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Abstract

The next generation of intelligent robots will need to be able to plan reaches. Not just
ballistic point to point reaches, but reaches around things such as the edge of a table, a
nearby human, or any other known object in the robot’s workspace. Planning reaches
may seem easy to us humans, because we do it so intuitively, but it has proven to be
a challenging problem, which continues to limit the versatility of what robots can do
today.

In this document, I propose a novel intrinsically motivated RL system that draws
on both Path /Motion Planning and Reactive Control. Through Reinforcement Learning, it
tightly integrates these two previously disparate approaches to robotics. The RL system
is evaluated on a task, which is as yet unsolved by roboticists in practice. That is to put
the palm of the iCub humanoid robot on arbitrary target objects in its workspace, start-
ing from arbitrary initial configurations. Such motions can be generated by planning, or
searching the configuration space, but this typically results in some kind of trajectory,
which must then be tracked by a separate controller, and such an approach offers a brit-
tle runtime solution because it is inflexible. Purely reactive systems are robust to many
problems that render a planned trajectory infeasible, but lacking the capacity to search,
they tend to get stuck behind constraints, and therefore do not replace motion planners.

The planner/controller proposed here is novel in that it deliberately plans reaches
without the need to track trajectories. Instead, reaches are composed of sequences
of reactive motion primitives, implemented by my Modular Behavioral Environment
(MoBeE), which provides (fictitious) force control with reactive collision avoidance by
way of a realtime kinematic/geometric model of the robot and its workspace. Thus, to
the best of my knowledge, mine is the first reach planning approach to simultaneously
offer the best of both the Path/Motion Planning and Reactive Control approaches.

By controlling the real, physical robot directly, and feeling the influence of the con-
straints imposed by MoBeE, the proposed system learns a stochastic model of the iCub’s
configuration space. Then, the model is exploited as a multiple query path planner to
find sensible pre-reach poses, from which to initiate reaching actions. Experiments show
that the system can autonomously find practical reaches to target objects in workspace
and offers excellent robustness to changes in the workspace configuration as well as
noise in the robot’s sensory-motor apparatus.
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Chapter 1

Introduction

While the neuroscience community tries to unravel the inner workings of the
brain, the Artificial Intelligence (AI), Machine Learning (ML), and Develop-
mental Robotics communities try to create computational/algorithmic problem
solvers, which are inspired by the learning process observed in biological or-
ganisms. Despite considerable success on certain problems, such as chess, which
people tend to view as hard, Al and ML approaches have encountered significant
difficulties in solving other problems, such as manipulating the chess pieces,
which conventional wisdom tells us should be easy. In fact, after some sixty
years of Al and Robotics research, the average five year old is still far better at
manipulating chess pieces than today’s most advanced robots.

Why should object manipulation be so difficult? After all, we adults intu-
itively manipulate all kinds of different objects in different ways, constantly,
without even thinking about it. Let us consider the problem from the standpoint
of programming a robot to do some basic object manipulation, similar in com-
plexity to what we see small children doing with blocks; for example, picking
and placing at arbitrary locations on some kind of work surface, sorting, maybe
even stacking and knocking over.

The essence of the problem is that like us, robots that are designed to manip-
ulate objects (manipulators) usually have a lot of joints, or degrees of freedom
(DOF). Therefore, what looks to the casual observer like a simple and intu-
itive reach is actually the result of highly coordinated motion involving 6 to
10 motors. Finding such high-dimensional trajectories (path planning) is a dif-
ficult problem, even when the objects in the robot’s immediate environment
(workspace) are assumed to be static. However, consider that by definition,
manipulation means to move objects around the workspace. Therefore, to ma-
nipulate objects in practice, a robot must be able to plan trajectories around
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those objects, even though they are not always in the same places. Furthermore,
manipulating objects requires that plans be executed faithfully, typically by some
kind of feedback controller. Therefore, plans must respect the robot’s dynamic
constraints, which drastically increases the complexity of the planning problem.
Nevertheless, plans must somehow be generated quickly, and re-planning must
be possible at any moment, in order to cope with noisy sensory-motor appara-
tuses as well as environmental changes that result from external influence, like
a human co-worker.

Clearly, even simple instances of the object manipulation problem require el-
ements of sensing, motion planning, and reactive control. Each of these elements
constitutes its own body of literature, however the work proposed here inte-
grates key aspects of deliberate planning and reactive control in a realtime re-
inforcement learning (RL) system. The result is a tightly integrated behavioral
control apparatus, which allows a robotic manipulator to intelligently and au-
tonomously learn to reach objects in its workspace.

1.1 On Humanoid Robots

Currently available industrial robots are employed to do repetitive work in struc-
tured environments, and their highly specialized nature is therefore unprob-
lematic, or even desirable. However the next generation of robot helpers is
expected to tackle a much wider variety of applications, working alongside peo-
ple in homes, schools, hospitals, offices, city streets, war zones, disaster areas,
spacecraft and places we haven’t even thought of yet.

The hardware exists already. State-of-the-art humanoid robots such as the
National Aeronautics and Space Administration / General Motors (NASA/GM)
Robonaut 2 [Diftler et al., 2011], the Willow Garage Personal Robot 2 (PR2) [[Cousins,
2010], the iCub from the Italian Institute of Technology (IIT) [Metta et al.,
2008]], and Toyota’s Partner Robots [Takagi, [2006; Kusuda, 2008]] are technolog-
ically impressive, and sometimes eerily anthropomorphic machines. Two com-
plex, high-DOF hands/arms allow them, in principal anyway, to interact with a
wide variety of objects of different sizes and shapes. This encourages the belief
that a humanoid robot has the potential to adapt to a much wider variety of
circumstances than its industrial counterparts ever could.

In addition to the potential versatility of humanoid robots, they pose inter-
esting challenges to currently prevalent methodology. In contrast to traditional,
industrial manipulators, humanoids typically exhibit a great deal of kinematic
redundancy, and vision is provided by stereo cameras that move, not only as a
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pair but often with respect to one another. Such anthropomorphic design ele-
ments conspire to violate many of the assumptions found in the literature, which
provides an opportunity to extend the state-of-the-art.

The iCub humanoid embodies all of the above characteristics, making it an
ideal platform upon which to study approaches to reaching, and eventually ob-
ject manipulation. Moreover it is relatively inexpensive, widely used (at least
in Europe), and it is the first commercially available, open source robot, which
gives a researcher and developer such as myself the opportunity to collaborate
with others and contribute to their efforts in concrete ways both now and in the
future. It is for these reasons that I have chosen to use the iCub robot as my
primary research platform.

1.2 Motivation for a Developmental Approach

Physically speaking, humanoids should be capable of doing a much wider variety
of jobs than their industrial ancestors. Behaviors, however, are still programmed
manually by experts and the resulting programs are generally engineered to
solve a particular instance (or at best a few related instances) of a task. Conse-
quently, these advanced robots are endowed with relatively few, highly special-
ized control programs, and their versatility remains quite limited.

In order to realize the potential of modern humanoid robots, especially with
respect to service in unstructured, dynamic environments, we must find a way
to improve their adaptiveness and exploit the versatility of modern hardware.
This will undoubtedly require a broad spectrum of behaviors that are applicable
under different environmental constraints/configurations. At the highest level,
the planner/controller must solve a variety of different problems by identifying
relevant constraints and developing or invoking appropriate behaviors. How-
ever we, as engineers and programmers, are not likely to be able to explicitly
and accurately predict the wide range of constraints and operating conditions
that will be encountered in the real world, where the next generation of robots
should operate. This motivates the developmental approach to robotics, which fo-
cuses on systems that adaptively and incrementally build a repertoire of actions
and/or behaviors from experience.

To effectively learn from experience, a planner/controller must explore, and
that idea is where my research began. But before I go into that, I will cover
some pre-requisites from the robotics literature, which correspond to critical
sub-problems implied by terms like reaching and object manipulation.
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1.3 Path Planning

We are all intimately familiar with the path planning problem. Should I sit in
this traffic jam, or should I chance a longer route in hopes that I can maintain a
higher average speed? Is it quicker to go over the mountain or around it? Just
how does one get into a wetsuit, or a ski boot, or get the oil filter out from inside
that engine without burning one’s forearm on the exhaust manifold? These are
pertinent life questions, which we all deal with every day, and regardless of the
problem domain, a plan consists of a sequence of temporally dependent actions.

A particularly illustrative example of the path planning problem is navigating
in the mountains, when a storm cloud develops. There is no shelter available
nearby, and one wants to get down. It could be that the smart thing to do is
to resist the urge to descend, instead traversing a ridge line for a while, or even
climbing a little bit, in order to descend later, but it is hard to know based only on
one’s immediately observable environment. A contrasting approach would be to
simply look around, find the steepest navigable slope, and proceed downward.
The problem is that this approach may lead deeper into the mountains, or one
might get stuck in a valley and end up having to climb a lot more, but it does
offer the benefit that it took almost no time to put the naive plan into action.

A good planner, upon seeing the thunder cloud, pulls out his or her trusty
map and used this global knowledge to determine the best path to get out of the
mountains quickly and efficiently. An even better planner also has the capacity
to run for shelter if need be.

1.4 The Path Planning Problem for Robots

In robotics, the Path Planning Problem is to find motions that pursue goals, usu-
ally robot positions, while deliberately avoiding constraints, usually obstacles.
The ability to solve the path planning problem in practice is absolutely critical
to the eventual deployment of complex/humanoid robots outside of carefully
controlled industrial environments. For a serial manipulatorﬂ the path planning
problem is formalized as follows: The workspace,

W cR® (1.1

contains a robot composed of n joints/links. Each link, A;, where
i €1{1,2,...,n}, is represented by a semi-algebraic model. The vector of joint

For illustrative purposes, I have chosen to formalize the path planning problem for a serial
kinematic chain. The formalism can be extended straightforwardly to handle branching.
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positions

geCcCR" (1.2)

denotes the configuration of the robot, and kinematic constraints yield a
proper functional mapping g — A(q) defining its pose:

Alg=VAlQcw (1.3)

Furthermore, there exist m obstacles, B; C W, where i € {1,2,...m}, which
are also expressed as semi-algebraic models, and together they define the obsta-
cle region:

B= _EmJlBi cw (1.4)
The set of configurations that cause the robot to collide with these obstacles
can be expressed:

Cy=1{qeC|Alg)NB} (1.5)

Analogously, the set of configurations that cause self-collisions can be ex-
pressed:

Ci= | J faec|a@nalg} (1.6)

{j,k}eS

where S is a set of pairs of indices, {j,k} € {1,2,...,n}, with j # k, corre-
sponding to two links A; and Ay, which should not collide. Thus, the set of all

configurations, which are infeasible due to collisions can be expressed:
C'v:olliding = C'B U C'A (17)
To find feasible motions, we must disambiguate the feasible (Cg..) and in-
feasible (Copiaing) T€giONS Of the configuration space, which are complimentary:
Cfree =C \ Ccolliding (18)

The path planning problem is essentially to find a trajectory Q(t) such that:

{qi: qg} - Q(t) - Cfree (19)

In other words, Q(t) interpolates initial and goal configurations, g; and q,, while
not intersecting Cyiging-
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The path planning problem is probably NP Hard. Therefore, building real-
world solutions is difficult, and approaches are usually confined to the lab and
evaluated according to some standard algorithmic analysis in terms of crite-
ria such as convergence guarantees, soundness and (resolution) completeness
for an infinite time horizon. Such analysis requires that the problem does not
change while the algorithm is running, and consequently most (if not all) proper
planning algorithms require a static workspace in order to function properly,
which is of course impractical for many applications.

1.5 Planning Algorithms

There exists a vast literature on Path Planning or Motion Planning algorithms,
and the text book ‘Planning Algorithms’ [LaValle, 2006]] provides an excellent
overview. Here I focus on those algorithms that scale to the high dimensional
configuration spaces of complex/humanoid robots.

Sampling based motion planning algorithms probe the configuration space
with some sampling scheme. The samples q are mapped to poses A(q), which
are in turn used to do collision detection computations, revealing whether q €
Ctree OF @ € Cippeqsinle- The samples are interpolated, and in this way, feasible
motions are constructed piece-by-piece. This can either be done on an as-needed
basis, which is known as single query planning and exemplified by the Rapidly
Exploring Random Trees (RRT) algorithm [LaValle, 1998; Perez et al.,|2011]], or
the results of queries can be aggregated and stored such that future queries can
be fulfilled faster, which is known as multiple query planning and exemplified
by the Probabilistic Road Map (PRM) algorithmm [Latombe et al., 1996; [Li and
Shie, 2007]]. Consider in broad terms the benefits and drawbacks of these two
approaches.

The strength of single query planning algorithms is that they directly and ef-
fectively implement exploration by searching for feasible motions through trial
and error. Some algorithms, such as RRT [[LaValle, |1998]], and its many descen-
dants, even offer probabilistic completeness, guaranteeing a solution in the limit
of a dense sampling sequence, if one exists. Moreover, since these algorithms
answer each query by starting a search from scratch, they can readily adapt to
different Cy,,, and Cy, 45151 from one call to the next. It is however important
to realize that Cy,,, and C;,f.q5ipe Must remain constant during the course of
planning, which can take a considerable amount of time. The primary drawback
of single query algorithms is their high complexity, which is O(m"), where m is
linear sampling density and n is the dimensionality of the configuration space.
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A recent state-of-the-art algorithm, Ball Tree RRT (BT-RRT) [Perez et al.,
2011]], requires 10 seconds to find a feasible solution to a relatively easy plan-
ning problem, wherein two arms (12 DOF) must circumnavigate the edge of
a table to reach a cup. Moreover, the initial solution, the result of stochastic
search, is quite circuitous, and BT-RRT requires an additional 125 seconds to
smooth the motion by minimizing a cost function in the style of optimal control.

Practically speaking, a latency of tens to hundreds of seconds with respect to
a robot’s response to commands is rarely acceptable. This is the primary moti-
vation for multiple query planning algorithms, which typically utilize a roadmap
data structure in the form of a graph G(V, E), where V = {v;,v,,...v,} € C;,,, and
E is a set of pairs of indices (j, k) € V such that j # k and j, k € {1,2,...n}. With
each member of E is associated a verified collision free trajectory T (E;) C Cy,,-

The roadmap approach reduces each query from a search in R" to graph
search, which can be carried out by Dijkstra’s shortest path algorithm [|Dijkstral,
1959]], A* [Hart et al., [1968]], or similar. Importantly, the roadmap graph repre-
sents a natural crossroads between motion planning as an engineering discipline
and the field of artificial intelligence, as it is a special case of a Markov Decision
Process (MDP) [Puterman, |2009], where states are configurations q € Cy,,,, ac-
tions are trajectories q(t) C Cy,,,, and all state transition probabilities are equal
to one.

Early versions of the roadmap approach, such as PRM, first constructed the
map offline, then queried it to move the robot [[Latombe et al.,|1996]]. Whereas
more recent versions can build the map incrementally on an as-needed basis by
extending the current map toward unreachable goal configurations using sin-
gle query algorithms [Li and Shie, [2007]]. The ability of roadmap planners to
quickly satisfy queries, even for complex robots with many DOE makes them an
appealing choice for practical application in experimental robotics. Moreover,
when roadmaps are constructed incrementally by single query algorithms, the
resulting system is one that builds knowledge from experience gained through
exploratory behavior. As the roadmap grows over time, it becomes more com-
petent at navigating the regions of the configuration space in which the planner
has operated in the past.

Although the incrementally learned roadmap [[Li and Shie, 2007]] makes sig-
nificant steps toward the autonomous development/acquisition of reusable be-
haviors, it is plagued by one very unrealistic assumption, namely that T(E;) C
Ctye. for all time. In other words, neither the obstacle region B nor the robot
itself A can change in a way that might have unpredictable consequences with
respect to the roadmap G(V,E). Therefore, the roadmap approach implicitly
prohibits the robot from grasping objects, which would change A, and even if
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objects could be moved without grasping, that is anyway prohibited also, as it
would change B.

In summary, single query planning algorithms such as RRT effectively imple-
ment exploration and can readily adapt to changes in the environment from one
query to the next, however they produce circuitous motions that require smooth-
ing, and they are not fast enough to be applied online in practice. Multiple query
roadmap based algorithms are quite fast, as they reduce the planning query to
graph search, and when the map is constructed incrementally by single query
algorithms, the resulting system clearly aggregates knowledge from experience
through exploration. The drawback of the incrementally constructed roadmap
is that it requires a static environment, which is also not practical in practice.

1.6 Reactive Control

An alternative to planning feasible actions preemptively is to adopt some heuris-
tic, like go straight, and react to impending constraints/collisions as they are de-
tected. This can either be done by interpreting the sensory data directly [Brooks,
1991]], or by using a robot/workspace model.

1.6.1 The Subsumption Architecture

A pioneer focused on autonomy and robustness, Rodney Brooks built behaviors
for robots by hand, according to his Subsumption Architecture [Brooks, 1991].
His ‘Critters’ were predominantly simple mobile robots, but they operated with
considerable autonomy in real-world settings.

The Subsumption Architecture is based on asynchronous networks of Finite
State Machines (FSM) and one of its defining characteristics is that the it does
not maintain a robot/workspace model. Instead, sensors are connected directly
to actuators via the FSM network. Brooks argues that the world is its own best
model, and the claim is well demonstrated in the domain of mobile robots. How-
ever, I am interested in developing manipulation behaviors for humanoids, and
this poses a different set of problems than does the control of a mobile robot.

Consider for a moment the relationship between the sensory and action
spaces of mobile robots and humanoids. Mobile robots have a few controllable
DOE and are confined to move on a planar surface. They typically carry a num-
ber of cameras or range finding sensors, arranged radially about the robot and
facing outward. Such a sensor array gives a natural representation of obstacles
and free space around the robot, and behavioral primitives, such as go forward,
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stop and turn left/right, can therefore be designed conveniently in that same
planar space.

Although a humanoid robot has a similar sensory system to a mobile robot,
an array of cameras and/or range finders, which capture 2 and 3D projections
of the workspace, in most cases such information is not adequate to characterize
the state of the robot.

A humanoid has a very large number of controllable DOE and often cannot
see most of its body. Shoulders and elbows for example are critical for executing
reaches, but their states are not directly observable through vision most of the
time. Instead, the state of the robot must be understood though proprioceptive
information, consisting of joint positions, and perhaps higher order information.

Thus, in order to develop a complete picture of the state of the robot/world
system, some kind of model is required in order to merge/fuse sensory data
perceived in the workspace (vision) with that perceived in configuration space
(proprioception).

1.6.2 The Potential Field Approach

Perhaps the earliest and most elegant approach to model-based reactive control
was originally known as real time obstacle avoidance [Khatib, 1986} [Kim and
Khosla, (1992], however it has become widely known as the potential field ap-
proach, and is formulated as follows in terms of the notation from section (1.4 as
follows: Consider a point

xeA(gcw (1.10)
and let
Up(x) =D Upy(x) (1.11)
i=1

be a repulsive potential field function, which represents the influence of m obsta-
cles in the workspace on x. Let each Uy; be a continuous, differentiable function,
defined with respect to an obstacle region B; C W, such that U; is at a maxi-
mum in the neighborhood of the boundary of B; and goes to zero far from B;.
Khatib suggests:

G =2 1p(x) < po

1.12
0 :p(x) > po (1-12)

Ugi(x) = {
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where p is the shortest distance from x to B;, p, controls the (geometric) size
of the potential field, and 7 controls its maximum value. The defining charac-
teristic of the potential field approach is that the robot is controlled such that x
descends the gradient of the potential field, U, and it can be done equally well
for mobile robots and manipulators alike.

For a manipulator, the control input is computed as follows: The influence of
the repulsive potential field U, on the robot is first computed as a force f that
acts on the robot at x:

oUy — 0 Up;
—__5__ 1.13

f ox ; ox ( )
The force f is then projected into the configuration space via the Jacobian matrix

to yield joint torques 7:

7(x) = I (@A (x) (1.14)

where A(x) is a quadratic form, a kinetic energy matrix that captures the inertial
properties of the end effector.

Reactive control assumes that timeliness is more important than algorithmic
guarantees, and takes a heuristic approach. It seeks to compute a good control
command at each instant in time. The command need not be the optimal in any
sense, nor must there be any guarantees of what will happen over time. What is
important is that the problem, meaning the workspace constraints, must be al-
lowed to change, and that the controller must react in an intuitively appropriate
manner to the workspace dynamics it is expected to encounter.

In practice, Reactive control is very effective with respect to quickly generat-
ing evasive motions to keep the manipulator away from obstacles, and it there-
fore excels in a dynamic workspace. Potential fields can even be defined to bring
the end effector to some goal position, however this offers a very brittle solution
to the motion planning problem, as non-convex potential functions, which arise
from superposition, often create local minima in which the controller gets stuck.

Subsequent work has reformulated the potential field approach to improve
the robustness of the implied global plan. For example, [Kim and Khosla, 1992]]
uses harmonic potential functions, which guarantee that no local minimum ex-
ists other than the global minimum, or alternatively, that point x above, if
treated as a point robot, will always be pushed to the goal from any initial condi-
tion. Still though there may exist structural local minima, configurations where
non-point robots will not be able to proceed although they are being forced by
the potential gradient.
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Another reformulation is known as attractor dynamics [Schoner and Dose,
1992]], wherein the robot does not descend the gradient of the potential func-
tion, but rather moves with constant velocity, adjusting its heading according to
a dynamical system that steers toward the goal, but away from obstacles that
lie in the robot’s path. The method was developed for mobile robotics, however
it has also been applied to manipulators [[lossifidis and Schoner, 2004, 2006].
And again, although attractor dynamics improves robustness over the original
potential field approach, this time by keeping the state of the robot in the neigh-
borhood of a stable attractor, it is still a heuristic planner that bases decisions on
local information only, and it can therefore get stuck.

A third reformulation called elastic strips [[Brock and Khatib, 2000] combines
the local reactivity of the potential field approach with the more global frame-
work of a roadmap planner. The edges of the roadmap graph are trajectories
that are parameterized in such a way as to be deformable under the influence
of a potential field. Again, this approach does improve robustness with respect
to global planning, however it still suffers from structural local minima, and the
elastic graph edges may not be able to circumvent certain obstacles. Failure
to circumvent an obstacle while traversing an elastic edge causes the roadmap
planner to fail exactly as its non-elastic counterpart would. Since re-planning is
limited to local deformation of the current trajectory, the approach cannot cope
with topological changes in the roadmap. Worse yet, after failure, the configu-
ration of the robot does not lie on any of the nodes of the roadmap graph, nor
on its undeformed edges. Therefore, a single query planner must be invoked
to find a feasible path back to a node of the roadmap graph, and this could be
problematic in a dynamic environment.

All approaches based on the potential field idea use local information from
the workspace, and transform it into motor commands according to some heuris-
tics. It is therefore not surprising that these approaches excel at fast, reactive
obstacle avoidance while they have trouble with global planning tasks. Accord-
ingly, potential field approaches have become popular in the context of safety
and human-robot interaction [[De Santis et al.,|2007; Dietrich et al., 2011} Stasse
et al., 2008; |Sugiura et al., [2007]. In these applications a potential filed to at-
tract the robot to the goal, is not defined. Instead, in the absence of influence
from obstacles and joint limits, some other planner/controller system is allowed
to operate freely.

To relate this discussion back to the topic of adaptively building knowledge
of feasible actions from exploratory behavior: Reactive control may seem con-
trary to exploration, however it is in fact complimentary. An autonomous plan-
ner/controller will inevitably find danger in the form of unwanted collisions or
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encounters with other unforeseen constraints, and if it should be robust to such
occurrences, the capacity to react appropriately is required.

1.7 Reinforcement Learning

Path planning and reactive control are predicated on two different sets of as-
sumptions, which conflict to some extent. Nevertheless, they are in many ways
complementary, and in this work, I propose combining the two within the Rein-
forcement Learning (RL) framework [Sutton and Barto, (1998} |[Kaelbling et al.,
1996], which allows an agent in an environment to learn a policy to maximize
some sort of reinforcement or reward. These concepts are sufficiently abstract
and general that RL can be implemented in terms of different representations
and applied to different problem domains.

1.7.1 Model-Based RL

Early RL systems relied on a stochastic model of the dynamics of the environ-
ment [Bellman, (1952, (1957} Sutton, 1990; Bertsekas and Tsitsiklis, 1989,/1996],
comprising states, s and actions, a. Each state captures some relevant properties
of the environment, and the actions are defined such that they cause the envi-
ronment to transition from one state to another. The state transition from s to
s’ given the execution of an action a is typically expressed as (s, a,s’), and with
each such state transition is associated the probability, P¢,, of observing s” after
being in s and executing a as well as the reward, R{,, received as the result of
that occurrence. Each state, s, or state-action pair (s,a) can be thought of as
having a value, V (s, a), defined as cumulative, future, discounted reward by the
well known Bellman equation (eq. [1.15).

V(s,a)= Z P[RS, + yargmaxV (s, a’)] (1.15)

The parameter 0 < y < 1 controls the extent to which future rewards are dis-
counted, and the notation max,V(s’,a’) means the most valuable state-action
pair available to the agent when the environment is in s’. This recursively de-
fined value function is typically computed using dynamic programming (DP),
and the optimal policy simply ascends its gradient. In practice, model-based
RL is of particular interest when the dynamics of the environment are known a
priori.
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1.7.2 Model-Free RL

More recently, variants of RL have been developed [Sutton, 1988; Watkins),
1989; Watkins and Dayan, 1992]], which can learn policies directly from the re-
ward signal without the need to first model the environment. Such approaches,
known as model-free or temporal difference (TD) methods, retrace the agent’s
steps, propagating value along the recent state-action history. The update for
one-step Q-Learning (eq. is a simple example of this idea, which like the
above model-based update (eq. places value on state-action pairs.

Q(‘Sts at) A Q(St: at) + al:RH-l + }/argmaXQ(st—i-lJ a) - Q(St: at)] (116)

Here, Q is the value function, equivalent to V above, t is a discrete time in-
dex, and 0 < a < 1 is the learning rate, which must be tuned to the application
at hand and can cause instability. Such TD methods essentially learn the dy-
namics of the environment and the policy simultaneously, and accordingly they
typically require more exploration on the part of the agent than do model-based
methods. Updates are only performed locally in the regions of the state-action
space, which have actually been explored by the agent. Thus, TD methods can
learn effective policies that exploit only part of the environment, which is useful
if the complete environment is intractably large. However, since the learned en-
vironmental dynamics are embedded in the policy, they cannot be reused. Thus,
when applied to a new RL problem in the same environment, TD methods must
start their extensive exploration process again, from scratch.

1.7.3 Policy Gradient Methods

The notion of a value function is not essential to RL. Policy gradient meth-
ods [[Williams|, 1992; Sutton et al., 2000; Peters et al., 2003; Peters and Schall,
2008], which have also been studied extensively here at IDSIA [Riickstield et al.,
2008alb; ([Sehnke et al., 2008, [2010alb} |Griittner et al.| [2010; Wierstra et al.|
2010], optimize some kind of a parametric policy representation with respect
to the reinforcement/reward signal. Importantly, states and actions are not ex-
plicitly defined, and thus policy gradient methods avoid some of the problems
commonly associated with value function based methods, such as partial ob-
servability. Moreover, the policy is typically optimized according to some kind of
gradient ascent/decent, which offers better convergence guarantees than do the
value function based RL algorithms.
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Policy gradient methods for RL are applicable wherever a parametric policy
can be defined, such that gradient decent is likely to work. One excellent exam-
ple of such a problem domain is so called imitation learning, where a prototype
motion such as a baseball swing is demonstrated to the robot (for example by
forcing the manipulator externally and recording the joint angles), and the RL
optimizes the motion to maximize say, the speed with which the baseball is bat-
ted away.

Despite being among the classes of learning algorithms most successfully ap-
plied in robotics [[Peters et al., 2003; |Peters and Schaal, [2008b], policy gradient
methods are ill-suited to planning motions for a manipulator. Due to the highly
non-linear mapping between the configuration space, C and the workspace, W,
it is exceedingly difficult to design a single parametric policy that works well
over large regions of C and W. Additionally, the constraints imposed by obsta-
cles in W create infeasible regions of C, altering its topology in ways that are
counterintuitive and difficult to compute. For both of these reasons, a single
parametric policy makes a poor path planner, even after it is refined through RL.

1.7.4  Artificial Curiosity

An RL agents needs to explore its environment. Undirected exploration meth-
ods [Barto et al., 1983]], rely on randomly selected actions, and do not differen-
tiate between already explored regions and others. Contrastingly, directed explo-
ration methods can focus the agent’s efforts on novel regions. They include the
classic and often effective optimistic initialization, go-to the least-visited state,
and go-to the least recently visited state.

Artificial Curiosity (AC) refers to directed exploration driven by a world
model-dependent value function designed to direct the agent towards regions
where it can learn something. The first implementation [|[Schmidhuber, 1991al]
was based on an intrinsic reward inversely proportional to the predictability of
the environment. A subsequent AC paper [[Schmidhuber, 1991b] emphasized
that the reward should actually be based on the learning progress, as the pre-
vious agent was motivated to fixate on inherently unpredictable regions of the
environment. Subsequently, a probabilistic AC version [|Storck et al., 1995] used
the well known Kullback-Leibler (KL) divergence [Lindley, 1956;|Fedorov, 1972]]
to define non-stationary, intrinsic rewards reflecting the changes of a probabilis-
tic model of the environment after new experiences. In 2005 Itti & Baldi [Itti
and Baldi, [2005]] called this measure Bayesian Surprise and demonstrated exper-
imentally that it explains certain patterns of human visual attention better than
previous approaches.
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Over the past decade, robotic applications of curiosity research have emerged
in the closely related fields of Autonomous Mental Development (AMD) [[Weng
et al., 2001]] and Developmental Robotics [Lungarella et al., [2003]]. Inspired
by early child psychology studies [[Piaget and Cook, (1952], they seek to learn a
strong base of useful skills, which might be combined to solve some externally
posed task, or built upon to learn more complex skills.

Curiosity-driven RL for developmental learning [[Schmidhuber, 2006] en-
courages the learning of appropriate skills. Skill learning can be made more
explicit by identifying learned skills [Barto et al., 2004} within the option frame-
work [Sutton et al., [1999]. A very general skill learning setting is assumed by
the PowerPlay framework, where skills actually correspond to arbitrary compu-
tational problem solvers [[Schmidhuber, 2013}; |Srivastava et al., 2013].

High-dimensional sensory spaces, such as vision, can make traditional RL in-
tractable, however recent work has demonstrated that AC can help RL agents
cope with large sensory spaces by helping them to explore efficiently. One such
curious agent, developed recently at IDSIA, learns to navigate a maze from vi-
sual input [[Luciw et al.,[2011]] by predicting the consequences of its actions and
continually planning ahead with its imperfect but optimistic model. Similarly,
the Qualitative Learner of Action and Perception (QLAP) [Mugan and Kuipers),
2012]] builds predictive models on a low-level visuomotor space. Curiosity-
Driven Modular Incremental Slow Feature Analysis [Kompella et al., 2012] pro-
vides an intrinsic reward for an agent’s progress towards learning new spa-
tiotemporal abstractions of its high-dimensional raw pixel input streams. Learned
abstractions become option-specific feature sets that enable skill learning.

1.7.5 Developmental Robotics

Developmental Robotics [Lungarella et al.,[2003]] seeks to enable robots to learn
to do things in a general and adaptive way, by trial-and-error, and it is thus
closely related to Autonomous Mental Development (AMD) and the work on
curiosity-driven RL, described in the previous section. However, developmental
robotic implementations have been few.

What was possibly the first AC-like implementation to run on hardware [[Huang
and Weng, |2002] rotated the head of the SAIL robot back and forth. The agen-
t/controller was rewarded based on reconstruction error between its improving
internal perceptual model and its high-dimensional sensory input.

AC based on learning progress was first applied to a physical system to ex-
plore a playroom using a Sony AIBO robotic dog. The system [[Oudeyer et al.,
2007] selects from a variety of pre-built behaviors, rather than performing any
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kind of low-level control. It also relies on a remarkably high degree of random
action selection, 30%, and only optimizes the immediate (next-step) expected
reward, instead of the more general delayed reward.

Model-based RL with curiosity-driven exploration has been implemented on
a Katana manipulator [Ngo et al., 2012], such that the agent learns to build a
tower, without explicitly rewarding any kind of stacking. The implementation
does use pre-programmed pick and place motion primitives, as well as a set of
specialized pre-designed features on the images from an overhead camera.

A curiosity-driven modular reinforcement learner has recently been applied
to surface classification [[Pape et al., 2012]], using a robotic finger equipped with
an advanced tactile sensor on the fingertip. The system was able to differentiate
distinct tactile events, while simultaneously learning behaviors (how to move
the finger to cause different kinds of physical interactions between the sensor
and the surface) to generate the events.

The so-called hierarchical curiosity loops architecture [[Gordon and Ahissar,
2011]] has recently enabled a 1-DOF LEGO Mindstorms arm to learn simple
reaching [[Gordon and Ahissar, [2012].

Curiosity implementations in developmental robotics have sometimes used
high dimensional sensory spaces, but each one, in its own way, greatly simpli-
fied the action spaces of the robots by using pre-programmed high-level motion
primitives, discretizing motor control commands, or just using very, very simple
robots. We are unaware of any AC (or other intrinsic motivation) implementa-
tion, which is capable of learning in, and taking advantage of a complex robot’s
high-dimensional configuration space.

Some methods learn internal models, such as hand-eye motor maps [[Nori
et al., [2007]], inverse kinematic mappings [D’Souza et al., 2001]], and opera-
tional space control laws [Peters and Schaal, 2008a]], but these are not curiosity-
driven. Moreover, they lack the generality and robustness of full-blown path
planning algorithms [LaValle, 1998; Perez et al., 2011; Latombe et al., [1996; |Li
and Shie, |2007].

1.8 Approach - A Curious Confluence

In this thesis, I introduce a curiosity-driven reinforcement learner for complex
manipulators, which autonomously learns a powerful, reusable solver of motion
planning problems from experience controlling the actual, physical robot.

The application of reinforcement learning to the path planning problem (or
more precisely the process of embodying the agent at a sufficiently low level of
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control) has allowed two approaches to be incorporated, deliberate motion plan-
ning and reactive control, which for the most part have been treated separately
by roboticists until now. The integrated system benefits from both approaches
while avoiding their most problematic drawbacks, and I believe it to be an im-
portant step toward realizing a practical, feasible, developmental approach to
real, nontrivial robotics problems. Furthermore, the system is novel in the fol-
lowing ways:

1. In contrast to previous implementations of artificial curiosity and/or in-
trinsic motivation in the context of developmental robotics, our system
learns to control many DOF of a complex robot.

2. Planning algorithms typically generate reference trajectories, which must
then be passed to a controller, but my RL-based planner/controller, learns
control commands directly, while still yielding a resolution complete plan-
ner. This greatly simplifies many practical issues that arise from tracking a
reference trajectory and results in a lighter, faster action/observation loop.

3. Rather than relying on reactive control to generate entire motions, I only
use it to implement actions. The RL agent (planner) composes sequences
of such actions, which interpolate a number of states distributed through-
out the configuration space. Thus the resolution completeness of the mo-
tion planning is preserved, and its robustness is improved by the added
capacity of each action to react to unforeseen and/or changing constraints.

1.8.1 RL for Path Planning

I propose using RL to extend the state of the art in motion planning for manipu-
lators. The environment is the robot itself, subject to the constraints imposed by
its workspace, and the policy is a solution to a particular path planning problem.
The proposed RL system should be able to cope with many different instances
of the path planning problem. It is therefore advantageous to model the envi-
ronment, such that the system can reuse information from one problem instance
to the next. I have therefore selected model based RL as the framework of the
learning system. The notion of state is based on the configuration of the robot.
Actions are sequences of control commands, intended to move the robot from
one configuration to another using a reactive control approach. Thus I build
reactiveness into the control system at a low level, which introduces stochas-
ticity into the path planning process. Then to cope with this stochasticity, an
intelligent agent based on RL is responsible for computing policies, which solve
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motion planning problems and comprise sequences of these stochastic, reactive
actions.

A critical advantage of model based RL with respect to motion planning is
that a policy can always be computed over the entire environment, given some
reward matrix. This means that once the agent finds a reward, the learning
system can plan motions to get that reward at any time, irrespective of the initial
state of the robot. Thus, a single policy/plan can in principal take the robot from
any pose to the target pose, via a sequence of feasible intermediate poses. A
model based RL system can therefore be a reasonable path planning solution.

1.8.2 Why Has No One Done This?

The direction of research that I have proposed thus far begs the question: Why
have path planning and reactive control remained separate in the robotics liter-
ature for so long? In my opinion, the answer is that they are predicated on two
different sets of assumptions, and are therefore not very compatible with one
another.

Path planning is essentially a difficult search problem, and as such, in my
opinion, it belongs to the field of theoretical computer science. Approaches to
path planning are formulated in nice, tidy vector spaces, which are free from
noise and uncertainty, and they are typically evaluated in kinematic simulation
in terms of algorithmic concepts like complexity, soundness, and (resolution)
completeness. The final answer (a trajectory) is of primary importance, and the
transient behavior of the algorithm, which may require a great deal of runtime,
is not usually considered.

Contrastingly, robotic control (particularly ‘reactive control’) is much more
applied. All of the physical constraints of the robot must be respected, including
its dynamics and its noisy, uncertain sensory-motor apparatus. Time is therefore
of the essence, and the transient response of the robot is critical. In fact, control
approaches are evaluated almost entirely according to the properties of that
transient response, such as rise time, settling time, and smoothness.

My insight in the work presented here, is that these two different ways of
thinking about robotic motion, while not compatible with one another directly,
are absolutely complimentary. Moreover, it is RL that affords the abstract formal-
ism necessary to integrate these two, previously disparate approaches to motion
synthesis.
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1.8.3 What Does It All Mean?

My approach, using RL to plan motions as sequences of actions implemented by
dynamical systems facilitates unprecedented robustness.

All previous approaches to path planning for robotics could fail in the sense
that a planned trajectory, which was thought to be feasible, turns out not to be.
The robot must be stopped and left stationary in some intermediate position,
while the expensive search for a feasible motion begins anew. In this condition,
avoidance of a moving obstacle is impossible.

My planner, on the other hand, cannot fail as described above. Because the
robot is constantly under the control of reactive actions, it can always avoid/pur-
sue dynamic obstacles/goals regardless of how well the current plan achieves its
intended goal. Motion planning and re-planning take place naturally, on an as-
needed basis, as the actual, physical robot moves about in its workspace trying
to achieve goals.

My work represents a conceptual departure from the prevalent thinking in
robotic motion planning. It is the first approach I am aware of that encom-
passes the capacity to both plan and react. Therefore I was unable to devise
a direct comparison to either more traditional path planners or purely reactive
controllers. Such comparisons are usually made on particularly tricky instances
of motion synthesis problems, and my work is not aimed at solving particular
hard problem instances, but rather at solving (or attempting to solve) arbitrary
problem instances robustly. Therefore, in this dissertation, I do my best to ex-
plain the ways in which my approach differs from the established state of the
art, and I present a number of novel experiments, in which the iCub humanoid
learns motion planners through an autonomous developmental process of intrin-
sically motivated experimentation, which can last for days of run time. These
are the first such experiments i am aware of in developmental robotics, and
they are only made possible by the unprecedented robustness of my RL based
planner/controller.

1.9 Related Work

Reaching is a complex and multifaceted topic. To thoroughly review all of the
related literature would require thorough consideration of both child develop-
ment and neuroscience, which is beyond the scope of this dissertation. I will
however briefly comment on both as they relate to my work.
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1.9.1 Child Development

My approach to robotic reaching is decidedly developmental, and its inspira-
tion (as the name suggests) comes from biology. A fair amount of attention
has been paid to reaching in human infants over the years [[Thelen et al., 1993}
Berthier et al., |1999; Needham et al., 2002; von Hoftsen, 2004} Hespos et al.,
2009; Berthier, 2011]], and I had the good fortune to be exposed to some of that
work throughout the course of the EU project, Intrinsically Motivated Cumu-
lative Learning Versatile Robots (IM-CLeVeR). As an engineer I find such work
interesting, as it gives some insight into what my control system should do. How-
ever, I do not find the work in this field, at least that with which I am familiar,
to be particularly instructive as to how it should be done. For me, biological
research on reaching remains a sort of nebulous source of inspiration and a
benchmark, which sets the bar very high, for what future generations of robotic
controllers should be capable of.

In my view the single feature exhibited by infants in reach learning, which
is most deficient in robotics, is robustness. My intuition tells me that for any of
the clever algorithms in the Al literature to ever work the way hollywood seems
to think they should, they will need run robustly in the real world for a long
time. That is my inspiration from child development. The rest of my approach
is entirely motivated by and predicated on technical considerations.

My efforts toward creating a practical, developmental approach to reach-
ing on a humanoid robot is among the first ever tried, and I think the field of
humanoid robotics’ lack of maturity limits the extent to which it can feed infor-
mation back to the biological side of reaching. However one way that it may
be able to do so already is in terms of experiment design. The difficulties we
encounter in humanoid robotics may be able to help developmental psycholo-
gists to better identify/specify particular aspects of human behavior, which merit
further investigation.

1.9.2 Neuroscience

The idea is popular in the neuroscience community that the central nervous sys-
tem in humans uses some kind of forward model to (help) generate motions [[Mi-
all and Wolpert, [1996]]. This has led to a great many approaches in robotics, by
which various kinematic models and mappings are learned from experimenta-
tion [|Schenck et al., 2003}; [Sun and Scassellati, 2004; Nori et al., 2007} Chinel-
lato et al., 2009, 2011] that is sometimes called ‘motor babbling.” Some model
learning approaches are ‘biologically plausible’ and yield simple models, which
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are typically limited to simple kinematics. Most of those cited above however,
employ strong machine learning techniques, which are not biologically plausi-
ble but are capable of learning the kinematics of complex manipulators. None
such model learning methods that I am aware of however, are able to do motion
planning in the sense of obstacle avoidance. Therefore such model learning ap-
proaches are not really comparable with the planner/controller I develop in this
thesis.

My work assumes that a complete forward kinematic model of the robot is
known, along with its geometry. I demonstrate that this is a good assumption
in chapter [2| by showing that such a model is easy to define and cheap to com-
pute. The only practical benefit to learning the kinematic robot model (that I
am aware of) is to account for differences between an analytical model and ac-
tual hardware. However this comes at the price that the learned model is not
complete.

For example, a hand-eye model, learned by a humanoid from vision, does not
typically account for the elbow, which is hard for the robot to see and can easily
collide with the hip. During learning the range of motion of the arm must be
carefully constrained to avoid elbow/hip collisions. Then the resulting learned
model/map only covers a subset of the hand’s true range of motion.

For my purposes (coarse motion planning with obstacle avoidance), differ-
ences between the analytical kinematic model and the actual hardware were
negligible. In the future however, implementations such as mine might bene-
fit from learning the kinematic model online. Still, it would be difficult if not
impossible to avoid (self) collisions while still learning a complete kinematic
model.

1.10  Summary/Outline

The structure of the remainder of this dissertation reflects my engineering ap-
proach to the research I have conducted. It begins by motivating and describing
the core of the experimental setup, my kinematic robot model. Then it moves
into some early applications of that setup, in terms of offline motion planning,
and online re-planning via a switching controller. This experimental work, or
more precisely, the shortcomings thereof, motivates a departure from the switch-
ing controller in favor of a more robust solution, formulated around second or-
der dynamical systems. This results in a robust low-level control system, which
allows traditional roadmap based motion planning to be reformulated in terms
of RL.
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In the latter part of the dissertation, results of two different batches of RL
experiments are presented. The first set of experiments deals with learning a
stochastic version of a roadmap planner, while the second set exploits such a
planner to learn reaches to arbitrary workspace targets. Following, I will briefly
describe the contents of each chapter, highlighting my novel contributions.

Chapter [2|- An Egocentric Robot Model

The need for a robot model is motivated by the claim that robots are by nature
distributed systems and therefore, some kind of mechanism to estimate/repre-
sent their complete state is quite useful. The functional requirements of such
a model are then outlined according to my chosen application, manipulation.
Then, I describe my implementation of a kinematic robot model, which is novel
in its ability to be applied online to facilitate reactive control as well as offline
for preemptive motion planning. Finally I present several experiments, demon-
strating the robustness and scalability of the model.

Chapter |3 - Task Relevant Roadmaps

My kinematic model is applied to offline roadmap planning in a collaborative
project [Stollenga et al., 2013]], which I undertook with Marijn Stollenga and
Leo Pape. The novel aspect of the work is the application of Natural Evolution
Strategies (NES) [[Glasmachers et al., [2010]], a powerful black box optimization
algorithm, recently developed at IDSIA, to the construction of roadmap graphs
for motion planning. Some of the resulting motions can be viewed in our short
film, which won Best Student Video at the Association for the Advancement of
Artificial Intelligence (AAAI) video competition in 2013 (http://www.youtube.
com/watch?v=N6x2elZf_yqg).

Chapter {4 - Real Time Collision Response

My kinematic model is applied online, to protect the iCub from colliding with
things in its workspace, including itself, stationary objects such as the work table,
and other robots that move. Collision response is implemented by a switching
controller, which turns out to be rather impractical, still among the experiments
presented in this chapter are to my knowledge the first ones to learn/maintain
a roadmap data structure for motion planning from a real piece of hardware
exploring in realtime [Frank et al., [2012a,b]], as well as the first experiments
in which a precise industrial robot ‘teaches’ spatial perception to an imprecise
humanoid robot in a shared workspace [[Leitner et al., 2012b, [2013c].


http://www.youtube.com/watch?v=N6x2e1Zf_yg
http://www.youtube.com/watch?v=N6x2e1Zf_yg
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Chapter [ - MoBeE 2.0

Problems with the switching controller, related to noise and hysteresis made the
approach fairly impractical, and this motivated a major reworking of the MoBeE
system. The 2.0 implementation, which is based on dynamical systems facilitates
robust collision avoidance. Moreover, it introduces a richer stochasticity to the
low level control, as the dynamical systems can in principal settle anywhere.
Thus, while the collision avoidance of MoBeE 2.0 is not terribly novel in and
of itself, it does indeed represent the state of the art, and it facilitates a much
richer and more interesting RL for planner learning than was possible under the
control system in chapter

Chapter [6]- An RL Agent for MDP Roadmap Planning

The robust, low-level control provided by the MoBeE 2.0 implementation al-
lows roadmap planning to be reformulated around a Markov Decision Process
(MDP) as opposed to the usual graph. This reformulation is my primary theoreti-
cal/methodological contribution to the robotics community [[Frank et al., 2013]],
and perhaps the ‘bread and butter’ of my doctoral dissertation. This chapter lays
out the details of learning an MDP based motion planner using RL, including
‘Kail’ divergence, my novel reformulation of the well-known Kullbach-Leibler
(KL) divergence.

Chapter [7] - Model Learning Experiments

Several sets of experimental results are presented. They begin with small state-
action spaces to prove the concept and validate the implementation, and move
to more larger, more ambitious experiments, which approach the scale necessary
for real world deployment. The efficacy of artificial curiosity is demonstrated.
Importantly, these are the first developmental learning experiments I am aware
of which are capable of running robustly and autonomously for days on end,
as a real physical robot learns to navigate its configuration space. Addition-
ally, a multi-agent experiment is presented, which produces an interesting emer-
gent behavior. The iCub becomes interested in touching the work table, purely
through the effects of intrinsic motivation.

Chapter [§] - Learning To Reach

Finally, the MDP motion planner is exploited to learn to reach to arbitrary workspace
targets in a cumulative way. In contrast to previous planning approaches, the
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system can recall how to circumnavigate targets/obstacles seen previously in
order to put the hand in a sensible pre-reach position and eventually execute
a dynamic reach. Although the performance of the integrated reach planning
system is not yet perfect, it unequivocally does the following:

1. Run robustly and autonomously for arbitrary long periods of time.

2. Learn incrementally and cumulatively about different reaching problem
instances as they are presented, one by one.

3. Produce many ‘good’ reaches, often pulling the hand out from behind the
target in order to access a sensible pre-reach position.

4. Locate the best pre-reach poses in the state space over the whole set of
reach problems.

Chapter [§ - Conclusion

The final chapter of my dissertation contains some of my more conceptual con-
clusions regarding motion synthesis for complex manipulators. Additionally, I
reflect on my accomplishments during my time at IDSIA and discuss the direc-
tion of future work, which could improve the performance of my reach learning
approach.



Chapter 2

An Egocentric Robot Model

In section [1.6.1] I claimed that in order to develop a complete picture of the
state of a humanoid robot in its workspace, some kind of model is required to
facilitate sensory fusion between data perceived in the workspace (vision) with
that perceived in configuration space (proprioception).

Prevalent approaches to robot modeling tend to fall into two categories.
There are flexible, robot independent, do-everything modeling environments,
such as the Open Robotics Automation Virtual Environment (OpenRAVE) [Di-
ankov and Kuffner, 2008]], and there are lean, robot specific models [[Dietrich
et al., 2011]]. The former tend to assume a ‘plan first, act later’ paradigm, while
the latter tend to be difficult to separate from hardware for offline use. My
novel kinematic robot model, on the other hand, is robot independent, easily
reconfigurable, and suitable for both offline search and online reactive control
applications.

2.1 The Lack of Skin

Due to challenges in tactile sensing, there does not yet exist a serviceable robotic
skin, which can cover a manipulator’s entire ‘body,” deforming around it is it
moves. Therefore, when it comes to re-planning motions around unforeseen
obstacles, complex robots are incredibly information poor.

Consider that a humanoid has a very large number of controllable DOF (the
iCub has 41), and operates in 3D space where an object has 6 DOE Still, it
only has an array of cameras or range finders, which capture narrow, 2 and
3D projections of the state of the high dimensional humanoid-world system.
Without access to tactile information, or what to the robot ‘feels’ is feasible,
moving around in the workspace in an ‘intelligent’ manner is a very hard job

25
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indeed.

This motivates a parsimonious, egocentric, kinematic model of the robot/-
world system to simulate tactile feedback for real time motion re-planning. In
addition to simulated tactile feedback, the model should provide access to a
cartesian operational space, in which task relevant states, state changes, cost/ob-
jective functions, and rewards can be defined. By computing forward kinematics,
and maintaining a geometric representation of the 3D robot/world system, the
model can not only facilitate fusion of sensory signals native to the configura-
tion and operational spaces, but it can also provide a useful and general state
machine, which does not arise naturally from the ‘raw’ sensory data.

2.2 The iCub as a Distributed System

A modern robot is an electromechanical system, composed of sensors and actu-
ators. Each actuator is potentially a separate physical piece of hardware, such
as a motor. Therefore, to assemble a complete state of the robot, comprising the
states of each actuator, is a distributed systems problem.

Perhaps not surprisingly, throughout the history of robotics research, a great
deal of effort has gone into hacking bits together to solve the distributed systems
problem and get good communication between sensors and actuators.

Roboticists have often been compelled to ‘reinvent the wheel’, continually re-
implementing necessary software components as new hardware becomes avail-
able or other software components change. In recent years, the topic of software
engineering has received increased attention from the robotics community, and
‘robotics platforms’, such as Yet Another Robot Platform (YARP) [Metta et al.,
2006; Fitzpatrick et al., [2008]], Robot Operating System (ROS) [Quigley et al.,
2009]], and Microsoft Robotics Studio (MSRS) [Jackson, 2007]], have gained
widespread popularity. Not only do these middleware solutions abstract away
the details of sensors and actuators, they offer simple network communica-
tion from virtually any language on MacOS, Windows or Linux. Robots can
be controlled with relative ease by one or more distributed applications running
on a cluster. By providing hardware abstraction, YARE ROS, and MSRS have
drastically improved the efficiency with which experimental robots can be pro-
grammed. In the process of developing behaviors, one would do well to follow
the example set by these projects, and develop modular behavioral components
around abstract interfaces. In the spirit of these open-source projects, a goal of
mine throughout my doctoral studies has been to develop solid, reusable soft-
ware that can help facilitate future robotics research.
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Much of the work leading up to this dissertation was done on the iCub hu-
manoid robot, which is accessed via ‘YARP ports.” The ones relevant to the work
presented here are listed in table As far as the software infrastructure dis-
cussed here is concerned, the ports are the iCub robot.

The ports are specific to ‘body parts,” each of which comprises a number
of motors, or provides read access to sensors, such as the cameras, left and
right. Ports ending in ‘/state:0’ stream motor encoder positions, those ending in
‘/cmd:i’ accept streams of motor commands (position, velocity, and force control
are supported), and those ending in ‘/rpc:i’ can answer various queries over
Remote Procedure Call (RPC).

iCub YARP Ports

/icub/head/state:o
/icub/head/cmd:i
/icub/head/rpc:i
/icub/torso/state:o
/icub/torso/cmd:i
/icub/torso/rpc:i
/icub/right arm/state:o
/icub/right_arm/cmd:i
/icub/right _arm/rpc:i
/icub/left _arm/state:o
/icub/left arm/cmd:i
/icub/left_arm/rpc:i
/icub/cameralL
/icub/cameraR

Table 2.1. iCub robot YARP Ports

2.3 Developing a Kinematic Model

The process of designing the robot model began with the following functional
requirements:

1. Speed - The model must be fast enough represent the state of the robot
in real time, such that it can facilitate reactive control. For the iCub, the
highest frequency sensory signal is the stream of motor encoder positions,
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which is about 100Hz, so the model must be able to compute robot states
at least that fast.

2. Flexibility - It must provide a usable interface for robot modeling, such
that models can be modified to keep up with changing robot hardware
and task requirements, and entirely different robots can be modeled.

3. Versatility - The model should not only provide reactive control when used
in conjunction with hardware, but also stand alone and function as an
oracle for traditional offline planning.

In light of these requirements, I decided early on to pursue a kinematic/ge-
ometric model, which neglects dynamics. Such a model provides the speed nec-
essary to exhaustively search the configuration space of high DOF robots such
as the iCub. Moreover, since I am primarily interested in robust/adaptive reach
planning, highly dynamic motions are not of primary importance. Since model-
ing the dynamics of complex, cable driven robots like the iCub analytically can
be problematic, and since my model is designed to run alongside the hardware
in real time anyway, I decided that if a dynamic model should become necessary
during the course of my research, I would learn one empirically.

Robot poses, g € C, can be provided either by hardware (for reactive control)
or by a sampling algorithm (for planning), and the model’s primary responsibil-
ity is to carry out forward kinematics and collision detection computations and
to broadcast the resulting information, including collision pairs, interference vol-
umes and Jacobian matrices.

To keep the computations as efficient as possible, the model supports kine-
matic chains and trees, but not loops, and hierarchical pruning is employed to
reduce the number of collision pairs to be tested. Moreover, objects in the robot’s
workspace are not collision-tested against one another, so the approximate com-
plexity of collision detection is O(n? - m) where n is the number of geometries in
the robot model and m is the number of objects in the environment. The robot
kinematics and geometry, as well as pre-defined workspace configurations, are
be specified via XML similarly to how it is done by the Open Robotics Automation
Virtual Environment (OpenRAVE) E] [Diankov and Kuffner, 2008]].

'1 initially put some effort into adapting OpenRAVE to my purposes, rather than building a
robot model from scratch, but was dissuaded first by the fact that OpenRAVE works with ROS
as opposed to YARE making it unnecessarily difficult to interface with the iCub, and second by
OpenRAVE’s assumption of a ‘plan first execute later’ control paradigm, which I have tried to
avoid.
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The kinematic model is implemented in C++ as a static library, which de-
pends only on two widely available, platform independent, free and open source
libraries, Qt (for threading, OpenGL and an XML parser) and the Software Li-
brary for Interference Detection (SOLID), which is highly optimized and sup-
ports primitives, Minkowski sums [[Schneider, 2013]], and polyhedra. The kine-
matic model is designed to be compiled and used as such, entirely without YARBE
to facilitate fast, offline algorithmic planning. To provide the required online
functionality, I have wrapped the kinematic model with a thin YARP layer to
provide communication with any YARP compatible robotic hardware.

2.3.1 Zero Reference Position Kinematics

The de facto standard notation for manipulator kinematics is known by the
names of its inventors Jaques Denavit and Richard Hartenberg. The Denavit-
Hartenberg (DH) convention [Denavit and Hartenberg, 1955 facilitate the sys-
tematic assignment of reference frames to the links of a kinematic chain. Es-
sentially, the DH convention requires that a reference frame is chosen for each
joint and represented by a right-handed coordinate system with principal direc-
tions x;, ¥; and z;, where the directions z; are parallel to the joint axes and the
directions x; are parallel to the common normals, z;_; X 2;.

The DH convention sounds simple enough, but it can be quite confusing
where geometric modeling is concerned. Each geometry must be defined within
the local frame of reference, and each frame is rotated with respect to the previ-
ous one. Moreover the origins of the coordinate systems that define the frames
may lie well outside of the robot’s ‘body,” which is counterintuitive for many
people, including myself.

To facilitate easy and rapid prototyping of robot models, I have shunned the
popular DH convention, instead basing my XML specification on a far more intu-
itive standard, Zero Reference Position (ZP) notation [[Gupta, 1986], which has
been used recently, not only to model robots but also other complex kinematic
linkages, such as proteins [Kazerounian et al., | 2005b,a].

As the name implies, ZP notation defines the transformations between ref-
erence frames according to their relative states with the linkage in some conve-
nient position, in which all joint variable values are defined to be zero. Essen-
tially the notation requires a set of joint axis direction vectors u;, and a set of
body vectors b;, to represent the displacements associated with the links. These
are all defined in the global coordinate system, and b; are constrained such that
(0,0,0)+ b, equals a point on the first joint axis, (0,0,0)+ b, + b, equals a point
on the second joint axis, and so on.
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If the body vectors are required to be the set of mutual perpendiculars be-
tween the joint axes, then ZP notation can yield a unique description of the
linkage kinematics, as does the DH convention, which is elegant mathematically
speaking but not necessarily desirable. By giving the user control over b;, they
can be chosen such that they approximate the robot’s body skeleton. If with each
b, is associated a radius, then the skeleton gains volume, and a useful geomet-
ric model of the robot is obtained without the need to painstakingly locate and
orient each geometry in its local frame of reference.

In accord with ZP notation, I developed an XML specification for modeling
kinematic trees with attached geometries. The key tags, with their key parame-
ters are as follows:

1. <link x="float" y="float" z="float" radius="float" field="float"> represents
a displacement along a link defined by the vector (x,y,z) and can be given
a solid volume, radius, and/or a force ﬁeldﬂ volume, field.

2. <joint x="float" y="float" z="float" minPos="float" maxPos="float" radius="float"

field="float"> represents a joint with axis parallel to the vector (x,y,2),
minimum and maximum angular positions measured in degrees, minPos
and maxPos, and optional solid and force field volumes, radius and field.

3. <bodypart name="string"> defines a group of motors to be controlled by
a particular YARP (/state:0) port.

4. <motor minPos="float" maxPos="float"> maps a motor encoder interval
onto one or more joint angle intervals.

5. <constraintList> defines a group of linear constraints in conjunctive nor-
mal form.

6. <constraint a="float vector" g="int vector" b="float"> represents a linear
constraint, ag < b, where a is a vector of free parameters, b is a free
parameter, and g is a vector of motor indices.

7. <marker name="string"> names a point of interest on the robot’s body,
such as an end effector, at which queries can be made for workspace coor-
dinates, Jacobian matrices and the like.

8. <sphere radius="float" px="float" py="float" pz="float" field="bool"> de-
fines a sphere of radius, radius, which can be appended to the robot’s body,

2The function of force fields is described in chapter
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with its center at the position (px, py, pz) relative to the parent link or joint,
and which may be solid or a force field, depending on field.

9. <cylinder radius="float" height="float" px="float" py="float" pz="float"
hx="float" hy="float" hz="float" field="bool"> defines a cylinder of radius,
radius, and height, height, which can be appended to the robot’s body, with
its center at the position (px, py, pz) relative to the parent link or joint, ori-
ented with its axis of symmetry parallel to (hx, hy, hz), and which may be
solid or a force field, depending on field.

10. <box height="float" width="float" depth="float" px="float" py="float"
pz="float" hx="float" hy="float" hz="float" angle="float" field="bool"> de-
fines a box of dimensions, height, width, depth, which can be appended to
the robot’s body, with its center at the position (px, py, pz) relative to the
parent link or joint, oriented with its height axis parallel to (hx, hy, hz),
and which may be solid or a force field, depending on field.

This XML specification has facilitated the prototyping of various experiments,
by allowing us to quickly model different robots in different ways. A complete
model of the Katana manipulator, chosen for its simplicity and readability, is
shown in appendix [Bl A visualization of the Katana and iCub robot models is
shown in figure and the iCub model is shown next to the hardware in figure
I have spared the reader the 726 lines of XML, which comprise the iCub
model, however several versions of it, which differ primarily in the complexity
of the hands and the placement of markers, are available for download through
the iCub software repository (http://wiki.icub.org/iCub_documentation/).

2.3.2 Threading and Robot State

For the online use case, in which the robot model facilitates reactive control,
its first job is to provide a unified notion of robot state, which must be assem-
bled from the asynchronous messages arriving from several YARP ports as de-
scribed in section This creates the necessity that model updates are thread
safe, and that design feature carries through not only position/orientation up-
dates but also the creation and destruction of geometries. Therefore, vision or
other sensory data can dynamically drive the state representation of the robot’s
workspace in the model.

Thread safety is a key design feature that facilitates the reusability and versa-
tility of the robot model in different applications, and the functionality is shown
graphically in figure In order to define a whole body state of the physical
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Figure 2.1. Kinematic Robot Models - The Katana arm (left) and the iCub
humanoid (right) collide with random obstacles. Darkened (red) geometries
are colliding.

Figure 2.2. Impending Collision - The kinematic model detects impending colli-
sion between the iCub humanoid robot and a table. Darkened (red) geometries
in the model (left) are colliding.
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Algorithm 1: Floods the kinematic model thread with insertions and re-
movals of workspace objects without any waiting.

FLOOD_MODEL (period,maxNumObjects) begin
n < 0;
while n < maxNumObjects do
create_object();
m < 0;
for m < 1000 do
remove_object();
create_object();

me—m-+1;
end
n—n+4+1;
end
end

robot as it is running, each body part requires a control thread, the minimal
functionality of which is to read the appropriate ‘state:o’ port, and set the motor
encoder positions of the relevant motors in the model, such that they reflect the
most recent state of the hardware. Periodically, the model computes forward
kinematics, updates the positions/orientations of the geometries comprising the
robot, and does collision detection, finally publishing the state of the robot/-
workspace system (what is colliding with what) to all listening threads, which
are free to do whatever they like with this information in terms of robot control.
Working under the assumption that these messages are quite frequent (100Hz on
the iCub), time is not explicitly considered, and the control threads are allowed
to write to the model whenever they like, provided the model is not actually in
the middle of doing critical computations.

2.4 Model Validation: Thread Safety, Performance and
Scalability

After implementing the kinematic model as described in section and before
moving on to the control side of the proposed system, I worked to validate my
kinematic model experimentally, and get a feel for what kind of performance I
could expect. Here I present the results of one experiment in particular, which I
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Figure 2.3. Kinematic Model Thread Design - The kinematic model is im-
plemented around the ‘critical section’ design pattern. As time goes on (top
to bottom), forward kinematics and collision detection are computed periodi-
cally, and the state of the robot/workspace system is published by the model
thread. Sensory threads and motor control threads may insert/update/remove
geometries in the robot model by inter-thread function calls, but a mutex pro-
vided by the Qt library prevents the changes from being affected during critical
computations.

think is particularly instructive. It analyzes the scalability of the kinematic model
with respect to the complexity of robot models and workspace configurations.
Two different robots are considered, as the number of modeled objects in the
robots’ workspace grows. The experimental setup captures important aspects of
both the offline and the online use cases.

In order to simulate the control thread(s) (figure [2.3) each joint is driven
through its entire range of motion at by a simple d dimensional (dD) oscillator.

The simulated sensory thread simply adds and removes geometries in the
robots’ workspace as fast as it can without any waiting, gradually increasing
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the number thereof, as shown in algorithm 1} The geometries chosen for this
experiment are boxes, as they are the most computationally expensive of the
currently supported primitives.

The model thread is flooded by messages from the sensory thread, and pe-
riodically (every 10ms), the control thread updates the robot pose. While the
the frequency of model computations (kinematics and collision detection) would
normally be tuned to match the frequency of the control thread(s) (after all it is
not very useful to repeat collision detection computations if the robot model is
still in the same pose), for this experiment it is allowed to run as fast as it can,
with no waiting.

The experimental setup allowed me to validate the mechanisms which pro-
vide thread safety, while getting an idea of the maximum runtime performance
achievable for a subsequent offline application, which just tests robot poses as
fast as possible.

The experiment was run on Mac OSX 10.6 on a dual-core 2.4GHz laptop with
4GB of memory, and two different robot models were used; a 6 DOF Katana arm
(9 primitives), and the 41 DOF upper-body of an iCub humanoid robot (129
primitives). Figure shows snapshots from the early stages of the running
experiments, and the results are plotted in figure Based on this experiment,
I make the following claims:

1. For simple arms in simple environments, my kinematic model can keep
pace with even the fastest control frequencies encountered in industrial
practice.

2. It can compute hundreds of poses per second for a humanoid with hun-
dreds of obstacles in the environment, which is adequate for most applica-
tions in developmental robotics.
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Figure 2.4. Kinematic Model Scalability - A simple robot model (Katana - 9
primitives) is compared with a complex one (iCub - 129 primitives). The curves
show the number of times collision detection can be computed per second (y-

axis) given a particular number of obstacles modeled in the robot’s workspace
(x-axis).



Chapter 3

Task Relevant Roadmaps

One of the first practical applications of my kinematic model was developed
jointly by Marijn Stollenga and myself [Stollenga et al., 2013]. The kinematic
model serves as an interference detection oracle in a traditional path planning
framework, which is similar to PRM planning [Latombe et al., (1996]. How-
ever, in contrast to PRMs, our approach finds sets of robot poses by employing
state-of-the-art black-box optimization on complex objective functions, defined
through my kinematic model. We are able to produce Road Map data struc-
tures, which comprise complex motions embedded in high-dimensional spaces
that are well suited to different tasks, Task Relevant Road Maps (TRMs). Some
of the motions we have synthesized can be viewed in our short film, which won
Best Student Video at the Association for the Advancement of Artificial Intelli-
gence (AAAI) video competition in 2013 (http://www.youtube.com/watch?v=
N6x2elZf_yg).

3.1 Background

A traditional approach to making a manipulator do things can be described in
terms of the following three sub-problems:

1. Inverse Kinematics: Find a robot pose, q,,, € C, that satisfies some opera-
tional space constraints, such as touching an object with the end effector.

2. Motion Planning: Find a feasible configuration-space trajectory, Q C C,
which is a curve that interpolates the current pose, g;,;;i; and the goal-

pose, qgoal .
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3. Trajectory Tracking: Use a feedback control system to track the trajectory,
Q, moving the robot from q;p; iq; 10 gpar-

Our framework focuses on inverse kinematics and motion planning, and dele-
gates trajectory tracking to a simple feedback controller.

We begin by solving the inverse kinematics problem using the forward kine-
matic model and an optimization algorithm similarly to other recent approaches
[Dutra et al., |2008}; [Courty and Arnaud, 2008; Hecker et al., 2008]. Our solver
however, Natural Gradient Inverse Kinematics (NGIK), benefits from a recent
and powerful black-box optimization algorithm, called Natural Evolution Strate-
gies (NES) [|Glasmachers et al.,[2010], which was developed by other members
of our group and is based on the Natural Gradient [Amari, |1998]]. NES is in
many ways comparable to Covariance Matrix Adaptation (CMA) [Hansen et al.,
2003], but is more principled and outperforms CMA on some tasks.

In light of recent ideas from planning literature, which focus the search of
the configuration space to subspaces, relevant to a task [Kalakrishnan et al.,
2011; Berenson et al., 2009, 2011], we too define such task spaces, which we
try to cover by iteratively applying NGIK. The resulting sample set, comprising a
family of task-related poses, is interpolated to yield a TRM.

The TRM framework allows the task-space to be defined freely by the user
in terms of hard and soft constraints alike. The excellent performance of NES
on the inverse kinematics problem, as well as the speed and flexibility of the
purpose-built kinematic model allow us to generate TRMs to plan complex,
state-of-the-art motions. We demonstrate the effectiveness of our approach in
the contest of object manipulation, using the 41DOF upper body of the iCub
humanoid robot.

3.1.1 Inverse Kinematics

One approach to inverse kinematics (IK) for a manipulator, perhaps the oldest
one, is to find a closed form transformation from a frame of reference attached to
the the end effector to that of the base of the robot [Lee and Ziegler, [1984]. For
kinematically redundant robots, additional constraints must be applied in order
that a closed form solution exists, and different ways of doing this have been
investigated over the years [Hemami, (1987; Kauschke, 1996]]. This approach
yields a fast solver, but requires careful engineering and restricts the kinds of
constraints that can be used.

Numerical optimization approaches can find suitable poses by exploiting the
gradient of the forward kinematics function. This is typically done by calculating
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the pseudo-inverse or transpose of the well known Jacobian matrix [Wolovich
and Elliott, 1984; |Goldenberg et al., 1985}; |Zohdy et al., (1989], which is lin-
ear, when evaluated at a particular pose. Recent work applies such methods to
anthropomorphic limbs [Tolani et al., 2000] and humanoid robots [Baerlocher
and Boulic, 2004]]. The latter adds an efficient way to handle prioritized hard
constraints.

Although these approaches are much more flexible than those yielding closed
form solutions, they are sensitive to singularities and require the gradient/Jaco-
bian to be known, which restricts the set of constraints and kinematic chains
that can be represented.

Recently sampling-based methods, have tried to circumvent there problems.
Such methods never explicitly calculate a gradient/Jacobian, but estimate it by
sampling ¢ € C and computing the poses of the relevant body parts, A;(q).
Sampling-based methods can deal with arbitrary cost functions, making them
much more flexible and robust than traditional IK algorithms.

Several sampling optimizers have been proposed recently. Simulated An-
nealing [[Dutra et al., 2008]], is very flexible but has only been used for small
kinematic chains. Sequential Monte Carlo (SMC) [[Courty and Arnaud, 2008]]
uses a non-parametric distribution of particles, but relies on good proposal dis-
tributions, which puts constraints on the kinematic chain that can be used. A
particle filter method [Hecker et al., 2008]], which can robustly handle arbitrary
kinematic chains, is used in the computer game “Spore,” allowing the player to
create their own creatures.

In light of these insights, we propose a sampling-based method, NGIK, which
is based on NES. NGIK is both robust and easy to use, and we show in experi-
ments that NES outperforms the other optimization approaches at solving IK for
our 41 DOF iCub humanoid robot.

3.1.2  Motion Planning

Searching the configuration space of a complex, high DOF robot, such as a hu-
manoid is a computationally expensive procedure. Therefore, a multi-query mo-
tion planner, one that stores knowledge about the configuration space, such as
PRM [Latombe et al., | 1996; Li and Shie, |2007]], is far preferable to a single
query planner, such as RRT [LaValle, [1998; Perez et al., 2011[],which starts a
new search each query from scratch.

It has however proven difficult to control how the configuration-space is
searched in light of complex constraints. Recent work has acknowledged the
lack of control over the search space: Stochastic Trajectory Optimization for Mo-
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tion Planning (STOMP) [Kalakrishnan et al., [2011]] allows for flexible arbitrary
cost-functions and plans a path that minimizes these costs. However, it is only a
local trajectory optimizer, which satisfies a single query and does so exclusively
in the configuration-space.

Constrained Bi-directional Rapidly Exploring Random Trees (CBiRRT) [Beren-
son et al., 2009] uses RRT on a constrained manifold; a subset of the configuration-
space defined by constraints. It has also been augmented with the concept of
task-space regions [Berenson et al., 2011]]. However, it is still a single query al-
gorithm and can only use a restricted set of constraints, which can be projected
into the configuration space. The latter work does claim that a direct sampling
algorithm allows for “arbitrarily complex” constraint parameterization, but only
uses it to sample goals and not to plan paths as it “can be difficult to generate
samples in a desired region”.

Clearly it is desirable to have a maximum flexibility in the defining con-
straints and task-spaces, but current approaches either cannot handle such flex-
ibility, use it only in a part of their algorithm, or find only one posture and not a
full movement. Recently several frameworks have approached both IK and plan-
ning, aiming to be generic and flexible to use [Sentis and Khatib, [2006; Badger
et al., 2011}, Hauser et al., 2011; Kallmann et al.,|2010]]. These frameworks can
produce intricate motions, but still restrict the kinds of constraints that can be
used and many have difficulty with high DOE

Our framework tackles complex IK and planning at the same time by combin-
ing our novel sampling-based inverse kinematics solver NGIK with an iterative
roadmap construction strategy. It finds a family of postures that are optimized
under constraints defined by arbitrary cost-functions, and at the same time max-
imally covers a user-defined task-space. Connecting these postures creates a
rather dense, traversable graph, called a task-relevant roadmap (TRM). In other
words, the task-relevant constraints are built directly into the TRM, and as with
the PRM approach, motion planning is reduced to graph search. As shown in
Section it allows us to build TRMs that can perform useful tasks in the
41-dimensional configuration space of the upper body of the iCub humanoid.

3.2 Natural Gradient Inverse Kinematics

In order to find a robot pose with some desired properties, our numerical
optimization-based approach requires a cost-function, which we define for con-
venience as the sum:
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h= Zhi(q,B) (3.1)

where g and B are the robot configuration and set of workspace obstacles, re-
spectively. Thanks to the robustness of NES, our chosen optimization algorithm,
the functions, h;, need not be differentiable or have any other special properties
other than being non-negative.

h,(q,B)>0 (3.2)

Given a some arbitrary set of cost functions, {h;,h,,hs,...}, NES generates
a sequence of samples, {q;,qs,--.,qs}, Which (hopefully) minimizes h. Most of
the engineering and computational burden in doing this kind of optimization
for IK comes from defining and evaluating cost functions, which encapsulate
the results of forward kinematics and collision detection computations. For this
reason, NGIK benefits greatly from its use of my kinematic model (section [2)),
which can be quickly and easily reconfigured, and computes the following:

1. X(q,B) = ((x1,1,), (x5,15), (x3,1s3), ... ) is the set of marker states. Each
marker is a user-defined, workspace point and unit vector pair, (x;,1;),
which is defined relative to one of the robot’s links, A;, in its local reference
frame, and therefore moves with that link.

2. K(q,B) = ((jl,kl), (Ja» k5), (j3,k3),...) is the set of collision pairs, where
j; and k; represent the indices of the i‘" pair of colliding semi-algebraic
models.

Essentially, the kinematic model tells NGIK for a given robot/world config-
uration, which parts of the robot if any, collide with what, and what are the
key geometric features of the pose in the workspace. Thus, some elements of
the scalar functions, h;, can be conveniently expressed in terms of X(q,B), and

K(g,B):

h; = fi(q,B) + 8:(X(q,B),K(q,B)) > 0 (3.3)

where f; and g; are arbitrary functions defined on their respective parame-
ters. Some constraints are much easier to define over X(q,B) and K(q,B) than
they are to define over g and B, directly, and so the kinematic model increases
our creative power significantly. Some interesting cost functions, defined both

as f(q,B) and g(X(q,B),K(q,B)) are listed in table [3.1]
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Formula Purpose |

Riome = llg — g7l Bias search for g toward some par-
ticular posture, g, to focus on a re-
gion of configuration space and/or
prevent multiple solutions.

heottision = IK| Estimate a gradient to avoid colli-
sions (|K|, the cardinality of the set
of collision pairs, usually increases
with deeper penetration).

hposition = Il — x| Put a marker, x, on some workspace

point, x*.
— . — ——

horientation =0 -0 +1 Align a marker direction, @, with
some workspace direction, G*.

hnota = 1X1ere — Xyignell — d| Hold the left and right hand mark-
ers, X;.p, and X,;gp,, at a fixed dis-
tance, d.

Table 3.1. A few simple cost-functions, which NGIK can use to find interesting
robot poses.
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3.3 Task-Relevant Roadmap Construction

To build a TRM, NGIK must be applied iteratively to develop a set of robot poses.
NGIK relies on NES, which samples from a gaussian distribution, and so each run
must be initialized with a mean and a standard deviation. The optimization runs
until the distribution converges on a pose, or a certain time budget is exceeded.

Each iteration of NGIK must return a new solution to the optimization. Fur-
thermore, it is highly desirable that the sample set, once complete, should have
some ‘nice’ statistical properties in terms of regularity (dispersion and discrep-
ancy), such that the poses in the resulting TRM can be smoothly interpolated to
create motions. The need to measure a meaningful distance between the sam-
ples (given the task at hand) gives rise to the final key idea behind our TRM
generation algorithm, the task space.

The task space, Y, is chosen to parameterize the task at hand, providing the
dimensions along which the set of poses should be expanded and interpolated.
The robot poses, g, are mapped into the task space, yielding points, y, which are
defined:

Y1
# €y (3.4)

<
Il

Yn
Each task function, y;, is some scalar function of ¢ and B (examples in table

, and like the constraints, h;, task functions can be freely defined in terms of
other functions of g and B, provided by the robot model:

where again, f; and g; are arbitrary functions defined over their respective
parameters.

The goal of the TRM building process is to cover as much of the task space
as possible. Accordingly, each NGIK iteration should yield a solution that is
displaced from its nearest neighbors by some distance, measured in task space.
To repel a robot pose with task space coordinates y from its nearest neighbor y’,
an additional constraint is required:

I(y —y')—d| (3.6)

where d controls the density of the set of roadmap vertices in task space.
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Definition Task Description
Y = { Xnand.1 T Xhand,2 + Xnand 3 } Move the hand back and forth along
some (1D) workspace direction.
xhand,l
Y =1 Xpando Move the hand in all three
Xnand 3 workspace dimensions.
da
Y=1 q Move in the null space of the cost
q. function, wy, - h, in joints a, b, and c.
P
dp
Y = { Qe e Move the hand in workspace and
Xhand,l . .
configuration/null space.
xhand,z
Xhand,S J

Table 3.2. A few simple task spaces, which facilitate the building of TRMs.

The TRM should be connected in a way that ‘makes sense’ with respect to
the dimensionality, n, of the task space. In the work presented here, we connect
each new pose to its n nearest neighbors, to form an n —simplex. Therefore, to
each NGIK iteration are added n constraints, which take the functional form of
equation 3.6 and bias the optimization toward a pose that is displaced by a task-
space distance, d, with respect to its eventual nearest neighbors in the TRM.
This is done over and over again, with each new search being initialized at a
recently found pose, such that the set of poses grows according to an advancing
front. The process is expressed formally in algorithms, and

The map building process produces a graph, G(V, E), consisting of a set of
vertices, V = {v;,v,,Vs,...}, and a set of edges, E = {e,e,,e5,...}. With each
vertex v; is associated a robot configuration, g;, a point in task space, y;, and
an expansion weight, w;, such that each vertex is actually an ordered pair: v; =
(q;,¥;,w;). The expansion weight, w;, represents the likelihood that the map
can be grown in the neighborhood of v;. It is initialized to 1, and its value
decays each time NES fails to return a valid new sample around q;. Each edge

represents a robot motion that interpolates two vertices: e; = {v,, v;}.
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Algorithm 2: NEAREST NEIGHBORS - Get the TRM vertices nearest to
some task space point.
Input: n - integer
y - task space point
V - finite set of TRM nodes, where v, = {q;, y;,e;} €V
Output: N - finite set of TRM nodes, N C V, where [N| =n
begin
N < n elements of V, nearest to y, according to:
ly = (i €v)llVv; € V;
return N;
end

3.4 TRM Examples

In this section, I present some of the TRMs resultant of my collaboration with
Marijn Stollenga. For a more detailed discussion of the experiments, I refer the
interested reader to our paper [|Stollenga et al., [2013]]. The following figures
represent Marijn’s and my best effort to communicate what kinds of intricate
motions we can plan for a complex humanoid, however our award winning
video (http://youtu.be/N6x2e IZf_yg)EL which showcases the roadmaps being
applied on real hardware, is infinitely more instructive.

Figures [3.1] and show marker poses, (points, x, plotted in workspace)
for all all robot poses q; in the TRM. These highlight the shape and character of
each TRM, viewed as a whole.

Figures through show time-lapse snapshots of motions, planned
within TRMs. These are intended to give the reader an idea of what the mo-
tions look like as well as the potential of our approach for whole-body motion
planning.

1Best Student Video’ - Association for the Advancement of Artificial Intelligence (AAAI) Video
Competition 2013


http://youtu.be/N6x2e1Zf_yg
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e

Figure 3.1. Marker positions (dots) for three different task spaces - Relative
hand position/orientation is constrained, while the 2D task space is up/down,
forward /back for the pair of hands (left). Absolute hand position/orientation
is constrained, while the 2D task space is left /right, forward/back for the top
of the torso (center). The elbow is constrained to stay down while the 3D task
space is up/down, left/right, forward/back for the hand (right).

»

Figure 3.2. Hand marker positions (dots) for the task space: left/right, for-
ward /back for the right hand, while the hand orientation is constrained in two
different ways - Palm to the side (left). Palm down (right).
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Figure 3.3. Raise a glass - The hand orientation is constrained, while the task
space is the 3D workspace. The result is a map for pick-and-place with objects
that must not be tipped over.

Figure 3.4. Bimanual Inspect - The position/orientation of both hands is con-
strained, while the task space moves the head around. This map is similar to

figure (center).

@.

4

Figure 3.5. Inspect - the 3D position of the hand is constrained, and the task
space is its angle with respect to the gaze direction. The resulting map rotates
the hand (and any grasped object) in front of the eyes.
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Figure 3.6. Push Forward - The height and relative position/orientation of the
hands is constrained, and the 1D task space is to move them forward/back.
The resulting map allows the robot to push a large object forward.

\

Figure 3.7. Push Over - The height and relative position/orientation of the
hands is constrained, and the 1D task space is to move them left /right. The
resulting map allows the robot to push a large object to the side.

Figure 3.8. Reach Into - The robot is constrained not to collide with the box,
and the task space is the 3D workspace for the hand. The resulting map allows
the robot to pick/place from/into the box.
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Figure 3.9. Bimanual Rotate - The relative positions and orientations of the
hands are constrained, and the 1D task space is the angle of the palm nor-
mals (they are parallel with opposite orientation) in the up/down, left/right
plane. The resulting map allows the robot to rotate a large object about the
forward /back direction.

Figure 3.10. Bimanual Twist - The relative positions and orientations of the
hands are constrained, and the 1D task space is the angle of the palm normals
(they are parallel with opposite orientation) in the table plane. The resulting
map allows the robot to rotate a large object about the up/down direction.

Figure 3.11. Unscrew - The position of both hands is constrained, as well as
the orientation of the left hand and the palm normal direction of the right
hand. The task space is the 1D orientation of the right hand about its palm
normal. The resulting map would be suitable for unscrewing a bottle cap.
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Algorithm 3: COST - The cost function used by NES for TRM construction
with NGIK. NEAREST_NEIGHBORS (n,y,V) refers to algorithm [2
Input: g - candidate robot pose
B - set of workspace geometries
h - robot constraints (eq.
Y - task space definition (eq.
d - scalar task space distance between TRM vertices (eq.
V - finite set of TRM vertices, where v; = {q;, y;,e;} €V
Output: cost, the scalar cost of pose q
y - task space projection of g
N - nearest TRM vertices to y (algorithm

begin

{X,K} « KINEMATIC_MODEL (g,B);
fl(q:B)+gl(X:K)
f2(q,B) + g,(X,K)

Y < )

fa(g,B) + g,(X,K)

N «— NEAREST_NEIGHBORS (n,y,V);

cost < Y. h;;

foreachv=1{q’,y’,e’'} €N do
‘ cost — cost+|(y —y')—d|;
end
return {y,N,cost};
end
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Algorithm 4: TRM - Build the Task Relevant Roadmap. COST(q",... ) refers
to algorithm
Input: q;,;; - pose around which to begin searching
0 - decrement for expansion success likelihood (0 < 6 <=1)
Output: V - vertices of the TRM graph, G(VE)
E - edges of the TRM graph
R - region R C Y covered by G(VE)

begin
V<0
E < 0;
R« 0;
4" < Qinics
e’ «—1.0;
while e* > 0.0 do
{¢,¥,N} < NES(COST(q*,...));
if IS _VALID(q) and NOT_COLLIDING(q) and y &R then
ve—1{q,y1}
Ve<Vuivh
S, —{y}
for each v; € N do
e —{v,vi};
E — EuU{e};
S, < S, Uiy}
end
R <~ RU CONVEX_HULL(Sy);
else
e —e*—0;
end
j < argmaxe € vWyv €V;

1

* .
q" —q;€v;
* .

end
end
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Chapter 4

Real Time Collision Response

TRMs offer a powerful, preemptive motion planning solution that can cope with
objects in the robot’s workspace, allowing the robot to reach into a stationary
box for example (figure [3.8). However like other roadmap approaches, they
take time to build, and cannot be updated rapidly enough to cope with a chang-
ing environment. Still, the PRM approach, which underlies TRMs, is the most
likely antecedent to a developmental learning system for path planning due to
its incrementally expandable representation of known motions. The problems it
has are all related to the current separation between planning and control.

To build up a PRM planner, one must first sample the configuration space
to obtain a set of vertices for the graph. The samples are then interpolated by
trajectories, which form the set of edges that connect the vertices. The feasibil-
ity of each sample (vertex) and trajectory (edge) must be preemptively verified,
typically by forward kinematics and collision detection computations, which col-
lectively amount to a computationally expensive pre-processing step. The con-
figuration of the robot must remain on the verified network of samples and tra-
jectories at all times, or there may be unwanted collisions. This implies that
all the trajectories in the graph must also be controllable, which is in general
difficult to verify in simulation for complex robots, such as the iCub, which ex-
hibit nonlinear dynamics (due to do friction and deformation) and are thus very
difficult to model faithfully. If these problems can be surmounted, then a PRM
planner can be constructed, however the configuration of the robot’s workspace
must be static, because moving anything therein may affect the feasibility of the
graph edges.

All of these problems can be avoided by embodying the planner and giving
the system the capacity to react. If there were a low-level control system, which
could enforce all necessary constraints (to keep the robot safe and operational)
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in real time, then the planner could simply try things out, without the need to
exhaustively and preemptively verify the feasibility of each potential movement.

In this case, reference trajectories would become unnecessary, and the plan-
ner could simply store, recall, and issue control commands directly. Lastly, and
perhaps most importantly, with the capacity to react in real time, there would
be no need to require a static workspace. I have been calling this idea, adaptive
roadmap planning, and in this chapter, I will describe my initial implementation.

To provide real-time collision response, the kinematic model was embed-
ded within what I will call a ‘behavioral framework,” which has evolved as my
research developed. Initially, I had envisioned a kind of switching control (fig-
ure [4.1), whereby the kinematic model could interrupt a control program, if it
threatens to cause an unwanted collision. This would maximize the versatility
of the collision response layer, allowing it to be used with any kind of controller,
including those already in the iCub repository.

Robot behaviors would thus be decomposed into three abstract tasks that
correspond to key objectives in Computer Vision, Motion Planning, and Feed-
back Control. Sensory modules process sensory data and report the state of the
workspace, deliberate planning/control modules plan (sequences of) actions that
are temporally extended and may or may not be feasible, and reactive control
modules take over if/when the deliberate planner/controller gets the robot into
trouble.

In order to realize the interrupt, there must be a ‘man in the middle,” which
acts as a proxy between the client (control) program and the robot. This proxy
should provide its own interface to the robot, which is indistinguishable from the
real one, and it should be able to suppress the control commands from the client
and inject other (reactive) control commands instead. This was implemented
at my behest by Gregor Kaufmann for his master’s thesis project at USI [Kauf-
mann), 2010], resulting in the YARP Port Filter module (figure 4.2), which is
written entirely in YARP’s API. It allows some arbitrary application (in this case
the kinematic model) to proxy YARP’s ‘Control Board Interface,” an abstraction
that represents a group of actuators, such that it can cut the communication
between the client program and the robot and/or inject arbitrary data and/or
process data as it moves through the filtered ports.

I integrated my kinematic model and Gregor’s port filter, such that the state
of the model regulates the state of the port filter. When there is no geometric
interference (collision), data is allowed to flow freely from the client program
(the planner/controller) to the robot, however when a collision occurs, the con-
nection is cut, and control is given to a separate controller (also supplied by the
user), which is responsible for reacting to the collision in some way and then
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Figure 4.1. Simplified Architecture - Reactive collision response by switching
control. An arbitrary control program is connected to the filtered robot in-
terface (left). The port filter connects the real interface to its filtered twin
(middle). The kinematic robot model (top), driven by streams of motor en-
coder positions from the robot, does collision detection and regulates the state
of the port filter. When the model detects collision, the port filter cuts off the
stochastic controller and invokes an alternative user-defined controller (bottom)
to recover from the dangerous configuration.

eventually returning control to the deliberate planner/controller. This mecha-
nism, wrapped in some YARP code to provide communication with client ap-
plications (sensory modules and planner/controller modules), became the first
implementation of my Modular Behavioral Environment (MoBeE).

MoBeE was never intended to be a foolproof safety mechanism, but rather
to facilitate adaptive roadmap planning, as described in the remainder of this
chapter. The switching control described here does not provide guarantees that
collisions will be prevented regardless of the robot’s inertial state. Therefore, ob-
stacles must be modeled with generous bounding volumes, and motor velocities
must be selected in accordance with the safety margin afforded by the bounding
volumes.
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Figure 4.2. The port filter proxies YARP’s ControlBoardInterface.

4.1 A Simple, Reflexive Collision Response

Initially, my approach was to implement a reactive controller (figure as
transparently as possible, so that in addition to facilitating adaptive roadmap
planning, the collision response could protect any arbitrary control program.

I pursued what was in my view at the time the most elegant solution from a
software engineering standpoint. Go back the way you came. This way, the reac-
tive controller would need no information other than the history of robot poses,
and would be completely independent of the deliberate planner/controller.

Unlike the sensory module(s) and the deliberate planner/controller, the re-
active controller is part of the MoBeE process. Thus, it has direct access to the
robot model, the port filter, and the robotic hardware. The reactive controller’s
privileged position within the MoBeE process allows it to:

1. Respond to state changes in the kinematic robot model.

2. Process the data streaming in and out of the robot in realtime.
3. Suppress input from the deliberate planner/controller.

4. Directly control the robot.

My reflex response is a reactive controller that logs the history of robot poses
over time. When it is triggered, poses from the recent history q; € {q,,q;_1,q¢—2, - - -
are sent to the robot as sequential position move commands, causing the robot
to retrace its steps.

This rewinding of the robot pose according to the recent history either con-
tinues until the end of the history buffer is reached, or it terminates early when
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Figure 4.3. Reactive Reflex Controller - In this example, as time goes on (top
to bottom), the deliberate planner/controller process (left) communicates (via
RPC over YARP) with the hardware (right), through MoBeE (center). MoBeE
contains a thread (not pictured), which constantly queries the robot and main-
tains a circular buffer of the recent history of robot poses. When a new RPC
position move command arrives, the current pose in the buffer is marked safe,
and the command is forwarded to the robot. As the robot moves, the buffering
of poses continues until a collision is detected (or some other constraint is vio-
lated) and the reactive controller essentially undoes the half-executed position
move command.

a waypoint is reached. A waypoint is marked in the history any time the reflex
controller sees a position move command go through the port filter over RPC.
Thus, from the perspective of the planner/controller, RPC position move com-
mands can succeed or fail, and if they fail, the robot is returned to the position
it was in when the RPC position move command was issued, as shown in figure

4.3l

Alternatively, waypoints can be marked in the history from outside MoBeE
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Figure 4.4. Time lapse images of MoBeE detecting impending collision with
the table and invoking reflexive response. Collision is detected in frame 4, and
response begins in frame 5.

via RPC calls. This way, deliberate planner/controller modules can use arbitrary
control modalities and still communicate to MoBeE where the last known, safe
pose is located.

4.1.1 Experiment: Motor Babbling

The software architecture employed in this experiment is shown in figure |4.1
The deliberate planner/controller is stochastic and sends randomly generated
position move commands over RPC. All joints on the iCub upper-body except
those in the hands are controlled, for a total of 23 DOE When invoked, the
reflexive collision response, tracks the inverted, recent history of robot poses,
returning it to the configuration it was in prior to the issue of the currently ac-
tive RPC command. The modeled environment consists of a table, as pictured
in figures and The experiment ran for approximately two hours over
several trials of 5 to 20 minutes each with joint velocity limited to 20% of maxi-
mum. Video excerpts of some of these trials are available on the IDSIA robotics
web page (http://robotics.idsia.ch/).

As expected, the stochastic controller quickly produced many motions, which
uninterrupted would have resulted in destructive collisions. However MoBeE
effectively prevented all of them. Included were several commonly occurring
self collisions, such as elbow vs. hip, and upper-arm vs. chest, as well as many
collisions between the hands/forearms and the table.
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Figure 4.5. The iCub and Katana robots (bottom) cooperate in a shared
workspace. Each robot is controlled via its own deliberate/reactive controller
pair and the shared MoBeE framework (top).

The experiment demonstrates that the MoBeE framework can effectively sim-
ulate tactile feedback for a complex humanoid robot in realtime.

4.1.2 Experiment: Robots Teaching Robots

In this experiment, the MoBeE framework is exploited to develop a sensory mod-
ule for computer vision, using a machine learning approach.
The Katana arm is used to place an object of interest, in this case a chil-
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dren’s block, precisely at a number of known 3-Space locations within the iCub’s
workspace (figure [4.5). Meanwhile, the iCub moves about the object accord-
ing to a stochastic control policy. Seeing the object from different angles and
distances, the iCub constructs a data set, from which it learns to map camera
images to 3-Space locations, given body states.

The modular architecture of the MoBeE framework drastically facilitates the
implementation of the rather complex experimental setup required to do this
kind of multi-robot interaction. The kinematics of the iCub and the Katana
are loaded from XML into a common model. The reactive controller described
above, which implements reflexive collision response, is used for both robots.
In order to produce the desired training data however, the Katana and the iCub
require different planner/controller modules.

The Katana’s planner/controller is very simple. It just moves through a series
of predetermined poses, waiting at each one, such that the iCub can observe the
block. The iCub’s, on the other hand, is stochastic. For each move of the Katana,
the iCub assumes a number of randomly selected poses, from which it observes
the block. Occasionally, the two robot models do collide, and the reflexive col-
lision response prevents physical collision, safely returning the hardware to a
previous configuration.

In order to accomplish this reliably, the two reflex behaviors must be syn-
chronizedﬂ by adjusting the control frequency. That is, the speed with which
the reflex controller indexes through the history buffer and issues commands
to the robot. With this done correctly for each robot (and with respect to one
another), the reflexive responses of both are synchronous, and the stochastic
collection of training data runs robustly for hours.

This experiment supports the following key claims: MoBeE is robot inde-
pendent, and can exploit any device that can be controlled via YARP It also
supports multiple interacting robots, and behavioral components are portable
and reusable thanks to their weak coupling.

So far, the reflexive controller has been demonstrated operating with three
different deliberate modules on two different robots, the stochastic motor bab-
bling planner/controller on the iCub, the stochastic image gathering planner/-
controller on the iCub, and the deterministic block-indexing planner/controller,
which ran on the Katana.

Since this first generation of MoBeE was completely transparent, it imposed
no constraints on the deliberate planner, and in fact the different planner/con-

n fact this synchronization is already an issue when considering only the iCub, since its
body parts are controlled individually. However the synchronization between the iCub and the
Katana requires more tuning, since their hardware differs significantly.
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troller modules mentioned were implemented by different developers, some of
whom had little or no knowledge of the reactive controller.

4.2 Adaptive Roadmap Planning

The motion planning literature provides many algorithms that perform well in
static environments. On the other hand, the control literature provides methods
for quickly reacting to avoid collisions in dynamic environments. However, ma-
nipulating objects means changing the environment drastically yet sporadically.
This is a problem, which has received surprisingly little attention, but the simple
reflexive collision response described in the previous section can help to address
it.

Consider a roadmap planner that computes trajectories as shortest paths
through a graph, G(V, E f], which covers the configuration space of a humanoid
upper-body coarsely and respects (avoids) self-collisions. Such a graph allows
the robot to move around safely in an empty workspace, but if one puts a table
in front of the robot, some motions (graph edges) are likely made infeasible,
changing the topology of G. The planner is broken, because it is no longer clear
which edges are feasible and which are not. In order to restore the planner,
the feasibility of the entire graph must be recomputed, which is an extremely
expensive operation.

A motion planner fails for want of feedback. If a roadmap planner could
somehow sense the failure to traverse an edge in realtime, and return the robot
to a valid vertex, then it could perhaps recover from planner failure. The edge
could be removed from the graph, and a new trajectory could be planned in
the updated graph without the need to recompute the feasibility of every other
edge. Rather than throwing the roadmap graph away and starting from scratch,
it could be adapted to new constraints as they are discovered.

Consider that before the discovery of an infeasible edge, the graph, G, had
been a valid, albeit trivial, Markov Decision Process (MDP), with states V and
actions E, and all state transition probabilities equal to one. The discovery of
the infeasible edge invalidated the MDP. The probability of transitioning from v,
to v, along e,;, had been equal to one, now it is equal to zero. The probability
distribution governing the state transition associated with action e,;, no longer
sums to one. In order to repair the MDB planner failure must be cast into some

20ur graph implementation relies on Boost [[The Boost Graph Library]] and the Computational
Geometry Algorithms Library (CGAL) [The CGAL Project]
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kind of valid state transition. In other words, if the planner tries to go from v, to
v, along e,;, and does not end up in v;, then it must end up in some other state.

Fortunately, this is exactly what the reflexive collision response does (figure
4.3)). It returns the robot to the state from which it came. With the MoBeE
framework and reflexive collision response, an edge, e,,, now has two possi-
ble state transitions associated with it: v, — v, and v, — v,. Thus, the state
transition probabilities can be maintained such that they always sum to one.
With the validity of the MDP restored, the discovery and avoidance of new con-
straints/obstacles can be treated as a reinforcement learning (RL) problem!

This simple behavior, when coupled to the roadmap planner, has the follow-
ing important consequences:

1. Roadmap planning is generalized to non-static environments by adopting
probabilistic state transitions and casting the roadmap graph into an MDP.

2. Within the MDB the discovery and avoidance of novel objects/obstacles/-
constraints can be phrased as an RL problem.

3. In contrast to other approaches that generalize roadmap planning to non-
static environments [[Brock and Khatib,|2000], the topology of the roadmap
can be changed.

4.3 Demonstrative Experiments

Following are the results of three demonstrative experiments, which were car-
ried out to evaluate the feasibility and usefulness of the MoBeE behavioral frame-
work. First, I present two simple demonstrations of Adaptive Roadmap Planning
without vision. Then I evaluate a real world application of adaptive roadmap
planning on a large TRM with computer vision.

4.3.1 Roadmap from Scratch

In the first experiment, a roadmap is constructed optimistically, from scratch,
and explored by the actual robotic hardware. 20 random samples are chosen in
the configuration space of the iCub humanoid robot, and they are connected to
their 10 nearest neighbors (figure left), without verifying the feasibility of
the resulting graph edges.

Importantly, the edges do not even represent trajectories explicitly. Instead,
they represent the whatever motion ensues when the robot is at one configura-
tion and a position move command is sent to move it to another configuration.
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Figure 4.6. A Roadmap graph is built autonomously, online, by the iCub hu-
manoid robot. Samples are connected optimistically to their k nearest neigh-
bors, yielding a Roadmap graph G(V,E) (left). The iCub explores the graph
(center), and collision detection is done by MoBeE (center inset). Infeasible
edges are removed from the graph, which is thus adapted to the physical con-
straints of the iCub. The feasible portion of the graph is shown in bold (right).
The remaining non-bold edges are unreachable, and the red edge represents
the currently active motion.

Trajectory tracking is not necessary, because the graph edges represent control
commands directly. This greatly simplifies and tightens the behavioral control
loop as compared with the traditional plan first, act later paradigm.

The iCub explores the roadmap graph by randomly planning and execut-
ing motions (figure center). The target pose selection is biased toward
those roadmap vertices with unexplored, adjacent edges. Running the iCub at
a conservative 10% of maximum velocity, the exploration process requires ap-
proximately 90 minutes to completely determine the feasible sub-graph. I have
carried out similar experiments with a number of different graphs, and observe
that the rollback of position move commands works robustly in practice, and
roadmaps can be robustly constructed on-line, from scratch while avoiding self
collisions.

Although the MoBeE infrastructure facilitates optimistic construction of the
roadmap graph, I am compelled to point out the following: Small, randomly
generated graphs often contain unreachable vertices and edges (figure right).
These can usually be connected to the graph by construction, if the map is grown
incrementally, however a pruning step would improve the neatness of the graphs
in general.

Secondly, it is possible that a vertex has feasible ‘in’ edges, but no feasi-
ble ‘out’ edges. Moving to these vertices causes the exploratory behavior to
get stuck. To facilitate motions away from such partially-connected vertices,
new edges (and possibly vertices) must be constructed. Ultimately, to maximize
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Figure 4.7. The iCub autonomously re-plans a motion to move from one side
of the ball to the other. If the ball is not a solid object (top), the Agent moves
the hand through it. When the ball is suddenly made an obstacle (bottom),
the Agent quickly finds the path around it. The active plan is shown with red
edges in the inset graphs.

the planner/controller’s constructive power, it should be equipped with a sin-
gle query planner that can robustly find paths back to the graph from partially
connected vertices.

4.3.2 Adaptive Re-Planning

The second experiment is based on a very small graph, which I constructed
deliberately, such that there exist two different paths that move the hand from
one side of the ball to the other. The shorter path causes the hand to pass
through the ball, whereas the longer path circumvents it. Initially, the model
of the ball is left out of collision detection computations (figure 4.7, top, green
ball), and the planner/controller prefers to move the hand to the other side of
the ball via the shortest available path, through the ball. When the ball is made
solidﬂ (figure bottom, blue ball), the planner/controller immediately finds
the alternative path around it. This demonstrates that with the supervision of
MoBeE, the planner/controller can alter the topology of the roadmap in realtime
to adapt to a changing environment.

3MoBeE supports on-the-fly editing of objects, including collision checking behavior.
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4.3.3 A Real-World Reaching Task

This final experiment integrates the adaptive roadmap planner/controller, the
reactive reflex controller, and the sensory module learned in section to
produce reaches to real-world objects, using the iCub.

The sensory module identifies and locates the objects of interest at regular
intervals and sends RPC commands to update the world model in MoBeE. Mean-
while, the planner/controller queries MoBeE (again via RPC) for the state of the
salient object, plans a reach, and tries to execute it. Of course the reflexive
controller may intervene.

A task of this scale, requires that we use a much larger roadmap than we have
shown in the previous experiments. Consider for a moment what such a map
should look like. Most of the robot configurations associated with the vertices of
the roadmap graph should put the iCub’s hand at feasible pre-grasp postures. If
we intend to cover the approximately %mz of reachable table with pre-grap poses
at, say, 1cm resolution, we require 5,000 vertices in the map. It is impractical
to construct such a map by hand. Random sampling is also infeasible, and we
must therefore search for our graph vertices more intelligently.

To find the vertices of the large roadmap, we employ the TRM framework
introduced in chapter (3] and the result is shown in figure I would like
to reiterate that collision detection computations are unnecessary to verify the
feasibility of the edges. Instead the map is connected optimistically using k
nearest neighbor search. In this case k = 8.

This optimism makes a lot of sense in light of the application. Since the map
consists of pre-grasp poses with the hand above the table, there are very few in-
feasible edges. Although it would clearly take a very long time to explore the en-
tire map, controlling the hardware through every edge, there is actually no rea-
son to do so. Instead, the map is simply exploited greedily, generating reaches as
necessary, and whenever infeasible edges are found, for example when the back
of the hand bumps into the object it is trying to pre-grasp, the planner/controller
can adapt the map to the newly discovered constraint and re-plan.

The canonical roadmap planner would sample every edge in the graph and
do extensive collision detection computations to verify the feasibility of each
motion whenever the world state changes. Consider briefly how much time that
would take.

There are 5,000 vertices at roughly 1cm resolution in operational space, with
8 edges per vertex. If the edges were sampled at 1mm resolution, there would be
400,000 poses for which collision detection must be computed. The kinematic
model within MoBeE, when run offline, can compute collision detection for iCub
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Figure 4.8. A large TRM is constructed by searching the configuration space
for a set of approximately 5,000 ‘interesting’ poses. The scattered dots in
the robot model (top-left) represent the position of the left hand as the robot
assumes the pose associated with each vertex in the map (bottom-right).

poses at about 1,000Hz, if the workspace is devoid of obstacles. Therefore we
are talking about roughly 7 minutes of offline computation to validate the map
every time the state of the workspace changes.

This experiment demonstrates that MoBeE and its implied behavioral de-
composition, allow a roadmap data structure for motion planning to be built
and maintained in a fundamentally different way than the state-of-the-art. In
running this and other similar experiments, I observe that proposed adaptive
roadmap planning works well in practice, generating reaches to objects as pic-
tured in figure Moreover, owing to the modularity of the MoBeE, behaviors
can easily be modified with minimal development overhead.

4.4  Discussion

Manipulation behaviors require planning and re-planning in an environment
in which things are moved around. In this chapter, I proposed a simple yet
novel integration of roadmap planning with reflexive collision response, which
transformed the roadmap graph representation into a simple MDP Roadmap
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Figure 4.9. The resulting pose after reaching to the cup using an integrated
Sensor, Agent, Controller system with the iCub robot. The inset (right) shows
the iCub’s vision, overlaid with the (red) output of an Detector module. The
cup, modeled as a cylinder, has been placed into the MoBeE model (left) by a
Locator module. The roadmap used to plan the reach is pictured in figure .

planning was thereby extended to changing environments, and the adaptation
of the map could be phrased as an RL problem.

A consequence of the proposed adaptive roadmap planning is that it becomes
uncertain whether or not particular motions are feasible. Therefore, the ap-
proach that the robot is able to respond to collisions in real time. This motivates
the notion of a ‘behavioral framework,” which tightly integrates key elements
from computer vision, motion planning, and feedback control. I introduced
MoBeE, my behavioral framework implementation, and I presented the results
of some preliminary experiments on adaptive roadmap planning.

The next logical step would be to design an RL agent to do the roadmap
exploration well, and/or to remember what the roadmap is like under different
workspace constraints. It was in considering this problem that I began to rethink
certain design decisions that had gone into MoBeE.

The first issue that became apparent is that any roadmap, which is dense
enough to facilitate real world reaching quickly becomes far too large to be
practical. The map in figure for example, has many tens of thousands of
edges. Finding a path around a novel obstacle takes a very long time, because
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any obstacle invalidates many, many edges in such a dense graph.

Secondly, the assumption that any planner/controller must be supported is
also limiting. With no knowledge of what the planner/controller does, MoBeE
has little choice but to replace its input entirely when things go badly. Though
elegant on paper, the switching control led to a number of issues all related to
deciding when to switch and maintaining a history of collision free poses. Noise
in the motor encoder position signal meant that rather than seeing a nice clean
switch from collision free to colliding, one sees a high frequency oscillation over
several ms, which finally ends in a stream of only colliding poses. One can
work around this problem by introducing some filtering, and/or a wait period,
however it is difficult to guarantee the robustness of such solutions.

Even more challenging were hysteretic problems. These were all related to
the fact that the forward motions and their approximate inverses generated by
the reflex response can have different shapes. This is particularly problematic
when trying to rewind a motion, which approached a collision from a very low
angle, such as moving the hand across the surface of a table. A small deviation
between the forward motion and its inverse can drastically affect whether or not
collisions are detected, and this can cause the collision recovery to fail.



Chapter 5

MoBeE 2.0

The first MoBeE implementation was intended to enforce constraints in real time
while a YARP robot is under the control of any arbitrary planner /controller. This
led to a design based on switching control, which facilitated experimentation
with control modules pre-existing in the iCub repository, as well as collaboration
with developers who had little or no knowledge of the inner workings of MoBeE.

Ultimately, the first MoBeE implementation does a pretty good job at pro-
tecting a robot from a stochastic/exploratory planner/controller, and it provides
a sensible, albeit very simple, reflexive response to the violation of constraints,
which is to interrupt the planner/controller and return the robot to a previous
configuration, further away from the constraint boundary.

However, problems related to noise and hysteresis made it difficult to main-
tain a history buffer containing a collision free inverse of the recent robot mo-
tion. Therefore, the robustness of the switching control is questionable, and
under certain challenging circumstances the robot can get stuck in a situation
where it does not have any safe poses in the buffer.

Collaboration notwithstanding, my primary purpose for MoBeE has always
been to facilitate adaptive roadmap planning. With this in mind, I began to
think about how I could improve MoBeE’s collision response if I were to relax the
requirement for compatibility with arbitrary planner/controller modules. Upon
reflection, I had the following insight.

The key feature of MoBeE 1.0, regarding adaptive roadmap planning, is that
its realtime collision response allows the edges of the roadmap graph to repre-
sent control commands directly, rather than trajectories. This is what had, albeit

69
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indirectly, allowed me to cast the roadmap planning frameworkﬂ into an MDPﬂ

In light of the MDP-Roadmap planning framework, there was no longer any
reason to confine the robot to a finite set of trajectories. Moreover, stop and go
back is an ugly collision response solution, which is wasteful of time and looks
counterintuitive to observers of a demonstration.

I began to believe that I could do away with the switching control and its
problems with noise and hysteresis as well as the reflexive controller described
in section They would be replaced by a more robust collision avoidance
strategy, which would not only make the robot behavior more appealing to an
observer, but also enrich the MDP far beyond the trivial version proposed in

section

5.1 MoBeE 2.0 Approach

Collision avoidance is essentially an inverse kinematics problem. The constraints
to be avoided are defined in the workspace, but must be avoided by control com-
mands, which are embedded in configuration space. Due to the complex, nonlin-
ear, not-necessarily-invertible mapping from configuration space to workspace,
it is not always straightforward to control the robot so as to affect the desired
workspace changes in its pose.

One solution to this kind of inverse kinematics problem is to search con-
figuration space for a solution, however where avoiding collisions and other
constraints is concerned, time is often of the essence. MoBeE 1.0 avoided the
inverse kinematics problem entirely by exploiting the recent history of robot
motion. The second (and current) implementation, MoBeE 2.0, is based on the
reactive collision avoidance approach of Ousamma Khatib, and its descendants,
which were introduced at some length in section (1.6.2

Crucial to the application of the approach to manipulators is the well known
Jacobian matrix:

'Roadmap planning is based on a graph, G(V, E), wherein the vertices v € V represent robot
poses and the edges e € E represent verified collision free trajectories that interpolate the ver-
tices.

2MDPs are based on a model-tuple, (S,A, T), which comprises abstract sets of states, S, and
actions, A, and a matrix of state transition probabilities, T, the elements of which represent the
probability of transitioning from one state to another, given the execution of some particular
action.
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dx1(q) o 9x1(q)
ax(q) aqq 4,
J(q) = P = : i : (5.1)
q dxe(q) dxe(q)
oqy 77 94,

where x represents the 6DOF position/orientation one of the robot’s linksﬂ
and q is an n dimensional vector of joint positions.

The Jacobian can be evaluated at any robot configuration, q*, in order to
map small configuration space displacements, Aq, to the workspace, according
to:

Ax=J(q")Aq (5.2)

Because the Jacobian is evaluated at q7, it is only valid in the neighborhood
of that point, and so the magnitude of the configuration space displacement,
|Aq|, must be small in order that the magnitude of the workspace displacement,
|Ax|, is meaningful. It follows that the Jacobian inverse can be used to map
desired workspace displacements to configuration space according to:

Aq=J(q") 'Ax (5.3)

However here, |Ax| must be small in order that |Aq| is meaningful.

Applying equation can be problematic due to the matrix inversion. J(q")
may not be square, which is obviously the case for a 7DOF anthropomorphic
arm, and even if it is square, it may be singular at certain q*. Non-square Ja-
cobians can be pseudo-inverted [Whitney, 1969]], however this does not help
when the matrix is singular.

More robust approaches employ different kinds of nonlinear optimization in-
cluding damped least squares [[Wampler, 1986; Nakamura and Hanafusa, 1986;
Buss and Kim), 2005]] and quasi-Newton methods [[Wang and Chen, 1991}; |Zhao
and Badler, 1994; Deo and Walker, 1993]]. However these are computationally
expensive, and their application should therefore be well justified.

Contrastingly, a seemingly abusive use of the transpose instead of the in-
verse costs almost nothing to compute and works surprisingly well under many
circumstances:

Aq=J(q")" Axy 5.4

3The kinematic model provides easy access to Jacobian matrices for particular, named links
of interest, which are defined using <marker/> tags (section [2.3.1).
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Though not the same as the inverse, it can be shown that the Jacobian trans-
pose always maps workspace displacements to configuration space reasonably
well [Balestrino et al., | 1984; Wolovich and Elliott, |1984].

Let Ax,4 represent the desired workspace displacement and Ax, represent the
actual displacement, which results from computing Aq and moving the robot.
Substituting equation [5.4] into equation one obtains:

Ax, =J(q)J(q") Ax4 (5.5)

Now, dropping the q* from the Jacobians for simplicity, consider the inner
product:

Axy-AX, = JIJTAxy - Axg =J T Axy - JTAxy = ||TT Ax4l1* >0 (5.6)

Therefore, in the worst case, the displacement, Ax,, will be orthogonal to
the desired displacement, Axy4. In most cases however, a component of Ax, will
be in the direction of Axy.

Moreover in practice, if equation is applied cyclicly to reduce some error
distance to a target point in workspace, (algorithm [5)) it will, in fact, always do
that, provided that the target is reachable and the steps Aq are small enough.
However, due to the fact that Ax, can be at worst perpendicular to Axy, the
path to the goal pose can be somewhat circuitous. Moreover, if the goal pose
is not reachable, the robot will typically approach a singular configuration, and
the Jacobian transpose control will cause the robot to oscillate.

If reaching a goal pose in workspace is the task at hand, then a proper
pseudo-inverse can outperform the transpose, and least squares optimization
and semi-Newton methods certainly do. However, consider that in the context
of MoBeE, the task is to compute configuration space forces to avoid collisions.
Therefore, the desired direction, Axy, is away from collision. Any direction is
acceptable, as long as it does not move the robot closer to collision. Moreover,
there can potentially be many collisions computed by the robot model, and these
may involve many different links, each of which requires its own projection, and
since this is collision avoidance, responsiveness is paramount. Therefore, the
simplicity and thus speed of the Jacobian transpose projection caused me to
select it for the MoBeE 2.0 implementation.
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Algorithm 5: J' Control - Operational space control with the Jacobian

transpose.
Input: X" - goal pose in workspace
X - current workspace pose
q - current robot configuration
f(q) - forward kinematics function
J(q) - the Jacobian matrix evaluated at the point q
a - a scalar step size
Output: Q - a piecewise linear trajectory comprising segments, Aq
begin
Q — 0
while x = x* do
x = f(q);
X4 < X' —X;
Aq = aJ(q)" Axy;
Q — QU {Aq};
q<—q+Ag;
if x = f(q) then
‘ break;
end

end
return Q;
end

5.2 MoBeE 2.0 Implementation

MoBeE 2.0 controls the robot constantly, at a user-defined frequency accord-
ing to a user-defined control modality. Position, velocity, and force control are
supported. The control signal is computed according to the response of the fol-
lowing second order dynamical system:

fconﬁg
+fwork

Mq(t) +Cq(t) +L(K(q(t) —qo)) =1 +fim(a) (5.7)
+ese(@)
+fcoll(q)

The vector function q(t) € R" is the robot configuration over time, q(t) and
q(t) are its first and second time derivatives. The matrices M, C, and K contain
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mass, damping, and spring constants respectively. The position vector q, is an
attractor configuration, which can be set by the client program via RPC.

The system is forced by the functions on the right hand side. The client
program can contribute to the forcing (again over RPC) by providing a force in
configuration space directly, which results in fnge, Or by applying workspace
forces to markers defined in the robot’s XML file (section [2.3.1]), which MoBeE
internally projects into configuration space as f,,. The remaining forces con-
strain the system. Joint limit avoidance is implemented by f};,,(q), linear sys-
tems of constraints (also specified in the robot model’s XML file) result in f.(q),
and workspace collisions are projected into configuration space and summed to
yield, f.,;(q). Finally, L is a sigmoidal Lyapunov function (equation [5.8)), which
squashes the spring force, such that no dimension exceeds a certain maximum.
It is also used to control the maxima of some of the forcing terms, which are
defined and and discussed in the following subsections. The architecture of the
system is shown schematically in figure|5.1

5.2.1 A Sigmoidal Lyapunov Function for Thresholding

To ensure that the MoBeE 2.0 system prevents collisions under ordinary oper-
ating conditions (with limited energy in the dynamical systerrﬂ), it is essential
that the different forces, f,(t), mix well, and that their magnitudes also make
sense with respect to the spring force, L (K (q(t) —qg)). In other words, the
right forces must dominate the system at the right times, and their maxima must
therefore be controlled.

To control the contributions of forces, which may otherwise go to infinity, I
have designed a sigmoidal Lyapunov function, L(v € R") (equation [5.8), which
takes the parameters, m € R" and k € R", the components of which represent
the maximum value and maximum slope of each dimension of the function. A
single dimension is plotted in figure

“DLR’s control system for the Justin humanoid is safer than MoBeE because it can sense when
there is too much energy in the system, for example when a human comes along and shoves the
arm toward the body, and apply brakes. I do not have access to a robot with brakes, so I have
implemented no such emergency stop, and am content that MoBeE protects the robot from itself
under normal operating conditions.
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Figure 5.1. MoBeE 2.0 Simplified Architecture - The robot is controlled by a
dynamical system (center-bottom, section , where q(t) is its configuration
over time. M, C, and K, are matrices containing mass, damping, and spring
constants, respectively. q, is an attractor, which can be set by the client
program. Additionally, the client can force the dynamical system directly.
Meanwhile, the robot model also forces the system to affect geometric and
kinematic constraints.
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It should be noted that L(v) does not preserve the direction of v. While
this dimension-wise squashing works well for the applications presented in the
remainder of this thesis, it may not work well for all applications, and future
versions of MoBeE may offer different thresholding functions, which can be con-
figured/selected at runtime.



76 5.2 MoBeE 2.0 Implementation

m-v

——. Here, the maxi-
il

Figure 5.2. 1D Sigmoidal Lyapunov Function - L(v)=

mum value is m = 2, and the maximum slope is k = 3.

5.2.2  Configuration Space Forcing

The client program can force MoBeE’s dynamical system in configuration space
directly by providing a force, f;rpc € R", via RPC. For obvious reasons, it is of
critical importance that f rpc not dominate the constraint forces, however the
burden on the client program to know about the internals of MoBeE should be
minimized. Therefore MoBeE squashes f zpc with L.

fconﬁg = L(quPC) (5 . 9)

5.2.3 Workspace Forcing

The client program can also force the robot in workspace over RPC by applying
a force f,, € R® to one or more markers, m, specified in the robot model XML
(section[2.3.1). In this case, MoBeE projects the forces into configuration space,
and sums them. Similarly to the configuration space forces, these may be arbi-
trarily large, and must therefore be squashed by L. The workspace forcing term

is therefore computed:
fwork =L (Zj(m)Tfm) (510)

where J(m) represents the Jacobian matrix of some marker, m, computed for
the current robot pose.

Note that the projection is done via the Jacobian transpose, which is well
suited for collision avoidance but not necessarily so for pursuing target positions
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in workspace. In the event that the Jacobian transpose projection is inadequate
for the user’s purposes, a client program can query the robot model for the robot
state, including the Jacobian of any link, and compute any kind of optimization
on the client side (thus not burdening MoBeE, which must run fast to prevent
collisions), and finally forcing MoBeE in configuration space directly.

5.2.4 Collision Avoidance

The forces generated by collisions are very similar to the workspace forcing by
the client, except that they are computed automatically by the kinematic model.
Because the geometries in the model are user-defined, they can in principal be
arbitrarily large and therefore, so can the interference volumes between them.
Therefore, they too must be squashed by L.

To each colliding geometry, g, is applied a force f, € R3, which is parallel
and proportional to a penetration vector approximated by the SOLID library.
Like the workspace forcing commands, these collision forces are projected into
configuration space and summed according to:

feon =L (ZJ(g)ng> (5.11)
4

where J(g) represents the Jacobian matrix of some a colliding geometry, g,
computed for the current robot pose.

5.2.5 Configuration Space Positional Constraints

In contrast to the above forces, positional constraints in configuration space are
implemented by piecewise linear forcing functions. These may go to infinity
as the independent variable goes to infinity, but this never happens in practice
because the robot may never be in a configuration outside its joint limits. There-
fore, there is no need to threshold configuration space positional constraints.

Joint Limit Avoidance

The forcing function that implements joint limit avoidance is formulated around
the limits of each joint, q,,;,; and g,,,, ;, the distance over which the linear spring
acts, ;, and the maximum force, f,,,;, exerted when the joint is at its limit.
Each dimension is defined:
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Figure 5.3. 1D Joint Limit Avoidance Function - Plot of equation with
joint limits, q;,; = —3 and qq,; = 3, spring distance, 6 = 1, and maximum
force, f. =1 (at the joint limits).

fmax,i .
5_1(q1 - qmin,i) +fmax,i: if qi < qmin,i + 6i
fiimi =140, if Graxi +0; > q; > Qin,; + 6; (5.12)

fmax,i

5_1(q1 - qmax,i) - fmax,i) if qi > qmax,i - 51’

Here, f,..; = 0 and 6; > 0. An instructive plot of f;,,; is provided in figure
The aggregate joint limit avoidance force is defined:

flim,l

fli:n,z (513)

flim =

flim,n

Where n is the dimensionality of q.

Linear System Constraints

The XML specification for robot modeling (section|2.3.1)) supports the definition
of linear constraints of the form:

n-q<b>b (5.14)
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The vector, n, which is normal to the hyperplane, and the scalar b, are cho-
sen by the user. Together they define a half-space, into which points the other
hyperplane normal, —n. Associated with the constraint is a maximum constraint
force, f,,.» and a spring length, &, that defines the distance over which the
repulsive force is active. A single constraint force, f.;, is defined as follows:

n [Z2(n-q—b)+ fre ifnq-b<5,
fcst,i =17 ! . (5.15)

In| |o, ifn-q—b > 9;
From each set of linear constraints is constructed a conjunction of clauses,
where each clause is a disjunction of literals, as shown in these three examples:

fcst,l —0A fcst,2 —0A fcst,3 —0
CNF = fcst,l — O A (fcst,z — O \4 fcst,3 — O)
(fcst,l —0V fcst,2 — 0) A (fcst,3 — 0V fcst,4 — 0V fcst,5 — O)

(5.16)

This is known as conjunctive normal form (CNF), and whether it evaluates

true or not controls whether or not the aggregate constraint force is applied to
the robot.

D.feeis ifCNF
i (5.17)

fost =

0, if °"CNF

In this way, either all of the constraint forces in the set are applied, or none
of them are. Such a system of linear constraints is used to repel the iCub from an
infeasible region of configuration space, which arises from the relative lengths
of the cables that actuate its shoulder. The iCub shoulder constraint, which is
also respected by much of the IIT control code, uses conjunction of literals only,
however MoBeE exploits the CNF to do more complex things, such as constrain
the forearm not to rotate too much when the elbow is bent too much?]

5.3 MoBeE 2.0 Discussion

The central idea behind the MoBeE system from the beginning has been to facil-
itate exploratory behavior using a real robot. MoBeE has acted as a supervisor,

>0On the iCub, turning the forearm with the elbow bent too much causes collisions between
adjacent body panels which are hard to model geometrically.
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intervening when the client program, which I have been calling a planner/con-
troller, does something dangerous or undesirable. The first implementation of
MoBeE did that in a discrete way, via switching control, but the result was a
jerky, unnatural reflexive behavior, which was not very robust.

MoBeE 2.0 does away with switching control in favor of a dynamical system,
which continuously mixes control and constraint forces to generate the robot
motion in real time. The most obvious result of this is smoother, more intuitive
motions in response to constraints/collisions. Many of the collisions encoun-
tered in practice no longer stop the robot’s forward progress, but rather deflect
the requested motion, bending it around an obstacle. Of course this is not al-
ways possible, and sometimes the constraint forces slow the robot to a stop near
the encountered obstacle. However even this is quite smooth, and much more
intuitive to an observer than the MoBeE 1.0 switching control.

In addition to smoothness and intuitiveness of the motions generated, MoBeE
2.0 offers drastically improved robustness. Without the need to invert the recent
robot motion, there is no longer any problems related to hysteresis. Even the
effects of sensory noise are mitigated. Because the constraint forces associated
with collisions are proportional to their penetration depth, noise in the motor
encoder signal has a minimal effect on collision response. The sporadic shallow
collisions, which can be observed when the robot is operating very near to an
obstacle, generate tiny forces that only serve to nudge the robot gently away
from the obstacle.

The theoretical implications of MoBeE 2.0 on adaptive roadmap planning are
very promising indeed. Essentially, the dynamical approach to enforcing con-
straints means that the planner/controller is free to explore continuous spaces,
without the need to divide them into safe and unsafe regions.

Whereas the original roadmap planning required complete knowledge that
all the trajectories in the roadmap graph are certainly safe, adaptive roadmap
planning with MoBeE 1.0 required that only one trajectory is safe, namely the
inverse of the recent robot motion. Now that MoBeE 2.0 eliminates the need to
know even that, roadmap planning is no longer about safety at all. The burden
of collision avoidance is completely lifted from the planner/controller, and the
state of the robot must not necessarily be on the roadmap in any sense. In fact,
the roadmap is no longer necessary at all; it is just about best practice. If the
planner/controller plans a motion using the roadmap, and it does not work out,
that is not a problem. It only means that the planner should be updated to reflect
the new experience.

Unburdened of the need to know about every single pose in which the robot
will ever be, the adaptive roadmap planner is now free to focus on that for which
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it is best suited, coarse path planning. Many thousands of states/vertices are no
longer required, as in section to cover a table for example. Instead, a
hybrid solution, wherein coarse planning is provided by a sparse roadmap, and
the final reach to grasp is provided my a more reactive approach, is now possible
under the abstract formalism of RL.
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Chapter 6

An RL Agent for MDP Roadmap

Planning

Allowing the planner to issue control commands directly offers considerable
benefits, but it also requires a more complex representation of the configura-
tion space than the plan first, act later paradigm did. Whereas the PRM planner
made do with a simple graph, representing a network of trajectories, the embod-
ied version seems to require a probabilistic model, which can cope with actions
that may have a number of different outcomes. In light of this requirement, the
embodied planner begins to look like a Markov Decision Process (MDP), and in
order to exploit such a planner, the state transition probabilities, which govern
the MDP. must first be learned.

The new embodied MDP planner differs from its antecedent PRM planner in
several important ways. There is no need to require that the configuration of
the robot be on any of the graph edges. In fact the graph no longer represents a
network of trajectories, but rather the topology of the continuous configuration
space. Instead of a trajectory, each edge represents a more general kind of action
that implements something like try to go to that region of the configuration space.
Such actions are available not when the true robot configuration is on a graph
vertex, but rather when it is near that vertex. The actions may or may not
succeed depending on the particular initial configuration of the robot when the
action was initiated as well as the configuration of the workspace, which must
not necessarily be static.

83
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6.1 Action Implementation

For the purposes of MDP roadmap planning, an action will be defined as setting
MoBeFE’s attractor q* (equation to some desired configuration. When such
an action is taken, q(t) begins to move toward g*. The action terminates either
when the dynamical system settles or when a timeout occurs. The action may
or may not settle on q*, depending on what constraint forces (right hand side of
equation [5.7) are encountered during the transient response. The role of the RL
agent, is accordingly to model the topology of the configuration space using an
MDP

6.2 State-Action Space

The true configuration of the robot at any time t can be any real valued g € R",
however in order to define a tractable RL problem, the configuration space is
discretized by selecting m samples, Q = {q;|j = 1...m} C R", which define a set
of Voronoi regions {s;[j =1... m}ﬂ That is to say, with each sample, g; € R", is
associated an s; C R", where every point, q € s}, is closer to g; than to any other
point q € Q.

The state space of the Markov model comprises the sets s;, not the points,
q; € Q. More formally, the state space S = {s;|j = 1...m}. Throughout the
remainder of this proposal, I will use the conventional RL notation, dropping
the subscript, j, and referring to states s € S. To say that the robot is in some
state, s, at some time, t, means that the real valued configuration of the robot,
q(t) €s. The notation s; will be reserved for indexing sets of states as was done
above for the set of all states, S.

An action is defined by setting MoBeE’s attractor, ¢* = q, (eq. , where
q, € Q is the sample in some goal state s,(a). When an action is tried, the robot
moves according to the transient response, q(t), of the dynamical system, which
eventually settles at q(t — o0) = q,,. However, depending on the constraint
forces encountered, it may be that q,, € s,(a) or not. A diagram of the discrete
state-action space is provided in figure

!Generally, throughout this formalism I use uppercase letters to denote sets and lowercase
letters to denote points. However, I have made an exception for the regions, s; C R", which
themselves comprise sets of robot configurations. Although this is somewhat abusive from a

set theoretic standpoint, it allows us to be consistent with the standard RL notation later in the
paper.
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]RI]
Figure 6.1. The discrete state-action space : The sample set Q = {q;|j =1...m}
(dots) defines the Voronoi regions, or states S = {s;|j = 1...m} (bounded by
dotted lines). An action a (gradient), exploits MoBeE’s attractor dynamics
to pull the robot toward some goal state, s,(a) € S. When the robot is in
the initial state, q(t,) € s, and the agent selects a, MoBeE switches on the
attractor (eq. [5.7) at the point q, € s,(a). The agent then waits for the
dynamical system to settle or for a timeout to occur, and at some time, t;,
checks which of the states, s; contains the final real valued configuration of the
robot, q(t;). Often the state-action, (s,a), terminates in the goal state s,(a),
but sometimes, due to constraint forces, it does not. This gives rise to a set
of state transition probabilities T(s,a) = {T(s,a,s}), T(s,a,s,),..., T(s,a,s, )},
which correspond to the states, {s;|j =1...m}.

6.3 Connecting States with Actions

With each state, s, is associated a set of actions, A(s), which intend to move the
robot from s to each of k nearby goal states, A(s) = {a,|g = 1...k}, and the set
of all possible actions, A, can therefore be expressed as the union of the action

m
sets belonging to each state, A= UlA(s).
s=
This notion of connecting neighboring states makes intuitive sense given
the problem domain at hand and the resulting Markov model resembles the

Roadmap graph used by the PRM planner [[Latombe et al.,[1996]]. Although the
action set, A, is quite large (|A| = |S|), each state only has access to the actions,
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A(s), which lead to its k nearest neighbors (|A(s)| = k). Therefore, the num-
ber of state-actions remains linear in the number of states. The reader should
be advised that wherever the standard state-action notation, (s, a), is used, it is
implied that a € A(s).

6.4 Modeling Transition Probabilities

Although each action intends to move the robot to some particular goal state, in
principal they can terminate in any state in the set {s;|j = 1...m}. Therefore,
state transition probabilities must be learned to represent the connectivity of the
configuration space. A straightforward way of doing this would be to define a
probability distribution over all possible outcomes s; for each state-action (s,a):

P(qoo € 51l5,a)

P(qoo € 55ls,a)

T(q €5jls,a) = (6.1)

P E5pls,a)

To build up the distributions, T(q,, € s;|s,a), one would simply initialize all
probabilities to zero and then count the occurrences of observed transitions to
the various states, s;, resulting from the various state-actions (s,a). However,
this approach would be relatively wasteful, because much of the state-action
space is deterministic. In practice, there are only three kinds of distributions
that come out of applying the Markov model to motion planning. A state-action,
(s,a), can terminate deterministically in the goal state s (a) (eq. , it can
terminate deterministically in some other state s; # s,(a) (eq. , or it can
be truly nondeterministic (eq. [6.4)), although the nonzero components of T are

always relatively few compared to the number of states in the model.

] 1 ifs;=s.(a)
P4 €5jls,0) = { 0 ifsj- ;ési(a) 6.2)
] 1 ifs;=s5"#s,(a)
p(qoo e5]"5: Cl) - { O lij #S* 8 (63)

=0 ifs; €S fensi
) j infeasible (64)
>0 if Sj € IS'feasible

P(ds stls,a){

This is intuitive upon reflection. Much of the configuration space is not
affected by constraints, and actions always complete as planned. Sometimes
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constraints are encountered, such as joint limits and cable length infeasibili-
ties, which deflect the trajectory in a predictable manner. Only when the agent
encounters changing constraints, typically non-static objects in the robot’s oper-
ational space, does one see a variety of outcomes for a particular state-action.
However even in this case, the possible outcomes, s’, are a relatively small num-
ber of states, which are usually in the neighborhood of the initial state, s. I have
never constructed an experiment, using this framework, in which a particular
state-action, (s, a), yields more than a handful of possible outcome states, s’.

6.4.1 Artificial Curiosity

What is interesting? For us humans, interestingness seems closely related to the
rate of our learning progress [[Schmidhuber, 2006]. If we try doing something,
and we rapidly get better at doing it, we are often interested. Contrastingly, if
we find a task trivially easy, or impossibly difficult, we do not enjoy a high rate
of learning progress, and are often bored. This behavior makes humans efficient
explorers of novel behavior, because we do not waste time on things already
learned or things that are too difficult for us.

Experiments run on robotic hardware are slow. They are bound to real
time, as opposed to simulations, which can be run faster than real time, or
parallelized, or both. Therefore, as for us humans, efficient exploration is crit-
ical. This motivates the use of curiosity-driven reinforcement learning, which I
have implemented using the information theoretic notion of information gain,
or Kullback-Leibler (KL) divergence.

6.4.2 KL Divergence

KL Divergence, Dy, is defined as follows, where P; and T; are the scalar compo-
nents of the discrete probability distributions P and T, respectively.

P.
Dy, (P|IT) :Zln (F{)pj (6.5)
J

J

For MDP roadmap planning, T represents the estimated state transition prob-
ability distribution (eq. for a particular state-action, (s,a), after the agent
has accumulated some amount of experience. Once the agent tries (s,a) again,
an s’ is observed, and the state transition probability distribution for (s,a) is
updated. This new distribution, P, is a better estimate of the state transition
probabilities for (s, a), as it is based on more data.
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By computing Dy, (P||T), one can measure how much the Markov model
improved by trying the state-action, (s, a), and this information gain can be used
to reward the curious agent. Thus, the agent is motivated to improve its model
of the state-action space, and it will gravitate toward regions thereof, where
learning is progressing quickly.

There is however, a problem. The KL divergence is not defined if there exist
components of P or T, which are equal to zero. This is somewhat inconvenient
in light of the fact that for the proposed application, most of the components of
most of the distributions, T (eq. , are actually zero. P and T must therefore
be initialized cleverly.

Perhaps the most obvious solution would be to initialize T with a uniform
distribution, before trying some action for the first time. After observing the
outcome of the selected action, P would be defined and Dy, (P||T) computed,
yielding the interestingness of the action taken.

Some examples of this kind of initialization are given in equations |6.6}6.9l"
Clearly the approach solves the numerical problem with the zeros, but it means
that initially, every action the agent tries will be equally interesting. Moreover,
how interesting those first actions are, |Dy;(P||T)|, depends on the size of the
state space.

Dy, ({1,2,1}]|{1,1,1}) = 0.0589 (6.6)

Dy, (12,1,1}]|{1,1,1}) = 0.0589 (6.7)

Dy, ({1,1,2,1,1}/|{1,1,1,1,1}) = 0.0487 (6.8)
Dy, ({1,1,1,2,1,1,1}/|{1,1,1,1,1,1,1}) = 0.0398 (6.9)

The first two examples, eq. and eq. show that regardless of the
outcome, all actions generate the same numerical interestingness the first time
they are tried. While not a problem in theory, in practice this means the robot
will need many tries to gather enough information to differentiate the boring,
deterministic states from the interesting, nondeterministic ones. Since the ac-
tions are designed to take the agent to a goal state, s,(a), it would be intuitive if
observing a transition to s,(a) were less interesting than observing one to some
other state. This would drastically speed up the learning process.

The second two examples, eq. [6.8|and eq. [6.9show that the interestingness of
that first try decreases in larger state spaces, or alternatively, small state spaces

21 have intentionally not normalized P and T, to show how they are generated by count-
ing observations of q,, € s;. In order to actually compute Dy, (P||T), P and T must first be
normalized.
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are numerically more interesting than large ones. This is not a problem if there is
only one learner operating in a single state-action space. However in the case of
a multi-agent system, say one learner per body part, it would be convenient if the
intrinsic rewards gotten by the different agents were numerically comparable to
one another, regardless of the relative sizes of those learners’ state-action spaces.

In summary, there are two potential problems with KL Divergence as a re-
ward signal:

1. Slowness of initial learning

2. Sensitivity to the cardinality of the distributions

Nevertheless, in many ways, KL Divergence captures exactly what I would
like our curious agent to focus on. It turns out that both of these problems can
be addressed by representing T with an array of variable size, and initializing
the distribution optimistically with respect to the expected behavior of the action

(s,a).

6.4.3 ‘Kail’ Divergence

By compressing the distributions T and P, i.e. not explicitly representing any
bins that contain a zero, the KL divergence can be computed between only their
non-zero components. The process begins with T and P having no bins at all.
However they grow in cardinality as follows: Every time a novel s’ is observed as
the result of trying a state-action (s, a), a new bin is appended to the distribution
T(s,a), and initialized with a 1. Then, T(s,a) is copied to yield P(s, a), and the
s’ bin is incremented in P(s,a). Finally, KL(P||T) is computed. This process is
formalized in algorithm [6]

The optimistic initialization is straightforward. Initially, the distribution T (s, a)
is empty. Then it is observed (algorithm [6) that (s, a) fails, leaving the agent in
the initial state, s. The KL divergence between the trivial distributions {1} and
{2} is 0, and therefore, so is the reward, R(s,a). Next, it is observed that (s, a)
succeeds, moving the agent to the intended goal state, s,(a). The distribution,
T(s,a), becomes nontrivial, a nonzero KL divergence is computed, and thus
R(s,a) gets an optimistically initialized reward, which does not depend on the
size of the state-action space. Algorithm (8| describes the steps of this optimistic
initialization, and table shows how T(s,a) and R(s,a) develop throughout
the initialization process.

The distributions T, as initialized above, are compact and parsimonious, and
they faithfully represent the most likely outcomes of the actions. Moreover, the
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second initialization step yields a non-zero KL Divergence, which is not sensitive
to the size of the state space. Importantly, the fact that the initialization of the
state transition probabilities provides an initial measure of interestingness for
each state-action allows, without choosing parameters, the reward matrix to be
initialized optimistically with well defined intrinsic rewards.

Consequently, a greedy policy can be employed to aggressively explore the
state-action space while focusing extra attention on the most interesting regions.
As the curious agent explores, the intrinsic rewards decay in a logical way. A
state-action, which deterministically leads to its goal state (table [6.2]) is less in-
teresting over time than a state-action that leads to some other state (table ,
and of course most interesting are state-actions with more possible outcomes

(table [6.4).

Observation T P R=Dy. (P||T)

- {} {} -
5; {13 {2} 0
5,(@) 2,1} {2,2} 0.0589

Table 6.1. Initialization of state transition probabilities

Observation T P R=Dy,(P||T)
init {2,1}  {2,2} 0.0589
sg(a) 12,2}  {2,3} 0.0201

(@) {23} {24} 0.0095
sg(a) {2,4} {2,5} 0.0052

Table 6.2. A predictable action ends in the predicted state

Observation T P R =Dy, (P||T)
init 2,11 12,2} 0.0589
5; 2,21} {2,2,2} 0.0487
5; 2,22} {2,2,3} 0.0196
s; 2,2,3} {2,2,4} 0.0103

J

Table 6.3. A predictable action ends in a surprising state
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Observation T P R =Dy, (P||T)
init {2,1} {2,2} 0.0589
s, {2,2,1} {2,2,2} 0.0487
s 2,221} {2,2,2,2} 0.0345
s 2,2,221} {2,2,2,2,2} 0.0283

5,(@) {2,2222} {2,3,2,2,2} 0.0142
{2,3,2,2.2}  {2,3,3,2,2} 0.0133
s, {2,3,3,2,2} {2,3,3,3,2} 0.0125

Table 6.4. An unpredictable action

6.5 Reinforcement Learning

In this thesis, I claim that a PRM planner’s compact, incrementally expandable
representation of known motions makes it a likely antecedent to a developmen-
tal learning system. Furthermore, I observe that many of the weaknesses of
PRMs can be avoided by embodying the planner and coupling it to a low-level re-
active controller. Proxied by this low-level controller, the planner is empowered
to try out arbitrary control signals, however it does not necessarily know what
will happen. Therefore, the PRM’s original model of the robot’s state-action
space, a simple graph, is insufficient, and a more powerful, probabilistic model,
an MDP is required. Thus, modeling the robot-workspace system using an MDP
arises naturally from the effort to improve the robustness of a PRM planner, and
accordingly, Model-Based RL is the most appropriate class of learning algorithms
to operate on the MDP.

Having specified what action means in terms of robot control (section |6.1)),
described the layout and meaning of the state-action space (section [6.2), and
defined the way in which intrinsic reward is computed according to the artificial
curiosity principal (section[6.4.1)), I will now incorporate these pieces in a Model-
Based RL system, which develops a path planner as follows.

Initially, sets of states and actions are chosen, according to some heuristic(s),
such that the robot’s configuration space is reasonably well covered and the RL
computations are tractable. Then, the state transition probabilities are learned
for each state-action pair, as the agent explores the MDP by moving the robot
about. This exploration for the purposes of model learning is guided entirely by
the intrinsic reward, and the curious agent continually improves its model of the
iCub’s configuration space. In order to exploit the planner, an external reward
must be introduced, which can either be added to or replace the intrinsic reward
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Algorithm 6: Observe(s,a,s’,T(s,a),R(s,a)) is responsible for processing
occurrences of state transitions, (s,a,s”), and learning the MDP. The curious
agent is rewarded according to learning rate, as defined by KL Divergence:
Dy (P|IT(s,a)) = >, In (}T)Ez’—‘(gsi)P(s,a)s/ where T(s,a), and P(s,a), are
the scalar components of the discrete probability distributions T(s,a) and
P(s,a), respectively. By computing Dy, (P(s,a)||T(s,a)), we quantify how
much the Markov model improved by trying the state-action, (s,a), and

this information gain is used to reward the curious agent.

begin

if there is no bin, T(s,a)y, in T(s,a) to count occurrences of s’ then
append a bin, T(s,a), to T(s,a)
T(s,a)y <1

end

P(s,a) < T(s,a)

P(s,a)y < P(s,a)y +1

R(s,a) < Dy, (P(s,a)l[T(s,a))

T(s,a) < P(s,a)

end

function.

The MDB which constitutes the path planner, is a tuple, (S,A, T,R,v), where
S is a finite set of m states, A is a finite set of actions, T is a set of state transition
probability distributions, R is a reward function, and y is a discount factor, which
represents the importance of future rewards. This MDP is somewhat unusual in
that not all of the actions a € A are available in every state s € S. Therefore, I
define sets, A(s), which comprise the actions a € A that are available to the agent

when it finds itself in state s, and A = Lrle(s). The set of state transition proba-
s=
bilities becomes T : BlA(s) xS — [0,1], and in general, the reward function be-
s=

m m
comes R : UIA(S) x S — R, although the intrinsic reward, R insic : UlA(s) — R,
S= s=
varies only with state-action pairs (s,a), as opposed to state-action-state triples
(s,a,s’). The state transition probabilities, T, are learned by curious exploration
(algorithm|8], y = 0.9, 6 = 0.001), the RL algorithms employed is value iteration
(algorithm[7)), and the intrinsic reward is computed as shown in algorithm [6]
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Algorithm 7: Value Iteration(S,A,T,R,y, ) recomputes the value function
V each time an action completes.

begin
for each state-action (s € S,a € A(s)) do
| V(s,a) < 0.0
end
for each state s € S do
| V(s)«<0.0
end
while true do
max_delta < 0.0
for each state-action (s € S,a € A(s)) do
V($,@)pew — R(s,a) +7 X, T(s,a)y V(s')
if V(s,a),e, —V(s,a) > max_delta then
| max_delta « V(s,a),., — V(s,a)
end
V(s,a) < V(s,a)e
end
for each state s € S do
| V(s) «argmax({V(s,a)li =s})
end

if max_delta < 6 then
| break

end

end
end
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Algorithm 8: Curious_Explore(S,A,T,R,y, 6) is the top-level behavioral con-
trol loop that exploits the other algorithms. It first initializes the MDP
optimistically, assuming that each action will either succeed as expected,
bringing the agent to the goal state, or fail, leaving the agent at the initial
state. After initialization, the agent explores the state-action space pursu-
ing reward, which is defined in terms of information gain.

begin

for each state-action (s € S,a € A(s)) do
Observe(s,a,s, T(s,a),R(s,a))
Observe(s,a,s,(a), T(s,a),R(s,a))

end

while true do

Value_Iteration(S,A,T,R,v,0)

s < $;1q(tpepore) €55

Agreeay < alV(s,a) = argmax({V(s,a)la € A(s)})

run dg,.,.q, on the robot

s —5ilq(tyser) €55

Observe(s,a,s’, T(s,a),R(s,a))

end

end




Chapter 7

Model Learning Experiments

Here I present the results of a series of experiments, in which MDP motion plan-
ners are learned for the iCub humanoid by the RL agent proposed in the previous
chapter. The first experiments are simple as they are intended to validate the RL
implementation. Subsequent experiments compare the exploratory behavior of
the curious agent to more naive strategies and characterize the behavior of the
agent under different initializations. Finally, larger, more complex state-action
spaces are considered, which constitute a more realistic real-world application,
and a multi-agent experiment demonstrates how MDP motion planning may
eventually scale up to control the entire humanoid, which, due to the size of a
humanoid’s configuration space, is beyond any planning approach I am currently
aware of.

For a humanoid in the context of manipulation tasks, many of the sub-
problems can be addressed by reactive, gradient-based methods. Given a region
of interest in the visual field(s), the robot’s gaze for example, can be controlled
quite straightforwardly using some kind of error minimization. Also, if the hand
is in some sort of reasonable pre-reach position, its orientation (with respect to
a target object) can be fine tuned by a very simple reactive controller. From my
point of view, the hard part is finding and getting to that sensible pre-reach posi-
tion, and the joints most relevant to solving it comprise the shoulder and elbow.
Therefore, the MDP planning experiments (aside from the multi-agent one), are
designed to facilitate coarse motion planning in the 4D shoulder-elbow space.

7.1 Implementation Validation

In the first experiment I validated my RL implementation, using the simplest
possible Markov model, which captures the 4D shoulder-elbow configuration

95
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Figure 7.1. Hypercube state-action space for the proof of concept experiment.
The samples, {q;,495,q3,..-} = Q € R" (left) define the states in the MDP.
The values are normalized to represent percent range of motion corresponding
to shoulder flexion/extension, arm abduction/adduction, lateral/medial arm
rotation, and elbow flexion/extension, respectively. Actions are defined to take
the agent from each state to its 4 nearest neighbors. This connectivity is
shown graphically (right) where * indicates that there exists an action, which
is available to the agent in state row and intends to bring it to state column.

space. The state-action space is shown graphically in figure|7.1

For this experiment, the workspace was devoid of obstacles, and the states
and actions were deliberately chosen such that the agent does not encounter
any constraints during the exploration of the model. Therefore, all actions suc-
ceeded, bringing the agent to the intended goal state. The state of the robot was
initialized randomly, and the agent explored the model until every state-action
had been tried at least 5 times. The experiment was repeated many times over,
as the discount factor, y, was varied. The measured result was the cumulative
history of the agent’s action selection and the value function, and these were
observed over time.
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Figure 7.2. Stacked bar charts show the action selection history and value
function during the early stages of hypercube exploration, after 50 actions
have been executed. Each bar indicates a particular state-action, and each
color represents data from an individual randomly initialized experiment. Data
are presented for three different discount factors (y). At this early stage of
exploration, action selection is fairly uniform but very noisy.
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Figure 7.3. Stacked bar charts show the action selection history and value
function at the final stage of hypercube exploration, after 320 actions have
been executed. Each bar indicates a particular state-action, and each color
represents data from an individual randomly initialized experiment. Data are
presented for three different discount factors (y). Now that exploration is
almost complete, action selection is quite uniform, as is the value function, and
value is roughly proportional to the discount factor.
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Tabulated results of 10 runs are presented, showing the distribution of ac-
tions selected so far and the current value function after 50 actions have been
tried (figure and at the conclusion of the experiment after 320 actions have
been tried (figure|[7.3).

In the early stages of exploration, the curious RL agent’s action selection
behavior resembled sampling from a uniform distribution. This is intuitive, be-
cause the state-action space is highly symmetric (every state has 4 available
state-actions and no state is further than 2 state-actions from any other state)
and because all of the state-actions were equally interesting (they terminate
deterministically in the intended goal state). As exploration progressed, the dis-
tribution of actions selected, which was initially quite noisy (figure[7.2), became
increasingly uniform (figure [7.3). Moreover, the magnitude of the value func-
tion wass proportional to the discount factor, vy, as expected. The results of the
hypercube exploration indicate that the curious RL agent operates as expected.

7.2 Planning Around Shoulder Constraints

The second experiment was in principal quite similar to the first, except the
state-action space was made more complex. Instead of the hypercube of the
previous experiment with its 16 vertices, the state space was a 4D hyper-lattice
of rank 3, with 81 vertices at 25, 50, and 75 per cent of each joint’s range of
motion. Thus, the lattice had the same volume as the hybercube, and like the
hypercube, it was centered within the robot’s range of motion. Each vertex/state
was connected to its nearest equidistant neighbors, such that at any given time,
the agent could select from between 4 and 8 state-actions, depending on where
it was in the hyper-lattice. The topology of the state-action space is shown in
figure|7.4

7.2.1 Efficiency of Exploration

The first experiment carried out in this larger state-action spaceE] was intended to
characterize the exploratory behavior of the agent employing artificial curiosity
(AC), compared to two other agents using benchmark exploration strategies

!The rank 3 hyper lattice employed in this experiment has all the same states as the one
described previously, however I naively/mistakenly connected each state to its 16 nearest neigh-
bors rather than the set of equidistant nearest neighbors, so the total number state-actions was
1296 rather than 432 shown in figure
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Figure 7.4. Rank 3 hyper-lattice for the shoulder constraints experiment. The
connectivity is shown graphically where * indicates that there exists an action,
which is available to the agent in state row and intends to bring it to state
column. Each state is connected to its nearest equidistant neighbors, and the
number thereof varies between 4, at the corners of the lattice, and 8, at the
center. The circled state-actions, shown in red, are interesting, as they do not
necessarily terminate in the intended state, indicated by the column in which
they appear.
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from the RL literature. One explores randomly (RAND), and the other always
selects the state-action least tried (LT)EL

In comparing the AC agent with the RAND agent and the LT agent, it is claer
that AC produces, by far, the best explorer (figure [7.5). In the early stages of
learning, AC and LT try only novel actions, whereas RAND tries some actions
repeatedly. Early on (before the agent has experienced about 220 state tran-
sitions), the only difference evident between AC and LT is that AC visits novel
states more aggressively. This is intuitive upon reflection, as AC values states
with many untried state-actions, and will traverse the state space to go find
them, whereas LT has no global knowledge and just chooses the locally least
tried state-action, regardless of where it leads. As learning continues, this key
difference between AC and LT also begins to manifest in terms of the coverage
of the action space. In fact, AC tries all possible state-actions in about % the time
it takes LT.

7.2.2 Action Distribution and Value Function

The next set of experiments investigated the distribution of actions selected by
the curious agent as it explored the hyper lattice shown in figure The mea-
sured result was the cumulative history of the agent’s action selection and the
value function. As in the first experiment, the workspace did not contain obsta-
cles, the state of the robot was initialized randomly, and the agent explored the
model until every state-action had been tried at least 5 times. The experiment
was repeated many times over, varying not only the discount factor, y, but also
the initialization of the state transition probabilities and intrinsic reward. Tabu-
lated results of 5 runs are presented, showing the distribution of actions selected
throughout the experiment.

The first set of results (figure shows the agent’s behavior when the state
transition probabilities and intrinsic reward are initialized as shown in table
In this case, for each action the agent believes that there is a 50% chance of
success, which causes the agent to transition to the intended goal state, and
a 50% chance of failure, which leaves the agent in the initial state. With this
initialization, when the agent tries any state-action for the first time, success
and failure produce identical intrinsic rewards. In other words, success and
failure are equally interesting.

The second set of results (figure shows the agent’s behavior subject to

2If there are multiple least-tried state-actions (for example when none have been tried), the
LT agent selects a random one from the least tried set.
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Figure 7.5. state-action space coverage during early learning: The policy based
on Artificial Curiosity (AC) explores the state-action space most efficiently,
compared to policies based on random exploration (RAND) and always select-
ing the least tried state-action (LT). Time is measured in state transitions.

a different initialization, which contains an additional observation of the goal
state, as shown in table This causes the agent to believe that actions are
60% likely to succeed and 40% likely to fail, making a failure more interesting
(in terms of intrinsic reward) than a success.

All of the experimental results, comprising different initial states, different
initializations of state transition probabilities and intrinsic rewards, and different
discount factors, share the same general features.

7.2.3 State Space Coverage

The distributions of visits over the set of states is not uniform, but it has a distinct
shape, which is repeated in each set of results. Qualitative analysis of the state
space shows that the more often visited states are those, which have more neigh-
bors, and therefore more actions which lead into them. These can be thought of
as being near the middle of the state space.
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Observation T P R=Dy,(P||T)
- {} {} -
Si {1} {2} 0

s,(a) 2,1} {2,2} 0.0589
5,(a) 2,2} {2,3} 0.0201

Table 7.1. 60-40 initialization of state transition probabilities

7.2.4 Uniformity of State-Action Selection

The distributions of tries over state-actions are fairly uniform. On the one hand
this could be expected, extrapolating from the hypercube result, however on
the other hand one might ask why the actions belonging to the more frequently
visited states are not selected more frequently. The answer is of course that
the more frequently visited states are so because they have more state-actions
learning into them; analogously, they have more state-actions leading out, and
that is why the distribution of state-action tries can remain so uniform even
when some states are visited more frequently than others.

7.2.5 Anomalies in State-Action Distribution

There are some clearly defined features in the distributions of state-action tries,
which break its uniformity. These spikes and dips, most of which clearly repeat
themselves across different trials, are discussed here.

Hard to Reach States

One of the most obvious features is the set of three apparent holes at state-
actions 122-125, 281-285, and 419-422, the state-actions available to the agent
at states 24, 51, and 78, respectively, which are the least frequently visited states.
The state-actions are not selected often, because the agent is not often in the
appropriate initial state to do so. This is most obvious in the data from the
50-50 initialization with y = 0.5 (figure[7.6|- top).

Another interesting feature is the spikes apparent at state-actions 107, 264,
and 405, which have goal states 24, 51, and 78, respectively, precisely the hard-
to-get-into states that have the high-valued state-actions. The agent is trying
fairly hard to get into these less-frequently-visited states, but it still does not
succeed very frequently compared to the rate at which it visits other states. The
reason for that is because some other state-actions, which have the same goal
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Figure 7.6. State-action history and value function for the rank-3 hyper-lattice
(7.4) with 50-50 initialization, after 2987 exploratory actions. Each color rep-
resents data from an individual randomly initialized experiment.



105 7.2 Planning Around Shoulder Constraints
©
(0]
‘é 400 T T T T T T T T
(0]
IS 0
= 0 10 20 30 40 50 60 70 80
o State
8 100 T T T T T T T T
0 =
T & M
. E o
= 0 50 100 150 200 250 300 350 400
State—Action
q:) 0-04 T T T T T T T T
=< 0.02
= 0
0 50 100 150 200 250 300 350 400
State—Action
8
:(‘z’ 400 T T T T T T T T
~ 200
()
£ 0
= 0 10 20 30 40 50 60 70 80
- State
'g 100 T T T T T T T T
o =
o 39 50
I g o
= 0 50 100 150 200 250 300 350 400
State—Action
g 0-1 T T T T T T T T
3 0.05
= 0
0 50 100 150 200 250 300 350 400
State—Action
©
(0]
:..i) 400 T T T T T T T T
S
> 200
(0]
IS 0
= 0 10 20 30 40 50 60 70 80
- State
m q:') 100 T T T T T T T T
o =
d 2 50
1 E o
é’ = 0 50 100 150 200 250 300 350 400
State—Action
q) 0-5 T T T T T T T T
2
©
= 0
0 50 100 150 200 250 300 350 400

State—Action

Figure 7.7. State-action history and value function for the rank-3 hyper-lattice
(7.4) with 60-40 initialization (table after 2651 actions. Each color repre-
sents data from an individual randomly initialized experiment.
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states, are failing. Exactly which state actions are failing is not very obvious in
the data from the 50-50 initialization, because failed actions and successful ones
are equally interesting to the agent.

The state-action groups, 122-125, 281-285, and 419-422 each constitute a
large bump in the value function. However, that value must be propagated
through adjacent state-actions, in order to pull the agent into states 24, 51, and
78, such that the agent can then take one of the high valued actions. The holes
in the distribution of state-action tries are in large part caused by the the low
discount factor, y = 0.5, which is responsible for the limited propagation of the
high value of state-actions 122-125, 281-285, and 419-422, into the surrounding
state-action space. In fact, as one looks down figure at the data associated
with y = 0.9 and y = 0.99, the holes become less and less pronounced as the
spikes on actions 107, 264, and 405 grow taller.

Failing State-Actions

Which state-actions fail to make states 24, 51, and 78 difficult for the agent to
enter? The answer can easily bee seen in the data associated with the 60-40
initialization (figure [7.7), where the agent is more interested in failed actions
than successful ones. Prominent peaks in the distribution of state-action tries
are visible for all y at state-actions 80, 230, and 378. These are the infeasible
actions, which are shown in red and circled in figure

Qualitative analysis of the experiments showed that these failures occurred
when the agent was repelled from the linear constraints, which are specified in
the XML and protect the robot from cable length infeasibilities. A close inspec-
tion of the state transition probabilities associated with these actions shows that
they do not fail deterministically. Instead they sometimes succeed and some-
times fail, and the ratio of success to failure varies from one run to the next,
which is not surprising considering the relatively small number of tries belong-
ing to each run.

The fact that static constraints do not necessarily lead to deterministic state
transitions is quite interesting. It indicates a certain lack of precise repeatability
of actions, and I speculate that this apparent stochasticity comes from some
combination of the following:

* Discretization of continuous dynamics
* Noise in the sensory-motor apparatus

* Complex robot dynamics not modeled in the planning/control system
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* Residual momentum in the system when the robot’s position is considered
to have settled

Due to this lack of repeatability, a plan first, act later approach, such as PRM
planning, will never work robustly in practice. Plans will sometimes fail at run-
time, and not necessarily in a repeatable manner. In fact the lighter and more
flexible robots get, and the more they are controlled by complex computer net-
works, the more pronounced these problems will become, which is an important
motivation for continuing to develop more robust solutions, such as the MDP
motion planning presented here.

7.2.6 Spurious Peaks

Lastly, there is one feature in the experimental data, which is not part of a trend
that spans different experiments or experimental trials. In the value function for
the 50-50 data, with y = 0.9 (figure middle), there are spurious peaks at
state-actions 9, 27, 334, and 329. These state-actions have an artificially high
value, apparently for no reason, and almost all of the (cumulative) value is from
only one trial. The spikes at 9 and 27 are generated by data from the fourth trial
(medium green), and those at 334 and 329 come from the fifth (light green).

Extensive qualitative analysis of the trials in question revealed that the af-
fected state-actions were not particularly interesting until the end of the exper-
iment, when suddenly, they became very interesting, and their value shot up
accordingly. This occurred because the actions, which had always terminated
deterministically in the expected state, suddenly brought the robot somewhere
else. These particular experiments were done using the iCub simulator, which
made it safer and easier to run batches of experiments over days and nights, and
the observed effect therefore arises from numerical instabilities within the Open
Dynamics Engine (ODE). However similar weirdness (for lack of a better word)
has also been observed in experiments with the real hardware, and the reason
for that remains somewhat mysterious.

Whatever the source of the sporadic, strange behavior of the robot and/or
simulator, the curious agent responds exactly as an adaptive control system
should. It becomes interested in the affected state-actions and tries them out
a few times in an effort to improve its model of the robot.
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7.3 Planning Around Self Collisions and Shoulder Con-
straints

Having verified that the curious agent responds sensibly to state-actions that
do not work as expected, I began to experiment with larger state-action spaces.
Here, I present two rank 4 hyper-lattices, with 256 states and 1536 state-actions.
One is smaller than the other, with state-centers at permutations of 20, 40, 60,
and 80 per cent of each joint’s range of motion (figure [7.8). The geometrically
larger hyper-lattice is stretched out to cover a larger volume of the configuration
space, with state-centers at permutations of 12.5, 37.5, 62.5, and 87.5 per cent
(figure[7.9).

A qualitative analysis of the exploration of both rank 4 hyper-lattices revealed
that many self collisions occur between the iCub’s arm and body. Thanks to the
dynamic collision avoidance provided by MoBeE, some of these collisions do not
affect the outcome of the relevant state-actions, because the robot’s trajectory
is deflected in a way that it still can reach the goal state. However other state-
actions do fail to bring the robot to the desired goal state, and some states turn
out to be unreachable, as they lie entirely in infeasible regions of configuration
space.

The rank 4 lattices have significantly more states than do the previous rank 3
ones, and therefore they take much longer to explore. For this reason, and also
because the previous experiments verified that the learning system was behaving
sensibly, I did not run batches of redundant experiments, nor did I vary the
transition probability initialization or y. Instead I used the 50-50 initialization
with y = 0.9, with the intention of learning practical MDP planners to apply in
reaching experiments. Following are some observations concerning the resulting
data.

For the smaller hyper lattice (figure[7.8), the unreachable states are 60, 124,
188, 189, and 252. These result in blocks of state-actions, which maintain high
values throughout the experiment, 334-337, 746-750, 1162-1166, 1167-1172,
and 1518-1521 respectively. Since they are never tried, their rewards never
decay. As the experiment runs, the agent explores the rank 4 hyper-lattice in a
mostly uniform manner, but spends considerable time trying to get into the hard-
to-reach (or impossible to reach) states where there are high-valued untried
actions.

Also of interest are states 61, 125, and 253, which were visited very infre-
quently compared to the other states, 2, 3, and 2 times respectively. Conse-
quently, many of the state-actions there too remain untried, despite many
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Figure 7.8. Rank 4 hyper-lattice with 256 states, centered at 20, 40, 60, and 80
per cent of each joint’s range of motion. The connectivity is shown graphically (top)
where * indicates that there exists an action, which is available to the agent in state
row and intends to bring it to state column. Each state is connected to its nearest
equidistant neighbors. The circled state-actions, shown in red, are interesting, as
they do not necessarily terminate in the intended state. Rows of state-actions, which
have been stricken through with horizontal lines, belong to unreachable states and
have therefore not been tried. The distributions of states visited and actions selected
are shown (bottom) along with the value function, after the agent has taken 14597
actions. The 50-50 initialization was used with y =0.9.
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Figure 7.9. Rank 4 hyper-lattice with 256 states, centered at 12.5, 37.5, 62.5, and
87.5 per cent of each joint’s range of motion. The connectivity is shown graphically
(top) where * indicates that there exists an action, which is available to the agent
in state row and intends to bring it to state column. Each state is connected to its
nearest equidistant neighbors. The circled state-actions, shown in red, are interesting,
as they do not necessarily terminate in the intended state. Rows of state-actions,
which have been stricken through with horizontal lines, belong to unreachable states
and have therefore not been tried. The distributions of states visited and actions
selected are shown (bottom) along with the value function, after the agent has taken
26963 actions. The 50-50 initialization was used with y = 0.9.
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hundreds of tries to enter these states. For example:

* State-action 322, which was intended to take the agent from state 57 to
state 61 and was tried 228 times, actually terminated in state 57 once, in
state 61 twice, and in state 62 225 times.

* State-action 731, which was intended to take the agent from state 121
to state 125 and was tried 244 times, actually terminated in state 121 3
times, in state 125 3 times, and in state 126 238 times.

* State-action 1506, which was intended to take the agent from state 249
to state 253 and was tried 213 times, actually terminated in state 249 2
times, in state 253 2 times, in state 254 208 times, and in state 238 once.

This is further evidence that the discretized dynamical systems within MoBeE,
which protect the robot from harm and facilitate real-time exploratory behavior,
do not produce deterministic state transitions, even though the geometric con-
straints on the robot are static. It therefore demonstrates the utility of the MDP
based approach to planning presented here.

The experiment with the geometrically larger hyper-lattice caused the robot
to get closer to its joint limits, and therefore many more arm/body self collisions
were produced. The experiment proceeded analogously to the smaller one, how-
ever there were many more unreachable states. In fact they were far too many
to discuss individually, but the data are tabulated in figure A qualitative
analysis of both experiments lead me to believe that these rank 4 hyper-lattices
would be of sufficient complexity to facilitate coarse planning for reaching ex-
periments.

7.4 Discovering the Table with a Multi-Agent RL Sys-

tem

In the second experiment, both of the iCub’s arms and its torso are controlled,
12 DOF in total. A hypercube in 12 dimensions has 4096 vertices, and a rank 3
hyper-lattice has 531,441 vertices. Clearly, uniform sampling in 12 dimensions
will not yield a feasible RL problem. Therefore, the problem must be paral-
lelized. Three curious agents are employed, controlling each arm and the torso
separately, not having access to one another’s state. The state-action spaces for
the arms are the rank 3 hyper-lattice described in section with each state
being connected to its 16 nearest neighbors. The state-action space for the 3D
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torso is defined in an analogous manner (25%, 50%, and 75% of each joint’s
range of motion), resulting in a 3D lattice with 27 vertices, which are connected
to their 2° = 8 nearest neighbors, yielding 27 - 8 = 216 state-actions.

The iCub is placed in front of a work table, and all 3 learners begin exploring
(figure [7.10). The three agents operate strictly in parallel, each having no ac-
cess to any state information from the others, however they are loosely coupled
through their effects on the robot. For example, the operational space position
of the hand (and therefore whether or not it is colliding with the table) depends
not only on the positions of the joints in the arm, but also on the positions of the
joints in the torso. Thus, we have three interacting POMDPs, each of which has
access to a different piece of the complete robot state, and the most interesting
parts of the state-action spaces are where the state of one POMDP affects some
state transition(s) of another.

When the torso is upright, each arm can reach all of the states in its state
space, but when the iCub is bent over at the waist, the shoulders are much closer
to the table, and some of the arms’ state-actions become infeasible, because the
robot’s hands hit the table. Such interactions between the learners produce state-
transition distributions, like the one shown in figure which are much richer
than those from the previous experiments. These state-actions are the most
interesting because they generate the most slowly decaying intrinsic reward of
the type shown in table The result is that the arms learn to avoid constraints
as in the first experiment, but over time, another behavior emerges. The iCub
becomes interested in the table, and begins to touch it frequently. Throughout
the learning process, it spends periods of time exploring, investigating its static
arm constraints, and touching the table, in a cyclic manner, as all the intrinsic
rewards decay over time.

In figure[7.12] the distribution of tries over the state-action space is tabulated
for each of the three learners after 18,000 state transitions, or a little more than
two full days of learning. As in the previous experiment, we see that the curious
agent prefers certain state-actions, selecting them often. Observing the behavior
of the robot during the learning process, it is clear that these frequently cho-
sen state-actions correspond to putting the arm down low, and leaning forward,
which result in the iCub’s hand interacting with the table. Furthermore, the
distribution of selected state-actions for the right arm and the left arm are very
similar. This is to be expected, since the arms are mechanically identical and
their configuration spaces have been discretized the same way. It is an encour-
aging result, which seems to indicate that the variation in the number of times
different state-actions are selected does indeed capture the extent to which those
state-actions interfere with (or are interfered with by) the other learners.
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Figure 7.10. Autonomous exploration: This composite consists of images taken
every 30 seconds or so over the first hour of the experiment described in section
7.4.1.  Although learning has just begun, we already begin to see that the
cloud of robot poses is densest (most opaque) near the table. Note that the
compositing technique as well as the wide angle lens used here create the illusion
that the hands and arms are farther from the table than they really are. In
fact, the low arm poses put the hand or the elbow within 2cm of the table.

The emergence of the table exploration behavior is quite promising with re-
spect to the goal of using MDP based motion planning to control an entire hu-
manoid intelligently. An intractable configuration space was partitioned into
several loosely coupled RL problems, and with only intrinsic rewards to guide
their exploration, the learning modules coordinated their behavior, causing the
iCub to explore the surface of the work table. Although the state spaces were
generated using a coarse uniform sampling, and the object being explored was
large and quite simple, the experiment nevertheless demonstrates that MDP mo-
tion planning with artificial curiosity can empower a humanoid robot with many
DOF to explore its environment in a structured way and build useful, reusable
models.
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Figure 7.11. State space and transition distribution for an interesting arm
action in multi-agent system: The 4D state space is labeled as follows: shoulder
flexion /extension (1,2,3), arm abduction/adduction (a,b,c), lateral /medial arm
rotation (LILIII), elbow flexion/extension (A,B,C). The red arrows show the
distribution of next states resultant of an interesting state-action, which causes
the hand to interact with the table. Each arrow represents a state transition
probability and the weight of the arrow is proportional to the magnitude of
that probability. Arrows in gray represent boring state-actions. These work as
expected, reliably taking the agent to to the intended goal state, to which they
point.
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Figure 7.12. Frequency of actions taken by three curious agents in parallel: The
most interesting actions are selected much more often than the others. They
correspond to moving the arm down and leaning the torso forward. This results
in the iCub robot being interested in the table surface. Note the similarity in
the behavior of the two arms.

7.4.1 Planning in a Dynamic Environment

There is an alternative way to view the multi-agent experiment. Because the arm
does not have access to the torso’s state, the experiment is exactly analogous to
one in which the arm is the only learner and the table is a dynamic obstacle,
moving about as the arm learns. Even from this alternative viewpoint, it is none
the less true that some actions will have different outcomes, depending on the
table configuration, and will result in state transition distributions like the one
shown in figure The key thing to observe here is that while the curious
agent is interested in interacting with the dynamic obstacles, if one were to
turn it off and exploit the planner by placing an external reward at some goal,
removing the intrinsic rewards, and recomputing the value function, then the
resulting policy/plan will try to avoid the unpredictable regions of the state-
action space, where state transition probabilities are relatively low. In other
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words, training an MDP planner in an environment with dynamic obstacles,
produces policies that plan around regions where there tend to be obstacles.



Chapter 8

Learning To Reach

In the model learning experiments of the previous chapter, the implementation
of actions was designed to facilitate motion planning. The actions simply set
an attractor in configuration space via the MoBeE framework at the Voronoi
center of a region of configuration space, which defines a state. The robot then
moved toward the attractor according to the transient response of the dynamical
system within MoBeE. The result was that the MDP planner exploited a kind of
best effort position control with reactive constraint avoidance to function as an
enhanced version of a PRM planner. However, the RL framework is in principal
capable of much more.

In addition to position control, the MoBeE framework supports force control
in both joint space and operational space, and as far as the RL implementation
is concerned, actions can contain arbitrary control code. Therefore, a curious
agent for the iCub can benefit from different action modalities, implemented
through MoBeE’s dynamical system. My work is the first such application of a
multi-modal action repertoire to RL on a humanoid robot that I am aware of.

The power of the reach actions is that they can access arbitrary real-valued
points in workspace. They therefore compliment the MDP planner, allowing
it to focus on on coarse planning, bringing the robot to a suitable pre-reach
pose. Once this is done, a reaching state-action can be be executed to close the
remaining error distance to real-valued targets in workspace. Thus the MDP
reach planner can contain relatively few states, but it can still reach an infinite
number of target points in the workspace.

Before the addition of the reach actions, the MDP planner worked as a PRM
planner does, in the sense that one would provide a goal state by putting a
reward there, and the planner would work out how best to get the reward by
computing the value function. The reach actions change the task somewhat. The
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input to the planner should now be a reach target, a real valued workspace point
in or on some geometric primitive, and the RL system should work out which is
the best reaching state-action for the job, put a reward there, and plan a path
by computing the value function. To execute the reach, the agent should first go
to a good pre-reach state by selecting appropriate ‘position move’ actions. Only
when it is in such a state, which offers favorable initial conditions to the reach
action, should it actually execute the reach]

Perhaps the simplest way to formalize the above is to view each novel reach
target as an individual RL problem. The agent must explore the state space and
try reaching actions to learn the reward matrix for each problem. It should store
a history of actions taken and rewards received for each problem it sees, such
that these reward matrices can be recalled, and the learner can become more
and more competent at solving reaching problems.

8.1 Planning Around Arbitrary Obstacles

The MDP was learned to represent the ever-present features of the robot’s con-
figuration space. Thus, it allows motion planning, which is respectful of self-
collisions, but the addition of obstaclesE] in the workspace changes the topology
of the configuration space. It introduces infeasible regions, holes, around which
the agent must plan, but the relevant information is not in the MDP.

If nothing is done to represent these topological changes to the configuration
space, the motion planning fails in a scenario like the following: The agent finds
itself at some initial state, s;, and chooses an action, q,,, according to the greedy
policy, which according to the model, has a high probability of taking the agent
to its goal state s,. However a;, tries to move the arm/hand through the target
object, which was not present when the MDP was learned, and this is obviously
not allowed by MoBeE. Thus a;, terminates (with high probability) with the
agent still in s;. At this point the agent again selects a;, according to the greedy
policy and is thus stuck in a cyclic behavior, which prevents it from effectively
climbing the gradient of the value function.

Topological changes to the configuration space resultant of workspace tar-
gets/obstacles must be represented. Once could consider building the miss-

1A particularly appealing aspect of this approach to reaching is that it explicitly avoids inverse
kinematics.

2In order to reach to a target object, the agent should not touch it, except with its palm
and/or fingertips at the very end of the motion. Therefore reach targets can actually be seen as
obstacles until the reach action completes, and an eventual grasping action takes over to actually
interact with the object.
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ing topological information directly into the MDEB which would entail learning
how each potential target/obstacle affects the state transition probabilities for
each action. However, such an approach would essentially mean that each RL
problem requires its own Markov model, and that is problematic since there
is a potentially infinite number of problem instances (reach target locations in
workspace).

Luckily, the kinematic mapping is continuous. Therefore, if some target/ob-
stacle at a workspace point, x*, affects a particular region of the configuration
space, then an infinitesimal change in x* produces an infinitesimal change in
the geometry of the affected region of configuration space. This encourages the
belief that for a novel reach target, x*, a reasonably good estimate of the set of
affected state transitions can be constructed by using the sets of state transitions
affected by reach targets near x*.

The effects of target/obstacle geometries on state transition probabilities are
not all equivalent. Sometimes being pushed laterally into an adjacent state does
not affect the agent’s ability to climb the value function. Other times it does, as
in the above example, causing the agent to cyclicly repeat a sequence of actions.
In either case, it is not clear that learning the probabilities of these occurrences
is of primary importance to reach learning. Instead, robustly moving the robot
to try the high-valued reaching state-action is paramount.

In light of this realization, one could simply use negative rewards to discour-
age the agent from making potentially problematic state transitions. This way;,
the the MDP would represent the robot itself, and all the information relevant
to the RL problems, namely which reaching state-actions are best and which
state transitions are to be avoided, would be contained within problem specific
reward matrices.

The mechanism at work in the experiments presented here is as follows:
During reach learning, the MDP planner is exploited to plan paths to sensible
pre-reach states. The state transition probabilities are not updated. Positive
rewards are associated with the reaching state-actions (these will be covered in
section [8.2)), while ‘successful’ state transitions are generally not rewarded. Thus
the agents plans to move through state space, ascending the value function, in
order to find a good state from which to initiate a reaching action. ‘Failure’
of a state transition is defined by a very simple heuristic, which is surprisingly
powerful. Any state action (s,a,s’), for which s’ does not have a higher value
than s, is considered failed, and a large negative reward (-10 in the following
experiments) is associated with (s, a) in the current problem’s reward matrix.

As the agent tries to reach different pre-reach states, each state-action devel-
ops a history, of length n, which lists the previously tried reach targets, x}, and
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the corresponding (negative) rewards gotten, r;(x;). From this information, the

expected reward can be estimated for each novel goal point, x7 ,, according to:

1+|xn_¢_1 x}| Fi

ens1 = e(x,, 1) = (8.1)

+|xn+1 X |

The estimate is computed prior to each execution of each state-action, and it
too is appended to the history of the relevant state-action, H; ,, which comprises
the tuples:

Hs,a = {{Xla el: rl}’ {X27 62, rz} e {xm en; rn}} (82)

Notice that when the history is empty, (n = 0) the estimated reward is unde-
fined:

Yo 0

e, = o =23 (8.3)
Therefore, e; must be defined explicitly: e; = 0. This optimistic initialization
means that state transitions are expected to work, receiving zero reward.
Notice also, that once a state transition has failed, the responsible state-
action always estimates a negative reward, though it is small, provided that the
current reach target, x,_,, is far from those that generated negative rewards in
the past. Therefore, the agent prefers paths that are always collision free, which
maximizes the robustness of the reach planner.

8.2 Incorporating Dynamic Reaches

In the experiments presented here, reaches are implemented in a manner very
similar to algorithm The only difference is that rather than generating a
trajectory offline, they force MoBeFE’s dynamical system in realtime.

Algorithm [5|was written for clarity and notational precision, and it computes
a piecewise linear, positional trajectory. This is done offline, using only a forward
kinematic model. At each time step, the desired Ax is used to compute the Aq,
which is applied directly to update the position of the robot.

Contrastingly, the reach action used here gets the actual position of the robot
from the hardware/simulator at each time step. The desired Ax is still used to
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compute the Aq, but Aq is interpreted as a direction and used to force MoBeE'’s
dynamical system away from the attractor, g*, of the currently active state.

These dynamic reaches seek to put a marker (section [2.3.1I)), with workspace
position x, on a target point, or ‘workspace attractor,” x*. The reaching begins
as x, is forced toward x*. When the robot stops moving, or a timeout occurs,
the reward is computed as a function of the residual error according to equation
Then the forcing stops, and MoBeE'’s attractor dynamics pulls the robot pose
back toward the center of the active state, g* in equation Finally, when the
robot pose settles (for the second time) the action terminates.

1
— *\ —
r—r(x)—1+|x_x*| (8.4)
As the agent tries to reach different goal points, each reaching state-action
develops a history, as described above for state transition actions. Also simi-
larly to state transition actions, rewards are predicted by reaching state-actions,
however the computation differs slightly from equation |8.1
For a state transition action, e; = 0, is optimistic. No news is good news
from the path planner. Reach actions, however, generate positive rewards, and
an optimistic initialization must therefore be positive. In fact e; = 1 would do
nicely as equation [8.4 shows that the actual rewards generated satisfy r € (0,1].
Even with an optimistic initialization however, the reward estimator in equa-
tion suffers from an unfortunate problem. If some novel reach target, x,,,
is very far from all the others tried, then the prediction will be low. Even if the
action does very well on a few problems, the reward predictor is always pes-
simistic with regard to far away problems. This is likely a bad thing. In fact,
since the learner is dealing with sets of many different RL problems, it would
be nice to have a predictor that is not only temporally optimistic (when it has
no experience), but also spatially optimistic (when asked about a problem very
different from those with which it has experience). Therefore, reaching state-
actions employ the following alternative predictor:

n
1
1 —T;
+l_2; T+ =it

n+1
en1 = e(x, ;)= - (8.5)

1
1 - - @
+ l_zi 1+|x* x;|

n+1" i

Notice the optimism of this expression. When the agent has no experience
at all, e; = 1. When the agent has experience very far from the goal point, x;,_,,
the sums make a small contribution and e,.; ~ 1 (though e,,; < 1). Only when

the agent has a certain amount of experience near x;_; do the sums dominate
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the expression and provide a realistic (as opposed to optimistic) reward esti-
mate. The estimated reward can be used to generate policies to reach to novel
workspace goals/targets, and the prediction error associated with the estimate
(and/or its derivatives) can be used to define an intrinsic reward. In the follow-
ing experiments, I use a very naive intrinsic reward, which is simply equivalent
to the prediction error:

Tintrinsic = e(X*) - T'(X*) (86)

Here, e; is the reward predicted by equation for some state-action reach-
ing to x}, and r; is the actual reward computed according to equation Fi-
nally, since both reward predictions and rewards themselves are written to the
history, intrinsic reward can be predicted straightforwardly, according to:

n
1
1+ Z T+lxt, , —x}| rintrinsic,i
_ " _ i=1 n i
eintrinsic,n-H - e(xn_H) - n (87)

1

1 [ S

+ l_zi 1+|xs,  —x]|

n+1"

The reach learning approach described here is incremental and suitable for
online applications. One can feed the system novel reach targets, which con-
stitute new RL problems, and it can predict rewards for each state-action to
generate a policy that reflects the best sequence of actions to take given the cur-
rently available knowledge of the task. The best thing to do can be measured
in terms of exploration (equation|8.7) or exploitation (equation 8.5), and as the
system gains experience, so improves the accuracy of its predictions.

8.3 The Reach Learning Task

A prerequisite to the learning discussed here is a model (an MDP) of the robot’s
configuration space, as described in chapter [6] and demonstrated in chapter
In these experiments, I have used the rank 3 hyper-lattice of section which
offers a reasonably wide variety of pre-reach poses, yet is significantly smaller
than the rank 4 hyper-lattice. The smaller size of the rank 3 hyper-lattice facil-
itate quicker experiments, and therefore I have been able to run more of them,
which is important due to the stochastic nature of the reach planner.

The MDP motion planner is enhanced by the addition of a dynamic reaching
action, which is based on operational space control via MoBeE and can be
called from any state in the model. The task of the reach learning agent is to
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Figure 8.1. The set of 27 reach target objects (RL problems), arranged in a
grid, which roughly covers the workspace of the iCub’s right arm, without the
aid of torso motion.

move around the state-action space and reach to workspace targets in order to
discover which initial conditions (pre-reach poses) are most suitable for which
targets.

In order to compare different exploration strategies, I have chosen a set of RL
problems comprising 27 reach targets, arranged in a grid, which roughly covers
the workspace of the iCub’s right arm, without the aid of torso motion. Each
reach target lies at the center of a sphere, 10cm in diameter, and the set of these
reach targets is shown in figure

8.3.1 The Problem-Try

To describe the reach learning task, I must first introduce the notion of problem-
tries, which are essentially runs of policies on a problem. For each reach target
(RL problem), the learner generates a policy consisting of a sequence of state
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transition actions, which generate rewards, r < 0, followed by a reach, which
generates a positive reward. Once that positive reward has been gotten by the
learner, the policy is considered complete, and the try counter for the relevant
problem is incremented. Thus, a problem-try is the execution of a policy that
culminates in a reach toward a target, which defined the RL problem at hand.

8.3.2 Exploration

With the notion of the problem-try so defined, the reach learning proceeds ac-
cording to the following steps:

1. The least tried RL problem is selected and inserted into the MoBeE model.
If multiple problems have the same number of tries, as is the case initially,
a random problem is selected from the set of equally tried problems.

2. A reward matrix is estimated for the chosen problem. State transition ac-
tions always estimate rewards according to equation Reach rewards
are estimated in three different ways in order to create different explo-
ration strategies.

* A random exploration policy estimates a reward of 1 for a random
reaching state-action and O for all the others.

* A greedy optimistic policy estimates rewards according to equation
8.5]
* Anintrinsically motivated policy estimates rewards according to equa-

tion

3. A policy is generated by value iteration and executed on the robot. If a
reach action is executed, generating a positive reward, the policy is con-
sidered to have terminated gracefully. Otherwise, if some number of ac-
tions is called (10 in the subsequent experiments) the policy is considered
to have timed out. In either case, the problem-try is considered finished.

8.3.3 Exploitation

Periodically throughout reach learning, the process is paused, and the perfor-
mance of the agent is evaluated over the entire set of reach problems. The ac-
tions taken and rewards received are written to separate history files, such that
they do not pollute the internal state of the learning machine. The evaluation
process proceeds according to the following steps:
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1. The robot is put in a randomly selected state.

* A random state, s, is selected.

* A reward matrix is initialized to O and the action, a, is rewarded,
which intends to bring the agent to s, that is for which s,(a) =s.

* A policy is generated by value iteration, which the agent follows until
a positive reward is generated, or until a timeout is exceeded (10
actions).

2. The set of reaching problems is shuffled, and each one is tried sequentially.

* A greedy, optimistic reward matrix is estimated according to equa-

tions and

* A policy is generated by value iteration, which the agent follows until
areach action is tried, generating a positive reward, or until a timeout
is exceeded (10 actions).

3. The rewards given for each problem-try are summed, and the evaluation
returns the cumulative reward gotten on the set of 27 reach problems.

8.4 Experimental Results

In this section I present the results of 15 reach learning experiments, each of
which execute 6400 problem-tries. 5 experiments employed random exploration
and ran for 207 hours, 5 were greedy and optimistic and ran for 109 hours, and
5 were intrinsically motivated and ran for 113h. All of the experiments used
the discount factor, y = 0.9, for exploration as well as the exploitation episodes.
Visualizations of selected reaches, generated by one of the reach planners pre-
sented here, are provided in appendix [A]

8.4.1 Cumulative Reward Over the Set of Reaching Problems

The performance of the learner was evaluated after 100, 200, 400, 800, 1600,
3200, and 6400 total problem-tries, and each evaluation was run 5 times, to
mitigate the effect of the robot’s initial (random) pose on the cumulative re-
ward. Thus, there were 25 total evaluations each of random exploration, greedy
optimistic exploration, and intrinsically motivated exploration, after 100, 200,
400, 800, 1600, 3200, and 6400 total problem-tries, respectively. The results
are tabulated in figure (8.2, which clearly shows that:
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Figure 8.2. Stacked bar charts show the cumulative reward gotten (y-axis)
by the reach planner at different stages of learning (x-axis) for three differ-
ent exploration strategies (section . Colors indicate results from different

(randomly initialized) evaluations.
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1. The intrinsically motivated explorer is less competent than the others ini-
tially, after 100 problem-tries.

2. However, in contrast to the other exploration strategies, it steadily im-
proves the agent’s competency over time.

3. After about 800 problem tries, intrinsically motivated exploration has pro-
duced a significantly more competent agent than random exploration or
greedy optimistic exploration has.

8.4.2 Distribution of Reaching State-Actions Tried During Ex-
ploitation Episodes

Additional insight into these exploration strategies can be gained by looking at
the distributions of reaching actions the agents selected in order to generate the
rewards, tallied in figure Comparing the three sequences of state-action dis-
tributions for the intrinsically motivated agent (figure[8.4), the greedy optimistic
one (8.5)), and the one that explores randomly (8.6), the ‘quality’ of the distribu-
tions appears to be well correlated with the amount of reward these agents were
able to accumulate during the exploitation phase of the experiments (described
in section[8.3.3)).

Comparing figure with figure (top), it is easy to see how the intrin-
sically motivated agent achieves such a smooth and consistent improvement in
its performance over time. After 100 problem tries, the distribution of reaching
actions selected is quite broad, and there is little overlap between the sets of
reaching state-actions chosen in the different experiments (represented by col-
ors). As the agent gains experience, the predictors improve, and through that
improvement, they begin to agree with one another. When the inexperienced
agent (figure - top) is made to solve the set of reaching problems, it pro-
duces broad action selection distributions, which vary from one experiment to
the next. However as it becomes more experienced (figure - middle), the
agent begins to focus on certain state-actions, and those become more consis-
tent from one experiment to the next as the predictors begin to agree with one
another. Once the agent is well experienced (figure - bottom), it has settled
on a few state-actions, its favorite reaches, which give it the best access to the
set of target geometries. The two best poses are pictured in figure (8.3

Keep in mind that the distributions of state-actions selected are the result of
greedy policies for reward matrices generated by the predictions of equation|8.5
Therefore, if in the exploitation episode after n exploratory actions, there is a
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State 509 State 489

Figure 8.3. The two pre-reach poses most frequently selected during exploita-
tion episodes, which benefitted from intrinsically motivated exploration.

multicolored peak in the state-action distribution at state-action m, it can be said
that after n exploratory problem-tries, state-action m predicted a high reward
for at least some of the RL problems in several separate randomly initialized
experiments.

Agreement between experiments is a key feature to look for in these plots.
One would not expect to see very much such agreement early in the learning
process because the reward predictors are not yet very good. When exploration
begins, with zero problem-tries, both the intrinsically motivated learner and the
greedy optimistic one predict r = 1 for every reaching state-action. Therefore,
the sequence of state-actions tried early on is left to chance, and the state of the
inexperienced predictors can vary wildly from one experiment to another.

In contrast to the intrinsically motivated agent, the greedy, optimistic agent
seems to learn almost nothing (figure . The distributions of state-actions
selected are broad, and they vary not only from one experiment to another but
also from one evaluation to another as the same agent gains experience (pick
a color and look at the distributions from top to bottom). Greediness is well
known to prevent the agent from exploring the entire state-action space. That
can obviously prevent the agent from finding the largest rewards, instead settling
for some small reward, which it can reliably get. I would have expected this to
cause the greedy, optimistic agent to converge on a bad policy, but it does not.
Instead, each evaluation on the set of reaching tasks generates a completely
different distribution of selected reaches. It would take another view of the



129 8.4 Experimental Results

learning process (figure to fully understand why this agent’s performance
on exploitation was so stochastic.

Random exploration (figure falls somewhere between the other two
strategies. It does not show the clear convergence to the preferred state-actions
that the intrinsically motivated exploration does, however it does appear to
make progress, learning to prefer the state-actions to the right of the distribu-
tion, which tend toward holding the hand high.

Initially, as with the other exploration strategies, random exploration pro-
duces broad state-action distributions, and there is no consensus between the
different experiments. As learning progresses, peaks begin to emerge (200 and
400 problem-tries), demonstrating that the predictors begin to agree with one
another across different experiments.

In contrast to the intrinsically motivated experiments however, random ex-
ploration does not smoothly increase the competency of the agent. In fact, the
cumulative reward gotten by the randomly exploring agent on the exploitation
evaluation actually decreases from 100 to 200 to 400 problem-tries. The differ-
ent experiments’ predictors may agree with one another, but they are not always
correct. It appears that random exploration does not do as good a job at training
the predictors as intrinsically motivated exploration does.
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Figure 8.4. Intrinsic Motivation - Distribution of reaching state-actions tried
during exploitation episodes. Colors indicate results from different (randomly
initialized) evaluations. In every experiment, as learning progresses, the agent
settles on the same few actions, which best solve the set of reaching problems.
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Figure 8.5. Greedy, Optimistic Exploration - Distribution of reaching state-
actions tried during exploitation episodes. Colors indicate results from different
(randomly initialized) evaluations. As learning progresses, the experiments do
not agree on which reaching actions best solve the set of problems, and the
distributions remain widely dispersed over most of the state space.
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Figure 8.6. Random Exploration - Distribution of reaching state-actions tried
during exploitation episodes. Colors indicate results from different (randomly
initialized) evaluations. As learning progresses, the experiments do not agree on
which reaching actions best solve the set of problems, although the distributions
all seem to tend toward the right hand side of the state space, equates to
initiating reaches from a high hand position, as the agent gains experience.
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8.4.3 Exploratory Problem-Try Distributions

The distributions of exploratory problem tries generated by the intrinsically mo-
tivated agent look fairly good, as one might expect since the agent does well on
the learning task. Particularly after 800 and 1600 problem-tries, the agent seems
to be sampling state-action/problem pairs fairly, throughout the space. By 3200
problem tries, the agent has tried almost all possible combinations (there are
81-27 = 2187 possible), and there are a few state actions that have become inter-
esting to the agent, particularly regarding certain problems. Although they have
been tried several times, the rewards generated by these state-action/problem
pairs remain difficult to predict. So far, this is exactly the behavior that one
would hope to see from the intrinsically motivated agent.

An important feature emerges in the exploratory problem-try distribution for
the intrinsically motivated agent after 6400 problem-tries. The bright points in
the previous distribution have been stretched into vertical lines, indicating that
the state-actions, which had been interesting when tried on certain problems,
have become interesting on all problems. This implies that the predictor may
not be able to capture local features of the reward function. In fact, this is not
very surprising since the predictor employed is so simple.

In the early stages of learning (up to about 800 problem-tries), the greedy,
optimistic agent’s sampling behavior and that of the intrinsically motivated agent
seem quite similar according to these plots. However, there is an important dif-
ference, which becomes obvious after 1600 problem-tries. The familiar vertical
lines appear. The agent has found the best state-actions for some problems, and
the predictors begin to think that these state-actions are best for all problems. As
the agent continues to act, there is little to no further exploration, and it spends
all of its time oscillating between the states, which it thinks provide the best
pre-reach poses. In fact the two red lines in the distributions for 3200 and 6400
problem tries, correspond to state-actions 489 and 509, the very state-actions
that the intrinsically motivated agent used to rack up so much cumulative re-
ward on the problem set.

Apparently, the greedy, optimistic agent found the same best state-actions as
the intrinsically motivated agent did, and it took about the same amount of time.
One can see the faint beginnings of the vertical lines in the distribution for the
greedy, optimistic agent after 800 problem-tries. At that level of experience the
exploitation episodes, which had benefitted from the intrinsically motivated
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exploration began to generate large cumulative rewards. Why then did the
greedy, optimistic agent fail to do so?

The reason for the poor performance of the greedy, optimistic agent becomes
clear, looking at its exploratory distribution after 1600 problem-tries. There are
large regions, which are dark blue. Despite the spatial optimism of equation
the rewards predicted for problems far from the ones already in the history
were not sufficiently large to overcome the discount factor, and consequently,
the agent preferred to stay in the neighborhood of the best known state-actions.
Still, the spatial optimism was not entirely insignificant. Some reward was in-
deed predicted for these unexplored regions of the state-action/problem space.
Therefore, when the exploitation episodes were initialized with the agent in a
random state, it was often quite optimistic about nearby state-actions. This led
to seemingly unrelated distributions of state-action tries, each in the neighbor-
hood of a random state, selected to initialize an exploitation episode.

The greedy, optimistic agent knew something about where the good state-
actions were, but it knew little about the bad ones, and remained optimistic
about them. Therefore it tended to exploit when I wanted it to explore and
explore when I wanted it to exploit.

Lastly, the state-action distributions for the random exploration also contain
some interesting and unexpected features. For the first 800 exploratory problem-
tries, the sampling appears to be well distributed, however thereafter appear
the familiar vertical structures in the image. This time however, they are not
lines, but bands, defined by adjacent regions of the state-action/problem space
being sampled or not. The strange thing is that the less sampled regions do
contain scattered samples, which appear to be left over from the early stages
of exploration. Why would some state-actions be tried early on and then never
again? To find the answer, I had to look to the history of negative rewards, given
for failed state transition actions.

8.4.4 Failing State Transitions

Path planning around the target objects is done by learning which state transi-
tion actions are affected by each target. Transitions that do not cause the agent
to ascend the value functions are given a large negative reward, such that they
are immediately avoided, as described in section Figure [8.8| shows the his-
tory of such rewards for the same 5 experiments with each of the 3 different
agents, which have been discussed above.

Immediately apparent is the fact that the randomly exploring agent accumu-
lates many more negative rewards than do the other two agents. Upon reflec-
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ors represent results of different experiments. The randomly exploring agent

accumulates many more negative rewards than do the other two agents.
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tion, the reason for this is simple. When a reward is placed on a random reaching
state-action, it may very well be on the other side of the state space. At the very
least, it is unlikely to be immediately adjacent to the current state. Therefore, the
randomly exploring agent makes many unnecessary trips back and forth across
the state space, executing many more state transitions per reaching action. This
is why running the 5 experiments of 6400 problem tries takes about twice as
long for the random explorer (207 hours) than it does for the other two agents
(109 hours for greedy, optimistic, and 113 hours for intrinsic motivation).

Traversing the state space many times during reach learning is not necessar-
ily a bad thing. After all it should give a more complete picture of which state
transitions are affected by which target geometries. However, in this case, due
to the limitations of my overly simplified predictor, it leads to the bands shown
in figure (bottom-right).

In the same way that the predictor is overly optimistic regarding good reacheﬂ
it is overly pessimistic for bad state transitions.

A state transition that fails and generates a negative reward, predicts a
smaller negative reward for nearby problems and a much smaller negative re-
ward for far away problems, according to equation How small these re-
wards are though, is relative. If they are large enough, and if the agent accu-
mulated enough of them, they can conspire to block off parts of the state space
entirely. This is what prevents the random explorer from accessing regions of
state-action/problem space where it had previously been.

8.5 Discussion

Perhaps the most pervasive problem with my RL system throughout the exper-
iments presented above is that the predictors proposed in equations
and are rather inadequate. In retrospect, this is quite clear. The true reward
landscape for each reaching state-action over the workspace (the space of possi-
ble RL problems) is likely to contain peaks and valleys resultant of the kinematic
mapping as well as interference between the hand/arm and the target object. If
reward predictions are made for reach targets based on other targets, which are
too far away, important features of the reward landscape may be missed, and
predictions my be very wrong indeed.

I had made an effort to address this issue, with the spatially optimistic version
of the weighted average (equation [8.5)), and preliminary experiments (not pre-

3State-actions, which predict high reward for one problem soon predict high reward for all
problems in both the intrinsically motivated and greedy, optimistic cases.



138 8.5 Discussion

sented here) showed that it did help the exploration process significantly. How-
ever the more through battery of experiments presented in this chapter showed
that:

1. The greedy, optimistic explorer was not sufficiently interested in trying
state-actions out on novel problems to train the predictors well.

2. Generally speaking, all of the predictors discussed here suffered from the
problem that once they began to predict a large reward (positive or neg-
ative alike) for a single state-action/problem pair, they quickly began to
do so for that state-action over all problems as the agent gained more and
more experience.

It is possible that the capacity of the greedy, optimistic agent to explore could
be improved by parameter tuning. If future reward were discounted less, or
if spatial optimism were stronger in the predictors, then perhaps the greedy,
optimistic agent could be made to explore more like the intrinsically motivated
one. Parameter tuning, however makes a brittle solution, which is prone to be
sensitive to things like the units used to measure joint angles and workspace
distances, as well as the particular kinematics of the robot, and the sequence of
reach targets fed into the system during learning.

From a theoretical standpoint, a much more appealing solution (than tuning
rewards and discount factors) is intrinsically motivated exploration, which alle-
viates much of the need for parameter tuning. Moreover, the experiments pre-
sented here show that it has real benefits in an applied setting. The intrinsically
motivated agent’s exploratory behavior is characterized by two very important
features:

1. It spends time learning about what it is not good at (predicting low re-
wards generated by reaches that do not work very well).

2. Its opportunism (in that way it is similar to the greedy optimistic agent)
results in a structured traversal of the state-action space.

Because of these two characteristics, intrinsically motivated exploration gen-
erates a much better set of training data for the predictors than does random
or greedy, optimistic exploration. Therefore, in the experiments presented here,
the intrinsically motivated agent is able to get the most out of a relatively bad
predictor.
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Many of the problems with the predictors themselves could perhaps be miti-
gated by tuning the weighting terms, or limiting the number of ‘neighbor’ prob-
lems who’s rewards are allowed into the sum. However my intuition is that
ultimately, the proposed system (particularly the path planning through nega-
tive reward prediction) would benefit greatly from a more powerful function
approximator for reward prediction, such as a neural network.
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Chapter 9

Conclusion

My accomplishment in this work has been to conceive of, design, implement,
and test a approach to motion synthesis, which is unprecedented in the robotics
literature in that it is simultaneously robust to changing constraints, and yet able
to re-plan motions quickly, without the need to re-initialize an expensive search.

Initially, I had set out to unify motion planning and reactive control, and
RL gave me the abstract formalism necessary to do that. I think that my effort
was quite successful in that I was able to learn planners that do not ‘break’ in
the traditional sense of ‘planner failure’. Moreover, in a variety of different ex-
perimental contexts, I was able to do that learning both in simulation and on
real hardware, over thousands of cumulative hours of autonomous operation.
After all of the development and experimentation presented in this disserta-
tion, I am convinced that RL is a promising tool for learning reusable models
in robotics. However, it remains under-utilized, perhaps because it is misunder-
stood by many engineers.

In my opinion, the crux of the problem with applying RL to manipulators/hu-
manoids is figuring out the right representations of states, actions, rewards,
value functions, and the like. This requires not only knowledge of RL but also
a deep domain-specific knowledge. I would therefore argue that the future of
developmental robotics may depend on better and/or more fruitful cooperation
between roboticists/engineers and Al researchers, who in my experience often
operate under different assumptions, have different expectations, and/or speak
different professional languages.

Real world reaching is a very hard problem, and while my approach has
not solved it for good and all, I do believe that I have made significant progress
beyond the state of the art, particularly with respect to robustness and autonomy.
Moreover, mine is the first multiple-query planner that can plan reaches both to

141



142 9.1 MoBeE

and around arbitrary workspace objects. In my opinion, it justifies the following,
important conceptual claim: The combination of a coarse, discrete, preemptive
motion planner with a gradient based reactive control strategy leads to much
more powerful and robust motion synthesis than either method could do alone.

To the best of my knowledge, this work constitutes the first application of
RL to motion planning for a real, physical manipulator with many DOE As such,
it represents only the beginning of what will be possible in years to come. In
the remainder of this, the final chapter of my dissertation, I will reflect on some
of the things I've accomplished in my time at IDSIA and where this work might
lead in years to come.

9.1 MoBeE

To prototype different robotics experiments efficiently and effectively requires
good system level engineering. This has led to the emergence of many open
source projects in robotics[Gerkey et al., |2003; Diankov and Kuffner, 2008;
Jackson, 2007} Quigley et al., 2009; [Fitzpatrick et al., 2008; [Metta et al., 2006;
van den Bergen, 2004; The Boost Graph Library; The CGAL Project]. My con-
tribution to the robotics community is MoBeE [Frank et al., 2012a,b], a solid,
reusable toolkit for prototyping behaviors on the iCub humanoid robot.

MoBeE represents the state-of-the-art in humanoid robotic control and is sim-
ilar in conception to the control system that runs DLR’s Justin [[De Santis et al.,
2007; Dietrich et al., 2011]]. In the open source spirit of the iCub itself, I con-
tributed the MoBeE source to the iCub repository last year, and I am pleased to
report that it has been adopted by other groups. In fact, MoBeE received it’s
first external citation this year at IROS [Pathak et al.,|2013]], and if emails to me
from other groups are any indication, there will be some more users in the years
to come.

Internally at IDSIA, MoBeE has facilitated research activities on topics such
as, pure (task relevant) roadmap planning [Stollenga et al., 2013], adaptive
roadmap planning [Frank et al., 2012a)b]], feature learning for RL [Kompella
et al., 2011]], learning object localization through robot interaction [Leitner
et al., 2012b], and other vision related things [Leitner et al.,|2013a,b, [2012a,e,d,c].
Additionally, we have published two videos:

* ‘Towards Intelligent Humanoids’ (http://vimeo.com/51011081)

* ‘Task Relevant Roadmaps’ (http://www.youtube.com/watch?v=N6x2elZf yg)
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The latter won ‘Best Student Video’ at the annual Al conference held by the
Association for the Advancement of Artificial Intelligence (AAAI) in 2013.

9.2 IM-CLeVeR Project

The model learning part of my RL concept [Frank et al., [2013], presented here
in chapters [6] and [7} was part of IDSIA’s final demonstrations for the EU project
Intrinsically Motivated Cumulative Learning Versatile Robots (IM-CLeVeR). I pre-
sented the robotics contribution for IDSIA at the final project review meeting for
IM-CLeVeR, which was evaluated as ‘excellent’ by the EU appointed review com-
mittee.

The essence of my work on model learning is in a novel application, namely
to motion planning in a high DOF configuration space. I observed that many
approaches to motion planning in robotics are impractical in the real world be-
cause they are based on unrealistic assumptions, or alternatively, they solve dif-
ferent sub-problems related to real-world motion planning. Then I developed
an approach to motion planning which simultaneously draws on the different
approaches in the robotics literature, by leveraging the very abstract formalism
of RL.

Most of the approaches to motion synthesis in robotics fall into two cate-
gories. So called planning algorithms, search the configuration space, which
typically takes a long time, and they assume that the workspace is static, which
is often unrealistic over the ‘long time’ that is required for the search. Contrast-
ingly, reactive control assumes that the workspace is dynamic, and can pursue
goals while avoiding obstacles, even when everything is moving. However, if
one places a large, static obstacle in the way of a reactive controller, it may
never find its way around, because it cannot search.

My research posed the simple question, ‘What if the sequence of steps com-
prising a plan were not piecewise trajectories, but reactive dynamical systems?’
This would of course create all kinds of problems for the planning algorithms
usually employed in robotics, but it turned out that planning around arbitrary
constraints using a series of dynamical systems could be formulated as an RL
problem.
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9.3 Reaching Experiments

In the wake of the IM-CLeVeR project, I have developed the RL system further,
such that it provides not only point-to-point motion planning in configuration
space, but can also exploit the motion planner to generate reaches to target
objects in the workspace. I accomplished this in part by adding an additional
action modality, namely to reach to an object in the workspace, using a naive
operational space control based on the Jacobian matrix. However, for the agent
to learn from which states it should reach to which target objects, I had to cope
with (what is at least from the perspective of a roboticist) a persistent problem
with the formulation RL.

In RL, a task is defined by a reward function. It is easy to imagine how
a reward function might be defined around, say, the agent reducing the error
distance between the robot’s palm and a target object. However things get com-
plicated when the target object is moved, which at first glance seems to change
the reward function, and thus define a new RL problem. The de facto solution to
this issue throughout most of the RL literature is build the position of the target
object into the state of the system, however this causes the dimensionality of the
state space to explode, and there are infinitely many real-valued target object
locations in the workspace.

As a roboticist, it seems quite natural to me that each motion planning query
should constitute a new RL problem, so I chose to embrace the fact, rather than
trying to build the target locations into the state representation. The problem
was then to avoid starting from scratch to learn each new policy. To that end,
I introduced a mechanism, which could predict reward functions for novel RL
problems, based on known reward functions of similar problems. That way, I
could exploit the model-based RL of my MDP motion planner to quickly gener-
ate an approximate policy that incorporates knowledge already in the system.
Moreover, the predictor created the opportunity to carry the concept of intrinsic
motivation all the way through the system, and use it not only to explore the
model, but also to explore the set of externally rewarded RL problems.

To the best of my knowledge, the notion of tackling a set of related RL prob-
lems by predicting reward functions and applying model-based RL is a novel one.
I am certain at least that I am the first to apply it to reach planning for robotics.
Although experimental evidence showed my predictors to be somewhat inade-
quate for the task at hand, the approach as a whole seems to me to be quite
promising, since the intrinsically motivated RL agent was able to achieve fairly
good performance on the set of reaching tasks, which are very, very hard.

In the robotics literature, one often hears about a task called pick and place,



145 9.4 Future Work

which essentially means getting/putting objects from/at different locations in
the workspace. It usually takes place at a work table, restricting the resting
positions of the objects involved to a 2D plane, and the space above the ta-
ble is usually assumed to be free of obstacles. In this scenario, a heuristic like
reach down from above can work very well, and good performance on the task
can be achieved by many approaches in practice. My reaching task is much,
much harder. Motions must be planned to move the hand from arbitrary poses
(there is no home pose) around the target objects at arbitrary 3D locations.

I am not aware of any approach in the robotics literature that can solve this
task robustly in practiceﬂ Still, my RL agent does a pretty good job, even for
want of a better predictor (see appendix[A). I am confident that with the addition
of a more powerful function approximator, the RL system would perform much
better on the reaching tasks.

9.4 Future Work

Throughout my work, I have tried to focus on the whole behavioral control sys-
tem more than its individual parts, in an effort to connect the dots between
related, but until now, separate threads of research, path planning, reactive con-
trol, and RL. Now that I have shown what the resulting system can do, I would
like to address some of its shortcomings in terms of its constituent parts.

9.4.1 Simultaneity of Learning

In the work present here, the MDP motion planners were learned first, then
reach planning was done atop the MDP planner. I did it this way primarily to fa-
cilitate clean experiments, through which I could validate my RL implementation
and report the resulting data clearly. However, now that I have demonstrated
both model learning and reach learning, there is no reason that they cannot be
done simultaneously.

The only ambiguity in learning the MDP and the reach predictors at the same
time arises when an action fails to help the agent climb the value function. Is it
a model update or a negative reward associated with the current RL problem?
The answer can easily be extracted from the simulated tactile feedback provided
by MoBeE. If the simulated skin (force fields) feels something, and if that some-
thing is not the robot’s own body (self-collisions cause pairs of tactile sensations,

!One could plan the motions offline, but moving the target object just a little may invalidate
the plan.
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whereas collisions with workspace objects do not), then it is a negative reward,
otherwise, it is a model update.

This simultaneous learning is appealing from the perspective of anthropo-
morphism and developmental robotics, and it would make the whole learning
process much more autonomous.

9.4.2 Parallel Behaviors

The reaching experiments, which were done using the actual iCub hardware,
required a way of locating the target object. To this end it was extremely helpful
to control the iCub’s head and eyes, as that usually produced better localization
results. I built a simple reactive control module to do that, and another one
to facilitate grasping by closing and reopening the hand. Other such reactive
modules could be developed to aid the reach planner, even if they if they operate
in parallel with it. For example, I had always had at the bottom of my ‘to do’ list
the idea to implement a reactive controller to keep the palm normal pointed at
the target object.

Another excellent application of this would be to use the torso to increase
the reach of the arm. All of the reach learning happens in the frame of reference
of the iCub’s shoulder, and the reach planner can in principle cope with moving
objects. Therefore I should be able to control the torso without disturbing the
operation of the reach planner. After learning, I essentially have a map of the
reachability of the workspace relative to the shoulder. I could build a reactive
control module, which puts a target object in a ‘good’ location relative to the
shoulder, such that the dynamic reach works better.

9.4.3 Dynamical Systems

All of the attractors I use for control in configuration space and operational
space alike are point attractors. I did this because tuning dynamical systems for
control of a complex robot like the iCub is a difficult and time consuming task,
and the simpler they are the easier it is. Also, I was unsure how the different
forcing functions would interact one another (attractors and repulsive forces)
and with the RL agent, as I could not find a precedent for a system like mine in
the literature.

Now that the integrated reach learning system is built and tested, I think it
could benefit from better actions to implement both state transitions and reach-
ing. The reactive control literature is full of all kinds of fancy vector functions,
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many of them borrowed from fluid mechanics, which can be used to force dy-
namical systems and steer robots. I would like to look into how they might apply
to my RL system.

9.4.4 Reward Predictors

As I mentioned in the previous chapter, weighted averaging makes a poor pre-
dictor, and the reach learning would benefit from something more powerful.
Perhaps a neural network or a support vector machine would do the job, but I
lack expertise in this field, and would need to research the matter to determine
what kind of function approximator would best suit my purposes.

9.4.5 State-Action Space

The MDP motion planning experiments and subsequently the reach learning
ones all employed very simple state spaces consisting of 4D hyper-lattices. This
was done primarily to facilitate debugging. The hyper-lattices meant that I could
(more or less) picture the 4D geometry of the state space, and that was very
helpful in determining whether or not agents were functioning correctly during
experiments.

The work on TRMs however, showed what can really be done with roadmap
data structures. In the future, MDP motion/reach planning could be greatly
enhanced by a more carefully selected state space, based on a roadmap. This
opens up a whole plethora of possibilities.

One could simply exploit the TRM technique to optimize the locations of
the states, prior to any learning atop the roadmap. Depending on the objective
function, this could already be a big improvement over a simple ad-hoc hyper-
lattice. However there is no reason to keep the optimization so separate from
the learning.

Through model learning, it was discovered that certain states were unreach-
able. Similarly, reach learning showed that there were certain states, from which
reach actions worked well to a wide range of target locations. Both kinds of
states mark important features in the configuration space. Perhaps the TRM ap-
proach could be more tightly integrated with the RL, working on the state space
by building and pruning to develop the most interesting regions and make the
boring ones more sparse.

The connectivity of the state space could also be reworked throughout the
learning process. Shortcuts could be constructed between frequently visited,
far away states, and seldom used or often infeasible transition actions could be
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removed. All of this dynamic maintenance of the state-action space would be
facilitated by intrinsic motivation. Additions to the state-action space would be
interesting, and they would remain so until predictable.

9.4.6 Hierarchies of agents

The experiment ‘Discovering the Table’ (section [7.4.1]) is promising with respect
to the goal of extending the multi-agent MDP motion planning to hierarchies of
agents. The interesting (most frequently selected) state-actions, constitute each
agent’s ability to interact with the others. Therefore they are exactly the actions
that should be considered by a parent agent, whose job it would be to coordinate
the different body parts. It is my strong suspicion that all state-actions, which
are not interesting to the current system, can be compressed as ‘irrelevant’ in the
eyes of such a hypothetical parent agent. However to develop the particulars of
the communication up and down the hierarchy remains a difficult challenge,
and the topic of ongoing work.



Appendix A

Visualizations of Selected Reach Policies

Figure A.1. These reaches were generated by the agent, which benefitted from
intrinsically motivated exploration, after the learning experiments presented in
section [8.4L The robot was put in a random state, a random reach target was
selected (from the set of problems on which the agent has trained), and the RL
system generated a policy. The yellow trails mark the history of hand poses
throughout the execution of the policy.
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Figure A.2. Example reaches continued.
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Figure A.3. Example reaches continued.
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Appendix B

XML Specification - Katana Model

<?xml version="1.0" encoding="UTF-8"7?>
<!DOCTYPE ZeroPositionKinematicTree>
<ZeroPositionKinematicTree version="1.0" robotName="katana400">

<bodypart name="arm">
<link z="-.2">
<box width=".12" depth=".012" height=".1" pz="-0.2"/>
<motor minPos="6.65" maxPos="352.64" home="6.65">
<joint minPos="6.65" maxPos="352.64" z="1" radius="0">
<link z="1" radius="0.04" length="0.19">
<motor minPos="-15.75" maxPos="124.25" home="124">
<joint minPos="-15.75" maxPos="124.25" y="1" radius="0.03" length="0.1">
<link x="-1" radius="0.02" length="0.19">
<motor minPos="52.7" maxPos="302.69">
<joint minPos="52.7" maxPos="302.69" y="1" radius="0.03" length="0.1">
<link x="1" radius="0.02" length="0.139">
<motor minPos="63.5" maxPos="293.5">
<joint minPos="63.5" maxPos="293.5" y="-1" radius="0.03" length="0.1">
<motor minPos="8.5" maxPos="350.5">
<joint minPos="8.5" maxPos="350.5" x="-1" radius="0">
<link x="-1" radius="0.02" length="0.185">

<!-- MANIPULATOR -->
<motor minPos="-121.58" maxPos="8.7" home="-50">
<joint minPos="90" maxPos="180" y="-1" radius="0">

<link z="-.13" radius="0">
<box width=".01" depth=".13" height=".03" px="-.01" pz=".066"/>
</link>
</joint>

<joint minPos="90" maxPos="180" y="1" radius="0">
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<link z=".13" radius="0">
<box width=".01" depth=".13" height="
</link>
</joint>
</motor>
<!-- / MANIPULATOR -->

</link>
</joint>
</motor>
</joint>
</motor>
</link>
</joint>
</motor>
</link>
</joint>
</motor>
</link>
</joint>
</motor>
</link>
</bodypart>

</ZeroPositionKinematicTree>

.03u pX="'.01"

pZ="‘.066"/>
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