinforcement signal
for learning robot reaching behaviours [Pathak et al., 2013; Frank et al., 2014]).
The presented system has the same functionality also for arbitrary, non-static ob-
jects. After detection in both cameras the object’s location is estimated (icVision)
and propagated to MoBeE. The fictional forces are calculated to avoid impeding
collisions. Figure 5.2 shows how the localized object is in the way of the arm
and the hand. To ensure the safety of the rather fragile fingers, a sphere around
the end-effector can be seen. It is red, indicating a possible collision, because the
sphere intersects with the object. The same is valid for the lower arm. The forces,
calculated at each body part using Jacobians, push the intersecting geometries
away from each other, leading to a forcing of the hand (and arm) away from the
obstacle. Figure 5.3 shows how the the robot’s arm is avoiding a non-stationary
obstacle. The arm is ‘pushed’ aside at the beginning, when the cup is moved close

Figure 5.2. Showing the visual output of the MoBeE world model during an
experiment. Parts in red indicate (an impeding) collision with the environment
(or itself). The inset shows the actual scene. A video of this can be found at:
http://www.youtube.com/watch?v=w_qDH5tSe7g


http://www.youtube.com/watch?v=w_qDH5tSe7g
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Figure 5.3. The reactive control of the left arm, allowing the iCub to stay clear
of the static and non-static obstacles.

to the arm. It does so until the arm reaches its limit, then the forces cumulate and
the end-effector is ‘forced’ upwards to continue avoiding the obstacle. Without
an obstacle the arm starts to settle back into its resting pose q*.

5.3.2 Reaching and Grasping Objects

This next experiment is on a simple reactive pick-and-place routine for the iCub.
Similarly to the above experiment we are using MoBeE to adapt the reaching
behaviour while the object is moved. To do this we change the type of the object
within the world model from ‘obstacle’ into ‘target’. Due to this change there is
no repelling force calculated between the object and the robot parts. In fact we
can now use the vector from the end-effector to the target object as a force that
drives the hand towards a good grasping position.

MoBeE also allows to trigger certain responses when collisions occur. In the
case, when the robot is supposed to pick-up the object, a grasp subsystem is
triggered whenever the hand is in close vicinity of the object. Currently a proto-
typical power grasp action is applied, which has been successful in a lot of cases
especially during our various demos and videos.! Figure 4.6 shows the iCub suc-
cessfully picking up (by adding an extra upwards force) various objects using our
grasping subsystem, executing the same action. As shown in Figure 5.2 our robot
is able to track multiple objects at the same time. By simply changing the type
of the object within MoBeE the robot reaches for a certain object while avoiding
the other.

!See Appendix C for a list of videos or check the webpages of the IDSIA Robotics Lab http:
//robotics.idsia.ch/media/ or the author http://Juxi.net/media/


http://robotics.idsia.ch/media/
http://robotics.idsia.ch/media/
http://Juxi.net/media/
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5.3.3 Improving Robot Vision Through Interaction

One of the advantages of a (humanoid) robot is that it can actually manipulate
the world around it. As shown above the iCub is now capable of simple pick-and-
place actions. One of the most interesting applications is to facilitate improved
object detection by interacting with the world around the robot.

Herein an experiment is proposed, combining CGP-IP simple manipulation
actions to generate better detectors (filters). The experiment aims for learning
specific object representations that can be applied (and reused) in visual detec-
tion and identification tasks. This section describes how visual object represen-
tations can be learned and improved by performing object manipulation actions,
such as, poke, push and pick-up, by the iCub. The improvement can be measured
and allows for the robot to select and perform the ‘right’ action, i.e. the action
with the best possible improvement of the detector.

To build more accurate and robust representations, allowing the detection
and identification in a wide range of settings, interaction is of critical value. CGP-
IP is used to create these models based on a series of images collected during the
robot’s interaction with the world. It is shown that the improvement can be
measured using this method described herein. Therefore the robot is able to
select the ‘right’ action, i.e. the action providing the best possible improvement
of the detector.

Researchers started addressing how in robotic settings a more autonomous
fashion to object detection can be devised [Kim et al., 2006], as well as, how the
need for a human teacher can be minimised [Gatsoulis et al., 2011], compare
also Section 3.4.5. Yet all these approaches neglect the possibility of the robot
taking actions to improve its ability to detect objects — i.e. the scene the robot is
looking at is considered static (at least during the learning phase). Robotic vision
has the ability to interact with these objects and learn more and better models
about the world.

In the primate brain visual stimuli and motor commands are closely inter-
twined [Rizzolatti and Craighero, 2004], and it has been suggested that this
enables more adaptive, more autonomous behaviours. For robots to act in such
a fashion a higher level of integration and coordination between perception and
control is necessary. In the last few years robot vision research has been extended
to investigate how the embodiment of the robotic system can be used to create
better visual perception skills.

How to do motion planning for a high DOF is another issue that needs to
be tackled to perform useful actions. There has been a extensive research on
this in the past (see e.g. LaValle [2006]; Li and Shie [2007]; Peters and Schaal
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[2008]. A commonly used approach is based on Rapidly Exploring Random Trees
(RRT) [Kuffner Jr and LaValle, 2000]. For example, Vahrenkamp et al. [2012],
used a variant of RRT for both planning the reach and the grasp on a high DOF
humanoid robot. Few have been investigated on how to plan for a good action
to allow better visual recognition.

One of the first to investigate robot actions for robot vision were Metta and
Fitzpatrick [2003]. They showed that performing actions can lead to a simple
object segmentation based on using optical flow information. Their work extracts
visual information through autonomous exploration of the environment. When
the robot hits an object placed on a plane in front of it, a binary segmentation is
performed based on the object’s motion. The authors highlight that following the
causal chain from the robots action allows to develop visual competence. While
the theoretical impact is large it does not go into the details of how to generate
suitable object representations for online object search and recognition.

With the rise of cheaper stereo vision systems and depth sensors most of the
object recognition seems to focus on 3D geometry, or shape-based, detection.
Welke et al. [2010] showed an implementation that allows one to build visual
detection based on a depth information and a 3D view sphere concept. Using a
static camera setup they are able to generate a motion of the arm to rotate and
cover as much of a 3D sphere as possible, allowing to build a model of the object
from these multiple views. A similar approach by Gonzalez-Aguirre et al. [2011]
tried to overcome some of the issues when trying to detect general objects based
on their 3D shapes purely from vision. By fusing multiple views and vantage
points a more robust detection was generated. In contrast our work does not
require or even try to build 3D models of the objects.

A complex, humanoid robot, with its extra DOF, allows for more and differ-
ent types of ‘interaction’ with the environment, also with respect to robot vision
applications. Yet little work has investigated these extended possibility, such as
in our LEAN action. Stasse et al. [2008] suggest that using the hip can extend the
view area and therefore the possibility for detecting known objects. Their work,
based again on a next-best geometric view point approach, can derive motions
of the hip to change view points. It is not clear though how their technique can
handle redundant DOE

The focus here was on developing visual detection models for four distinct
objects (Figure 5.4), without the use of any 3D or shape models or other priors.
Each model shall uniquely detect one object, also solving the object identification
problem at the same time. The aim is to create models that can be run, in parallel,
on the real robot and allow for robust detection and identification of these objects
in changing environments even when other objects are present.



147

5.3 Experiments & Results

To learn robust models of the objects our humanoid robot needs to perceive
the objects in various poses and from various angles. For example, the tea boxes
(in Figure 5.4), differ visually between the front and back side. To learn better
models for the detection of these objects, a pre-selected action set is available to
the humanoid robot. These actions allow to see the object from various angles.

The available, scripted actions are the following:

Action LEAN: this simple action using 1 DOE changes the position of the
torso, by performing a hip motion. The robot will lean about 30° to its left
and then 30° to the right, while keeping its gaze fixed at the position of the
object on the table (Figure 5.5).

Action POKE: the extended index finger of the end-effector is used to poke
the object from the right side. A (more or less) linear movement of about
10cm in operational space is performed, while the robot gazes at a fixed
location (Figure 5.6).

Action PUSH: the palm of the right hand is used by the robot to push the
object from right to left. This is again a linear movement, but with higher
velocity and longer path. The gaze is controlled to continuously look at the
end-effector (Figure 5.7).

Action CURIOUS: is the most complex action available and is modelled after

Figure 5.4. The objects to be detected and distinguished in this scenario are: a
soda can, a yellow-red tea box, a blue plastic cup and a green tea box.
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a child curiously exploring an object. The object is grasped, picked-up
(from a fixed location using a predefined grasp primitive) and then brought
closer to the face while being rotated in various ways. These rotations
involve almost all DOF of the wrist, elbow and shoulder. The gaze during
this whole motion is continuously adjusted to look at the hand and the
object it is holding (Figure 5.8).

Camera pictures are recorded in a fixed interval , while the robot is perform-
ing these actions. These are then used to improve the visual models. To allow
for a fair comparison, as the actions have different runtimes, only 5 images are
taken from each action of the experiment. This is done to be able to compare
the results. During these experiments a predefined area of interest in the camera

Figure 5.5. An example of a series of images collected during a LEAN action.

Figure 5.6. An example of a series of images collected during a POKE action.

Figure 5.7. An example of a series of images collected during a PUSH action.
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image is selected. The objects are placed at fixed positions to be within these
established masks.

Learning a Simple Model Using CGP-IP

Analogue to the experiments in Section 3.4 the first detector is created from a
single starting image.

During these experiments an area of interest in the camera image is defined
and the objects are planed at fixed positions to be within this mask. This is
used as training set to build the visual object representation. The mask does not
precisely segment the image from the background, but highlights the area in the
image the object is visible. The exact segmentation of the object is part of the first
learning phase. Herein we use a fixed mask and manually place the object to be
within. In the future this preliminary mask could very easily be generated from
stereo vision information (e.g. [Leitner et al., 2008]). For the creation of the
first detector the robot is static. Yet to not simply detect objects on very simple
visual cues, e.g. colour in the set-up blue cup vs. red tea box, a variety of objects
(kids toy blocks) with different colours are scattered on the table and visible in
the scene (in the background in Figure 5.9). We use just one input image with a
fixed mask for all objects as training set to start with.

Though only one training image is used, and the mask is not very accurate,

Figure 5.8. An example of a series of images collected during a CURIOUS action,
which enables the iCub to closer inspect the object.
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our CGP-IP approach learns to segment and detect the object quite accurately.
The simple mask used for all objects does not specify the detailed outline of the
item, nevertheless the detectors manage to come close to a precise segmenta-
tion. A specific detector is trained for each object individually therefore allowing
identification as well.

The learned detection model for the visually rather simple blue cup object
(see Figure 5.4) is used as a representative example here. The object representa-
tion, converted into executable code is shown in Listing 5.1. The representation
also allows for a skilled engineer to understand and manually improve the code.
The solution was found after only 1214 individuals were evaluated, taking a few
seconds on a standard desktop computer. The detection is shown in the middle
of Figure 5.9, where the binary segmentation is used as a red overlay in the input
image. The execution of the code takes 140ms for a 320 x 240 pixel image.

The resulting fitness values from this first experiments are not particularly
high. There are multiple reasons for this, first the mask or predefined segmen-
tation is not very accurate, due to fact that it is the same mask for every object.
Secondly the CGP approach is limited in its training time (to around 20k eval-
uations). This limit is chosen as to avoid over-fitting to the single input image
available.

To show this we ran another experiment for the red tea box for over 2.6m
individuals. The found solution was very fit with f = 0.06. To achieve this the
detector tried to artificially increase the found area to match the input mask as
precisely as possible. This is in comparison to another solution evaluating only
about 22.7k individuals to find a detector with f = 0.27 (see Table 5.1 for more
details). The runtime is the ms needed for the execution of the detector on a
320 x 240 colour image. Accuracy refers to the correct detection of the object on
an unseen test set of 15 images.

Figure 5.9. The mask (left) used as input to the supervised training, next to two
frames showing learned detection (as red overlay) for two distinct objects, the
blue cup and the green tea box respectively.
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Table 5.1. Comparing the various visual detection models derived from manip-
ulating the objects using a set of actions.

| Detector | Fitness f Individuals tested Runtime || Accuracy
BlueCup Start 0.28 1214 140.69 100%
BlueCup LEAN 0.31 1835 234.03 100%
BlueCup POKE 0.18 1214 5.04 100%
BlueCup PUSH 0.39 12110 162.75 93%
BlueCup CURIOUS 0.42 2445 156.34 100%
GreenTbox Start 0.18 10122 73.08 93%
GreenTbox LEAN 0.29 3524 64.00 100%
GreenTbox POKE 0.28 1432 73.11 100%
GreenTbox PUSH 0.26 1374 119.29 100%
GreenTbox CUR. 0.33 3678 71.12 100%
RedTeabox Start 0.27 22697 121.05 100%
RedTeabox LEAN 0.45 1426 141.40 100%
RedTeabox POKE 0.35 2090 70.11 87%
RedTeabox PUSH 0.45 2011 53.96 100%
RedTeabox CUR. 0.36 738 114.45 100%
SodaCan Start 0.46 1882 107.79 60%
SodaCan LEAN 0.38 6581 140.62 67%
SodaCan POKE 0.68 3673 3.68 87%
SodaCan PUSH 0.38 1049 223.28 80%
SodaCan CUR. 0.31 16078 213.50 87%

Listing 5.1. The generated C+ + code from the first learned object representation for the
blue cup. This detector is rather simple. Although it detects the blue cup in all test images

it has also a few false positives, due to its simplicity. icImage is again the wrapper class for
the OpenCV functionality.

1 icImage BlueCupFilter::RunFilter() {

2 icImage *node43 = InputImages[4];

3 icImage *node49 = node43->LocalAvg(15);

4 icImage xout = noded49->threshold(81.53244f);
5 return out;

6 }
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Learning Better Models Trough Interaction

To improve the visual models for the object detection the robot can choose to
perform an action. The images collected during these interactions are used for
learning a better detector. The learning experiment is started by placing the
object to be learned in a specific position, as in the first experiment. Similar to
the first experiment a single input image is collected to generate a preliminary
detector. After this the robot selects one out of four possible actions described
above.

The robot observes the object while performing the action. As described
above, images in fixed intervals are collected. From these new observations —
masks are provided by hand for the supervised learning step — together with
the image from the start, a new object representation is learned. Depending on
the action and its duration the number of images collected varies. The LEAN ac-
tion, being the shortest, allows only for the collection of 3 new, different images,
whereas the CURIOUS action can be used to collect 12 images.

Trials are performed for each combination of one object and an action and
separate detectors are trained. Table 5.1 shows the learning and performance
details of the various detectors. Learning in CGP-IB like in other evolutionary
methods, is non-deterministic, therefore the results shown are based on the best
out of five runs. For each of these detectors the fitness during training and the
number of individuals evaluated are reported.

The runtime reported is the average of three runs over the 15 images. These
images have been collected separately and build a validation set, as they have
not been seen during training. The accuracy reported in the last column refers to
this training set. It specifies the number of times the object was detected in those
images. From this performance we can conclude the ‘right’ action to chose. For
all of the four objects in this experiment the CURIOUS action is the best choice
for improving the detector. This is not too surprising, as this action allows to
perceive the object from various viewing angles.

Even for objects like the blue cup, where detection should be easy, the action
allows for an improvement in the detector. There is no increase in the number
of times the object is detected, but there is a signification increase on how much
of the object is detected. An increase is also visible in the precision of the seg-
mentation, i.e. the improved detector finds matches that are very close to the
contours of the objects. The improvement after the CURIOUS action is visible
in Figure 5.10. The figure also shows the vanishing of the false positive of the
red tea box (a red block in the camera image, visible on the table in the back-
ground). The changes of the object representation, after observing the execution
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Figure 5.10. Comparing the generated segmentation of an input image (left),
using the detector at the start — using one image (middle), with the detector
trained after the CURIOUS action (right). The first row shows an example from
the red tea box the second from the green.

Listing 5.2. The generated C+ + code for detecting the blue cup after performing the

CURIOUS action. Compared to the detector in Listing 5.1, this more complicated model
reduces the number of false positives to only 1 in the 15 images of the test set.

1 icImage BlueCupFilter::RunFilter() {

2 icImage node® = InputImages[4].Exp();

3 icImage node5 = InputImages[O];

4 icImage nodel6 = node0.Gabor (-8, 14, 1, 13);
5 icImage nodel7 = InputImages[4].LocalAvg(6);
6 icImage nodel8 = nodel6.Laplace(5);

7 icImage nodel9 = node5.Sobel(13,9);

8 icImage node24 = nodel7.Erode(5);

9 icImage node28 = nodel9.Min(nodel8);

10 icImage node29 = node28.Min(node24);

11 icImage node4l = node29.LocalAvg(7);

12 icImage node49 = node4l.LocalMax(7);

13 icImage out = node49.Threshold(68.03109f);
14 return out;

15}
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of a CURIOUS action, can be seen in the listing shown in Listing 5.2 (compared to
the code above in Listing 5.1).

The detection of the soda can, made of quite reflective aluminium, is not as
good as for the other objects. One issue here is the visual similarity of the material
with the fingers and other parts of the humanoid’s body. This issue is reinforced
by the use of simple masks. The fingers are quite often within the masked area,
especially during the CURIOUS action. One possibility we are investigating for
future research is the use of a disparity map, optical flow or similar approaches
to help generating the first masks. Another idea is to use the model learned in
one action as the mask for another data collection.

Once the models are learned they can be used on the iCub to detect objects
in the environment. The system can be fully integrated in the currently available
frameworks available in the iCub community. Running the detector for both ‘eyes’
the object’s location can be determined [Pattacini, 2011; Leitner et al., 2012f] to
update the robot’s world model [Leitner et al., 2012a]. By combining all these
the iCub is able to learn object representations of unseen items, then localize and
plan around them.

The iCub humanoid robot created object representations using a machine
learning approach to computer vision. By interacting with the objects, the robot
was able to further improve its object detection and identification skills. It did
so by collecting observations during action execution. These new observations
allowed to learn a better object detection model. An advantage of our model is
that it can be directly mapped into human read-able source code and instantly
be compiled to run on the real hardware.

Furthermore, the system was demonstrated to learn how to select the right
action, i.e. the action leading to the largest improvement in detection. The ex-
periments show that our CURIOUS action, which contains a pick-up and a variety
of rotations to inspect the object, allows for the best improvement. During this
action the object can be viewed from almost every angle allowing to build a ro-
bust model. This has been observed to be especially useful for visually complex
objects, e.g. a tea box.>

Although we have a limited number of actions, the results show that per-
forming these actions in connection with learning system for vision allows for
more information gained from the environment. We believe that in the future a
better sensorimotor coordination can be achieved using this approach. We are
especially interested in evaluating possible machine learning techniques, e.g. re-

2A video of the experiments is available at: http://Juxi.net/projects/iCub/#wcci2014
or http://www.youtube.com/watch?v=nKlk4mXci_c


http://Juxi.net/projects/iCub/#wcci2014
http://www.youtube.com/watch?v=nKlk4mXci_c
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inforcement learning, to learn the best possible action directly on the robot. In
the future it would be nice to extend the number of actions and their granularity

and their robustness, e.g. in non-static environments.
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Recap

Based on the description of the perception and actions sides, Chapter 5 details the
integration of those subsystems. The advantage of the integration of icVision with
MoBeE is due to abstracting the objects and the robots, allowing minor changes
in the environment to be reactively controlling the iCub without the need for re-
planning. The reactive controller allows a more reactive reaching and grasping.
Previously this was done on a variety of simpler robots [ DeSouza and Kak, 2002 ]
but not on highly-complex, high-DOF robots, such as the iCub.

Experiments show how the visual detection can be used to improve the ac-
tions, especially to create a reactive reaching capability, enabling the robot to
avoid dynamic obstacles while reaching for objects. The second part of the inte-
gration experiments show how through interaction, based on a set of pre-defined
actions, the robot can learn a better visual representations. The ability to change
the environment and create novel observations in turn leads to better classifica-
tion of the objects in the scene.

The integration of the visual frameworks with the action side leads to novel
capabilities on the iCub; an integrated system now exists allowing for:

* Eye-Hand Coordination: my system allows for the detection of arbitrary
objects in the workspace and the safe execution of arbitrary motions around
these objects.

» Improving Vision Through Interaction: building on CGP-IP and icVision the
system is flexible enough to allow the improved detection based on new
observations. These new observations can be coming from pre-scripted
or learned (with TRM) motions, that are reasonable safe to execute with
MoBeE providing collision avoidance.



Chapter 6

Conclusions

In this dissertation I present my research towards more autonomous, more adap-
tive humanoid robots. As mentioned in the introduction creating robots that can
‘see’ the world is of importance to the robotics community. A major novel con-
tribution is the development of a framework for visual perception that can easily
be connected with the control and action side of the robot, therefore creating
a tightly integrated system on the iCub that did not exist before. This system,
consisting of the icVision, CGP-IP and MoBeE frameworks, allows for the detec-
tion of arbitrary objects in the workspace (i.e. open-world assumption) and the
safe execution of arbitrary motions around these objects. It enables the robot to
perform pick-and-place tasks, which in return can improve its own visual per-
ception models through this interaction. The integrated system I created enables
the robot to adapt to changes in the environment and safeguards the iCub from
unwanted interactions, i.e. collisions with the environment or with itself. By
integrating the visual system with the motor side and the implementation of an
attractor dynamic/virtual force field technique based on the world model, a level
of eye-hand coordination not previously seen on the iCub is now possible.

In Chapter 3, a learning technique for visual object detection is proposed.
Cartesian Genetic Programming for Image Processing (CGP-IP) yields nice results
in several different domains with a focus on robotic applications — computer vi-
sion and robotic vision have the tendency to look at these problems from slightly
different angles. The results themselves indicate that CGP-IP is working very
well and seem to be competitive with other state-of-the-art learning methods for
robotic vision applications. CGP-IP is based on well-known image processing op-
erations and generate human readable programs and requires only very limited
training sets (all the experiments herein use between 5 and 20 images only). In
combination with icVision it is not restricted to a closed world assumption used
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in other dataset-driven approaches and not limiting yourself to a set number
of classes is very important for robotic applications. Available computer vision
datasets tend to focus on classification of general object types, not identify spe-
cific objects. They also focus more single classifications, whereas in robotics more
cluttered environments are of interest.! Using OpenCV as the basis for the im-
plementation also enables CGP-IP to evolve high-speed programs. This, together
with the rather small training sets required compared to other approaches, such
as neural networks, make it a good candidate to be used in industrial scenarios.

Although it was not known at the beginning — nor was it an aim to build
such a system — the ability of CGP-IP to work with poorly labelled data is obviously
beneficial. In the steel defect dataset (Section 3.4.2) in particular the poor quality
of the labelling did not prevent the system from successfully evolving solutions.
Unfortunately this means it is quite hard to quantify the quality of the results, as
there is no pixel-perfect ground truth (and in fact in most cases, there will be no
or subjective differences in any available “ground truth”).

Furthermore a learning technique for spatial perception is also presented in
Chapter 3. It is shown that satisfactory results can be obtained for localization
even in scenarios where the kinematic model is imprecise or not available, and
is possible without the need of any lengthy camera calibration procedure. Our
humanoid robot learns to provide estimates of object positions placed on a table
and in 3D, even while the robot is moving its torso, head and eyes. The outputs,
provided by trained artificial neural networks (ANN) and a genetic programming
(GP) method, are based solely on the inputs from the two cameras and the joint
encoder positions. It was found that ANN and GP are both able to localize ob-
jects robustly regardless of the robot’s pose and without an explicit kinematic
model or camera calibration. These approaches yield an accuracy comparable
to current techniques used on the iCub. A method is presented, which allows
for the automatic collection of the dataset using another robot. This novel way
of having two robots acting in the same workspace, while being independently
controlled, can be accomplished safely by using MoBeE.

While learning spatial perception in Cartesian coordinates is not necessarily
the best option — humans are also not good at precisely determining distances
of perceived objects — it enables the use of currently existing operational space
controllers on the iCub. Again while satisfactory results are achieved with this
proof-of-concept, a more thorough experimental testing on the iCub will need to
be conducted in the future.

!The 2014 version of the ImageNet dataset now contains more images similar to scenes per-
ceived in robotic settings.
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Chapter 4 describes in some detail how motions can be generated for the
iCub and how we make sure these motions can be executed safely and without
collisions on our complex humanoid. It presents MoBeE developed over the last
years under the lead of Mikhail Frank and how it is a prerequisite to perform
tele-operated control with noise bio-signals, or indeed, use machine learning
techniques — especially reinforcement learning, which requires repetition of tri-
als without breaking the robot — on the real hardware. The chapter also contains
some of the work performed in the frame of two other EU projects at IDSIA.
Both of them aim at creating a better understanding of how humans control
their motions and how this knowledge can be transferred to robotics (and con-
trol). Demonstrations and experiments for controlling the iCub remotely with a
gamepad, EMG signals and a Leap Motion sensor are described.

Chapter 5 revisits the integration issue and our approach as sketched at the
start. It highlights how the separate developments at IDSIA over the last years fit
together into a single processing ‘pipeline’ enabling a eye-hand coordination on
the iCub, not previously seen. Reactive reaching is possible, wherein the robot
is able to avoid all detected objects. It was shown that in a dynamic environ-
ment objects can ‘push’ the robot’s arm away from colliding poses. The final
experiment shows that by having this sensorimotor coordination, the robot can
now exploit this to improve its visual perception skills. It does so by using a set
of actions to interact with the world around it. By doing so the scene changes
and different training images can be collected and used to learn better classifiers
using CGP-IP.

Future Work

The research proposed herein and the experiments performed yielded some in-
teresting result. Based on these various future research avenues are possible.
From a high-level perspective it would be interesting to further integrate ma-
chine learning to extend the object manipulation capabilities of robotic systems.
In particular improving the prediction of what is happening in the environment
will lead to a more adaptive, versatile selection of actions for the robot to exe-
cute. The following should be seen as a starting point for discussion on how one
could continue this research.

Object Detection

Although CGP-IP works well on the problems presented here, there is still room
for improvement. One major omission here is multi-class classification. Combin-
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ing CGP-IP with features from MT-CGP [Harding et al., 2012], should solve this.
A more thorough analysis of the CGP-IP performance, especially when compared
with neural networks on classification problems, will be performed in the future.
CGP-IP should also benefit from a GPU based implementation.

One could also imagine to continue the work presented in Sections 3.4.5 and
5.3.3, and aim to build systems that are able to improve their perception skills
over their whole lifetime. This life-long learning, especially for deployed robotic
systems, is increasingly interesting to researchers in both robotics and machine
learning. This could also be facilitated by the use of committees of evolved filters,
that are each specializing on detecting the object in specific settings. The filters
could even be used in a hierarchical order to closer represent what we belief the
brain does. This grouping of filters, leading to some sort of committee voting,
might allow for novel approaches to robust detection.

It would also be interesting, as suggested by members of the audiences at
multiple conferences, to see if one could evolve such detectors with more than
just visual information. Of interest might be to have also tactile representations
(from interaction), or geometric models that are being evolved, maybe in paral-
lel, to help with a more precise classification of objects. For the applied settings
it would be interesting to see what can be done to allow a more flexible, simpler
transfer of the learned detectors between different setups, e.g. would it be possi-
ble to transfer the learned mars detectors to the camera setup of the second Mars
Exploration Rover (MER) or even to Mars Science Laboratory (MSL/Curiostiy)?

Generally of interest would be to extend the frameworks further to deal with
human-robot interaction scenarios. For this a better detection of humans and also
improved safety requirements might have to be taken into account. Additionally
it might make sense to allow the fusion of other available sensors, especially the
force/torque sensors in the upper arm of the iCub.

Spatial Perception

A better dataset and collection thereof might lead to better results when learning
to predict the location of an object. Especially the various stark outliers seen in
the 3D results of Section 3.6.3 make a case for this. One of the challenges here
will be in the process of collecting the data. Different methods for simplifying
the data collection will be required. One possibility is to determine how few data
points are actually needed for the various learning methods to estimate object
positions precise enough for manipulation. Fewer, but better, data points will
allow to reduce the time needed to collect the dataset on a different robot or when
parameters are changing, for example, replacing of parts, such as the cameras.
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Alternatively, it may be possible to turn the process into an incremental learning
problem. In this case the robot would be learning to improve its predictions
of the positions while performing actions, this would be closer to how human
sensorimotor skills are believed to develop. Extending this thought further a
robot knowing its perceptual precision in various parts of the environment could
be lead by artificial curiosity [Frank et al., 2014; Schmidhuber, 1991] to ask for
more data points in those areas with, not just the highest localization error, but
the greatest improvement of localization error and aim to improve its capabilities
specifically in those regions.

In addition the method described can learn whether an object visible in both
cameras is within the reachable workspace of the robot. Assuming that the max-
imum reachable space is limited by the robot’s arm, it seems possible to train
an ANN to predict whether an object in the scene is reachable given the current
robot body pose. A simple modification in the training set, to contain, instead of
the 3D coordinates in p, only a binary output, whether the point is reachable or
not, e.g. every point further away than 60 cm, could be used for a simple proof-
of-concept. In this simplified problem one does not predict though if there is a
feasible joint configuration for this point. The ANN for this task, which would
have the same model as each of the ANNs before, can again be trained using
error back-propagation. Another goal is to extend this work to detection of the
object’s orientation. In fact we already collect 6 inputs from vision per image
(centre of blob, as well as, the location and size of the bounding box), which
could enable the estimation of the objects orientation, if the detected object’s
geometry is known.

A different approach that might also be interesting to pursue is Structure-
from-Motion (SfM). It has been shown to work quite nicely in flying robots and
movable camera setups. In connection with MoBeE and the moving iCub a rough
world model of the surroundings could be generated, reducing the dependency
on loaded geometries for objects in the scene.

Integration

Furthermore it might be of interest to investigate an even tighter sensorimotor
coupling, e.g. avoiding translation into operational space by working in vision/-
configuration space. One could also imagine to have an iterative approach to
learn more and more about world. First a simple means of detection would be
used (e.g., as in Section 3.4.5, or a simple disparity map). Then simple actions,
prepared for example with TRM, could be performed to learn more and better
classifiers, which would allow to perform more complicated interactions with the



162

object.

Visual Servoing (VS) is a commonly used approach to closed-loop vision based
control. It refers to the use of computer vision data to control the motion of a
robot [Chaumette and Hutchinson, 2006, 2007]. It relies on techniques from
image processing, computer vision, and control theory. The visual information
is usually coming from a camera mounted on a robot manipulator or a mobile
robot. Various configurations of the robot and camera(s) are possible, the most
common in literature being the eye-in-hand case. With human-style robots, VS
has only been investigated recently. The issue here is that it is not a eye-in-hand
nor a eye-to-hand system, as the camera is on the robot, but only some of the
reaching movements will imply a motion also with the head (this only happens
when the hip is moved). Generally there are two separate approaches: a position-
based VS (PBVS) and an image-based VS (IBVS). There is no definitive answer
which ones is better, PBVS tends to be used more in setups with a 3D sensor (e.g.
LIDAR, Kinect, etc.) whereas IBVS seems to be preferential when using cameras,
like in our case.

It would be interesting to extend the system we currently have, which is sim-
ilar to a PBVS, to an image-based VS setup. The foundations, object and hand
detection in the images, are there, so is a simple forcing mechanism. Due to time
constraints a full integration and more importantly experiment and test was not
been performed so far. With our current setup we should be able to measure the
error between the hand and the object we want to pick up, similar to previous
approaches on less complex robots or with the help of external sensors [Hager
et al., 1995].

Tele-operation of Complex Robots A proof-of-concept for tele-operating a com-
plex humanoid safely was shown in Section 4.5. Future research could investi-
gate closer how more sophisticated bio-signal processing can be included and
applied to control the robot. Furthermore a significant amount of user testing
will need to be done to further improve the operator interface and create re-
ally useful systems. Especially the EMG and machine learning side can still be
improved to include multiple grasp types and reduce the amount of learning re-
quired for each operator. We are confident that this can also be transferred to
other scenarios, such as, prosthetics control by amputees. Different collecting
methods, different number of channels, and instruments have so already been
used to collect new datasets for a variety of grasp types.

The most interesting problem to solve will be the robust detection of the



163

signal while the operator is moving her/his arm. It might contain artefacts and
high levels of noise stemming from other muscle activations (e.g. to counteract
gravity and the dynamics of the motion).

In the light of current news coverage about the advancement of robotics and
automation, in various application areas, from autonomous cars to military use,
one should be careful not to overstate what robots can currently do and what
they will be able to do in the future. The “jobpocalypse”, i.e. the loss of jobs due
to the increasing number of robots and the progression of automation?, also is
covered vividly in the news. While one can rightfully be sceptic, it might though
be time to start thinking about the implications of robotic efforts on society, or
at least think about how robotics is perceived by the public and in the media.

2'It would be irresponsible to predict that “jobpocalypse” is around the corner. The T-800 is
unlikely to replace dentists, rabbis and gym instructors: a recent Oxford University study [Frey
and Osborne, 2013] found that ‘only’ 47 per cent of US employment is at risk of computerization
within the next decade or two. This will relieve those who already have trouble sleeping in an
age of proliferating doom scenarios. " taken from: http://www.newstatesman.com/economics/
2014/03/learning-live-machines


http://www.newstatesman.com/economics/2014/03/learning-live-machines
http://www.newstatesman.com/economics/2014/03/learning-live-machines
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Appendix A

CGP-IP Function Set

Table A.1. The CGP-IP function set, part I.

Name Arity | Description

NOP 1 No Operation, returns first input into the node

INP 0 Returns the current ImageInput, move pointer forward

INPP 0 Moves pointer backwards, returns input

SKIP 0 Moves pointer by (int)Parametero, returns input

add 2 Adds two images together

sub 2 Subtracts one image from another

const 0 Makes a new image, all pixels set to ParameterQ

mul 2 Multiplies two images together

addc 1 Adds ParameterO to each pixel in the input image

subc 1 Subtracts ParameterQ from each pixel in the input image

mulc 1 Multiplies each pixel in the input image by ParameterQ

log 1 Performs log each pixel in the input image

exp 1 Performs exp on each pixel in the input image

sqrt 1 Performs ,/ on each pixel in the input image

absDiff 2 Finds the absolute difference between two images

avg 2 Finds the per pixel average of two images

max 2 Returns the maximum of each pixel pair in the two input
images

min 2 Returns the minimum of each pixel pair in the two input
images

165




166

Table A.2. The CGP-IP function set, part Il. Functions that operate on a neigh-
bourhood, can be expected to use a size of Parameterl by Parameter2. Note:

all functions in this table have an arity of 1.

shift (0,-1)
shift (0,1)
shift (-1,0)
shift (-1,0)
shift (Parameterl, 0)

shift (0, Parameter2)

shift (Parameterl, Parameter2)
gabor (Orientation, Frequency)
gabor (Orientation, Frequency,
Parameterl, Parameter2)
gabor (Orientation, Frequency,
Parameter0)

minValue

maxValue

avgValue

Name Description

threshold Binary threshold the image at ParameterO

thresholdbw Binary threshold the image at 64

normalize Normalize an image in the range 0 to 255

laplace Calculates Laplacian of an image

gauss Performs Gaussian blur

gauss2 Performs Gaussian blur, with a kernel sized Param-
eter]l by Parameter2

sobelx Performs Sobel edge detection in the X direction

sobely Performs Sobel edge detection in the Y direction

sobel Performs Sobel using Parameter1 and 2 to provide
the X and Y orders

smoothMedian Performs the smooth median filter

smoothBilateral Performs the smooth bilateral filter

smoothBlur Performs the smooth blur filter

unsharpen Performs the unsharpen operation

Circular shifts the image down

Circular shifts the image up

Circular shifts the image to the left

Circular shifts the image to the right

Circular shifts the image Parameterl pixels hori-
zontally

Circular shifts the image Parameter2 pixels verti-
cally

Circular shifts the image pixel values in a given
direction

Performs the Gabor operation

Performs the Gabor operation

Down-samples the image, and then performs the
Gabor operation

Creates an image where every pixel is the mini-
mum pixel value in the input image

Creates an image where every pixel is the maxi-
mum pixel value in the input image

Creates an image where every pixel is the average
pixel value in the input image
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Table A.3. The CGP-IP function set, part lll. Functions that operate on a neigh-
bourhood, can be expected to use a size of Parameterl by Parameter2. Note:

all functions in this table have again an arity of 1.

Name

Description

reScale (ParameterQ)
min (Parameter0)
max (ParameterQ)
localNormalize
localMin

localMax

localAvg

erode

dilate

canny

Down-samples the input image by a factor of Parameter0
Compares each pixel to Parameter0

Compares each pixel to Parameter0

Performs a local normalization of the input image
Computes the local minimum for each pixel in the input
Computes the local maximum for each pixel in the input
Computes the local average for each pixel in the input
Performs the erosion operator

Performs the dilation operator

Performs Canny edge detection
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Appendix B

CGP-IP Additional Results: Medical
Imaging

B.1 Medical Imaging: Cell Mitosis

Detecting, and then counting, cancer cells undergoing mitosis is useful diagnos-
tic measurement in breast cancer screening. However, the cells are small and
have a large variety of shapes. This challenge has led to a competition at the
2012 International Conference on Pattern Recognition (ICPR)!, where entrants
are invited to submit methods for solving this problem.

To test the problem with CGP-IB the training set was sliced in a number of
patches (i.e. small sections of the image). Half of the patches contain one or more
mitoses to detect, the other half contains randomly selected empty patches. In
total 420 images patches were used, with 356 used for training and the remaining
64 reserved for validation. As this is a binary classification problem, the MCC
based fitness function was used (i.e. Type B).

Due to time constraints, CGP-IP was run only 6 times. In future work we
will perform a more thorough investigation in the performance of CGP-IP on this
problem. Statistical results for these runs are shown in Table B.1. Figure B.1
shows the input image, expected and predicted classes for validation images for
the best performing individual. These results are based on per-pixel analysis, and
suggest that CGP-IP provides excellent segmentation. With additional analysis of
the segments, the classification rate of the mitoses can also be determined. Out
of 42 mitoses, CGP-IP correctly identified 36 of them i.e. 86% of the mitoses
were correctly identified. There were 12 false-positives, and 6 false-negatives.

!The competition website: http://ipal.i2r.a-star.edu.sg/event/icpr-2012
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Figure B.1. Validation set for the ICPR Mitosis dataset. The columns with the images show the input images, the next
column to the right shows the expected output and the following column shows the predicted classifications.
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It will be interesting to compare CGP-IP to other published methods once the
competition results are available.

Table B.1. Results for the ICPR dataset. The classification accuracy is per-pixel.
The fitness function was uses the MCC score (Type B).

% Classification accuracy | MCC (Fitness)
Average 98 0.36
Minimum | 97 0.28
Maximum | 98 0.46
Std. Dev. | 0.3 0.08

B.2 Medical Imaging: MIAS Mammographic Database

The ‘mini-MIAS’ database [Suckling et al., 1994] contains 322 labelled X-ray
mammogram images. For each image, a number of different Regions Of Interest
(ROIs) are defined, relating to features such as calcification or spiculated masses.
In the original dataset, the ROIs are described by a circle at a given position and
with a given radius. However, the ROI is extremely crude, and may only contain
a small proportion of the labelled class. Using CGP-IP on these ROIs, we were
unable to obtain satisfactory results. As the calcifications are relatively easy to
identify (given the provided ROI), a new version of the dataset was produced
where the calcifications were labelled on per-pixel basis by hand. It should be
noted that this was not performed by a medical expert, so errors in the labelling
are expected. Using this set however, it was possible to get CGP-IP to identify the
calcified areas.

To build the training set, the images containing calcified areas were identified,
and the calcifications relabelled. The original images were then cleaned up to
remove artefacts such as text and registration marks. Finally, the images were
cropped tightly to the ROL. For training 14 images were used, and 8 images used
for validation. Again, as this is a binary classification problem, the MCC based
fitness function was used (i.e. Type B).

Table B.2 shows the classification rates of the evolved filters. The high clas-
sification rate is due to the large imbalance in the classes. The MCC score (used
for the fitness), indicates that the filters are not particularly good. However, this
is most likely due to poor labelling in the validation data. Figure B.2 show the
evolved filters working on patches from the validation set of images.
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(a) Input image. (b) Expected output. (c) Predicted output.

o ..-

(d) Input image. (e) Expected output. (f) Predicted output.

(g) Input image. (h) Expected output. (i) Predicted output.

Figure B.2. Examples of evolved filters from the MIAS dataset.
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Table B.2. Results for the MIAS dataset. Classification accuracy is per-pixel. Ten
runs were performed. The average number of evaluations to convergence was
found to be 21,104 (std. dev. 12,210).

% Classification Accuracy | MCC (Fitness)

Average 99.3 0.40
Minimum | 99.2 0.30
Maximum | 99.3 0.46

Std. Dev. | 0.06 0.05
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Appendix C
IDSIA Robotics Research Videos

During the course of my PhD project work at IDSIA a variety of research videos
were created. These show the progress and implementation on the iCub. The
following is a list of these with links to view them online.

Controlling the iCub with a LEAP sensor: “ The Real 'Real Steel’” (2014)
http://www.youtube.com/watch?v=516tA0b922g
" -

o

A“E% obotics Lab |!- |

Reactive Reaching and Grasping on a Humanoid (2014)

Improving Robot Vision Models for Object Detection (2014)
http://www.youtube.com/watch?v=nKlk4mXci_c



http://www.youtube.com/watch?v=5i6tAOb922g
http://www.youtube.com/watch?v=w_qDH5tSe7g
http://www.youtube.com/watch?v=nKlk4mXci_c
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autoCGP-IP: Autonomous Learning of Robust Visual Object Detection and
Identification (2013)
http://www.youtube.com/watch?v=gXaa6bdwE5Bs

|

Z il I

obotics | ab

Task Relevant Road Maps (AAAI Shakey Winner - Best Student Video 2013)
http://www.youtube.com/watch?v=N6x2elZf_yg

IM-CLeVeR Video: “Toward Intelligent Humanoids” (2012)
http://vimeo.com/51011081

icVision
Systsn

duar Vistem System for Cognitive Rebeties R

In addition our robots and research was featured in other videos a full list can
be found at: http://Juxi.net/media


http://www.youtube.com/watch?v=gXaa6dwE5Bs
http://www.youtube.com/watch?v=N6x2e1Zf_yg
http://vimeo.com/51011081
http://www.youtube.com/watch?v=xszOCj4A1eA
http://Juxi.net/media

Appendix D

Acronyms

AAAI Association for the Advancement of Artificial Intelligence
ADL Activities of Daily Living

Al Artificial Intelligence

ANN Artificial Neural Network

CGP Cartesian Genetic Programming

CGP-IP Cartesian Genetic Programming for Image Processing

CV Computer Vision

DARPA Defense Advanced Research Projects Agency

DOF Degrees of Freedom

EMG Electromyography

GP Genetic Programming

GPGPU General-purpose Computing on Graphics Processing Units
GPGPGPU Genetic Programming On General-purpose Graphics Processing Units
GPL GNU General Public License

GPU Graphics Processing Unit

IDSIA Istituto Dalle Molle di Studi sull’'Intelligenza Artificiale
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IK Inverse Kinematics

MCC Matthews Correlation Coefficient
MoBeE Modular Behavioural Environment
ML Machine Learning

ROIs Regions Of Interest

TRM Task-relevant Road Map

YARP Yet Another Robotics Platform



Bibliography

Agarwal, S. and Roth, D. [2002]. Learning a sparse representation for object
detection, Proceedings of the European Conference on Computer Vision (ECCV),
pp. 113-130.

Akella, S. and Hutchinson, S. [2002]. Coordinating the motions of multiple
robots with specified trajectories, Proceedings of the International Conference
on Robotics and Automation (ICRA), Vol. 1, pp. 624-631.

Aloimonos, J., Weiss, I. and Bandyopadhyay, A. [1988]. Active vision, Interna-
tional Journal of Computer Vision 1(4): 333-356.

Ambrose, R., Wilcox, B., Reed, B., Matthies, L., Lavery, D. and Korsmeyer, D.
[2012]. NASAs Space Technology Roadmaps (STRs): Robotics, tele-robotics,
and autonomous systems roadmap, Technical report, National Aeronautics and
Space Administration (NASA).

URL: http://www.nasa.gov/pdf/501622main_TAQ4-ID_rev6b_NRC_wTASR.
pdf

Ampatzis, C., Izzo, D., Rucinski, M. and Biscani, E [2011]. ALife in the Galapa-
gos: Migration Effects on Neuro-Controller Design, in G. Kampis, I. Karsai and
E. Szathmary (eds), Advances in Artificial Life. Darwin Meets von Neumann, Vol.
5777 of Lecture Notes in Computer Science, Springer, pp. 197-204.

Amzajerdian, E, Pierrottet, D., Petway, L., Hines, G. and Roback, V. [2011]. Lidar
systems for precision navigation and safe landing on planetary bodies, Pro-
ceedings of SPIE 8192, International Symposium on Photoelectronic Detection
and Imaging, International Society for Optics and Photonics, p. 819202.

Argall, B. D., Sauser, E. L. and Billard, A. G. [2010]. Tactile guidance for policy re-
finement and reuse, Proceedings of the International Conference on Development
and Learning (ICDL), pp. 7-12.

179


http://www.nasa.gov/pdf/501622main_TA04-ID_rev6b_NRC_wTASR.pdf
http://www.nasa.gov/pdf/501622main_TA04-ID_rev6b_NRC_wTASR.pdf

180 Bibliography

Asada, M., Hosoda, K., Kuniyoshi, Y., Ishiguro, H., Inui, T., Yoshikawa, Y., Ogino,
M. and Yoshida, C. [2009]. Cognitive developmental robotics: A survey, IEEE
Transactions Autonomous Mental Development 1: 12-34.

Asada, M., MacDorman, K., Ishiguro, H. and Kuniyoshi, Y. [2001]. Cognitive
developmental robotics as a new paradigm for the design of humanoid robots,
Robotics and Autonomous Systems 37(2): 185-193.

Asimov, I. [1942]. Runaround, Astounding Science Fiction 29(1): 94-103.

Baginski, B. [1999]. Motion planning for manipulators with many degrees of free-
dom: the BB-method, Infix.

Bajracharya, M., Maimone, M. and Helmick, D. [2008]. Autonomy for Mars
rovers: Past, present, and future, Computer 41(12): 44-50.

Balch, T. and Arkin, R. C. [1998]. Behavior-based formation control for multi-
robot teams, IEEE Transactions on Robotics and Automation 14(6): 926-939.

Baldassare, G., Mirolli, M., Mannella, E, Caligiore, D., Visalberghi, E., Natale, E,
Truppa, V,, Sabbatini, G., Guglielmelli, E., Keller, E, Campolo, D., Redgrave, P,
Gurney, K., Stafford, T., Triesch, J., Weber, C., Rothkopf, C., Nehmzow, U., Con-
dell, J., Siddique, M., Lee, M., Huelse, M., Schmidhuber, J., Gomez, E, Forster,
A., Togelius, J. and Barto, A. [2009]. The IM-CLeVeR project: Intrinsically mo-
tivated cumulative learning versatile robots, Proceedings of the International
Conference on Epigenetic Robotics: Modeling Cognitive Development in Robotic
Systems.

Bay, H., Tuytelaars, T. and Van Gool, L. [2006]. SURF: Speeded up robust fea-
tures, in A. Leonardis, H. Bischof and A. Pinz (eds), Computer Vision — ECCV
2006, Vol. 3951 of Lecture Notes in Computer Science, Springer, pp. 404-417.

Beetz, M., Klank, U., Kresse, 1., Maldonado, A., Mosenlechner, L., Pangercic, D.,
Riihr, T. and Tenorth, M. [2011]. Robotic roommates making pancakes, IEEE-
RAS International Conference on Humanoid Robots, Bled, Slovenia.

Berenson, D., Srinivasa, S., Ferguson, D. and Kuffner, J. [2009]. Manipulation
planning on constraint manifolds, Proceedings of the International Conference
on Robotics and Automation (ICRA), pp. 625-632.

Berenson, D., Srinivasa, S. and Kuffner, J. [2011]. Task space regions a frame-
work for pose-constrained manipulation planning, The International Journal of
Robotics Research 30(12): 1435-1460.



181 Bibliography

Berthier, N., Clifton, R., Gullapalli, V., McCall, D. and Robin, D. [1996]. Visual in-
formation and object size in the control of reaching, Journal of Motor Behavior
28(3): 187-197.

Billard, A., Bonfiglio, A., Cannata, G., Cosseddu, P, Dahl, T., Dautenhahn, K.,
Mastrogiovanni, E, Metta, G., Natale, L., Robins, B., Seminara, L. and Valle,
M. [2013]. The ROBOSKIN Project: Challenges and Results, in V. Padois,
P Bidaud and O. Khatib (eds), Romansy 19 — Robot Design, Dynamics and Con-
trol, Vol. 544 of CISM International Centre for Mechanical Sciences, Springer
Vienna, pp. 351-358.

Bluethmann, W., Ambrose, R., Diftler, M., Askew, S., Huber, E., Goza, M., Rehn-
mark, E, Lovchik, C. and Magruder, D. [2003]. Robonaut: A robot designed
to work with humans in space, Autonomous Robots 14(2): 179-197.

Bongard, J., Zykov, V. and Lipson, H. [2006]. Resilient machines through contin-
uous self-modeling, Science 314(5802): 1118-1121.

Borenstein, J. and Koren, Y. [1989]. Real-time obstacle avoidance for fast mobile
robots, IEEE Transactions on Systems, Man and Cybernetics 19(5): 1179-1187.

Bouguet, J.-Y. [2014]. Camera Calibration Toolbox for Matlab, http://www.
vision.caltech.edu/bouguetj/calib_doc/. [Online; accessed 24-July-
2014].

Bradski, G. [2000]. The OpenCV Library, Dr. Dobb’s Journal of Software Tools .

Brooks, R. [1991]. Intelligence without representation, Artificial intelligence
47(1): 139-159.

Brooks, R. [1999]. Cambrian intelligence: the early history of the new Al, The MIT
Press.

Brown, E., Rodenberg, N., Amend, J., Mozeika, A., Steltz, E., Zakin, M., Lipson,
H. and Jaeger, H. [2010]. Universal robotic gripper based on the jamming
of granular material, Proceedings of the National Academy of Sciences (PNAS)
107(44): 18809-18814.

Bryson, A. E. [1961]. A gradient method for optimizing multi-stage allocation
processes, Proc. Harvard Univ. Symposium on digital computers and their appli-
cations.


http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/

182 Bibliography

Bryson, A. E. and Ho, Y. C. [1969]. Applied optimal control: optimization, estima-
tion and control, CRC Press.

Burgard, W., Moors, M., Stachniss, C. and Schneider, E [2005]. Coordinated
multi-robot exploration, IEEE Transactions on Robotics 21(3): 376-386.

Caligiore, D., Ferrauto, T., Parisi, D., Accornero, N., Capozza, M. and Baldassarre,
G. [2008]. Using motor babbling and Hebb rules for modeling the develop-
ment of reaching with obstacles and grasping, Proceedings of the International
Conference on Cognitive Systems (CogSys).

Cangelosi, A., Belpaeme, T., Sandini, G., Metta, G., Fadiga, L., Sagerer, G., Rohlf-
ing, K., Wrede, B., Nolfi, S., Parisi, D., Nehaniv, C., Dautenhahn, K., Saunders,
J., Fischer, K., Tani, J. and Roy, D. [2008]. The ITALK project: Integration
and transfer of action and language knowledge in robots, Proceedings of the
International Conference on Human Robot Interaction (HRI).

Carbone, G. [2013]. Grasping in robotics, Vol. 10 of Mechanisms and Machine
Science, Springer.

Castano, A., Fukunaga, A., Biesiadecki, J., Neakrase, L., Whelley, P, Greeley, R.,
Lemmon, M., Castano, R. and Chien, S. [2008]. Automatic detection of dust
devils and clouds on mars, Machine Vision and Applications 19(5): 467-482.

Chaumette, F and Hutchinson, S. [2006]. Visual servo control, Part I: Basic
approaches, IEEE Robotics & Automation Magazine 13(4): 82-90.

Chaumette, E and Hutchinson, S. [2007]. Visual servo control, Part II: Advanced
approaches, IEEE Robotics and Automation Magazine 14(1): 109-118.

Chella, A., Frixione, M. and Gaglio, S. [2008]. A cognitive architecture for robot
self-consciousness, Artificial Intelligence in Medicine 44(2): 147-154.

Cheng, N., Lobovsky, M., Keating, S., Setapen, A., Gero, K., Hosoi, A. and lag-
nemma, K. [2012]. Design and analysis of a robust, low-cost, highly articu-
lated manipulator enabled by jamming of granular media, Proceedings of the
International Conference of Robotics and Automation (ICRA), pp. 4328-4333.

Chu, P C. [2011]. SMART Underwater Robot (SUR) Application & Mining.
Technical Presentation.
URL: http://faculty.nps.edu/pcchu/web_paper/conference/11/wof_
2011_chu. pdf


http://faculty.nps.edu/pcchu/web_paper/conference/11/wof_2011_chu.pdf
http://faculty.nps.edu/pcchu/web_paper/conference/11/wof_2011_chu.pdf

183 Bibliography

Ciliberto, C., Smeraldi, E, Natale, L. and Metta, G. [2011a]. Online multiple
instance learning applied to hand detection in a humanoid robot, Proceedings
of the International Conference on Intelligent Robots and Systems (IROS).

Ciliberto, C., Smeraldi, E, Natale, L. and Metta, G. [2011b]. Online multiple
instance learning applied to hand detection in a humanoid robot, Proceed-
ings of the International Conference on Intelligent Robots and Systems (IROS),
pp- 1526-1532.

Cipolla, R., Battiato, S. and Farinella, G. M. [2010]. Computer Vision: Detection,
Recognition and Reconstruction, Vol. 285, Springer.

Cipriani, C., Controzzi, M. and Carrozza, M. C. [2011]. The smarthand transra-
dial prosthesis, Journal of Neuroengineering and Rehabilitation 8(1): 29.

Ciresan, D. C., Meier, U., Masci, J., Maria Gambardella, L. and Schmidhuber,
J. [2011]. Flexible, high performance convolutional neural networks for im-
age classification, Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI) 22(1): 1237.

Cliff, D., Husbands, P and Harvey, 1. [1993]. Explorations in evolutionary
robotics, Adaptive Behavior 2(1): 73-110.

Corke, P [2011]. Robotics, Vision and Control, Vol. 73 of Springer Tracts in Ad-
vanced Robotics, Springer.

Cramer, N. L. [1985]. A representation for the adaptive generation of simple se-
quential programs, Proceedings of the First International Conference on Genetic
Algorithms, pp. 183-187.

Cutler, R. and Turk, M. [1998]. View-based interpretation of real-time optical
flow for gesture recognition, Proceedings of the International Conference on Au-
tomatic Face and Gesture Recognition, pp. 416-421.

Dachwald, B. [2004]. Optimization of interplanetary solar sailcraft trajectories
using evolutionary neurocontrol, Journal of Guidance, Control, and Dynamics
27(1): 66-72.

Dautenhahn, K. and Saunders, J. [2011]. New Frontiers in Human-Robot Interac-
tion, John Benjamins Publishing Company.



184 Bibliography

Davison, A. J. and Murray, D. W. [2002]. Simultaneous localization and map-
building using active vision, IEEE Transactions on Pattern Analysis and Machine
Intelligence 24(7): 865-880.

Davison, A. J., Reid, I. D., Molton, N. D. and Stasse, O. [2007]. MonoSLAM.:
Real-time single camera SLAM, Pattern Analysis and Machine Intelligence, IEEE
Transactions on 29(6): 1052-1067.

De Santis, A., Albu-Schaffer, A., Ott, C., Siciliano, B. and Hirzinger, G. [2007].
The skeleton algorithm for self-collision avoidance of a humanoid manipulator,
Proceedings of the IEEE /ASME International Conferenced on Advanced Intelligent
Mechatronics.

Denavit, J. and Hartenberg, R. [1955]. A kinematic notation for lower-pair mech-
anisms based on matrices., Transactions of the ASME. Journal of Applied Me-
chanics 22: 215-221.

DeSouza, G. N. and Kak, A. C. [2002]. Vision for mobile robot navigation: A sur-
vey, Pattern Analysis and Machine Intelligence, IEEE Transactions on 24(2): 237-
267.

Devol, J. [1961]. Programmed article transfer. US Patent 2,988,237.
URL: http://www.google.com/patents/US2988237

Dickinson, S. J., Stevenson, S., Amdur, E., Tsotsos, J. K. and Olsson, L. [1993]. In-
tegrating task-directed planning with reactive object recognition, Optical Tools
for Manufacturing and Advanced Automation, International Society for Optics
and Photonics, pp. 212-224.

Dickmanns, D., Schmidhuber, J. and Winklhofer, A. [1987]. Der genetische Al-
gorithmus: Eine Implementierung in Prolog. Seminararbeit/Technical Report.

Dickmanns, E. D. [1997]. Vehicles capable of dynamic vision, Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAID), pp. 1577-1592.

Dietrich, A., Wimbock, T., Taubig, H., Albu-Schaffer, A. and Hirzinger, G. [2011].
Extensions to reactive self-collision avoidance for torque and position con-

trolled humanoids, Proceedings of the International Conference on Robotics and
Automation (ICRA), pp. 3455-3462.

Diftler, M., Mehling, J., Abdallah, M., Radford, N., Bridgwater, L., Sanders, A.,
Askew, R., Linn, D., Yamokoski, J., Permenter, E, Hargrave, B., Piatt, R., Savely,


http://www.google.com/patents/US2988237

185 Bibliography

R. and Ambrose, R. [2011]. Robonaut 2 - the first humanoid robot in space,
Proceedings of the International Conference on Robotics and Automation (ICRA).

Doncieux, S., Mouret, J., Bredeche, N. and Padois, V. [2011]. Evolutionary
robotics: Exploring new horizons, New Horizons in Evolutionary Robotics pp. 3—
25.

Dreyfus, S. [1962]. The numerical solution of variational problems, Journal of
Mathematical Analysis and Applications 5(1): 30-45.

Duda, R. O. and Hart, P E. [1972]. Use of the hough transformation to detect
lines and curves in pictures, Communications of the ACM 15(1): 11-15.

Edsinger, A. and Kemp, C. [2006]. Manipulation in human environments, Pro-
ceedings of the International Conference on Humanoid Robots, pp. 102-109.

Ehara, Y., Fujimoto, H., Miyazaki, S., Tanaka, S. and Yamamoto, S. [1995]. Com-
parison of the performance of 3d camera systems, Gait & Posture 3(3): 166—
169.

Fanello, S. R., Ciliberto, C., Natale, L. and Metta, G. [2013]. Weakly supervised
strategies for natural object recognition in robotics, Proceedings of the Interna-
tional. Conference on Robotics and Automation (ICRA).

Fausett, L. [1994]. Fundamentals of neural networks: architectures, algorithms,
and applications, Prentice-Hall.

Fofi, D., Sliwa, T. and Voisin, Y. [2004]. A comparative survey on invisible struc-
tured light, Proc. SPIE 5303: 90-98.

Fogel, L. J., Owens, A. J. and Walsh, M. J. [1966]. Artificial intelligence through
simulated evolution, John Wiley & Sons.

Forlizzi, J. and DiSalvo, C. [2006]. Service robots in the domestic environment:
a study of the roomba vacuum in the home, ACM SIGCHI /SIGART Conference
on Human-Robot-Interaction, pp. 258-265.

Forssberg, H., Eliasson, A., Kinoshita, H., Johansson, R. and Westling, G. [1991].
Development of human precision grip i: basic coordination of force, Experi-
mental Brain Research 85(2): 451-457.

Forsyth, D. and Fleck, M. [1997]. Finding people and animals by guided as-
sembly, Proceedings of the International Conference on Image Processing, Vol. 3,

pp- 5-8.



186 Bibliography

Frank, M. [2014]. Learning To Reach and Reaching To Learn: A Unified Approach to
Path Planning and Reactive Control through Reinforcement Learning, PhD thesis,
Universita della Svizzera Italiana, Lugano.

Frank, M., Forster, A. and Schmidhuber, J. [2012]. Reflexive Collision Response
with Virtual Skin - Roadmap Planning Meets Reinforcement Learning, Pro-

ceedings of the International Conference on Agents and Artificial Intelligence
(ICAART).

Frank, M., Leitner, J., Stollenga, M., Foster, A. and Schmidhuber, J. [2014]. Cu-
riosity driven reinforcement learning for motion planning on humanoids, Fron-
tiers in Neurorobotics 7(25).

Frey, C. B. and Osborne, M. A. [2013]. The Future of Employment: How suscep-
tible are jobs to computerisation?
URL: http://www.oxfordmartin.ox.ac.uk/publications/view/1314

Galvani, L. [1791]. De viribus electricitatis in motu musculari: Commentarius,
Bologna: Tip. Istituto delle Scienze. translated by R. Montraville Green, 1953.
URL: http://www. liberliber.it/mediateca/libri/r/redi/esperienze_
intorno_a_diverse_cose_naturali_etc/pdf/esperi_p.pdf

Gatsoulis, Y., Burbridge, C. and McGinnity, T. M. [2011]. Online unsupervised cu-
mulative learning for life-long robot operation, Proceedings of the International
Conference on Robotics and Biomimetics (ROBIO).

GeRT [2012]. EU Project Consortium: Generalizing Robot Manipulation Tasks,
http://www.gert-project.eu/project/the-vision/.

Gharbi, M., Cortés, J. and Siméon, T. [2009]. Roadmap composition for multi-
arm systems path planning, Proceedings of the International Conference on In-
telligent Robots and Systems (IROS), IEEE, pp. 2471-2476.

Gill, M. and Zomaya, A. [1998]. Obstacle Avoidance in Multi-Robot Systems: Ex-
periments in Parallel Genetic Algorithms, Vol. 20, World Scientific Pub Co Inc.

Glasmachers, T., Schaul, T, Yi, S., Wierstra, D. and Schmidhuber, J. [2010]. Expo-
nential natural evolution strategies, Proceedings of the International Conference
on Genetic and Evolutionary Computation (GECCO), ACM, pp. 393-400.

Gloye, A., Wiesel, E, Tenchio, O. and Simon, M. [2005]. Reinforcing the Driving
Quality of Soccer Playing Robots by Anticipation, IT - Information Technology
47(5).


http://www.oxfordmartin.ox.ac.uk/publications/view/1314
http://www.liberliber.it/mediateca/libri/r/redi/esperienze_intorno_a_diverse_cose_naturali_etc/pdf/esperi_p.pdf
http://www.liberliber.it/mediateca/libri/r/redi/esperienze_intorno_a_diverse_cose_naturali_etc/pdf/esperi_p.pdf
http://www.gert-project.eu/project/the-vision/

187 Bibliography

Gonzalez-Aguirre, D., Hoch, J., Rohl, S., Asfour, T., Bayro-Corrochano, E. and
Dillmann, R. [2011]. Towards shape-based visual object categorization for
humanoid robots, Proceedings of the International Conference on Robotics and
Automation (ICRA), pp. 5226-5232.

Gonzalez, R. C. and Woods, R. E. [2006]. Digital Image Processing, 3rd edn,
Prentice-Hall.

Gori, L., Fanello, S., Odone, E and Metta, G. [2013]. A compositional approach
for 3d arm-hand action recognition, Proceedings of the IEEE Workshop on Robot
Vision (WoRV).

Gupta, K. [1986]. Kinematic analysis of manipulators using the zero reference
position description, The International Journal of Robotics Research 5(2): 5.

Hager, G., Chang, W.-C. and Morse, A. [1995]. Robot hand-eye coordination
based on stereo vision, IEEE Control Systems 15(1): 30-39.

Halatci, I., Jagnemma, K. et al. [2008]. A study of visual and tactile terrain
classification and classifier fusion for planetary exploration rovers, Robotica
26(6): 767-779.

Handley, S. [1993]. Automatic learning of a detector for alpha-helices in pro-
tein sequences via genetic programming, in S. Forrest (ed.), Proceedings of
the International Conference on Genetic Algorithms (ICGA), Morgan Kaufmann,
University of Illinois at Urbana-Champaign, pp. 271-278.

Harding, S. [2008]. Evolution of image filters on graphics processor units using
cartesian genetic programming, in J. Wang (ed.), Proceedings of the IEEE World
Congress on Computational Intelligence (WCCI), Hong Kong, pp. 1921-1928.

Harding, S. and Banzhaf, W. [2008]. Genetic programming on GPUs for im-
age processing, International Journal of High Performance Systems Architecture
1(4): 231-240.

Harding, S., Banzhaf, W. and Miller, J. E [2010a]. A survey of self modifying
cartesian genetic programming, in R. Riolo, T. McConaghy and E. Vladislavleva
(eds), Genetic Programming Theory and Practice VIII, Vol. 8, Springer, pp. 91—
107.

Harding, S., Graziano, V, Leitner, J. and Schmidhuber, J. [2012]. Mt-cgp: Mixed
type cartesian genetic programming, Proceedings of the Genetic and Evolution-
ary Computation Conference (GECCO).



188 Bibliography

Harding, S. L. and Banzhaf, W. [2009]. Distributed genetic programming on GPUs
using CUDA, in 1. Hidalgo, FE Fernandez and J. Lanchares (eds), Workshop on
Parallel Architectures and Bioinspired Algorithms, Raleigh, NC, pp. 1-10.

Harding, S. L. and Banzhaf, W. [2011]. Hardware acceleration for cgp: Graphics
processing units, in J. E Miller (ed.), Cartesian Genetic Programming, Natural
Computing Series, Springer Berlin Heidelberg, pp. 231-253.

Harding, S., Miller, J. E and Banzhaf, W. [2010b]. Developments in cartesian
genetic programming: self-modifying CGP, Genetic Programming and Evolvable
Machines 11(3/4): 397-439. Tenth Anniversary Issue: Progress in Genetic
Programming and Evolvable Machines.

Hardyck, C. D., Petrinovich, L. E and Ellsworth, D. W. [1966]. Feedback
of speech muscle activity during silent reading: Rapid extinction, Science
154(3755): 1467-1468.

Hart, P E., Nilsson, N. J. and Raphael, B. [1968]. A formal basis for the heuristic
determination of minimum cost paths, Systems Science and Cybernetics, IEEE
Transactions on 4(2): 100-107.

Hart, S., Ou, S., Sweeney, J. and Grupen, R. [2006]. A framework for learn-
ing declarative structure, Proceedings of the RSS Workshop: Manipulation in
Human Environments.

Hartley, R. and Zisserman, A. [2000]. Multiple view geometry in computer vision,
2nd edn, Cambridge University Press.

Harvey, 1., Husbands, P, Cliff, D., Thompson, A. and Jakobi, N. [1997]. Evo-
lutionary robotics: the Sussex approach, Robotics and Autonomous Systems
20(2): 205-224.

Hebert, P, Burdick, J., Howard, T., Hudson, N. and Ma, J. [2012]. Action infer-
ence: The next best touch, Proceedings of the RSS Workshop: Mobile Manipu-
lation.

Himmelsbach, M., Miiller, A., Liittel, T. and Wiinsche, H.-J. [2008]. LIDAR-based
3D object perception, Proceedings of the International Workshop on Cognition
for Technical Systems.

Hoffmann, H., Schenck, W. and Moller, R. [2005]. Learning visuomotor trans-
formations for gaze-control and grasping, Biological Cybernetics 93: 119-130.



189 Bibliography

Holland, J. H. [1975]. Adaptation in natural and artificial systems: An introduc-
tory analysis with applications to biology, control, and artificial intelligence., U
Michigan Press.

Holland, O. and Knight, R. [2006]. The anthropomimetic principle, AISB Sym-
posium on Biologically Inspired Robotics.

Homer and Fagles, R. [1990]. The Iliad, Penguin Classics, Viking.
URL: http: //books.google.ch /books?id=TpSM2PG4JfYC

Horn, B. [1986]. Robot Vision, MIT Press.
Hornberg, A. [2007]. Handbook of machine vision, Wiley.

Hudson, N., Howard, T., Ma, J., Jain, A., Bajracharya, M., Myint, S., Kuo, C.,
Matthies, L., Backes, P, Hebert, P, Fuchs, T. and Burdick, J. [2012]. End-to-end
dexterous manipulation with deliberate interactive estimation, Proceedings of
the International Conference on Robotics and Automation (ICRA).

Hulse, M., McBrid, S. and Lee, M. [2009]. Robotic hand-eye coordination without
global reference: A biologically inspired learning scheme, Proceedings of the
International Conference on Developmental Robotics.

Hiilse, M., McBride, S., Law, J. and Lee, M. [2010]. Integration of active vision
and reaching from a developmental robotics perspective, IEEE Transactions on
Autonomous Mental Development 2(4): 355-367.

Huntress, W., Moroz, V. and Shevalev, I. [2003]. Lunar and planetary robotic
exploration missions in the 20th century, Space science reviews 107(3): 541-
649.

Hutchinson, S., Hager, G. D. and Corke, P 1. [1996]. A tutorial on visual servo
control, IEEE Transactions on Robotics and Automation 12(5): 651-670.

Isard, M. and Blake, A. [1998]. Condensation—conditional density propagation
for visual tracking, International Journal of Computer Vision 29(1): 5-28.

Itti, L., Koch, C. and Niebur, E. [1998]. A model of saliency-based visual attention
for rapid scene analysis, IEEE Transactions on Pattern Analysis and Machine
Intelligence 20(11): 1254-1259.

Jarrett, K., Kavukcuoglu, K., Ranzato, M. and LeCun, Y. [2009]. What is the
best multi-stage architecture for object recognition?, Proceedings of the Inter-
national Conference on Computer Vision (ICCV), pp. 2146-2153.



190 Bibliography

Jeannerod, M. [1997]. The cognitive neuroscience of action., Blackwell Publishing.

Johnson, M. H. and Munakata, Y. [2005]. Processes of change in brain and
cognitive development, Trends in cognitive sciences 9(3): 152-158.

Jones, J. P and Palmer, L. A. [1987]. An evaluation of the two-dimensional gabor
filter model of simple receptive fields in cat striate cortex, Journal of Neurophys-
iology 58: 1233—1258.

Karlsson, N., Di Bernardo, E., Ostrowski, J., Goncalves, L., Pirjanian, P and Mu-
nich, M. [2005]. The vSLAM Algorithm for Robust Localization and Mapping,
Proceedings of the International Conference on Robotics and Automation (ICRA).

Kaufmann, G. [2010]. A flexible and safe environment for robotic experiments :
a sandbox and testbed for experiments intended for the humanoid robot iCub,
Master’s thesis, Universita della Svizzera italiana (USI).

Kelley, H. J. [1960]. Gradient theory of optimal flight paths, ARS Journal
30(10): 947-954.

Kemp, C., Edsinger, A. and Torres-Jara, E. [2007]. Challenges for robot manipu-
lation in human environments [ grand challenges of robotics], IEEE Robotics &
Automation Magazine 14(1): 20-29.

Khatib, O. [1986]. Real-time obstacle avoidance for manipulators and mobile
robots, The International Journal of Robotics Research 5(1): 90.

Kim, H., Murphy-Chutorian, E. and Triesch, J. [2006]. Semi-autonomous learn-
ing of objects, Proceedings of the Computer Vision and Pattern Recognition Work-
shop (CVPRW).

Kirstein, S., Wersing, H. and Korner, E. [2008]. A biologically motivated visual
memory architecture for online learning of objects, Neural Networks 21(1): 65—
77.

Koga, Y. and Latombe, J. [1994]. On multi-arm manipulation planning, Pro-
ceedings of International Conference on Robotics and Automation (ICRA), IEEE,
pp. 945-952.

Kolsch, M. and Turk, M. [2004]. Robust hand detection, Proceedings of the Inter-
national Conference on Automatic Face and Gesture Recognition, p. 614.



191 Bibliography

Konidaris, G. [2013]. Designing Intelligent Robots: Reintegrating AI II.
URL: http: //people.csail. mit.edu /gdk /dir2 /

Kormusheyv, B, Calinon, S. and Caldwell, D. G. [2013]. Reinforcement learning
in robotics: Applications and real-world challenges, Robotics 2(3): 122-148.

Koza, J. R. [1992]. Genetic Programming: On the Programming of Computers by
Means of Natural Selection, MIT Press, Cambridge, MA.

Kragic, D. and Vincze, M. [2009]. Vision for robotics, Foundations and Trends in
Robotics 1(1): 1-78.

Kuffner Jr, J. J. and LaValle, S. M. [2000]. RRT-connect: An efficient approach
to single-query path planning, Proceedings of the International Conference on
Robotics and Automation (ICRA), IEEE, pp. 995-1001.

Kuipers, B., Beeson, P, Modayil, J. and Provost, J. [2006]. Bootstrap learning of
foundational representations, Connection Science 18(2): 145-158.

Kuperstein, M. and Rubenstein, J. [1989]. Implementation of an adaptive neu-
ral controller for sensory-motor coordination, IEEE Control Systems Magazine
9(3): 25-30.

Kusuda, Y. [2008]. Toyota’s violin-playing robot, Industrial Robot: An Interna-
tional Journal 35(6): 504-506.

Langdon, W. B. and Nordin, P [2001]. Evolving Hand-Eye Coordination for a
Humanoid Robot with Machine Code Genetic Programming, Proceedings of the
European Conference on Genetic Programming (EuroGP).

LaValle, S. [2006]. Planning algorithms, Cambridge University Press.

Leitner, J. [2009]. Multi-robot formations for area coverage in space applications,
Master’s thesis, Luled tekniska universitet, Sweden.

Leitner, J., Ampatzis, C. and Izzo, D. [2010]. Evolving ANNs for spacecraft ren-
dezvous and docking, Proceedings of the International Symposium on Artificial
Intelligence, Robotics and Automation in Space (i-SAIRAS).

Leitner, J., Bernardino, A. and Santos-Victor, J. [2008]. A benchmark on stereo
disparity estimation for humanoid robots, Proceedings of the International Con-
ference on Autonomous Robot Systems and Competitions (Robotica).



192 Bibliography

Leitner, J., Chandrashekhariah, B, Harding, S., Frank, M., Spina, G., Forster, A.,
Triesch, J. and Schmidhuber, J. [2012a]. Autonomous learning of robust visual
object detection and identification on a humanoid, Proceedings of the Interna-
tional Conference on Development and Learning and Epigenetic Robotics (ICDL).

Leitner, J., Harding, S., Chandrashekhariah, P, Frank, M., A. Forster, A., Triesch,
J. and Schmidhuber, J. [2013a]. Learning visual object detection and localiza-
tion using icVision, Biologically Inspired Cognitive Architectures 5: 29 — 41.

Leitner, J., Harding, S., Forster, A. and Schmidhuber, J. [2012b]. Mars terrain
image classification using cartesian genetic programming, Proceedings of the
International Symposium on Artificial Intelligence, Robotics and Automation in
Space (i-SAIRAS).

Leitner, J., Harding, S., Frank, M., Forster, A. and Schmidhuber, J. [2012c]. icVi-
sion: A Modular Vision System for Cognitive Robotics Research, Proceedings of
the International Conference on Cognitive Systems (CogSys).

Leitner, J., Harding, S., Frank, M., Forster, A. and Schmidhuber, J. [2012d].
Learning spatial object localization from vision on a humanoid robot, Inter-
national Journal of Advanced Robotic Systems (ARS) 9.

Leitner, J., Harding, S., Frank, M., Forster, A. and Schmidhuber, J. [2012¢]. To-
wards spatial perception: Learning to locate objects from vision, in J. Szuf-
narowska (ed.), Proceedings of the Post-Graduate Conference on Robotics and
Development of Cognition, pp. 20-23.

Leitner, J., Harding, S., Frank, M., Forster, A. and Schmidhuber, J. [2012f]. Trans-
ferring spatial perception between robots operating in a shared workspace,

Proceedings of the International Conference on Intelligent Robots and Systems
(IROS).

Leitner, J., Harding, S., Frank, M., Forster, A. and Schmidhuber, J. [2013b]. An
Integrated, Modular Framework for Computer Vision and Cognitive Robotics
Research (icVision), in A. Chella, R. Pirrone, R. Sorbello and K. Jéhannsdottir
(eds), Biologically Inspired Cognitive Architectures 2012, Vol. 196 of Advances in
Intelligent Systems and Computing, Springer Berlin Heidelberg, pp. 205-210.

Leitner, J., Harding, S., Frank, M., Forster, A. and Schmidhuber, J. [2013c]. Hu-
manoid learns to detect its own hands, Proceedings of the IEEE Conference on
Evolutionary Computation (CEC), pp. 1411-1418.



193 Bibliography

Levinson, S., Silver, A. and Wendt, L. [2010]. Vision based balancing tasks for
the icub platform: A case study for learning external dynamics, Workshop on
Open Source Robotics: iCub & Friends. International Conference on Humanoid
Robotics.

Li, T. and Shie, Y. [2007]. An incremental learning approach to motion planning
with roadmap management, Journal of Information Science and Engineering
23(2): 525-538.

Lima, P, Nardi, D., Kraetzschmar, G., Berghofer, J., Matteucci, M. and Buchanan,
G. [2014]. Rockin innovation through robot competitions [competitions],
Robotics & Automation Magagzine, IEEE 21(2): 8-12.

Linnainmaa, S. [1970]. The representation of the cumulative rounding error of
an algorithm as a Taylor expansion of the local rounding errors, Master’s thesis,
Univ. Helsinki.

Lowe, D. [1999]. Object Recognition from Local Scale-Invariant Features, Pro-
ceedings of the International Conference on Computer Vision (ICCV).

Lozano-Pérez, T. and Wesley, M. A. [1979]. An algorithm for planning
collision-free paths among polyhedral obstacles, Communications of the ACM
22(10): 560-570.

Lungarella, M., Metta, G., Pfeifer, R. and Sandini, G. [2003]. Developmental
robotics: a survey, Connection Science 15(4): 151-190.

Maitin-Shepard, J., Cusumano-Towner, M., Lei, J. and Abbeel, P [2010]. Cloth
grasp point detection based on multiple-view geometric cues with application

to robotic towel folding, Proceedings of the International Conference on Robotics
and Automation (ICRA), pp. 2308-2315.

Maltarollo, V. G., Hondrio, K. M. and da Silva, A. B. E [2013]. Applications of
artificial neural networks in chemical problems, in K. Suzuki (ed.), Artificial
Neural Networks — Architectures and Applications, InTech.

Marey, E.-J. [1890]. "des appareils enregistreurs de la vitesse", La Nature 878.
Marr, D. [1982]. Vision: A Computational Approach, Freeman & Co.

Martinek, T. and Sekanina, L. [2005]. An evolvable image filter: Experimental
evaluation of a complete hardware implementation in fpga., in J. M. Moreno,
J. Madrenas and J. Cosp (eds), ICES, Vol. 3637 of Lecture Notes in Computer
Science, Springer, pp. 76-85.



194 Bibliography

Masci, J., Giusti, A., Ciresan, D., Fricout, G. and Schmidhuber, J. [2013]. A
fast learning algorithm for image segmentation with max-pooling convolu-
tional networks, Proceedings of the International Conference on Image Processing
(ICIP).

Matthews, B. W. [1975]. Comparison of the predicted and observed secondary
structure of T4 phage lysozyme., Biochimica et Biophysica Acta 405(2): 442—
451.

McCarty, M., Clifton, R., Ashmead, D., Lee, P and Goubet, N. [2001]. How infants
use vision for grasping objects, Child development 72(4): 973-987.

McGill, S. G., Zhang, Y., Vadakedathu, L., Sreekumar, A., Yi, S.-J. and Lee, D. D.
[2012]. Comparison of obstacle avoidance behaviors for a humanoid robot in
real and simulated environments, Proceedings of the Workshop on Humanoid
Soccer Robots at the International Conference on Humanoid Robots.

Meeden, L. and Blank, D. [2006]. Introduction to developmental robotics, Con-
nection Science 18(2): 93-96.

Meltzoff, A. [1988]. Infant imitation after a 1-week delay: Long-term memory
for novel acts and multiple stimuli., Developmental Psychology 24(4): 470.

Merletti, R. and Parker, P A. [2004]. Electromyography: physiology, engineering,
and non-invasive applications, Vol. 11, John Wiley & Sons.

Metta, G. and Fitzpatrick, P [2003]. Better vision through manipulation, Adaptive
Behavior 11(2): 109-128.

Metta, G., Fitzpatrick, P and Natale, L. [2006]. YARP: Yet Another Robot Plat-
form, International Journal of Advanced Robotics Systems, Special Issue on Soft-
ware Development and Integration in Robotics 3(1).

Metta, G., Natale, L., Nori, E, Sandini, G., Vernon, D., Fadiga, L., von Hofsten,
C., Rosander, K., Lopes, M., Santos-Victor, J., Bernardino, A. and Montesano,
L. [2010]. The iCub humanoid robot: An open-systems platform for research
in cognitive development, Neural Networks 23(8-9): 1125-1134.

Metta, G., Sandini, G., Vernon, D., Natale, L. and Nori, E [2008]. The icub hu-
manoid robot: an open platform for research in embodied cognition, Proceed-
ings of the Workshop on Performance Metrics for Intelligent Systems, pp. 50-56.



195 Bibliography

Mikolajczyk, K. and Schmid, C. [2003]. A performance evaluation of local de-
scriptors, Proceedings of the Conference on Computer Vision and Pattern Recog-
nition (CVPR).

Miller, J. [1999]. An empirical study of the efficiency of learning boolean func-
tions using a cartesian genetic programming approach, Proceedings of the Ge-
netic and Evolutionary Computation Conference (GECCO), pp. 1135-1142.

Miller, J. E (ed.) [2011]. Cartesian Genetic Programming, Natural Computing
Series, Springer.

Miller, J. E and Smith, S. L. [2006]. Redundancy and computational efficiency
in cartesian genetic programming, IEEE Transactions on Evoluationary Compu-
tation, Vol. 10, pp. 167-174.

Miller, J. E and Thomson, P [2000]. Cartesian genetic programming, Proceedings
of the European Conference on Genetic Programming (EuroGP), pp. 121-132.

Miller, J. E, Thomson, P and Fogarty, T. [1998]. Designing electronic cir-
cuits using evolutionary algorithms. arithmetic circuits: A case study, in
D. Quagliarella, J. Périaux, P C. and G. Winter (eds), Genetic algorithms and
evolution strategies in engineering and computer science, John Wiley & Sons.

Mishkin, A., Morrison, J., Nguyen, T., Stone, H., Cooper, B. and Wilcox, B.
[1998]. Experiences with operations and autonomy of the Mars pathfinder
Microrover, Proceedings of the Aerospace Conference, pp. 337-351.

Moors, M., Rohling, T. and Schulz, D. [2005]. A probabilistic approach to coor-
dinated multi-robot indoor surveillance, Proceedings of the International Con-
ference on Intelligent Robots and Systems (IROS), IEEE, pp. 3447-3452.

Morton, O. [2014]. Immigrants from the future, The Economist Special Report:
Robots .

Nagi, J., Ducatelle, E, Caro, G. A. D., Ciresan, D., Meier, U., Giusti, A., Nagi, E,
Schmidhuber, J. and Gambardella, L. M. [2011]. Max-pooling convolutional
neural networks for vision-based hand gesture recognition, Proceedings of the
International Conference on Signal and Image Processing Applications, pp. 342—

347.

Natale, L., Nori, E, Metta, G., Fumagalli, M., Ivaldi, S., Pattacini, U., Randazzo,
M., Schmitz, A. and Sandini, G. [2013]. The iCub platform: A tool for studying



196 Bibliography

intrinsically motivated learning, in G. Baldassarre and M. Mirolli (eds), Intrin-
sically Motivated Learning in Natural and Artificial Systems, Springer, pp. 433—
458.

Natale, L., Nori, E, Sandini, G. and Metta, G. [2007]. Learning precise 3d reach-
ing in a humanoid robot, Proceedings of the International Conference on Devel-
opment and Learning (ICDL), pp. 324-329.

Nelson, G., Saunders, A., Neville, N., Swilling, B., Bondaryk, J., Billings, D.,
Lee, C., Playter, R. and Raibert, M. [2012]. Petman: A humanoid robot for
testing chemical protective clothing, Journal of the Robotics Society of Japan
30(4): 372-377.

Neuronics AG [2008]. Katana user manual and technical description.

Nilsson, N. [1969]. A mobile automaton: An application of artificial intelligence
techniques, Proceedings of the International Joint Conference on Artificial Intel-
ligence (IJCAD).

Nilsson, N. [1984]. Shakey the robot, Technical report, DTIC Document.

Nolfi, S. and Floreano, D. [2000]. Evolutionary robotics: The biology, intelligence,
and technology of self-organizing machines, The MIT Press.

Nolfi, S., Floreano, D., Miglino, O. and Mondada, E [1994]. How to evolve
autonomous robots: Different approaches in evolutionary robotics, Artificial
Life IV, MIT Press, pp. 190-197.

Nori, E, Natale, L., Sandini, G. and Metta, G. [2007]. Autonomous learning of
3d reaching in a humanoid robot, Proceedings of the International Conference
on Intelligent Robots and Systems (IROS), pp. 1142-1147.

Oikonomidis, I., Kyriazis, N. and Argyros, A. [2011]. Efficient model-based 3D
tracking of hand articulations using Kinect, Proceedings of the British Machine
Vision Conference.

Oltean, M. [2005]. Evolving evolutionary algorithms using linear genetic pro-
gramming, Evolutionary Computation 13(3): 387-410.

ott, C., Eiberger, O., Englsberger, J., Roa, M. A. and Albu-Schiffer, A. [2012].
Hardware and control concept for an experimental bipedal robot with joint
torque sensors, Journal of the Robotics Society of Japan 30(4): 378-382.



197 Bibliography

Ott, C., Eiberger, O., Friedl, W,, Bauml, B., Hillenbrand, U., Borst, C., Albu-
Schaffer, A., Brunner, B., Hirschmuller, H., Kielhofer, S. et al. [2006]. A hu-
manoid two-arm system for dexterous manipulation, Proceedings of the IEEE-
RAS International Conference on Humanoid Robots, pp. 276-283.

Oztop, E., Bradley, N. and Arbib, M. [2004]. Infant grasp learning: a computa-
tional model, Experimental Brain Research 158(4): 480-503.

Pal, N. R. and Pal, S. K. [1993]. A review on image segmentation techniques,
Pattern recognition 26(9): 1277-1294.

Panin, G., Ladikos, A. and Knoll, A. [2006]. An efficient and robust real-time con-
tour tracking system, Proceedings of the International Conference on Computer
Vision Systems.

Pathak, S., Pulina, L., Metta, G. and Tacchella, A. [2013]. Ensuring safety of poli-
cies learned by reinforcement: Reaching objects in the presence of obstacles
with the icub, Proceedings of the International Conference on Intelligent Robots
and Systems (IROS).

Pattacini, U. [2011]. Modular Cartesian Controllers for Humanoid Robots: Design
and Implementation on the iCub, PhD thesis, Italian Institute of Technology,
Genova.

Peters, J. and Schaal, S. [2008]. Learning to control in operational space, The
International Journal of Robotics Research 27(2): 197.

Peters, J., Vijayakumar, S. and Schaal, S. [2003]. Reinforcement learning for
humanoid robotics, Proceedings of the International Conference on Humanoid
Robots.

Pfeifer, R., Bongard, J. and Grand, S. [2007]. How the body shapes the way we
think: a new view of intelligence, The MIT Press.

Piatt, R., Burridge, R., Diftler, M., Graf, J., Goza, M., Huber, E. and Brock, O.
[2006]. Humanoid mobile manipulation using controller refinement, Proceed-
ings of the RSS Workshop: Manipulation in Human Environments, pp. 94-101.

Plumert, J. and Spencer, J. [2007]. The emerging spatial mind, Oxford University
Press.

Poli, R. [1996]. Genetic programming for image analysis, Technical Report CSRP-
96-1, University of Birmingham, UK.



198 Bibliography

Pollen, D. A. and Ronner, S. E [1981]. Phase relationship between adjacent
simple cells in the visual cortex, Science 212: 1409-1411.

Porges, O., Hertkorn, K., Brucker, M. and Roa, M. A. [2012]. Robotic hand pose
estimation using vision, Poster Session at the IEEE RAS Summer School on
“Robot Vision and Applications”.

Posner, M. [1989]. Foundations of cognitive science, The MIT Press.

Reaz, M. B. 1., Hussain, M. S. and Mohd-Yasin, E [2006]. Techniques of emg sig-
nal analysis: detection, processing, classification and applications, Biological
Procedures Online 8.

Rechenberg, I. [1965]. Cybernetic solution path of an experimental problem.

Redi, F [1686]. Esperienze intorno a diverse cose naturali e particolarmente a
quelle che ci sono partat dalle Indie. taken from J. R. Cram, M. D. Durie. The
Basics of Surface Electromyography.

Rizzolatti, G. and Craighero, L. [2004]. The mirror-neuron system, Annual Re-
view of Neuroscience 27: 169-192.

Rosenblatt, E [1961]. Principles of neurodynamics. perceptrons and the theory of
brain mechanisms, Technical report, Cornell Aeronautical Lab. DTIC Document
No. VG-1196-G-8.

Rosheim, M. E. [2006]. Leonardo’s lost robots, Springer.

Rosten, E. and Drummond, T. [2006]. Machine learning for high-speed corner
detection, Computer Vision—-ECCV 2006, Springer, pp. 430-443.

Rosten, E., Porter, R. and Drummond, T. [2010]. Faster and better: A machine
learning approach to corner detection, IEEE Transactions on Pattern Analysis
and Machine Intelligence 32(1): 105-119.

Rublee, E., Rabaud, V,, Konolige, K. and Bradski, G. [2011]. Orb: An efficient al-
ternative to sift or surf, Proceedings of the International Conference on Computer
Vision (ICCV), pp. 2564-2571.

Russell, S. J. and Norvig, P [2010]. Artificial Intelligence: A Modern Approach,
3rd edn, Prentice Hall.



199 Bibliography

Sadikov, A., Mozina, M., Guid, M., Krivec, J. and Bratko, I. [2007]. Automated
chess tutor, in H. Herik, P Ciancarini and H. Donkers (eds), Computers and
Games, Vol. 4630 of Lecture Notes in Computer Science, Springer Berlin Heidel-
berg, pp. 13-25.

Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N. and Fujimura,
K. [2002]. The intelligent ASIMO: System overview and integration, Proceed-
ings of the International Conference on Intelligent Robots and Systems (IROS).

Sauser, E. and Billard, A. [2005]. View sensitive cells as a neural basis for the
representation of others in a self-centered frame of reference, International
Symposium on Imitation in Animals and Artifacts.

Saut, J.-P, Ivaldi, S., Sahbani, A. and Bidaud, P [2014]. Grasping objects local-
ized from uncertain point cloud data, Robotics and Autonomous Systems . in
press - available online.

Saxena, A., Driemeyer, J. and Ng, A. [2008]. Robotic grasping of novel objects
using vision, The International Journal of Robotics Research 27(2): 157.

Schaal, S. [1999]. Is imitation learning the route to humanoid robots?, Trends in
cognitive sciences 3(6): 233-242.

Schmidhuber, J. [1991]. Curious model-building control systems, Neural Net-
works, 1991. 1991 International Joint Conference on, pp. 1458-1463.

Schmidt, M. and Lipson, H. [2009]. Distilling Free-Form Natural Laws from
Experimental Data, Science pp. 1-5.

Schoner, G. and Dose, M. [1992]. A dynamical systems approach to task-level sys-
tem integration used to plan and control autonomous vehicle motion, Robotics
and Autonomous Systems 10(4): 253-267.

Schutte, A., Spencer, J. and Schoner, G. [2003]. Testing the dynamic field theory:
Working memory for locations becomes more spatially precise over develop-
ment, Child Development 74(5): 1393-1417.

Schwefel, H.-P [1965]. Kybernetische evolution als strategie der experimentellen
forschung in der stromungstechnik, Master’s thesis, Hermann Fottinger Institute
for Hydrodynamics, Technical University of Berlin .



200 Bibliography

Sekanina, L., Harding, S. L., Banzhaf, W. and Kowaliw, T. [2011]. Image pro-
cessing and CGP, in J. E Miller (ed.), Cartesian Genetic Programming, Natural
Computing Series, Springer, chapter 6, pp. 181-215.

Seo, K. and Kim, Y. [2010]. Scale and rotation-robust genetic programming-
based corner detectors, in C. Di Chio, S. Cagnoni, C. Cotta, M. Ebner, A. Ekart,
A. L. Esparcia-Alcazar, C.-K. Goh, J. J. Merelo, E Neri, M. Preuss, J. Togelius
and G. N. Yannakakis (eds), EVoINTELLIGENCE, Vol. 6024 of Lecture Notes in
Computer Science, Springer, Istanbul, pp. 381-391.

Shanahan, M. [2006]. A cognitive architecture that combines internal simulation
with a global workspace, Consciousness and Cognition 15(2): 433-449.

Shang, C. and Barnes, D. [2012]. Classification of Mars McMurdo Panorama
Images Using Machine Learning Techniques, Acta Futura 5: 29-38.

Shang, C., Barnes, D. and Shen, Q. [2011]. Facilitating efficient mars terrain
image classification with fuzzy-rough feature selection, International Journal
of Hybrid Intelligent Systems 8(1): 3-13.

Shirakawa, S. and Nagao, T. [2007]. Feed forward genetic image network: To-
ward efficient automatic construction of image processing algorithm, in G. Be-
bis, R. Boyle, B. Parvin, D. Koracin, N. Paragios, S.-M. Tanveer, T. Ju, Z. Liu,
S. Coquillart, C. Cruz-Neira, T. Muller and T. Malzbender (eds), Advances in
Visual Computing: Proceedings of the 3rd International Symposium on Visual
Computing (ISVC 2007) Part II, Vol. 4842 of Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, pp. 287-297.

Shirakawa, S., Nakayama, S. and Nagao, T. [2009]. Genetic image network
for image classification, in M. Giacobini, A. Brabazon, S. Cagnoni, G. A. D.
Caro, A. Ekart, A. Esparcia-Alcazar, M. Farooq, A. Fink, P Machado, J. Mc-
Cormack, M. O'Neill, E Neri, M. Preuss, E Rothlauf, E. Tarantino and S. Yang
(eds), Applications of Evolutionary Computing, EvoWorkshops 2009: EvoCOM-
NET, EvoENVIRONMENT, EvoFIN, EvoGAMES, EvoHOT, EvoIASE EvoINTERAC-
TION, EvoMUSART, EvoNUM, EvoSTOC, EvoTRANSLOG, Vol. 5484 of Lecture
Notes in Computer Science, Springer, pp. 395-404.

Sicard, G., Salaun, C., Ivaldi, S., Padois, V. and Sigaud, O. [2011]. Learning
the velocity kinematics of iCub for model-based control: XCSF versus LWPR,
Proceedings of the International Conference on Humanoid Robots.



201 Bibliography

Silva, S., Vasconcelos, M. J. and Melo, J. B. [2010]. Bloat free genetic program-
ming versus classification trees for identification of burned areas in satellite
imagery, in C. Di Chio, S. Cagnoni, C. Cotta, M. Ebner, A. Ekart, A. I. Esparcia-
Alcazar, C.-K. Goh, J. J. Merelo, E Neri, M. Preuss, J. Togelius and G. N.
Yannakakis (eds), EvolASP, Vol. 6024 of Lecture Notes in Computer Science,
Springer, Istanbul, pp. 272-281.

Slany, K. and Sekanina, L. [2007]. Fitness landscape analysis and image filter
evolution using functional-level CGP, in M. Ebner, M. O’Neill, A. Ekart, L. Van-
neschi and A. 1. Esparcia-Alcdzar (eds), Proceedings of the European Conference
on Genetic Programming (EuroGP), Vol. 4445 of Lecture Notes in Computer Sci-
ence, Springer, Valencia, Spain, pp. 311-320.

Smith, S. L., Leggett, S. and Tyrrell, A. M. [2005]. An implicit context rep-
resentation for evolving image processing filters, in E Rothlauf, J. Branke,
S. Cagnoni, D. W. Corne, R. Drechsler, Y. Jin, P Machado, E. Marchiori,
J. Romero, G. D. Smith and G. Squillero (eds), Applications of Evolutionary
Computing, EvoWorkshops2005: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, Evo-
MUSART, EvoSTOC, Vol. 3449 of Lecture Notes in Computer Science, Springer
Verlag, pp. 407-416.

Solis, J. and Takanishi, A. [2011]. Wind instrument playing humanoid robots,
in J. Solis and K. Ng (eds), Musical Robots and Interactive Multimodal Systems,
Vol. 74 of Springer Tracts in Advanced Robotics, Springer Berlin Heidelberg,
pp. 195-213.

Spina, T. V,, Montoya-Zegarra, J. A., Falcao, A. X. and Miranda, P A. V. [2009]. Fast
interactive segmentation of natural images using the image foresting trans-
form, Proceedings of the International Conference on Digital Signal Processing,

pp- 1-8.

Stasse, O., Foissotte, T., Larlus, D., Kheddar, A., Yokoi, K. et al. [2008]. Treasure
hunting for humanoids robot, Proceedings of Workshop on Cognitive Humanoid
Vision at the International Conference on Humanoids Robots.

Stollenga, M., Pape, L., Frank, M., Leitner, J., Forster, A. and Schmidhuber, J.
[2013]. Task-relevant roadmaps: A framework for humanoid motion planning,
Proceedings of the International Conference on Intelligent Robots and Systems
(IROS).



202 Bibliography

Stiickler, J., Badami, I., Droeschel, D., Grave, K., Holz, D., McElhone, M.,
Nieuwenhuisen, M., Schreiber, M., Schwarz, M. and Behnke, S. [2013]. Nim-
bro@home: Winning team of the robocup@home competition 2012, Robot
Soccer World Cup XVI, Springer, pp. 94-105.

Suckling, J., Parker, J., Dance, D., Astley, S., Hutt, 1., Boggis, C., Ricketts, I., Sta-
matakis, E., Cerneaz, N., Kok, S., Taylor, P, Betal, D. and Savage, J. [1994]. The
mammographic images analysis society digital mammogram database, Experta
Medica International Congress Series 1069: 375-378.

Sutton, R. and Barto, A. [1998]. Reinforcement learning: An introduction, Cam-
bridge Univ Press.

Szymanski, J. J., Brumby, S. P, Pope, B, Eads, D., Esch-Mosher, D., Galassi, M.,
Harvey, N. R., McCulloch, H. D. W,, Perkins, S. J., Porter, R., Theiler, J., Young,
A. C., Bloch, J. J. and David, N. [2002]. Feature extraction from multiple
data sources using genetic programming, in S. S. Shen and P E. Lewis (eds),
Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral
Imagery VIII, Vol. 4725 of SPIE, pp. 338-345.

URL: http: //citeseer.ist.psu.edu /540967.html

Tackett, W. A. [1993]. Genetic programming for feature discovery and image dis-
crimination, Proceedings of the International Conference on Genetic Algorithms,
pp- 303-309.

Takagi, S. [2006]. Toyota partner robots, Journal-Robotics Society of Japan
24(2): 62.

THE [2012]. EU Project Consortium: The Hand Embodied, http://www.
thehandembodied.eu/.

Thrun, S. et al. [2002]. Robotic mapping: A survey, Exploring artificial intelligence
in the new millennium pp. 1-35.

Traver, V. J. and Bernardino, A. [2010]. A review of log-polar imaging for visual
perception in robotics, Robotics and Autonomous Systems 58: 378-398.

Trujillo, L. and Olague, G. [2008]. Automated design of image operators that
detect interest points, Evolutionary Computation 16(4): 483-507.

Trujillo, L. and Olague, G. [2009]. Detecting scale-invariant regions using
evolved image operators, in S. Cagnoni (ed.), Evolutionary Image Analysis and


http://www.thehandembodied.eu/
http://www.thehandembodied.eu/

203 Bibliography

Signal Processing, Vol. 213 of Studies in Computational Intelligence, Springer,
Berlin / Heidelberg, pp. 21-40.

Tsagarakis, N., Metta, G., Sandini, G., Vernon, D., Beira, R., Becchi, E, Righetti,
L., Santos-Victor, J., Ijspeert, A., Carrozza, M. and Caldwell, D. [2007]. iCub:
the design and realization of an open humanoid platform for cognitive and
neuroscience research, Advanced Robotics 21: 1151-1175.

Tsagarakis, N., Vanderborght, B., Laffranchi, M. and Caldwell, D. [2009]. The
mechanical design of the new lower body for the child humanoid robot icub,
Proceedings of the International Conference on Intelligent Robots and Systems
(IROS), pp. 4962-4968.

Tuci, E., Massera, G. and Nolfi, S. [2010]. Active categorical perception of ob-
ject shapes in a simulated anthropomorphic robotic arm, IEEE Transactions on
Evolutionary Computation 14(6): 885-899.

Uto, K., Kosugi, Y. and Ogatay, T. [2009]. Evaluation of oak wilt index based
on genetic programming, First Workshop on Hyperspectral Image and Signal
Processing: Evolution in Remote Sensing, WHISPERS "09, pp. 1-4.

Vafaie, H. and De Jong, K. [1992]. Genetic algorithms as a tool for feature selec-
tion in machine learning, Proceedings of the International Conference on Tools
with Artificial Intelligence, pp. 200-203.

Vahrenkamp, N., Asfour, T. and Dillmann, R. [2012]. Simultaneous grasp and
motion planning: humanoid robot armar-iii, IEEE Robotics & Automation Mag-
agzine 19(2): 43-57.

Vahrenkamp, N., Wieland, S., Azad, P, Gonzalez, D., Asfour, T. and Dillmann,
R. [2008]. Visual servoing for humanoid grasping and manipulation tasks,
Proceedings of the International Conference on Humanoid Robots, pp. 406-412.

van den Bergen, G. [2004]. Collision detection in interactive 3D environments,
Morgan Kaufmann.

Vasicek, Z. and Sekanina, L. [2007]. Evaluation of a new platform for image
filter evolution, Proceedings of the Second NASA/ESA Conference on Adaptive
Hardware and Systems (AHS), pp. 577-586.

Capek, K. [1920]. Rossum’s universal robots (R.U.R.), Penguin, London. repub-
lished in 2004.



204 Bibliography

Vernon, D., Metta, G. and Sandini, G. [2007a]. A survey of artificial cognitive
systems: Implications for the autonomous development of mental capabili-
ties in computational agents, IEEE Transactions on Evolutionary Computation
11(2): 151-180.

Vernon, D., Metta, G. and Sandini, G. [2007b]. The iCub Cognitive Architecture:
Interactive Development in a Humanoid Robot, Proceedings of the International
Conference on Development and Learning (ICDL).

Wang, J. and Tan, Y. [2011]. Morphological image enhancement procedure de-
sign by using genetic programming, in N. Krasnogor, P L. Lanzi, A. Engel-
brecht, D. Pelta, C. Gershenson, G. Squillero, A. Freitas, M. Ritchie, M. Preuss,
C. Gagne, Y. S. Ong, G. Raidl, M. Gallager, J. Lozano, C. Coello-Coello, D. L.
Silva, N. Hansen, S. Meyer-Nieberg, J. Smith, G. Eiben, E. Bernado-Mansilla,
W. Browne, L. Spector, T. Yu, J. Clune, G. Hornby, M.-L. Wong, P Collet,
S. Gustafson, J.-P Watson, M. Sipper, S. Poulding, G. Ochoa, M. Schoenauer,
C. Witt and A. Auger (eds), Proceedings of the Conference on Genetic and Evolu-
tionary Computation (GECCO), ACM, Dublin, Ireland, pp. 1435-1442.

Watchareeruetai, U., Takeuchi, Y., Matsumoto, T. and Ohnishi, N. [2008]. Trans-
formation of redundant representations of linear genetic programming into
canonical forms for efficient extraction of image features, in J. Wang (ed.),
Proceedings of the IEEE World Congress on Computational Intelligence (WCCI),
IEEE Press, pp. 1996-2003.

WAY [2012]. EU Project Consortium: Wearable Interfaces for Hand Function
Recovery, http://www.wayproject.eu/.

Wegner, S., Harms, T., Builtjes, J. H., Oswald, H. and Fleck, E. [1995]. The wa-
tershed transformation for multiresolution image segmentation, Proceedings of
the International Conference on Image Analysis and Processing.

Welke, K., Issac, J., Schiebener, D., Asfour, T. and Dillmann, R. [2010]. Au-
tonomous acquisition of visual multi-view object representations for object
recognition on a humanoid robot, Proceedings of the International Conference
on Robotics and Automation (ICRA), pp. 2012-2019.

Weng, J. [2004]. Developmental robotics: Theory and experiments, International
Journal of Humanoid Robotics 1(2): 199-236.

Werbos, P J. [1982]. Applications of advances in nonlinear sensitivity analysis,
System modeling and optimization, Springer, pp. 762-770.


http://www.wayproject.eu/

205 Bibliography

Wiener, N. [1948]. Cybernetics: Or Control and Communication in the Animal and
the Machine, Hermann & Cie, Paris.

Wijesinghe, G. and Ciesielski, V. [2007]. Using restricted loops in genetic pro-
gramming for image classification, in D. Srinivasan and L. Wang (eds), 2007
IEEE Congress on Evolutionary Computation, IEEE Computational Intelligence
Society, IEEE Press, Singapore, pp. 4569-4576.

Wikipedia [2014]. History of robots. [Online; accessed 07-May-2014].
URL: http://en.wikipedia.org/w/index.php?title=History _of_
robots&oldid=607524188

Wiskott, L., Fellous, J., Kriiger, N. and Van Der Malsburg, C. [1997]. Face recog-
nition by elastic bunch graph matching, IEEE Transactions on Pattern Analysis
and Machine Intelligence pp. 775-779.

Wolf, M. T,, Assad, C., Stoica, A., You, K., Jethani, H., Vernacchia, M. T., Fromm,
J. and Iwashita, Y. [2013]. Decoding static and dynamic arm and hand gestures
from the jpl biosleeve, Proceedings of the Aerospace Conference.

Wolpert, D., Ghahramani, Z. and Flanagan, J. [2001]. Perspectives and problems
in motor learning, Trends in cognitive sciences 5(11): 487-494.

Wyatt, J. and Hawes, N. [2008]. Multiple workspaces as an architecture for cog-
nition, in A. Samsonovich (ed.), AAAI Fall Symposium on Biologically Inspired
Cognitive Architectures, The AAAI Press.

Yu, J. and Bhanu, B. [2006]. Evolutionary feature synthesis for facial expression
recognition, Pattern Recognition Letters 27(11): 1289-1298.

Zhang, M., Ciesielski, V. B. and Andreae, P [2003]. A domain-independent
window approach to multiclass object detection using genetic programming,
EURASIP Journal on Applied Signal Processing 2003(8): 841-859. Special Is-
sue on Genetic and Evolutionary Computation for Signal Processing and Image
Analysis.

Zhang, Z. [2000]. A flexible new technique for camera calibration, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 22(11): 1330-1334.
URL: http: //dx.doi.org/10.1109/34.888718

Zhu, X., Yang, J. and Waibel, A. [2000]. Segmenting hands of arbitrary color, Pro-
ceedings of the International Conference on Automatic Face and Gesture Recogni-
tion, pp. 446-453.



	Contents
	List of Figures
	List of Tables
	Introduction
	Background: Robots and Robotic Systems

	Towards Autonomous Object Manipulation in (Humanoid) Robots
	Background
	Understanding the Environment
	Interacting With the Environment
	Proposed Approach
	Experimental Platform: The iCub Humanoid

	Perception
	Background
	icVision: Framework for Robot Vision and Cognitive Perception
	Visual Perception and Object Detection
	Experiments and Results: Detection
	Spatial Perception and Object Localization
	Experiments and Results: Localization

	Motion Generation and Learning
	Background: Robot Motion Creation & Control
	MoBeE and Collision Avoidance
	Action Repertoire: Task-relevant Roadmaps
	Action Repertoire: Grasping
	Learning Motion from Humans and Bio-Signals

	Integration and Sensorimotor Coordination
	Background: Coordination and Adaptation
	Closing the Action-Perception Loop
	Experiments & Results

	Conclusions
	CGP-IP Function Set
	CGP-IP Additional Results: Medical Imaging
	Medical Imaging: Cell Mitosis
	Medical Imaging: MIAS Mammographic Database

	IDSIA Robotics Research Videos
	List of Acronyms
	Bibliography

