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Abstract

My PhD thesis consists of three papers which study the nature, struc-

ture, dynamics and price of variance risks. As tool I make use of multi-

variate affine jump-diffusion models with matrix-valued state spaces.

The first chapter proposes a new three-factor model for index option

pricing. A core feature of the model are unspanned skewness and term

structure effects, i.e., it is possible that the structure of the volatility

surface changes without a change in the volatility level. The model

reduces pricing errors compared to benchmark two-factor models by up

to 22%. Using a decomposition of the latent state, I show that this

superior performance is directly linked to a third volatility factor which

is unrelated to the volatility level.

The second chapter studies the price of the smile, which is defined

as the premia for individual option risk factors. These risk factors are

directly linked to the variance risk premium (VRP). I find that option

risk premia are spanned by mid-run and long-run volatility factors, while

the large high-frequency factor does not enter the price of the smile.

I find the VRP to be unambiguously negative and decompose it into

three components: diffusive risk, jump risk and jump intensity risk.

The distinct term structure patterns of these components explain why

the term structure of the VRP is downward sloping in normal times

and upward sloping during market distress. In predictive regressions, I

find an economically relevant predictive power over returns to volatility

positions and S&P 500 index returns.

The last chapter introduces several numerical methods necessary

for estimating matrix-valued affine option pricing models, including the

Matrix Rotation Count algorithm and a fast evaluation scheme for the

Likelihood function.
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Chapter 1

Introduction

O
ver the last 40 years, variance has emerged from a phenomenon largely

confined to the context of stock prices to an entirely new, separate asset

class. My PhD thesis consists of three papers which study the nature,

structure, dynamics and price of variance risks. My tools of choice are

multivariate affine jump-diffusion models with matrix-valued state spaces.

A growing body of literature has tried to solve a long list of issues in option pricing.

Returns are usually negatively correlated with changes in volatility (Hull and White

(1988) and Heston (1993)), they are non-gaussian and subject to jumps (Merton 1976).

Volatility is nowadays understood as a multi-factor phenomenon (Bates 2000) and a

fraction of the variation of the volatility surface is orthogonal to changes in the volatility

level (Christoffersen, Heston and Jacobs 2009). There is clear empirical evidence that

standard observable properties of the implied volatility surface such as implied volatil-

ity level, the option-implied skew or the volatility term structure, have time-varying

correlations. So far, however, the literature has focused on lower-dimensional models

with an independent factor structure that links the volatility term structure and the

option-implied skew in a restrictive way to the volatility level.

My first paper, Three make a Dynamic Smile – Unspanned Skewness and Interacting

Volatility Components in Option Valuation, joint work with Fabio Trojani, proposes

an affine three-factor model for index options with novel structural properties. It is

based on the Matrix Affine Jump Diffusion (MAJD) process introduced in Leippold

and Trojani (2008). The model allows for dynamic interactions between risk factors,

which gives rise to mutually-exciting risks. It also allows for unspanned skewness and

volatility term structure effects. The model has closed form solutions and allows for

pricing via transform methods. It naturally nests many important affine models in

the literature, such as Bates (2000) or Heston (1993), both of which have independent

volatility components and a stochastic skewness that is linearly related to the volatility.

A preliminary empirical investigation of S&P 500 option data, identifies unspanned
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1. Introduction

skewness and term structure effects, i.e., a significant variability of implied volatility

skewness and term structure conditional on the volatility level. We then estimate our

model under the risk-neutral measure on five years of option data using a nonlinear least

squares (NLLS) approach with error group specific heteroskedasticity, as pioneered in

Bates (2000). Unlike Bates, the problem of joint estimation of parameters and states

is solved using a computationally intensive nested algorithm, which optimizes over the

parameter vector given the optimal state. We then evaluate our model on 15 years of

option data, pricing some 600’000 option contracts using a single set of parameters.

In order to better understand the interplay of state components and parameters in

creating unspanned volatility effects, we introduce a decomposition of the state matrix

into a volatility level factor and two bounded volatility structure factors. Based on this

decomposition,it is possible to draw the set of admissible combinations of skewness and

volatility term structure for given volatility levels for different models.

We also study the pure diffusive version of our model (see da Fonseca, Grasselli and

Tebaldi (2008)). While such a stylized model is less realistic, we can use the method

of Durrleman (2010) to calculate closed-form approximations of important properties of

the volatility surface and link them to specific parameters and state components.

The main findings are the following. Our model reduces pricing errors relative to

the benchmark two-factor Bates (2000) model by between 20% and 30%, depending

on the metric. These improvements follow from the failure of two-factor models to

generate sufficient volatility-unrelated variability in the implied volatility skew and term

structure. There are several indicators for the important contribution of the matrix

specification of the state space to these results. First, improvements increase out-of

sample, i.e., the choice of parameters has less impact on the pricing errors. Second,

there is little variability in the overall fit when varying in- and out-of sample periods, as

long as the in-sample period contains sufficiently varied economic conditions.

When trying to explain the magnitude of the relative improvement, no apparent

link to volatility can be found, but a positive link to the size of the benchmark model’s

daily RMS error and to a proxy of unspanned skewness implied by our model. This

suggests that our model improves precisely on the specification of volatility-unrelated

smile dynamics. In a time series analysis, the largest gains in pricing performance are

found in periods of financial distress.

Understanding the properties of the market price of volatility risk is an important

issue in financial economics. The literature has reached the consensus that unexpected

shocks in aggregate market uncertainty are priced in the form of a time-varying negative

variance risk premium (VRP), see Carr and Wu (2009a). However, less is known about

which volatility factors generate the premium.

My second paper, The Price of the Smile and Variance Risk Premia, joint work with

Fabio Trojani and Claudio Tebaldi, aims at exploiting the information embedded in index
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1. Introduction

options to study (i) the dynamics and price of individual option risk factors, (ii) the size,

structure and dynamics of the VRP and (iii) the link between option risk factors, their

price, the VRP, and equity returns. We perform a joint estimation of the physical and

risk-neutral dynamics of a matrix affine jump diffusion (MAJD) model in order to study

option-implied risks, i.e., risks generated by unexpected variations of the state variables

that drive the volatility surface. From the risk-neutral and physical dynamics of the

individual risk factors it is possible to calculate the risk premia paid by investors for an

exposure to such risks. We call these premia the price of the smile, as they span the risk

premium of a shock in the price of volatility. We then study the size and dynamics of

the variance risk premium (VRP), and its term structure. We decompose the VRP into

three constituents: compensation for diffusive volatility, for pure jump risk (i.e. exposure

to jumps in returns) and for jump intensity risk (i.e. exposure to the risk that the rate

of jumps in returns may change). We are then able to link each constituent of the VRP

to the option-implied risk factors and their prices, as identified by our model.

The starting point of our model is the risk-neutral dynamics formulated in “Three

make a Dynamic Smile” to which an affine change of measure is added. As our interest

is focused on the information embedded in options, we deliberately define a minimal

stochastic discount factor and leave the equity risk premium unspecified. This allows

makes it possible to make predictions on the equity premium, based exclusively on

second-moment information.

The estimation of our model is based on a simple two-step procedure, which exploits

the information in a panel of option prices and excess returns to variance positions, but

contains no direct information on index returns. In a first step, we use an extended

Kalman filter to estimate the physical and risk neutral dynamics of the latent variance

process and the risk-neutral properties of the return jump component. In the second

step, we estimate the parameters of the pure jump VRP via a simple arbitrage-free

regression.

Our results are as follows. First, despite the additional specification of a P-dynamics,

the updated estimation procedure does not degrade pricing performance or fit relative to

“Three make a Dynamic Smile”. Each of the three state components still owns its useful

interpretation in terms of observable properties of the volatility surface. The largest

and least persistent factor can be interpreted as a volatility level, the most persistent

one as a term structure factor, while the remaining factor captures changes in skewness

unrelated to the volatility level.

Second, the market price of the smile is completely spanned by the two most per-

sistent volatility factors in a cascading structure, where the market price of a factor

is always more persistent than the factor itself. Interestingly, the high-frequency level

factor, which is the largest volatility factor, does not enter the price of the smile.

Third, our risk factors imply a highly time-varying and unambiguously negative VRP,
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1. Introduction

ranging between annualized −16%2 and zero for a monthly investment horizon. We

confirm that the VRP is largest in times of market turmoil, when the price of insurance

is large. Our decomposition of the VRP also shows that the variance risk premium is

largely driven by jump risk, in line with the results of Bollerslev and Todorov (2011).

More precisely, the VRP is almost exclusively attributed to pure jump variance risk over

short horizons, while diffusive volatility risk and jump intensity together risk explain

about half the VRP for a twelve month horizon.

Fourth, the term structure of VRP is mostly downward sloping, reflecting a higher

relative price of long-run market insurance. In contrast to, e.g., Ait-Sahalia, Karaman

and Mancini (2012) we find that the term structure of the VRP can change sign in a

systematic way and can become strongly upward sloping, especially in times of market

distress. This changing sign of the VRP term structure is explained by the interplay of

its components: the term structure of pure jump risk premia is almost always increas-

ing, while the term structures of diffusive and jump intensity risk premia are usually

decreasing.

Finally, we investigate the predictive power of our option-implied risk factors for real-

ized returns on variance positions and market returns. We find an economically relevant

predictive power for S&P 500 index returns, consistent with the results in Bollerslev,

Tauchen and Zhou (2009a), and a significant predictive power over volatility returns,

with a dominating contribution from the two most persistent risk factors. Our affine

specification of variance risk premia is preferred by the out-of-sample predictability re-

sults, in which the largest degree of predictability is obtained for the model-implied

variance risk premium predictions. This evidence suggests that low-frequency volatility

factors, which span the market price of the smile and the term structure of the VRP,

also contain useful information about the price of market risk.

While Three make a Smile and The Price of the Smile and Variance Risk Premia are

both based on matrix affine jump diffusion models, they differ in scope and methodology.

Three Make a Smile, the first of the two papers, lays the foundations and focuses on the

number and role of volatility factors, on unspanned skewness and on cross-sectional pric-

ing implications, by estimating the model under the risk-neutral measure via nonlinear

least squares. The main goal is to understand the structure of index-option volatility.

On the other hand, The Price of the Smile concentrates on the dynamics of volatility

factors, on their price and on the variance risk premium, estimating the physical and risk-

neutral dynamics using an extended Kalman filter. The main objective is to understand

the link between option risk factors, the variance risk premium and equity returns.

The matrix nature of MAJD models creates a unique set of computational difficulties

for analysis and estimation. Using off-the-shelf methods, the estimation of an MAJD

option pricing is numerically unstable and would take years. My third paper, Eliciting
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1. Introduction

a Smile – Numerical Methods for Option Pricing with Matrix Affine Jump Diffusions,

focuses on the computational aspects of the estimation of this class of models. It proposes

a collection of new and improved numerical methods that render their estimation feasible

with good precision in a reasonable amount of time. They fall into three categories:

Numerics. The characteristic function of the matrix affine jump diffusion model is

available in closed form as long as no jumps in volatility occur (see Leippold and Trojani

(2008)). Its evaluation involves a matrix logarithm, which is not uniquely defined, as the

complex parts of its eigenvalues are periodic. I show that standard numerical platforms

choose the wrong plane by default, which leads to a significant bias in the option price

when using transform methods. The error is larger for longer maturities and when

the high-frequency volatility component is dominant. A similar phenomenon has been

documented for Heston-type models by Lord and Kahl (2010). To solve the problem

of selecting the correct branch on the complex matrix logarithm, I propose the Matrix

Rotation Count (MRC) algorithm. In an unrelated numerical problem, I identify a

numerical instability of the above-mentioned matrix logarithm for extreme arguments of

the Laplace transform. This problem is solved by the correct choice of integration limits

for the Fourier integral.

Optimization. When estimating the model in a maximum likelihood context, little is

ex ante known about the plausible range for the parameter matrices, especially their out-

of-diagonal components. This makes it difficult to find useful starting values for classical

optimization algorithms. I also show with a counter-example that the maximization

problem is non-convex. Both challenges are overcome by a two step hybrid optimization

scheme composed of Differential Evolution (Storn and Price 1997) and the Nelder-Mead

simplex algorithm. To enforce admissibility constraints of the parameter matrices, such

as negative definiteness, I introduce two convenient reparametrizations of the parameter

and state matrices.

Execution time. With modern computer hardware, speed is normally not an issue in

estimating option pricing models. The MAJD model is an exception, as its characteristic

function involves matrix exponentials and logarithms, which are computationally more

costly than their scalar counterparts by a factor of 30 to 40. Beyond the MRC algorithm,

which enables the use of transform methods, I identify three directions for improvement,

each of which reduces the execution time by at least an order of magnitude.

First, I replace the Fast Fourier Transform of Carr and Madan (1999) by the Cosine

algorithm of Fang and Oosterlee (2008). The latter reduces the number of required

evaluations of the characteristic function from 4096 to 200 by avoiding oscillating terms.

Second, I introduce a fast evaluation scheme for the likelihood function. This scheme

uses an efficient decomposition of the characteristic function into a fast part depending

exclusively on the state and a computationally costly part depending on parameters and

maturity. In order to save time, the latter is pre-calculated, which requires a choice of
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1. Introduction

integration limits that is independent of the volatility level, unlike the original algorithm

of Fang and Oosterlee (2008). I propose an approximation for these limits and show

that the overall approximation error is below one tenth of a volatility basis point for all

admissible state combinations and volatilities between 10% and 63%. Third, I devise a

parallel version of the Differential Evolution algorithm of Storn and Price (1997) and

run it on a 64-core cluster, reducing the execution time by a further factor of 50.
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Chapter 2

Three make a Dynamic Smile
Unspanned skewness and interacting volatility

components in option valuation

W
e study a new class of three-factor affine option pricing models, featur-

ing interdependent volatility risks and a stochastic skewness component

conditionally unrelated to the volatility. These properties allow us to im-

prove on the modelling of the implied volatility smile of standard affine

models along two main dimensions. First, they enhance the specification of short and

long term skew dynamics largely unrelated to volatility shocks. Second, they produce a

broader range of term structures of implied volatility skews, which are potentially more

consistent with the data.

We specify our models using three distinct stochastic components for the joint dy-

namics of return volatility and skewness: Two components capture short and long run

volatility risks, while the third component captures stochastic skewness effects not related

to volatility shocks. In contrast to standard affine models, we introduce interdependent

risks, specified by a multivariate dynamics, in which the persistence and local variance

of the volatility components depends on the degree of return skewness, and vice versa.

Methodologically, we borrow from Leippold and Trojani (2008) and specify our model

using a matrix affine jump diffusion (AJD). In this way, we achieve two objectives at

the same time. First, we preserve a good degree of model tractability, with efficient

pricing formulae for plain vanilla options, computed by means of standard transform

methods. Second, we can nest as special cases a number of two- and three-factor affine

models in the literature, such as Bates (2000) jump diffusion model or two-factor Heston

(1993)-type models. These benchmark models have (i) independent volatility compo-

nents and (ii) a skewness dynamics that is a function only on the volatility dynamics,

which excludes volatility-unrelated stochastic skewness effects. Therefore, they are nat-

ural models against which we can benchmark the incremental pricing accuracy of our
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2. Three make a Dynamic Smile

option valuation framework.

We estimate our three-factor model together with the benchmark models, using S&P

500 index options data from January 1996 to September 2009, and obtain a number of

novel findings for the option pricing literature. First, interdependent volatility and

volatility-unrelated skewness dynamics are well consistent with S&P 500 index option

smiles: A test of the null hypothesis that these features are not present in S&P 500

index option data is rejected with a high degree of statistical significance. Second, our

models improve on benchmark affine two-factor option valuation models, by reducing

pricing errors on average by 20% out-of-sample. The reliability in pricing performance

is also improved, with on average lower standard deviations of pricing errors by 27%

out-of-sample. Therefore, these fit improvements are unlikely a consequence of overfit-

ting effects related to the higher-dimensional (three-factor) state space of our model.

Third, standard affine three-factor models with independent volatility components tend

to have poor pricing performance out-of-sample, indicating a likely misspecification of

their state dynamics. For instance, we find that the improvement in out-of-sample pric-

ing performance of our three-factor models relative to a three-factor Heston-type model

is on average about 21%. Fourth, while the improvements in pricing performance rela-

tive to benchmark models are quite consistent over time, the largest improvements tend

to arise during periods of financial crises or market distress, like, e.g., during the Russia

debt crisis in 1998 and the more recent subprime crisis: While the average improvement

in out-of-sample model fit is about 20%, daily pricing improvements in such crisis peri-

ods are often larger that 30% and can be, in some cases, even above 50%. This finding

suggests volatility-unrelated skewness as a potentially useful reduced-form risk factor,

which is better able to reproduce some of the crisis-related dynamics of index option

smiles.

To understand the motivation of modelling (i) a stochastic skewness component

unrelated to volatility shocks and (ii) interdependent volatility dynamics, we start by

analyzing the implied volatility surface of S&P 500 index options. Figure 2.1 depicts the

relation between one-month maturity skew and at-the-money volatility term structure1

in the data (grey points). In order to better isolate smile components that are largely

unrelated to variations of the level of volatility, each plot is stratified with respect to the

volatility level, ranging from 0.16 to 0.28.

First, we observe that in the data, the variability of the skew and term structure

proxies is quite substantial for all volatility levels. This feature suggests that a fraction

of these variations is not exclusively explained by the level of volatility, indicating the

potential presence of a volatility dynamics driven by additional sources of time-varying

1 See Sec. A.2.1 for details on the definition and the computation of the implied volatility skewness and
term structure proxies used in Figure 2.1.
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2. Three make a Dynamic Smile

risk. Second, stochastic volatility models without unspanned skewness factors tend to fail

in generating (i) the large variability of the skew of index options and (ii) the joint relation

between slope of the smile and term structure across different volatility states. As a first

illustration of this argument, we estimate two factor models of the Heston- and Bates-

type and plot the model-implied values for volatility skew and term structure in Figure

2.1 as black points. While these models generate a degree of term structure variation

similar to the one in the data, we find that they tend to imply (i) a rather limited

degree of variation along the skewness dimension and (ii) a comovement of skewness

and term structure that is not fully supported by the data. This empirical evidence

suggests the presence of a skew dynamics that is only weakly linked to either the level

or the term structure of the implied volatility smile. Therefore models in which return

skewness is completely spanned by shocks to the volatility might be overly restrictive

for an adequate specification of these dynamic aspects of the smile. Third, the tight link

between skew and term structure of two-factor option valuation models with independent

volatility components might also imply an overly simplified term structure of volatility

skews. This feature is illustrated in Figure 2.2, top panels, where we plot the twelve

month skew of the smile against the one month skew in the data (gray points). Each

scatter plot is again stratified with respect to different levels of the at-the-money implied

volatility.

In the data, the degree of variability of the skew at maturities of one and twelve

months is similar, especially for the low volatility state (left Panels in Figure 2.2). The

model-implied twelve month and one month skews of the two-factor models (black points

in Panels A and B) feature, as expected, a lower variability than the data. At the same

time, it appears that these models have an even larger difficulty to generate (i) a sufficient

variability of twelve month skews and (ii) a degree of comovement between short and

long term skews similar to the data.

Panel A and B of Figures 2.1 and 2.2 highlight the difficulty of two-factor models to

fit relevant features of the volatility surface. To which extent do our models improve the

fit along these particular dimensions? Panels C and D indicate that our models improve

on the two factor models mainly in two directions. First, Figure 2.1 shows that they

generate a fitted co-movement of short term skews and term structures more consistent

with the data. Second, Figure 2.2 shows that the models also imply an additional degree

of variability in fitted

Our work borrows from a large literature documenting the time variation of the eq-

uity volatility and its negative co-movement with returns. The state of the art in the

option pricing literature specifies the underlying return dynamics as driven by several

components that follow independent volatility processes, each negatively related to re-
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Panel A: Fit of model SV2,0
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Panel B: Fit of model SVJ2,0
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Panel C: Fit of model SV3,1
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Panel D: Fit of model SVJ3,1
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Figure 2.1: Short term skew S(short) versus term structure M(short) per trading day. Grey
dots: data. Black dots: Fitted values of a two factor Heston-type model (SV2,0), Bates (2000)
model (SVJ2,0), our pure diffusion model (SV3,1) and our model with jumps in returns (SVJ3,1).
In each plot, we select observations corresponding to a short term at the money implied volatility
of ±5% around the specified level, i.e., 19%-21% for the second plot of each panel.
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Panel A: Fit of model SV2,0
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Panel B: Fit of model SVJ2,0
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Panel C: Fit of model SV3,1

−1 −0.8 −0.6 −0.4 −0.2 0
−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

S (short)

S
(l

o
n
g
)

V
1/2
t = 0.16

−1 −0.8 −0.6 −0.4 −0.2 0
−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

S (short)

S
(l

o
n
g
)

V
1/2
t = 0.2

−1 −0.8 −0.6 −0.4 −0.2 0
−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

S (short)

S
(l

o
n
g
)

V
1/2
t = 0.24

−1 −0.8 −0.6 −0.4 −0.2 0
−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

S (short)

S
(l

o
n
g
)

V
1/2
t = 0.28

Panel D: Fit of model SVJ3,1
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Figure 2.2: Short term skew S(short) versus long term skew S(long) per trading day. Grey
dots: Black dots: Fitted values of a two factor Heston-type model (SV2,0), Bates (2000) model
(SVJ2,0) and our pure diffusion model (SV3,1) and our model with jumps in returns (SVJ3,1). In
each plot, we select observations corresponding to a short term at the money implied volatility
of ±5% around the specified level, i.e., 19%-21% for the second plot of each panel.
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2. Three make a Dynamic Smile

turn shocks.2 A number of recent studies shows that these models tend to perform better

than single factor stochastic volatility models in pricing equity index options. In contrast

to single-factor models, multiple component models can generate a degree of stochas-

tic skewness that can help to capture part of the time variation of the smile along the

moneyness dimension. Moreover, when the distinct volatility components feature dif-

ferent persistence properties, these models also tend to better capture the behaviour

of the implied volatility surface along the maturity dimension. Bates (2000) specifies

two jump-diffusion components driven by independent volatility processes and studies

empirically the relative performance of pure diffusion models and models augmented by

Poisson-normal jumps. Using S&P 500 futures option data from 1988 to 1993, he docu-

ments the negative skew of the smile after the 1987 crash and concludes that models with

jumps better reconcile return and option data. Christoffersen et al. (2009) focus on the

ability of a pure diffusion version of the Bates (2000) model to explain the option implied

volatility dynamics. They document that these models improve the pricing performance

relative to single factor volatility settings, both in-sample and out-of-sample, because

they imply a higher degree of flexibility in modelling the conditional skewness and kur-

tosis of returns in dependence of the overall level of the volatility. Using time-changed

Levy processes, Huang and Wu (2004) study two-component jump diffusion models with

different types of jump specifications. They document that models with high frequency

jumps and volatility variations deriving from both the instantaneous variance of the

diffusion component and the arrival rate of the jump component better capture the

behaviour of S&P 500 index options. They also find that the diffusion induced volatil-

ity exhibits a larger instantaneous variation, but the jump induced volatility features

a much higher persistence. Finally, Carr and Wu (2009b) propose a three-component

model based on three different sources of variation in volatility: Time varying financial

leverage, time-varying business risk and self-exciting market behaviour. The first com-

ponent follows a CEV-type dynamics in order to model a dependence of the volatility on

the level of financial leverage. The second component specifies volatility feedback effects

modelled by a Heston (1993)-type volatility model. The third component models self-

exciting market behaviour using a high frequency pure-jump Levy-process. The model

2 The literature in this domain is too large to be reviewed exhaustively here. Early papers introducing
single-factor volatility models with a correlation between returns and volatility include (Heston 1993),
(Hull and White 1988) and (Melino and Turnbull 1990). Leverage effects and jump driven skewness
for modelling volatility have been studied in (Bakshi, Cao and Chen 1997), (Bates 1996), Backus,
Foresi, Li and Wu (1997), (Nandi 1998), (Chernov and Ghysels 2000), (Pan 2002), (Jones 2003),
(Eraker, Johannes and Polson 2003), (Carr and Wu 2004), (Eraker 2004), Li and Pearson (2008),
(Broadie, Chernov and Johannes 2007) and (Carr and Wu 2007), among others. Specification based
on multi-factor volatility were addressed in (Bates 2000), (Duffie, Pan and Singleton 2000), (Huang
and Wu 2004), (Christoffersen et al. 2009), (Carr and Wu 2009b), da Fonseca et al. (2008) and
Leippold and Trojani (2008), among others.
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2. Three make a Dynamic Smile

is estimated using about a decade of over-the-counter equity index options data and is

shown to perform well in pricing equity index options.

All these specifications model the equity index return as a sum of independent com-

ponents driven by independent volatility processes. The specification in Carr and Wu

(2009b) models three distinct sources of volatility variation, while all other models are

based on a two factor volatility dynamics. Their empirical results support three fac-

tor models as convenient settings to describe the overall shape of the implied volatility

surface of index options. We borrow from this insight and specify a three factor state

dynamics for the volatility, but we use a completely different approach with distinct

implications, starting from the family of MAJD introduced in Leippold and Trojani

(2008) with a matrix-valued latent state variable. This symmetric 2× 2 matrix contains

two volatility factors and a third component linked to stochastic skewness variations

that are not spanned by shocks to the two volatility factors. In this sense, our model

comprises a component for volatility-unrelated (unspanned) stochastic skewness. This

model feature allows us in the first place to obtain a wider range of model-implied de-

grees of risk neutral skewness, thus improving along the moneyness dimension the fit of

the implied volatility smile. Furthermore, our dynamics for the volatility components

admits feedback effects. The volatility risk factors in our model interact dynamically

and imply a more flexible specification for the dynamics of the skewness term structure.

Finally, we introduce a new representation of the state space of MAJD, which allows for

a convenient interpretation of the structural and pricing implications of our framework.

The article proceeds as follows. Section 2 introduces our modelling approach and

discusses key properties of our model specifications. Starting from a MAJD, it derives a

class of three-component option valuation models, with interacting two-factor volatility

dynamics and a volatility-unrelated stochastic skewness component. It also shows that

a variety of multi-factor affine option pricing models in the literature are special cases of

our setting. Section 3 introduces our model estimation procedure, presents estimation

results, as well as the in-sample and out-of-sample model fit analysis. Using the estimated

parameters, Section 4 analyzes in more detail the main structure and theoretical features

of our setting, relative to a number of benchmark affine models. Section 5 concludes.

2.1 Model

In this section, we propose an affine three-factor model for index options based on the Ma-

trix Affine Jump Diffusion (MAJD) process introduced in Leippold and Trojani (2008).

The model has several novel structural properties: it allows for dynamic interactions

between risk factors and for mutually-exciting risks, as well as for unspanned skewness

and dynamic volatility term structure effects. It has closed form solutions and allows

for pricing via transform methods. It naturally nests many important affine models in
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the literature, such as Bates (2000) or Heston (1993), both of which have independent

volatility components and a stochastic skewness that is linearly related to the volatility.

2.1.1 Return Dynamics and Volatility Process

Our model features a matrix-valued volatility dynamics and Poisson-Normal return

jumps with a stochastic intensity. The volatility components are potentially correlated

with returns. It follows that our model has two different channels for generating a

stochastic return skewness: The standard leverage effect (i.e. a correlation between in-

novations in returns and volatility) and a time-varying probability of (mostly negative)

return jumps. Contrary to independent-component models such as Bates (2000) or

Christoffersen et al. (2009), the volatility factors in our model interact with each other

and shocks to skewness are not completely spanned by shocks to diffusive volatility.

As in the aforementioned models, the potentially different persistence of the volatility

components can generate interesting term structure of volatility patterns.

Let St denote the value of an equity index at time t, r and q be the (constant)

interest rate and dividend yield, and Xt a 2 × 2 matrix valued volatility factor. Under

the risk neutral probability measure, the return dynamics is summarized in the following

assumption.

Assumption 1. Under the risk neutral probability measure, the dynamics of St is given

by:
dSt
St

= (r − q − λtk)dt+ tr(
√
XtdZt) + kdNt (2.1)

where the matrix-valued volatility dynamics Xt is specified in assumption 2, Z is a

matrix Brownian motion defined in (2.6), and return jumps follow a Poisson-Normal

process kdNt featuring a time-varying jump intensity λt and an iid jump size k specified

in (2.4) and (2.3)

The latent state Xt is a symmetric, positive definite 2× 2 matrix

Xt =

(
X11t X12t

X12t X22t

)
.

The dynamics of Xt is detailed in the next assumption.

Assumption 2. The symmetric 2× 2 matrix process Xt follows the affine dynamics

dXt = [ΩΩ′ +MXt +XtM
′]dt+

√
XtdBtQ+Q′dB′t

√
Xt (2.2)

where Ω,M,Q are 2×2 parameter matrices and Bt is a 2×2 standard Brownian motion.√
Xt denotes the unique symmetric square root of Xt.
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Xt is the Wishart process introduced by (Bru 1991). This process is a matrix-valued

extension of the univariate square-root process that is widely used in the term structure

and stochastic volatility literatures; see, e.g., Cox, Ingersoll and Ross (1985) and Heston

(1993). Process (2.2) has many convenient properties that make it ideal to model multi-

variate financial risks. First, if ΩΩ′ � Q′Q, then Xt is positive semi-definite. Under this

condition, the diagonal elements X11t, X22t are well-defined non-negative volatility pro-

cesses with potentially different persistence features. If ΩΩ′ � 3Q′Q, then Xt is positive

definite and no volatility component can reach the zero bound.3 Second, when matrices

Ω, Q and M are diagonal, then (X11t, X22t) defines two autonomous Markov processes

with components distributed as independent Heston (1993)-type volatility models. Un-

der these constraints, Bates’ (2000) two factor state dynamics is nested by the dynamics

of the diagonal elements in (2.2), see Appendix. A.1 for more details. More general, when

matrices Ω,M or Q are not diagonal, the joint dynamics of X11t, X12t and X22t features

conditional interactions, both in the drift and diffusion parts of equation (2.2). Third,

the process is affine and has a closed-form Laplace transform that implies convenient

and tractable expressions for the prices of European options.

The specification of the jumps in returns is as follows: Jumps are independent of the

volatility process with an iid jump size k distributed as:

ln(1 + k) ∼ N(ln(1 + k̄)− δ2

2
, δ2) (2.3)

The stochastic intensity λt is an affine function of the state Xt:

λt = λ0 + tr(ΛXt) , (2.4)

where λ0 ≥ 0 and Λ is a 2× 2 positive definite matrix and tr(·) is the trace operator.

Our process nests Bates (2000) insofar as the diffusive part of the return variance is

the sum of two diagonal state components X11t +X22t. The total variance obtains as:

V art

(
dSt
St

)
= tr(Xt) + λtE(k2)

= tr
[
Xt

(
Id2 + ΛE(k2)

)]
+ λ0E(k2). (2.5)

In order to generate the feedback effect between returns and volatility, it is convenient

to correlate shocks between returns and state dynamics (2.2). To preserve an affine

structure, we specify as in da Fonseca et al. (2008) a 2 × 2 standard Brownian motion

3 We will later on assume ΩΩ′ = βQ′Q with the scalar β > 1. This guarantees the existence of a
closed-form solution without reducing the flexibility of the model.

26



2. Three make a Dynamic Smile

as follows:

Zt = BtR+Wt

√
I2 −RR′ , (2.6)

where W is another 2×2 standard Brownian motion, independent of B, and R is a 2×2

matrix such that I2 −RR′ is positive semi-definite.

2.1.2 Unspanned Skewness

Our model follows the Bates (2000) option valuation setting by specifying the diagonal

state components X11t, X22t as short and long run volatility components, allowing for

rich volatility term structure effects. The sum V diff
t = tr(Xt) is the diffusive variance of

returns. We extend the Bates (2000) setting by adding the state variable X12t. Shocks

to the diffusive volatility are not fully spanned by shocks in X12t, and vice versa. By

linking X12t to a return component that models skewness, it is possible to introduce

a stochastic skewness component that is unspanned by volatility shocks. In order to

highlight the role of X12t, we reconsider the two channels for generating a stochastic

return skewness:

(i) For the leverage effect, equation (2.6) implies, after simple calculations:

Covt

(
dSt
St

, dtr(Xt)

)
= tr(R′QXt)

= (R′Q)11X11t + (R′Q)22X22t + (R′Q)12X12t (2.7)

i.e. the feedback effect between return and diffusive volatility depends on X12t,

which itself is not part of the diffusive volatility.

(ii) For the jumps in returns, we first note that the jump size distribution (2.3) is usu-

ally negatively skewed. Furthermore, if we write the jump intensity (2.4) explicitly

as

λt = λ0 + tr(ΛXt) = λ0 + Λ11X11t + Λ22X22t + Λ12X12t ,

we note once again the role of X12t in this skewness channel.

2.1.3 Model Classification and Nested Models

Model (2.1-2.2) belongs to the class of matrix affine jump diffusions (MAJD) introduced

in (Leippold and Trojani 2008). The affine return and state dynamics implies closed form

Laplace transforms and an efficient computation of plain vanilla option prices by trans-

form methods; see also (Carr and Madan 1999) and (Duffie et al. 2000), among others.

The model naturally nests a number of affine jump diffusions in the literature. There-

fore, it provides a consistent framework for studying and comparing the performance of

27



2. Three make a Dynamic Smile

r q SVr,q Pure diffusive models SVJr,q Jump-diffusion models
1 0 SV1,0 Heston (1993) SVJ1,0 Bates (1996)
2 0 SV2,0 Christoffersen et al. (2009) SVJ2,0 Bates (2000)
3 0 SV3,0 This paper SVJ3,0 (not considered)
3 1 SV3,1 da Fonseca et al. (2008) SVJ3,1 Leippold and Trojani (2008)

Table 2.1: Models considered in our study. r is the total number of state variables and q the
number of unspanned stochastic skewness components.

these models in capturing the behavior of the index option implied volatility surface.

Unspanned skewness features arise when either Λ or R are not diagonal. Similarly, dy-

namic interactions between volatility and skewness components can emerge when either

M or Q are not diagonal. When matrices M,Q,Ω, R and Λ are all diagonal, model

(2.1) collapses to a Bates (2000) model. If in addition the jump component is removed

(λ0 = 0 and Λ = 0), then we obtain the two factor Heston (1993)-type volatility model

studied by Christoffersen et al. (2009). By construction, these diagonal models feature

independent volatility components with

no dynamic interaction, together with a return skewness spanned exclusively by X11t

and X22t. The pure diffusion model in da Fonseca et al. (2008) arises for λ0 = 0 and

Λ = 0 when either M,Q,Ω or R are not diagonal. This setting provides dynamic

interactions and volatility feedbacks not spanned by volatility shocks. In addition, the

full jump diffusion setting features an unspanned skewness component related to X12t

via the time varying jump probability.4

We can classify all models nested within our framework, in dependence of their

total number r of state variables and their number q of stochastic skewness components

unspanned by the volatility components. Pure diffusion models are denoted by SV and

jump diffusion models by SVJ . In general, any model can be then classified as SVr,q or

SVJr,q. Table 2.1 provides an overview of the models nested by our Assumptions 1 and

2.

Option Valuation

The model yields closed-form transform expressions for returns, which are useful in

order to efficiently compute the prices of plain vanilla options by transform methods,

as proposed by (Carr and Madan 1999) and (Duffie et al. 2000), among others. Closed

form expressions for the risk neutral Laplace transform of returns are available when

4 In Appendix A.1 we provide the parameter constraints under which different nested models obtain.
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ΩΩ′ = βQ′Q for some β > 1.5 In this case, Assumption 1 implies an exponentially

affine conditional Laplace transform for YT := log(ST ), given by (see (Leippold and

Trojani 2008)):

Ψ(τ ; γ) := Et [exp (γYT )] = exp
(
γYt + tr

[
A(τ)Xt

]
+B(τ)

)
, (2.8)

where τ = T − t, A(τ) = C22(τ)−1C21(τ) and the 2 × 2 matrices Cij(τ) are the ij−th

blocks of the matrix exponential:(
C11(τ) C12(τ)

C21(τ) C22(τ)

)
= exp

[
τ

(
M + γQ′R −2Q′Q

C0(γ) −(M ′ + γR′Q)

)]
. (2.9)

The explicit expressions for the 2× 2 matrix C0 is:

C0(γ) =
γ(γ − 1)

2
I2 + Λ

[
(1 + k)γ exp

(
γ(γ − 1)

δ2

2

)
− 1− γk

]
(2.10)

and real-valued function B(τ) is given by:

B(τ) =

{
r − q + λ0

[
(1 + k)γ exp

(
γ(γ − 1)

δ2

2

)
− 1− γk

]}
τ

−β
2
tr[logC22(τ) + τ(M ′ + γR′Q)] (2.11)

where log(·) is the matrix logarithm. In contrast to diagonal Bates (2000)-type models,

computation of the return transform in the full model cannot be reduced to calculations

that involve only scalar exponential and logarithmic functions, because coefficients Cij(τ)

and B(τ) depend on a matrix exponential and logarithm, respectively. This feature

makes the computation of Laplace transform (2.8) typically two orders of magnitude

more costly than in diagonal models. We obtain an efficient computation of the pricing

transform for the full model using the Cosine-Fourier Transform method of Fang and

Oosterlee (2008). For a detailed description of the numerical issues in evaluating our

model, see Gruber (2015).

2.2 Empirical Analysis

We estimate the models listed in Table 2.1, using about fourteen years of S&P 500 index

option data, and study the added value of models with unspanned skewness components

5 Precisely, in order to nest the diagonal Bates (2000) and two-factor Heston-type models when both
Q and M are diagonal, we allow β to be a diagonal matrix K .
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or dynamic volatility interactions in explaining the cross sectional behaviour of S&P 500

option implied volatility surfaces.

2.2.1 Data Source and Characteristics

We collect from OptionMetrics daily data of end-of-day prices of S&P 500 index options,

traded at the Chicago Board Options Exchange, for the sample period January 1996 to

September 2009 and maturities up to one year.6 We then apply a number of standard

filtering procedures outlined in Bakshi et al. (1997). First, we eliminate options with

midquote premia below 0.375 dollars and options with zero bid price or with bid price

larger than the ask price. Second, we eliminate options with stale quotes (i.e., prices

identical to the prices of the previous trading day), options with prices that violate

arbitrage bounds, options with duplicate entries and options where the bid-ask spread

is smaller than the minimum tick size (i.e., five cents for options having prices below

3 dollars and ten cents for all other options). Third, we drop options with a time to

maturity less than 10 days, in order to avoid pricing effects largely driven by short term

liquidity features. Note that we do not apply additional filters that cut options with

extreme moneyness, in order to obtain a data set as rich and challenging as possible,

with respect to the empirical features of the term structure of implied volatility skews.

On average, we obtain about 185 option prices per trading day, having an average

time to maturity of 133.5 days and an average moneyness S/K = 1.07. The interest

rate r is computed by linearly interpolating the US treasuries yield curve supplied by

OptionMetrics. The dividend yield q is computed by minimizing, separately for each

maturity τ and each day, the put-call parity error of near-the-money options (0.9 ≤
K/S ≤ 1.1): q = arg min

q
(C − P − Se−τq +Ke−τr)

2
, where K is the option strike

price, C and P the prices of call and put options, S the underlying spot price and τ the

time to maturity of the option.

We estimate all models by Non Linear Least Squares (NLLS) and obtain estimates

of each model’s risk neutral dynamics and latent state variables. Parameter estimation

is based on monthly observations of S&P 500 index option prices in the sample period

from January 2000 to December 2004 (in-sample data set). Each month, we select the

Wednesday of the week before the expiry date. Thus, the shortest time to maturity in our

estimation sample is fixed at ten days.7 Focusing on the monthly sample for estimation

purposes has several reasons. First, it reduces the computational costs implied by NLLS

estimation of the models in Table 2.1, which can have up to three latent state components

6 We obtain end-of-day midquotes as simple averages of end-of-day bid and ask call prices and force
the put-call parity to hold when calculating the implied dividend yields.

7 There is no observation for September 2001, as US exchanges were closed from September 11 to
September 16, 2001.
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Panel A: Summary statistics

Sample “monthly” “full”

Time frame 2000-2004 1996-09/2009

Sampling interval monthly daily

Trading days T 59 3460

Total number of observations 21’993 638’365

Average time to maturity 130 days 133.5 days

Average moneyness (S/K) 1.06 1.07

Average option price $107 $115

Panel B: Number of contracts stratified by moneyness and maturity
τ ≤ 20 20 < τ ≤ 80 80 < τ ≤ 180 τ > 180 all

S/K < 0.80 82 2’113 5’791 16’933 24’919
0.80 < S/K < 0.90 956 16’426 20’016 29’928 67’326
0.90 < S/K < 1.00 14’562 78’895 37’364 37’065 167’886
1.00 < S/K < 1.10 19’199 77’512 33’340 32’301 162’352
1.10 < S/K < 1.20 5270 41’087 21’124 23’406 90’887
1.20 < S/K < 1.30 1139 18’084 14’568 16’525 50’316
1.30 < S/K < 1.40 390 8’258 9’565 10’943 29’156

S/K > 1.40 251 8’590 14’230 22’452 45’523
all 41’849 250’965 155’998 189’553 638’365

Table 2.2: Panel A: Summary statistics of the data. The “monthly” column refers to the data
set used for parameter estimation and in-sample performance analysis. The “full” column refers
to the data set used for out-of sample evaluation. Panel B: Number of contracts stratified by
moneyness S/K and maturity in days.

and sixteen parameters. Second, it leaves a large fraction of our data available for out-of-

sample model evaluation. This aspect is important in our context, in order to allow for

a fair comparison of models in Table 2.1, which can feature different dimensions of both

state dynamics and parameter space. The evaluation of out-of-sample performance also

controls for possible overfitting that tends to favour higher dimensional models, when

purely assessing in-sample pricing performance. Out-of-sample evaluation is performed

by (i) fixing the parameter estimates at the values estimated using the monthly data

set and (ii) estimating by NLLS only the missing latent state for each daily observation

from January 1996 to September 2009. Note that for our out-of-sample analysis we keep

the model parameter values fixed at one single set of parameters, implying that the out-

of-sample pricing performance is completely driven by the ability of the specified state

space to account for all variations in out-of-sample option prices, both cross-sectionally

and in the time series. Summary statistics of our data sets are reported in Table 2.2.
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Panel A presents basic aggregate statistics, while Panel B describes the structure of our

data set along the maturity and moneyness dimensions.

Overall, our sample consists of 638’365 contracts with average time to maturity of

about 133.5 days and moneyness ranges between S/K = 0.7 and S/K = 1.5. The most

frequently traded options have maturities between 20 and 80 days and a moneyness

0.9 < S/K < 1.1.

2.2.2 Estimation Method

The main challenge when estimating the stochastic volatility models in Table 2.1 it to

estimate the model structural parameters together with the time series of latent states

Xt (t = 1 . . . T ). Several approaches are available in the literature and have been ap-

plied to a variety of option pricing models with independent volatility components.

A popular approach in single-factor models it to treat the spot volatility as an addi-

tional parameter that has to be re-estimated with a recursive procedure; see (Bakshi et

al. 1997), among others. Other approaches filter the volatility states using time series

information on underlying returns, thus ensuring consistency of physical and risk-neutral

probabilities. This is achieved for a number of single-factor stochastic volatility mod-

els in (Jones 2003) and (Eraker 2004), using Monte Carlo Markov Chain methods, in

(Chernov and Ghysels 2000), who apply a version of the Efficient Method of Moments,

in (Pan 2002), who introduces filtered state Generalized Method of Moments estima-

tion, and in (Christoffersen, Jacobs and Mimouni 2010) and (Johannes, Polson and

Stroud 2010), who make use of particle filtering techniques, in order to better account

for model non-linearities. Multi-factor volatility models with independent components

have been studied in (Carr and Wu 2007), who apply the standard Kalman filter to

estimate a two-factor model with high-frequency jumps, and in (Carr and Wu 2009b),

who estimate with the unscented Kalman filter a three-factor volatility model with self-

exciting volatility.

We choose a modification of the NLLS approach taken in Bates (2000), (Huang

and Wu 2004) and Christoffersen et al. (2009), among others, to infer model parameter

values and state realizations. This allows us to test whether the inferred risk neutral

distributions of models in Tab. 2.1 are consistent with the observed cross-sectional and

time-series behaviour of S&P 500 index option prices. We maximize a Gaussian pseudo

likelihood function for observed pricing errors, while allowing for conditional error het-

eroskedasticity driven by group specific and idiosyncratic shocks.

Let θ = {M,R,Q, β, λ0,Λ, k̄, δ} be the parameter vector of interest8 and ei,t(θ) =

8 More precisely, we vectorize matrices M,R,Q and Λ. See section A.3.2 in the appendix for details on
parameter encoding and identification.
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(
Ĉi(θ,X

∗
t (θ))−Cit

)
/Ft be the relative pricing error, where Cit and Ĉit are observed and

model-implied option prices of option i at time t, respectively, and Ft is the S&P 500

index future of corresponding maturity at time t. The conditional implied state X∗t (θ)

is defined by:

X∗t (θ) = arg min
Xt

Nt∑
i=1

[(
Ĉi(θ,Xt)− Cit

)
/Ft

]2
. (2.12)

For any given t = 1, . . . , T , vector et(θ) = (e1,t(θ), . . . , eNt,t(θ))
′ denotes the vector of

pricing errors at time t. Our point estimate for parameter θ is given by the following

pseudo Maximum Likelihood estimator:9

θ̂ = arg max
θ
LT (θ) := arg max

θ
− 1

2

T∑
t=1

(
ln |Ωt|+ e′t(θ) Ω−1

t et(θ)
)
. (2.13)

where the Nt×Nt matrix Ωt is the conditional covariance matrix of these errors. We

obtain the elements of Ωt from calculating group-specific error covariances in the three

by three grid with maturity groups τ ≤ 2; 2 < τ ≤ 6 and τ > 6 months and moneyness

groups K/S ≤ 0.9; 0.9 < K/S ≤ 1.1 and K/S > 1.1, similar to Bates (2000). We do

not perform an additional vega-weighting of the pricing errors as options with extreme

moneyness values usually have larger pricing errors and receive a small weight from Ω−1
t .

We solve the problem of jointly estimating the model implied states {X∗t (θ)}t=1,...,T

and parameter θ using a full nested optimization. In the first step of the optimization,

we compute for any candidate parameter vector θ optimal state {X∗t (θ)}t=1,...,T . In the

second step, we maximize the pseudo likelihood criterion LT (θ) over θ. We have also

investigated a less computationally demanding two-step optimization approach, used in

(Huang and Wu 2004) and Christoffersen et al. (2009), among others, which iterates

between parameter estimation for a given state and state estimation for a fixed parame-

ter. We find that this method does not produce good convergence properties and stable

estimation results.

2.2.3 Parameter Estimates and In-Sample Results

In this section, we first present parameter estimates and in-sample pricing results for the

two- and three-factor models in the context of Assumption 1. In a second step, we study

the distinct role of model parameters and latent states in generating implied-volatility

skew and term structures effects largely unrelated to the level of the volatility.

9 Under the given conditions, pseudo Maximum Likelihood and NLLS estimators coincide.
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Panel A: Estimated diagonal diffusion parameters
M11 M22 Q11 Q22 R11 R22 β β2

SV3,1 -0.3426 -4.4856 0.0136 0.4116 -0.4878 -0.6279 1.2039
(0.0120) (0.0149) (0.0114) (0.0041) (0.5340) (0.01781) (0.0339)

SV2,0 -0.0155 -5.9240 0.1583 0.5671 -0.7849 -0.6835 0.0934 0.8997
(0.0154) (0.0364) (0.0040) (0.0019) (0.0116) (0.0124) (0.0312) (0.0101)

SVJ3,1 -0.0793 -1.9428 0.0001 0.1690 -0.7912 -0.9854 1.0368
(0.0166) (0.0432) (0.0030) (0.0011) (1.5804) (0.0829) (0.1848)

SVJ2,0 -0.3055 -1.5245 0.0757 0.3468 -0.8517 -0.7367 3.2122 0.0007
(0.0159) (0.312) (0.0028) (0.0221) (0.0356) (0.0191) (0.0844) (0.0008)

Panel B: Out-of-diagonal diffusion parameters
M21 Q12 R21

SV3,1 8.8713 -0.0137 -0.5900
(0.0506) (0.3229) (0.3747)

SVJ3,1 2.1498 0.0366 -0.1039
(0.0491) (0.0272) (0.4037)

Panel C: Estimated parameters of the jump component
λ0 Λ11 Λ12 Λ22 k̄ δ

SVJ3,1 0.0023 51.77 -55.09 55.04 -0.0699 0.0993
(0.0587) (1.18) (3.62) (1.35) (0.0028) (0.0010)

SVJ2,0 0.2013 84.56 – 0.94 -0.0436 0.0954
(0.0455) (8.18) (2.36) (0.0024) (0.0038)

Table 2.3: Point estimates and corresponding standard errors for parameters of different models.
Panel A: point estimates and standard errors, in parentheses, for the diagonal components of the
diffusion parameter matrices. Panel B: point estimates and standard errors, in parentheses, for
the out-of-diagonal components of the diffusion parameter matrices. Panel C: point estimates
and standard errors, in parentheses, for the parameters in the jump component.

Estimated Risk Neutral Dynamics

Estimated risk neutral parameters for two- and three-factor models in Table 2.1 are

presented in Table 2.3.10 NLLS estimation procedure (2.13) is applied to the in-sample

data, consisting of monthly observations of S&P 500 index options from 2000 to 2004.

Panel A of Table 2.3 presents the point estimates for the diffusive parameters of

diagonal models SV2,0 and SVJ2,0 and the diagonal elements of matrices M , Q and R

of models SV3,1 and SVJ3,1. Estimates for the out-of-diagonal elements are presented in

Panel B, while panel C summarizes estimation results for the parameters in the jump

components of models SVJ2,0 and SVJ3,1.

Both diagonal models SV2,0 and SJV2,0 feature two volatility factors with very dif-

10 For brevity, we omit results for single-factor models. They are available on request. For a simple
comparison of results across the nested models, we present parameter estimates using the notation of
Assumption 1. The Appendix provides the link to Bates (2000) notation in the context of diagonal
model SVJ2,0.
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ferent mean reversions and volatilities of volatility, and slightly different leverage effect

parameters: In both models, the less persistent volatility component v2t (M22 < M11)

also features a higher volatility of volatility (Q22 > Q11) and a stronger leverage effect,

since |R11Q11| > |R22Q22|, similar to findings in previous studies; see Bates (2000) and

Christoffersen et al. (2009), among others. Despite the different data sets, the estimated

jump component for model SVJ2,0 in our study is consistent with the results in Bates

(2000). We obtain an average jump size k = −0.043, a jump size volatility δ = 0.0954

and the following sensitivities of λt to the volatility components: Λ11 = 84.56 and

Λ22 = 0.94.11 The non significant point estimate for Λ22 indicates that, in the context of

diagonal model SVJ2,0, linear specifications of time varying intensities based on a single

volatility component are not rejected by the data.

The point estimates of the out-of-diagonal elements of matrices M , Q and Λ for the

models SV3,1 and SVJ3,1 in Panels B and C, respectively, provide a number of interesting

results. First, we can reject the null hypothesis of a diagonal mean reversion matrix M ,

since point estimate M21 is statistically highly significant in both the SV3,1 and SVJ3,1

models. This finding is a first indication that volatility components with dynamic inter-

actions are well supported by the data. Second, all point estimates for the components

of matrix Λ in model SVJ3,1 are similar in absolute value and highly statistically sig-

nificant: While volatility components X11t, X22t load positively on λt, the unspanned

skewness component X12t loads negatively. Finally, we test the hypothesis that the

leverage effect in models SV3,1 and SVJ3,1 is not driven by the unspanned component

X12t, i.e. that 1
2dtCovt(dSt/St, dtr(Xt)) = (R′Q)11X11t+(R′Q)22X22t . According to the

leverage effect expression (2.7), this is equivalent to a test of null hypothesis H0 against

alternative hypothesis HA:

H0 : (R′Q)21 = 0 ; HA : (R′Q)21 6= 0 , (2.14)

where (R′Q)21 = R12Q11 +R22Q12. Using a standard Wald test, we reject H0 in favor of

HA with a p−value below 0.005. In summary, the estimation results in Table 2.3 support

a SVJ3,1 model specification with non diagonal matrices M,R and Λ, i.e., a MAJD option

valuation model with dynamically interacting volatility factors and unspanned skewness

features.

In-Sample Pricing Results

The in-sample pricing results for the different models are presented in Table 2.4, Panel

A. Consistently with our NNLS estimation criterion (2.13), we rank pricing performance

across models according to the root mean square dollar pricing error (RMSE).The RMSE

11 For comparison, Bates (2000) estimates are k = −0.057, δ = 0.102, Λ11 = 81.56 and Λ22 = 0.28.
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Panel A: Pricing performance for the “monthly” sample (2000-2004)

SV2,0 SV3,0 SV3,1 SV J2,0 SV J3,1

State space dimension 2 3 3 2 3
RMSE 1.180 1.127 1.048 1.115 0.913
σRMSE (0.370) (0.348) (0.285) (0.446) (0.324)
Within bid-ask spread 0.603 0.617 0.640 0.635 0.633

Panel B: Pricing performance for the “full” sample (1996-09/2008)

SV2,0 SV3,0 SV3,1 SV J2,0 SV J3,1

State space dimension 2 3 3 2 3
RMSE 1.937 1.844 1.570 1.862 1.457
σRMSE (1.101) (1.027) (0.808) (1.129) (0.809)
RMSIVE 2.060 1.974 1.824 1.935 1.772
σRMSIVE (0.754) (0.660) (0.537) (0.700) (0.519)
Within bid-ask spread 0.437 0.461 0.540 0.452 0.527

Table 2.4: Performance comparison. RMSE is the sample average of the daily root-mean-
squared dollar pricing errors. σRMSE is the sample standard deviation of daily RMSE. RMSIVE
is the sample average of the daily root-mean-squared implied volatility error. σRMSIVE is the
standard deviation of daily RMSIVE. The row “Within bid-ask spread” reports the fraction of
fitted prices within the bid-ask spread.

for day t = 1, . . . , T , denoted by εt, is defined as:

εt =

√√√√ 1

Nt

Nt∑
i=1

(Ĉt,i − Ct,i)2 ; t = 1 . . . T , (2.15)

where Ĉt,i and Ct,i are the model-implied and the observed option prices, respectively,

of option i = 1, . . . , Nt on day t. The sample RMSE is simply the time series average of

daily root mean square errors:

RMSE =
1

T

T∑
t=1

εt =
1

T

T∑
t=1

√√√√ 1

Nt

Nt∑
i=1

(Ĉt,i − Ct,i)2 . (2.16)

As a measure of overall model reliability, we also compute the standard deviation of

daily root mean square errors: σRMSE :=
√∑T

t=1(εt − RMSE)2 . The implied volatility

root mean square error IVRMSE and σIVRMSE are defined in the same way.

Overall, Panel A of Table 2.4 confirms the superiority of models with jumps in re-

turns. Adding jumps in returns reduced the RMSE by between 6% and 14%. Moreover,

our results show that models with dynamic interactions and unspanned skewness sub-
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stantially reduce the RMSE of diagonal models. Model SV3,1 lowers the RMSE of model

SV2,0 by approximately 12%, while model SVJ3,1 lowers the RMSE of model SVJ2,0 by

approximately 19%.

It is important to note that the RMSE reduction of models SV3,1 and SVJ3,1 is

not simply due to their higher dimensional state space relative to the SV2,0 and SVJ2,0

models (with three latent components instead of two), but rather to the particular

features of their state dynamics. For the pure diffusive case, we study the SV2,0-model

of Christoffersen et al. (2009) as a reference model and compare it to our SV3,1-model

and a three-factor Heston SV3,0 model. This allows us to disentangle the effects of adding

a third factor from the choice of state space (i.e., independent or interacting factors).

While the SV3,0 model is only 4.5% better than SV2,0, our model SV3,1, which has the

same number of factors, but a matrix-valued state space, improves the fit by 12% over

SV2,0.

Models with dynamic interactions and unspanned skewness components also reduce

the in-sample variability of the pricing errors. The RMSE standard deviation of model

SV3,1 is 23% (18%) lower than the one in model SV2,0 (SV3,0), while the RMSE standard

deviation of model SVJ3,1 is 28% lower than the one in model SVJ2,0. This finding shows

that the matrix state space of SV3,1 and SVJ3,1 models produces more reliable results

also in terms of a less volatile in-sample pricing performance.

2.2.4 Out of Sample Results and Estimated State Dynamics

We fix the vector of estimated model parameters θ̂ (see Table 2.3) and compute for every

day the latent state X∗t (θ̂) in equation (2.12). In this way, we assess the out-of-sample

pricing performance of the models in Table 2.1, by relying exclusively on the ability of

each model’s state space to reproduce the cross-sectional and time-series patterns of the

implied volatility smile of index options. This out-of-sample implementation is similar

to (Huang and Wu 2004) and Christoffersen et al. (2009).

Out-of-Sample Pricing Performance

Panel B of Table 2.4 summarizes aggregate out-of-sample pricing results. Overall, SV3,1

and SVJ3,1 models clearly outperform diagonal models: The RMSE of model SV3,1

(SVJ3,1) is about 19% (22%) lower than the RMSE of model SV2,0 (SVJ2,0). Simi-

larly, the RMSE of model SVJ3,1 is about 21% lower than the RMSE of model SV3,0.

These out-of-sample RMSE reductions are on average larger than the in-sample RMSE

reductions in Panel A of Table 2.4. The SV3,1 and SVJ3,1 models also imply a higher pric-

ing reliability, relative to the SV2,0 and SVJ2,0 benchmarks, with out-of-sample RMSE

standard deviations that are 27% and 28% lower, respectively.

The higher performance of SV3,1 and SVJ3,1 models relative to benchmark models is
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Label Date Event description
(1) 1997-07-02 Devaluation of Thai Bhat (begin of Asian Crisis)
(2) 1998-08-17 Begin of Russian Crisis
(3) 2000-03-10 NASDAQ maximum
(4) 2008-05-30 Bear Sterns bailout
(5) 2008-09-15 Lehman bankruptcy
(6) 2011-08-05 US downgrade and EU debt crisis

Table 2.5: Description of crisis events indicated in the time-series plots with (1) to (6).

quite consistent over time. Figure 2.3, Panel A (Panel B) plots the time series of daily

RMSE for model SV2,0 (SVJ2,0), together with the percentage reduction in daily RMSE

of SV3,1 and SV3,0 (SVJ3,1) models.

The middle plot of Panel A shows that model SV3,1 almost always outperforms model

SV2,0, with a few rare exceptions at the beginning of 2001 and the end of 2008. Relative

performance improvements can be large: While their average is about 20%, they often

exceed 30%. Large improvements of pricing performance can arise during some periods

of financial crises or market distress, including the Russian debt crisis, the collapse of

LTCM, the bursting of the dot-com bubble and the recent Subprime Crisis. These

extreme market events are denoted with (1) to (5) in the time series plots and listed in

Table 2.5.

In contrast to the results for the SV3,1 model, pricing improvements implied by the

SV3,0 model in the bottom plot of Panel A are often negative, rarely above 30% and

substantially more volatile, which is a potential indication of model overfitting. The

bottom plot of Panel B shows that model SVJ3,1 virtually always outperforms model

SVJ2,0: There is no distinct period in which the SVJ3,1 model systematically behaves

worse than the SVJ2,0 model. Outperformance is often large and the reduction in daily

RMSE can in some cases exceed 50%.

The better pricing performance of SV3,1 and SVJ3,1 models relative to benchmark

models is consistent across moneyness regions and times to maturity. Panels A1 and

B1 of Table 2.6 present out-of-sample RMSE of SV2,0 and SVJ2,0 models, respectively,

stratified by moneyness and maturity. Panels A2 and B2 summarize the improvements

of the models SV3,1 and SVJ3,1 relative to the benchmark models.

Model SV3,1 outperforms model SV2,0 for all options with maturity above 20 days.

For options with time to maturity of up to 20 days, we find a large outperformance with

respect to out-of-the-money put options and a moderate underperformance for out-of-

the-money call options, indicating that for short-maturity options the model faces a

pricing tradeoff between calls and puts. Model SVJ3,1 outperforms model SVJ2,0 for all

listed option classes. In particular, the stratification of pricing error improvements across

moneyness in Panel B2 shows that model SVJ3,1 captures much better the skew patterns
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Panel A: Pure diffusion models
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Panel B: Jump diffusion models
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Figure 2.3: Time series of daily RMSE and daily RMSE improvements. Panel A compares
pure diffusive models. Top graph: RMSE of the benchmark SV2,0 model. Middle graph: relative
improvement of the SV3,1 model over SV2,0. Bottom graph: relative RMSE improvement of
SV3,0 over SV2,0. Panel B compares jump diffusion models. Top graph: RMSE of the benchmark
SVJ2,0 model. Bottom graph: relative improvement of the SVJ3,1 model over SVJ2,0. Grey areas
depict NBER recessions; crisis events indicated as (1) to (5) are listed in Table 2.5.
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Panel A1: RMSE for SV2,0 model
τ < 20 20 < τ < 80 80 < τ < 180 τ > 180 all

S/K < 0.80 0.549 2.517 2.521 2.401 2.436
0.80 < S/K < 0.90 1.514 2.367 2.269 2.462 2.371
0.90 < S/K < 1.00 1.766 1.898 1.901 2.654 2.079
1.00 < S/K < 1.10 1.193 1.420 1.959 2.859 1.883
1.10 < S/K < 1.20 1.452 1.984 2.721 3.190 2.499
1.20 < S/K < 1.30 2.117 2.080 2.667 3.507 2.785
1.30 < S/K < 1.40 2.128 1.952 2.550 3.701 2.901

S/K > 1.40 1.550 1.750 2.428 5.019 3.854
all 1.495 1.834 2.277 3.216 2.410

Panel A2: RMSE improvement of model SV3,1 over model SV2,0

τ < 20 20 < τ < 80 80 < τ < 180 τ > 180 all
S/K < 0.80 0.229 0.184 0.080 0.040 0.062

0.80 < S/K < 0.90 0.482 0.281 0.204 0.026 0.131
0.90 < S/K < 1.00 0.360 0.456 0.333 0.305 0.369
1.00 < S/K < 1.10 -0.002 0.171 0.395 0.342 0.283
1.10 < S/K < 1.20 -0.130 0.121 0.340 0.232 0.217
1.20 < S/K < 1.30 -0.071 0.084 0.286 0.188 0.186
1.30 < S/K < 1.40 -0.033 0.040 0.186 0.124 0.127

S/K > 1.40 -0.010 0.003 0.029 0.026 0.025
all 0.140 0.235 0.259 0.146 0.189

Panel B1: RMSE of model SV J2,0

τ < 20 20 < τ < 80 80 < τ < 180 τ > 180 all
S/K < 0.80 0.439 2.402 3.020 2.437 2.578

0.80 < S/K < 0.90 0.997 2.376 2.695 2.225 2.398
0.90 < S/K < 1.00 1.492 1.909 2.154 1.643 1.880
1.00 < S/K < 1.10 1.346 1.348 1.483 2.843 1.772
1.10 < S/K < 1.20 1.625 1.645 2.303 3.856 2.537
1.20 < S/K < 1.30 2.224 1.850 2.381 4.144 2.937
1.30 < S/K < 1.40 2.180 1.855 2.353 4.073 3.013

S/K > 1.40 1.557 1.733 2.319 4.956 3.791
all 1.468 1.741 2.220 3.227 2.373

Panel B2: RMSE improvement of model SV J3,1 over model SV J2,0

τ < 20 20 < τ < 80 80 < τ < 180 τ > 180 all
S/K < 0.80 0.021 0.322 0.291 0.384 0.348

0.80 < S/K < 0.90 0.169 0.335 0.328 0.372 0.346
0.90 < S/K < 1.00 0.016 0.271 0.369 0.367 0.297
1.00 < S/K < 1.10 0.056 0.190 0.246 0.414 0.293
1.10 < S/K < 1.20 0.120 0.112 0.276 0.368 0.289
1.20 < S/K < 1.30 0.101 0.114 0.231 0.296 0.252
1.30 < S/K < 1.40 0.060 0.098 0.153 0.191 0.172

S/K > 1.4 0.026 0.055 0.020 0.014 0.016
all 0.055 0.210 0.259 0.233 0.229

Table 2.6: RMSE and RMSE improvements over benchmark models stratified by maturity
and moneyness. For diffusion and jump diffusion models, we present out-of-sample RMSE of
benchmark models and percentage out-of-sample RMSE improvements of SV3,1 and SV J3,1
models, stratified by moneyness and maturity in days. All performance computations are based
on the “full” sample (1996-01/2009-09).
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Figure 2.4: Estimated time series of implied states
(
X11t, X12t, X22t

)
in models SV3,1 and

SVJ3,1. Black (red) lines correspond to states estimated for SV3,1 pure diffusion (SVJ3,1 jump
diffusion) model. Grey areas in each plot depict NBER recessions; crisis events, indicated as (1)
to (5), are listed in Table 2.5.

across maturities, with monotonically decreasing pricing improvements from option of

moneyness S/K < 0.80 (average improvements of 35%) to options of moneyness 1.30 <

S/K < 1.4 (average improvements of 17%). In summary, these findings indicate that

the better pricing performance of SV3,1 and SVJ3,1 models is unlikely due to overfitting,

but rather the consequence of a state space specification that is better able to reproduce

the structural dynamics of S&P 500 index option smiles.

Features of Latent State Dynamics

A key feature of models SV3,1 and SVJ3,1, relative to benchmarks SV2,0 and SVJ2,0, is

the form of their (matrix) state dynamics, which allows us to model dynamic volatility

interactions and unspanned skewness features. In Figure 2.4, we take a closer look at
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Figure 2.5: Implied state for the 2-factor reference models. Top panel: SV2,0. Bottom panel:
SVJ2,0. The black line depicts the first (slowly mean reverting) and the grey one the second (fast
mean reverting) factor.

the latent states X11t, X22t and X12t, estimated for models SV3,1 and SVJ3,1 (plotted in

black and red, respectively).

Remarkably, the time series for the SV3,1 (black) and SVJ3,1 (red) models are quite

similar and show little noise, although the state has been obtained by computing (2.12)

separately for each of the 3208 trading days and without penalizing large innovations.

As a comparison, Figure 2.5 depicts the state for the two factor reference models. Espe-

cially for the model SV2,0, the long-term volatility factor vanishes during the conundrum

period.

Overall, we estimate a volatility component X22 that is on average larger and less

persistent than component X11. For instance, in the SV3,1 model, 85% of the average

instantaneous variance is generated byX22t. At the same time, X22t has an unconditional

half life of about 16 days, which is about one tenth the half life of the unconditionally

more persistent component X11t. In the SVJ3,1 model, component X11t (X22t) is on

average responsible for about 39% (24%) of the total variance Vt = X11t+X22t+λtE(k2).

As a consequence, jump-driven volatility tends to generate on average a quite substantial

fraction (37%) of total variance. While the average total variance in the SV3,1 model is

dominated by a large not very persistent factor, in SVJ3,1 model total risk is more evenly

distributed across different potential sources of uncertainty. These distinct variance
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Figure 2.6: Unspanned stochastic skewness effects in the SV3,1 model. We plot the implied
time series of volatility feedback effects corrt(dSt/St, d(v1t + v2t)) for the unconstrained model
(black line) and under the additional constraint that X12t = 0 (grey line). Grey areas in each
plot depict NBER recessions in our sample period; important crisis events, indicated as (1) to
(5) in each plot, are listed in Table 2.5.

components are associated with a broader variety of persistence features: While λt has

a short unconditional half life of about 18 days, which is comparable to the half life of

factor X11t in SV3,1 model, X11t and X22t have average half lives of about 24 and 78

days, respectively.

Overall, these findings highlight a more pronounced multi-frequency volatility struc-

ture in model SVJ3,1, which is potentially useful in order to generate more flexible term

structures of implied volatility skews from very short to longer maturities.

The estimated state X12t of the SV3,1 and SVJ3,1 models in the middle panel of Figure

2.4 highlights additional useful features of our model. First, X12t can be both positive or

negative: It tends to be positive during phases of high volatility, but it can turn sightly

negative in other periods. In our models, X12t can play qualitatively different roles,

because it potentially jointly determines (i) the local persistence of volatility factors

X11t, X22t, (ii) the feedback effects of returns and volatility and (iii) the time varying

features of jump intensity λt in the SVJ3,1 model. We find that, at the models’ estimated

parameters, the largest quantitative implications of the out-of-diagonal component X12t

arise for the dynamics of risk neutral skewness. Within the SV3,1 model, state X12t

produces a substantial additional degree of variability of volatility feedback effects, which

is useful to better capture time varying skewness patterns within these models.

To understand this point more concretely, Figure 2.6 plots the volatility feedback

coefficient corrt(dSt/St, d(X11t+X22t)) implied by model SV3,1, both for the case where

the latent state is fictitiously restricted to be diagonal (X12t = 0, grey line) and in the

unconstrained case (X12t 6= 0, black line). The large additional variability of volatility

feedback effects generated by component X12t quantifies the impact of unspanned skew-
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ness factors in generating (volatility-unrelated) stochastic skewness in model SV3,1. For

the SVJ3,1 model, the impact of X12 is split into a volatility feedback channel and a

jump intensity channel, resulting in a similar effect.

2.3 Model Analysis

We develop a more formal analysis of the SV3,1 and SVJ3,1 models, in order to better

isolate the distinct effects of the components of the matrix state Xt on the shape of the

implied-volatility smile. To achieve this goal, we introduce a state reparametrization in

terms of (i) a volatility level factor Vt := tr(Xt), (ii) a bounded volatility composition

factor ξt and (iii) a further bounded factor αt. Using this decomposition, we achieve

several purposes. First, we can study the volatility-level unrelated tradeoff between

option implied volatility skew and term structure (S andM) in our models. Second, we

can isolate the contribution of each factor Vt, ξt, αt to the different pieces of the implied

volatility smile. Third, we show that with the new parametrization, the SV3,1 and SVJ3,1

models can be reinterpreted as two-factor volatility models with stochastic coefficients,

which depend exclusively on the third state variable αt. Therefore, αt is a useful factor

in order to isolate (i) new dynamic volatility interactions and (ii) additional unspanned

skewness effects produced by our setting, relative to, e.g, the SV2,0 and SVJ2,0 models.

2.3.1 Volatility Structure and a Useful State Reparameterization

We reparameterize state Xt in a more convenient coordinate system, using its standard

spectral decomposition:

Xt = OtVtO′t , (2.17)

where Vt =
(
V1t 0

0 V2t

)
is a diagonal matrix of positive eigenvalues V1t ≥ V2t and Ot =

[O1t,O2t] is an orthonormal rotation matrix with eigenvectors O1t,O2t. The matrix

of eigenvectors can be expressed in polar coordinates by means of a single parameter

αt ∈ (−π/2, π/2]: Ot =
(

cos(αt) − sin(αt)

sin(αt) cos(αt)

)
.

In this way we introduce the state variables:

Vt = V1t + V2t ,

ξt =
V1t − V2t

V1t + V2t
,

and αt. Vt is diffusive variance, while ξt ∈ [0, 1] can be interpreted as the composition

of the diffusive variance. State component αt finally captures volatility effects distinct

from volatility level or composition effects. The reparametrization of Xt in terms of

(Vt, ξt, αt) reads as follows.
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Lemma 1 (V -ξ-α decomposition). The symmetric 2× 2 state matrix Xt is decomposed

into a volatility part Vt, a structural part ξt, and a third state variable U(αt), as follows:

Xt =
Vt
2

[
Id2 + ξt · U(αt)

]
, (2.18)

where Id2 is the 2× 2 identity matrix and

U(αt) =

(
cos(2αt) sin(2αt)

sin(2αt) − cos(2αt)

)
. (2.19)

Identity (2.18) features a number of convenient properties. First, is homogenous in Vt.

Second, it further decomposes the volatility unrelated part of Xt into volatility structure

ξt and the component that depends only on αt, which captures dynamic properties not

linked to the level and the structure of the volatility. Fourth, identity (2.18) is convenient

to study expressions of the form tr(HXt), for some given 2 × 2 matrix H, because of

the rotation invariance properties of the trace, as discussed in (A.10). Such expressions

drive key quantities in the SV3,1 and SVJ3,1 models, such as the stochastic covariance

of returns and volatility or the time-varying jump intensity.

Remark 3. Since ξt and αt are bounded, identity (2.18) produces the feasible set of

admissible values of Xt for a given variance level Vt, by varying ξt and αt on a compact

grid.

Remark 4. Reparametrization (2.18) allows us to isolate within models SV3,1 and

SVJ3,1 the incremental pricing effects of (i) dynamic volatility interactions (i.e., non

diagonal matrices M,Q,R or Λ) and (ii) a higher dimensional state space (i.e., non di-

agonal matrix Xt), in comparison, e.g., to benchmark lower-dimensional dynamics with

independent factors. For instance, when αt = 0:

Xt =

(
V1t 0

0 V2t

)
, (2.20)

we obtain the state of a two-factor model with dynamic interactions. If, furthermore,

matrices M,R,Q,Λ are diagonal, we obtain the state space of models SV2,0 or SVJ2,0.

Similarly, if we also restrict ξt to 1, then

Xt =

(
V1t 0

0 0

)
, (2.21)

we obtain models SV1,0 and SVJ1,0 by letting only the upper diagonal elements of ma-

trices M,R,Q and Λ to be different from zero, see Appendix A.1.
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2.3.2 The Feasible Set of Volatility Skew and Volatility Term Structure

In the data, there is a substantial variability of implied volatility skew and term structure,

which is largely unrelated to the overall level of the volatility; see again Figures 2.1 and

2.2 for a simple illustration. Intuitively, models with dynamic volatility interactions and

unspanned skewness components help reproducing such a variability, because the skew

of the smile is less tied to volatility shocks. We study whether this flexibility is actually

useful for better modelling the volatility surface. For brevity, we focus on pure diffusive

models SV2,0, SV3,0 and SV3,1. Models with jumps imply similar results.

We proceed as follows. First, we fix three benchmark variance levels, corresponding

to low (
√
V1 = 0.1), average (

√
V2 = 0.2) and high volatility (

√
V3 = 0.3). Second we

use identity (2.18) to produce all admissible state matrices Xt given the variance levels

Vi. To do so, we vary ξ from 0 to 1 and α from −π/2 to π/2. Third, we compute the

model implied one-month skew (S) and at-the-money term structure (M),12 drawing

the boundaries of the set of attainable combinations of (M,S) as black lines. We call

this set the feasible set. Fourth, we add grey dots for observations in our data that lie

within ±5% around the respective volatility level. In this way, we obtain a model-implied

version of Figure 2.1, which can be used to quantify in the (M,S)-coordinate system

the degree of volatility-unrelated smile variability that is produced by a model. Panel A

of Figure 2.7 illustrates the feasible set for the SV3,1 model.

The feasible set of the SV3,1 model is a surface bounded by an ellipse. Low volatility

levels are associated, on average, with a more (less) limited range of possible model-

implied M (S) shapes. As we move towards higher volatility, from the left to the right

panel in Figure 2.7, we obtain a flatter skew and a more negatively-sloped term structure.

It is useful to compare the feasible sets of model SV3,1 to the data. Overall, we find that

the degree of (M,S)-data variability within each volatility regime is quite substantial.

For instance, when
√
Vt = 0.20, we observe term structures of both M = 0.2 and

M = −0.2 for an implied volatility skew of about S = −0.7. Such (M,S)−structures are

difficult to explain accurately within SV2,0−type models using a single set of estimated

parameters, because of the deterministic, approximate linear relation betweenM and S
in these models.

How do the feasible sets of the SV3,1 and a three-factor model with independent

volatility dynamics compare? To investigate this question, we plot in panel B of Figure

2.7 the feasible set of a three-factor Heston-type model SV3,0. Despite the identical

dimension of their state spaces, the feasible set of models SV3,0 and SV3,1 are very

different. The feasible set of model SV3,0 is bounded by triangular-like shape, in which

for any given skewness S the range of term structures M is restricted. For instance,

12 Appendix A.2.1 provides details on the computation of M and S.
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Panel A: Feasible set of model SV3,1
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Panel B: Feasible set of model SV3,0
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Figure 2.7: Feasible set of (M,S)-combinations for the SV3,1 and SV3,0 models. We plot the
feasible set of skewness and term structure combinations for three volatility levels. The grey dots
in each panel represent (M,S) combinations observed in the data for a a range of ±5% around
the volatility level, e.g. 19%-21% for the middle panel.

when
√
V t = 0.2 and S = −0.5, the feasible range of term structures is between about

M = 0 and M = 0.2. In contrast, the feasible range of term structures for model SV3,1

in Panel A is between M = 0.4 and −0.4, which is more similar to the range of term

structures between about M = 0.3 and M = −0.4 in the data.

Comparative Statics

Which is the relation between model parameters and volatility-unrelated skewness and

term structure effects? To understand this link, we study the comparative statics of

model-implied proxies M and S, with respect to model parameters M , Q, R, Λ and β.
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Figure 2.8: Comparative statics of the feasible set with respect to selected model parameters
in SV3,1 model. For a volatility level

√
Vt = 20%, we plot in black the ellipse of admissible

points for the combinations of short term (long-term) skewness S and term structure M, in the
left (right) panel. We then vary in each plot one parameter by −20% (+20%) and plot in blue
(red) the resulting feasible set. The light grey dots in each plot represent (M,S)-combinations
observed in the data.

For brevity, we focus on the most significant parameters M21, M22, Q22, R12, R22 and β,

estimated in Table 2.3 for model SV3,1. Similar insights are obtained for model SVJ3,1.

For
√
Vt = 0.17, we present in Figure 2.8 the feasible sets, both for the short and

the long term segments of the smile. Comparative statics for other volatility levels are

similar. In each Panel, we vary the model parameter by ±20% and plot the resulting

feasible set in red and blue, respectively. We find that the comparative statics of the

different parameters are broadly consistent with the main model intuition. The mean

reversion parameters M21, M22 mainly influence the range of feasible term structures

(M). This is intuitive, as these parameters are directly linked to the mean reversion of

the volatility factors. Parameter Q22, which is linked both to the leverage effect and the

volatility of volatility affects the admissible range of both M and S. Finally, volatility-
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feedback parameters R12, R22, virtually only influence the implied volatility skew (S),

while long term volatility parameter β essentially affects only the admissible range of

implied volatility term structures (M).

Volatility Structure and the Shape of the Feasible set

How does the elliptical shape of the feasible set in Figures 2.7 and 2.8 relate to the

volatility structure captured by (ξt, αt)? We use once more decomposition (2.18) to

study the exact shape and composition of the feasible set of (M,S) combinations for an

illustrative volatility level of
√
Vt = 0.1 . In Figure 2.9, we plot different combinations

of skewness and term structure for the following parameter values: ξ = (0, 0.2, . . . 1) and

α = (−π/4, 0, π/4, π/2).

Given the fixed volatility level, we find that each admissible (M,S) combination

lies on an elliptical curve, in which ξt parameterizes the distance from the center of

the ellipse and αt parameterizes the location of each point on the ellipse, i.e., each

point inside the ellipse is fully described by the coordinate pair (ξ, α). In particular,

given a volatility composition ξt = 1, say, we see that αt can generate a wide degree of

variations inM and S, which is by construction unrelated to the volatility level and the

volatility composition. For instance, as αt moves from −π/4 to π/4 in Figure 2.9, we

obtain points that are moved counter-clockwise from regions of strong negative skew S
and strong positive term structure M to regions of slightly negative skew S and strong

negative term structureM. Recalling that αt = 0 identifies the state space of a diagonal

two-factor model, we can also directly see the more restricted set of admissible (M,S)

combinations, which are all on an approximately piecewise linear function in (M,S)

space, produced by these models as volatility composition ξt changes.

2.3.3 Implied Volatility Skew and Term Structure Approximations

For the pure diffusion model SV3,1, the shape of the feasible set in Figure 2.9 can be

studied analytically using the following proposition.

Proposition 1 (Feasible set of the model SV31). In the limit τ → 0, the feasible set of

combinations of St and Mt in the model SV3,1 has the exact form of an ellipse.

Proof. We use the short term asymptotics of (Durrleman and Karoui 2008):

St := lim
τ→0

∂IVt
∂K

=
1

2V
3/2
t

Covt(dSt/St, dVt) (2.22)

Mt := lim
τ→0

∂IVt
∂τ

=
1

2V
1/2
t

(
1

dt
Et(dVt)− V 3/2

t Ct − 3VtS2
t

)
(2.23)
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Figure 2.9: Admissible set of skewness and term structure combinations in model SV3,1 for a
volatility level

√
Vt = 10%. We plot the admissible model-implied combinations of short term

skewness S and term structure M, implied for different volatility compositions ξ := V1−V2
V1+V2 =

0.2, 0.4, 0.6, 0.8, 1, and different unspanned skewness parameters α = −π/4, 0, π/4, π/2 in model
SV3,1. For ξ = 0, the set collapses to a single point in the center of the ellipse. Due to the
periodicity of cos(2α), model-implied combinations for π/2 are equal to those for −π/2. Shape
and location of the ellipse depend on the volatility level.

where K is the strike price, IVt the Black-Scholes implied volatility and Ct is a

convexity adjustment which has little quantitative impact in out setting. Expression

(2.22) has already been obtained as R′QXt in (2.7). From dynamics (2.2) we obtain:

1

dt
Et(dVt) = βQ′Q+ 2tr(MXt), (2.24)

which is the leading term of (2.23) the limit τ → 0. We can now use decomposition

(2.18) to rewrite the pair (Mt,St) in polar coordinates:

Mt = V
1/2
t

(
M0 + ξt

[
f3 cos(2αt) + f4 sin(2αt)

])
(2.25)

St =
1

V
1/2
t

(
S0 + ξt

[
f1 cos(2αt) + f2 sin(2αt)

])
(2.26)

S0 = 1
2 ((RQ)11 + (RQ)22) M0 = 1

2

(
M11 +M22 + Tr[βQ′Q]V −1

t

)
f1 = 1

2 ((RQ)11 − (RQ)22) f3 = 1
2 (M11 −M22)

f2 = 1
2 ((RQ)12 + (RQ)12) f4 = 1

2 (M12 +M21)

50



2. Three make a Dynamic Smile

Observing that (2.25) and (2.26) describe a general ellipse with center (S0,M0)

concludes the proof.

The functional forms (2.25) and (2.26) explain our first empirical results in Figure

2.7 and 2.9. The center of the ellipse (S0,M0) is completely determined by the level Vt
of the volatility. Consistently with Figure 2.9, volatility composition ξt parametrizes the

distance of each point from the center.

We can now use the nesting relationships (2.20) and (2.21), to see how the feasible set

shrinks for lower dimensional models. The restriction for the two factor Heston model

SV2,0 is αt = 0. In this case, (2.25) and (2.26) parametrize a line in (S,M)-space. For

the one-factor Heston model SV1,0, the feasible set shrinks to the point (S0,M0).

Overall, these findings confirm the key role of volatility interactions and unspanned

skewness features for an improved modelling of volatility-unrelated skewness and term

structure tradeoffs.

Volatility-Unrelated Term Structure of Implied Volatility Skews

In models SV3,1 and SVJ3,1, dynamic volatility interactions and unspanned skewness

produce a dynamic term structure of implied volatility skews. Using our (Vt, ξt, αt)

parametrization, we isolate more clearly these effects. Figure 2.10 illustrates the resulting

model-implied mechanics for
√
Vt = 0.17 and ξt = 1.13

In Panel A variations of αt produce a broad variety of term structures of implied

volatility skews for model SV3,1. For instance, while for αt = π/2 the model generates a

steep increasing term structure, combined with a steep skew at short and long maturities,

for αt = 0 it yields flat or decreasing term structures, combined with a pronounced (flat)

skew at short (long) maturities. These effects are richer in the SVJ3,1 model, because

of the short horizon effects produced by the jump component. The decomposition of

the implied volatility skew term structure into (i) A diffusive part (middle row of Panel

B) and (ii) a residual generated by the jump term (bottom row of Panel B) produces

additional insights. As expected, the diffusive part of the model dominates the implied

volatility skew term structures for maturities above roughly three weeks, while the jump

component has dominating effects for maturities roughly up to three weeks. Interestingly,

the model-implied jump-driven segment of the smile can feature both strong short-term

skews (αt = 0.5) or a short term smile (αt = 0), independently of the level and the

structure of the volatility. This evidence confirms that the SV3,1 and SVJ3,1 models

can produce a rich variety term structures of implied volatility skews, which are largely

independent of the level and the composition of the volatility.

13 The choice ξt = 1 is for illustration and produces the most pronounced implied volatility smile effects.
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Panel A: Pure diffusion model SV3,1
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Panel B: Jump diffusion model SVJ3,1
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Figure 2.10: Model-implied volatility surfaces for a volatility level
√
V = 0.20 and a volatility

composition ξ = 1, in dependence of unspanned skewness parameter α. Panel A present plots for
the pure diffusion SV3,1 model. Panel B presents plots for the SVJ3,1 jump diffusion model. In
panel B, the top graphs plot the total volatility surface, the middle one illustrates the contribution
of diffusive volatility to the surface and the bottom one illustrates the contribution of the jump
component.
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Panel A: PCA stratified by SV3,1 model-implied α
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Panel B: PCA stratified by SVJ3,1 model-implied α
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Figure 2.11: Factor loadings of the first two principal components of the implied volatility
surface as a function of model-implied component αt. The left column presents results for an
unconditional PCA. The following five columns present results of 5 conditional PCAs, in which
we stratify the data into quintiles of model-implied state αt. Panel A (B) applies a stratification
with respect to the model-implied αt of SV3,1 (SVJ3,1).

Is there also a way to isolate volatility-unrelated effects in the term structure of

implied volatility skews using a more model-free approach? To address this question,

we stratify our sample in quintiles of estimated latent state component αt for SV3,1

and SVJ3,1 models, respectively. We then perform within each quintile a Principal

Component Analysis of the S&P 500 index option implied volatility surfaces, using a

standardized grid of maturities (1, 2, 3, 4, 6, 9, 12 months) and moneynesses (Black-

Scholes deltas of 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8). We find on average two principal

components in each quintile, which are plotted in Figure 2.11, Panel A and B for α

estimates in the SV3,1 and SVJ3,1 models, respectively.

53



2. Three make a Dynamic Smile

Within each quintile, the first estimated principal component reflects a very sta-

ble volatility level, which is remarkably unrelated to moneyness and term structure.

The second component is instead typically related to both the moneyness and maturity

dimensions, indicating that it acts as a factor moving the entire term structure of im-

plied volatility skews. Interestingly, this second component has quite different properties

across quintiles, indicating that the term structure of implied volatility skews reacts dif-

ferently, i.e., dynamically, in dependence of the proxy αt for unspanned skewness. These

findings are related to our alternative interpretation of the SVJ3,1 model as stochastic

coefficient models in Sec. 2.3.4.

Stochastic Feedback Effects and Volatility-Unrelated Risk Neutral Skewness

A main driver of risk neutral skewness in our models is a stochastic volatility feed-

back between returns and volatility. Naturally, the volatility-unrelated variations in risk

neutral skewness are linked to the degree of volatility-unrelated variation of volatility

feedback effects. We illustrate these aspects in Figure 2.12 for model SV3,1, in which we

have:

corrt(dSt/St, dVt) =
tr(R′QXt)√

tr(Xt)tr(Q′QXt)

=
tr(R′Q(I2 + ξtU(αt)))√

tr(I2 + ξtU(αt))tr(Q′Q(I2 + ξtU(αt)))
, (2.27)

where the last equality follows from Lemma 1. Precisely, we plot correlation (2.27), for

different volatility compositions ξt, as a function of unspanned skewness parameter αt.

The case αt = 0 corresponds to the range of possible model-implied volatility com-

positions and volatility feedback effects in model SV2,0. For this case, the volatility

feedback effect is monotonic in the volatility composition. For instance, as ξt goes from

1 to 0 (i.e., V1t−V2t → 0; V1t ≥ V2t) the correlation between volatility and returns goes

from an upper bound of about −0.15 to a lower bound of about −0.45. This feature

generates a tight skewness–term structure tradeoff: The model tries to fit a more neg-

ative skew in the data with a stronger volatility feedback effect, which also forces the

implied state to a more equal volatility composition. In doing so, the model puts higher

weights on the more strongly mean reverting factor V2t, implying ceteris paribus a more

negative implied volatility term structure.

The introduction of an unspanned skewness dimension in model SV3,1 weakens this

tight link and enlarges the range of admissible volatility composition and feedback effects.

For instance, while in model SV2,0 (αt = 0) a volatility feedback below −0.4 is accessible

only with a volatility composition ξt ∈ [0, 0.25], in model SV3,1 it is achievable by any

volatility composition when αt is above approximately 0.1.
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Figure 2.12: Model-implied correlations between returns and volatility in model SV3,1, for
different volatility compositions ξ = 0, 0.25, 0.5, 0.75, 0.9, 1, as a function of unspanned skewness
parameter α ∈ (−π/2, π/2].

2.3.4 Stochastic Coefficients Model

The risk neutral dynamics of the rotated volatility factors V1t, V2t in (2.17) provide

additional insight into the role of these state variables. Using Itô’s Lemma we obtain,

after lengthy calculations:14

dV1t =

(
β(Q̃′tQ̃t)

11 + 2(M̃t)
11V1t +

V1t(Q̃
′
tQ̃t)

22 + V2t(Q̃
′
tQ̃t)

11

V1t − V2t

)
dt+ 2

√
V1t(Q̃′tQ̃t)

11dν1t (2.28)

dV2t =

(
β(Q̃′tQ̃t)

22 + 2(M̃t)
22V2t −

V1t(Q̃
′
tQ̃t)

22 + V2t(Q̃
′
tQ̃t)

11

V1t − V2t

)
dt+ 2

√
V2t(Q̃′tQ̃t)

22dν2t (2.29)

with (ν1, ν2)′ a standard bivariate Brownian motion and 2 × 2 random matrices M̃t =

O′tMOt and Q̃t = O′tQOt. This shows that the V1t and V2t are conditionally inde-

pendent stochastic volatility processes, in which the (stochastic) volatility of volatility

and drift parameters depend only on the random matrix Ot. Figure 2.13 plots the time

series of M̃11, M̃22, Q̃11 and Q̃22 for model SV31 .

Conditional on Ot, processes (V1t,V2t) behave as independent Bessel processes, in

which the linear drift is perturbed by the nonstandard term:

±V1t(Q̃
′
tQ̃t)

22 + V2t(Q̃
′
tQ̃t)

11

V1t − V2t
. (2.30)

14 See also (Benabid, Bensusan and El Karoui 2009). The proof is available on request.
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Figure 2.13: Dynamic parameter representation for model SV3,1 (left panels) and SVJ3,1 (right

panels). Top: mean reversion parameters M̃11 for the small factor (grey line) and M̃22 for the
large factor (black line). The horizontal lines depict the case for the nested two-factor model

(i.e. α = 0). Bottom: leverage parameters R̃Q11 for the small factor (grey line) and R̃Q22 for
the large factor (black line). Horizontal lines depict the nested two factor case.

This term ensures that the ranking of eigenvalues V1t,V2t is preserved, but it is typically

small. We can therefore interpret the risk neutral dynamics of the volatility components

V1t, V2t in our model as a two-factor random coefficient stochastic volatility model, in

which the random coefficients are driven by the unspanned skewness component Ot =

O(αt). Variable αt can impact in two ways on the model-implied volatility surface. First,

via the stochastic mean reversion and volatility of volatility coefficients in dynamics

(2.28)-(2.29), it produces a variety of effects on the term structure of the volatility.

Second, it impacts on the time varying jump intensity and the volatility feedbacks, as:

λt = λ0 + tr(ΛXt) = λ0 + (Λ̃t)
11V1t + (Λ̃t)

22V2t , (2.31)
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and

1

2
Covt(dSt/St, d(V1t + V2t)) = tr(R′QXt) = (R̃′Qt)

11V1t + (R̃′Qt)
22V2t , (2.32)

where Λ̃t = O′tΛOt and R̃′Qt = O′tR′QOt. Note that conditional on Ot, equations (2.31)

and (2.32) define a a time varying intensity and volatility feedback effect consisten with

a two-factor Bates (2000)-type model. Relative to this model, model SVJ3,1 produces an

additional degree of skewness variability by making the coefficients (Λ̃t)
ii and (R̃′Qt)

ii in

formulae (2.31) a (2.32) stochastic. Since this additional variability is completely driven

by matrix Ot = O(αt), these unspanned skewness effects are largely captured by state

variable αt.

2.4 Conclusions

Using a new option valuation framework, featuring interdependent volatility risks and a

stochastic skewness component unrelated to the volatility factors, we analyze the pricing

of S&P 500 index options. We estimate two specifications of our model based on options

data from January 1996 to September 2009 and find that they provide superior pricing

performance over a number of benchmark two- and three-factor affine volatility models

in the literature, with reductions in average root mean square pricing error of about 20%

out-of-sample. We find that the improved fit of our model is largely due to an improved

modelling of the term structure of implied-volatility skews. We explain the role of the

matrix state space in generating implied volatility skews and term structures. We show

that the feasible set of the diffusive version of our model is approximately an ellipse at

short maturities and that it is considerably larger than the admissible set of a 3-factor

Heston model.

In addition to highlighting the usefulness of multi-factor risk specifications for mod-

elling the dynamics of implied volatility smiles, our results emphasize the key role of

dynamic volatility interactions and volatility-unrelated skewness for option valuation

purposes. More generally, they raise the question of how the dynamics of a multi-

factor option pricing model ought to be specified. Our findings show that three-factor

state dynamics based on the class of MAJD in (Leippold and Trojani 2008) can pro-

vide a powerful framework for the specification of interacting volatility components and

volatility-unrelated skewness effects within a tractable specification.
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Appendix A

Appendix for “Three make a

Dynamic Smile”

A.1 Nested Models

Several well-studied affine option pricing models with independent factors are nested in

our framework, if we allow β to be a diagonal matrix instead of a scalar. In this case,

the independent volatility factors can be written as diagonal elements of Xt. Below, we

show the equivalence of the processes and how the parameters can be converted from

the notation in the original papers into our notation.

A.1.1 Diffusive Models

The return dynamics of the SV2,0 two-factor Heston model in Christoffersen et al. (2009)

is
dS

S
= (r − q)dt+

√
V1dz1 +

√
V2dz2 (A.1)

where r is the risk-free rate, q the dividend yield, zi are independent Brownian motions

and Vi are independent stochastic volatility factors with the following dynamics:

dVi = (ai − biVi)dt+ σi
√
Vidwi i = 1, 2 (A.2)

where the correlation between dzi and dwj is δijρi.

Using the notation X =

(
V1 0

0 V2

)
and dZ =

(
dz1 dZ12

dZ21 dz2

)
, dynamics (A.1) can be written as

dS

S
= (r − q)dt+ tr[

√
XtdZ],

which is exactly the diffusive part of our return equation (2.1). To show the equality

of the volatility factors, we establish that the diagonal elements of Xt in (2.2) are inde-
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pendent CIR processes when the parameter matrices M,R,Q are diagonal. We start by

explicitly writing the diagonal elements of Xt in this case:

dXii =
(
βQ2

ii + 2MiiXii

)
dt+

∑
k

(
√
X)ki dBki (A.3)

To eliminate the seeming interdependence of the diagonal elements, we introduce n new

independent Brownian motions dWi:

dWi =
1√
Xii

∑
k

(
√
X)ki dBki

This allows us to express (A.3) as n independent CIR processes:

dXii =
(
βQ2

ii + 2MiiXii

)
dt+ 2Qii

√
XiidWi (A.4)

To convert our notation into the notation of (A.2), simply set

ai = βiiQ
2
ii, bi = −2Mii, σi = 2Qii, and ρi = Rii.

Remark 5. Our state matrix Xt will generally not remain diagonal, even if all parameter

matrices and the initial state X0 are diagonal. This does not void the nesting argument,

because X12,t does not enter the pricing equation in that case. There is no economic

interpretation for the process X12,t in such a setting, it is a mere artifact of writing a

two-dimensional CIR process in matrix form.

A.1.2 Jump Parameters

The jump intensity in Bates (2000) is given as λt = λ0 + λ1V1t + λ2V2t, which is already

identical to our jump intensity λt = λ0 + tr(ΛXt), if we write Λ =

(
λ1 0

0 λ2

)
. Our choice of

the jump size distribution is the same as in Bates (2000).

A.2 Short-maturity Smile Asymptotics

We choose a convenient, low-dimensional framework to study the unspanned volatility

effects in our model. Let IVt(T,K) be the Black-Scholes option implied volatility at

time t for maturity T and strike price K, and consider the following approximation of
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the implied volatility smile:1

IV t(T,K) = V
1/2
t + St

K − St
St

+Mt(T − t) +
1

2
Ct
(
K − St
St

)2

(A.5)

with

St = St lim
T→t

∂IV (T, St)

∂K
, Mt = lim

T→t

∂IV (T, St)

∂T
, Ct = S2

t lim
T→t

∂2IV (T, St)

∂2K
. (A.6)

Where V 1/2 is the short-term, at the money volatility level, St is the skew for short

maturities, i.e., the short maturity limit of the derivative of the at-the-money implied

volatility with respect to moneyness K/St. Mt is the smile term structure for short

maturities, i.e., the short maturity limit of the derivative with respect to maturity T .

Finally, Ct is the smile convexity for short maturities.

A.2.1 Construction of Level, Skewness and

Term Structure Factors from Data and Model

For our empirical studies, we construct proxies for the skewness and term structure

factors using two different methods. Whenever we calculate these quantities from the

data or from model fits, we perform regression (A.5), separately for each day of data

(model-implied prices). To obtain the short-term skew S and the short term structure

M, we consider only options with τ < 73 days and 0.85 ≤ K/St ≤ 1.15. To obtain

the long-term skew S long

t and the long term structure Mlong

t in Figures 2.1 and 2.8, we

consider options with τ ≥ 122 days and 0.7 ≤ K/St ≤ 1.3.

Whenever we calculate feasible set as in Figures 2.7, 2.8 and 2.9, we calculate the

derivatives (A.6) numerically. More precisely, we approximate the skew as St = ∂IV (T,St)
∂K

at τ = 0.25 (6) months for the short (long) term. We approximate the at the money

term structure as Mt = IV (τ1)−IV (τ0)
τ1−τ0 , where τ1 = 0.25 (12) months for the short (long)

term structure and τ0 = 0. In the SV3,1-model, we calculate IV (τ0) = tr(X)1/2 and use

this quantity directly.

1 See, among others, Dumas, Fleming and Whaley (1998), Durrleman (2010) and Durrleman and Karoui
(2008).
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A.3 Proofs and Additional Expressions

A.3.1 Proof of Lemma 1

Since Xt is a symmetric positive definite matrix, we can always write

Xt = OtVtO′t , (A.7)

where Vt is a 2 × 2 diagonal matrix of positive eigenvalues V1t,V2t and Ot = [O1t,O2t]

is a 2 × 2 orthogonal matrix of eigenvectors O1t,O2t having unit norm. A convenient

parametrization of Ot by means of a single parameter αt ∈ [−π/2, π/2] is obtained using

standard polar coordinates:

Ot =

(
cos(αt) − sin(αt)

sin(αt) cos(αt)

)
. (A.8)

The sum of V1t and V2t naturally parametrizes the spot volatility of returns. Thus we

can define the volatility level factor Vt and a dimensionless factor ξt that measures the

composition of the volatility:

Vt := tr(Xt) = tr(Vt). ξt :=
V1t − V2t

V1t + V2t
=
V1t − V2t

Vt
(A.9)

Using this notation we obtain:

Xt = OtVtO′t = OtVt
Vt
Vt
O′t

= Vt

[
Ot
(

1+ξt
2

0

0 1−ξt
2

)
O′t
]

=
Vt
2

[
OtId2O′t + ξt · Ot

(
1 0

0 −1

)
O′t
]

=
Vt
2

[
Id2 + ξt · Ut

]
where Id2 is the 2× 2 identity matrix and

U(αt) =

(
cos(2αt) sin(2αt)

sin(2αt) − cos(2αt)

)
.

Note that U(αt) is a reflection matrix with trace zero and determinant minus one

such that all components are bounded in the interval [−1, 1]. Therefore, it can be

conveniently used to specify different correlation processes, such as, for instance, those

needed to specify stochastic volatility feedback effects.
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Remark 6. In order to make decomposition (2.18) unique, one has to choose an ordering

of the eigenvalues, and thus the sign of ξt. We choose V1t > V2t and therefore 0 ≤ ξt ≤ 1.

Remark 7. Lemma 1 can be used to decompose expressions of the form Tr[HXt] when

H is a 2× 2 parameter matrix, as follows:

Tr[HXt] =
Vt
2

[
Tr(H) + ξt · Tr

(
H U(αt)

)]
=

Vt
2

[
Tr(H) + ξt ·

(
cos(2αt)(H11 −H22) + sin(2αt)(H12 +H21)

)]
(A.10)

A.3.2 Parameter Identification

We first discuss the identification of the diffusive parameters. Every stochastic process

is uniquely characterized by its infinitesimal generator. The infinitesimal generator of

the joint process for stock returns Yt := dSt/St and the factor Xt is (see Leippold and

Trojani (2008)):

LY,X =

(
r − q − 1

2
Tr[X]

)
∂

∂Y
+

1

2
TrX

∂2

∂Y 2
+ 2Tr[XR′QD]

∂

∂Y
+

+Tr
[(
βQ′Q+MX +XM ′

)
D + 2XDQ′QD

]
(A.11)

where (D)ij = ∂
∂Xij

is the matrix differential operator.

The parameter set of the diffusive process is θ = {β,M,R′Q,Q′Q}. Parameter iden-

tification requires that the infinitesimal generator be unique for each set of parameters

given any state Xt. Maximal identification aims at achieving this goal through the min-

imal set of parameter restrictions. Equation (A.11) contains an ambiguity that has to

be resolved. Let

Zt = DXtD
−1,

then

L(Xt, θ) = L(Zt, θZ)

with θZ = {β,DMD−1, DR′QD−1, DQ′QD−1}.
We now want to identify parameter restrictions on θ that only admit D to be the

identity matrix. Without loss of generality, we can assume |det(D)| = 1. Next we

observe that the expression Q′Q is symmetric by construction, thus DQ′QD−1 needs to

be symmetric, as well. Symmetry of DQ′QD−1 is ensured if D is orthogonal (D′ = D−1),

thus D must be a rotation matrix.

In a next step, we choose M to be lower triangular. This requires D to be lower
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triangular, in order to ensure DMD−1 to be lower triangular, as well. If D is orthogonal,

lower triangular and has a determinant of one, it must be a diagonal matrix
(
α 0

0 β

)
with

elements α, β = ±1. We now have DMD−1 =
(

M11 0

β/α M21 M22

)
. By choosing the sign of

M2,1 to be positive, we exclude the case α 6= β, which concludes the identification of the

diffusion parameters.

Remark 8. Our choices for M implicitly identify some features of the hidden state.

The choice for M to be lower triangular selects the order of the mean reversion speeds

of the eigenvalues of Xt. In our setting, this implies that the dominant factor with the

fast mean reversion is X22t. Our choice for M21 > 0 identifies the sign of X12t.

We now need to relate the composite parameters Q′Q and R′Q to the parameter

matrices Q and R. We choose Q to be the unique Choleski decomposition of Q′Q,

i.e. Q upper triangular and positive definite. By simple matrix algebra, we obtain

R = (Q′)−1(R′Q)′. We further add the restriction that R be upper triangular. This is

not an identification assumption and serves to reduce the number of parameters.

The identification of the jump parameter Λ follows a similar argument. The jump

intensity (see Assumption 1) is λ0+tr[ΛXt], with tr[ΛXt] = Λ11X11,t+(Λ12+Λ21)X12,t+

Λ22X22,t. To identify the out-of diagonal elements of Λ, we choose Λ to be upper trian-

gular, i.e. Λ21 = 0.
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Chapter 3

The Price of the Smile and

Variance Risk Premia

U
nderstanding the properties of the market price of volatility risk is an im-

portant issue in financial economics. The recent literature has reached a

consensus on the fact that unexpected shocks in aggregate future market

uncertainty are priced in modern financial markets, by estimating a time-

varying negative volatility risk premium for long variance swap positions or long volatility

option portfolios. However, less is known about (i) which characteristics of volatility risk

generate the premium, (ii) how the premium depends on the investment horizon (i.e.,

the term structure of volatility risk premia), and (iii) the relation between volatility

risk premia, option risk premia and market risk premia. To address these questions, we

specify a flexible three-factor volatility model with tractable option transforms and we

estimate the joint dynamics of option-implied risks, option-implied risk premia and the

term structure of variance risk premia.

Option-implied risks are the risks generated by unexpected variations of the option-

implied volatility smile. Therefore, they can be summarized by the vector of state

variables that control the conditional uncertainty about future volatility. Option-implied

risk premia are the risk premia implicitly paid by investors for an option exposure to such

risks. By construction, they span the risk premium of a shock in the price of volatility,

across option moneyness and maturity, i.e., they capture the market price of the option-

implied volatility smile. While the market price of the smile captures the risk premium

demanded for an exposure to shocks in the option-implied price of volatility, the variance

risk premium is the excess return required to trade realized variance risk. Investors can

trade realized variance either by trading variance swaps in over-the-counter markets or

by dynamically delta-hedging static option portfolios. Therefore, using information on

the dynamics of the option-implied volatility smile and the returns of synthetic option

portfolios, it is possible to identify the dynamics of option-implied risks, together with
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the term structures of option-implied risk premia and variance risk premia.

We identify option-implied risks and the market price of the smile using a novel parsi-

monious three-factor stochastic volatility model, in the class of matrix affine jump diffu-

sion (AJD) proposed by Leippold and Trojani (2008). In contrast to benchmark models

in the literature, our specification is characterized by (i) the presence of interdependent,

potentially mutually-exciting, volatility risks, (ii) a skewness component disconnected

from volatility and (iii) a compensation for variance risk that can vary independently

of the level of the volatility. The first property enables a more direct identification and

interpretation of hidden, potentially correlated and highly time-varying, volatility risks.

The second property helps to generate a variability of the option-implied skewness more

consistent with the data, because the link between option-implied volatility and skewness

in our specification is more loose than in most benchmark volatility models. The third

property allows the excess returns of volatility strategies to depend on option-implied

skew dimensions that are partially disconnected from the volatility, making the term

structure of variance risk premia partly disconnected from the level of the volatility.1

We estimate the dynamics of the option-implied volatility smile and the term struc-

ture of variance risk premia using a simple two-step procedure, which exploits the joint

information of a panel of S&P500 option prices and a panel of excess returns of option

volatility portfolios, in the sample period from January 1996 to January 2013. In the first

step, we exploit the information from the panel of option prices to estimate the physi-

cal and risk neutral dynamics of the hidden volatility risks driving the S&P500 implied

volatility surface, together with the risk-neutral properties of the jump component in

returns. This allows us to identify the dynamics of option-implied risks and the market

price of the smile. In the second step, we estimate the parameters of the jump volatility

risk premium, from a simple arbitrage-free regression of the payoffs of option volatility

portfolios on the option-implied risks estimated in the first step. This identification

strategy allows us to isolate the joint dynamics of option-implied risks, option-implied

risk premia and the term structure of variance risk premia, without relying on direct

information about market excess returns.

We first find that our model produces an excellent pricing performance and fit,

relative to other benchmark two- and three-factor models in the literature. For instance,

the pricing improvements generated by our model relative to a benchmark two-factor

Bates (2000)-type model, are between 20% and 30%, using different metrics of in- and

out-of-sample pricing performance.2 We document that such improvements in pricing

1 Our model specification nests a number of important affine stochastic volatility models in the lit-
erature, such as Bates (2000) two-factor jump diffusion or Heston (1993)-type two-factor volatility
models. These models have independent volatility components and a stochastic skewness that is
linearly related to the volatility components.

2 The improvement in in-sample (out-of-sample) fit, measured by the increase of the (pseudo) likelihood
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performance follow from the failure of two-factor models to generate enough volatility-

unrelated variability in option-implied skews. More importantly, our model yields a sharp

identification of option-implied risk and risk-premium dynamics, in terms of a small set

of three interdependent volatility components, which parsimoniously span the option-

implied volatility surface, the market price of the smile and the term structure of variance

risk premia. We find that these components capture risk and risk premium dynamics

at three distinct frequencies, inducing different contributions to the term structure of

option-implied risks and risk premia. The two components with the lowest and highest

degree of persistence influence both the diffusive and the jump volatility of returns, while

the third component only affects the jump volatility and also has a moderate degree of

persistence.3

Second, we find that each of the volatility risks identified by our approach is linked to

a natural interpretation, in terms of the relation with observable option-implied proper-

ties. The least persistent volatility risk has a weekly correlation of 0.84 with the 30-days

at-the-money implied volatility. The second least persistent volatility risk has a weekly

correlation of -0.89 with the 30 days option-implied skew. Therefore, it is naturally re-

lated to short-term option-implied skewness. More importantly, while this component is

dynamically correlated with the 30 days option-implied volatility, an important fraction

is orthogonal to it. We find that this fraction has a correlation of -0.86 with a 30-

days option-implied skew residual, defined as the residual of a regression of the 30-days

option-implied skew on the 30-days option-implied volatility. In this sense, the second

least persistent component of the volatility correlates with short term option-implied

skew dynamics unrelated to high-frequency implied-volatility shocks. The last, most

persistent, volatility risk is also dynamically correlated with the 30 days option-implied

volatility. However, the fraction of this risk that is orthogonal to the volatility has a

weekly correlation of 0.83 with the residual of a regression of the option-implied skew

term structure on the 30-days option-implied volatility. In this sense, it captures dy-

namics of the option-implied skew term structure that are unrelated to high-frequency

option-implied volatility shocks. According to this evidence, we interpret the least persis-

tent volatility risk as a high-frequency implied volatility factor. Similarly, we interpret

the two more persistent volatility risks as mid-run and long-run option-implied skew

factors partially disconnected from high-frequency implied volatility shocks.

Third, we find that the market price of the smile is completely spanned by the mid-

run and the long-run volatility components alone. To illustrate, the monthly market

price of the long-run volatility risk is proportional to the level of this risk, while the

function, is in the order of 4.5% (9.7%).
3 To illustrate, the half-lifes of the first two components in our sample are 0.11 years and 1.25 years,

respectively. The half-life of the third component is 0.28 years.
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market price of the short-run volatility risk has a correlation of about 0.99 with the level

of the mid-run risk.4 These findings disclose our two option-implied skew components

as key risk premium factors that parsimoniously capture the dynamics and the term

structure of option risk premia. We find that the market price of the mid-run and the

long-run volatility components typically has a downward sloping term structure, while

the term structure of the market price of the short-run volatility risk is flat for horizons

from 3 months on.

Fourth, we study the relation between volatility risks, option risk premia and the

excess returns of popular volatility strategies. The time-variation of all volatility risks

implies highly time-varying and unambiguously negative conditional variance risk pre-

mia, ranging between zero and −16 percent squared (−11 percent squared), on an an-

nualized basis, for a monthly (an annual) investment horizon. Variance risk premia are

largest (in absolute value) when the price of option-implied market insurance is large,

typically during phases of financial distress and market turmoil, e.g., during the Asian

and Russian crises in the late nineties, shortly before the collapse of the internet bubble

in 2000, shortly after the Lehmann bankruptcy in September 2008 and the US down-

grade in August 2011, and during the EU debt crisis. Consistent with intuition, we find

that the largest fraction of variance risk premia is explained by a premium for jump

variance risk. To illustrate, at short horizons of one month variance risk premia are

virtually completely explained by a time-varying premium for pure jump variance risk,

while at horizons of twelve months the premium for diffusive variance explains about one

fourth of the total variance risk premium. This structure of the variance risk premium is

naturally related to the option-implies risks and risk premia estimated in our model. At

short horizons, the pure jump variance risk premium is completely explained by the level

of the probability of a jump, which depends on all option-implied risks. In contrast, at

longer horizons variance risk premia are almost completely explained by option-implied

risk premia, which are spanned by mid-run and long-run volatility risks.

Fifth, the structure of volatility risks and risk premia in our model has sharp im-

plications for the dynamics of the term structure of variance risk premia. We find that

while the term structure of variance risk premia is most of the time downward sloping,

reflecting a higher relative price of long-run option-implied market insurance, it can be

strongly upward sloping in periods of market distress. The most prominent cases, in

which we observe an inversion of the term structure of variance risk premia, arise im-

mediately after both the Lehmann default in September 2008 and the US downgrade

in August 2011, when the spread between annualized 12 month and 1 month variance

risk premia has been as large as +5.8% squared and +2% squared, respectively. The

4 Similarly, the monthly market price of the mid-run risk has a high correlation of 0.87 with its level
and of 0.90 with the level of the long-run risk.
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inversion of the term structure of variance risk premia is explained by the interplay

of the term structures of option-implied risks and risk premia in our estimated model.

While the first term structure is decreasing and implies the increasing term structure of

pure jump variance risk premia, the second term structure is decreasing and implies a

decreasing term structure of diffusive and jump intensity variance risk premia. During

periods of market turmoil, the term structure of pure jump variance risk premia can be-

come strongly upward sloping for short periods of time, when high-frequency volatility

risks escalates, causing the inversion of the term structure of variance risk premia.

Finally, we investigate the predictive ability of option-implied volatility risks, both

for market returns and for the realized returns of option volatility portfolios, based

on forecasting horizons between one month and twelve months. Predictive regressions

results suggest that option-implied risks have an economically relevant predictive power,

both for S&P500 index and for volatility returns, with a dominating contribution to

the predictive power deriving from mid-run and long-run volatility risks.5 The affine

specification of variance risk premia in our model is preferred by the out-of-sample

predictability results, in which the largest degree of predictability is obtained for the

model-implied variance risk premium predictions. In contrast, affine specifications of

market risk premia are dominated by a simple nonlinear specification that allows the

coefficients of the predictive relation to depend on the composition of the volatility.

Consistent with a long-run risk explanation for market risk premia, we find that a simple

trading strategy, which balances the option-implied premium for mid-run and long-run

volatility risks with the frequency-composition of the volatility, produces economically

large out-of-sample excess returns.

Review of the Literature. Our work draws from a large and important literature

that has studied the economic sources of volatility variations, the dynamics of the option-

implied price of volatility, the origins of a negative variance premium and the relation

with market risk premia. We contribute to this literature along several dimensions.

First, we adopt a novel multivariate specification of stochastic volatility, which al-

lows us to parsimoniously identify multi-frequency volatility risks, option risk premia

and variance risk premia using three mutually exciting volatility components. Follow-

ing Heston (1993)’s seminal single-factor volatility model, it has been early recognized

that volatility is a multi-frequency phenomenon, potentially dependent on several risks

with distinct persistence and variability properties. Bates (2000) was among the first to

5 To illustrate, we find that the in-sample R2 for future returns, using the two option-implied skew
components alone as predictive variables, ranges between 5% and 25%, for prediction horizons between
1 and 12 months, with a peak at the quarterly forecasting horizon. The in-sample R2 for the excess
returns of option volatility portfolios are larger, ranging between 25% and 60%, with a peak at the 9
months forecasting horizon.
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estimate with a panel of option prices a tractable two-factor model for index returns, in

which the diffusive and the jump volatility are affine functions of two independent sources

of risk having different persistence and variability. Some of the subsequent papers, such

as Huang and Wu (2004) and Christoffersen et al. (2009), have quantified in more detail

the improvements in the fit of the option-implied volatility smile provided by two-factor

models with independent volatility components. The more recent literature has explored

reacher multi-frequency specifications, in which volatility is driven by three sources of

risk. Carr and Wu (2009b) estimate a three-factor model with independent components

and a self-exciting jump volatility. Andersen, Fusari and Todorov (2015) specify a flex-

ible three-factor model with self-exciting diffusive and jump volatilities that can jump

simultaneously. Both approaches clearly improve on the fit of option-implied volatility

dynamics provided by two-factor models. Our three-factor specification of stochastic

volatility is different and complements these approaches, based on three mutually ex-

citing volatility risks and risk premium factors that follow an affine jump diffusion on

the state space of symmetric positive definite matrices.6 This modeling approach allows

us to obtain a direct and natural identification of potentially correlated option-implied

state variables. At the same time, it produces a parsimonious specification of a multi-

frequency dynamics for interdependent option-implied risks and risk premia, in which

option-implied skew variations are note entirely spanned by volatility shocks.7

While the goal of our study is naturally related to Carr and Wu (2009b) and Andersen

et al. (2015), it is also very different in several important dimensions. Carr and Wu

(2009b) use information from a panel of option prices to identify in a semi-structural

model the economic channels underlying the variations of equity volatility, in order to

map them onto a leverage, a volatility feedback and a self-exciting component. Andersen

et al. (2015) specify a very flexible option-pricing model to identify with a penalized

nonlinear least-squares approach the option-implied risks revealed by a panel of S&P500

index options. They remain agnostic about the specification of option and volatility

risk premia and study the role of option-implied risks as factor risk premia for the

excess returns of index and volatility strategies. We start from a different modelling

approach for the dynamics of option-implied risks and premia, in order to understand

the implications for the dynamics of the term structures of option and variance risk

premia. Given our need for a parsimonious multi-frequency specification of volatility

risks and risk premia, we adopt a three-factor matrix jump diffusion with jumps in

6 See, among others, Gourieroux (2006), da Fonseca et al. (2008) and Buraschi, Porchia and Trojani
(2010) for examples and applications of affine matrix-valued diffusions, as well as Leippold and Trojani
(2008) for a broad class of affine matrix jump diffusion processes.

7 To illustrate, while the half-life of the most persistent option-implied risk estimated in our model is
about one year and a quarter, the half-life of the least persistent option-implied risk is about three
weeks.
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index returns. While it would be in principle possible to introduce a jump component

also in the volatility state variables, such an extended model would require in general a

set of not innocuous additional assumptions, in order to preserve parameter parsimony

and to identify the jump and the diffusion components in volatility risks and volatility

risk premia. For instance, to identify the risk-neutral and the physical dynamics in their

model, Carr and Wu (2009b) assume that the time-varying probability of a co-jump in

returns and volatility follows a pure-jump single-factor dynamics. Such an assumption

restricts the jump variance risk premia of different horizons to be perfectly correlated,

which we feel excessively constrains the term structure of variance risk premia for our

analysis.

Second, our paper borrows from a large literature that has studied the trading of

realized nonlinear risks, the market price of volatility and the term structure of variance

risk premia. In a first strand of this literature, Dupire (1993) and Neuberger (1994)

where among the first to propose synthetic option portfolio strategies for trading proxies

of realized variance, followed by Carr and Madan (1998), Demeterfi, Derman, Kamal

and Zou (1999) and Britten-Jones and Neuberger (2000), among others. From the price

of such portfolios, the price of volatility risk can be measured in a model-free way, giving

rise to a variety of synthetic variance swap contracts; Carr and Lee (2009) provide an

excellent review of this literature.8 More recent papers have focused on the properties

of different variance swaps in presence of jumps, as well as on the definition of swap con-

tracts for trading higher-order risks linked, e.g., to skewness or kurtosis. Martin (2012),

(Neuberger 2012) and (Bondarenko 2014) consider definitions of variance swap payoff

that are robust to jumps. (Kozhan, Neuberger and Schneider 2010) analyze synthetic

skew option portfolios and investigate the relation between skewness and variance risk

premia, while (Schneider and Trojani 2014b) make use of Hellinger skew swaps to trade

and price fear. (Schneider and Trojani 2014a) introduce a general class of divergence

swaps for trading nonlinear risks and study in a model-free way the relation between

the premia for divergence risks of different orders. Our paper draws from the insights

produced in this literature, by identifying the term structure of variance risk premia with

a two-step procedure that extracts risk premium information from a panel of returns of

synthetic variance swaps. This approach allows us to exploit in a more comprehensive

way the information generated by S&P500 index options for the term structures of op-

tion and variance risk premia, without relying on a complete specification of market risk

8 Variance risk was made publicly tradable in 1993 with the introduction of VIX futures (now called
VXO) by the CBOE. The definition of the VIX contract was revised in 2003, because hedging the old
VXO contract turned out to be difficult, as pointed out also by Carr and Wu (2006). Jiang and Tian
(2007) study the discretization errors implied by the VIX definition, when only a finite grid of option
strikes is available, and propose an interpolation/extrapolation scheme for computing variance swap
rates synthetically.
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premia.

A second strand of this literature has established the existence of a negative risk pre-

mium for market volatility and has studied its properties. Bakshi and Kapadia (2003)

provide first evidence on a negative variance risk premium using delta-hedge call option

positions. Similar evidence is obtained by Wu (2011), using the payoffs of (over-the-

counter) variance swaps, and by Carr and Wu (2009a), using synthetic variance swaps

on several underlyings, who show that variance risk premia are significant and nega-

tive, both in bull and bear markets, and partly unspanned by the level of variance swap

rates. Bondarenko (2014) also finds a negative and economically significant variance risk

premium using synthetic option portfolios. Todorov (2010) and Bollerslev and Todorov

(2011), among others, analyze the composition of variance risk premia, concluding that

they are dominated by a premium for jump variance risk, which tends to increase after

a negative jump has occurred. Our findings and model implications are consistent with

the evidence provided by this literature, in particular the negativity of the premium for

market volatility at different horizons and the dominating contribution of jump variance

risk premia to the total variance risk premium. Additionally, our model implies an ex-

plicit decomposition of variance risk premia into the contribution of three option-implied

risks with distinct persistence features. We find that short term variance risk premia are

partly disconnected from option risk premia in periods of financial market distress, when

they are significantly dependent on high-frequency option-implied volatility shocks and

mid-frequency option-implied skewness shocks. In contrast, longer term variance risk

premia are spanned by option risk premia and dominated by mid-term and long-term

option-implied skewness shocks.

A third strand of this literature has studied the dynamics of the term structure

of variance risk premia. Ait-Sahalia et al. (2012) and Filipovic, Gourier and Mancini

(2015) estimate an affine and a quadratic two-factor volatility model, based on (over-the-

counter) variance swap rates of maturities between two months and two years, focusing

on the implications for the term structure of variance risk premia and for optimal port-

folio choice with variance swaps, respectively. The first paper finds a negative and

downward sloping term structure of variance risk premia. The term structure of jump

variance risk premia is usually downward sloping, but it can be upward sloping during

turbulent times, when the estimated contribution of the jump component becomes large

at the short end of the term structure. The second paper shows that the optimal port-

folio including variance swaps contains an economically relevant long-short position in

long term versus short term variance swaps, which allows investors to earn the premium

implied by a decreasing term structure of variance risk premia and to simultaneously

hedge a short term increase in volatility. While we identify variance risk premia from

S&P500 index option prices in centrally organized exchanges, our results can be use-

ful for interpreting also the findings on (over-the-counter) variance swap risk premia.
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Using our three-factor volatility model, we parsimoniously summarize the information

embedded in S&P500 index option of maturities between one year and about two weeks,

thus spanning also the short end of the option-implied volatility smile. In this way, we

identify three option-implied state variables with very distinct implications for the term

structures of option and variance risk premia. While we find a term structure of vari-

ance risk premia that is usually decreasing, we document that it can be strongly upward

sloping in economically relevant periods of financial distress. The inversion of the curve

is driven by the high-frequency component in the term structure of pure jump vari-

ance risk premia, which is strongly upward sloping when high-frequency option-implied

volatility and skewness risks are large. In contrast, the long end of the term structure

of variance risk premia is more directly related to the long end of the term structure

of option-implied risk premia, which is dominated by the long-term components of the

option-implied skewness.9 The multi-frequency structure of variance risk premia in our

model is consistent with a market price of volatility risk that is related at the short-

end to high frequency shocks generated by situations of financial distress. Adrian and

Rosenberg (2008) decompose market volatility into two weakly persistent components

with a half-life of less than a quarter, which are priced in the cross-section of stock re-

turns. They explicitly interpret their highest frequency volatility component as a proxy

of skewness risk reflecting the tightness of financial constraints. Adrian and Shin (2010)

show that expansions and contractions of repo and commercial paper funding predict

variations in option-implied volatility, while Adrian, Moench and Shin (2013) document

empirically the link between financial intermediaries balance sheets and asset prices.

Muir (2013) emphasizes the high-frequency character of financial crises and explains in

a theoretical model with financial intermediation why the term structure of the price of

volatility and the term structure of variance risk premia are inverted in phases of finan-

cial turmoil. The dynamics of variance risk premia estimated by our model, in particular

the high-frequency character of the inverted term structure of variance risk premia in

periods of financial distress, is consistent with the economic intuition motivating this

literature.

Finally, our paper is related to the literature studying in a predictive regression

context the risk premium factors for market returns and their relation to variance risk

premia. Bollerslev, Tauchen and Zhou (2009b) where the first to document the pre-

dictive power of variance risk premia, proxied by the difference of implied and realized

volatilities, for future S&P500 index returns, finding predictive regression R2s of about

7% for prediction horizons of about one quarter. Similarly, in an international context,

9 Such a rich term structure dynamics has likely interesting implications also for optimal portfolio choice
with variance swaps, as according to our findings shorting long term against short term variance swaps
can be very expensive in periods of turbulent markets.
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Bollerslev, Marrone, Xu and Zhou (2014) introduce a proxy for a global variance risk

premium and obtain predictive regression R2s of up to 12% for S&P500 index returns

at horizons of 4 months. Bekaert and Hoerova (2014) decompose the VIX into an ex-

pected volatility and a risk premium component. They find that the latter predicts

stock returns, that the expected volatility forecasts economic activity and that both are

early indicators of financial instability. Chung, Tsai, Wang and Weng (2011) find no

predictive power of the VIX volatility index alone for future S&P500 index returns, with

an estimated predictive regression coefficient that changes sign in different sub-samples,

while Johnson (2012) shows that the VIX term structure produces adjusted R2 of about

5.2% at a 3 month horizon. Andersen, Fusari and Todorov (forthcoming) specify a

flexible stochastic volatility model and estimate from a panel of S&P500 options three

option-implied state variables, in order to study their relation to index and volatility risk

premia. They find that a single option-implied skewness factor unspanned by volatility

shocks has a large predictive power for variance and S&P500 index returns.

Our predictive regression results are consistent with the findings in this literature

and provide a number of additional insights. First, we find that mid- and low-frequency

option-implied premia for volatility jointly produce predictive power for future market

returns. Second, such predictive power is virtually completely exhausted by mid- and

low-frequency volatility shocks that are orthogonal to high-frequency volatility shocks.

Third, mid-frequency and low-frequency option risk premia are naturally related to the

risk premium factor for unspanned option-implied skewness in Andersen et al. (forth-

coming), as they correlate quite exhaustively with the latter in our sample.10 Fourth, our

mid-frequency and low-frequency option risk premium factors are also naturally linked

to observable option-implied skew components unspanned by volatility, as they largely

correlate with two volatility-residuals of option-implied skew and option-implied skew

term structure. Finally, while option-implied unspanned skewness is likely related to

market risk premia, we find that its relation to market equity premia is possibly not

affine and dependent on the frequency-composition of the volatility. This evidence sup-

ports identification procedures for the market price of the smile and the term structure

of variance risk premia that do not depend on a complete affine specification of market

excess returns.

The rest of the paper is organized as follows. Section 3.1 introduces our three-

factor stochastic volatility model for the dynamics of S&P500 option-implied risks and

risk premia. It then provides the closed-form expressions for the term structure of

10 To illustrate, full sample regressions of the predictive factor for unspanned skewness in Andersen
et al. (forthcoming) on our two option-implied risk premium factors produce significant predictive
regression results, with predictive R2’s of about 95%. We are grateful to Nicola Fusari for having
provided us with the time series of the option implied state variables estimated in Andersen et al.
(forthcoming).
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variance risk premia used in our two-step identification strategy. Section 3.2 presents

our empirical findings. We first report results on in- and out-of-sample pricing accuracy

and fit, and compare them with those of benchmark two- and three-factor models in

the literature. In a second step, we analyze the properties of the option-implied risks

estimated by our approach, we highlight their link to observable option-implied risk

factors, and we disclose the relation between option-implied risks, the market price of

the smile and the term structure of variance risk premia. Finally, we study the predictive

ability of option-implied risks for future market returns and for the returns of popular

volatility strategies. Section 3.3 concludes and highlights avenues of future research.

3.1 Model

Our model is characterized by the presence of (i) mutually exciting risks, (ii) a skewness

component disconnected from volatility and (iii) a compensation for variance risk that

can vary independently of the volatility. To link our approach to well-known benchmarks

in the literature, we embed Bates (2000) two-factor jump diffusion in a more general state

dynamics, within the class of matrix affine jump diffusions (AJD) proposed in Leippold

and Trojani (2008). We first specify the index return dynamics under the risk-neutral

measure. In a second step, we specify an affine market price of risk for the volatility

components and for the jump risk in index returns. This characterizes the dynamics

of option-implied risks, option-implied risk premia and the term structure of variance

risk premia. We leave the specific form of the market price of diffusive return shocks

unspecified, as it is unnecessary to identify the smile and variance risk premium dynamics

in our two-step identification approach.

3.1.1 A Two-Component Benchmark Volatility Model

In Bates (2000) model, returns are driven by two independent volatility factors and fol-

low a Poisson-Normal jump process with a stochastic intensity. Two different important

channels generate a stochastic skewness of returns: The standard feed-back effect be-

tween returns and volatility and a time-varying probability of return jumps. We denote

by St the value of an equity index at time t, by r and q the (constant) interest rate and

dividend yield, and by v1t, v2t the two volatility components. Under the risk-neutral

probability measure Q, the return dynamics is:

dSt
St−

= (r − q − λtk)dt+
√
v1tdz1t +

√
v2tdz2t + kdNt , (3.1)
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where z1, z2 are independent standard Brownian motions and the volatility components

have the dynamics:

dvit = (αi − βivit) dt+ σi
√
vitdwit ; i = 1, 2 , (3.2)

where w1 and w2 are independent standard Brownian motions, having correlation ρ1

and ρ2 with z1 and z2, respectively. Return jumps kdNt feature an affine jump intensity

λt := Pt(dNt = 1)/dt = λ0 + λ1v1t + λ2v2t , (3.3)

and a jump size k with expected value k̄ = EQ(k).11 The well-known volatility feedback

effect is captured by the (stochastic) correlation between returns and diffusive volatility

v1t + v2t:

Corrt

(
dSt
St−

, d(v1t + v2t)

)
=

ρ1v1t + ρ2v2t√
(v1t + v2t + λtEQ(k2))(σ2

1v1t + σ2
2v2t)

, (3.4)

where the first expression in the denominator, Vt := v1t + v2t + λtE
Q(k2), is the total

spot return variance. In addition to the volatility feedback effect, the time varying jump

intensity (3.3) generates a second direct channel for a stochastic jump-driven return

skewness. Moreover, distinct mean reversion speeds or volatilities of volatility associated

with volatility components v1t and v2t generate a stochastic term structure of volatility,

as the composition of the volatility varies over time.

Two features of Bates (2000) model are interesting to understand the motivation of

our modeling approach. First, volatility components v1t, v2t are mutually independent.

Therefore, they are difficult to identify and interpret directly, using observable, poten-

tially correlated, option-implied components. Second, the jump intensity (3.3) and the

volatility-feedback effect (3.4) are both functions of the volatility components v1t and v2t

alone, meaning that shocks to risk neutral skewness are always correlated with a shock

to volatility. In other words, a time-variation of the risk neutral skewness is always asso-

ciated with a variation of the volatility. This feature produces a tight relation between

volatility and option-implied risk-neutral skewness, which can be difficult to reconcile

with the data. Figure 3.1 provides a simple illustration of this important aspect.

In Figure 3.1, top panel, we scatter plot two option-implied measures of short-

term risk-neutral skewness and volatility term structure, respectively. We compute

such option-implied measures both model-free (grey data points), based on the panel

11 Different assumptions can be made on the risk-neutral distribution of log return jumps ln(1 + k).

Bates (2000), e.g., assumes ln(1 + k) ∼ N
(

ln
(
1 + k̄

)
− δ2

2
, δ2

)
. Alternative specifications include,

e.g., a double exponential or similar distributions.
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Figure 3.1: Option-implied short term (1 month) skew Sshort versus term structure M, both
normalized by the volatility level. Grey dots: Data. Black dots – top panel: Fitted values of a
two factor Bates model (SVJ2,0). Black dots – bottom panel: Fitted values of our model (SVJ31).
We stratify by the short term at the money implied volatility at ±5% around the selected level,
i.e., 17.1%–18.9% for the second panel. The exact calculation method for the option-implied
skewness S and term structure M is explained in Appendix B.3.

of S&P500 index options in the time span from January 1996 to January 2013, and us-

ing the fitted parameters and volatility states of a two-factor Bates (2000) model (black

data points). To isolate the effect of the volatility level on the option-implied skewness

and option-implied volatility term structure, we scale each option-implied proxy by the

level of the 30-days at-the-money implied volatility and we stratify the sample in four

volatility bins, associated with an at-the-money volatility of 12%, 16%, 24% and 28%,

respectively.

The evidence in Figure 3.1 highlights at least two interesting features. First, in each

scatter plot of the top panel, we observe a large variability of model-free option-implied

short-term skewness and option-implied volatility term structure. This is a direct indi-

cation of a conditional dynamics in the S&P500 option-implied volatility smile, which

is partially disconnected from the level of the volatility. Second, the joint variability

of option-implied skewness and option-implied volatility term structure produced by a
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two-factor Bates (2000) model yields a very tight, almost deterministic, relation between

these two proxies of the smile. This is a simple indication of the fact that two-factor spec-

ifications of option-implied risks might excessively restrict the model-implied dynamics

of the smile, relative to the evidence provided by S&P500 option data. This intuition

is supported by the scatter plots in the bottom panel of Figure 3.1, which collect the

evidence produced by a three-factor model with interdependent volatility risks and a

skewness component disconnected from the volatility. Compared to the top panel, each

scatter plot produces a more consistent evidence between model-implied and model-free

findings, which better reproduces the loose link between option-implied skewness and

option-implied volatility term structure in the data.12

3.1.2 Modelling Interdependent Risks and

Skewness Components Disconnected from Volatility

Following the intuition provided by the previous section, we study a class of stochastic

volatility models, in which risk-neutral skewness can feature a component disconnected

from volatility, which interacts with all volatility components. We model this component

using a third state variable v12t and specify its interactions with v1t, v2t based on the

dynamics of a 2× 2 symmetric and positive definite matrix diffusion Xt, where:

Xt :=

(
X11t X12t

X12t X22t

)
=

(
v1t v12t

v12t v2t

)
. (3.5)

Overall, this means that we consider a family of three-factor stochastic volatility models

with latent state (X11t, X22t, X12t).

State Dynamics

Positive definiteness of Xt ensures positivity of X11t, X22t. Therefore, it is a natural

choice to consider symmetric positive definite matrix processes.

Assumption 9. Symmetric positive definite matrix process Xt follows the affine dy-

namics

dXt = [βQ′Q+MXt +XtM
′]dt+

√
XtdBtQ+Q′dB′t

√
Xt , (3.6)

where β > 1, M,Q are 2 × 2 parameter matrices and B is a 2 × 2 standard Brownian

motion under the risk-neutral martingale measure Q.
√
Xt denotes the unique symmetric

12 (Gruber, Tebaldi and Trojani 2010) discuss the role of dynamically interacting components of short-
run volatility, long-run volatility and unspanned skewness for parsimoniously capturing the dynamics
of the option-implied volatility surface.
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square root of Xt.

Remark 10. X is the affine Wishart diffusion process first introduced by (Bru 1991).13

When matrices M or Q are not diagonal, states (X11t, X22t, X12t) are dynamically in-

terconnected, because their drift and volatility functions depend on all state variables

in equation (3.6). When matrices Q and M are diagonal, (X11t, X22t) is an autonomous

Markov process with components distributed as independent Heston (1993)-type volatil-

ity models. Therefore, under these constraints the state dynamics in Bates (2000) option

valuation model arises as a particular case of our setting.

Risk-Neutral Return Dynamics and Nested Models

Given the matrix state dynamics (3.6), we specify the risk-neutral return dynamics by

the following matrix AJD process.

Assumption 11. Under the risk neutral probability measure Q, the dynamics of St is

given by:
dSt
St−

= (r − q − λtk)dt+ tr(
√
XtdZt) + kdNt , (3.7)

where Xt follows the dynamics (3.6),

Zt = BtR+Wt

√
I2 −RR′ , (3.8)

with tr(·) denoting the trace operator, W another 2 × 2 standard Brownian motion,

independent of B, and R a 2 × 2 matrix such that I2 − RR′ is positive semi-definite.

Return jumps follow a compound Poisson process kdNt with jump intensity λt = λ0 +

tr(ΛXt), for λ0 ≥ 0, a 2× 2 matrix Λ and an iid jump size k such that k̄ = EQ[k]. The

distribution of log return jumps J := ln(1 + k) is a double exponential with parameter

λ+, λ− > 0 and density f given by:14

f(J) =
λ+λ−

λ+ + λ−

[
e−λ

−J−−λ+J+
]
, (3.9)

where J+ := max(J, 0) and J− := max(−J, 0) are the positive and negative parts of log

return jumps.

Dynamics (3.7) incorporates a stochastic risk-neutral skewness disconnected from the

13 Positive semi-definiteness (definiteness) of Xt follows if β > 1 (β > 3), ensuring that the volatility
components cannot cross (reach) the zero boundary.

14 We adopt a double exponential distribution for risk-neutral log return jumps because of its parsimony
and flexibility. We have estimated our model also using a normal distribution, as in Bates (2000),
and we have obtained very similar results to those reported in the paper.
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diffusive volatility. To see this, note that:

V art

(
dSt
St−

)
= tr(Xt) + λtE(k2) = X11t +X22t + λtE(k2) , (3.10)

i.e., the diffusive variance tr(Xt) = X11t+X22t does not depend on X12t. However, X12t

impacts the jump-driven volatility and skewness, because λt is a function of X12t, when

Λ is not diagonal. At the same time, X12t also influences the volatility feed-back effect,

because:

Covt

(
dSt
St−

, d(X11t +X22t)

)
= 2tr(R′QXt) . (3.11)

This shows that whenever matrices RQ′ and Λ are not diagonal, component X12t di-

rectly influences the jump-driven volatility, the jump-driven skewness and the diffusive

skewness. At the same time, X12t is disconnected from the diffusive volatility.

Remark 12. When matrices R and Q are diagonal, equation (3.11) collapses to Bates

(2000) specification of volatility feedbacks. Similarly, when matrix Λ is diagonal, λt
coincides with Bates (2000) specification of a stochastic intensity. Thus, when M,Q,R

and Λ are all diagonal, Assumption 11 yields Bates (2000) two-factor volatility model.15

If, in addition, λ0 = 0 and Λ = 0, a two factor Heston (1993)-type volatility model is

obtained, which has been recently studied empirically in Christoffersen et al. (2009). All

these diagonal models feature independent volatility components and a return skewness

fully connected to volatility.

Assumption 11 provides a convenient framework for studying the pricing accuracy

and the dynamic fit of models with interdependent components and a risk-neutral skew-

ness disconnected from volatility. Table 2.1 provides an overview of benchmark single-

factor, two-factor and three-factor models related to Assumption 11. We denote by

SVrq diffusion and by SVJrq jump diffusion models, according to the numbers r and q

of state variables and skewness components disconnected from volatility, respectively.

For comparison, we also report the total number of parameters necessary for a complete

specification of the risk-neutral and the physical dynamics in our two-step estimation

approach.

Note that single- and two-factor Bates (2000)-type models are all nested by Assump-

tion 11. The single jump diffusion model not nested by our framework in Table 2.1 is the

three-factor Bates (2000)-type model. Table 2.1 also provides useful information about

the parsimony of our framework for specifying a model with an additional state vari-

15 In order to nest two-factor Bates (2000)- and Heston (1993)-type models in our option pricing ap-
proach, we specify β to be a diagonal matrix B when both Q and M are diagonal matrices.
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able driving the option-implied smile, relative to benchmark two-factor Heston (1993)-

and Bates (2000)-type models. Indeed, while our three-factor matrix jump-diffusion has

three additional parameters relative to two-factor Bates (2000)-type models, a three-

factor Bates (2000)-type model has as many as seven additional parameters. Such a

larger number of additional parameters can generate additional estimation and iden-

tification challenges, when estimating the joint dynamics of option-implied risks and

option-implied risk premia from a panel of option price observations.16

Option Valuation

Assumption 11 and Assumption 16 yield closed-form risk-neutral transforms in our ma-

trix AJD setting, which are useful to compute the prices of plain vanilla options with

transform methods; see also, e.g., (Carr and Madan 1999) and (Duffie et al. 2000),

among others. Following (Leippold and Trojani 2008), the exponentially affine condi-

tional Laplace transform for YT := log(ST ) is given by:

Ψ(τ ; γ) := Et [exp (γYT )] = exp
(
γYt + tr

[
A(τ)Xt

]
+B(τ)

)
, (3.12)

where τ = T − t, A(τ) = C22(τ)−1C21(τ) and the 2 × 2 matrices Cij(τ) are given in

closed form in Section B.1.1 of the Appendix.

Remark 13. In contrast, e.g., to Bates (2000)-type models, the computation of the

risk neutral transform cannot be reduced to calculations that involve only scalar expo-

nential and logarithmic functions, because Cij(τ) and B(τ) are functions of a matrix

exponential and a matrix logarithm, respectively. This feature makes the computation

of Laplace transform (3.12) typically at least one order of magnitude more computation-

ally intensive. Furthermore, (3.12) contains a matrix logarithm, which is a multivalued

function. We use the methods described in Gruber (2015) to control discontinuities of

the complex matrix logarithm and to mitigate the computational cost of evaluating the

Laplace transform.

Affine Market Price of Risk and Physical Dynamics

Following Leippold and Trojani (2008), we can price the different risks in our economy

with a stochastic discount factor, linked to a market price of (Brownian) shocks B in

Assumption 11, which preserves an affine dynamics under physical probability measure

P.

16 When focusing on the risk-neutral distribution Q, the number of risk neutral parameters in a two-
factor Bates (2000)-type model is 13, while in a three-factor Bates (2000)-type model it is 18. In our
matrix AJD model, the total number of risk-neutral parameters is 16.
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Assumption 14. The change of measure from the physical probability P to the risk

neutral probability Q is such that:

dB∗ = dB −
(√

XtΓ +
1

2
√
Xt

(β∗ − β)Q′
)
dt , (3.13)

where either β∗ > 3 or β∗ = β, Γ is a 2× 2 parameter matrix and B∗ is 2× 2 standard

Brownian motion under the physical probability measure.17

Remark 15. Under Assumption 14, the dynamics of process Xt with respect to the

physical probability P is given by:

dXt = [β∗Q′Q+M∗Xt +Xt(M
∗)′]dt+

√
XtdB

∗
tQ+Q′dB∗t

′√Xt , (3.14)

where

M∗ = M + ΓQ . (3.15)

When β 6= β∗, the condition β∗ > 3 implies that process X is positive definite under

probability P. This feature ensures a well-defined change of probability measure, from

the physical probability P to the risk neutral probability Q, associated with the market

prices of risk for B∗−Brownian shocks in equation (3.13). In all other cases, we require

β∗ = β.18 For the case where β = β∗, we obtain a completely affine market price of

risk for our matrix AJD. Whenever β 6= β∗, we obtain an extended affine specification

of the market price of risk that allows the market price of the volatility factors X11t

and X22t to be inversely related to the (diffusive) volatility. This feature can produce a

large conditional market price of volatility when volatility is low. (Cheridito, Filipovic

and Kimmel 2007) propose a class of yield curve models with an extended affine market

price of risk, in order to improve the specification of bond excess returns.

A useful feature of the market price of risk specification in Assumption 14 is that

the market price of a shock in the matrix AJD dynamics (3.14) can depend on the

other option-implied components X11t, X22t, X12t. This feature implies a market price of

a dynamic smile with extensive interconnections, whenever matrix ΓQ is not diagonal.

This is easily seen, e.g., from the difference of the P and Q expectation of a shock in state

Xt, which captures the instantaneous risk premium of each option-implied component

in our model:

1

dt
(EP − EQ)[dXt] = (β∗ − β)Q′Q+ ΓQXt +XtQ

′Γ′ . (3.16)

17 1/
√
Xt denotes the unique inverse square root of positive definite matrix Xt.

18 Empirically, our model estimations suggest that β∗ < 3, which effectively reduces the number of
parameters that need to be estimated.
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This risk premium is state dependent whenever M∗ −M = ΓQ 6= 0. If matrix M∗ −
M is diagonal with diagonal components D1, D2, risk premia between option-implied

components are disconnected:

1

dt
(EP − EQ)

[
d

(
X11t X12t

X12t X22t

)]
= (β∗ − β)Q′Q+

(
2D1X11t (D1 +D2)X12t

(D1 +D2)X12t 2D2X22t

)
,

because the risk premium of each option-implied component is proportional to the level

of the component itself. This is the situation emerging, e.g., in Bates (2000)-type models.

Whenever matrix M∗ −M = is not diagonal, the risk premium of the diagonal option-

implied component X11t (X22t) is an affine function of both X11t (X22t) and X12t, while

the risk premium of the out-of-diagonal component X12t is an affine function of all states

X11t, X22t, X12t. In this case, the compensation for diffusive volatility risk in the model

can vary in a way partly disconnected from the diffusive volatility.

To identify the physical and the risk neutral parameters of the state dynamics for

X in Assumptions 11 and 14, together with the risk-neutral jump intensity and the

risk-neutral distribution of return jumps, we rely on a panel of observations of S&P500

option prices, in the sample period January 1996 to January 2013. This is the first step

in our two-step identification procedure of the market price of the smile and the term

structure of variance risk premia.

Stochastic Discount Factor

In our model, three types of shocks can be priced: (i) diffusive shocks to index returns,

(ii) shocks to the state variable Xt in the smile dynamics and (iii) jump-type shocks in

index returns. In Assumption 11, these sources of risk correspond to the (risk-neutral)

Brownian shocks dWt, dBt and the (risk-neutral) compound poisson shock (eJ − 1)dNt,

respectively.

Given the incompleteness of our framework, a multiplicity of stochastic discount

factors exists. Existence of a well-defined stochastic discount factor to price all shocks

in our model is ensured by a proper density for an equivalent change of measure, from

the physical to the risk neutral probability. Given suitable matrix processes {Γ1t},
{Γ2t} for the market prices of Brownian shocks dW ∗t , dB∗t , and our double-exponential

specification for the distribution of log return jumps, such a density can take the form:

dQ
dP

∣∣∣∣
FT

= exp

{
tr

(
−
∫ T

0

Γ1tdW
∗
t +

1

2

∫ T

0

Γ′1tΓ1tdt−
∫ T

0

Γ2tdB
∗
t +

1

2

∫ T

0

Γ′2tΓ2tdt

)}
dt

×
N∗T∏
i=1

exp

{
−(λ− − λ∗−)J∗i

− − (λ+ − λ∗+)J∗i
+

+ ln

(
1/λ∗− + 1/λ∗+

1/λ− + 1/λ+

)}
, (3.17)

where the second line of the equality defines the change of measure for return jumps.
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This choice of the change of measure implies a double exponential density (3.9) for return

jumps, having parameters λ∗+, λ∗− and λ+, λ− with respect to the physical and the

risk neutral distribution, respectively. Assumption 14 states:

Γ2t =
√
XtΓ +

1

2
√
Xt

(β∗ − β)Q′ . (3.18)

Together with Assumption 9, this assumption ensures a well-defined change of probabil-

ity measure for B∗−shocks in our model. It is straightforward to introduce a well-defined

market price of risk also for W−shocks. For instance, under Assumptions 9 and 14, a

choice:

Γ1t =
√
Xt∆ +

µ0 − (r − q)√
Xt

, (3.19)

where ∆ is a 2 × 2 parameter matrix and µ0 > r − q a scalar parameter, implies a

well-defined change of measure with affine dynamics for index returns, both under the

physical and the risk-neutral probability measures.19 However, this last assumption is

not necessary for the validity of our identification of the market price of the smile and

the term structure of variance risk premia, which is robust with respect to the particular

form of the market price of risk Γ1t of W ∗−shocks.

Term Structure of Variance Risk Premia

We characterize the risk premia of VIX-type swap contracts. Since VIX-type swap

payoffs can be synthesized using a dynamically delta hedged static option portfolio,

these are natural contracts for studying the relation between the market price of variance

risk and option-implied risk premia in our context. The flexible leg RVt+τ (τ) of a VIX

contract is proportional to the delta-hedged payoff of a log contract:

RVt+τ (τ) :=
2

τ

[
− ln(St+τ/St) +

∫ t+τ

t
dSs/Ss−

]
(3.20)

=
1

τ

∫ t+τ

t

1

S2
s

d[S, S]cs +
2

τ

∑
t≤s≤t+τ

E(Ss/Ss−) , (3.21)

with [S, S]cs the index continuous quadratic variation at time s and the Itakura-Saito

realized divergence E(Ss/Ss−) := − ln(Ss/Ss−) + Ss/Ss− − 1 of a jump in index returns

at time s.20 By definition, the (VIX) variance risk premium is the difference of the P and

19 Appendix B.1.3 provides a proof that under Assumptions 9 and 14 density process { dQ
dP |FT }T≥0 defined

by equations (3.17)–(3.19) is a proper martingale.
20 See, e.g., (Schneider and Trojani 2014a).
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Q expectations of the flexible leg in the VIX contract: V RPt(τ) := (EP−EQ)[RVt+τ (τ)].

Applying Assumptions 9 and 14 to equation (3.21), we obtain:

V RPt(τ) = tr

(
(EP

t − EQ
t )

[
1

τ

∫ t+τ

t
Xsds

])
+

2

τ

∑
t≤s≤t+τ

(EP
t − EQ

t )

[
E
(
Ss
Ss−

)]
.

The first term on the right hand side of this equality, which is affine in Xt, is the variance

risk premium contribution deriving from continuous index shocks. The second term is

the contribution deriving from jumps in returns. To preserve a tractable affine form

for the second term, we can specify an affine physical jump intensity for return jumps:

λ∗t = λ∗0 + tr(Λ∗Xt) say, for a scalar λ∗0 ≥ 0 and a 2 × 2 parameter matrix Λ∗. In the

most general case, such an intensity specification introduces five additional parameters.21

A more parsimonious specification, with a single additional parameter, can assume a

physical intensity proportional to the risk-neutral intensity. In our empirical analysis,

we have investigated these different specifications, finding no incremental out-of-sample

explanatory power for variance risk premia in the more general specification. Therefore,

we rely on the most parsimonious specification.

Assumption 16. The intensities of return jumps are identical under probabilities P
and Q. We denote the ratio of the expected realized jump entropy under probabilities

P and Q by β∗Λ = EP[E(1 + k∗)]/EQ[E(1 + k)] > 0.

Remark 17. (i) Since quantities EP[E(1 + k∗)] and EQ[E(1 + k)] cannot be identified

from the term structure of variance risk premia alone, Assumption 16 is equivalent to the

assumption of proportional intensities under the physical and the risk-neutral probability

measures. (ii) Assumption 16 yields a jump contribution to variance risk premia given

by:

2

τ

∑
t≤s≤t+τ

(EP
t − EQ

t )

[
E
(
Ss
Ss−

)]
= 2EQ[E(1 + k)]tr

(
Λ(β∗ΛE

P
t − EQ

t )

[
1

τ

∫ t+τ

t
Xsds

])
.

Therefore, in our model the variance risk premium is a linear function of the expected

average integrated state X, under the physical and the risk neutral probabilities.

Given the closed-form expressions for the expected average integrated state X in our

setting, both under the risk-neutral and the physical probability, we obtain the following

closed-form term structure of variance risk premia.

21 Four parameters for the physical intensity process and one for the physical second moment of return
jumps.
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Proposition 2. Given Assumptions 11, 14 and 16, we can decompose for any τ > 0 the

variance risk premium in the contribution of diffusive and jump variance:

V RPt(τ) = V RP ct (τ) + V RP dt (τ) . (3.22)

Each contribution is given explicitly by

V RP ct (τ) = tr[XP
∞ −XQ

∞ +AP
τ (Xt −XP

∞)−AQ
τ (Xt −XQ

∞)],

V RP dt (τ) = 2EQ[E(1 + k)]tr[Λ(β∗ΛX
P
∞ −XQ

∞ + β∗ΛA
P
τ (Xt −XP

∞)−AQ
τ (Xt −XQ

∞))],

where, for any 2× 2 matrix H:

AQ
τ (H) :=

1

τ

∫ τ

0
eMuHeM

′udu ; AP
τ (H) :=

1

τ

∫ τ

0
eM
∗uHeM

∗′udu ,

and 2× 2 matrices XQ
∞, XP

∞ are such that:

βQ′Q = XQ
∞M +M ′XQ

∞ ; β∗Q′Q = XP
∞M

∗ +M∗′XP
∞ . (3.23)

Remark 18. (i) The variance risk premium in Proposition 2 is affine in state Xt because

functions AQ
τ (·) and AP

τ (·) are linear. (ii) With the exception of parameter β∗Λ, all

variables and parameters in the expression for V RPt(τ) are identifiable from a first-step

estimation, using exclusively information from a panel of S&P500 options. (iii) It is easy

to show that whenever matrices Q, M and M∗ are diagonal, the continuous variance

risk premium V RP ct (τ) is a function only of the diffusive variance states X11t, X22t.
22

Whenever the intensity matrix Λ is diagonal, then also the jump variance risk premium

V RP dt (τ) only depends on the diffusive variance states, inducing a perfect correlation

between shocks to variance risk premia and shocks to the diffusive variance. This is the

situation emerging in, e.g., Bates (2000)-type models. More generally, continuous and

jump variance risk premia in our model can depend on all option-implied components

of the smile, so that shocks in variance risk premia can be partially disconnected from

shocks in the diffusive variance. This feature follows from the direct exposure of future

VIX contract payoffs to future option-implied risks.

Jump variance risk premia directly depend on both the intensity and the distribution

of return jumps. Since expected future jump intensities depend on all option-implied

components X11, X22, X12 in our model, whenever matrix Λ is not diagonal, V RP dt (τ)

is the sum of two economically distinct risk premium components. The first component,

22 This follows from the fact that, in this case, the expected integrated diffusive variances
EP
t [
∫ t+τ
t

tr(Xs)ds] and EQ
t [
∫ t+τ
t

tr(Xs)ds] only depend on X11t, X22t.
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V RP dct (τ), captures priced jump intensity risk and is spanned by the option-implied

risk premia. The second component, V RP djt (τ), captures priced pure jump variance risk

consistently with stochastic discount factor (3.17), and is spanned by the expected jump

intensity.23 The closed-form expression for the pure jump variance risk premium is:

V RP djt (τ) = 2(β∗Λ − 1)EQ[E(1 + k)]tr[Λ(XP
∞ +AP

τ (Xt −XP
∞))] . (3.24)

We make use of equation (3.24) to identify the dynamics and the term structure of pure

jump variance risk premia in our empirical analysis.

Model-Free VIX Payoffs and Variance Risk Premia

Denoting by Ft the S&P500 index futures price for residual maturity τ − t, we can
compute in a model-free way the payoff of a VIX swap contract, as the delta-hedged
excess payoff of a static option portfolio:

RV et+τ (τ) := RVt+τ (τ)− EQ
t [RVt,t+τ ] =

2

τ

[∫ ∞
0

Ot+τ (K)

K2
dK +

∫ t+τ

t

(
1

Fs−
− 1

Ft

)
dFs

]
− 2

τ

∫ ∞
0

EQ
t [Ot+τ (K)]

K2
dK , (3.25)

where for any K < Ft (K ≥ Ft) quantity Ot+τ (K) := (K − Ft+τ )+ (Ot+τ (K) :=

(Ft+τ −K)+) is the terminal payoff of an out-of-the-money European put (call) option

on index futures, with residual maturity τ and strike price K. In our empirical analysis,

we compute RV e
t+τ (τ) in a model-free way, using the panel of S&P500 options and a

time-series of high-frequency S&P500 index futures prices. This feature motivates our

two-step estimation approach, in which we estimate parameter β∗Λ from a simple linear

regression of VIX option portfolio payoffs on the model-implied variance risk premia of

Proposition 2. This approach is summarized by the next proposition.

Proposition 3. For any τ > 0, define the following variables:

Yt+τ (τ) := RV e
t+τ (τ)− tr((I + 2EQ[E(1 + k)]Λ)(XQ

∞ +AQ
τ (Xt −XQ

∞)))

+tr(XP
∞ +AP

τ (Xt −XP
∞)) , (3.26)

and

Ut(τ) := tr(EQ[E(1 + k)]Λ(XQ
∞ +AQ

τ (Xt −XQ
∞))) . (3.27)

Given a set of maturities 0 < τ1 < . . . < τn, the following is a proper linear regression

23 By definition, V RP djt (τ) captures pure jump variance risk premia and is non zero whenever jump risk
is priced, also when option-implied risks are not priced.
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model,  Yt+τ1(τ1)
...

Yt+τn(τn)

 =

 Ut(τ1)
...

Ut(τn)

β∗Λ +

 ηt+τ1(τ1)
...

ηt+τn(τn)

 , (3.28)

with an error term ηt+τ (τ) := (ηt+τ1(τ1), . . . , ηt+τn(τn))′ such that EP
t [ηt+τ (τ)] = 0.

In equation (3.28) of Proposition 3, all quantities are computable from our first-step

estimation, using estimated model parameters M̂, Q̂, M̂∗, Λ̂, λ̂+, λ̂−, β̂, β̂∗ and filtered

states {X̂t}. This is why we can estimate parameter β∗Λ in the linear regression (3.28)

separately from all other parameters and the hidden states for process {Xt}.

3.2 Empirical Analysis

3.2.1 Data and Estimation

We collect from OptionMetrics daily data of end-of-day prices of S&P500 index options,

traded at the Chicago Board Options Exchange, for the sample period from January 1996

to January 2013 and maturities up to one year.24 The sample consists of 4298 trading

days, which we reduce to 883 weekly observations (each Wednesday). In order to allow

for an out-of sample evaluation of our model, we further split these 883 observations into

an in-sample period (from January 1996 to December 2002) with 359 observations and

an out-of sample period (from January 2003 to January 2013) with 524 observations.

We apply a number of standard filtering procedures outlined, e.g., in Bakshi et

al. (1997). First, we eliminate options with midquote premia below 0.375 dollars and

options with zero bid price or with bid price larger than the ask price. Second, we

eliminate options with stale quotes (i.e., prices unchanged from the previous trading

day), observations that violate arbitrage bounds, duplicate entries and options where the

bid-ask spread is smaller than the minimum tick size (i.e., five cents for options having

prices below 3 dollars and ten cents for all other options). Third, we drop options with

a time to maturity less than 10 days, in order to avoid pricing effects largely driven by

short term liquidity features.

For our first-step estimation of the model parameters, we make use of all options

with a Black-Scholes delta between 0.1 and 0.9. On average, this gives about 139 option

prices per trading day, having an average time to maturity of 130 days and an average

24 We obtain end-of-day midquotes as simple averages of end-of-day bid and ask option prices and force
the put-call parity to hold when calculating the implied dividend yields.
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Panel A: Summary statistics of the data

In-sample Out-of sample Total
Time frame 1996-2002 2003-01/2013 1996-01/2013
Sampling frequency weekly
Trading days T 359 524 883
Number of observations 37’499 85’237 122’736
Average time to maturity (days) 141.5 124.9 130.0
Average moneyness (S/K) 0.99 0.98 0.99

Panel B: Number of observations by duration and delta

τ < 30 30 < τ < 75 75 < τ < 180 180 < τ all
|∆| < 0.2 1’761 4’647 3’679 3’858 13’945

0.2 < |∆| < 0.4 2’576 7’460 6’369 6’769 2’3174
0.4 < |∆| < 0.6 2’575 8’258 7’303 7’586 25’722
0.6 < |∆| < 0.8 3’479 10’808 9’399 10’446 34’132
0.8 < |∆| 2’981 8’651 6’947 7’184 25’763
all 13’372 39’824 33’697 35’843 122’736

Table 3.1: Main characteristics of our S&P500 option panel. We use out-of the money calls
and puts.

moneyness S/K = 0.99. Table 3.1 presents a summary of the main characteristics of

our option data set.25

For the calculation of the model-free VIX variance payoffs in equation (3.25), we

make use of options for all available strikes. The delta hedging component in the VIX

variance payoff is computed using tick-by-tick data for the S&P500 future traded at the

CBOE, obtained from tickdata.com and sampled at 60 second intervals.

In the first step of our estimation procedure, we use the panel of S&P500 in-sample

observations of option prices to estimate the structural model parameters, together with

the time series of option-implied states X11t, X22t and X12t. The time series of option-

implied states uncovers their distinct roles as drivers of option-implied risks and risk

premia over time. The parameter estimates shed light on the dynamic interactions

between state variables driving option-implied risks and risk premia.

We estimate the model parameters Q, M , M∗, R, λ0, Λ, λ+, λ−, β, β∗, by max-

25 The interest rate r is computed by linearly interpolating the US treasuries yield curve sup-
plied by OptionMetrics. The dividend yield q is computed by minimizing each day the put-
call parity error of nearly at the money options (i.e., such that 0.9 ≤ K/S ≤ 1.1): q =

arg min
q

(
C − P − Se−τq +Ke−τr

)2
, where K is the option strike price, C and P the prices of call

and put options, S the underlying spot price and τ the time to maturity of the option.
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imizing the likelihood defined on the option forecasting errors in a Kalman filter. For

identification, we require matrices M , M∗, Λ, R and Q to be triangular, giving a total

of 20 parameters to estimate. We borrow from Bates (2000) and conveniently discretize

the matrix transition dynamics for state process X, accounting for the variability of con-

ditional first and second moments. For the observation equation, we assume Gaussian

errors and account for a potential autocorrelation of option pricing errors. Details on

the estimation procedure are provided in the appendix B.2.

Despite the additional flexibility in allowing three interconnected channels of implied-

volatility surface variation, our model adopts a reasonably parsimonious parametrization.

For comparison, the physical and risk-neutral dynamics of a two-factor Bates (2000)-

type model implies only three parameters less than our model, while a three-factor

Bates (2000)-type model requires the identification of 25 structural parameters. This

feature allows us to improve on the pricing performance of such benchmark two- and

three- factor models, while preserving a good identification of the model parameters. In

addition, we show that our specification of option-implied dynamics, with two dependent

volatility components and a third jump volatility component disconnected from the

diffusive volatility, provides a sharp identification of correlated option-implied risks and

their distinct roles for the dynamics of option-implied risk premia.

In the second step of our procedure we estimate conditional variance risk-premia,

by estimating parameter β∗Λ in Assumption 16, using a simple linear regression of re-

alized VIX option portfolio payoffs on model-implied variance risk premia, constructed

from the filtered option-implied risks and the estimated parameters in the first step.

Precisely, we first compute VIX option portfolio payoffs for maturities τ1, τ2, . . . , τn =

1, 2, 3, 4, 5, 6, 9, 12 months and construct a time series of in-sample weekly observations

for variables Zt := (Yt+τi(τi), Ut(τi))i=1,...,n in linear model (3.28), where t = 1, . . . , N

and the in-sample sample size is N = 359. We then estimate the single unknown param-

eter β∗Λ in equation (3.28) with a pooled linear regression. To account for the overlap of

VIX portfolio payoffs collected at weekly frequencies, we compute standard errors and

critical values with a Newey-West correction for autocorrelation and heteroskedasticity.

3.2.2 Option Pricing Performance and Model Fit

In this section, we quantify the option pricing performance and the statistical fit of our

model (model SVJ31), in relation to the benchmark two- and three-factor models in

Table 2.1. These models are linked to different degrees of parametrization and to state

spaces of different dimensions. Moreover, while two-factor models are nested into our

2×2 matrix AJD setting, three-factor Bates (2000)-type models (model SVJ30) are not.

Therefore, such a comparison needs to consider also the different model dimensions, in

order to avoid favoring highly parametrized models that may exhibit overfitting.

To control for overfitting, we split our sample of 883 weekly observations of S&P500
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SV20 SV30 SV31 SV J20 SV J30 SV J31

RMSIVE
in-sample 1.323 1.237 0.941 0.858 0.718 0.678
out-of sample 1.672 1.552 1.203 1.093 0.826 0.769
MAIVE
in-sample 1.023 0.957 0.731 0.680 0.565 0.549
out-of sample 1.325 1.226 0.948 0.854 0.640 0.610
Average log-likelihood
in-sample 7.288 7.359 8.001 8.100 8.315 8.491
out-of sample 6.667 6.878 7.298 7.265 7.955 8.005

Table 3.2: Indicators of pricing performance and statistical fit. We report indicators of in-
and out-of-sample pricing performance and fit for model SVJ31 and for the benchmark models
in Table 2.1. The in-sample period for estimation is January 1996 to December 2002. The
out-of-sample period is from January 2003 to January 2013. For each model, we report the
daily root-mean-squared implied volatility error (RMSIVE) and the daily mean absolute implied
volatility error (MAIV E). These quantities are computed using the filtered states implied by
the in-sample weekly parameter estimates for each day of our in- and out-of-sample periods. As
a measure of statistical model fit and predictive ability, we also report the in- and the out-of-
sample average value of the weekly likelihood function, evaluated at the in-sample parameter
estimates.

options into an in-sample period (from January 1996 to December 2002) with 359 ob-

servations and an out-of sample period (from January 2003 to January 2013) with 524

observations. Besides focusing on in-sample pricing performance and fit, we require that

higher dimensional models achieve a relatively stable pricing performance and statisti-

cal fit out-of-sample. The out-of-sample period includes phases of very low volatility

and benign markets, such as the conundrum, as well as periods of very high volatility

and market turmoil, such as the recent financial crisis and the EU sovereign debt cri-

sis. Therefore, it represents a reasonably challenging benchmark for stochastic volatility

models.

We estimate all models using only the in-sample weekly data. We then compute prox-

ies of in-sample pricing accuracy, such as the weekly absolute average implied volatility

error, by computing option implied volatility pricing errors for each week of our in-

and out-of-sample periods, using the filtered states implied by the in-sample parameter

estimates. Finally, we compare the statistical fit of different models using the in- and

the out-of-sample value of the average likelihood function, evaluated at the in-sample

parameter estimates. Table 3.2 summarizes the pricing performance and the statistical

fit of the models in Table 2.1.

The results in Table 3.2 indicate that our matrix AJD model produces the best pricing

performance and statistical fit, both in- and out-of-sample, with respect to all models
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in Table 2.1. The improvement in pricing performance relative to two-factor models,

such as a Bates (2000)-type model (column SJV20 in Table 3.2), is very substantial. It

amounts to about 18.5% (19.4%) in-sample and 28.8% (29.2%) out-of-sample, using the

RMSIV E (MAIV E) metric. The improvement of the in-sample (out-of-sample) value

of the likelihood function is 4.5% (9.7%) and is statistically significant at conventional

significance levels.

Model SVJ31 also improves with respect to benchmark three-factor Bates (2000)-

type models (column SVJ30), despite having four parameter less in its specification of

the physical and risk-neutral dynamics of the smile. The improvement in pricing perfor-

mance is about 3.1% in-sample and 6.7% out-of-sample, with respect to the RMSIV E

metric. Similarly, while there is no in-sample improvement with respect to the MAIV E

metric, the out-of-sample improvement in pricing performance is 4.3%. Finally, the more

parsimonious model SVJ31 also attains a higher average likelihood in- and out-of-sample.

The likelihood improvement is 2.1% in-sample and 1.6% out-of-sample. These measures

of improvement in statistical fit are conservative, as model SVJ31 is less parametrized

than model SVJ30.

In addition to having the better in- and out-of sample performance, model SVJ31

also implies the smallest deteriorations in out-of sample performance. The out-of-

sample RMSIV E (MAIV E) is only 5.5% (6.1%) higher than the in-sample RMSIV E

(MAIV E). In contrast, in the SVJ20 (SVJ30) models, the out-of-sample RMSIV E and

MAIV E are 20.9% (10.2%) and 20.8% (10.7%) higher than the in-sample RMSIV E and

MAIV E, respectively. Similarly, while the average out-of-sample likelihood in model

SVJ31 is only 6.1% lower than the in-sample likelihood, the out-of-sample likelihood of

the SVJ20 (SVJ30) model is 11.1% (6.7%) lower. In summary, the improvements implied

by model SVJ31 are not a consequence of overfitting, as the model’s pricing performance

and fit are quite similar in- and out-of-sample.

The pricing performance of model SVJ31 is quite consistent over time, when we

stratify our sample period even further. The MAIV E is lower than one (two) volatility

percentage points in 95.4% (99.2%) of the days and it is above 2% in only seven days,

six days during the financial crisis and one day immediately after the US downgrade.

In terms of relative volatility errors, the MAIVE is less that 5% (10%) of the volatility

level in 78.3% (98.8%) of the days. It is more than 10% of the volatility in only 11 days,

two of which are at the beginning of the sample and the remaining 9 in the conundrum

period (2003-2007). In the crisis period of 2008-2009, the MAIVE never exceeds 5.5%

of the volatility level.

To understand in more detail along which dimensions of the implied volatility surface

model SVJ31 provides the largest pricing improvements, it is useful to disaggregate the

pricing performance across the moneyness and the maturity dimensions. Table B.1

of the appendix compares MAIV E pricing errors of models SVJ31 and SVJ20, across
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different moneyness and maturity bins (in days). It shows that model SVJ31 especially

improves on the modelling of out-of-the money options of maturities of 30 days or higher.

To illustrate, the in-sample (out-of-sample) MAIV E of model SVJ31 for maturities

τ < 30, 30 ≤ τ < 75, 75 ≤ τ < 180 and τ ≥ 180 is 8.1% (6.3%), 29.8% (31%),

13% (18.2%), 22.9% (33.6%) and 29.2% (21.8%) lower, respectively, than for model

SVJ20. Similarly, the in-sample (out-of-sample) MAIV E of model SVJ31 for option

deltas ∆ < 0.2, 0.2 ≤ ∆ < 0.4, 0.4 ≤ ∆ < 0.6, 0.6 ≤ ∆ < 0.8 and ∆ ≥ 0.8 is

13.3% (29.8%), 17.8% (28.5%), 9.9% (15.6%), 19.2% (25.3%) and 28.1% (33.8%) lower,

respectively.26 In summary, this evidence shows that model SVJ31 clearly improves on

the specification of the term structure of the option-implied volatility smile of benchmark

two-factor models.

3.2.3 Mutually Exciting Option-Implied Risks

The time series of option-implied components X11, X22 and X12 estimated for our model

is presented in Figure 3.2, highlighting quite different persistence and variability prop-

erties. For instance, the half-lifes (volatilities) of estimated states X11, X12 and X22 are

1.275, 0.277 and 0.108 years (0.0091, 0.0104 and 0.0259), respectively.

By construction, in Panel A of Figure 3.2, components X11 and X22 of the diffusive

volatility are nonnegative. Component X22 is on average larger than X11, besides being

more volatile and less persistent. In this sense, the diffusive volatility is decomposed into

two non-Markovian components, with significantly different persistence and volatility of

volatility. Component X12 is most of the time positive, but it can also turn slightly

negative in a number of cases. The largest absolute values of X22 and X12 are observed in

connection with periods of significant market turmoil or financial distress, as for instance

during the recent financial crisis and EU sovereign debt crisis. The more persistent

volatility component X11 can also spike in periods of financial distress, but often with a

lag or a lead with respect to X12 and X22.

Such state dynamics can imply large variations in the relative importance of option-

implied risks X11, X22 and X12 for the structure of the conditional distribution of both

jump and diffusive variance. Panel B of Figure 3.2 illustrates this aspect by scaling

components X11t and X12t by the total diffusive variance tr(Xt) = X11t + X22t. It

appears that while visually the time series of tr(Xt) and X22t have strong similarities,

the fraction of diffusive variance generated by the most persistent component X22t can

26 We also find that the fitted prices of model SVJ31 are systematically more often inside the bid-ask
price band than the fitted prices of model SVJ20. On an aggregate level, model SVJ31 (SVJ20) implies
prices inside the bid-ask band in 51.7% (44.9%) and 64.7% (55.6%) of the cases, in- and out-of-sample,
respectively. The disaggregated statistics across moneyness and maturity are collected in Tab. B.1 in
the appendix.
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Panel A: Option-implied components for model SVJ31
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Panel B: Scaled components X11, X12 and diffusive variance tr(Xt)
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Figure 3.2: Panel A: Time series of filtered option-implied components
(
X11t, X12t, X22t

)
for

model SVJ31. Panel B: Time series of option-implied components X11, X12 for model SVJ31,
scaled by the diffusive variance tr(Xt). The range of admissible values [−tr(Xt)/2, tr(Xt)/2] for
X12t follows from the positive definiteness of matrix Xt. Grey areas highlight NBER recessions;
vertical lines indicate important crisis events in our sample period, listed in more detail in Table
2.5.
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vary essentially from zero to one. The top plot of Panel B in Figure 3.2 shows that the

fraction of total diffusive variance created by the most persistent component is basically

zero during the whole conundrum period, it is about one shortly before the collapse of

the NASDAQ bubble and it rapidly increases from about 0.2 to 0.9 shortly after the EU

sovereign debt crisis. The middle plot of Panel B shows that the relative importance of

component X12 can also vary a lot over time. X12t can be as large as 50% of X11t+X22t

during phases of market turmoil, e.g, shortly after the devaluation of the Thai Baht,

the begin of the Russian crisis, the Lehman default and the US downgrade.27 Note that

while X12 is disconnected from the diffusive variance, it has a significant contribution

to the jump volatility, via the jump intensity. Therefore, this option-implied component

is directly related to the decomposition of the total variance into diffusive and jump

variance. Given its predominant role during periods of market distress, it is also a key

driver of the jump volatility dynamics in such periods.

The time series of option-implied states uncovers the dynamic properties of such state

variables as drivers of option-implied risks. In contrast, the estimated model parameters

capture more directly the dynamic interactions between option-implied components and

their relation with the market price of the smile. Table 3.3 presents the parameter

values estimated for our model (SVJ31) and a number of benchmark two- and three-

factor models in Table 2.1.

All parameters are very significant, with the exception of the constant λ0 in the

intensity process, which is not significantly different from 0. Since we cannot reject

the null hypothesis β∗ = β, the data also support a completely affine specification of

the market price of risk in our matrix AJD setting. In all parameter matrices M ,

M∗, Λ and R, the out-of-diagonal element is strongly significant, indicating that option

prices are better described by our three-factor matrix AJD models than by a two-factor

diagonal model with independent components. The estimated jump parameters λ− <<

λ+ directly reflect a negative risk-neutral skewness of the distribution of log returns

jumps.

The large negative coefficient M∗22 indicates that option-implied component X22 has

the strongest degree of autonomous mean reversion. This feature induces an option-

implied state X22 with the lowest persistence in our sample. Given the positivity of

parameter M∗12, the mean reversion of X22 is dampened in phases where state X12 is

positive, while it is reinforced when X12 is negative. Recalling that X12 is positive most

of the time, with stronger excursions during phases of market distress when the option-

implied smile is typically steeper, this feature induces a mutually-exciting behaviour of

state variables X22 and X12 during phases of market turmoil. Given the point estimates

Q22 >> Q11 in the volatility of volatility matrix Q, component X22 also has the largest

27 The ratio |X12t|/tr(Xt) is less than 0.5 by construction, because of the positive definiteness of Xt.
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Panel A: Diffusion parameters

SV20 SV30 SV31 SV J20 SV J30 SV J31
M11 -0.3121 -0.0844 -1.0716 -0.3242 -0.1231 -0.0079

( 0.0063) ( 0.0020) ( 0.0185) ( 0.0067) ( 0.0023) ( 0.0002)
M22 -5.0719 -5.4283 -4.9213 -4.4564 -4.2041 -2.6808

( 0.1040) ( 0.1254) ( 0.0489) ( 0.0895) ( 0.0582) ( 0.0261)
M33 -1.4410 -0.5517

( 0.0307) ( 0.0104)
M12 14.3050 1.0265

( 0.2173) ( 0.0120)
Q11 0.2370 0.1957 0.0556 0.0903 0.0742 0.0698

( 0.0024) ( 0.0026) ( 0.0006) ( 0.0015) ( 0.0010) ( 0.0009)
Q22 0.4209 0.4498 0.5256 0.4204 0.2853 0.2924

( 0.0057) ( 0.0062) ( 0.0033) ( 0.0054) ( 0.0026) ( 0.0024)
Q33 0.0718 0.0738

( 0.0019) ( 0.0016)
Q12 -0.1440 -0.0770

( 0.0021) ( 0.0012)
R11 -1.0000 -1.0000 -0.0431 -1.0000 -0.9997 -0.2970

( 0.0131) ( 0.0134) ( 0.0008) ( 0.0227) ( 0.0189) ( 0.0036)
R22 -0.5348 -1.0000 -0.6405 -0.3823 -0.7111 -0.4057

( 0.0087) ( 0.0192) ( 0.0055) ( 0.0069) ( 0.0117) ( 0.0048)
R33 0.9633 -0.1178

( 0.0255) ( 0.0026)
R12 -0.7672 -0.8708

( 0.0110) ( 0.0121)
β11 1.0000 1.0031 1.0000 1.0006 1.0064 1.0012

( 0.0160) ( 0.0169) ( 0.0118) ( 0.0191) ( 0.0180) ( 0.0116)
β22 1.0000 1.0007 1.0000 1.0042

( 0.0187) ( 0.0219) ( 0.0197) ( 0.0153)
β33 1.0162 1.0146

( 0.0235) ( 0.0187)
M∗11 -1.4051 -1.2204 -0.6378 -0.7395 -0.8289 -0.5467

( 0.0266) ( 0.0298) ( 0.0091) ( 0.0172) ( 0.0134) ( 0.0083)
M∗22 -1.8593 -2.2558 -2.7528 -1.9462 -1.2661 -2.6808

( 0.0401) ( 0.0584) ( 0.0435) ( 0.0477) ( 0.0221) ( 0.0334)
M∗33 -0.4869 -0.5539

( 0.0116) ( 0.0093)
M∗12 1.9200 0.3982

( 0.0284) ( 0.0051)
β∗11 1.0000 1.0017 1.0000 1.0006 1.0064 1.0012

( 0.0203) ( 0.0216) ( 0.0162) ( 0.0200) ( 0.0190) ( 0.0124)
β∗22 1.0000 1.0046 1.0000 1.0042

( 0.0201) ( 0.0199) ( 0.0251) ( 0.0232)
β∗33 1.0693 1.0146

( 0.0316) ( 0.0208)

Panel B: Jump parameters

SV J20 SV J30 SV J31
λ0 0.0000 0.0003 0.0000

( 0.0003) ( 0.0002) ( 0.0002)
Λ11 43.8971 57.3248 25.6671

( 0.9240) ( 0.9276) ( 0.3193)
Λ22 1.0566 11.9429 15.9795

( 0.0265) ( 0.1899) ( 0.1933)
Λ33 0.0454

( 0.0008)
Λ12 40.4278

( 0.6332)
k̄ -0.1500 -0.1500

( 0.0030) ( 0.0019)
δ 0.1500 0.1500

( 0.0027) ( 0.0020)
λ− 7.1518

( 0.0372)
λ+ 58.3547

( 0.7690)
β∗Λ 0.3230

( 0.0553)

Table 3.3: In-sample parameter point estimates with standard errors in brackets.
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local volatility. Note that besides driving a high-frequency component in the diffusive

volatility, state X22 is also related to high-frequency movements in the jump volatility,

because parameter Λ22 in the intensity process is positive and significant. Thus, we

can interpret X22 as a high-frequency mean reverting component of the volatility, which

features a mutually exciting behaviour with X12 during phases of market distress. Inter-

estingly, we also find that we cannot reject the null hypothesis M∗22−M22 = 0, implying

that the instantaneous risk premium of the least persistent component X22 is zero.

The negative coefficient M∗11 indicates that option-implied volatility component X11

is also mean-reverting, even though clearly more persistent than X22, with a low local

volatility since Q22 >> Q11. As for X22, the mean-reversion of X11 is dampened during

phases of market distress, when X12 is positive, so that overall the volatility follows a

mutually-exciting dynamics in such periods. State X11 is also positively related to low-

frequency shocks in the jump volatility, because parameter Λ11 is positive and significant.

Thus, we can also interpret X11 as a low-frequency mean reverting component of the

volatility, featuring mutually-exciting behaviour with X12 in periods of market distress.

Since M∗11 < M11 and M∗12 < M12, the instantaneous risk premium for X11 depends on

both X11 and X12. It is negative and larger in absolute value when X12 is large.28

The negative coefficients M∗11 and M∗22 indicate that the third option-implied com-

ponent X12 has an autonomous mean-reversion between the mean reversion speed of the

high- and low-frequency components of the volatility. The total local mean reversion of

X12 depends also on X11 and X22 and is asymmetric. It is increase (dampened) in states

where X12 is negative (positive), making X12 more persistent and mutually-exciting in

phases of market distress. Note that, by construction, state X12 loads on the jump

volatility, via the jump intensity, but not on the diffusive volatility. Moreover, the large

positive estimated loading Λ12 of X12 in the intensity process indicates that this compo-

nent is the most important state variable in the dynamics of the jump variance during

periods of market distress. Therefore, it has the natural interpretation of a pure jump

variance risk factor, with mutually-exciting dynamics during phases of turbulences in

financial markets. Since X12 is directly related to pure jump volatility in periods of fi-

nancial distress, we expect it to have a negative risk premium. Indeed, since M∗22 = M22,

the local risk premium of the jump volatility component X12 depends on X12 itself and

the lowest-frequency volatility component X11. Given that both M∗11 −M11 < 0 and

M∗12−M12 < 0, the local risk premium of X12 is always negative in our sample period.29

28 Even though in states where X12 is negative its contribution to the risk premium for X11 is positive,
this effect is compensated by the effect of the negative dependence of the risk premium on X11.

29 At the model parameters, the local risk premium of X12 is always positive when X12 is positive.
Given that M∗11−M11 < 0, the contribution of X12 to its premium can be positive when state X12t is
negative. However, in our sample we find that this effect is always compensated by the negative risk
premium contribution proportional to state X22t.
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The largest risk premia for pure jump volatility typically arise during crisis periods,

whenever simultaneously the high-frequency option-implied volatility component X22

and the pure jump option-implied volatility component X12 are large.

3.2.4 The Market Price of the Smile

At the estimated model parameters, the instantaneous risk premium for option-implied

components X11, X22, X12 takes a simplified form:30

1

dt
(EP

t − EQ
t )[dX11t] = −1.0776X11t , (3.29)

1

dt
(EP

t − EQ
t )[dX12t] = −0.6283X12t − 0.5388X22t , (3.30)

1

dt
(EP

t − EQ
t )[dX22t] = −1.2566X12t . (3.31)

In other words, while the two more persistent option-implied components have a neg-

ative instantaneous market price of risk, high-frequency component X22 is not priced

instantaneously. This means that the instantaneous premia for shocks in option-implied

risks X11 and X12 are actually risk premia for X11- and X12-risks that are not con-

ditionally spanned by X22-shocks. Given the estimated loadings of components X11,

X12 and X22 in equations (3.29)-(3.30), the highest instantaneous absolute risk premia

and the most persistent risk premium dynamics emerge for X11-shocks. Finally, notice

that since X11, X12 and X22 satisfy an interdependent joint dynamics, the dynamics of

state variable X22 is different under the physical and the risk neutral probabilities, even

though component X22 has a zero instantaneous risk premium. This means that payoffs

with exposure to future X22-risks, such as VIX option portfolio payoffs, with exhibit in

general a non-zero risk premium for such an exposure.

We can study the term structure of the market price of the smile, by measuring the

risk premium associated with the single components of the average integrated option-

implied risk 1
τ

∫ t+τ
t Xsds. Identifying the term structure of the market price of the smile

is a necessary step, in order to understand the decomposition of the term structure

of variance risk premia into a risk premium component for exposure to option-implied

risks and a risk premium component for pure jump variance risk. Given the distinct

persistence features of option-implied risks X11, X12 and X22, we expect the risk premia

depending on the most persistent components to exhibit a more pronounced term struc-

30 Recalling that we cannot reject the hypotheses β = β∗ and M∗22 = M22, we obtain (see Table 3.3):

1

dt
(EP

t − EQ
t )[dXt] =

(
−0.5388 0
−0.6283 0

)
Xt +Xt

(
−0.5388 −0.6283

0 0

)
.
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Figure 3.3: Market price of a dynamic smile. We plot the difference (EP
t −EQ

t )
[
1
τ

∫ t+τ
t

Xsds
]

of

the physical and risk-neutral expectations of the integrated option-implied state X component-
wise, with states X11, X12 and X22 from the top to the bottom panel, for maturities τ = 3
and τ = 12 months (black and grey lines, respectively). Grey areas highlight NBER recessions;
vertical lines indicate important crisis events, listed in Table 2.5.

ture dynamics. We follow the standard practice in the variance risk premium literature

and measure the model-implied risk premium for integrated states X11, X22 and X12,

using the expected excess payoff of a swap contract with flexible leg 1
τ

∫ t+τ
t Xsds and

time to maturity τ . To illustrate the dynamics and the term structure of the market

price of the smile, we fix two horizons τ1 = 3 and τ2 = 12 months and compute the

difference of the P− and Q− expected average integrated state:

(EP
t − EQ

t )

[
1

τi

∫ t+τi

t
Xsds

]
; i = 1, 2 .

The different elements of these matrices identify the size and the term structure of the

option-implied risk premia for latent states X11, X12 and X22. Figure 3.3 presents the

98



3. The Price of the Smile and Variance Risk Premia

time series of these risk premia.

Option-implied risks X11 and X12 have an unambiguously negative market price of

risk. The market price of X22 is also most of the time negative, but it can turn slightly

positive occasionally. The market prices of all components are larger in absolute value in

phases of market distress, reflecting the higher price of option-implied insurance. More

importantly, each component of the market price of the smile has very distinct term

structure features. While the term structure of the market price of X22 is flat from

an horizon of 3 months on, both X11 and X12 imply a decreasing term structure. The

slope of these term structures is pro-cyclical, in the sense that it becomes more negative

in periods of financial distress. The low-frequency option-implied risk X11 implies the

largest absolute risk premia at long horizons of 12 months, which are about double the

risk premia implied by X12 and more than three times those of X22.

The intuition for the time-series features of the market prices of the smile in Figure

3.3 are well understood, in terms of corresponding risk premia linked to stochastic risks

with distinct persistence features. To this end, Table B.3 of the Appendix decomposes

each component of the market price of the smile into the single contributions of option-

implied risks X11, X12 and X22. First, we find that all market prices of the smile are

linear functions exclusively of option-implied risks X11 and X12. In this sense, these

two components can be interpreted as risk premium factors that span the dynamics

and the term structure of option risk premia. Second, while the market price of X11

only depends on X11 itself, the market price of X12 and X22 loads on both X11 and

X12. However, while the market price of X12 is dominated by low frequency component

X11 at longer horizons, the market price of X22 mostly depends on the less persistent

component X12. As a consequence, low frequency option-implied component X11 has the

most persistent risk premia, followed by components X12 and X22, respectively. Third,

the dominant role of persistent option-implied risk X11 implies a negative market price

and a corresponding decreasing term structure of integrated risk premia for X11 and X12.

A similar tendency arises for the highest-frequency option-implied risk X22. However,

in this case integrated risk premia can be occasionally marginally positive and the term

structure slightly increasing, in states where the jump volatility is not persistent (X11

is small) and X12 takes negative values. Finally, the flat relation in Table B.3, between

the market price of the smile and option-implied risk X12 at horizons above 3 months,

implies in most cases a flat term structure of integrated risk premia for X22 between 3

months and 12 months horizons.31

31 These features arise are a consequence of the estimated dynamic interactions of option-implied risks
in our model, yielding the observed empirical patterns for the market price of the smile. Consistent
with the above intuitions, we find that the risk premium for component X11 has a perfect weekly
correlation with the level of X11, both over short (1 month) and longer (6 month) horizons. Similarly,
the risk premium for X12 has a correlation of 0.9 (0.95) with the level of X11, over short (long)
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3.2.5 Interpretation of Option-Implied Risks

To gain additional economic interpretation for the role of option-implied components

X11, X12, X22, it is useful to link these state variables to observable characteristics of

the option-implied volatility surface. This approach allows us to interpret each option-

implied component, e.g., in terms of the price of an option replicating portfolio. Given

that state X spans both option-implied risks and risk premia, such an approach can help

to link the price of option strategies offering protection against a market downturn to

the different dimensions of the market price of the smile.

We find that high-frequency option-implied component X22 has a weekly correlation

of 0.84 with the 30-days at-the-money implied volatility. Components X12 and X11 are

obviously correlated with X22. However, given their different persistence and variability

properties, the weekly correlation with X22 is relatively low, amounting to 0.59 and

0.26, respectively. As a consequence, a relevant part of the conditional variation of X11

and X12 in our sample is orthogonal to X22. We find that X12−variations orthogonal

to X22 have a weekly correlation of -0.85 with a 30-days option-implied skew residual,

given by the residual of a regression of the 30-days option-implied skew on the 30-days

option-implied volatility. In this sense, X12 is linked to short term option-implied skew

dynamics disconnected from the 30-days option-implied volatility. We also find that

X11−variations orthogonal to X22 have a weekly correlation of 0.83 with the residual

of a regression of the option-implied skew term structure on the 30-days option-implied

volatility. In this sense, X11 is related to option-implied skew term structure dynamics

disconnected from the 30-days option-implied volatility.

The above interpretation of option-implied risks X11 and X12 depends on the residu-

als of a regression of model-implied variables X11 and X12 on model-implied state X22. A

more direct interpretation, in terms of simple transformations of model-implied variables,

is obtained by scaling X11 and X12 with a model-implied proxy of volatility. In this way,

we can isolate the volatility-independent effects of X11 and X22 on the option-implied

volatility smile. A convenient model-implied proxy for the volatility level is the diffusive

variance Y1t := tr(Xt), which implies bounded scaled quantities Y2t := X11t/tr(Xt) and

Y3t := X12t/tr(Xt). In this reparametrization, Y1 measures the level of the diffusive

variance, while Y2 captures the composition of the diffusive variance, in terms of two

components with distinct persistence and variability. Note that Y2 is bounded between

zero and one and roughly captures, on a scale from zero to one, the degree of persistence

of the diffusive variance not related to the variance level. Y3 roughly captures the frac-

tion of jump-driven variance not due to diffusive return shocks, in percentage of the level

of the diffusive variance. Therefore, it captures variations in jump variance not directly

horizons, while the risk premium for X22 has a correlation of 0.999 (0.98) with the level of X12.
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related to the diffusive variance. Note that Y3 is bounded between −1/2 and 1/2 and

can change sign.

As expected, we find that variable Y1 is a good proxy of the option-implied volatility

level in the data, as it has a weekly correlation of 98% with the at-the-money 30-days

option-implied volatility. In order to interpret the scaled variables Y2 and Y3, we need

to consider observable option-implied quantities that do not depend on the level of the

1-month implied volatility in the data. We follow the same approach as above and

we separately regress on the one-month implied volatility the one-month option-implied

skew and a proxy of option-implied skew term structure, corresponding to the difference

between the 12 months and the 3 months option-implied skews. We compute the time

series of residuals from these two regressions and interpret them as skew and skew term

structure components unrelated to the volatility level in the data. Figure 3.4 presents

the time series of model-implied variables Y1, Y2, Y3 and compares these to those of the

1-month implied volatility and the two skew and skew term structure residuals in the

data.

We find that variable Y3t = X12t/tr(Xt) has a correlation of 0.85 with the skew

residual of our regression, suggesting a possible interpretation of Y3 in terms of an

observable option-implied skew component unrelated to the volatility level. We also find

that variable Y2t = X11t/tr(Xt) has a correlation of 0.71 with the skew term structure

residual of our regression, suggesting a possible interpretation of Y2 in terms of an

observable option-implied skew term structure component unrelated to the volatility

level.32

The identification of variables Y1, Y2, Y3, as a volatility level factor and as two

skew and skew term structure residuals, respectively, can help to better understand

the economic content of the two risk premium components X11 and X12 that span the

market price of the smile in our model. According to the results of this and the previous

sections, the market price of the smile is naturally related to observed option-implied

skew components, which parsimoniously measure a time-varying and horizon-dependent

price of market insurance and are disconnected from the volatility level.

3.2.6 Term Structure of Variance Risk Premia

To identify the term structure of variance risk premia, we estimate parameter β∗Λ in the

linear model specified by Proposition 3, using a pooled linear regression. The parameter

estimate β∗Λ = 0.427 reported in Table 3.3 implies an expected realized Itamura Saito

32 The time series in Figure 3.4 and the corresponding correlations listed above were obtained by com-
paring the normalized components Y1, Y2, Y3 with the observable properties of the model-implied
volatility surface. We obtain qualitatively similar, albeit more noisy, results using option-implied
volatilities directly computed from option data.
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Panel A: Scaled state X11/tr[Xt] as option-implied skew term structure
residual
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Panel C: Diffusive variance tr[Xt] squared at-the-money implied volatility
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Figure 3.4: Scaled option-implied components of model SVJ31 as observable components of the
option-implied volatility surface of S&P500 index options. Panel A: X11/tr[Xt] (black line) and
skew term structure residual of the S&P500 option-implied volatility surface (grey line). Panel B:
−X12/tr[Xt] (black lines) and one-month skew residual of the S&P500 option-implied volatility
surface (grey lines). Panel C: tr[Xt] = X11 + X22 (black line) and one-month at-the-money
implied volatility2 of S&P500 index options (grey line). The exact calculation method for the
option-implied skewness and term structure is explained in Appendix B.3.
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divergence of the return jump distribution under the physical measure, EP[E(1 + k∗)],

which is slightly less than half the expected realized divergence under the risk-neutral

probability, EQ[E(1 + k)]. Using this value for β∗Λ and the model parameter estimates

from the first step of our estimation approach, we estimate the model-implied dynamics

for the term structure of VIX variance risk premia.

Variance Risk Premia

In Figure 3.5, we plot the model-implied variance risk premia for horizons τ = 12 months

and τ = 1 month, together with their difference, as a proxy for the slope of the variance

risk premium term structure.

We find that conditional variance risk premia are highly time-varying and unambigu-

ously negative. They range between −0.1% and −16% (−0.4% and −11%) squared for

horizon τ = 1 month (horizon τ = 12 months). We find that model-implied variance

risk premia provide a plausible description for the first conditional moment of the re-

alized payoffs of VIX option portfolios, at horizons τ = 1 month and τ = 12 months,

respectively. The variability of such payoffs around the conditional first moment is state

dependent and can be extremely high during periods of marker turmoil. Consistent with

intuition, variance risk premia are largest in absolute value when the price of option-

implied market insurance is large, typically during phases of financial distress and market

turmoil, e.g., during the Asian and Russian crises in the late nineties, shortly before the

collapse of the internet bubble in 2000, shortly after the Lehmann bankruptcy in Septem-

ber 2008 and the US downgrade in August 2011, and during the EU government debt

crisis.

The slope of the term structure of variance risk premia is most of the time negative,

reflecting a higher relative price of option-implied market insurance for longer investment

horizons. However, it can be strongly upward sloping for short periods of time. Overall,

the slope of the term structure is positive for about 12% of the observations in our

sample. The most prominent cases in which we observe an inversion of the term structure

of variance risk premia arise immediately after both the Lehmann default in September

2008 and the US downgrade in August 2011, when the spread between annualized 12

month and 1 month VIX variance risk premia has been as large as +5.8% squared and

+2% squared, respectively.

Table B.4 of the Appendix shows that the term structure of variance risk premia

depends on all option-implied risks X11, X12 and X22, with an absolute contribution of

component X11 (components X12 and X22) that monotonically increases (decreases) with

the horizon. Low frequency risk X11 dominates variance risk premia al horizons above

one quarter, while higher-frequency risks X22 and X12 dominate variance risk premia

for horizon less than one quarter. These features imply a different role of low- and

high-frequency components for the slope of the term structure of variance risk premia.
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Panel A: 1 month VIX variance risk premium
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Panel B: 12 months VIX variance risk premium
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Panel C: Term structure of VIX variance risk premia
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Figure 3.5: VIX variance risk premium and term structure of VIX variance risk premia. In
panel A (B), we plot the annualized model-implied 1 month (12 months) VIX variance risk
premium (black lines) and the payoffs of synthetic VIX option portfolios (grey lines). In panel
C, we plot the slope of the model-implied term structure of VIX variance risk premia, computed
as the difference of 12-months and 1-month VIX variance risk premia. Grey areas highlight
NBER recessions; vertical lines indicate important crisis events in our sample period, listed in
more detail in Table 2.5.
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Indeed, while an increase in X11 lowers the slope of the term structure, and increase in

X11 or X12 increases the slope.33

Variance Risk Premia for Diffusive and Jump Variance

To gain a deeper understanding for the multi-frequency dynamics of the term structure

of VIX variance risk premia, we estimate the contributions of diffusive and jump variance

risk to the VIX variance risk premium. We make use of the closed-form expressions in

Proposition 2 and plot in Figure 3.6 the model-implied dynamics for diffusive and jump

variance risk premia, V RP ct (τ) and V RP dt (τ), respectively, at horizons of 3 months and

12 months. As a proxy for the slope of their term structure, we also plot the difference

of V RP ct (τ) and V RP dt (τ) at horizons of 12 months and 3 months.

We find that variance risk premia at all horizons are dominated by jump variance risk

premia, as V RP dt (τ) is always at least 85% (65%) of the total variance risk premium at

horizon τ = 3 (τ = 12) months. Moreover, the dynamic properties of the term structures

of diffusive and jump variance risk premia are very different.

Diffusive variance risk premia for horizon τ = 3 months are never above 1% squared

in absolute value, even in the recent financial crisis, while they are consistently larger in

absolute value at horizons τ = 12 months, implying a maximum of about 3% squared

during the 2008 financial crisis. Their conditional term structure is always decreasing.

This finding is consistent with the properties of the term structure of option risk premia

estimated for option-implied risks X11 and X22 in Section 3.2.4.34 Table B.4 of the

Appendix shows that the term structure of diffusive variance risk premia is completely

spanned by option-implied components X11 and X12 alone, with a contribution of low-

frequency component X11 that monotonically increases with the horizon and largely

dominates the contribution of component X12. These features are well reflected in the

dynamics of the slope of the term structure of diffusive VIX variance risk premia, which

basically only reflects variations in option-implied component X11.35 This explains both

the decreasing term structure of diffusive VIX variance risk premia and its low frequency

dynamics.

The term structure of jump variance risk premia is slightly decreasing most of the

time, but it can be strongly upward sloping in a number of economically relevant cases,

i.e., for about 28% of the observations in our sample. While the absolute differences in

33 In Table B.4 of the Appendix, the loading of component X11 on the slope of the term structure of
V RPt(τ) is -0.574, while the loading of X22 and X12 are 0.121 and 0.325, respectively.

34 V RP ct (τ) is the sum of the market prices of option-implied components X11 and X22, which together
span the diffusive variance tr(Xt) = X11t + X22t. As shown in Section 3.2.4, the term structure of
the market price of the smile for option-implied components X11 and X22 is decreasing.

35 In Table B.4 of the Appendix, the loading of component X11 on the slope of the term structure of
V RP ct (τ) is -0.314, while the loading of X12 is only 0.004.
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Panel A: 3 months diffusive and jump VIX variance risk premium
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Panel B: 12 months diffusive and jump VIX variance risk premium
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Panel C: Term structure of diffusive and jump VIX variance risk premia
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Figure 3.6: Diffusive and jump VIX variance risk premia V RP ct (τ) (black line) and V RP dt (τ)
(grey line). Panel A: 3 months horizon; Panel B: 12 months horizon. In panel C, we plot the slope
of the model-implied term structure of diffusive and jump VIX variance risk premia, computed
as the difference of 12 months and 3 months risk premia. Grey areas highlight NBER recessions;
vertical lines indicate crisis events, listed in Table 2.5.
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the spread between 12 months and 3 months jump variance risk premia are small when

the term structure is decreasing, they can be very substantial when the term structure

is increasing. The largest absolute jump variance risk premia arise for horizon of τ = 1

month, for which they can be as large as about 13% squared during the 2008 financial

crisis. In contrast, jump variance risk premia for maturity τ = 12 months are never

larger than 8% squared in absolute value. The most prominent cases, in which the term

structure of jump variance risk premia is increasing, arise in periods of market distress,

e.g., immediately before the Lehmann default, with a spread of about +7% squared

between 12 months and 3 months risk premia, or in correspondence of the US default,

with a spread of almost +3% squared between 12 months and 3 months risk premia. In

such periods, when the positive slope of the term structure of jump variance risk premia

escalates, the term structure of variance risk premia is also upward sloping.

Table B.4 of the Appendix shows that the term structure of jump variance risk

depends on all option-implied components. While the contribution of low-frequency

component X11 increases with the horizon, the contributions of X12 and X22 decreases.

Overall, these features produce a slope of the term structure of jump variance risk premia

that decreases with X11 and increases with both X11 and X22.36 Therefore, in contrast to

the term structure of diffusive variance risk premia, the term structure of jump variance

risk premia reflects both high and low frequency option-implied risks.

Pure Jump Variance Risk Premia

A proper intuition for the contribution of low- and high-frequency risks to the dynamics

of the term structure of jump variance risk premia is gained, by recalling that jump

variance risk premia are the sum of a jump intensity risk premium and a pure jump

variance risk premium:

V RP dt (τ) = V RP dct (τ) + V RP djt (τ) . (3.32)

V RP dct (τ) is a risk premium linked to unexpected future variations in the probability

of a jump in index returns. Therefore, it is spanned by the components of the market

price of the smile. V RP djt (τ) is proportional to a (constant) risk premium EP[E(1 +

k∗)] − EQ[E(1 + k)] for instantaneous jump variance risk, scaled by the (time-varying)

expected average jump intensity under the physical probability:

V RP djt (τ) = 2(EP[E(1 + k∗)]− EQ[E(1 + k)])tr

(
ΛEP

[
1

τ

∫ t+τ

t
Xsds

])
. (3.33)

36 In Table B.4 of the Appendix, the loading of component X11 on the slope of the term structure of
V RP dt (τ) is -0.356, while the loading of X22 and X12 are 0.536 and 0.206, respectively.
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Therefore, V RP djt (τ) is a premium for pure jump variance risk over horizon τ , which is

spanned by the expected average probability of future jumps in index returns.

We can illustrate more concretely the above intuition, by plotting in Figure 3.7

both components of the model-implied jump variance risk premium in equation (3.32),

together with the slope of their term structure, using the closed-form expression in

equation (3.24).

Figure 3.7 shows that the term structure of V RP djt (τ) is increasing for about 72% of

the observations in our sample, while in all other cases it is virtually flat. In contrast,

the term structure of V RP dct (τ) is always decreasing. Similarly to diffusive variance risk

premia, the variance risk premium component V RP dct (τ) is spanned by the components

of the market price of the smile. Therefore, it implies a decreasing term structure, with

dynamics spanned by option-implied risk premium components X11 and X12 alone. In

contrast, the structure of V RP djt (τ) premia is spanned by all option-implied components

X11, X12 and X22, because at the estimated parameters jump intensities follow a multi-

frequency process that is a function of all option implied risks:

λt = 25.668 ·X11t + 40.427 ·X12t + 15.979 ·X22t . (3.34)

While the largest contribution to λt comes from option-implied skew component X12,

all option implied-risks are mean reverting under the physical probability, so that their

contribution to expected average jump intensities decreases with the horizon. Such decay

is fastest (slowest) for highest (lowest) frequency component X22 (X11). These features

induce a typically decreasing term structure of average expected jump intensities and an

increasing term structure of pure jump variance risk premia, because the risk premium

for instantaneous VIX jump variance risk is negative: EP[E(1 + k∗)]−EQ[E(1 + k)] < 0.

The slope of the term structure of pure jump variance risk premia escalates in periods of

market distress, because in those periods jump intensities contain a large high-frequency

component, generated by large option-implied risks X12 and X22. Table B.4 of the

Appendix confirms this intuition, showing that the slope of the term structure of pure

jump variance risk premia mostly depends on option-implied component X12, while

option implied risks X11 and X22 contribute significantly, but to a smaller extent.37

In summary, we find that the multifrequency dynamics of the term structure of

variance risk premia is explained by the interplay of two economically distinct com-

ponents. A downward sloping component, with dynamics spanned only by medium-

and low-frequency option-implied risk premium factors, and an upward sloping com-

ponent, with multifrequency dynamics spanned by all option-implied risks. While the

37 In Table B.4, the loadings of X11, X12 and X22 for the slope of the term structure of pure jump
variance risk premia are 0.147, 0.480 and 0.206, respectively.

108



3. The Price of the Smile and Variance Risk Premia

Panel A: 3 months intensity and pure jump VIX variance risk premium
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Panel B: 12 months intensity and pure jump VIX variance risk premium
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Panel C: Term structure of intensity and pure jump VIX VRP
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Figure 3.7: Intensity and pure jump VIX variance risk premia V RP dct (τ) (grey line) and

V RP djt (τ) (black line). Panel A: 3 months horizon, Panel B: 12 months horizon. In panel C, we
plot the slope of the model-implied term structure of intensity and pure jump VIX variance risk
premia, computed as the difference of 12 months and 3 months risk premia. Grey areas highlight
NBER recessions; vertical lines indicate crisis events, listed in Table 2.5.
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first component mostly captures the persistent dynamics of the horizon-dependent price

of option-implied market insurance, the second component more directly reflects the

multi-frequencies character of expectations about future jump risk.

3.2.7 Predictive Ability of Option-Implied Risks and Risk Premia

Intuitively, the information encoded from the option-implied volatility surface can help to

forecast future volatility risks, future excess returns on (VIX) option volatility portfolios

or future index returns. Since option-implied risks X11, X22, X12 can be computed

virtually in real time, they provide a feasible instrument for out-of-sample prediction. We

study the predictive power of option-implied risks X11, X22, X12 for future VIX realized

variance, future VIX option portfolio payoffs and future S&P500 index returns. We

compare the predictive ability of model-implied variables with the one of nonparametric

option-implied proxies of the smile, capturing the level of the implied volatility, the term

structure of at-the-money implied volatilities and the one-month option-implied skew,

respectively. This comparison has three purposes. First, it allows us to assess the added-

value of our model for parsimoniously identifying relevant option-implied state variables,

having predictive power for future risks or risk premia. Second, it allows us to test the

specification of model-implied risks and risk premia. Third, its allows us to study the

relation between option-implied risks and conditional market risk premia.

Predictability of Realized Variance

Figure 3.8 collects predictive regression results for future (VIX) realized variance, over

forecasting horizons from τ = 1 month to τ = 12 months.

We find that realized variance is highly predictable over short horizons, with pre-

dictive regression R2s up to 55% for one-month ahead forecasts, using model-implied

risks X11, X22 and X12. At longer horizons, e.g., between nine and twelve months,

the model-implied predictive R2s drop to about 15%. Overall, this evidence produces

a decreasing term structure of predictive R2s. We find that the predictive power of

model-implied components is virtually identical to the predictive power of nonparamet-

ric option-implied proxies, indicating that the model-implied proxies provide an accurate

summary of option-implied risks. Moreover, the degree of predictability of the realized

variance is similar in- and out-of-sample, implying a quite stable relation between future

realized variance and option-implied risks over time. At short horizons of 1 month, about

80% of the large predictive R2 is generated by the highest-frequency option-implied risk

X22, while the remaining 20% is almost completely due to the pure-jump volatility com-

ponent X12. At forecasting horizons of 12 months, two third of the lower predictive R2

is still generated by X22, while the remaining part is again due to X12.

The term structure of predictive R2s in Figure 3.8 is understood by recalling the
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Figure 3.8: Predictive regression for VIX realized variance. We regress the future VIX realized
variance for horizons between 1 month and 12 months (x-axis) on (i) the three option-implied
components X11,t, X22,t, X12,t (triangles) and (ii) three standard nonparametric measures of
option-implied level, skew and volatility term structure for the volatility surface (squares). Full
lines correspond to in-sample R2s for the in-sample period 1996-2002; dashed lines correspond
to out-of-sample R2s for the period 2003-2013/01. For both R2 computations, model-implied
and predictive regression parameters are fixed to the 1996-2002 point estimates. The calculation
method for the option-implied skewness and term structure is explained in Appendix B.3.

structure of the average realized variance RVt+τ in equation (3.21). The model-implied

predictable part of RVt+τ is given in closed-form by:

EP
t [RVt+τ ] = tr

(
(id2×2 + 2EP[E(1 + k∗)]Λ)EP

t

[
1

τ

∫ t+τ

t
Xsds

])
, (3.35)

where id2×2 is the 2× 2 identity matrix, and it is a linear function of expected average

integrated risks X11, X12 and X22. Note that at the model parameter estimates all

option-implied risks X11, X22 and X12 contribute to the expected realized variance.

However, the contribution of X12 and X22 dominates, especially in the expected jump

realized variance. Therefore, these risks generate the largest fraction of the predictive

R2. Moreover, while all option-implies risks are mean reverting, X11 and X12 are the

least persistent risks, with an half-life of about one month and one quarter, respectively.

Therefore, their predictive power for future realized variance decays quite rapidly with

the forecasting horizon, from an R2 of about 55% at horizons of one month to an R2 of

about 15% at horizons of one year. These features are directly related to the observed

decreasing term structure of predictive R2s.
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Figure 3.9: Predictive regression for VIX option portfolio payoffs. We regress future VIX op-
tion portfolio payoffs for horizons between 1 month and 12 months (reported on the x-axis) on
(i) the model-implied VIX variance risk premium (circles), (ii) the three option-implied com-
ponents X11,t, X22,t, X12,t (triangles) and (iii) three standard nonparametric measures of the
option-implied level, skew and volatility term structure for the option-implied volatility surface
(squares). Full lines correspond to in-sample R2s for the in-sample period 1996-2002; dashed
lines correspond to out-of-sample R2s for the period 2003-2013/01. For each R2 computation,
model-implied and predictive regression parameters are fixed at the 1996-2002 point estimates.

Predictability of VIX Option Portfolio Payoffs

We next study the predictability of future VIX option portfolio payoffs, defined as the

difference of realized variance RVt+τ and the variance swap rate EQ
t [RVt+τ ]. By defi-

nition, the expected payoff of a VIX option portfolio is the variance risk premium for

horizon τ . Therefore, in this predictive regression we try to identify option-implied risks

that act as variance risk premium factors. Besides studying unconstrained predictive

regressions with model-implied and nonparametric proxies of the smile as predictive

variables, we also quantify the direct predictive power of model-implied variance risk

premia. This is an obvious test for our specification of variance risk premia. Figure 3.9

summarizes the resulting predictability evidence.

We find economically large in-sample R2s for all predictive regressions. The largest

in-sample predictive power emerges for the unconstrained regressions based on model-

implied predictive variables. Such in-sample R2s range between 25% and 60%, with a

peak at the 12 months forecasting horizons. The in-sample R2s of unconstrained predic-

tive regressions with nonparametric proxies of the smile are only slightly lower than for
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the model-implied predictive variables and they peak at a forecasting horizon of about

9 months. The in-sample R2s associated with model-implied variance risk premia range

between about 25% and 45% and peak at a 6 months forecasting horizon. Interestingly,

the unconstrained predictive regression produces and in-sample predictive power that is

almost exclusively generated by the two more persistent model-implied risks X11 and

X12, i.e., the two risk premium factors that span option risk premia.38 The incremental

in-sample predictive power of the unconstrained predictive regression, relative to the

model-implied variance risk premium regression, is virtually completely explained by

a larger estimated loading of the lowest-frequency option-implied risk premium factor

X11. Different estimated factor loadings are possible, because the unconstrained predic-

tive regression coefficients are estimated individually across different horizons from τ = 1

month to τ = 12 months, without restricting them to satisfy cross-sectional arbitrage-free

restrictions, as they are in the model-implied variance risk premium. While in-sample

this additional degree of freedom can produce an improved forecasting power, it is im-

portant to verify whether such additional flexibility does not come at the cost of an

overfitted predictive relation. The results of our out-of-sample predictive regressions

confirm the economic relevance of model-implied proxies of the smile as variance risk

premium factors. They also provide additional support for the specification of variance

risk premia in our model. We find that the largest out-of-sample predictive R2s are

obtained using model-implied variance risk premia. They range between 12% and 24%

and imply a monotonically increasing term structure. The out-of-sample R2s of un-

constrained predictive regressions using model-implied risks are smaller, especially for

forecasting horizons below one quarter, while the predictive regressions with nonpara-

metric proxies of the smile imply a low out-of-sample predictive power, which decreases

with the forecasting horizon.

In summary, these findings suggest that the large in-sample predictive power of

unconstrained predictive regressions for VIX variance payoffs is partly the consequence

of overfitting. At the same time, they indicate that the arbitrage-free constraints implied

for model-implied variance risk premia are supported by the in-sample and the out-of-

sample evidence. Model-implied variance risk premia explicitly reflect the composition

of variance risk premia as the sum of a diffusive and a jump variance risk premium,

where the last premium consists of an intensity and a pure jump variance risk premium:

V RPt(τ) = V RP ct (τ) + V RP dct (τ) + V RP djt (τ) . (3.36)

38 The high-frequency component X22 has a small marginal contribution to the predictive power, because
of its small unconstrained predictive regression parameter estimate. Indeed, unconstrained predictive
regressions with predictive variables X11 and X12 alone produce virtually the same term structure of
in-sample predictive R2s in a full regression with the additional option-implied component X22.
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We find that while V RP ct (τ) and V RP dct (τ) are spanned by two mid- and low-frequency

option-implied risk premium factors X11 and X12, V RP djt (τ) is proportional to ex-

pected future jump probabilities and depends on all option-implied risks X11, X22 and

X12. The low persistence of components X22 and X12 implies an increasing term struc-

ture for V RP djt (τ) during periods of market distress, which can imply an increasing

term structure of variance risk premia. Even though the contribution of high-frequency

option-implied risks to VIX option portfolio payoffs might appear negligible, based on

in-sample predictive regression results, we find that it is important to identify the re-

lation between high-frequency risks and jump variance risk premia, in order to capture

the multi-frequency dynamics of the term structure of variance risk premia.

Predictability of S&P500 Index Excess Returns

We finally address the predictability of S&P500 index excess returns ret+τ , for prediction

horizons τ from one month to one year. We consider unconstrained predictive systems

that include estimated option-implied risks X11, X12 and X22 as predictive variables.

In order to account parsimoniously also for a potential nonlinearity in the predictive

relation, we estimate a simple threshold-linear regression, with an endogenous threshold

T ∈ [0, 1] for the composition X11t/(X11t +X22t) of the diffusive volatility:

ret+τ = [αl + tr(βlXt)]I{[X11t/tr(Xt)]<T ]} + [αh + tr(βhXt)]I{[X11t/tr(Xt)]≥T ]} + εt+τ .(3.37)

In this equation, I{·} is an indicator function, while αu and symmetric 2 × 2 matrix βu
contain regime-dependent regression intercepts and slope parameters, associated with

model-implied conditional state u = h (u = l) of more (less) persistent volatility:

[X11t/tr(Xt)] ≥ T ([X11t/tr(Xt)] < T ). In this way, we achieve two goals at the same

time. First, we can estimate the predictive relation between market excess returns and

option-implied risks with a more general specification, which directly allows us to test in

a simple way the correct specification of an affine relation between market risk premia

on option-implied risks. Second, we can incorporate an economically plausible long-run

risk channel for market risk premia, in which the market compensation for low-frequency

volatility risks can depend on the frequency composition of the volatility. The estimation

results are summarized in Figure 3.10.

We find a significant estimated threshold in the predictive relations, which is quite

stable across horizons and samples and equal to about T = 0.15 (T = 0.18) for the

shorter (the longer) sample period. This finding is direct evidence of a nonlinear rela-

tion between market risk premia and option-implied risks, which is dependent on the

frequency composition of the volatility. All parameters in the estimated threshold pre-

dictive regression are significant, and the degree of predictability is quite large. Over the

full sample period, the predictive R2’s range between about 5% and 16%, with a peak at
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Panel A1: R2 1996-2013/01 (full sample)
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Figure 3.10: Predictive regression for future index excess returns. We perform a threshold
regression of future realized S&P500 index excess returns for horizons between 1 month and
9 months (reported on the x-axis) on (i) the individual factors X11 (diamonds), X12 (circles),
X22 (squares); (ii) our preferred model using the risk factors X̃11 and X̃12 (black line) and (iii)
jointly all three state components (dashed line). In all regressions, we use Y2t := X11t/Tr[Xt] as
threshold variable. We report the R2 of the predictive regressions in panels A1, B1 and estimates
and 95% confidence intervals for the threshold in panels A2, B2.
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1mo 2mo 3mo 4mo 5mo 6mo 7mo 8mo 9mo
Out of sample 0.53 0.54 0.52 0.52 0.58 0.57 0.55 0.57 0.57
Conundrum 0.52 0.50 0.51 0.46 0.47 0.49 0.48 0.51 0.53
Crisis 0.63 0.60 0.50 0.63 0.85 0.85 0.86 0.87 0.88
Post crisis 0.49 0.57 0.56 0.55 0.58 0.54 0.47 0.47 0.42

Table 3.4: Out of sample sign correlations between realized excess returns of the S&P 500
index over horizons from 1 to 9 months and predicted returns from our threshold regression. We
perform a predictive threshold regression for the in-sample period 1996-2002 and evaluate the
signs of the predicted returns for the out of sample period 2003-Jan 2013 and three sub-periods:
Conundrum (2003-2007), Financial Crisis (2008-2009) and Post-Crisis (2010-Jan 2013).

forecasting horizons of five months. Such predictive power is almost entirely generated

by the mid-frequency and the low-frequency option-implied risks X11 and X12.

Besides the detected degree of predictability, these findings highlight the difficulties in

identifying a time-invariant affine relation between index risk premia and option-implied

risks. From a different angle, they also support identification procedures of option-

implied risks that do not rely on an affine specification of market risk premia. The

economic implications of the estimated predictability for the 2003-2013 out-of-sample

period are illustrated in Table 3.4, based on the sign correlations between realized returns

and predicted equity premia implied by the 1996-2002 in-sample predictive regression

estimates.

These correlations are all above 50% over the full sample, with a peak of 58% at

the five months horizons. They are essentially indistinguishable from 50% in the co-

nundrum period, when volatility was almost completely transient. In contrast, they can

be as large as about 85% in the financial crisis period, when volatility was often very

persistent, indicating an economically relevant predictive power of option-implied risk

premium factors in persistent volatility states. We find that a simple trading strategy

that goes long (short) the index when the predicted equity premium is positive (nega-

tive), outperforms a static market investment out-of-sample, with, e.g., a Sharpe ratio (a

sample skewness) for horizons of one quarter that is about double (much less negative)

than the one implied by a static index investment. Figure B.6 and Table B.5 of the

Appendix provide a graphical description and a complete summary of these results, for

different horizons and across different out-of-sample periods.

3.3 Conclusions and Outlook

We estimate the dynamics and the market prices of the hidden option-implied risks driv-

ing the implied volatility surface of S&P500 options, in order to study their link with the

term structures of option-implied and variance risk premia. We identify option-implied
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risks, their market prices and the term structure of variance risk premia, following a two-

step procedure that does not rely on direct information about S&P500 index returns,

in which we estimate a parsimonious three-factor matrix jump diffusion characterized

by (i) interdependent, mutually-exciting, risks, (ii) a skewness component disconnected

from volatility and (iii) a compensation for variance risk that varies independently of

the volatility.

Besides providing an excellent pricing performance and fit, deriving from an improved

ability in generating a volatility-unrelated variability of option-implied skews, our model

yields a sharp identification of option-implied risks and risk-premia, based on three

interdependent volatility components that imply a useful multi-frequency representation

of the term structure of variance risk premia. The least persistent option-implied risk

largely correlates with the thirty days at-the-money option-implied volatility. The other

two more persistent option-implied risks correlate with a 30-days option-implied skew

residual and with an option-implied skew term structure residual, respectively, in a

way that is partly disconnected from at-the-money implied-volatility shocks. We find

that option-implied risk premia are spanned by the two persistent option-implied skew

components alone, disclosing their interpretation as option-implied risk premium factors.

We then address the relation between option-implied risks, option-implied risk premia

and the term structure of variance risk premia. We find that the dominating role of

low-frequency option-implied risks for the market price of the smile implies a downward

sloping term structure of option-implied risk premia. Time-variation of all option-implied

risks also implies highly time-varying and unambiguously negative variance risk premia,

as well as a multi-frequency term structure of variance risk premia, which can be strongly

upward sloping for short periods of time, in a number of economically relevant cases. The

inversion of the term structure of variance risk premia is understood by the interplay

of the term structures of option-implied risks and risk premia. While the first term

structure is linked to an increasing term structure of pure jump variance risk premia, the

second one implies a decreasing term structure of diffusive and jump intensity variance

risk premia. In phases of market distress, the term structure of pure jump variance risk

premia can be pronouncedly upward sloping, when high-frequency option-implied risks

escalate, and have a dominating effect on the slope of the term structure of variance risk

premia.

Finally, we find a significant predictive power of option-implied risks for future

S&P500 volatility and index returns, with a dominating contribution to the predic-

tive power deriving from the mid-frequency and low-frequency option risk premium

factors. While an affine specification of variance risk premia is supported by our pre-

dictability findings, affine specifications of market risk premia are dominated by nonlin-

ear specification that allow the predictive relation to depend on the composition of the

volatility. Consistent with a long-run risk explanation for market risk premia, a sim-
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ple trading strategy, balancing the risk premium predictions of mid-and low-frequency

option-implied risks with the frequency-composition of the volatility, produces econom-

ically large out-of-sample excess returns.

In summary, our findings indicate that a volatility specification with three interde-

pendent risks, capturing the different dimensions of the option-implied price of market

volatility, can produce a parsimonious joint representation of the market price of the

smile and the term structure of variance risk premia. Such a specification can also

help to improve the identification of high-frequency option-implied risks in the multi-

frequency dynamics of variance risk premia, complementing the results of standard pre-

dictive regressions. Lastly, while option-implied risks exhibit and important correlation

with information about future market returns, it is difficult to identify their precise rela-

tion with conditional market risk premia, using an affine joint dynamics for returns and

volatility. This feature motivates identification procedures for option and variance risk

premia that do not depend on complete specification of market risk premia.
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Appendix B

Appendix for “The Price of the

Smile and Variance Risk Premia”

B.1 Additional Results in the Matrix AJD Model

B.1.1 Pricing Transform in the Matrix AJD Model

Under Assumption 11 and Assumption 16, the closed-form exponentially affine risk-

neutral transform for YT := log(ST ) is given by:

Ψ(τ ; γ) := Et [exp (γYT )] = exp
(
γYt + tr

[
A(τ)Xt

]
+B(τ)

)
, (B.1)

where τ = T − t, A(τ) = C22(τ)−1C21(τ) and the 2 × 2 matrices Cij(τ) are the ij−th

blocks of the matrix exponential:(
C11(τ) C12(τ)

C21(τ) C22(τ)

)
= exp

[
τ

(
M + γQ′R −2Q′Q

C0(γ) −(M ′ + γR′Q)

)]
. (B.2)

The explicit expressions for the 2× 2 matrix C0 is:

C0(γ) =
γ(γ − 1)

2
I2 + Λ

[
ΘY (γ)− 1− γΘY (1)

]
, (B.3)

and real-valued function B(τ) is given by:

= τ
{

(γ − 1)r + λ0

[
ΘY (γ)− 1− γΘY (1)

]}
−β

2
tr[ln(C22(τ)) + τ(M ′ + γR′Q)] (B.4)

where ln(·) is the matrix logarithm and ΘY (γ) is the univariate Laplace transform of
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the return jump size distribution. In the case of the double exponential distribution,

ΘY
DX(γ) =

λ+λ−

λ+λ− + γ(λ+ − λ−)− γ2
,

in the case of the lognormal distribution

ΘY
LN (γ) = (1 + k)γ exp

(
γ(γ − 1)

δ2

2

)
,

see, e.g., Leippold and Trojani (2008).

B.1.2 VIX Variance Risk Premium in the Matrix AJD Model

The affine expression for the variance risk premium in Proposition 2 is obtained by

recalling the relations:

V RPt(τ) = tr

(
(EP

t − EQ
t )

[
1

τ

∫ t+τ

t
Xsds

])
+ (EP

t − EQ
t )

[
1

τ

∫ t+τ

t
(dSs/Ss−)2

]
= tr

(
(EP

t − EQ
t )

[
1

τ

∫ t+τ

t
Xsds

])
+EQ[E(1 + k)]tr

(
Λ(β∗ΛE

P
t − EQ

t )

[
1

τ

∫ t+τ

t
Xsds

])
.

This shows that V RPt(τ) is the sum of two-affine functions of state Xt. To compute these

functions in closed-form, we need to compute the P and Q expectation of the average

integrated state X in our model. These expectations are available in closed-form:

EQ
t

[
1

τ

∫ t+τ

t
Xsds

]
= XQ

∞ +
1

τ

∫ τ

0
eMu(Xt −XQ

∞)eM
′udu , (B.5)

where the long-run mean XQ
∞ is the unique solution of the Lyapunov equation MXQ

∞ +

XQ
∞M

′ = βQ′Q. Similarly,

EP
t

[
1

τ

∫ t+τ

t
Xsds

]
= XP

∞ +
1

τ

∫ τ

0
eM
∗u(Xt −XP

∞)eM
∗′udu , (B.6)

where XP
∞ is such that M∗XP

∞ + XP
∞M

∗′ = β∗Q′Q. This implies, for any 2× 2 matrix

D:

tr

(
DEQ

t

[
1

τ

∫ t+τ

t
Xsds

])
= tr

(
D(XQ

∞ +AQ
τ (Xt −XQ

∞))
)
,

tr

(
DEP

t

[
1

τ

∫ t+τ

t
Xsds

])
= tr

(
D(XP

∞ +AP
τ (Xt −XP

∞))
)
,
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where, for any 2× 2 matrix H:

AQ
τ (H) :=

1

τ

∫ τ

0
eMuHeM

′udu ; AP
τ (H) :=

1

τ

∫ τ

0
eM
∗uHeM

∗′udu .

Since these two functions are linear in H, the VIX variance risk premium is affine in Xt.

This conclude the proof. �

B.1.3 Stochastic Discount Factor in the Matrix AJD Model

Existence of a well-defined stochastic discount factor to price all shocks in our model is

ensured by a proper density for an equivalent change of measure, from the physical to

the risk neutral probability. To this end, we specify matrix processes {Γ1t}, {Γ2t} for

the market prices of Brownian shocks dW ∗t , dB∗t , and an appropriate distribution for

return jumps. Following Assumption 11, we specify a double exponential distribution for

log return jumps, with parameters λ+∗, λ−
∗

and λ+, λ−, respectively, under the physical

and the risk neutral probabilities.

We show that, under Assumption 14, a proper density process consistent with these

properties is defined for any T ≥ 0 by:

dQ
dP

∣∣∣∣
FT

= exp

{
tr

(
−
∫ T

0
Γ1tdW

∗
t +

1

2

∫ T

0
Γ′1tΓ1tdt−

∫ T

0
Γ2tdB

∗
t +

1

2

∫ T

0
Γ′2tΓ2tdt

)}
dt

×
N∗T∏
i=1

exp

{
−(λ− − λ∗−)J∗i

− − (λ+ − λ∗+)J∗i
+ + ln

(
1/λ∗− + 1/λ∗+

1/λ− + 1/λ+

)}
,

(B.7)

where

Γ1t =
√
XtΓ +

1

2
√
Xt

(β∗ − β)Q′ , (B.8)

and

Γ2t =
√
Xt∆ +

µ0 − (r − q)√
Xt

, (B.9)

with µ0− (r− q) ≥ 0 and ∆ a 2×2 parameter matrix. The first (second) line of equality

(B.7) defines a possible change of measure for diffusive (jump) shocks in our model.

Under Assumption 14, the stochastic exponential in the first line of (B.7) is a well-

defined positive local martingale, and hence a supermartingale. Therefore, to show that
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this term is a martingale, it is enough to show that it has a constant expectation:

1 = EP
0

[
exp

{
tr

(
−
∫ T

0
Γ1tdW

∗
t +

1

2

∫ T

0
Γ′1tΓ1tdt−

∫ T

0
Γ2tdB

∗
t +

1

2

∫ T

0
Γ′2tΓ2tdt

)}
dt

]
.

In our matrix AJD setting, this property does not follow from a standard Novikov-type

condition. However, it follows from a localization argument; see, e.g., (Meyerhofer 2014).

We now show that the second line of (B.7) also defines a martingale process. Using

the independence between IID log jump sizes J∗ and counting process N∗ under the

physical probability, it is enough to show that:

1 = EP
0

[
exp

{
−(λ− − λ∗−)J∗− − (λ+ − λ∗+)J∗+

} 1/λ∗− + 1/λ∗+

1/λ− + 1/λ+

]
. (B.10)

Explicit calculations of the expectation on the right hand side yield:

λ∗−λ∗+

λ∗− + λ∗+
· 1/λ∗− + 1/λ∗+

1/λ− + 1/λ+

∫ ∞
−∞

exp
(
−λ−J∗− − λ+J∗+

)
dJ∗ = 1 .

With respect to the risk-neutral probability Q, log return jumps follows a double expo-

nential distribution with parameters λ− , λ+. Indeed, for any u ∈ R it follows:

EQ [exp(uJ)] =
λ−λ+

λ− + λ+

∫ ∞
−∞

euJe−λ
−J−−λ+J+

dJ ,

which is the Laplace transform of a double exponential distribution with parameter

λ−, λ+. This concludes the proof.

�

B.2 Estimation procedure

B.2.1 First step: Kalman filter

The first estimation step is performed using a Kalman filter of the linearized process,

using exclusively options in the observation equation. Thus we can estimate all risk-

neutral parameters via the observation equation and the physical parameters of the state

dynamics via the transition equation. We denote the set of all parameters estimated in

the first step by θ := (M,Q,R, β, λ0,Λ; M∗, β∗).

The physical dynamics of our state variable is given in (3.14):

dXt =
[
β∗Q′Q+M∗X ′t +XtM

∗′] dt+
√
XtdB

∗
tQ+Q′dB∗′t

√
Xt

We discretize this process on a weekly grid with ∆k = 7 calendar days. When there
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is no data for a given Wednesday, we skip the respective week and set ∆k = 14.

We initialize the filtered state X̂t to be the steady state XP
∞, which can be computed

by solving the Lyapunov equation M∗XP
∞+XP

∞(M∗)′ = Q′Q. We initialize the variance

matrix of X̂t as Σ̂0 = 0. At each step, we compute exact expectations of mean and

variance of Xt+∆ given Xt from the Laplace transform (B.1)

Xt+∆ = β µ+ ΦX̂tΦ
′ (B.11)

V t+∆ = (I4 +K4)
(

ΦX̂tΦ
′ ⊗ µ+ β µ⊗ µ+ µ⊗ ΦX̂tΦ

′
)

(B.12)

with

µ = −1

2
C12C

′
11

Φ = e∆M∗

C = exp

[
∆

(
M∗ −2Q′Q

0 −(M∗)′

)]
=

(
C11 C12

C21 C22

)

where C11, C12, C21, C22 are all square 2× 2 matrices and K4 is the 4× 4 commutation

matrix. These calculations are used in the transition equation:

X̃t+∆ = Xt+∆ (B.13)

The predicted state X̃t+∆ is then used to compute the observation equations:

Ôt+∆,i = Ot+∆,i(X̃t+∆; θ) + εt+∆,i, i = 1, . . . , Nt+∆ (B.14)

where Ôt+∆,i denotes the Black-Scholes implied volatility of the i−th option on day

t + ∆, Nt+∆ the total number of options observed on that day, Ot+∆,i(X̃t+∆; θ) the

model-implied option prices and εt+∆,i is an iid noise with zero mean and variance σr.

We also allow for autocorrelation in the noise:

corr(εt+∆, εt) = ρr

where εt is the mean error over all options on day t.

We finally update the state using a linearization of the dynamics. We first linearize the

transition equation and the observation equations by computing the Jacobian matrices:

F =
∂Xt+∆

∂X̂t

= Φ⊗ Φ

Gt =
∂Ot+∆

∂X̃t

where we applied the identity ∂
∂XBXC = C ′ ⊗B to obtain F , while G is calculated via
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numerical differentiation. The variance matrix of the state is:

Σ̃t+∆ = F Σ̂tF
′ + V t+∆ (B.15)

Finally we update the state and the variance matrix to be used in the next step:

St = GtΣ̃t+∆G
′
t + σ2

rI2

Ht = Σ̃t+∆G
′
tS
−1
t

X̂t+∆ = X̃t+∆ +Ht

(
Ôt+∆,i −Ot+∆,i(X̃t+∆, θ)

)
Σ̂t+∆ = (I2 −HtGt)Σ̃t+∆

For every parameter set θ, we compute the time-series of the predicted state {X̃t} and
the log-likelihood function

L(θ) =

N∑
i=1

[
log det(S) +

(
Ôt+∆,i −Ot+∆,i(X̃t+∆, θ)

)′
S−1
t

(
Ôt+∆,i −Ot+∆,i(X̃t+∆, θ)

)]
(B.16)

The estimated parameter θ̂ is the maximizer of L(θ). The maximization itself is per-

formed using differential evolution of Storn and Price (1997).

B.2.2 Model identification

Our model allows for several parameter combinations that are observationally equivalent.

Parameter identification requires that the option pricing model be unique under invariant

transformations. We borrow from Dai and Singleton (2000) and study invariant transfor-

mations that change the state and parameter matrices without changing the joint distri-

bution of option prices and thus the spot variance Vt := Tr[Xt] +E(k2) (Tr[ΛXt] + λ0).

In the first step of our estimation process, we jointly estimate the state, all risk-

neutral parameters, and the physical parameters of the state dynamics θ = (Xt; M, Q,

R, β, λ0,Λ; M∗, β∗). To identify these parameters, we first focus on the risk-neutral,

diffusive part.

The diffusive spot volatility is Tr[Xt], therefore the only class of transformations that

needs to be considered are trace invariant transformations. These are first the similarity

transformation TS = DXtD−1 and second the permutation TP that reorders the rows

(or columns) of Xt.

Applying TS to (3.6) results in a transformed model with state and parameter ma-

trices

TSθ = (DXtD−1; DMD−1,DQD−1,DRD−1; β ).

In order to identify our model, we apply parameter restrictions that only admit D = I2.
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Without loss of generality, we can assume |det(D)| = 1.1 Next we observe that the state

matrix Xt is symmetric by construction, thus DXtD−1 also needs to be symmetric. This

requires D to be orthogonal (D′ = D−1), thus D must be a rotation or mirror matrix.

We choose the following restrictions: M is lower triangular and the sign of M21 is

positive. Choosing M to be lower triangular requires D to be lower triangular, in order

to ensure DMD−1 lower triangular. If D is both orthogonal and lower triangular, it

must be a diagonal matrix
(
d1 0

0 d2

)
with elements di = ±1. We now have DMD−1 =(

M11 0

d2/d1 M21 M22

)
. By choosing the sign of M21 we exclude the case d1 6= d2.

Our choices for M implicitly identify the state and select the order of the mean

reversion speeds of the eigenvalues and thus of the components of Xt. Thus we also

achieve identification with respect to TP . A direct consequence of our identification

choices is the result that X22,t is the leading volatility factor and the identification of

the sign of X12,t.

We now discuss the identification of Q and R. To do so, we inspect the infinitesimal

generator of the joint process for stock returns Yt := dSt/St and state Xt (see Leippold

and Trojani (2008)):

LY,X =

(
r − q − 1

2
Tr[X]

)
∂

∂Y
+

1

2
Tr[X]

∂2

∂Y 2
+ 2Tr[XR′QD]

∂

∂Y
+

+Tr
[(
βQ′Q+MX +XM ′

)
D + 2XDQ′QD

]
(B.17)

where (D)ij = ∂
∂Xij

is the matrix differential operator.

The matrices Q and R only appear in the expressions Q′Q and R′Q, i.e. only seven of

their eight elements are identified. We choose Q to be the unique Choleski decomposition

of Q′Q, i.e. Q upper triangular and positive definite. In order to reduce the number of

parameters, we add the ad-hoc restriction for R to be also upper triangular.

Next, we focus on the spot jump variance EQ(k2) (Tr[ΛXt] + λ0) with Tr[ΛXt] =

Λ11X11,t + (Λ12 + Λ21)X12,t + Λ22X22,t. Only the sum of the out-of diagonal elements of

Λ are identified and we choose Λ upper triangular.

The physical parameter M∗ enters our estimation via the transition equation of

the Kalman filter (B.13) in the two expressions µ̄ and ΨX̂tΨ
′. By construction, both

expressions are symmetric and therefore only three elements are identified. We choose

M∗ to be lower triangular, to allow for an easy comparison to M . With this step, we

indirectly identify the the price of risk Γ in (3.15).

The remaining parameter β∗Λ in (3.28), which is estimated via OLS in the second

estimation step, is fully identified.

1 We can always construct a D̃ = 1√
|det(D)|

D with |det(D̃)| = 1 such that DXtD−1 = D̃XtD̃−1.
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B.2.3 Admissible parameter set

In order to ensure the existence and non-explosivity of our latent process (3.14), we have

to apply the following additional restrictions to the feasible parameter set. First, M∗′M∗

must be negative definite to ensure the non-explosivity. Second, R must satisfy RR′ < I2

in order to ensure the existence of Zt = BtR +Wt

√
I2 −RR′ in (3.8). Third, to ensure

the existence of processes (3.6, 3.14) and of the change of measure (3.13), we require

either β > 1, β∗ > 1 and β = β∗ or β > 3 and β∗ > 3 . Finally, we require Λ′Λ to be

positive semi-definite and λ0 ≥ 0 in order to satisfy the positivity condition of the jump

intensity λt = λ0 + Tr[ΛXt]. See Gruber (2015) for the details of the implementation of

the constraints.

B.3 Measures of the volatility surface

B.3.1 Definition of level Lt, skew St and term structure Mt

To analyze our results in terms of observable properties of the implied volatility surface,

such as in Figure 3.4, we define the following proxies2

level Lt := IV (τ = 1
12 ,∆ = 0.5)

short term skew St := 1
0.6−0.4

[
IV (τ = 1

12 ,∆ = 0.6)− IV (τ = 1
12 ,∆ = 0.4)

]
long term skew Slongt := 1

0.6−0.4
[
IV (τ = 3

12 ,∆ = 0.6)− IV (τ = 3
12 ,∆ = 0.4)

]
term structure Mt := 1

3
12−

1
12

[
IV (τ = 3

12 ,∆ = 0.5)− IV (τ = 1
12 ,∆ = 0.5)

]
skew term structure Mskew

t := 1
3
12−

1
12

[
Slongt − St

]
where IV and ∆ stand for the Black-Scholes implied volatility and delta. The time

to maturity τ is measured in years. In the data, we obtain the required implied volatil-

ities through two-dimensional interpolation of the volatility surface. In the model, we

calculate these quantities exactly.

2 We have evaluated the regression IV (τ,K)t = Lt + St · K + Mt · τ as an alternative spec-
ification. We have found similar, but more noisy results. We have also performed robust-
ness checks with respect to our definition. The alternative term structure measure M6

t :=
1

6
12
− 1

12

[
IV (τ = 6

12
,∆ = 0.5)− IV (τ = 1

12
,∆ = 0.5)

]
is, for example, 92% correlated with our term

structure measure.
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B.3.2 Skewness and term structure residuals

The volatility level Lt is highly correlated to the skewness St and the term structure

Mt with correlation coefficients of −0.80 and −0.63 respectively. In order to unmask

the unspanned skewness and term structure effects, we introduce the skewness resid-

ual S̃t (term structure residual M̃t) as the skewness (term structure) components that

cannot be explained by the volatility level. We obtain these quantities from the simple

regressions:

St = αS + βS Lt + S̃t
Mt = αM + βM Lt + M̃t

B.4 Additional Figures
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−0.005
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Figure B.1: The market price of the smile. We plot the sample average of the model-implied
expectations, 1

τE
P
t [
∫ t+τ
t

Xsds] and 1
τE

Q
t [
∫ t+τ
t

Xsds], component-wise, for horizons τ from 1 to
12 months. Full lines report expectations under P, dashed lines expectations under Q. Circles:
X11; squares: X12; triangles: X22.
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Figure B.2: Time series of mean absolute implied volatility errors (MAIV E) for model SVJ31.
For every day t in our sample, we plot the MAIV E on that day, defined by MAIV Et :=
1
Nt

∑Nt

i=1 |IVi − ÎVi|, where Nt is the number of available options on that day.
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Figure B.3: Unconditional decomposition of the Variance Risk Premium for horizons of 1 to
12 months. This plot shows from bottom to top the fractions of VRP due to pure jump risk,
jump intenstiy risk and diffusive volatility risk.
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Figure B.4: Conditional equity risk premium at five month horizon. Grey line: ERP implied by
the predictive regressions of Andersen, Fusari, Todorov (2013) using their Ũ factor. Black line:
ERP implied by our model’s X̃11 and X̃12 factors. Dashed lines depict predictive regressions
using the respective full models.

Panel A: 1996-2013/01 (full sample)

1 2 3 4 5 6 7 8 9
0

0.02

0.04

0.06

0.08

0.1

1 2 3 4 5 6 7 8 9
0

0.02

0.04

0.06

0.08

0.1

Panel B: 1996-2002 (in-Sample period)
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Figure B.5: R2 of the predictive regressions of future excess returns on option-implied risk
factors as function of the horizon in months. Left panels: Wishart model; grey: univariate
regressions with individual factors X11 (diamonds), X12 (circles), X22 (squares); black: preferred
model using the risk factors X̃11 and X̃12; black dashed: full regression. Right panels: model
of Andersen, Fusari, Todorov (2013); grey: R2 for univariate regressions with individual factors
U (diamonds), V1 (circles), V2 (squares); black: preferred model using the risk factor Ũ ; black
dashed line: full regression.
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Figure B.6: Distribution of out-of sample returns of the S&P 500 index (black bars) and of our
trading strategy (grey bars) over a horizon of 5 months.
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B.5 Additional Tables

Panel A1: MAIVE for SVJ20 model, in-sample
τ < 30 30 ≤ τ < 75 75 ≤ τ < 180 τ ≥ 180 all

|∆| < 0.2 0.938 0.607 0.655 0.593 0.664
0.2 ≤ |∆| < 0.4 0.786 0.480 0.637 0.634 0.610
0.4 ≤ |∆| < 0.6 0.699 0.510 0.537 0.517 0.539
0.6 ≤ |∆| < 0.8 0.818 0.654 0.482 0.548 0.589
0.8 ≤ |∆| 1.284 1.049 0.809 1.023 1.002
all 0.894 0.662 0.606 0.652 0.670

Panel A2: MAIVE for SVJ31 model, in-sample
τ < 30 30 ≤ τ < 75 75 ≤ τ < 180 τ ≥ 180 all

|∆| < 0.2 0.897 0.552 0.496 0.506 0.576
0.2 ≤ |∆| < 0.4 0.842 0.419 0.480 0.468 0.502
0.4 ≤ |∆| < 0.6 0.714 0.465 0.554 0.387 0.486
0.6 ≤ |∆| < 0.8 0.735 0.497 0.486 0.378 0.476
0.8 ≤ |∆| 0.887 0.567 0.628 0.871 0.721
all 0.804 0.495 0.531 0.503 0.542

Panel B1: MAIVE for SVJ20 model, out of sample
τ < 30 30 ≤ τ < 75 75 ≤ τ < 180 τ ≥ 180 all

|∆| < 0.2 0.804 0.976 1.067 1.393 1.089
0.2 ≤ |∆| < 0.4 0.675 0.531 0.719 1.018 0.730
0.4 ≤ |∆| < 0.6 0.955 0.501 0.469 0.759 0.605
0.6 ≤ |∆| < 0.8 1.228 0.780 0.471 0.846 0.757
0.8 ≤ |∆| 1.403 1.207 0.753 1.026 1.062
all 1.061 0.797 0.645 0.961 0.826

Panel B2: MAIVE for SVJ31 model, out of sample
τ < 30 30 ≤ τ < 75 75 ≤ τ < 180 τ ≥ 180 all

|∆| < 0.2 0.819 0.690 0.655 0.957 0.765
0.2 ≤ |∆| < 0.4 0.753 0.430 0.506 0.566 0.522
0.4 ≤ |∆| < 0.6 0.871 0.483 0.549 0.414 0.523
0.6 ≤ |∆| < 0.8 0.954 0.519 0.503 0.544 0.566
0.8 ≤ |∆| 0.964 0.653 0.487 0.881 0.704
all 0.886 0.546 0.528 0.639 0.602

Table B.1: MAIV E stratified by maturity and moneyness. We report for models SVJ20 and
SVJ31 the mean absolute implied volatility error across maturity and moneyness bins.
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Panel A1: Fraction of prices within bid/ask spread SVJ20 model, in-sample
τ < 30 30 ≤ τ < 75 75 ≤ τ < 180 τ ≥ 180 all

|∆| < 0.2 0.363 0.405 0.322 0.371 0.368
0.2 ≤ |∆| < 0.4 0.439 0.535 0.348 0.316 0.400
0.4 ≤ |∆| < 0.6 0.602 0.574 0.413 0.318 0.445
0.6 ≤ |∆| < 0.8 0.722 0.607 0.554 0.360 0.516
0.8 ≤ |∆| 0.709 0.555 0.492 0.222 0.443
all 0.588 0.555 0.449 0.317 0.449

Panel A2: Fraction of prices within bid/ask spread SVJ31 model, in-sample
τ < 30 30 ≤ τ < 75 75 ≤ τ < 180 τ ≥ 180 all

|∆| < 0.2 0.372 0.441 0.453 0.409 0.423
0.2 ≤ |∆| < 0.4 0.379 0.617 0.451 0.404 0.472
0.4 ≤ |∆| < 0.6 0.604 0.596 0.315 0.396 0.453
0.6 ≤ |∆| < 0.8 0.766 0.713 0.489 0.488 0.580
0.8 ≤ |∆| 0.844 0.852 0.598 0.276 0.589
all 0.616 0.668 0.461 0.403 0.517

Panel B1: Fraction of prices within bid/ask spread SVJ20 model, out of sample
τ < 30 30 ≤ τ < 75 75 ≤ τ < 180 τ ≥ 180 all

|∆| < 0.2 0.471 0.351 0.273 0.176 0.298
0.2 ≤ |∆| < 0.4 0.574 0.615 0.395 0.302 0.464
0.4 ≤ |∆| < 0.6 0.590 0.727 0.607 0.383 0.586
0.6 ≤ |∆| < 0.8 0.684 0.717 0.742 0.374 0.624
0.8 ≤ |∆| 0.815 0.693 0.742 0.474 0.665
all 0.649 0.650 0.593 0.360 0.556

Panel B2: Fraction of prices within bid/ask spread SVJ31 model, out of sample
τ < 30 30 ≤ τ < 75 75 ≤ τ < 180 τ ≥ 180 all

|∆| < 0.2 0.452 0.498 0.512 0.253 0.433
0.2 ≤ |∆| < 0.4 0.521 0.757 0.595 0.487 0.613
0.4 ≤ |∆| < 0.6 0.625 0.683 0.503 0.557 0.590
0.6 ≤ |∆| < 0.8 0.803 0.819 0.668 0.518 0.690
0.8 ≤ |∆| 0.905 0.915 0.875 0.489 0.794
all 0.696 0.763 0.643 0.483 0.647

Table B.2: Fraction of model-implied option prices within bid-ask spread for models SVJ20 and
SVJ31, across maturity and moneyness bins.
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τ (EP − EQ
t ) 1

τ

[∫ t+τ
t X11sds

]
(EP − EQ

t ) 1
τ

[∫ t+τ
t X12sds

]
(EP − EQ

t ) 1
τ

[∫ t+τ
t X22sds

]
months X11 X12 X22 X11 X12 X22 X11 X12 X22

1 -0.043 0.000 0.000 -0.025 -0.037 0.000 -0.002 -0.043 -0.000
2 -0.083 0.000 0.000 -0.048 -0.064 0.000 -0.006 -0.071 -0.000
3 -0.120 0.000 0.000 -0.069 -0.082 0.000 -0.012 -0.087 -0.000
4 -0.156 0.000 0.000 -0.088 -0.094 0.000 -0.018 -0.096 -0.000
5 -0.189 0.000 0.000 -0.106 -0.101 0.000 -0.025 -0.101 -0.000
6 -0.221 0.000 0.000 -0.121 -0.105 0.000 -0.032 -0.102 -0.000
7 -0.251 0.000 0.000 -0.136 -0.107 0.000 -0.038 -0.101 -0.000
8 -0.279 0.000 0.000 -0.149 -0.106 0.000 -0.044 -0.098 -0.000
9 -0.306 0.000 0.000 -0.161 -0.105 0.000 -0.050 -0.095 -0.000
10 -0.331 0.000 0.000 -0.172 -0.103 0.000 -0.055 -0.091 -0.000
11 -0.355 0.000 0.000 -0.182 -0.100 0.000 -0.060 -0.087 -0.000
12 -0.377 0.000 0.000 -0.191 -0.096 0.000 -0.065 -0.083 -0.000

12-1 -0.335 0.000 0.000 -0.166 -0.059 0.000 -0.063 -0.040 -0.000
12-3 -0.257 0.000 0.000 -0.122 -0.015 0.000 -0.053 0.004 0.000
3-1 -0.078 0.000 0.000 -0.044 -0.044 0.000 -0.010 -0.044 -0.000

Table B.3: Loadings of option-implied components X11, X12, X22 on the market price of

the smile (EP − EQ
t ) 1

τ

[∫ t+τ
t

Xijsds
]
, i, j = 1, 2, for horizons τ from 1 to 12 months, (columns

2 to 4). The last three rows compute the contribution of each option-implied component to
three proxies for the slope of the term structure of the market price of the smile, measured as

(EP − EQ
t )
[∫ t+12

t
Xijsds

]
− (EP − EQ

t ) 1
τ

[∫ t+τ
t

Xijsds
]
, for τ = 1, 3 months, respectively.

τ V RP ct (τ) V RP dct (τ) V RP djt (τ) V RPt(τ)
months X11 X12 X22 X11 X12 X22 X11 X12 X22 X11 X12 X22

1 -0.044 -0.043 -0.000 -0.068 -0.045 -0.000 -0.537 -0.762 -0.272 -0.649 -0.851 -0.272
2 -0.089 -0.071 -0.000 -0.131 -0.076 -0.000 -0.525 -0.679 -0.223 -0.745 -0.825 -0.223
3 -0.132 -0.087 -0.000 -0.191 -0.095 -0.000 -0.511 -0.607 -0.186 -0.835 -0.790 -0.186
4 -0.174 -0.096 -0.000 -0.248 -0.108 -0.000 -0.497 -0.546 -0.158 -0.919 -0.750 -0.158
5 -0.214 -0.101 -0.000 -0.300 -0.114 -0.000 -0.483 -0.492 -0.135 -0.998 -0.708 -0.135
6 -0.253 -0.102 -0.000 -0.349 -0.117 -0.000 -0.469 -0.446 -0.118 -1.071 -0.665 -0.118
7 -0.289 -0.101 -0.000 -0.395 -0.118 -0.000 -0.455 -0.406 -0.103 -1.139 -0.625 -0.103
8 -0.323 -0.098 -0.000 -0.437 -0.117 -0.000 -0.441 -0.371 -0.092 -1.202 -0.586 -0.092
9 -0.356 -0.095 -0.000 -0.477 -0.114 -0.000 -0.427 -0.341 -0.083 -1.260 -0.550 -0.083
10 -0.386 -0.091 -0.000 -0.514 -0.111 -0.000 -0.414 -0.315 -0.075 -1.314 -0.517 -0.075
11 -0.415 -0.087 -0.000 -0.548 -0.107 -0.000 -0.401 -0.291 -0.068 -1.364 -0.486 -0.068
12 -0.442 -0.083 -0.000 -0.581 -0.103 -0.000 -0.388 -0.271 -0.063 -1.411 -0.457 -0.063

12-1 -0.398 -0.040 -0.000 -0.513 -0.058 -0.000 0.149 0.492 0.210 -0.762 0.394 0.210
12-3 -0.310 0.004 0.000 -0.389 -0.007 0.000 0.123 0.337 0.123 -0.576 0.333 0.123
3-1 -0.088 -0.044 -0.000 -0.124 -0.050 -0.000 0.026 0.155 0.086 -0.186 0.061 0.086

Table B.4: Loadings of option-implied components X11, X12, X22 on diffusive, intensity and
pure jump variance risk premia V RP ct (τ), V RP dct (τ) and V RP djt (τ), respectively. For horizons
τ from 1 to 12 months, we compute the model implied loading of state variables X11, X12 and
X22 in diffusive, intensity and pure-jump variance risk premia (columns 2 to 4). The last column
reports the state variables loadings in the total model-implied variance risk premium V RPt(τ).
The last three rows compute the contribution of each option-implied component to three proxies
for the slope of the term structures of variance risk premia, measured as V RPut (12)−V RPut (τ),
for u = c, dc, dj and τ = 1, 3 months, respectively.
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B. Appendix for “The Price of the Smile and Variance Risk Premia”

Panel A: 1 month horizon
Index Strategy

mean SR skewness mean SR skewness
Out of sample 0.031 0.184 -1.597 0.046 0.229 -1.064
Conundrum 0.056 0.511 -0.669 0.022 0.133 -0.398
Crisis -0.117 -0.438 -1.167 -0.042 -0.134 -1.067
Post crisis 0.088 0.584 -1.040 0.145 0.960 0.022

Panel B: 2 month horizon
Index Strategy

mean SR skewness mean SR skewness
Out of sample 0.033 0.190 -1.807 0.064 0.323 -1.828
Conundrum 0.060 0.556 -0.197 0.061 0.388 0.116
Crisis -0.118 -0.401 -1.187 -0.108 -0.333 -1.570
Post crisis 0.091 0.654 -0.704 0.189 1.533 -0.481

Panel C: 3 month horizon
Index Strategy

mean SR skewness mean SR skewness
Out of sample 0.032 0.181 -1.593 0.069 0.357 -0.343
Conundrum 0.058 0.542 -0.124 0.015 0.099 0.037
Crisis -0.104 -0.347 -0.892 0.170 0.549 -0.775
Post crisis 0.083 0.609 -0.555 0.092 0.672 -0.141

Panel D: 4 month horizon
Index Strategy

mean SR skewness mean SR skewness
Out of sample 0.031 0.173 -1.531 0.046 0.230 0.081
Conundrum 0.056 0.535 -0.157 0.003 0.022 0.162
Crisis -0.098 -0.313 -0.760 0.167 0.512 -0.450
Post crisis 0.079 0.589 -0.314 0.034 0.237 -0.137

Table B.5: Out-of sample statistics of the trading strategy discussed in the main text. We
compare mean return, Sharpe ratio (SR) and skewness of the returns of the S&P 500 index to
our trading strategy over horizons from 1 to 4 months. Returns and Sharpe ratios are annualized.
We break down the out of sample period (2003-Jan 2013) into three sub periods: the Conundrum
(2003-2007), the Financial Crisis (2008-2009) and the Post-Crisis period (2010-Jan 2013).
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X11 X12 X22

Min 0.0000 -0.0096 0.0001
Max 0.0516 0.0893 0.2610
Mean 0.0102 0.0044 0.0233
Median 0.0091 0.0014 0.0171
Positive 1.0000 0.6659 1.0000
Stdv 0.0091 0.0104 0.0259
Skewness 1.3460 3.6063 4.6427
Kurtosis 5.6376 20.9171 35.1886
AR(1) 0.9896 0.9529 0.8842
Half life 1.2753 0.2766 0.1083

Table B.6: Summary statistics of filtered option-implied components X11, X12 and X22 for
model SVJ31. “Positive” denotes the fraction of positive realizations of each option-implied
component in our sample period. Half lifes are given in years.
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Chapter 4

Eliciting a Smile
Numerical Methods for Option Pricing with

Matrix Affine Jump Diffusions

T
he matrix affine jump diffusion (MAJD) process, introduced in Leippold and

Trojani (2008), represents a promising class of multivariate stochastic volatil-

ity models. It allows for mutually-exciting risk factors, unspanned skewness

effects and a realistic modelling of variance risk, all without compromising

on tractability. So far, the literature has focused on the theoretical properties of these

processes (Muhle-Karb, Pfaffel and Stelzer (2010), Meyerhofer (2014)), on applications

in option pricing (da Fonseca et al. (2008), Gruber et al. (2010)), and on approximations

of the resulting volatility smile (Benabid et al. (2009)). Numerical aspects of estimation

and evaluation of these models in the context of transform methods have not yet been

considered. This paper aims at filling this gap.

In doing so, I build on a vast literature on the numerical aspects of option pricing.

The use of Fourier integrals for option pricing has been pioneered by Chen and Scott

(1992), Heston (1993) and Bates (1996). Carr and Madan (1999) introduce the Fast

Fourier Transform (FFT) method to finance, which allows for the pricing of an entire

option chain with a fixed number (typically 212) of evaluations of the Laplace transform.

Fang and Oosterlee (2008) improve on the work of Carr and Madan by choosing a new

set of basis functions and by introducing an efficient truncation of the probability density

function. Their Fourier-Cosine method (COS) is typically 20 times faster than the FFT,

without compromising precision.

Numerical problems related to the implementation of transform methods, especially

with a complex logarithm, were first emphasized by Schöbel and Zhu (1999). Kahl and

Jäckel (2005) take this topic up and formulate the rotation count algorithm for scalar

stochastic volatility models. Lord and Kahl (2010) build on their insights, but advocate

a re-formulation of the Laplace transform to avoid rather than remedy the problem of the
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4. Eliciting a Smile

complex logarithm. Cont and Hamida (2005) use evolutionary algorithms to estimate a

low-dimensional volatility model.

The matrix nature of the MAJD class introduces several new challenges in the fields of

computational efficiency, numerical stability, parameter identification and optimization:

First, matrix models are by definition high-dimensional models. In particular, the

large number of state components increases the computational complexity of jointly

estimating model parameters and the latent state. The smallest MAJD model, which is

based on a symmetric 2× 2 matrix and serves as an illustration throughout this paper,

has three state components and 16 risk-neutral parameters.

Second, the Laplace transform has several matrix components, some of which double

the dimensionality of the problem. At its core, it contains a complex matrix exponential

of double dimension, i.e. of a 4 × 4 matrix in the smallest case. Matrix exponentials

have a computational cost which is roughly two orders of magnitude larger than scalar

exponentials.

Third, the Laplace transform contains a complex matrix logarithm, which is a mul-

tivalued function. Using the principal branch of the complex logarithm, as implemented

by default in nearly every programming language, causes potentially large biases in the

option price.

Fourth, the Laplace transform contains an inverse matrix, which is numerically un-

stable if the matrix is close to rank deficiency. This is the case for large arguments of

the Laplace transform, i. e. for long horizons and/or if the integration limits are set

conservatively (i. e. very widely).

Fifth, little is ex-ante known about the role of individual state components. We know

for example that the state in a one-factor volatility model basically corresponds to short

term variance, which makes the square of the short term implied volatility a natural

candidate as starting value in a convex optimization. The high dimension of MAJD

models makes it possible that different state components pick up distinct second-order

phenomena.1 It is therefore very difficult to deduce starting values for the state from

economic considerations. The same applies to parameter estimation.

Sixth, although speed is nowadays rarely an issue in estimating an option pricing

model, MAJD models are an exception. On one side, the dimensionality of the problem

requires an unusually high number of evaluations of the Laplace transform, on the other

side, these evaluations are unusually costly. Pricing one option with standard numerical

integration takes about 9 seconds. Estimating the benchmark 2 × 2 model on 7 years

of weekly data using nonlinear least squares requires the calculation of some 1 billion

1 See Gruber et al. (2010) for a detailed analysis of the role of the state components in the benchmark
case.
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option prices and would take 285 years.2

This paper proposes several independent speed improvements that total to a factor of

106, reducing the estimation time to a few hours and thus rendering the model estimation

feasible. The biggest contribution to these improvements comes from the matrix rotation

count algorithm, with a factor of about 70. It enables the use of the FFT method, which

prices an entire chain of about 20 options in less than 3 seconds. An additional factor of

almost 20 is achieved by using the COS method, which requires fewer evaluations of the

Laplace transform. A further factor of 50 obtains from a novel evaluation scheme of the

likelihood function, that separates state- and parameter-dependent parts of the Laplace

transform. This evaluation scheme also improves the scaling of the computational cost

with respect to the size of the data set, especially the length of the time series. It requires

a delicate choice of the integration bounds. I present an approximation that limits the

error in implied volatility to 10−3 implied volatility percentage points (i.e. less than 0.1

implied volatility basis points). A final factor of 20 obtains from parallelization.

Beyond speed improvements, this paper identifies a numerical instability of the

Laplace transform for large values of the imaginary part of its argument. This requires

a precise choice of the integration bounds and truncation parameters for the FFT and

COS series.

I furthermore present two useful reparametrizations of the state and parameter matri-

ces, which facilitate the constrained optimization with respect to admissibility conditions

of the stochastic process.

The rest of the paper is organized as follows. Section 2 gives a brief overview of the

MAJD process and the estimation strategies under consideration. Section 3 discusses

issues arising from the complex logarithm and introduces the matrix rotation count

algorithm. Section 4 presents the fast evaluation scheme of the likelihood function based

on the separation of state- and parameter-dependent parts of the Laplace transform and

an approximation of the integration limits. Section 5 discusses the numerical instability

of a matrix inverse in the Laplace transform. Section 6 discusses problems of optimization

and proposes alternative matrix representations. Section 7 concludes. The appendix

specifies the 2× 2 matrix process which is used as an illustration throughout this paper.

2 See Table 3.1 for the specification of the reference data set, and Table 3.3 for the benchmark model.
The reference computer system is a 2.8 GHz Intel Xeon 540 running MATLAB 2014b on one core.
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4.1 The MAJD Process for Option Pricing

4.1.1 The Process

Variance states follow the affine diffusion process:3

dXt = [βQ′Q+MXt +XtM
′]dt+

√
XtdBtQ+Q′dB′t

√
Xt , (4.1)

where the state matrix Xt is an n×n symmetric, positive definite matrix, the parameters

M and Q are n × n matrices and B is an n × n standard Brownian motion under the

risk-neutral martingale measure Q. X is the Wishart process introduced by Bru (1991).

The process is positive definite (semi-definite) if β > n + 1 (β > n − 1), such that the

diffusive variance tr(Xt) cannot reach (cross) the zero bound.

Remark. The symmetric state matrix Xt has n(n + 1)/2 distinct components. The

n diagonal elements Xii are always positive (non-negative), if the process is positive

definite (positive semi-definite). The n(n− 1)/2 out-of diagonal elements Xij with i 6= j

can take positive or negative values within the bounds of the (semi)definiteness prop-

erty. When M or Q are not diagonal matrices, all state components are dynamically

interconnected. With both M and Q diagonal, the process collapses to n independent

variance processes of the Heston-type. This model therefore naturally nests multivari-

ate stochastic volatility models with independent factors such as Heston (1993), Bates

(2000) or Christoffersen et al. (2009).

Given the matrix state dynamics (4.1), the returns process under the risk neutral

probability measure Q is specified as

dSt
St−

= (r − q − λtk)dt+ tr(
√
XtdZt) + kdNt , (4.2)

where r and q denote interest rate and dividend yield, tr(·) denotes the trace of a matrix

and Zt = BtR+Wt

√
In −RR′ . Matrix W is another n×n standard Brownian motion,

independent of B, and the correlation between variance and return shocks R is an n×n
matrix such that In −RR′ is positive semi-definite.

Jumps in returns follow a compound Poisson process kdNt with jump intensity λt =

λ0 + tr(ΛXt), where λ0 ≥ 0 and Λ is a positive definite n× n matrix. The distribution

of the return jump size k is specified by its Laplace transform ΘY .

3 Leippold and Trojani allow for jumps in variance and denote the Laplace transform of the respective
jump size distribution ΘX . Jumps in variance are omitted here, as their presence has no impact on
the results presented in this paper.
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4.1.2 Estimation Strategies and Computational Cost

Estimating a latent factor model such as the MAJD class usually encompasses the joint

estimation of the parameters and the latent state. Before we can estimate the parameter

matrices, we need to rewrite them in form of a vector θ, as all major optimization

algorithms work only for vectors, see Section 4.5.2. We can formulate the optimization

problem in a maximum likelihood context as:

(θ̂, {X̂t}) = arg max
θ,{Xt}

L(θ, {Xt};O) (4.3)

where L(·) denotes the likelihood function, {Xt} the whole time series of Xt and O
stands for the panel of option data. This is a high-dimensional problem, which does

not lend itself well to optimization. For a time series of length T , we need to estimate

nθ + T · n(n+ 1)/2 quantities.4

In order to break the dimensionality of the joint problem, I opt for a nested estima-

tion:5

Inner problem: {X̂t|θ} = arg max
{Xt}

L(θ, {Xt};O) (4.4)

Outer problem: θ̂ = arg max
θ

L(θ, {X̂t|θ};O) (4.5)

i.e. for each parameter vector θ I find the optimal time series of the state X̂t (inner

optimization) and the I optimize over θ, evaluating the likelihood function at X̂t|θ. The

point estimator for the parameter vector θ can be written as

θ̂ = arg max
θ

L
(
θ, arg max

{Xt}
L(θ, {Xt};O);O

)
. (4.6)

This reduces the dimension of the optimization problem, as we now have one problem

of dimension nθ and T problems of dimension n(n + 1)/2. The form of the likelihood

function (4.5) and the number of option prices required for one evaluation depends on

the estimation strategy:

4 In the benchmark case of the minimal 2 × 2 model, nθ = 16 and n(n + 1)/2 = 3. In the benchmark
data set, T = 359, thus the overall dimension is 1093.

5 In the context of NLLS estimation, Huang and Wu (2004) successfully iterate between an optimization
over the state given a parameter vector and an optimization over the parameters, given the (previous)
state estimate. This approach does not produce stable results for the MAJD class and is furthermore
not compatible with stochastic optimization algorithms. Furthermore, extended Kalman Filter (EKF)
estimation is only conceivable as nested optimization.
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Nonlinear least squares (NLLS). This optimization approach follows Bates (2000)

and Huang and Wu (2004) and minimizes the (weighted) relative pricing errors. The

first (inner) step computes the optimal state conditional on the parameter vector. This

is defined independently for each trading day t

X̂t|θ = arg min
Xt

Nt∑
i=1

[(
Ôit(θ,Xt)−Oit

)
/Ft

]2
, (4.7)

where Oit and Ôit(θ;Xt) denote the observed and model-implied prices of option i, with

1 ≤ i ≤ Nt. We can now define the vector et of relative option pricing errors at the

conditionally optimal state with elements ei,t =
(
Ôit(θ, X̂t|θ) − Oit

)
/Ft. Note that Nt,

the length of vector et, varies from trading day to trading day.

Our point estimate for parameter θ is given by the following pseudo Maximum Like-

lihood estimator:

θ̂ = arg max
θ
− 1

2

T∑
t=1

(
ln |Ωt|+ e′t Ω−1

t et

)
. (4.8)

where the Nt ×Nt matrix Ωt is the conditional covariance matrix of these errors which

is obtained from calculating group-specific error covariances in three maturity and three

moneyness groups, similar to Bates (2000).

In this optimization strategy, the outer optimization problem has a dimension of nθ
= 16. The T inner optimizations of dimension n(n + 1)/2 are independent and can

therefore be parallelized. We furthermore note that θ does not change during the inner

optimization step, a fact that will be used in Section 4.3. A drawback of the nested NLLS

approach is that MXopt
NLLS , the number of optimization steps for (each) inner optimization,

is quite large.6 The total number of option prices that need to be calculated for one

evaluation of the NLLS-likelihood function (4.8) is

MLNLLS = T nτ nkM
Xopt
NLLS (4.9)

where nτ denotes the average number of maturities per trading day and nk the average

number of strikes per option chain. In the benchmark example, MLNLLS is roughly 2

million.7

Extended Kalman Filter (EKF). This optimization approach follows, among oth-

ers, Carr and Wu (2007) and Carr and Wu (2009b). The inner optimization is replaced by

an extended Kalman Filter, which produces X̂t|θ. Apart from obvious advantages such

6 For the 2× 2 benchmark model, MXopt
NLLSistypicallyabout40.

7 For the benchmark data set T = 359, nτ = 6.09 and nk=23.
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as consistency of the estimate with the assumed form of the process and the possibility to

estimate the physical dynamics of the latent state, the EKF strategy usually requires the

calculation of fewer option prices: one evaluation of the option price plus n(n+ 1)/2 + 1

evaluations to numerically calculate the Jacobian matrix, i. e. MJ
EKF = 2 + n(n+ 1)/2.

The point estimate for the parameter vector θ is now

θ̂ = arg max
θ
−

T∑
t=1

e′tet . (4.10)

where we define et analogously to the NLLS case. The total number of option prices

that need to be calculated for one evaluation of the likelihood function (4.10) is

MLEKF = T nτ nkM
J
EKF (4.11)

which is ca. 200 000 for the benchmark example, i.e. ten times fewer than the NLLS

approach. We note that during one evaluation of the filter, θ does not change, a fact

that we will use in Section 4.3. A drawback of the EKF approach is that, unlike the

NLLS case, the calculation of the state cannot be parallelized, as the estimate of Xt

depends on X̂t−1|θ.

4.1.3 The Laplace Transform

In the canonical form, the Laplace transform of the log-return process is written as (see

Leippold and Trojani (2008))8:

Ψγ,t(τ) = exp{γYt + Tr [A(τ ; γ)Xt] +B(τ ; γ)} (4.12)

Where the n × n matrix A(τ) and the scalar B(τ) are solutions to the following

Riccati differential equations:

∂A(τ)

∂τ
= A(τ)M +M ′A(τ) + 2γRQA(τ) + 2A(τ)Q′QA(τ) +

+
γ(γ − 1)

2
Idn + Λ

[
ΘY (γ)− 1 + γ

(
ΘY (1)− 1

)]
(4.13)

∂B(τ)

∂τ
= tr[ΩΩ′A(τ)] + (γ − 1)r + λ0

[
ΘY (γ)− 1 + γ

(
ΘY (1)− 1

)]
(4.14)

where A(0) = B(0) = 0. Note: tr[ΩΩ′A] = tr[AΩΩ′] = tr[AQ′Qβ].

8 We follow the notation of Leippold and Trojani (2008), where X denotes the variance factors and Y
the returns. Jumps in the volatility factors are omitted, as they do not impact the results in this
paper.
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Equations (4.13) and (4.14) have the following solutions:

A(τ) = C−1
22 (τ)C21(τ) (4.15)

B(τ) =

∫ τ

0
tr[ΩΩ′A(s)] + γr + λ0

[
ΘY (γ)− 1 + γ

(
ΘY (1)− 1

)]
ds

= τ
{

(γ − 1)r + λ0

[
ΘY (γ)− 1 + γ

(
ΘY (1)− 1

)]}
+

∫ τ

0
tr[ΩΩ′A(s)]ds (4.16)

= τ
{

(γ − 1)r + λ0

[
ΘY (γ)− 1− γΘY (1)

]}
−β

2
tr[log(C22(τ)) + τ(M ′ + γR′Q)] (4.17)

with the 2n× 2n matrix(
C11(τ) C12(τ)

C21(τ) C22(τ)

)
= exp

[
τ

(
M + γQ′R −2Q′Q

C0(γ) −(M ′ + γR′Q)

)]
:= exp(E) (4.18)

and the n× n matrix C0:

C0(γ) =
γ(γ − 1)

2
Idn + Λ

[
ΘY (γ)− 1 + γ

(
ΘY (1)− 1

)]
. (4.19)

The univariate Laplace transform of the return jump size distribution is for the

lognormal case

ΘY
LN (γ) = (1 + k)γ exp

(
γ(γ − 1)

δ2

2

)
(4.20)

and for the double exponential case

ΘY
DX(γ) =

λ+λ−

λ+λ− + γ(λ+ − λ−)− γ2
. (4.21)

Option prices obtain via the transform methods, i.e. the FFT of Carr and Madan

(1999), or the COS method of Fang and Oosterlee (2008) or the quadrature method of

Attari (2004).

4.2 The Matrix Rotation Count Algorithm

4.2.1 Multivalued Complex Logarithms

Ambiguity is a rare phenomenon in computational finance, but one such example is the

complex logarithm embedded in the Laplace transform of most affine volatility models,

such as the models of Heston (1993), Bates (2000), Duffie et al. (2000) or Leippold and
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Figure 4.1: Imaginary part of B(τ, γk) in the benchmark model as a function of k in γk in the
COS inversion for τ = 1yr, when directly evaluating (4.17). Typical values for γk are given in
Table 4.1.

Trojani (2008). To illustrate the problem, consider a complex scalar z = a + ib with

exponential ez = ea · eib. The complex exponential eib = cos(b) + i sin(b) is a periodic

function of b, therefore for any integer k

eib = ei(b+k 2π) ,

and we cannot know from ez the value of k in argument z = a+ i(b+ k 2π). As log(ez)

is multivalued, it is a convention to restrict b to the interval (−π, π]. This interval is

called the “principal branch”. If the imaginary part of z passes (2k+ 1)π, the logarithm

“rotates”, resulting in a discontinuity of the principal branch of the imaginary part of

the logarithm. As Lord and Kahl (2010) observe, this may be “leading to completely

wrong option prices if options are priced by Fourier inversion.” Figure 4.4 provides an

illustration for the magnitude of the problem.

As the characteristic function in formulation (4.17) involves a matrix logarithm in

B(γ, τ), we indeed observe discontinuities illustrated by Figure 4.1. More precisely, the

jumps in B(γ, τ) are all of the order of π, with more jumps for larger durations τ . If we

apply the (computationally much slower) formulation (4.16), no jumps occur. In order

τ γ0 γ1 γ199

1 month 0 1.06 212.4
3 months 0 0.70 139.8
9 months 0 0.41 80.7

τ γ0 γ1 γ199

12 months 0 0.35 69.9
24 months 0 0.25 49.4
60 months 0 0.16 31.3

Table 4.1: Typical values for γk(τ)
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Figure 4.2: Complex eigenvalues d1, d2 of the matrix C22 of the benchmark model as a function
of γk in the COS method for τ = 1yr. The horizontal red lines at the transition from the second
to the third quadrant highlight the discontinuity in the principal branch of the complex logarithm
occurs. Left: first eigenvalue d1, right: second eigenvalue d2. The dashed grid lines illustrate the
fact that each plot is composed of four log-log plots, omitting very small positive and negative
values along both axes. Typical values for γk are given in Table 4.1.

to understand the phenomenon in more detail, we rewrite the matrix logarithm in (4.17)

in terms of a PDP decomposition.

PDP−1 = C22

log(C22) = P logDP−1 . (4.22)

D is a diagonal matrix containing the eigenvalues of C22, which means that the matrix

logarithm of D is simply the diagonal matrix of the logarithms of the diagonal elements:

(log(D)ii = log(Dii). Figure 4.2 illustrates the two eigenvalues of the 2 × 2 benchmark

model as functions of γ. Both eigenvalues start in the first quadrant and rotate counter-

clockwise. When an eigenvalue passes from the second to the third quadrant, a “rotation”

occurs and the imaginary part of the logarithm jumps. The fact that the two eigenvalues

rotate independently is the reason why we did not see a regular pattern in Figure 4.1.

4.2.2 The Algorithm

A practical solution to the problem above is to count the number of rotations, preferably

separately for each eigenvalue, and to correct for them. This is the goal of the following

algorithm:
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Algorithm 1 (Matrix Rotation Count Algorithm). The following algorithm solves the

problem of the discontinuous matrix logarithm of C22 in equation (4.17) and produces

a continuous B-function. The algorithm must be run separately for every τ .

Define k = 1 . . . N as counter of the arguments of the Laplace transform γk and

j = 1 . . . n as counter of the eigenvalues of C22 (n is dimension of the Wishart

process). The symbols <(x) and =(x) denote the real and imaginary parts of x.

1. For every eigenvalue dj of C22 with 1 ≤ j ≤ n, initialize the number of

rotations at r1,j := 0

2. For every γk, with 1 ≤ k ≤ N and γk−1 < γk do

3. Calculate C22(τ, γk)

4. Perform a decomposition PkDkP
−1
k = C22(τ, γk), where Dk is a diagonal

matrix containing the eigenvalues of C22(τ, γk).

5. For every eigenvalue (Dk)jj with 1 ≤ j ≤ n do

6. Calculate the complex logarithm dk,j = log
(
(Dk)jj

)
.

7. Produce the sawtooth-like function mk,j = =(dk,j) mod π.

8. Verify whether a rotation has occurred. Increase rk,j by 1 for every

positive rotation, i.e. when mk,j −mk−1,j > π/2 and decreased by

1 for every negative rotation, i.e. when mk,j −mk−1,j < −π/2.

9. The correct branch of the imaginary part of log
(
(Dk)ii

)
obtains as

=(dk,j) := mk,j + π · rk,j . The real part <(dk,j) is not changed.

We obtain the elements of the diagonal matrix (Dlog
k )ii = <(dk,j) +

j (mk,j + πrk,j) = log(Dk).

enddo

10. Use log(C22(τ, γk)) = PkD
log
k P−1

k to calculate B in equation (4.17).

enddo

Figure 4.3 illustrates steps 7 to 9 of this algorithm.

Remark 1. The rotations of the individual eigenvalues illustrated in Figure 4.2 are

counted in step 8 by calculating mk,j − mk−1,j . The algorithm therefore requires the

sequential evaluation of the characteristic function for increasing values of γk, starting

form γ1 = 0. Thus it is only suitable for inversion methods that sequentially evaluate

the characteristic function on a uniform grid like FFT, COS or Attari’s method. A

straight forward application to adaptive algorithms such as Gauss-Lobatto integration

is not possible.

Remark 2. Some authors, e.g. Benabid et al. (2009) reformulate equation (4.17)

using the identity log(det(C22)) = tr(log(C22)). In this formulation, knowledge of the
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Figure 4.3: Illustration of Algorithm 1 (Matrix Rotation Count or MRC). All panels depict the
complex part of the eigenvalues di of matrix C22 as a function of k in γk. Top panels: sawtooth-
function from step 7. Middle panels: step function from step 8. Bottom panels: continuous
eigenvalues from step 9. The left panels depict the first eigenvalue d1, the right panels the
second eigenvalue d2. Parameters are taken from the benchmark model, τ = 1 yr.

individual eigenvalues (Dk)jj is lost, which makes it more difficult to count the individual

rotations.

Remark 3. If the first derivative of the imaginary part of the eigenvalues of C22(γ)

with respect to γ is too large or if the grid width γk − γk−1 is too wide, the algorithm

will fail, as it would identify a rotation at every k. This can be avoided by choosing

the following modified algorithm, that has a more sophisticated identification of the

rotations:
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Figure 4.4: Typical corrections generated by the Matrix Rotation Count algorithm for call
options in COS-inversions, as a function of the Black-Scholes delta. The values are shown here
are for calls, for puts simply set ∆put = 1−∆call. Left panel: dollar pricing correction in percent
of the price of the underlying. Right panel: implied volatility correction in volatility percentage
points. Dotted lines denote a maturity of 0.75 years, full lines 1 year and dashed lines 1.25 years.

Algorithm 2 (Modified Matrix Rotation Count Algorithm). This algorithm can be

used if =(dk,i)−=(dk,i−1) is typically larger than π.

1–7. Perform steps 1− 7 like in algorithm 1.

8. Verify whether a rotation has occurred. The value of rk,i is increased (de-

creased) by 1 for every positive (negative) rotation, i.e. when (mk,i−mk−1,i)−
(mk−1,i −mk−2,i) > (<)π/2 and (mk,i+1 −mk,i)− (mk,i −mk1,i) < (>)π/2.

9–10. Perform steps 9− 10 like in algorithm 1.

Lord and Kahl (2010) propose an algorithm for the scalar case, which calculates

the number of rotations for γk without knowledge of γk−1. In the matrix case, their

approach is not feasible, as the following example for the 2× 2 case shows. From (4.18),

C = exp(E(τ, γ)), therefore we can calculate PDP−1 = τE and anticipate any rotation

in C = P exp(D)P−1. However, the argument of the matrix logarithm is now

C22 =

(∑4
j=1 exp(Djj)P̄j3P3j

∑4
j=1 exp(Djj)P̄j4P3j∑4

j=1 exp(Djj)P̄j3P4j
∑4

j=1 exp(Djj)P̄j4P4j

)

with P̄ = P−1, i.e. the elements of C22 are now weighted sums of the eigenvalues of

E(τ, γ). Thus the eigenvalues of C22 may pass a 2π-threshold even when no eigenvalue

of E does, implying that the number of rotations for a single value of γ cannot be known.
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4.2.3 Impact of the Matrix Rotation Count Algorithm

Wrongly choosing the principal branch of the complex matrix logarithm causes a bias

in the option price that is potentially large. Using the benchmark model, the maximal

dollar error for a horizon of one year is 0.3% of the price of the underlying. An error

of this magnitude exceeds the typical option premium for a call with ∆ = 0.05 (viz. a

put with ∆ = −0.95), making it impossible to calculate the implied volatility. A more

detailed numerical analysis reveals that the bias is larger for longer maturities, for higher

volatilities and for extreme structures of the state matrix, with the largest error obtained

for singular state matrices.9 The error is present in all Fourier inversion methods.

Figure 4.4 provides an illustration of the magnitude of the correction for the COS

inversion method as a function of the Black-Scholes delta. The sine-shaped form of

the error derives from the central term in the COS inversion formula (C.7), which reads

Re
{
φLevy

(
kπ
b−a

)
exp

(
ikπ y−ab−a

)}
. The bias in B(τ, γ) causes a shift of the imaginary part

of φLevy(·), which is multiplied by the periodic function exp(ikπ y−ab−a ) = cos(ikπ y−ab−a ) +

i sin(ikπ y−ab−a ).

After the application of the rotation count algorithm to the analytical expression

(4.17), the results for B(τ, γ) are identical to the ones obtained through numerical inte-

gration in (4.16) up to precision of the numerical integration.

4.3 Fast Evaluation Scheme of the Likelihood Function in

the COS Inversion

4.3.1 Execution Speed of the Likelihood Function

With modern computer hardware, speed is normally not an issue in estimating op-

tion pricing models. Estimating the MAJD model is an exception. The dimension of

the model necessitates a nested likelihood function. Its complexity requires the use

stochastic optimization, based on at least 10 000 evaluations10 of the likelihood function.

Furthermore, matrix exponentials and logarithms are computationally more costly by a

factor of 30 to 40 compared to their scalar counterparts.

After the 70-fold speed gain afforded by the Matrix Rotation Count Algorithm and

the 20-fold speed gain from the use of the COS method of Fang and Oosterlee (2008),

9 In the benchmark example, the state matrix is close to singular in 3.5% of the observations in the
sample, with X11

X22
and |X12|

X22
both smaller than 0.02. As an extreme example, the filtered state for

March 7, 2007, is X = 0.0158

(
1.7× 10−6 −1.3× 10−3

−1.3× 10−3 1

)
.

10 For example, a minimal optimization setup using differential evolution has a population size of 100
and an iteration count of 100 generations.
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COS FFT
time fraction time fraction

(1) Parameter-dependent part of Ψ 144.1 ms 98.8% 2854 ms 99.4%
Evaluation of exp(E) in (4.18) 77.9 ms 53.0% 1560 ms 54.3%
Matrix Rotation Count Algorithm 46.1 ms 31.4% 860 ms 30.0%

(2) State-dependent part of Ψ 0.8 ms 0.5% 5 ms 0.2%
(3) Fourier inversion 1.1 ms 0.7% 11 ms 0.4%

Table 4.2: Breakdown of the execution time11 for the pricing of one option chain.

pricing one option chain takes 0.146 seconds in the benchmark case. Still, one evaluation

of the likelihood function takes 3.5 hrs (0.4 hrs) in the NLLS (EKF) scheme. Thus

estimating the model would take almost 4 (0.4) years.

In order to find additional speed improvements, I profile the pricing of one op-

tion chain. There are three major program blocks: (1) Evaluation of the parameter-

dependent part of the Laplace transform, i.e. of matrices A(τ) and B(τ) in (4.15) and

(4.17), based on the evaluation of the matrix exponential in (4.18) and the application

of the Matrix Rotation Count Algorithm. (2) Evaluation of the state-dependent part of

the Laplace transform (4.12). (3) Fourier Inversion for the option prices. in the 2 × 2

benchmark case, Table 4.2 shows that 99% of the total computational cost is caused by

the parameter-dependent part of the Laplace transform. The evaluation of the matrix

exponential (4.18) alone takes half of the execution time. It is therefore evident that

any further improvement requires a reduction of the number of evaluations of A(τ) and

B(τ).

Reconsider the Levy-part of the Laplace transform (C.6):

ΨLevy(γ; τ,Xt) = exp {Tr [A(τ, γ)Xt] +B(τ, γ)}

Only expression Xt is time-varying. The costly expressions A(τ, γ) and B(τ, γ) de-

pend on τ and γ only. We can therefore envisage an evaluation scheme of the likelihood

function where we re-use any value of A(τ, γ), B(τ, γ) that has already been calculated.

The cost of such a scheme only depends on the number of different combinations of τ

and γ.

11 Omitting program overhead. See the appendix for the specification of the reference data set, the
benchmark model and the reference computer system. One option chain contains nk = 23 strikes.
Timing in milliseconds (ms), with 1000 ms = 1 second.
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4.3.2 The Evaluation Scheme

The first step towards a fast evaluation scheme is to reduce the number of different option

maturities. Assuming a maximum maturity of 1 year, this number can be trimmed to

just 52 if we use weekly data sampled on a fixed day of the week, e.g., Wednesday.12

The shortest maturity is 3 days (Wednesday until expiry on Saturday), the next one 10

days and so on. Two limitations have to be accepted: if there is no data for a given

Wednesday, a whole trading week has to be omitted,13 as replacing missing Wednesdays

by the preceding Tuesdays potentially doubles the number of different maturities in the

sample. Quarterly options also have to be discarded, as they usually do not expire on a

Saturday.

The second step is more delicate. In the COS expansion, γk is a function on the

integration limits [a, b], which in turn depend on the second and fourth cumulants of the

risk neutral distribution, see (C.8) and (C.9):

γk =
k

bt − at
with − at = bt = L

√
κ2,t(θ, τ,Xt) +

√
κ4,t(θ, τ,Xt)

Thus γ = γ(θ, τ,Xt), which makes re-using a previously calculated A(·), B(·) impos-

sible. The solution is a “one size fits all” approximation for a and b as a function of

τ alone. We start from the observation that, for sufficiently long durations, κ2 can be

approximated by the variance level Vt times the duration:

κ2,t ≈ τ Vt

Next, define κ2 = τ V , with V the sample average of the short term, at the money

variance. (In the benchmark example, V = 0.2.) To accommodate the kurtosis created

by jumps at short horizons, we correct τ for durations below 2 months: τ c = τ +

0.3(2/12−τ). We can now approximate the integration limits as function of τ exclusively

−a(τ) = b(τ) = L ·
√
κ2 = L ·

√
τ c V (4.23)

This gives rise to the following algorithm:

Algorithm 3 (Fast Evaluation Scheme of the Likelihood Function). Using approxima-

tion (4.23), the likelihood function (4.8) can be evaluated for a given parameter set θ

and time series {Xt} of the state.

12 Further reducing the frequency to monthly reduces the number of possible maturities only to 26, due
to the fact that some months have four and some have five Wednesdays.

13 For the S&P 500, there are four such occasions in the seven-year period 1996-2002: christmas 1996
and 2002, 9/11/2001 and 7/4/2001.
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Quadrature FFT COS
Pricing one option chain 207 s 2.88 s 0.147 s
One evaluation of the likelihood function
NLLS standard scheme 4954 hrs 69.5 hrs 3.5 hrs
NLLS advanced scheme n/a 562 s 138 s
EKF standard scheme 495 hrs 7 hrs 0.4 hrs
EKF advanced scheme n/a 191 s 26 s
Marginal cost for adding . . .
One maturity 207 s 2.87 s 0.146 s
One state × maturity 207 s 4.76 ms 0.71 ms
One strike 9 s 1.25µs 35µs

Table 4.3: Execution time for one evaluation of the likelihood function and marginal computa-
tional costs for additional observations. FFT and COS methods use formulation (4.17) for B(τ)
and apply the matrix rotation count algorithm.

1. Make a list of all option maturities τi in the data set.

2. For every τi, with 1 ≤ i ≤ nτ do

3. Calculate vector γi(τi) = k
b(τi)−a(τi)

based on (4.23)

4. Calculate A(τi, γi), B(τi, γi) using Algorithm 1, save in list L1

enddo

4. For every trading day t with 1 ≤ t ≤ T do

5. For every duration τj on day t with 1 ≤ j ≤ nτ,t do

6. Retrieve elements A(τj), B(τj) from list L1

7. Calculate ΨLevy = exp(tr(A(τj)Xt +B(τj))

8. Perform the Fourier inversion

enddo

enddo

Remark 1. To accommodate the NLLS or EKF estimation strategy, simply augment

steps 5.− 8. As the parameter-dependent part of the Laplace transform is evaluated in

steps 1.−3., the additional cost of the nested optimization is negligible. In the case of the

NLLS scheme, the objective function of the inner optimization obtains from evaluating

steps 5.−8. The state X̂t is estimated from an optimization over this objective function,

separately day-by-day. In the case of the Kalman filter, the Jacobian matrix is calculated

via numeric differentiation. For this, steps 7.− 8. are repeated with Xt +hEj , where Ej
is a matrix that is one at the location of state component j and zero otherwise.

Remark 2. Table 4.3 presents a detailed timing analysis of the speed increase enabled
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Figure 4.5: Error analysis of the fast evaluation scheme for the benchmark 2 × 2 model.
Average (dashed line) and the maximal (solid line) absolute implied volatility approximation
error as function of maturity τ in months. Volatilities in the range from 10% to 63% and strikes
in the range 0.05 ≤ |∆| ≤ 0.95 were considered for each τ . Furthermore, all admissible volatility
structures are scanned using the polar coordinate representation (4.30). See Tab. C.1 in the
Appendix for the exact parameters used to create this figure.

by Algorithm 3. Beyond a vast cut in execution time, we observe a vast improvement

of the scaling properties of the likelihood function with respect to the dimension of the

process, n. For the Kalman Filter approach, the number of evaluations of the parameter-

dependent part of the Laplace transform is reduced from MLEKF = T nτ (2 + n(n+ 1)/2)

to 52. Already in the 2× 2 benchmark case, this is a reduction by a factor of 168. The

improvement for the NLLS approach is even larger, as the cost for the nested (inner)

optimization is now greatly reduced. As a consequence, the difference in computational

cost between NLLS and Kalman Filter shrinks from 10:1 to 2:1.

4.3.3 Error Analysis

Fixing the integration limits regardless of the variance level involves a trade-off between

two types of error. In the case of high volatility, the integration limits are too tight,

which results in an analytical error from the truncation of tails of the risk-neutral dis-

tribution. In the case of low volatility, the integration limits are too wide, which yields

to a numerical error. To assess the error induced by fixing the integration limits to the

values in (4.23), I perform a detailed of the pricing behavior for the benchmark model.
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Figure 4.6: Loss of precision in calculating tr[log C22(γk)] for the COS inversion. The graph
depicts the number of significant digits (out of 16) lost when calculating tr[log C22] as a function
of k in the COS inversion. Left: τ = 1yr with integration limits as defined in (4.23). Right:
τ = 5yr using sub-optimal integration limits (4.23) a(τ), b(τ) with τ = 1 yr.

Using the polar coordinate representation (4.30), I create state matrices with variances

between 0.01 and 0.4 (volatilities from 10% to 63%) and all admissible volatility struc-

tures, see Tab. C.1 for the exact quantities used. I test the pricing for strikes in the

range 0.05 ≤ |∆| ≤ 0.95 (puts and calls) and durations from 1 month to 5 years.

The absolute approximation error of using integration limits (4.23) in terms of implied

volatility as a function of τ is quantified in Figure 4.5. The maximum value is always

below 10−3 volatility percentage points, i.e. below one tenth of a volatility basis point,

and the mean is typically below one-thousandth of a volatility basis point. Given that

the best model in Gruber et al. (2010) has an mean absolute implied volatility error

(MAIV ) of 69 volatility basis points, the numerical approximation error is typically

four to five orders of magnitude smaller than the model error.

4.4 Loss of Precision in tr[log(C22)]

A numerical instability in the calculation of tr[log(C22)] arises, if the Laplace transform

is evaluated for unsuitable (usually too large) values of γ. The problem is best analyzed

for the 2 × 2 case using the identity log(det(C22)) = tr[log(C22)], though it does not,

depend on the way how tr[log(C22)] is calculated. The determinant of C22

det(C22) = C11
22C

22
22 − C12

22C
21
22 (4.24)

contains a subtraction. For large values of γ, the two terms in (4.24) have very similar

values. The numerical error induced by this subtraction can be assessed using the loss

of precision theorem, which states that in a subtraction x − y with 0 < y < x, the
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Figure 4.7: Loss of precision in calculating tr[log C22(γ)] for the FFT inversion. The graph
depicts the number of significant digits lost (out of 16) when calculating tr[log C22] as a function
of k in the FFT inversion for τ = 1 yr. Left: upper integration limit a = 100. Right: upper
integration limit a = 1024, the original value of Carr and Madan (1999).

number of significant digits lost is

q ≈ −log10(1− y

x
) (4.25)

To avoid loss of precision in (4.24), too large values of γ should be avoided in the

evaluation of the Laplace transform. Figure 4.6 shows the number of significant digits

lost (out of 16 for double precision numerics), for the COS inversion. The left panel is

evaluated at a duration of 1 year, using the approximated integration limits (4.23). Up

to six digits are lost, if we truncate the COS series (C.7) at a typical value of N = 250.

This affords a sufficient precision for option prices.14 However, we observe the phe-

nomenon that adding more terms to the COS series (C.7) can lead to worse results:

for N > 600, some elements of the COS expansion loose all significant digits, resulting

in a logarithm of zero and option prices that cannot be calculated. The right panel of

Figure 4.6 also highlights the importance of the correct choice of integration limits. If

we perform the COS inversion for a maturity of 5 years using the (incorrect) integration

limits (4.23) for τ = 1 yr, the argument γk of the Laplace transform becomes too large

by a factor ≈ 2.3 (see Table 4.1), and all significant digits are lost for N > 80.

Worse results obtain for the FFT method, where the upper limit of the integration

a = N · η (in the original notation of Carr and Madan) needs to be comparatively high

to dampen the effects of the oscillating summands. Carr and Madan propose N = 4096

and η = 0.25, i.e. a = 1024. Figure 4.7 shows that for τ = 1 yr, an upper limit of 1024

leads to a loss of all significant digits for N > 600. Numerical experiments show that a

reasonable choice of a for the FFT is 100/τ , leading to a loss of up to 8 digits.

14 Numerical experiments show that a similar number of digits is lost for durations from 1 month to 5
years, when using integration limits (4.23).
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Figure 4.8: Example for the non-convexity of the objective function: In-sample likelihood of
the benchmark model as function of Q11, expressed in multiples of the estimated value Q̂11. All
other parameters are kept at their point estimates.

4.5 Numerical Problems in the Model Estimation

4.5.1 Stochastic Optimization

The estimation of the MAJD model is formulated in (4.6) as a nested optimization

problem:

θ̂ = arg max
θ

L
(
θ, arg max

{Xt}
L(θ, {Xt};O);O

)
.

Following the convention in the optimization literature, I implement the estimator

θ̂ by minimizing the negative likelihood. There is no theoretical evidence that this

optimization problem is convex, on the contrary. As a simple counter-example, Figure

4.8 depicts the likelihood of the benchmark model as a function of parameter Q11,

expressed in multiples of the point estimate Q̂11. Besides the obvious maximum at 1

there is a strong local maximum around −0.55. The presence of this local maximum

precludes the use of convex optimization algorithms.

Furthermore, little is ex ante known about the role and interpretation of the param-

eter matrices. In independent component models of the Bates (2000)-type, the signs

of almost all parameters obtain from admissibility criteria, which helps guessing good

starting values for a (locally) convex optimization. Such criteria do not exist for the

out-of-diagonal elements of the parameter matrices in the model SV J31.

Both problems – lack of good starting values and non-convexity – can be attacked by

using population-based stochastic optimization algorithms such as differential evolution

of Storn and Price (1997). This non-convex optimization algorithm only requires an

interval of plausible starting values for each element of the parameter vector. The

elevated computational cost of this algorithm – Storn and Price propose a population
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size of five to ten times the number of parameters and 100 generations – is accommodated

thanks to the speed increases afforded by the Matrix Rotation Count algorithm and the

Fast Evaluation Scheme of the likelihood function. Moreover, differential evolution can

be parallelized up to the order of the population size.

To increase the precision of the point estimate, the result of the stochastic optimiza-

tion is used as starting value for a simplex optimization using the algorithm of Nelder and

Mead (1965), assuming local convexity of the likelihood function around the optimum.

4.5.2 Matrix Representations and Optimization Constraints

The standard convention in the optimization literature is optimization over a parameter

vector. As the MAJD model features several parameter matrices and a state matrix,

we encode the argument of the objective function as a vector. In the unconstrained

case, this can be done in a straight-forward manner using the vectorization function vec

viz. the half-vectorization function vech for symmetric matrices. The parameter vector

is then θ = {vec(M), vec(R), vec(Q), β, λ0, vec(Λ), θξ; vech(Xt)} where θξ denotes the

parameters of the return jump distribution.

Considerations of identification15 and admissibility require the following constraints:

• Positive definiteness and symmetry of the state Xt,

• Negative definiteness and lower triangularity of M ,

• Positive definiteness of tr(ΛXt) for all Xt,

• Existence of
√
Idn −R′R

Some constraints are tedious to implement in cartesian coordinates. For example the

positive definiteness of a n× n state matrix implies n(n+ 1)/2 constraints.16

The following two matrix reparametrizations allow for simpler constraints and sup-

port a better understanding of the volatility structure. The first one transforms a con-

strained optimization problem into an unconstrained one. The second one transforms

some unbounded variables to bounded ones.

Choleski Decomposition

The Choleski decomposition of a symmetric, positive definite matrix X is the unique

triangular matrix D such that

X = DD′ (4.26)

15 See (Gruber et al. 2010) for a detailed discussion of model identification.
16 In the 2× 2 case, these are: X11 > 0; X22 > 0 and X11X22 > (X21)2.
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Conversely, the product DD′ of any matrix D will be a positive definite, symmetric

matrix. The Choleski decomposition is therefore a useful representation of the state

matrix. It allows for an unconstrained optimization over vech(D) using definition (4.26)

to recover the state X.

Eigendecomposition and Polar Coordinate Representation of the State

Any square matrix A with linearly independent eigenvectors can be written as

A = PDP−1 (4.27)

where D is a diagonal matrix of the eigenvalues of A and P is a matrix containing the

normalized eigenvectors of A as column vectors.

The PDP decomposition makes it straight-forward to implement definiteness con-

straints on non-symmetric matrices by constraining the sign of the diagonal elements of

D.

The eigendecomposition can be taken further by representing the eigenvectors in

terms of polar coordinates, as any n-dimensional normalized eigenvector can be expressed

in polar coordinates using n− 1 angles. For a general 2× 2 matrix, A = PDP−1 can be

written as:

A =

(
sinα1 sinα2

cosα1 cosα2

)(
D11 0

0 D22

)(
sinα1 sinα2

cosα1 cosα2

)−1

(4.28)

Expression (4.30) can be simplified for symmetric matrices like the state X, as cosα1 =

sinα2 implies α2 = α1 + π/2. Using the symbol

ξ :=
D11

tr(X)
=

D11

D11 +D22
(4.29)

we define the following mapping the 2× 2 state matrix Xt

(X11,t, X12,t, X22,t)→ (Vt, ξt, α1,t) (4.30)

where V := tr(X) is the (diffusive) variance. The remaining two variables describing the

volatility structure are bounded: 0 ≤ ξ ≤ 1 and 0 ≤ α1 ≤ π. This boundedness of ξ, α1

makes it possible to scan the space of admissible state matrices for a given volatility

level.

Representation (4.30) can be used to separate variance level Vt from variance struc-

ture (ξt, α1,t).
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4.6 Conclusion

The useful properties of matrix affine jump diffusions (MAJD), introduced by Leippold

and Trojani (2008), come at the price that models of this class are notoriously difficult

to estimate. MAJD models have higher computational cost for three reasons. Firstly,

the Laplace transform contains matrix exponentials and logarithms, which increase the

computational cost by two orders of magnitude. Secondly, the matrix nature of the pa-

rameter matrices makes it impossible to guess starting parameters of a (locally) convex

optimization, requiring stochastic optimization. Thirdly, the comparatively high dimen-

sion of the state matrix makes it impossible to alternate between state and parameter

estimation, requiring a nested joint estimation instead.

This paper addresses the challenges in the estimation and evaluation of MAJD mod-

els and reduces the computational cost in several steps. First I formulate the Matrix

Rotation Count algorithm, which makes it possible to use of transform methods, re-

sulting in a 1400-fold speed increase. Next, I propose a fast evaluation scheme of the

likelihood function based on an approximation of the integration limits in the COS in-

version method. This evaluation scheme reduces the number of required evaluations of

the Laplace transform, resulting in a 50- to 500-fold speed increase, depending on the

estimation procedure. Combined with moderate use of parallelization in the differential

evolution optimization scheme, I achieve a reduction in the estimation time of a factor

of approximately 106.

I also highlight a numerical instability of the Laplace transform, that requires a

deliberate choice of integration bounds, especially when applying the FFT method of

Carr and Madan (1999). This instability has the counter-intuitive consequence that

fewer elements of the Fourier sum result in a more precise result.

I finally propose a reformulation of the Matrix state space in terms of polar co-

ordinates that allows for an elegant implementation of identification and admissibility

constraints for the matrix optimization.

159



Appendix C

Appendix for “Eliciting a Smile”

C.1 The COS Method

The Cosine-Fast Fourier inversion (COS) method, introduced by Fang and Oosterlee

(2008), is an efficient algorithm to approximate option prices given the Laplace trans-

form. It reduces the number of required evaluations from 212 for a standard FFT,

e.g. Carr and Madan (1999), to typically 200. A second useful property of the Cosine-

FFT method is the fact that it does not involve an interpolation between strikes, which

allows for a more precise calculation of skewness measures like St = limT→t
∂IV (T,St)

∂K .

The COS algorithm approximates a (density) function f(y; τ) on a finite support

[a, b] via a truncated cosine-series expansion:

f(y; τ) =
∞∑
k=0

′Ak(τ) cos

(
kπ
y − a
b− a

)
≈

N−1∑
k=0

′Ak(τ) cos

(
kπ
y − a
b− a

)
(C.1)

with coefficients

Ak(τ) =
2

b− a

∫ b

a
f(y; τ) cos

(
kπ
y − a
b− a

)
dy

≈ 2

b− aRe
[∫

R
f(y; τ) exp

(
ikπ

y − a
b− a

)
dy

]
≈ 2

b− aRe
[
φ

(
kπ

b− a ; τ

)
exp

(
−i kπa
b− a

)]
(C.2)

where φ(·) denotes the Laplace transform of density f(·).
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The price O(Xt;K, τ) of a contingent claim with payoff vt(y;K) and time to maturity

τ = T − t is:

O(Xt;K, τ) = e−rτ
∫ ∞
−∞

v(y;K)f(y|Xt; τ)dy (C.3)

≈ e−rτ
∫ b

a
v(y;K)

N−1∑
k=0

′Ak(τ) cos

(
kπ
y − a
b− a

)
dy

= e−rτ
N−1∑
k=0

′ 1

2
(b− a)Ak(τ)

∫ b

a

2

b− av(y;K) cos

(
kπ
y − a
b− a

)
(C.4)

where y = ln(ST /K) and we assume a, b have been chosen such that f(y; τ) ≈ 0

outside [a, b].

For a plain vanilla call viz. put with payoffs vc(y;K) = [K(ey − 1)]+ and vp(y) =

[K(1− ey)]+ the integral Uk := 1
K

∫ b
a

2
b−av(y;K) cos

(
kπ y−ab−a

)
dy evaluates as

U ck =
2

b− a (χk(0, b)− ψk(0, b)) and Upk =
2

b− a (−χk(a, 0) + ψk(a, 0))

with

χk(c, d) =

∫ d

c

ey cos

(
kπ
y − a
b− a

)
dy

=
1

1 +
(
kπ
b−a

)2

[
cos

(
kπ
d− a
b− a

)
ed − cos

(
kπ
c− a
b− a

)
ec

+
kπ

b− a sin

(
kπ
d− a
b− a

)
ed − kπ

b− a sin

(
kπ
c− a
b− a

)
ec
]

ψk(c, d) =

∫ d

c

cos

(
kπ
y − a
b− a

)
dy =


b−a
kπ

[
sin
(
kπ d−a

b−a

)
− sin

(
kπ c−a

b−a

)]
k 6= 0

d− c k = 0

This leaves us with

O(Xt;K, τ) = e−rτK
N−1∑
k=0

′ 1

2
(b− a)Ak(τ)Uk (C.5)

This expression is not very efficient: We would have to recalculate Ak for every

strike, as it depends on y = ln(ST /K) via the characteristic function. We therefore

need to separate the contract-dependent part of the Laplace transform from the model-

dependent part. In our case, this Laplace transform (4.12) can be separated as

Ψ(γ; τ,Xt) = exp (γy + tr[A(γ; τ)Xt] +B(γ; τ)) = exp(γy) ΨLevy(γ; τ) (C.6)
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with the according characteristic function φ(u) = exp(iuy)φLevy(u). We now insert

(C.2) into (C.5) to obtain the COS pricing formula

O(Xt;K, τ) = e−rτK
∞∑
k=0

′ 1

2
(b− a)

2

b− aRe
{
φ

(
kπ

b− a ; τ

)
exp

(
−i kπa
b− a

)}
Uk

= e−rτK
N−1∑
k=0

′Re

{
φLevy

(
kπ

b− a ; τ

)
exp

(
i
kπy

b− a

)
exp

(
−i kπa
b− a

)}
Uk

= e−rτK
N−1∑
k=0

′Re

{
φLevy

(
kπ

b− a ; τ

)
exp

(
ikπ

y − a
b− a

)}
Uk (C.7)

Expression (C.7) can be evaluated with arbitrary precision for any strike K without

further interpolation. Note that the evaluation of φLevy(u; τ) and Uk is independent of

y and therefore need not be repeated for different strikes.

The choice of the integration limits a, b is governed by a trade-off between two errors:

too tight limits introduce an analytical error from cutting off the tails of the distribution.

Too wide limits cause a numerical error as the elements of the COS expansion are not

employed efficiently. Fang and Oosterlee (2008) propose as integration limits

[a, b] =

[
κ1 − L

√
κ2 +

√
κ4, κ1 + L

√
κ2 +

√
κ4

]
(C.8)

with κi denoting cumulant i of the risk-neutral distribution and the scaling factor L

chosen to be 10. All cumulants of the returns distribution and therefore the integration

limits depend on the parameter vector θ, the duration τ and on the state Xt.

The values of γk also depend on a, b and are

γk =
k

b(θ, τ,Xt)− a(θ, τ,Xt)
, 0 ≤ k ≤ N − 1. (C.9)
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C.2 Additional Table

Quantity Values
Variance 0.01, 0.02, 0.05, 0.1, 0.3
Strike [∆] 0.05, 0.1 . . . 0.95
Time to maturity [months] 1, 2, 4, 6, 8, 10, 12, 24, 36, 48, 60
Eigenvalue ratio ξ 0, 0.25, 0.5
Eigenvector angle α1 0, π/8, . . . , π

Table C.1: The error analysis reported in Fig. 4.5 is based on the evaluation of 32’076 op-
tion prices, namely all combinations of the above quantities. The eigenvalue ratio ξ and the
eigenvector angle α1 are defined in (4.29) and (4.28).
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