
Stochastic Vehicle Routing
From Theory to Practice

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Dennis Weyland

under the supervision of

Luca Maria Gambardella and Roberto Montemanni

July 2013

Dissertation Committee

Evanthia Papadopoulou Università della Svizzera Italiana, Switzerland
Fabian Kuhn Università della Svizzera Italiana, Switzerland
Richard Hartl University of Vienna, Austria
Arne Løkketangen Molde University College, Norway

Dissertation accepted on 29 July 2013

Research Advisor Co-Advisor

Luca Maria Gambardella Roberto Montemanni

PhD Program Director

Antonio Carzaniga

i

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been sub-
mitted previously, in whole or in part, to qualify for any other academic award;
and the content of the thesis is the result of work which has been carried out
since the official commencement date of the approved research program.

Dennis Weyland
Lugano, 29 July 2013

ii

In memory of Arne Løkketangen.

iii

iv

Abstract

In this thesis we discuss practical and theoretical aspects of various stochastic
vehicle routing problems. These are combinatorial optimization problems re-
lated to the field of transportation and logistics in which input data is (partially)
represented in a stochastic way. More in detail, we focus on two-stage stochastic
vehicle routing problems and in particular on so-called a priori optimization prob-
lems. The results are divided into a theoretical part and a practical part. In fact,
the theoretical results provide a strong motivation for the development and the
usage of the methods presented in the practical part.

We begin the theoretical part with a convergence result regarding vehicle
routing problems with stochastic demands. This result can be used to give ex-
planations for some phenomena related to these problems which have been re-
ported in literature. We then continue with hardness results for stochastic vehi-
cle routing problems on substantially stochastic instances. Here we show that
several stochastic vehicle routing problems remain NP-hard even if they are re-
stricted to instances which differ significantly from non-stochastic instances. Ad-
ditionally, we give some inapproximability results for these problems restricted
to substantially stochastic instances. After that, we focus on a stochastic vehi-
cle routing problem which considers time dependencies in terms of deadlines.
We show that various computational tasks related to this problem, including the
evaluation of the objective function, are #P-hard even for Euclidean instances.
Note that this is a very strong hardness result and it immediately implies that
these computational tasks are also NP-hard. We then further investigate the
objective function of this problem. Here we demonstrate that the existing ap-
proximations for this objective function are not able to guarantee any reasonable
worst-case approximation ratio. Finally, we show that it is NP-hard to approxi-
mate the objective function of a slightly more general problem within any rea-
sonable worst-case approximation ratio.

In the practical part we develop and apply various methods for the opti-
mization of stochastic vehicle routing problems. Since the theoretical results
indicate that it is a great challenge to optimize these problems, we focus mainly

v

vi

on heuristic methods. We start with the development of strong local search al-
gorithms for one of the most extensively studied stochastic vehicle routing prob-
lems. These algorithms use an efficient approximation of the objective func-
tion based on Monte Carlo sampling. They are then further used within dif-
ferent heuristics, leading to new state-of-the-art methods for this problem. We
then transfer our results to a more intricate stochastic vehicle routing problem.
Here we first present an approximation of the objective function using the novel
method of quasi-parallel evaluation of samples. Then we again develop strong
local search algorithms and use them within more complex heuristics to obtain
new state-of-the-art methods. After that we change the scope towards a general
framework for the optimization of stochastic vehicle routing problems based on
general purpose computing on graphics processing units. Here we are exploiting
the massive computational power for parallel computations offered by modern
graphics processing units in the context of stochastic vehicle routing problems.
More in detail, we propose to use an approximation of the objective function
based on Monte Carlo sampling which can be parallelized in an extremely effi-
cient way. The effectiveness of this framework is then demonstrated in a case
study. We finish the practical part with an application of our methods to a real
world stochastic vehicle routing problem. This problem is part of a project that
has been initiated in 2010 by Caritas Suisse. It is still in an early stage, but with
our work we were able to successfully support some of the decision processes at
this stage.

Acknowledgements

At this point I want to thank everyone who helped me in the last years to make
this document possible. Shame on me for those people that I forgot to mention.

First of all, let me give credits to my parents Ernst-Albert and Maria Weyland
and to my sister Julia Weyland. You have constantly supported me for my whole
life and there are no words that could acknowledge your endless efforts in a
proper way. At the end it is you who made the largest contribution to this docu-
ment. Thank you for all your care and for affording me the education I got: at
home, at school, and at university.

Then I want to acknowledge the support and help from my research advisor
Luca Maria Gambardella, my co-advisor Roberto Montemanni and also my for-
mer supervisor Leonora Bianchi, all from the Dalle Molle Institute for Artificial
Intelligence (IDSIA), Switzerland. Your efforts and encouragements helped me
to arrive at this point.

Let me continue to thank my dissertation committee (in alphabetic order):
Richard Hartl from the University of Vienna, Austria, Fabian Kuhn from the Uni-
versità della Svizzera Italiana (USI), Switzerland, Arne Løkketangen from the
Molde University College, Norway, and Evanthia Papadopoulou from the Univer-
sità della Svizzera Italiana (USI), Switzerland.

Many thanks are given to the different PhD Program Directors at the Univer-
sità della Svizzera Italiana (USI), Switzerland, during the last years (in alpha-
betic order): Antonio Carzaniga, Fabio Crestani, and Michele Lanza.

Let me also thank all my colleagues at the Dalle Molle Institute for Artificial
Intelligence (IDSIA), Switzerland, the Scuola Universitaria Professionale della
Svizzera Italiana (SUPSI), Switzerland, and the Università della Svizzera Italiana
(USI), Switzerland. I had a great time with you guys and you provided me a very
nice working environment.

At this point I have to apologize to a very special person in my life, Michela
Papandrea. I am sorry for all the time I could not spend with you while I was
working on this document. Thanks a lot for your patience, your support and
your love.

vii

viii

Finally, I would like to give thanks to some persons that contributed to my
research in one way or another (again in alphabetic order): David Adjiashvili,
Reinhard Bürgy, Cassio de Campos, Dan Ciresan, Patrick Czaplicki, Peter Detzner,
Andrei Duma, Michael Felten, Alexander and Anna Förster, Kail Frank, Fred Glover,
Jan Hofeditz, Jan Koutnik, Juxi Leitner, Jonathan Masci, Ueli Meier, Nikos Mut-
sanas, David Pritchard, Rudolf Scharlau, Kaspar Schüpbach, Georgios Stamoulis,
Ola Svensson, Alex Tomic, Marc Uldry, Paul Wojtarowicz, and Akira Yokokawa.

Contents

Contents ix

1 Introduction 1
1.1 Classification of the Research Area 1
1.2 The Main Optimization Problems used in this Thesis 5
1.3 Outline . 15

2 Convergence Results for VRPs with Stochastic Demands 17
2.1 A Markov Chain Model . 18
2.2 Convergence Results . 20
2.3 Convergence Speed for Binomial Demand Distributions 26
2.4 Discussion . 30
2.5 Conclusions . 32

3 Hardness Results for Stochastic VRPs 33
3.1 The PTSP . 34
3.2 The VRPSD . 45
3.3 The VRPSDC . 55
3.4 Discussion and Conclusions . 57

4 Hardness Results for the PTSPD 61
4.1 Hardness Results for the PTSPD . 62
4.2 Approximations for the PTSPD Objective Function 69
4.3 Inapproximability Results for the Dependent PTSPD 76
4.4 Discussion and Conclusions . 79

5 Heuristics for the PTSP 81
5.1 Approximations for the PTSP Objective Function 82
5.2 Local Search Neighborhoods . 85
5.3 Local Search Algorithms . 87

ix

x Contents

5.4 Heuristics . 93
5.5 Discussion and Conclusions . 98

6 Heuristics for the PTSPD 99
6.1 An Approximation for the PTSPD Objective Function using MCS . 100
6.2 A Comparison between Approximations for the Objective Function 107
6.3 Local Search Algorithms for the PTSPD 113
6.4 A Random Restart Local Search Algorithm for the PTSPD 115
6.5 Discussion and Conclusions . 117

7 Stochastic Vehicle Routing Problems and GPGPU 121
7.1 Applications of GPGPU for Solving COPs with Metaheuristics . . . 122
7.2 A Metaheuristic Framework for Solving SCOPs on the GPU 122
7.3 Solution Evaluation for the PTSPD on the GPU 125
7.4 Heuristics for the PTSPD on the GPU 129
7.5 Discussion and Conclusions . 146

8 A Vehicle Routing Problem for the Collection of Exhausted Oil 147
8.1 The Project Description . 148
8.2 The Formal Model . 148
8.3 A Heuristic Approach . 152
8.4 Computational Studies . 154
8.5 Discussion and Conclusions . 157

9 Conclusions 159

A Convergence Results for VRPs with Stochastic Demands 163
A.1 Cyclic Matrices . 163
A.2 Invariances of the gcd Property . 164

Bibliography 167

Chapter 1

Introduction

In this introductory chapter we provide the basic knowledge and the background
information that are required in the remaining part of this thesis. We first put
our research work into a broader context. We start with a discussion of opti-
mization under uncertainty (Diwekar [2008]) and then we gradually confine the
classification of our work within the fields of stochastic combinatorial optimiza-
tion (Bianchi et al. [2009]), stochastic vehicle routing (Gendreau et al. [1996a]),
two-stage stochastic combinatorial optimization (Schultz et al. [2008]) and finally
a priori optimization (Bertsimas et al. [1990]). We continue with a discussion
of four stochastic vehicle routing problems that are used throughout the thesis.
We motivate these problems, we present related literature and we give formal
definitions. After that we finish the introductory part with a brief outlook on the
following chapters.

1.1 Classification of the Research Area

In the last decades optimization under uncertainty (Diwekar [2008]; Sahini-
dis [2004]; Freund [2004]; Gutjahr [2004]) has received increasing attention.
This field deals with combinatorial optimization problems that consider uncer-
tainty of the given information directly in the problem definition. In this way
real world problems can be modeled in a more realistic way. Since we are
confronted with uncertain information in many aspects of our lives, it is not
surprising that optimization under uncertainty has plenty of applications in nu-
merous areas. Among them are for example the generation of electrical power
(Dentcheva and Römisch [1998]; Nowak and Römisch [2000]), the operation
of water reservoirs (Cervellera et al. [2006]; Karamouz and Vasiliadis [1992];
Stedinger et al. [1984]), applications related to inventory management (Por-

1

2 1.1 Classification of the Research Area

teus [1990]; Hvattum et al. [2009]; You and Grossmann [2008]; Zheng [1992];
Hariga and Ben-Daya [1999]), portfolio selection (Samuelson [1969]; Inuiguchi
and Ramık [2000]; Zhou and Li [2000]; Liu [1999]), facility planning (Chen
et al. [2006]; Ermoliev and Leonardi [1982]; Louveaux and Peeters [1992];
Chang et al. [2007]), pollution control (Wong and Somes [1995]; Adar and
Griffin [1976]; Horan [2001]), stabilization of mechanisms (Wang et al. [2002,
2010]; Lu et al. [2009]), analysis of biological systems (Frank et al. [2003];
Isukapalli et al. [1998]; Wilkinson [2009]), network design problems (Hoff et al.
[2010]), scheduling problems (Almeder and Hartl [2012]) and applications in
the field of transportation and logistics (Powell and Topaloglu [2003]; Shu et al.
[2005]; Cooper and Leblanc [1977]; Barbarosoǧlu and Arda [2004]). While
on the one hand such problems based on more realistic models can be used to
obtain more meaningful results, these problems are on the other hand usually
much harder to solve than the non-stochastic counterparts. Therefore, it is of
great importance to develop efficient methods for solving such problems.

There exist different ways in which the uncertainty can be modeled. One
possibility is to provide possible values for the input data instead of only a sin-
gle value, for example in terms of intervals. It is assumed that the real data
is among these values, but no further knowledge about the likelihood of the
different values is given. This leads to the field of robust optimization (Ben-
Tal and Nemirovski [2002]; Beyer and Sendhoff [2007]; Ben-Tal et al. [2009]).
Here the task is to find solutions with a certain robustness against the uncer-
tainty. Another possibility is to use fuzzy variables to express uncertainty. Prob-
lems using such fuzzy variables for the input belong to the field of fuzzy opti-
mization (Negoita and Ralescu [1977]; Delgado et al. [1994]; Luhandjula and
Gupta [1996]). One different possibility is to represent the uncertainty using
stochastic data, for example by means of probability distributions. This field
is called stochastic combinatorial optimization (Gutjahr [2003]; Hentenryck and
Bent [2009]; Immorlica et al. [2004]; Carraway et al. [1989]; Bianchi et al.
[2009]). By using probability distributions, we somehow specify possible values
for the different input data, like also for robust optimization. Here the main dif-
ference is that we additionally assume to have knowledge about the likelihood
of these different values. In most of the cases the optimization goal is then to
optimize a certain stochastic value, for example the expected costs of a solution,
with respect to the given probability distributions.

In this thesis we focus on stochastic combinatorial optimization problems.
More in detail, we focus on stochastic vehicle routing problems (Gendreau et al.
[1996a]; Stewart and Golden [1983]; Hemmelmayr et al. [2009]; Dror and
Trudeau [1986]; Kenyon and Morton [2003]; Yang et al. [2000]; Bertsimas et al.

3 1.1 Classification of the Research Area

[1995]; Gendreau et al. [1996b]; Bertsimas [1992]; Bastian and Rinnooy Kan
[1992]; Gendreau et al. [1995]; Hvattum et al. [2006]; Secomandi [2001]; Liu
and Lai [2004]; Schilde et al. [2011]). These are stochastic combinatorial opti-
mization problems arising in the field of transportation and logistics. While in
general uncertainty can be modeled in many different ways, in the field of trans-
portation and logistics it is reasonable to model the uncertainty of several aspects
in a stochastic way. For example, probability distributions for travel times, for
customers’ demands and for the presence of customers can be obtained based
on historical data.

Many such stochastic vehicle routing problems are modeled as so called two-
stage stochastic combinatorial optimization problems (Schultz et al. [2008]; Carøe
and Tind [1998]; Klein Haneveld and van der Vlerk [1999]; Dhamdhere et al.
[2005]; Uryasev and Pardalos [2001]). Here the idea is to make an initial de-
cision at the first stage, where the stochastic information is available without
knowing the actual realizations of the stochastic events. After the realizations of
the stochastic events become known, a second stage decision is taken. This deci-
sion is based on the first stage decision and on the realizations of the stochastic
events. This framework incorporates many different settings. One extreme case
is to omit the first stage completely and to perform the actual optimization just
after the realizations of the stochastic events become known. Such an approach
is called a reoptimization approach (Secomandi and Margot [2009]; Wu et al.
[2002]; Böckenhauer et al. [2008]; Delage [2010]). Although the results of
this approach are usually of very high quality, it cannot be applied in a lot of
situations. The main problem is that this approach requires certain computa-
tional resources, in particular computational time, which is usually not available
between the realizations of the stochastic events become known and the final
decision has to be taken. The other problem is that for some problems the ac-
tual realizations of the stochastic events are gradually revealed. While it is still
possible to model such a problem as a two-stage stochastic combinatorial opti-
mization problem, a reoptimization approach cannot be applied here. The other
extreme case is to shift the main decision process to the first stage and to use
the second stage decision only as a mechanism to assure feasibility of solutions.
Since the actual optimization is performed before the realizations of the random
events are revealed, this approach is called a priori optimization (Bertsimas et al.
[1990]; Laporte et al. [1994]; Murat and Paschos [2002]; Miller-Hooks and
Mahmassani [2003]; Campbell and Thomas [2008a]). The quality of solutions
computed by an a priori optimization approach are usually worse compared to
a reoptimization approach. Nonetheless, in many settings the constraints on the
computational resources for the second stage, in particular computation time,

4 1.1 Classification of the Research Area

make an a priori optimization approach necessary. And as we will see later in
this section, there are also other reasons why such an approach might be used. In
between these two extreme cases other approaches, weighting the first stage and
the second stage in different ways, can be found (Birge and Louveaux [1988];
Barbarosoǧlu and Arda [2004]; Huang and Loucks [2000]; Cheung and Chen
[1998]).

In this work we focus on a priori optimization. Although the quality of the
final solutions is usually better using a reoptimization approach, an a priori op-
timization approach is the method of choice in many different situations. In
the context of stochastic vehicle routing there are three main reasons that are
in favor of an a priori optimization approach. The first one is that the second
stage decision requires only a minimum of computational resources. If every
day a new solution is required, the computational resources and in particular
the computational time are usually a limiting factor. The second reason is that
in some situations the realizations of the stochastic events are not revealed at
once, but only step by step. Still these problems can be modeled as a two-stage
stochastic combinatorial optimization problems, but it is not possible to apply a
reoptimization approach. An example here is the collection of waste (Nuortio
et al. [2006]; Maqsood and Huang [2003]). Although it is possible to retrieve
probability distributions for the amount of waste that has to be collected, the
real amount is only revealed during the collection process. Therefore, it is not
possible to apply a reoptimization approach, while a proper a priori optimization
approach can be used. The last reason holds especially for the class of stochastic
vehicle routing problems. In fact, in the context of stochastic vehicle routing prob-
lems it is very convenient for the customers to be served periodically at roughly
the same time. Additionally, it is convenient for the drivers of the vehicles to
follow roughly the same route every time. Obviously, a reoptimization approach
cannot guarantee these properties in general. On the other hand, many a priori
optimization approaches maintain this property in a natural way. All in all, a
priori optimization is the method of choice in many different situations. The us-
age of a priori optimization is very well motivated and has numerous real world
applications.

5 1.2 The Main Optimization Problems used in this Thesis

1.2 The Main Optimization Problems
used in this Thesis

In this section we discuss those stochastic vehicle routing problems that are
the main subjects of investigation in this thesis. Since these problems are used
throughout the thesis we decided to examine them already at this point. For all
of the four problems presented in this section we give a motivation, we discuss
related literature and we present a formal definition. To maintain consistency
we refer to these problems with the names commonly used in literature. We
begin with the well studied PROBABILISTIC TRAVELING SALESMAN PROBLEM (Jail-
let [1985]; Laporte et al. [1994]; Bianchi et al. [2002a]; Bertsimas and Howell
[1993]). This problem is a generalization of the famous TRAVELING SALESMAN

PROBLEM (Lawler et al. [1985]; Lin [1965]; Held and Karp [1970]; Johnson
and McGeoch [1997]) where in addition the presence of customers is modeled
in a stochastic way. After that we discuss the PROBABILISTIC TRAVELING SALES-
MAN PROBLEM WITH DEADLINES (Campbell and Thomas [2008b, 2009]; Weyland
et al. [2012a,b,d,c]) which is a generalization of the PROBABILISTIC TRAVELING

SALESMAN PROBLEM considering time dependencies in terms of deadlines. Then
we examine the VEHICLE ROUTING PROBLEM WITH STOCHASTIC DEMANDS (Bertsi-
mas [1992]; Bianchi et al. [2006]; Dror et al. [1993]; Bastian and Rinnooy Kan
[1992]). Here the demands of the customers are modeled in a stochastic way
and a single vehicle with an integral capacity is used to satisfy the customers’
demands. Finally, we present the VEHICLE ROUTING PROBLEM WITH STOCHASTIC

DEMANDS AND CUSTOMERS (Gendreau et al. [1995, 1996b]). This problem is a
combination of the PROBABILISTIC TRAVELING SALESMAN PROBLEM and the VEHICLE

ROUTING PROBLEM WITH STOCHASTIC DEMANDS.

1.2.1 The Probabilistic Traveling Salesman Problem

The PROBABILISTIC TRAVELING SALESMAN PROBLEM (PTSP) has been introduced in
Jaillet [1985] and is a generalization of the famous TRAVELING SALESMAN PROB-
LEM (TSP). Like for the TSP, a set of customers and distances between these
customers are given. In addition, the presence of the customers is modeled in a
stochastic way. Each customer has assigned a value which represents the proba-
bility with which this customer is present. Furthermore, the presence of different
customers are independent events. This problem belongs to the class of a priori
optimization problems. Here a solution is a tour visiting all customers exactly
once, just as for the TSP. In this context such a solution is called a priori solution

6 1.2 The Main Optimization Problems used in this Thesis

(a) a priori tour (b) one possible a posteriori
tour

(c) another possible a posteri-
ori tour

Figure 1.1. Example of how a posteriori tours are derived from a given a
priori tour for the PTSP. Part (a) shows the given a priori tour. Parts (b) and
(c) represent two particular realizations of the random events. Here the filled
circles represent the customers that require a visit. These customers are visited
in the order specified by the a priori tour, while the other customers are just
skipped.

or a priori tour. This reflects that the order of the customers is determined before
it is known which customers are present. After the presence of the customers
becomes known, a so called a posteriori tour is derived from the a posteriori
solution by skipping the customers which are not present. In this way the cus-
tomers which are present are visited in the order given by the a priori tour. This
process is illustrated in figure 1.1. Now the optimization goal is to find an a
priori tour of minimum expected length over the a posteriori tours with respect
to the given probabilities.

Most of the literature for the PTSP deals with heuristics for this problem.
To our knowledge the only work which proposes an exact method is Laporte
et al. [1994]. Here a formulation of the PTSP as an integer stochastic program
is introduced. A branch-and-cut algorithm is then used to solve instances of
up to 50 customers to optimality. This work was published almost 20 years
ago. Although the computational power has increased a lot during the last two
decades, the size of the instances which can be solved to optimality has not
been significantly improved. In Bertsimas and Howell [1993] some theoretical
properties for the PTSP are presented. Among them are improved bounds and
asymptotic relations. This work also contains a comparison between the a priori
optimization approach and the reoptimization approach. Additionally, some sim-
ple heuristics are analyzed. To tackle the PTSP many different metaheuristics
have been proposed. Different ant colony optimization approaches are presented
in Bianchi et al. [2002a,b]; Branke and Guntsch [2003]; Gutjahr [2004]; Branke

7 1.2 The Main Optimization Problems used in this Thesis

and Guntsch [2004]. A hybrid scatter search approach for the PTSP is discussed
in Liu [2007] and an improved local search strategy for this approach is given
in Liu [2008a]. A heuristic based on the aggregation of customers into clusters
is proposed in Campbell [2006]. A memetic algorithm for the PTSP is suggested
in Liu [2008b]. The generation of initial solutions is discussed in the context
of genetic algorithms in Liu [2010]. In Marinakis et al. [2008]; Marinakis and
Marinaki [2009, 2010] the authors present a greedy randomized adaptive search
procedure, a hybrid honey bees mating optimization algorithm and a hybrid
multi-swarm particle swarm optimization algorithm. Methods based on an ap-
proximation of the objective function using Monte Carlo sampling are discussed
in Balaprakash et al. [2009b,a, 2010]; Birattari et al. [2008b]. In Birattari et al.
[2008b] a local search algorithm using such an approximation of the objec-
tive function is proposed. A hybrid ant colony optimization approach based on
this local search is then presented in Balaprakash et al. [2009b]. Further im-
provements for the local search algorithm are introduced in Balaprakash et al.
[2009a] and metaheuristics based on this local search are finally presented in
Balaprakash et al. [2010].

Before we give a formal definition of this problem, we would like to present
an expression for the costs of an a priori tour. Let V be the set of n customers,
let d : V × V → R+ be a function representing the distances between these cus-
tomers and let p : V → [0,1] be a function representing the probabilities of the
customers’ presence. Given a permutation τ : 〈n〉 → V of the customers, which
represents an a priori tour, the expected costs over the a posteriori tours with
respect to the given probabilities can be computed according to Jaillet [1985] as

fptsp(τ) =
n
∑

i=1

n
∑

j=i+1

E(cost generated by the edge from τi to τ j)

+
n
∑

i=1

i−1
∑

j=1

E(cost generated by the edge from τi to τ j)

=
n
∑

i=1

n
∑

j=i+1

d(τi,τ j) p(τi) p(τ j)
j−1
∏

k=i+1

(1− p(τk))

+
n
∑

i=1

i−1
∑

j=1

d(τi,τ j) p(τi) p(τ j)
n
∏

k=i+1

(1− p(τk))
j−1
∏

k=1

(1− p(τk)).

Due to linearity of expectation the expected costs of the a posteriori tours
is the sum of the expected costs generated by the edges between any pair of

8 1.2 The Main Optimization Problems used in this Thesis

customers. The expected cost generated by the edge between two customers is
the distance between these customers multiplied by the probability that these
customers are next to each other in an a posteriori solution. Customers τi and
τ j are next to each other in an a posteriori solution if both customers are present
and if all customers between τi and τ j are not present. Since the indices of the
sums and products in the given formula range over at most n values, the costs
of an a priori solution can be trivially computed in O (n3) arithmetic operations.
Using a specific order for the summations, the computational time can be re-
duced to O (n2) (Jaillet [1985]). Using this expression for the costs of an a priori
tour, we are now able to define the PTSP formally.

Problem 1 (PROBABILISTIC TRAVELING SALESMAN PROBLEM (PTSP)). Given a set V
of size n, a function d : V × V → R+ and a function p : V → [0,1], the problem
is to compute a permutation τ? : 〈n〉 → V , such that fptsp(τ?) ≤ fptsp(τ) for any
permutation τ : 〈n〉 → V .

1.2.2 The Probabilistic Traveling Salesman Problem
with Deadlines

In Campbell and Thomas [2008b] the PROBABILISTIC TRAVELING SALESMAN PROB-
LEM WITH DEADLINES (PTSPD) has been introduced as a generalization of the
PROBABILISTIC TRAVELING SALESMAN PROBLEM where time dependencies are mod-
eled in terms of deadlines. More in detail, four different variants were pro-
posed: three recourse models and one chance constrained model. In this thesis
we will concentrate on the two very similar variants called PTSPD RECOURSE I
with fixed penalties and PTSPD RECOURSE I with proportional penalties. We will
formally introduce the PTSPD RECOURSE I with fixed penalties and refer to this
problem simply as the PROBABILISTIC TRAVELING SALESMAN PROBLEM WITH DEAD-
LINES. Nonetheless, all our results can also be generalized with similar proofs
to the other models. As for the PTSP we model the presence of the customers
in a stochastic way. Additionally, each customer has assigned a deadline and
a penalty value. We are then interested in an a priori solution with minimum
expected costs over the a posteriori solutions. For this problem the costs of the
a posteriori solutions are the travel times plus penalties for deadlines which are
violated. For each violated deadline a fixed penalty, dependent on the customer,
incurs. Note that for the variant called PTSPD RECOURSE I with proportional
penalties the penalties for missed deadlines are proportional to the delay. This
is the only difference to the model with fixed penalties.

9 1.2 The Main Optimization Problems used in this Thesis

Since the PTSPD has been introduced recently in 2008, not a lot of publi-
cations are dealing with this problem so far. In Campbell and Thomas [2008b]
the problem is introduced and all the four variants are formally defined. Some
theoretical properties are derived and some artificial special cases of the prob-
lem are discussed. The only other publication regarding the PTSPD is Campbell
and Thomas [2009]. Here approximations for the objective function are intro-
duced. These approximations are then compared with the exact evaluation of
the objective function using a simple local search algorithm. It has been shown
that the approximations can be used within the local search in combination with
the exact evaluation of the objective function to obtain solutions of competitive
quality, while the computational time could be reduced significantly. Although
the computational complexity of the PTSPD objective function was not known,
the authors stated that one of the main challenges for the PTSPD is the computa-
tionally demanding objective function. We show in this work that the objective
function is in fact hard to compute from a computational complexity point of
view. Additionally, we also show how to address this challenge and how to ob-
tain high quality solutions within a reasonable computational time.

The formal definition of the PTSPD is similar to that of the PTSP. With V
we refer to the set of n customers. As for the PTSP we have given distances
between the locations which are represented by a function d : V × V → R+ and
probabilities for the customers’ presence which are represented by a function
p : V → [0, 1]. Since we are using time dependencies, the routes require a
fixed starting point. This starting point is a special element v1 ∈ V for which
we set p(v1) = 1. In this context the starting point is usually called the depot.
The deadlines for the different customers are now modeled using a function
t : V → R+ and the penalty values for the different customers are modeled
using a function h : V → R+. To keep the mathematical formulation as simple
as possible we also define these values for the depot v1, although we will meet
the deadline at the depot in any case, since we start the tour there. An a priori
solution can now be represented by a permutation τ : 〈n〉 → V with τ1 = v1.

As we did in the previous section we will first give a mathematical expression
for the costs of an a priori tour. Let τ : 〈n〉 → V with τ1 = v1 be an a priori
solution. For all v ∈ V let Av be a random variable indicating the arrival time at
customer v. Since the travel times of the a posteriori solutions are identical to
those for the PTSP, the costs of τ can be expressed as

fptspd(τ) = fptsp(τ) +
n
∑

i=1

P(Aτi
≥ t(τi))h(τi).

10 1.2 The Main Optimization Problems used in this Thesis

The first part of the costs represents the expected travel times over the a pos-
teriori solutions. The second part represents the penalties for missed deadlines.
While the first part of the costs can be computed in polynomial time, we will
see later in this work that this is very unlikely for the second part of the costs.
With this expression for the costs of an a prior tour, we define the PTSPD in the
following way.

Problem 2 (PROBABILISTIC TRAVELING SALESMAN PROBLEM WITH DEADLINES (PT-
SPD)). Given a set V of size n with a special element v1 ∈ V , a function d :
V × V → R+, a function p : V → [0, 1], a function t : V → R+ and a function
h : V → R+, the problem is to compute a permutation τ? : 〈n〉 → V with τ?1 = v1,
such that fptspd(τ?)≤ fptspd(τ) for any permutation τ : 〈n〉 → V with τ1 = v1.

Note that in some situations we use a different identifier for the depot to
allow for easier notations. The definition of the problem changes accordingly,
but it should be clear in the different contexts.

1.2.3 The Vehicle Routing Problem with Stochastic Demands

Like the PROBABILISTIC TRAVELING SALESMAN PROBLEM, the VEHICLE ROUTING PROB-
LEM WITH STOCHASTIC DEMANDS (VRPSD, Bertsimas [1992]) can be seen as a
special case of the TRAVELING SALESMAN PROBLEM. In contrast to the TRAVELING

SALESMAN PROBLEM, we use a vehicle of a fixed capacity to deliver identical and
integral goods from a depot to the different customers. In some situations this
problem is also used to model a collection process, where the goods are col-
lected at the customers and transported to the depot. The customers’ demands
are modeled in a stochastic way and the sum of all the demands usually exceeds
the vehicle capacity by a multiple. Therefore, the vehicle has to visit the de-
pot frequently to load the goods. To serve the customers the vehicle starts fully
loaded at the depot. It then visits the customers in a certain order and delivers
the required amount of goods. If the vehicle runs out of goods while a customer
is served, it returns to the depot, refills the goods and continues at that customer.
If the vehicle runs out of goods just after a customer has been served, it returns
to the depot, refills the goods and continues at the next customer. Note that this
restocking strategy is called the basic restocking strategy. After all customers
have been processed, the vehicle returns to the depot.

Like the PTSP and the PTSPD, this problem belongs to the class of a priori
optimization problems. As for the other problems the task is to find an a priori
solution such that the expected costs of the a posteriori solutions with respect
to the given demand distributions is minimized. An a priori solution for this

11 1.2 The Main Optimization Problems used in this Thesis

(a) a priori tour

3

2

4

4 3

2

3

34
2

4

(b) one possible a posteriori
tour

2

3

3 2
3

4

4

23

2
2

(c) another possible a posteri-
ori tour

Figure 1.2. Example of how a posteriori tours are derived from a given a
priori tour for the VRPSD. The vehicle capacity in this example is 10 and
the depot is visualized by the square. Part (a) shows the given a priori tour.
Parts (b) and (c) represent two particular realizations of the random events.
Here the numbers denote the demands of the customers. The customers are
served in the order specified by the a priori solution and the vehicle is refilled
only if it gets empty. Note that if a vehicle gets empty after fully serving a
customer, it is refilled at the depot and proceeds with the next customer. This
happens between the last two customers in (b) and between the fourth and
fifth customer in (c).

problem is a tour starting at the depot and visiting all customers exactly once.
The costs for an a posteriori solution are just the total travel times. Note that
here restocking actions are influencing the travel times. Figure 1.2 illustrates the
relation between the a priori solution and the a posteriori solution in the context
of the VRPSD.

In Bertsimas [1992] closed-form expressions and algorithms for the VRPSD
objective function are given. Different interesting bounds are derived and a
comparison with the corresponding reoptimization approach is performed. Ad-
ditionally, the worst-case behavior of some simple heuristics is analyzed. Bas-
tian and Rinnooy Kan [1992] introduces modifications of existing models and
shows that under some assumptions the VRPSD exhibits the structure of the
TIME-DEPENDENT TRAVELING SALESMAN PROBLEM (Lucena [1990]; Gouveia and
Voß [1995]; Vander Wiel and Sahinidis [1996]). In Dror et al. [1993] a chance-
constrained model and three recourse models of the VRPSD are introduced. It is
shown that the chance-constrained model can be solved to optimality and that
the recourse models can be solved by optimizing multiple instances of the TSP.
Hjorring and Holt [1999] introduces new optimality cuts for the VRPSD. The
problem is then solved using the integer L-shaped method with an approxima-

12 1.2 The Main Optimization Problems used in this Thesis

tion of the restocking costs. The integer L-shaped method is also used in Laporte
et al. [2002] to solve instances of size up to 100 to optimality. In Christiansen
and Lysgaard [2007] a formulation of the VRPSD as a set partitioning problem
is introduced and promising results are reported. A local branching method
in combination with Monte Carlo sampling is used in Rei et al. [2010]. Meta-
heuristics are analyzed in Bianchi et al. [2004, 2006]; Chepuri and Homem-de
Mello [2005]. While the performance of different metaheuristics are compared
in Bianchi et al. [2004, 2006], Chepuri and Homem-de Mello [2005] deals with
an algorithm based on the cross-entropy method. Variants with multiple goods
are discussed in Mendoza et al. [2010, 2011]. A robust optimization approach
is given in Sungur et al. [2008]. Finally, the problem is discussed from a reop-
timization point of view in Novoa and Storer [2009]; Secomandi and Margot
[2009].

We now focus on the VRPSD objective function and present the formal prob-
lem definition shortly after. Let V be the set of n customers including the depot
v1 ∈ V . The distances between the customers are again modeled using a function
d : V × V → R+. Let Q ∈ N be the capacity of the vehicle. The demand distribu-
tions can be modeled by a function g : V × 〈Q〉 → R+ with

∑Q
i=1 g(v, i) = 1 for

all v ∈ V . An a prior solution can now be simply represented by a permutation
τ : 〈n〉 → V with τ1 = v1. For a given solution let Av be a random variable
describing the amount of goods in the vehicle just before customer v ∈ V is pro-
cessed and let Dv be a random variable describing the demand of customer v
according to the given demand distribution. With τn+1 = τ1 and Dτ1

= 0 the
expected costs of τ can then be expressed as

fvrpsd(τ) =
n
∑

i=1

P(Aτi
> Dτi

) d(τi,τi+1)

+
n
∑

i=1

P(Aτi
= Dτi

) (d(τi,τ1) + d(τ1,τi+1))

+
n
∑

i=1

P(Aτi
< Dτi

) (d(τi,τ1) + d(τ1,τi) + d(τi,τi+1)).

The first case corresponds to the situation in which the vehicle still contains
goods after serving a customer. In that case the vehicle continues to the next
customer. The second case corresponds to the situation in which the vehicle is
empty after serving a customer. In this situation the vehicle returns to the depot
for a restocking action and continues the tour at the next customer. The last

13 1.2 The Main Optimization Problems used in this Thesis

case corresponds to the situation in which a customer cannot be fully served. A
restocking action is necessary and the vehicle travels to the depot and back to
the customer. The customer is then fully served and the vehicle continues to the
next customer. Note that the objective function can be computed in a runtime of
O (nQ2) with a dynamic programming approach Bertsimas [1992]. That means
for a fixed value of Q, which is common for this kind of problem, and even for
a value of Q which is polynomially in the input size, the objective function can
be computed in polynomial time. Using the mathematical expression for the
objective function, we are able to state the problem as follows.

Problem 3 (VEHICLE ROUTING PROBLEM WITH STOCHASTIC DEMANDS (VRPSD)).
Given a set V of size n with a special element v1 ∈ V , a function d : V ×V → R+, a
value Q ∈ N and a function g : V × 〈Q〉 → R+ with

∑Q
i=1 g(v, i) = 1 for all v ∈ V ,

the problem is to compute a permutation τ? : 〈n〉 → V with τ?1 = v1, such that
fvrpsd(τ?)≤ fvrpsd(τ) for any permutation τ : 〈n〉 → V with τ1 = v1.

1.2.4 The Vehicle Routing Problem with Stochastic Demands
and Customers

The VEHICLE ROUTING PROBLEM WITH STOCHASTIC DEMANDS AND CUSTOMERS

(VRPSDC, Gendreau et al. [1995]) is a combination of the PROBABILISTIC TRAV-
ELING SALESMAN PROBLEM and the VEHICLE ROUTING PROBLEM WITH STOCHASTIC

DEMANDS. In addition to the formulation of the VRPSD, the presence of the cus-
tomers is modeled in a stochastic way. Depending on the context we can also see
this problem as a variant of the VEHICLE ROUTING PROBLEM WITH STOCHASTIC DE-
MANDS where we formally allow a demand of zero and customers to be skipped
in this case. The relation between the a priori solution and the a posteriori so-
lution for the VRPSDC is shown in figure 1.3. In the following we will omit an
informal description of the problem, since the combination of the PTSP and the
VRPSD is straightforward.

The literature for the VRPSDC is quite rare. A formulation of the VRPSDC as a
stochastic integer program is given in Gendreau et al. [1995]. Here the integer L-
shaped method is used to solve the problem to optimality. A tabu search heuristic
for tackling larger instances is presented in Gendreau et al. [1996b]. Finally, a
new solution approach including numerical results is given in FuCe et al. [2005].

For the formal definition of the problem we use the same notations as before.
We have given a set V of n customers including the depot v1 ∈ V . A function
d : V × V → R+ is representing the distances between the customers. The
capacity of the vehicle is Q ∈ N and the customers’ demands are modeled by

14 1.2 The Main Optimization Problems used in this Thesis

(a) a priori tour

4

2

4

3

2
4

(b) one possible a posteriori
tour

3 3

4

2

3

(c) another possible a posteri-
ori tour

Figure 1.3. Example of how a posteriori tours are derived from a given a priori
tour for the VRPSDC. The vehicle capacity in this example is 10 and the
depot is visualized by the square. Part (a) shows the given a priori tour. Parts
(b) and (c) represent two particular realizations of the random events. Here
the filled circles represent the customers that require a visit and the numbers
denote the demands of these customers. The customers that require a visit are
served in the order specified by the a priori solution and the vehicle is refilled
only if it gets empty. Note that if a vehicle gets empty after fully serving a
customer, it is refilled at the depot and proceeds with the next customer. This
happens between the third and fourth customer in (c).

a function g : V × 〈Q〉 → R+ with
∑Q

i=1 g(v, i) = 1 for all v ∈ V . Moreover,
a function p : V → [0,1] represents the probabilities for the presence of the
different customers. As usual, a solution is represented by a permutation τ :
〈n〉 → V with τ1 = v1.

Now let τ : 〈n〉 → V be such a solution. Av is a random variable describing
the amount of goods in the vehicle just before customer v ∈ V is processed and
Dv is a random variable describing the demand of customer v according to the
given demand distribution. Additionally, Nv is a random variable indicating the
next customer after v (with respect to τ) which requires to be visited. With
τn+1 = τ1 and Dτ1

= 0 the expected costs for τ are then

15 1.3 Outline

fvrpsdc(τ) =
n
∑

i=1

P(Aτi
> Dτi

)
n
∑

j=1

P(Nτi
= τ j) d(τi,τ j)

+
n
∑

i=1

P(Aτi
= Dτi

)

d(τi,τ1) +
n
∑

j=1

P(Nτi
= τ j) d(τ1,τ j)

!

+
n
∑

i=1

P(Aτi
< Dτi

)

d(τi,τ1) + d(τ1,τi) +
n
∑

j=1

P(Nτi
= τ j) d(τi,τ j)

!

.

With this expression the problem can be stated as follows.

Problem 4 (VEHICLE ROUTING PROBLEM WITH STOCHASTIC DEMANDS AND CUS-
TOMERS (VRPSDC)). Given a set V of size n with a special element v1 ∈ V , a
function d : V × V → R+, a value Q ∈ N, a function g : V × 〈Q〉 → R+ with
∑Q

i=1 g(v, i) = 1 for all v ∈ V and a function p : V → [0, 1], the problem is to
compute a permutation τ? : 〈n〉 → V with τ?1 = v1, such that fvrpsdc(τ?)≤ fvrpsdc(τ)
for any permutation τ : 〈n〉 → V τ1 = v1.

1.3 Outline

In this section we give a brief overview about the content of the subsequent
chapters and the main results that are presented in this thesis.

All in all, the thesis is partitioned into a theoretical part and a practical
part. The theoretical part consists of chapters 2 to 4. The results presented in
these chapters are mostly about the complexity of computational tasks related
to stochastic vehicle routing problems. Hardness results for the optimization
problems, that are presented in this chapter, motivate the usage of heuristics for
tackling these problems. Additionally, hardness results for the objective func-
tions of some stochastic vehicle routing problems motivate the usage of efficient
approximations for these objective functions. The practical part consists of chap-
ters 5 to 8 and is motivated and partially based on the theoretical results. In
chapters 5 and 6 we present heuristics for the PTSP and the PTSPD using ap-
proximations of the objective functions. Comprehensive computational studies
reveal the efficiency of these heuristics with respect to existing approaches. In
chapter 7 we present a metaheuristic framework for solving stochastic combina-
torial optimization problems using graphics processing units. A case study on
the PTSPD shows that major runtime improvements can be obtained in this way.

16 1.3 Outline

Finally, chapter 8 deals with a real world stochastic vehicle routing problem. We
introduce a model for this problem and present an efficient heuristic. This prob-
lem is part of a project that has been initiated in 2010 by Caritas Suisse. The
project is still in an early stage, but with our work we were able to successfully
support some of the decision processes at this stage.

Note that this thesis is based on Weyland et al. [2009a,b, 2011a,b,
2012a,b,c,d, 2013a,b]. All these publications have been written by the author
of this thesis under guidance and supervision of the corresponding co-authors.
Weyland et al. [2012b,c, 2013b] are journal articles, Weyland et al. [2011a,
2012a] are journal articles which are currently under review and Weyland et al.
[2009a,b, 2011b, 2012d, 2013a] are conference papers. At the beginning of the
different sections we always refer to the corresponding publications.

Chapter 2

Convergence Results for Vehicle
Routing Problems with Stochastic
Demands

In this chapter we give convergence results for vehicle routing problems where
demands are modeled in a stochastic way, like for example the VEHICLE ROUTING

PROBLEM WITH STOCHASTIC DEMANDS (Bertsimas [1992]) and the VEHICLE ROUT-
ING PROBLEM WITH STOCHASTIC DEMANDS AND CUSTOMERS (Gendreau et al. [1995,
1996b]). The results presented here are based on the publication Weyland et al.
[2013a]. These results are interesting for two reasons. On the one hand, they
have an immediate impact for practical applications of vehicle routing problems
with stochastic demands. We will discuss the corresponding implications at the
end of this chapter. On the other hand, they are used in our analyses of the com-
putational complexity of stochastic vehicle routing problems on substantially
stochastic instances in chapter 3.

The remainder of this chapter is organized in the following way. We will first
introduce a Markov chain model (Revuz [2005]) for vehicle routing problems
with stochastic demands, which describes the amount of goods in the vehicle
while the different customers are processed. Then we continue with the conver-
gence results itself. Here we show that under mild conditions the distribution of
the goods in the vehicle converges to the uniform distribution. This gives us a
sort of asymptotic equivalence of the VEHICLE ROUTING PROBLEM WITH STOCHAS-
TIC DEMANDS and the TRAVELING SALESMAN PROBLEM (Lin [1965]; Johnson and
McGeoch [1997]) as well as the VEHICLE ROUTING PROBLEM WITH STOCHASTIC

DEMANDS AND CUSTOMERS and the PROBABILISTIC TRAVELING SALESMAN PROBLEM

(Jaillet [1985]). For practical applications it is very interesting to identify the

17

18 2.1 A Markov Chain Model

speed with which the distribution of goods in the vehicle converges to the uni-
form distribution. We investigate this convergence speed for binomial demand
distributions. After that we finish this chapter with an extensive discussion of
our results.

2.1 A Markov Chain Model

In this section we introduce a Markov chain model (Revuz [2005]) that describes
the amount of goods in the vehicle, which is fundamental for the remaining part
of this chapter, and in particular for the proofs in the following two sections.
After that we prove some properties for this model using the basic restocking
strategy. For more details about Markov chains we refer to Revuz [2005].

Given the amount of goods in the vehicle before processing a certain cus-
tomer, the amount of goods after the customer has been processed depends only
on the demand distribution of this customer (and in the case of the VRPSDC
additionally on the probability that this customer requires a visit) and is inde-
pendent of the demands of the other customers. Thus it is clear that we can
model the amount of goods in the vehicle for a given route with a time-discrete
Markov chain, starting with a distribution representing a full vehicle, and using
transition matrices that are based on the demand distributions of the customers
and on the restocking strategy.

The different states represent the different amounts of goods in the vehicle.
If the amount of goods is bounded from above by the vehicle capacity Q, and if
we observe the amount of goods after a possible restocking action has been per-
formed, it is sufficient to have different states for the amount levels 1,2, . . . ,Q,
because a minimum requirement for a restocking strategy should be to perform
a restocking action, if the vehicle is empty after processing a customer. For being
able to use modular arithmetic in a straightforward way, we use in the following
1,2, . . . ,Q− 1 for amount levels of 1,2, . . . ,Q− 1 and 0 for an amount of Q.

That means the distribution of the amount of goods can be represented by a
column vector of size Q, whose elements are all non-negative and sum up to 1.
Such a vector is called stochastic (Latouche and Ramaswami [1987]). Further-
more, the transition matrices are of size Q×Q and depend only on the demand
distributions of the customers (and in the case of the VRPSDC additionally on
the probability that the customer requires a visit), and on the restocking strategy
that is used. The entry in row i and column j represents the probability that we
reach state i from state j in one step. In other words, this is the probability that
we have an amount of i goods after processing the customer and performing a

19 2.1 A Markov Chain Model

possible restocking action, if the amount has been j goods before processing the
customer. By definition the transition matrices are stochastic in its columns, i.e.
that the elements in each column sum up to 1. Note that the transition matrices
for the VRPSDC are convex combinations of the corresponding transition ma-
trices for the VRPSD and the identity matrix, since with a certain probability a
customer is skipped and the amount of goods does not change, and otherwise
the customer is served exactly as in the VRPSD.

In this chapter we focus on the basic restocking strategy which has been used
in the formal definitions of the VRPSD and the VRPSDC in chapter 1. This means
that we perform a restocking action if we run out of goods while processing a
customer, or if the vehicle is empty after processing a customer. Therefore, the
probability to reach state i from state j is the same as the probability to reach
state (i + k) mod Q from state (j + k) mod Q, ∀k ∈ {1,2, . . . ,Q − 1}. These
observations lead to two additional properties for the transition matrices. Two
successive rows only differ in a cyclic shift of one position, in particular for
each row the following row is shifted cyclic one position to the right. The other
property, which follows directly from this one for square matrices, is that the
transition matrices are also stochastic in their rows, i.e. that the elements in
each row sum up to 1.

Before we finish this section, we give a formal overview about the properties
mentioned above, using the following definitions. For the vectors and matrices
we use indices starting at 0 to allow the use of modular arithmetic in a straight-
forward way.

Definition 1 (Column stochastic matrix). A m × n matrix A = (ai j) is called
stochastic in its columns, if the following two properties hold:

1. ∀i ∈ {0, 1, . . . , m− 1}, ∀ j ∈ {0, 1, . . . , n− 1} : ai j ≥ 0

2. ∀ j ∈ {0, 1, . . . , n− 1} :
m−1
∑

i=0
ai j = 1.

Definition 2 (Row stochastic matrix). A m×n matrix A= (ai j) is called stochastic
in its rows, if the transposed matrix AT is stochastic in its columns.

Definition 3 (Doubly stochastic matrix). A matrix A is called doubly stochastic, if
it is stochastic in its columns and stochastic in its rows.

Definition 4 (Cyclic matrix). A m × m matrix A = (ai j) is called cyclic, if the
following holds:

∀i ∈ {0, 1, . . . , m− 1}, ∀ j ∈ {0, 1, . . . , m− 1} : ai j = a(i+1) mod m,(j+1) mod m.

20 2.2 Convergence Results

Now we are able to give a formal summary of the properties of the transition
matrices in the following lemma.

Lemma 1. Using the Markov chain model introduced at the beginning of this sec-
tion for the VRPSD and the VRPSDC with the basic restocking strategy, the transi-
tion matrices are square matrices, doubly stochastic and cyclic.

Another important fact is that column stochastic matrices, row stochastic
matrices, doubly stochastic matrices and cyclic matrices are all closed under
multiplication. A proof for the last statement is given in appendix A, the other
statements are well known results (Latouche and Ramaswami [1987]) and easy
to verify.

2.2 Convergence Results

We show in this section that there is under some mild conditions an asymptotic
equivalence between the VEHICLE ROUTING PROBLEM WITH STOCHASTIC DEMANDS

and the TRAVELING SALESMAN PROBLEM, as well as between the VEHICLE ROUT-
ING PROBLEM WITH STOCHASTIC DEMANDS AND CUSTOMERS and the PROBABILISTIC

TRAVELING SALESMAN PROBLEM.
One might think that it is important for the VRPSD and the VRPSDC to opti-

mize the (expected) length of the route as well as to optimize the route in a way,
such that those customers which cause a restocking action with high probability,
are located close to the depot. We show that the distribution of the amount of
goods in the vehicle converges to the uniform distribution under certain condi-
tions. In this case the probability that restocking is required at a certain customer
depends mainly on the distribution of its demand and only slightly on the par-
ticular shape of the tour. In other words, if the amount of goods in the vehicle
is close to the uniform distribution, it is sufficient to optimize the (expected)
length of the tour.

Let us assume for the moment that the vehicle is loaded in a probabilistic way,
such that the amount of goods is initially distributed according to the uniform
distribution. Then the VRPSD and the TSP, and the VRPSDC and the PTSP are
equivalent, if the basic restocking strategy is used. These equivalences can be
verified easily using the Markov chain model introduced in the previous section.
Together with the convergence of the amount of goods in the vehicle towards
the uniform distribution, this observation is the basic idea behind our analyses.

21 2.2 Convergence Results

We now start with a more general mathematical result. After that we show
under which conditions this result can be used to derive concrete results for the
VRPSD and for the VRPSDC.

Theorem 1. Let (An)n∈N be a series of doubly stochastic m× m matrices, whose

entries are all bounded from below by a constant L > 0. Then lim
n→∞

n
∏

i=1
Ai =

1
m

J,

where J is a matrix of ones.

Proof. This theorem is trivially true for m = 1, so we can assume m > 1 for
the following proof. Since the product of doubly stochastic matrices is a dou-
bly stochastic matrix and for any doubly stochastic matrix A = (ai j) we have
m−1
∑

j=0
ai j = 1 ∀i ∈ {0,1, . . . , m− 1} and ai j ≥ 0 ∀i, j ∈ {0,1, . . . , m− 1}, it is suffi-

cient to show that the entries in each row converge to the same value. We prove
this by showing that the difference between the smallest and the largest entry in
each row converges to 0.

We show by induction that the difference between the smallest and the

largest entry in each row of
n
∏

i=1
Ai is bounded from above by (1 − 2L)n. It is

clear that this expression is always non-negative, because L is trivially bounded
from above by 1/2.

For n = 1 this is clearly the case. The smallest entry is bounded from below
by L and since we have doubly stochastic matrices, the largest entry is bounded
from above by 1− L. The difference of the the largest entry and the smallest
entry can be at most (1−L)−L = 1−2L = (1−2L)1. Now suppose the statement

holds for n ∈ N. Here we use A(n) =
n
∏

i=1
Ai as an abbreviation for the product of

the first n matrices. Let i ∈ {0, 1, . . . , m− 1} be a fixed row index and let li(n)
and ui(n) be the smallest, respectively the largest entry in the i-th row of A(n).
The entries in the i-th row of A(n+1) are convex combinations of the entries in
the i-th row of A(n), where the corresponding coefficients of each of these convex
combinations is a column of An+1. Since the entries of An+1 are bounded from
below by L we have

ui(n+ 1)≤ (1− L)ui(n) + Lli(n) = ui(n)− L(ui(n)− li(n)) and

li(n+ 1)≥ (1− L)li(n) + Lui(n) = li(n) + L(ui(n)− li(n)).

The difference of these values is

22 2.2 Convergence Results

ui(n+ 1)− li(n+ 1) ≤ ui(n)− L(ui(n)− li(n))− li(n)− L(ui(n)− li(n))

= ui(n)− li(n)− 2L(ui(n)− li(n))

= (1− 2L)(ui(n)− li(n))

≤ (1− 2L)n+1.

In the last step we used the induction hypothesis and since lim
n→∞
(1−2L)n = 0

we finished the proof.

In the previous section we have seen that we can model the distribution of
the amount of goods in the vehicle with a Markov chain. It is possible to identify
the matrices Ai of theorem 1 with transition matrices of that Markov chain. Using
the basic restocking strategy these transition matrices are doubly stochastic, but
unfortunately it is a very strong assumption that their entries are all bounded
from below by a constant L > 0. In this case each customer has a strictly positive
probability for each possible demand and this assumption is obviously too strong
for practical applications. In the remaining part of this section we show that we
can use theorem 1 also under more moderate conditions.

The main idea here is to partition the matrices into blocks of consecutive
matrices, such that the product of all the matrices within a block fulfills the con-
ditions of theorem 1. Due to the associative law the product of all the matrices
can be obtained by first calculating the products of the matrices within each
block and then multiplying the resulting products. In this way we are able to
state theorem 1 using much weaker assumptions on the matrices used. These
weaker assumptions are comprised in the following definition and as we will see
later, it is not even required that these assumptions hold for all of the matrices.

Definition 5 (greatest common divisor property, gcd property). A cyclic m×m
matrix A = (ai j) with only non-negative entries and with strictly positive entries
ai10, ai20, . . . , ail0, i1 < i2 < . . . < il in the first column fulfills the greatest common
divisor property (short: gcd property), if gcd(il − i1, il − i2, . . . , il − il−1, m) = 1.

Instead of using the differences relative to il we could have also used differ-
ences relative to any other of the elements ik, k ∈ {1, 2, . . . , l}. The definition is
also invariant with respect to the chosen column. We prove both invariances in
appendix A.

At first glance this definition looks quite technical, but it is usually fulfilled
by a lot of the transition matrices for practical instances of the VRPSD and the

23 2.2 Convergence Results

VRPSDC. In particular, the greatest common divisor property is fulfilled for a
transition matrix, if the corresponding customer has two different demands of
amount k and k+1 with strictly positive probabilities. For the VRPSDC we have
always a strictly positive entry at the first position in the first column (unless the
probability for visiting this customer is exactly 1) and therefore the condition is
even slightly weaker in this case. We discuss this issue more in detail in section
2.4. Here we continue with deriving a convergence result as in theorem 1 under
more mild assumptions comprised by the gcd property.

We start with proving the following important lemma using the definition of
the gcd property and some modular arithmetic.

Lemma 2. Let A be a m× m matrix with only non-negative entries and with ki

strictly positive entries in row i, i ∈ {0,1, . . . , m− 1}, and let B be a cyclic m×m
matrix with only non-negative entries fulfilling the greatest common divisor prop-
erty. Then the product C = AB contains only non-negative entries and has at least
min{ki + 1, m} strictly positive entries in row i, for each i ∈ {0, 1, . . . , m− 1}.

Proof. The elements of the set I = {i1, i2, . . . , in} ⊂ Z/mZ, n ∈ N, with
gcd(i1, i2, . . . , in, m) = 1 can be used to generate any element of Z/mZ by a
linear combination of i1, i2, . . . , in. This is a well known algebraic result, see e.g.
Baldoni et al. [2008].

For our proof we need the following useful property. Given a set S ⊂ Z/mZ
with |S|< |Z/mZ|, and I as above, then for the set S′ = {s+ i | s ∈ S, i ∈ I∪{0}}
the inequality |S| < |S′| holds. Otherwise we cannot generate all elements of
Z/mZ by linear combinations of i1, i2, . . . , in.

Let i ∈ {0, 1, . . . , m− 1} be a fixed row index with ki < m, let S = { j | ai j >

0} ⊂ Z/mZ and let S′ = { j | ci j > 0} ⊂ Z/mZ. Furthermore let b j10, b j20, . . . , b jl0,
j1 < j2 < . . . < jl be the strictly positive entries in the first column of B. Due to
the properties of our matrices, we have
�

�S′
�

� =
�

�{(s+ b) mod m | s ∈ S, b =− ji, i ∈ {1, 2, . . . , l}}
�

�

=
�

�{(s− jl + b) mod m | s ∈ S, b = jl − ji, i ∈ {1, 2, . . . , l}}
�

�

=
�

�{(s− jl + b) mod m | s ∈ S, b ∈ { jl − j1, jl − j2, . . . , jl − jl−1} ∪ {0}}
�

�

=
�

�{(s+ b) mod m | s ∈ S, b ∈ { jl − j1, jl − j2, . . . , jl − jl−1} ∪ {0}}
�

�

> |S| ,

which concludes the proof for all rows with less than m strictly positive entries.
Now let i ∈ {0,1, . . . , m− 1} be a fixed row index with ki = m. Since each

column of B has at least 1 strictly positive entry, the number of strictly positive

24 2.2 Convergence Results

entries in the i-th row of C = AB is m which concludes the proof for rows with
exactly m strictly positive entries.

Using this lemma we can obtain a sufficient condition for the case that the
product of a number of transition matrices contains only strictly positive entries.

Corollary 1. Let A1, A2, . . . , Ak be cyclic m × m matrices with only non-negative
entries and with at least 1 strictly positive entry in each row, and let m−1 of these

matrices fulfill the greatest common divisor property. Then B =
k
∏

i=1
Ai contains only

strictly positive entries.

Proof. Since the matrices are cyclic and have at least 1 strictly positive entry in
each column the number of strictly positive entries in the series of products is
never decreasing in any of the rows. Due to lemma 2 a multiplication with one
of the matrices, which fulfills the gcd property, increases the number of strictly
positive entries in each row by at least 1 (if it has not been maximum already).
Putting these observations together the corollary follows easily.

To generalize the convergence result of theorem 1 we need the following
lemma.

Lemma 3. Let A= (ai j) be a m×m matrix containing only strictly positive entries,
with a smallest entry l and a largest entry u and let B be a m×m column stochastic
matrix. Then u′−l ′ ≤ u−l, where u′ and l ′ are the largest, respectively the smallest,
strictly positive entries in AB.

Proof. The elements of AB are convex combinations of elements of A and there-
fore the elements of AB are bounded from below by l and from above by u.

Now we are able to generalize the convergence result of theorem 1.

Theorem 2. Let (An)n∈N be a series of doubly stochastic, cyclic m × m matrices,
whose entries are all bounded from below by a constant L > 0. Let the great-
est common divisor property be fulfilled by infinitely many of these matrices and
let k1 < k2 < . . . be the indices of the matrices that fulfill the gcd property. If

max{ki+1 − ki | i ∈ N} ≤ k for a constant k ≥ k1 then lim
n→∞

n
∏

i=1
Ai =

1
m

J, where J

is a matrix of ones.

Proof. To proof this theorem we have to combine the previous results. Here
we show like in theorem 1 that the differences between the largest and the

25 2.2 Convergence Results

smallest element in each row of the successive products
n
∏

i=1
Ai are monotonically

decreasing and converge to 0.
It is possible to partition the matrices into blocks of at most k(m− 1) con-

secutive matrices, such that the matrices in each block fulfill the conditions of
corollary 1. Let 1 = j1 < j2 < . . . be the indices at which the first, second, . . .

block begins. Then we can bound the smallest entry of the products
jl+1−1
∏

i= jl

Ai by

L′ = Lk(m−1).
We can now create a new series (Bn)n∈N, with

Bn :=
jn+1−1
∏

i= jn

Ai.

Due to corollary 1 these matrices fulfill the conditions of theorem 1 and thus we

have lim
n→∞

n
∏

i=1
Bi =

1
m

J . Analogue to the proof of theorem 1 we can now bound

the difference between the largest and the smallest element in each row of the

product
n
∏

i=1
Bi =

jn+1−1
∏

i=1
Ai from above by (1− 2L′)n. With lemma 3 we can show

that the difference between the largest and the smallest element of
j
∏

i=1
Ai can

also be bounded from above by (1− 2L′)n, if jn+1 ≤ j < jn+2− 1. This concludes
the proof.

Let us quickly connect these results with the original stochastic vehicle rout-
ing problems. What we have seen on a more abstract level is the following. If
we impose some mild conditions on the transition matrices of our Markov chain
model, the amount of goods in the vehicle after a customer has been processed
is approaching the uniform distribution as we continue on the tour and more
and more customers are visited. For the basic restocking strategy which we are
using here, the transition matrices are characterized only by the customers’ de-
mands (and in the case of the VRPSDC additionally by the probability that the
customers require to be visited). Therefore, the mild conditions on the transition
matrices are transferred to mild conditions on the customers’ demands. At the
very beginning of this chapter we have already observed that it is sufficient to
optimize the (expected) length of the route if the amount of goods in the vehicle
is distributed according to the uniform distribution. Together with our conver-
gence result, this shows that it is sufficient to focus on optimizing the (expected)
length of the route in many situations. In the next section we will examine the

26 2.3 Convergence Speed for Binomial Demand Distributions

convergence speed for a typical demand distribution and in section 2.4 we will
discuss the impacts of the results for the VRPSD and the VRPSDC more in detail.

2.3 Convergence Speed for Binomial
Demand Distributions

In this section we want to examine the convergence speed in the case where
the demands are distributed according to binomial distributions with the same
underlying probability of p (Gordon [1997]). For many practical applications bi-
nomial demand distributions are appropriate to model certain fluctuations of the
demand around a specific value and therefore a reasonable assumption. Math-
ematically, the sum of multiple binomial distributions with the same probability
parameter p can be expressed as a single binomial distribution, which itself can
be decomposed into a sum of identical Bernoulli distributions (Grimmett and
Welsh [1986]; Gordon [1997]). The Bernoulli distribution is used to model a
stochastic experiment with two different outcomes, success with probability p
and failure with probability q = 1− p. Due to its simplicity it is convenient to
perform the analyses using the Bernoulli distribution and to reason about the
original binomial distributions afterwards. In fact, we can bound the conver-
gence speed with respect to the number of Bernoulli trials and therefore also
with respect to the expected demand and the expected number of restockings.
In this way we provide results, which are useful for practical applications and
for further theoretical investigations.

We model the stochastic process using the Markov chain model introduced in
section 2.1 and using multiple identical Bernoulli distributions. In the following
the success probability, which represents a demand of 1, is denoted by p and the
failure probability, which represents a demand of 0, is denoted by q = 1 − p.
Omitting entries representing a 0, the transition matrix T associated with one
Bernoulli distribution can then be written in the following way.

T =

















q p
q p

.
q p

p q

















.

Now the idea is to focus on powers of the transition matrix T . For that pur-
pose we want to use the eigendecomposition (Golub and Van Loan [1996]; Horn

27 2.3 Convergence Speed for Binomial Demand Distributions

and Johnson [1990]) of T into a product T = V DV H of complex matrices V and
D, where V H = V−1 and D is a diagonal matrix. Then we can calculate the prod-
uct T n easily as T n =

�

V DV H�n = V DnV H . For the eigendecomposition of T , we
have to calculate its complex eigenvalues and corresponding eigenvectors. To
get the complex eigenvalues we have to calculate the roots of the characteristic
polynomial. If T is a m×m matrix, we can write the characteristic polynomial
in the following form.

det(λI − T) = det

















λ− q −p
λ− q −p

.
λ− q −p

−p λ− q

















= (λ− q)det













λ− q −p
.

λ− q −p
λ− q













+ (−1)m+1(−p)det













−p
λ− q −p

.
λ− q −p













= (λ− q)m+ (−1)m+1(−p)m

= (λ− q)m− pm

Using this form we can derive the following term for the different eigenval-
ues. Note that mp1 represents all m complex roots of 1.

(λ− q)m− pm = 0
⇔ (λ− q)m = pm

⇔ λ− q = p mp1
⇔ λ = q+ p mp1

So the eigenvalues are distributed around a circle with center q and radius
p. Furthermore 1 is always an eigenvalue with a corresponding eigenvector

28 2.3 Convergence Speed for Binomial Demand Distributions

(1,1, . . . , 1)t . If we denote the different eigenvalues with λ1,λ2, . . . ,λm and the
corresponding normalized eigenvectors with v1, v2, . . . , vm, we can write V and
D as

V =
�

v1 v2 . . . vm

�

,

D =













λ1

λ2
. . .

λm













.

Now we can rewrite the product T n as

T n = V DnV H

=
m
∑

i=1

�

vi v
H
i λ

n
i

�

.

With λ1 = 1 and the corresponding normalized eigenvector v1 =
�

m−1/2, m−1/2, . . . , m−1/2
�

we have

T n =
m
∑

i=1

�

vi v
H
i λ

n
i

�

=
1

m
J +

m
∑

i=2

�

vi v
H
i λ

n
i

�

,

where J is a matrix of ones. That means we are now able to bound the
convergence speed using the error term

∑m
i=2

�

vi v
H
i λ

n
i

�

.

If we denote the entry in row j and column k of V n by V n
jk and the j-th entry

of vi by (vi) j, we can bound the error for each j, k ∈ {1, 2, . . . , m} by

29 2.3 Convergence Speed for Binomial Demand Distributions

�

�

�1/m− V n
jk

�

�

� =

�

�

�

�

�

1/m−
m
∑

i=1

�

vi v
H
i λ

n
i

�

jk

�

�

�

�

�

=

�

�

�

�

�

m
∑

i=2

�

vi v
H
i λ

n
i

�

jk

�

�

�

�

�

=

�

�

�

�

�

m
∑

i=2

((vi) j(vi)kλ
n
i)

�

�

�

�

�

≤
m
∑

i=2

�

�

�(vi) j(vi)kλ
n
i

�

�

�

≤
m
∑

i=2

�

�λi

�

�

n

≤ (m− 1)
�

�λ2

�

�

n
,

where λ2 is the second largest eigenvalue regarding the standard norm in C.
We can calculate the norms of the eigenvalues in the following way. Here k is
representing the different eigenvalues with values k ∈ {0,1, . . . , m− 1}.

|λ|2 =
�

�q+ p · e(ik2π/m)
�

�

2

=
�

�q+ p cos(k2π/m) + p sin(k2π/m)i
�

�

2

= (q+ p cos(k2π/m))2+ (p sin(k2π/m))2

= q2+ p2 cos(k2π/m)2+ 2pq cos(k2π/m) + p2 sin(k2π/m)2

= p2+ q2+ 2pq cos(k2π/m)

= (p+ q)2− 2pq(1− cos(k2π/m))

= 1− 2pq(1− cos(k2π/m))

The eigenvalue with the largest norm is λ1 = 1, the eigenvalues with the
second largest norm are q+ p · e(i2π/m) and q+ p · e(−ik2π/m). Since the norm of
the second largest eigenvalues is (1−2pq(1−cos(2π/m)))1/2 and thus a strictly
positive constant smaller than one, we have finally a linear rate of convergence
(Schatzman and Taylor [2002]). For the vehicle routing problems with stochas-
tic demands under investigation, this result means that the difference with re-
spect to the uniform distribution is geometrically decreasing in the cumulative
expected demand of goods.

30 2.4 Discussion

2.4 Discussion

In this section we discuss the impacts of the convergence results, especially re-
garding practical applications. We also show that with these new theoretical
results some observations in literature can be explained.

The first question is, what the results mean for the VRPSD and the VRPSDC
with the basic restocking strategy. In section 2.2 we have indicated that the
transition matrices of the VRPSD and the VRPSDC can be identified with the
matrices of theorem 2. That means if we would have an instance with infinitely
many customers (or we would just loop over a finite number of customers), and
if the series of transition matrices fulfills the conditions of theorem 2, the distri-
bution of goods in the vehicle converges to the uniform distribution. Now we
have to clarify two different things in order to transfer the theoretical results to
real world problems. At first, under which conditions does the series of transi-
tion matrices fulfill the conditions of theorem 2 and secondly, what happens if
we have only a finite number of customers.

The gcd property looks quite technical at first glance. But for practical in-
stances it is usually fulfilled by the transition matrices, or at least by many of
them, which would be sufficient to apply our theoretical results. In the previous
section we pointed out that the gcd property is fulfilled for a matrix, if it has two
strictly positive entries next to each other in the first column. That means for the
problems we investigate, that the demand distribution for a customer contains
two demands with strictly positive probability next to each other, and this is not
a very strong assumption. It is for example fulfilled if the demand distribution
is a binomial distribution. On the other hand, the gcd property is not fulfilled,
if the differences between the possible demands of a certain customer and the
capacity of the vehicle are all a multiple of some integer k > 1. This could be
due to product specific constraints, e.g. it is only possible to order one package
of a product consisting of k units. But in this case the problem can be reduced
by examining packages instead of actual units. If it is not due to product specific
constraints and if the differences of the possible demands for every customer
are multiples of (potentially different) integers greater than 1, the conditions
of 2 are not fulfilled, but fortunately this is a really artificial case, usually not
occurring in real world problems.

The other point is that we have not an infinite number of customers in real
world instances. In section 2.3 we have shown that the difference of the distribu-
tion of goods in the vehicle with respect to the uniform distribution is decreasing
geometrically in the total expected demand up to a specific customer, if the de-
mand distributions are binomial distributions of the same type. For instances

31 2.4 Discussion

with a finite number of customers, we know that in the general case the amount
of goods approaches the uniform distribution. Preliminary experiments show
that for instances which require multiple restocking actions the distribution of
goods in the vehicle after performing a few restockings is quite close to the
uniform distribution. In this case the probability that a restocking action is nec-
essary at a certain customer depends almost only on the distribution of goods of
this customer and only to a small amount on the actual tour. On the other hand,
for instances which require only a few restocking actions the convergence is far
slower, but in this case the costs of the restocking actions are small compared to
the travel costs between customers. In both cases the results underlay our thesis
that the VRPSD and the TSP, and the VRPSDC and the PTSP are quite similar.

The second question is, how these theoretical results can be used for the
development of good algorithms for the VRPSD and the VRPSDC. A first idea
could be to use existing algorithms for the TSP and the PTSP on instances for
the VRPSD and the VRPSDC. This approach is used in the so called cyclic heuris-
tic, which will be discussed later in this section. Another idea would be to use
the theoretical results for the development of good approximations for the so-
lution costs. For example the beginning of the tour could be evaluated by an
exact evaluation approach for the VRPSD and the VRPSDC, and after a certain
point, the costs could be evaluated by assuming the uniform distribution for the
amount of goods in the vehicle. Further research at this point seems promising.

Additionally, our theoretical results give explanations for some observations
in literature. In Gendreau et al. [1996a] the authors observed that “One interest
of these studies is to show that stochastic customers are a far more complicating
factor than stochastic demands”. This is in accordance with our results in some
sense. The introduction of stochastic demands does not change the problem
significantly, while the introduction of stochastic customers changes the TSP
into the PTSP which usually cannot be tackled in the same way, especially if the
probabilities for visiting the customers are rather low.

In Haimovich and Rinnooy Kan [1985] the authors introduce the so called
cyclic heuristic, which is used for theoretical analyses in Bertsimas [1992]. The
cyclic heuristic starts with a solution for the TSP or the PTSP. It inserts the depot at
all possible locations and takes the best tour with respect to the solution cost of
the problem to be solved. Our results give again an explanation for the practical
success of this heuristic. Using the cyclic heuristic over a good TSP solution
usually yields a good solution for the VRPSD, and using the cyclic heuristic over
a good PTSP solution usually yields a good solution for the VRPSDC.

An approximation for the difference of the quality of two solutions for the
VRPSD and the VRPSDC is introduced in Bianchi et al. [2006]. Here the au-

32 2.5 Conclusions

thors implicitly assume a uniform distribution over the amount of goods in the
vehicle and they show that the use of that approximation leads to good results
in practice. According to our theoretical results the assumption of the uniform
distribution is reasonable and so we can give a theoretical explanation for the
success of this method.

2.5 Conclusions

In this chapter we have derived theoretical results which show that the VRPSD
and the VRPSDC are under some moderate conditions quite similar to the TSP
and the PTSP, respectively. In many settings the introduction of stochastic de-
mand values does not affect the problems too much. These results also gen-
eralize to several variants of vehicle routing problems with stochastic demands
and in particular to those problems that use multiple vehicles. Maybe analog
results can be obtained for other stochastic combinatorial optimization prob-
lems. In this case real world problems can be modeled in a more realistic way
using stochasticity in their formulation, while well established algorithms and
techniques can be used to solve them. Perhaps it is also possible to transfer or
improve approximation results from the underlying non stochastic problems to
the variants including stochasticity, or even to develop new optimization algo-
rithms directly based on theoretical results, like those presented in this chapter.

Chapter 3

Hardness Results for Stochastic Vehicle
Routing Problems on Substantially
Stochastic Instances

Many stochastic vehicle routing problems are trivially NP-hard as generalizations
of non-stochastic NP-hard problems. Unfortunately, such results completely ig-
nore the possibility of those problems to model certain aspects in a stochastic
way. And in fact, modeling certain aspects in a stochastic way is the reason
for using stochastic vehicle routing problems and the main difference to non-
stochastic vehicle routing problems. Therefore, it is of great importance to in-
vestigate the impact of stochastic input on the computational complexity of those
problems. And this is what we are doing in this chapter for different stochastic
vehicle routing problems.

We start with examining stochastic instances for the PROBABILISTIC TRAVELING

SALESMAN PROBLEM and stochastic instances for the METRIC PROBABILISTIC TRAV-
ELING SALESMAN PROBLEM, that means for instances where the triangle inequality
holds for the distances. For the instances used in this case the probabilities
for the customers’ presence are very close to 1 and so they do not differ a lot
from non-stochastic instances. Therefore, we continue our investigations with
what we denote as substantially stochastic instances for the METRIC PROBABILIS-
TIC TRAVELING SALESMAN PROBLEM. The probabilities used in these instances are
all 1/2 and therefore these instances differ a lot from non-stochastic instances.
We then extend our investigations with substantially stochastic instances for the
VEHICLE ROUTING PROBLEM WITH STOCHASTIC DEMANDS. At the end we show how
the results obtained for the PTSP and the VRPSD can be generalized to the VEHI-
CLE ROUTING PROBLEM WITH STOCHASTIC DEMANDS AND CUSTOMERS. All the results
presented in this chapter are based on Weyland et al. [2011a].

33

34 3.1 The PTSP

3.1 The Probabilistic Traveling Salesman Problem

In this section we give three reductions to stochastic instances of the PROBA-
BILISTIC TRAVELING SALESMAN PROBLEM. First, we show with a reduction from
the HAMILTONIAN CYCLE PROBLEM (Karp [1972]) to stochastic instances of the
PROBABILISTIC TRAVELING SALESMAN PROBLEM, that it is NP-hard to compute a 2n

approximation for stochastic instances of the PTSP. After that we show by a re-
duction from the METRIC TRAVELING SALESMAN PROBLEM to stochastic instances
of the METRIC PROBABILISTIC TRAVELING SALESMAN PROBLEM, that it is NP-hard to
compute 117

116
−ε approximations for stochastic instances of the METRIC PTSP with

asymmetric distances and 220
219
− ε for stochastic instances of the METRIC PTSP

with symmetric distances. Both reductions use instances of the PTSP, where the
probabilities are close to 1. In the third reduction we generalize the second re-
duction to what we denote as substantially stochastic instances, where all the
probabilities used are 1/2. Note that these instances are very different from
non-stochastic instances with respect to the stochastic input.

3.1.1 Stochastic Instances of the PTSP

Let us start with the formal definition of the well-known HAMILTONIAN CYCLE

PROBLEM. For a given undirected graph G = (V, E) with vertex set V and edge
set E, the problem is to decide whether there exists a cycle visiting all the vertices
exactly once or not. More formal we can state it as follows.

Problem 5 (HAMILTONIAN CYCLE PROBLEM (HC)). Given an undirected graph G =
(V, E) with vertex set V and edge set E, the problem is to decide whether there exists
a simple cycle of length |V | or not.

We now present a polynomial reduction from the HAMILTONIAN CYCLE PROB-
LEM to stochastic instances of the PROBABILISTIC TRAVELING SALESMAN PROBLEM.
Given an instance (V, E) for the HC with |V | = n vertices, we create an instance
for the PTSP in the following way. We use V as the set of customers for the PTSP
instance. For each edge {v, w} ∈ E, we set the distance between v and w and
between w and v to 1, while all other distances are set to n2n. For each cus-
tomer we set the probability that this customer requires a visit to 1− 2−3n. Note
that all of the customers require a visit in a particular realization of the stochas-
tic events with a probability of at least 1− n2−3n due to the union bound (also
called Boole’s inequality, cf. Grimmett and Welsh [1986]). We begin with some
simple properties between solutions for the HC instance and the PTSP instance.

35 3.1 The PTSP

Lemma 4. Let τ be any solution for the PTSP, then the following two implications
hold.

(i) If τ is a Hamiltonian cycle for the given HC instance, then

fptsp(τ)≤
�

1− n2−3n
�

n+
�

n2−3n
�

n22n.

(ii) If τ is not a Hamiltonian cycle for the given HC instance, then

fptsp(τ)≥
�

1− n2−3n
�

(n2n+ n− 1) .

Proof. (i): Here we use the fact, that with a probability of at least 1 − n2−3n

all customers have to be visited, which results in costs of n, since the tour is a
Hamiltonian cycle. Otherwise, that means with a probability of at most n2−3n,
the costs can be trivially bounded by the costs of a maximum cost cycle in the
PTSP instance. Such a cycle contains at most n edges with costs of at most n2n

for each of the edges and therefore the costs for a maximum cost cycle can be
bounded by n22n. This gives us the desired bound.

(ii): In this case we only consider the costs for the a posteriori tour, in which
all customers are visited. The probability for this event is at least 1− n2−3n and
the costs for such a tour are bounded from below by n2n+n−1, since at least one
of the expensive distances of n2n is used. This implies the second bound.

Lemma 5. Let τ be an optimal solution for the PTSP instance. Then the following
two implications hold.

(i) If there exists a Hamiltonian cycle for the given HC instance, then

fptsp(τ)≤
�

1− n2−3n
�

n+
�

n2−3n
�

n22n.

(ii) If there does not exist a Hamiltonian cycle for the given HC instance, then

fptsp(τ)≥
�

1− n2−3n
�

(n2n+ n− 1) .

Proof. (i): If there exists a Hamiltonian cycle δ, we can bound the costs of an
optimal solution using lemma 4 by

fptsp(τ)≤ fptsp(δ)≤
�

1− n2−3n
�

n+
�

n2−3n
�

n22n.

(ii): If there does not exist a Hamiltonian cycle, due to lemma 4 the costs of all
solutions are bounded from below by

�

1− n2−3n� (n2n+ n− 1), and therefore
in particular the costs of τ.

36 3.1 The PTSP

Using these properties we are now able to prove that it is NP-hard to compute
a 2n approximation for stochastic instances of the PTSP.

Theorem 3. It is NP-hard to compute a 2n approximation for stochastic instances
of the PROBABILISTIC TRAVELING SALESMAN PROBLEM.

Proof. We show that we can solve the HC problem using a 2n approximation
algorithm for stochastic instances of the PTSP. Since the reduction runs in poly-
nomial time with respect to the size of the HC instance, this implies the desired
result.

Note that for sufficiently large n we have

2n
��

1− n2−3n
�

n+
�

n2−3n
�

n22n
�

= n2n
�

1− n2−3n
�

+ n32−n

< n2n
�

1− n2−3n
�

+ (n− 1)
�

1− n2−3n
�

=
�

1− n2−3n
�

(n2n+ n− 1) .

Given a HC instance (with n sufficiently large), we use the reduction intro-
duced in this section and apply the 2n approximation algorithm for stochastic
instances of the PTSP. If there exists a Hamiltonian cycle, the costs of an op-
timal solution are bounded from above by

�

1− n2−3n�n+
�

n2−3n�n22n due to
lemma 5. Therefore, the costs of a 2n approximation are bounded from above by
2n ��1− n2−3n�n+

�

n2−3n�n22n� <
�

1− n2−3n� (n2n+ n− 1). On the other
hand, if there does not exist a Hamiltonian cycle, then the costs of an optimal
solution are bounded from below by

�

1− n2−3n� (n2n+ n− 1) due to lemma 5,
and therefore the costs of any 2n approximation are also bounded from below
by
�

1− n2−3n� (n2n+ n− 1).
Now it is easy to decide, whether a Hamiltonian cycle exists or not. We only

have to evaluate the costs of the solution computed by the 2n approximation
algorithm. This can be performed in polynomial time. If those costs are below
�

1− n2−3n� (n2n+ n− 1), then there exists a Hamiltonian cycle, if they are at
least

�

1− n2−3n� (n2n+ n− 1), then there is no Hamiltonian cycle.

3.1.2 Stochastic Instances of the Metric PTSP

In this section we derive hardness results for stochastic instances of the METRIC

PTSP. For this purpose we use a reduction from the famous METRIC TRAVELING

SALESMAN PROBLEM. The task for the TRAVELING SALESMAN PROBLEM is to compute
for a given graph a simple cycle of minimum length with respect to the distances

37 3.1 The PTSP

given on the edges. Let V be a set of n vertices, let d : V ×V → R+ be a function
representing the distances between different vertices and let τ : 〈n〉 → V be a
permutation representing a simple cycle of length n. Then the costs of this cycle
can be written as

ftsp(τ) =
n−1
∑

i=1

d(τi,τi+1) + d(τn,τ1).

The TRAVELING SALESMAN PROBLEM can now be formally stated as follows.

Problem 6 (TRAVELING SALESMAN PROBLEM (TSP)). Given a set V of n vertices and
function d : V × V → R+, the problem is to compute a permutation τ? : 〈n〉 → V ,
such that ftsp(τ?)≤ ftsp(τ) for any permutation τ : 〈n〉 → V .

If we additionally require that the distance function d : V × V → R+ obeys
the triangle inequality, we obtain the METRIC TRAVELING SALESMAN PROBLEM.

Given an instance for the METRIC TSP we create an instance for the METRIC

PTSP in the following way. We use the same set of customers and the same
distance function. Additionally, we set the probability that a customer requires
a visit for each customer to 1− n−k for some k ∈ N, k ≥ 2. Note that all of the
customers require a visit in a particular realization of the stochastic events with
a probability of at least 1− n−k+1 due to the union bound (Grimmett and Welsh
[1986]). We start with proving two inequalities between the objective functions
for the TSP and the PTSP, applied to the same solution.

Lemma 6. Let τ be any solution for the TSP or the PTSP, respectively. Then we
have the following two inequalities:

(i) fptsp(τ)≤ ftsp(τ)

(ii) ftsp(τ)≤
1

1−n−k+1 fptsp(τ)

Proof. The first inequality follows directly from the triangle inequality on the
distances, since skipping a customer can only result in shorter tours as long as
the triangle inequality holds, and therefore the expected length of the a posteri-
ori tour is always bounded by the length of the a priori tour, which is in fact the
length of the TSP tour.

The second inequality can be obtained by bounding the cost of the PTSP
solution only considering the tour, where all customers require a visit. We have
for any solution τ

38 3.1 The PTSP

fptsp(τ) ≥ P(all customers require a visit) ftsp(τ)

≥
�

1− n−k+1
�

ftsp(τ)

and therefore ftsp(τ)≤
1

1−n−k+1 fptsp(τ) as claimed.

Using those two inequalities, we can prove the following connection between
solution costs for the TSP and the PTSP.

Proposition 1. If τ is an α approximation for the PTSP, then τ is an α 1
1−n−k+1

approximation for the TSP.

Proof. We have the following chain of inequalities due to lemma 6. Here τtsp is
an optimal solution for the TSP and τptsp is an optimal solution for the PTSP.

ftsp(τ) ≤
1

1− n−k+1
fptsp(τ)

≤ α
1

1− n−k+1
fptsp(τptsp)

≤ α
1

1− n−k+1
fptsp(τtsp)

≤ α
1

1− n−k+1
ftsp(τtsp)

Since the parameter k ∈ N can be set to any value ≥ 2, an α− ε approxima-
tion for the PTSP gives us an α approximation for the TSP. It has been shown in
Papadimitriou and Vempala [2006] that it is NP-hard to compute a 117

116
approxi-

mation for the METRIC TSP with asymmetric distances and a 220
219

approximation
for the METRIC TSP with symmetric distances. Therefore, it is also NP-hard to
compute a 117

116
−ε approximation for the METRIC PTSP with asymmetric distances

and a 220
219
−ε approximation for the METRIC PTSP with symmetric distances, even

if only stochastic instances are considered. We summarize the results in the fol-
lowing two theorems.

Theorem 4. It is NP-hard to compute a 117
116
− ε approximation for stochastic in-

stances of the METRIC PROBABILISTIC TRAVELING SALESMAN PROBLEM with asymmet-
ric distances.

39 3.1 The PTSP

Theorem 5. It is NP-hard to compute a 220
219
− ε approximation for stochastic in-

stances of the METRIC PROBABILISTIC TRAVELING SALESMAN PROBLEM with symmet-
ric distances.

3.1.3 Substantially Stochastic Instances of the Metric PTSP

In the previous section we used PTSP instances where all probabilities were at
least polynomially close to 1. In this section we want to reduce the METRIC TSP
to the METRIC PTSP, where each vertex has a probability of exactly 1/2. These
instances differ a lot from non-stochastic instances with respect to the stochas-
tic input and we informally refer to such instances as substantially stochastic
instances.

Given an instance for the TSP with n customers, we create an instance for the
PTSP in the following way. For each customer we create p(n) identical copies,
where p(n) is some polynomial in n. Then we assign a probability of 1/2 to
each of the customers in the resulting PTSP instance. Here we cannot immedi-
ately prove inequalities analog to the previous section. The problem is that the
customers that belong to the same group of identical copies are not necessarily
grouped together in a solution for the PTSP. We show that we can transform any
solution for the PTSP in polynomial time into a solution, where all customers
that belong to the same group of identical copies are visited consecutively, with-
out increasing the solution costs. After that we use this fact to continue analog
to the previous section.

First, we introduce some notational conventions. Let V be the set of cus-
tomers of the given TSP instance and let W be the set of customers of the PTSP
instance. The function g : W → V assigns to each customer of the PTSP instance
the corresponding customer of the original TSP instance. Given a solution τ for
the PTSP, we call a number of k successive customers τi,τi+1, . . . ,τi+k a group,
if they are all copies of the same customer of the TSP instance and if the cus-
tomers τi−1 and τi+k+1 (if they exist) belong to different groups, that means, if
the following properties hold. Note that the indices for (ii) and (iii) are taken
modulo the number of vertices to allow an easier notation.

(i) ∀x , y ∈ {i, i+ 1, . . . , i+ k} : g(τx) = g(τy)

(ii) i > 1 ⇒ g(τi−1) 6= g(τi)

(iii) i < n− k ⇒ g(τi+k+1) 6= g(τi+k)

40 3.1 The PTSP

It is clear that the order of customers within a group does not effect the
solution quality. Furthermore, a group can be treated like a single customer, as-
signing a proper probability for the event that a visit is required. The minimum
number of groups for a PTSP solution is n, since we have copies of all n differ-
ent customers of the TSP instance. Since the number of customers in the PTSP
instance is np(n), the maximum number of groups is also np(n) and thus poly-
nomially bounded. Now we show that we can efficiently transform a solution
with k, k > n groups to a solution with at most k−1 groups, without increasing
the solution cost.

Lemma 7. Let τ be a solution for the PTSP instance, containing k, k > n, groups.
Then we can compute in polynomial time a solution τ′ with the following proper-
ties:

(i) τ′ contains at most k− 1 groups.

(ii) fptsp(τ′)≤ fptsp(τ)

Proof. Let X and Y be the sets of customers that belong to two different groups
with the same corresponding customer in the TSP instance. We create two new
solutions τX→Y and τY→X , where the two groups are merged at the location of
the customers of Y and X , respectively. Let S be the set of all possible scenar-
ios, which are defined by different realizations of the random events. We can
partition S into

S = SX ,Y ∪ SX̄ ,Y ∪ SX ,Ȳ ∪ SX̄ ,Ȳ ,

where a subscript of X indicates the set of scenarios where at least one of the
customers of X requires a visit, whereas a subscript of X̄ indicates the scenarios
where none of the customers of X requires a visit. This holds analogously for
the subscripts Y and Ȳ . Note that all those sets are disjoint and we have in
fact a partition. If we shift the customers of X next to the customers of Y , the
scenarios contained in SX̄ ,Y and SX̄ ,Ȳ lead to the same a posteriori tours. Due to
the triangle inequality scenarios in SX ,Y lead to a posteriori tours which do not
increase in their length. Let pX denote the probability that at least one customer
of X requires a visit and let pY denote the probability that at least one customer
of Y requires a visit. For any set T of scenarios let f T

ptsp(τ) denote the costs of
solution τ considering the scenarios in T weighted with the probabilities that
they occur. This means that for every partition S = T1 ∪ T2 ∪ . . . ∪ Tm of S
the expected cost of the a posteriori solution can be expressed by f S

ptsp(τ) =

41 3.1 The PTSP

∑m
i=1 f Ti

ptsp(τ). Then we can bound the change in the solution cost between τX→Y

and τ by

f S
ptsp(τX→Y)− f S

ptsp(τ)

= f
SX ,Y

ptsp (τX→Y) + f
SX ,Ȳ

ptsp (τX→Y) + f
SX̄ ,Y

ptsp (τX→Y) + f
SX̄ ,Ȳ

ptsp (τX→Y)

− f
SX ,Y

ptsp (τ)− f
SX ,Ȳ

ptsp (τ)− f
SX̄ ,Y

ptsp (τ)− f
SX̄ ,Ȳ

ptsp (τ)

= f
SX ,Y

ptsp (τX→Y) + f
SX ,Ȳ

ptsp (τX→Y)− f
SX ,Y

ptsp (τ)− f
SX ,Ȳ

ptsp (τ)

≤ f
SX ,Ȳ

ptsp (τX→Y)− f
SX ,Ȳ

ptsp (τ)

≤ f
SX̄ ,Y

ptsp (τX→Y)
pX (1− pY)
(1− pX)pY

− f
SX ,Ȳ

ptsp (τ)

≤ f
SX̄ ,Y

ptsp (τ)
pX (1− pY)
(1− pX)pY

− f
SX ,Ȳ

ptsp (τ).

Here the last two transformations require some more detailed explanations.
As we stated earlier, we can consider the set X as a single customer with visiting
probability pX and the set Y as a single customer with visiting probability pY . The
scenarios SX ,Ȳ and SX̄ ,Y lead to the same a posteriori tours for the solution τX→Y .
The probabilities for the scenarios in SX ,Ȳ contain the two factors pX and 1− pY

(included in f
SX ,Ȳ

ptsp), which are not present in the probabilities for the scenarios in
SX̄ ,Y . Analog the scenarios in SX̄ ,Y contain the two factors 1− pX and pY , which
are not present in the probabilities for the scenarios in SX ,Ȳ . This explains the
factor of pX (1−pY)

(1−pX)pY
in the second last transformation. Since for all scenarios in SX̄ ,Y

the a posteriori tours for the solutions τX→Y and τ are the same, we can replace
τX→Y by τ in this case, which explains the last transformation.

Analog we get for the change in the solution cost between τY→X and τ

f S
ptsp(τY→X)− f S

ptsp(τ)

≤ f
SX ,Ȳ

ptsp (τ)
(1− pX)pY

pX (1− pY)
− f

SX̄ ,Y
ptsp (τ)

Now, if f S
ptsp(τX→Y)− f S

ptsp(τ)≤ 0, we set τ′ := τX→Y . Otherwise, we have

42 3.1 The PTSP

f S
ptsp(τX→Y)− f S

ptsp(τ)> 0

⇒ f
SX̄ ,Y

ptsp (τ)
pX (1− pY)
(1− pX)pY

− f
SX ,Ȳ

ptsp (τ)> 0

⇒ f
SX ,Ȳ

ptsp (τ)< f
SX̄ ,Y

ptsp (τ)
pX (1− pY)
(1− pX)pY

Inserting this into the bound for f S
ptsp(τY→X)− f S

ptsp(τ) we obtain

f S
ptsp(τY→X)− f S

ptsp(τ) ≤ f
SX ,Ȳ

ptsp (τ)
(1− pX)pY

pX (1− pY)
− f

SX̄ ,Y
ptsp (τ)

< f
SX̄ ,Y

ptsp (τ)
pX (1− pY)
(1− pX)pY

(1− pX)pY

pX (1− pY)
− f

SX̄ ,Y
ptsp (τ)

< f
SX̄ ,Y

ptsp (τ)− f
SX̄ ,Y

ptsp (τ)

< 0

and set τ′ := τY→X . In both cases the new solution τ′ contains at most k− 1
groups and does not increase the solution cost compared to τ. Therefore, the
properties (i) and (ii) of the claim are fulfilled. Furthermore, we can create
and evaluate the solutions τX→Y and τY→X in polynomial time. Hence the total
computational time is polynomially bounded, which concludes the proof.

Applying this lemma consecutively, we obtain the following result.

Proposition 2. Let τ be a solution for the PTSP instance. Then we can compute in
polynomial time a solution τ′ with the following properties:

(i) τ′ contains n groups.

(i) fptsp(τ′)≤ fptsp(τ)

Proof. Since the number of groups for any solution is bounded from above by
np(n), we can yield a solution τ′ with the required properties by applying lemma
7 for at most np(n) − n times. We are performing polynomially many steps,
which all take polynomial time, and therefore the total computational time is
also polynomially bounded.

43 3.1 The PTSP

We are now able to prove some inequalities about the relation between the
two evaluation functions for the TSP and for the PTSP, analog to the previous
section.

Lemma 8. Let τ be a solution for the PTSP. Then we can compute in polynomial
time a solution τ′ for the PTSP, which contains only n groups, and a solution τ′′ for
the TSP, with the following properties:

ftsp(τ
′′)≤

1

1− n2−p(n)
fptsp(τ

′)≤
1

1− n2−p(n)
fptsp(τ)

Proof. The second inequality follows immediately from proposition 2. It remains
to show that we can compute a solution τ′′ for the TSP in polynomial time,
starting with the solution τ′ for the PTSP, such that the first inequality holds.
The n groups of τ′ give us an ordering of the n customers in the TSP instances.
We use this order to create a TSP instance τ′′. If at least one customer in each of
the n groups of τ′ requires a visit, the length of the a posteriori tour equals the
length of the TSP tour defined by τ′′. Using this fact, we can bound the cost of
the PTSP solution τ′ by

fptsp(τ
′) ≥ P(at least one customer in each group requires a visit) ftsp(τ

′′)

≥
�

1− n2−p(n)
�

ftsp(τ
′′)

and therefore we have ftsp(τ′′) ≤
1

1−n2−p(n) fptsp(τ′) which proves the first in-
equality in the claim.

Lemma 9. Let τ be a solution for the TSP and let τ? be a solution for the PTSP
containing n groups with p(n) customers in each group, preserving the ordering of
the TSP solution. Then the following inequality holds:

fptsp(τ
?)≤ ftsp(τ)

Proof. Due to the triangle inequality the length of every possible a posteriori
tour, which is derived from τ? for the PTSP, is bounded from above by the length
of the TSP tour defined by τ.

Using those two inequalities, we can establish the following connection be-
tween solution costs for the TSP and the PTSP.

Proposition 3. If τ is an α approximation for the PTSP, then we can compute in
polynomial time an α 1

1−n2−p(n) approximation τ′′ for the TSP.

44 3.1 The PTSP

Proof. Due to lemma 8 and lemma 9 we can compute in polynomial time so-
lutions τ′ for the PTSP and τ′′ for the TSP, such that the following chain of
inequalities hold. Here τtsp is an optimal solution for the TSP and τptsp is an
optimal solution for the PTSP. τ?tsp denotes the PTSP solution derived from τtsp

according to lemma 9.

ftsp(τ
′′) ≤

1

1− n2−p(n)
fptsp(τ

′)

≤
1

1− n2−p(n)
fptsp(τ)

≤ α
1

1− n2−p(n)
fptsp(τptsp)

≤ α
1

1− n2−p(n)
fptsp(τ

?
tsp)

≤ α
1

1− n2−p(n)
ftsp(τtsp)

Since we can use any polynomial p(n), an α− ε approximation for the PTSP
gives us an α approximation for the TSP. As we mentioned in the previous sec-
tion, it has been shown in Papadimitriou and Vempala [2006] that it is NP-hard
to compute a 117

116
approximation for the METRIC TSP with asymmetric distances

and a 220
219

approximation for the METRIC TSP with symmetric distances. There-
fore, it is also NP-hard to compute a 117

116
− ε approximation for the METRIC PTSP

with asymmetric distances and a 220
219
− ε approximation for the METRIC PTSP

with symmetric distances, even if only substantially stochastic instances are con-
sidered. We summarize these results in the following two theorems.

Theorem 6. It is NP-hard to compute a 117
116
− ε approximation for substantially

stochastic instances of the METRIC PROBABILISTIC TRAVELING SALESMAN PROBLEM

with asymmetric distances.

Theorem 7. It is NP-hard to compute a 220
219
− ε approximation for substantially

stochastic instances of the METRIC PROBABILISTIC TRAVELING SALESMAN PROBLEM

with symmetric distances.

45 3.2 The VRPSD

3.2 The Vehicle Routing Problem with
Stochastic Demands

In this section we give a reduction from the METRIC TRAVELING SALESMAN PROB-
LEM to substantially stochastic instances of the METRIC VEHICLE ROUTING PROBLEM

WITH STOCHASTIC DEMANDS. These instances are using binomial demand distri-
butions. We show with this reduction that retrieving an optimal solution for
substantially stochastic instances of this problem is NP-hard. In chapter 2 we
have shown that the distribution of goods in the vehicle converges to the uni-
form distribution under some mild conditions. Once approaching the uniform
distribution, the probability that a restocking action is necessary after serving
a specific customer depends almost entirely on the demand distribution of that
customer and only slightly on the tour. The overall idea is to introduce some
dummy nodes and to enforce that they have to be served at the very beginning
of the tour in an optimal VRPSD solution. After that, the distribution of goods
in the vehicle has approached the uniform distribution and the remaining cus-
tomers are served in a tour which is very close to an optimal TSP tour.

Given an instance for the METRIC TSP with n vertices, we construct an in-
stance for the METRIC VRPSD in the following way. All the vertices of the TSP
instance are used as customers in the VRPSD instance, while one arbitrary vertex
is selected as the depot. The same distances are used in the new instance. Addi-
tionally, we introduce p(n) dummy customers, where p(n) is some polynomial in
n, which will be specified later. Let L := 23Q+1nl, where l is the longest distance
in the original TSP instance. The distances between the dummy customers are all
0, while the distance between any dummy customer and the depot is L and the
distance between any dummy customer and any of the other customers is L plus
the distance from the depot to that customer. We can express this in a more for-
mal way. Given an instance for the TSP by a set V = {v1, v2, . . . , vn} of n ∈ N cities
and a distance function d : V × V → R+, we construct the following instance for
the VRPSD. We use V ′ = V ∪W as the set of nodes for the VRPSD instance,
where W = {w1, w2, . . . , wp(n)} represents the additional dummy customers. We
set the depot to v1 and we extend d to a distance function d ′ : V ′× V ′→ R+ on
V ′ by setting

d ′(x , y) =















d(x , y) x , y ∈ V

L+ d(v1, y) x ∈W, y ∈ V

d(x , v1) + L x ∈ V, y ∈W

0 x , y ∈W

46 3.2 The VRPSD

Moreover, we set the vehicle capacity to some constant Q ∈ N, which will also
be specified later. We set the demand distributions of the customers V ′ \ {v1} to
a B(Q, 1/2) binomial distribution, which is itself a sum of Q Bernoulli trials with
success probability 1/2. For details on these distributions we refer to chapter 2.

It is obvious that the reduction can be performed in polynomial time. In
the remaining part of this section we show that we can retrieve a very good
approximation for the given TSP instance, if we have an optimal solution for
the newly-created VRPSD instance. We will see that retrieving such an approxi-
mation for the TSP is NP-hard and therefore getting an optimal solution for the
VRPSD is NP-hard, even if we focus on inherent stochastic instances. We start
with two basic properties, which are used afterwards.

Lemma 10. The smallest probability occurring in the binomial demand distribu-
tion can be bounded from below by 2−Q. This also holds for any sum of the binomial
demand distribution.

Proof. The probabilities that occur in the binomial demand distributions are
�Q

k

�

2−Q, k ∈ {0,1, . . . ,Q}. Those probabilities are at least 2−Q, in fact this value
is attained for k = 0 and k = Q. The second statement follows from the fact
that those probabilities are convex combinations of the probabilities for a single
binomial distribution.

Since the total demand of the first i customers modulo Q is Q minus the
vehicle load after the first i customers, we get the following helpful result.

Lemma 11. The probability that the total demand of any number of consecutive
customers modulo Q equals k, k ∈ {0,1, . . . ,Q− 1}, is at least 2−Q.

Proof. This follows directly from lemma 10.

Now we show that the dummy customers have to be visited first in an optimal
VRPSD tour. In particular we show the following two facts. At first, we show that
the dummy customers have to be visited subsequently in an optimal tour. Then
we show that this block of dummy customers has to be visited at the beginning
of an optimal tour.

Proposition 4. Given a tour τ, with at least two non successive blocks of dummy
customers, we can create a tour τ′ with the following properties:

(i) The number of non successive blocks of dummy customers in τ′ is decreased
by at least 1.

(ii) fvrpsd(τ′)< fvrpsd(τ).

47 3.2 The VRPSD

Proof. We show that merging the first two blocks of dummy customers in the
tour τ at the position of the first block, yields a tour τ′ with strictly less costs.
The costs for τ can be bounded by

fvrpsd(τ) ≥ L+ 2e1 L+ L+ L+ 2e2 L+ L+ cend

= 4L+ e12L+ e22L + cend.

Here we only consider the travel costs to both blocks of dummy nodes, the
expected restocking costs while serving the first block of dummy nodes, the ex-
pected restocking costs while serving the second block of dummy nodes and the
costs for the other dummy nodes which occur after the second block of dummy
nodes has been fully served. In this formula e1 denotes the expected number of
restockings while serving the first block of dummy nodes and e2 denotes the ex-
pected number of restockings while serving the second block of dummy nodes.
Note that the case in which the vehicle gets empty after serving one of the blocks
of dummy nodes is included in the travel costs and not in the expected restock-
ing costs. cend denotes the costs caused by the dummy nodes, which are not in
one of the two blocks.

Similarly we can bound the costs for τ′.

fvrpsd(τ
′) ≤ L+ 2eL+ L+ 3nl + cend

= 2L+ e2L+ 3nl + cend .

Here we consider the travel costs of the merged block of dummy nodes, the
expected restocking costs while serving this block of dummy nodes, the costs
of the dummy nodes which occur after the old position of the second block of
dummy nodes (which are identical to the costs in τ and again denoted by cend)
and the travel and restocking costs for all the non dummy customers, which are
tolerantly bounded by 3nl. Here e denotes the expected number of restockings
while serving the merged block of dummy nodes.

For the difference of the solutions costs we now have

fvrpsd(τ)− fvrpsd(τ
′)≥ 2L+ (e1+ e2− e)2L− 3nl

Here e is bounded from above by e1 + e2 + 1. Even if in τ the vehicle is
almost full with high probability, before the second block of dummy customers

48 3.2 The VRPSD

is served, and even if in τ′ the vehicle is almost empty with high probability,
before the dummy customers of the second block (in τ) are served, there is
never more than 1 additional restocking necessary in τ′. On the other hand
there are cases, in which the number of restockings is the same. For example,
if the total demand of the second block of dummy customers is equal to Q − 1
mod Q and the vehicles are loaded in both cases prior to those customers with
exactly Q− 2 goods. The probability for each of those three events is bounded
from below by 2−Q due to lemma 10 and lemma 11. Therefore, we can bound e
by

e ≤ e1+ e2+ 1− 2−3Q

For the difference of the solution costs follows

fvrpsd(τ)− fvrpsd(τ
′) ≥ 2L+ (e1+ e2− e)2L− 3nl

≥ 2L+
�

e1+ e2−
�

e1+ e2+ 1− 2−3Q
��

2L− 3nl

≥ 2−3Q2L− 3nl

≥ 2−3Q+123Q+1nl − 3nl

≥ 4nl − 3nl

> 0

That means we have fvrpsd(τ′) < fvrpsd(τ). Additionally, by construction the
number of non successive blocks of dummy customers in τ′ is decreased by at
least 1, which concludes the proof.

Proposition 5. Given a tour τ, with exactly one block of dummy customers, which
is not located at the beginning of the tour, we can create a tour τ′ with the following
properties:

(i) τ′ contains exactly one block of dummy customers, which is located at the
beginning of the tour.

(ii) fvrpsd(τ′)< fvrpsd(τ).

Proof. This proof is similar to that of proposition 4. Here we compare the solu-
tion τ with the solution τ′, which is derived from τ by putting the only block of
dummy customers to the very beginning of the tour. We know that the vehicle
is fully loaded with probability 1 at the beginning, whereas this is not the case,
after at least one customer has been served.

49 3.2 The VRPSD

We can bound the costs for τ by only considering the travel and restocking
costs caused by the dummy nodes.

fvrpsd(τ) ≥ L+ e2L+ L

= 2L + e2L

For the costs of τ′ we consider the travel and restocking costs caused by the
dummy nodes and we additionally bound the travel and restocking costs for the
other customers tolerantly by 3nl.

fvrpsd(τ
′) ≤ L+ e′2L + L + 3nl

= 2L+ e′2L+ 3nl

The difference between fvrpsd(τ) and fvrpsd(τ′) can now be bounded by

fvrpsd(τ)− fvrpsd(τ
′) ≥ 2L+ e2L− (2L+ e′2L+ 3nl)

= (e− e′)2L− 3nl

While the vehicle is always fully loaded at the beginning, e′ is trivially
bounded from above by e. Furthermore, there are cases, in which τ′ requires
one restocking less than τ. For example, if the total demand of the dummy cus-
tomers is equal to Q−1 mod Q and the vehicle is loaded with Q−2 goods before
the dummy customers are visited in τ. The probability for both events is at least
2−Q due to lemma 10 and lemma 11, and therefore we can bound e′ from above
by e− 2−2Q. For the difference between the solution costs we have now

fvrpsd(τ)− fvrpsd(τ
′) ≥ (e− e′)2L− 3nl

≥ 2−2Q2L− 3nl

≥ 2−2Q+123Q+1nl − 3nl

= 2Q4nl − 3nl

> 0

50 3.2 The VRPSD

That means we have fvrpsd(τ′) < fvrpsd(τ) as desired. Additionally, by con-
struction the block of dummy customers in τ′ is located at the beginning, which
concludes the proof.

Putting these two propositions together, we obtain the following result.

Theorem 8. In an optimal tour for the VRPSD, the dummy customers have to be
visited at the beginning of the tour.

Proof. Due to proposition 4 all tours which contain at least two blocks of dummy
customers are suboptimal. Therefore, an optimal tour contains only one block
of dummy customers. Due to proposition 5 all tours, which contain one block
of dummy customers, not located at the beginning of the tour, are suboptimal.
Therefore, in an optimal tour the dummy customers have to be visited at the
very beginning of the tour.

In an optimal tour all the dummy customers are visited first. After visiting
these customers the distribution of goods in the vehicle is very close to the uni-
form distribution. Due to the results in chapter 2 we have the following bounds
for the probabilities involved in those distributions.

Lemma 12. After the dummy customers have been visited, the probabilities for the
different amounts of goods in the vehicle are bounded from below by 1/Q − (Q −
1)cQp(n) and from above by 1/Q+(Q−1)cQp(n), where p(n) is the number of dummy
customers and c is a constant smaller than 1, depending only on Q.

Proof. The cumulative demand distribution of all the dummy customers is a
B(Qp(n), 1/2) binomial distribution. That means it is the sum of Qp(n) Bernoulli
trials with success probability of 1/2. Due to the results in chapter 2 there
exists a constant c ∈ R, c < 1, depending only on Q, such that the following
bound for the probabilities pi, that the amount of goods in the vehicle is exactly
i, i ∈ {1, 2, . . . ,Q}, after visiting the dummy customers, including a possible
restocking action at the end, holds.

∀i ∈ {1, 2, . . . ,Q} : |1/Q− pi| ≤ (Q− 1)cQp(n)

This gives the desired upper and lower bounds for the probabilities.

Using this lemma, we can bound the costs of solutions for the VEHICLE ROUT-
ING PROBLEM WITH STOCHASTIC DEMANDS, where the dummy customers are vis-
ited first. Since the order of the dummy nodes does not matter, we can now
represent the solution just by a tour τ, which starts at the depot τ1 and visits

51 3.2 The VRPSD

each of the non dummy customers exactly once. Let τ be such a solution for the
VRPSD. Then we can bound the solution costs from below in the following way.
Here cdummy are the costs caused by the dummy customers, without the travel
costs of d(τ1,τ2), which occur either implicitly in the travel costs from the last
dummy customer to the first non dummy customer or explicitly, if the vehicle
is empty after the last dummy customer has been served. The first double sum
represents the restocking costs at the customers, the second double sum repre-
sents the restocking costs between each pair of two consecutive customers (if the
vehicle gets exactly empty after serving a customer) and the third double sum
represents the travel costs between each pair of two consecutive customers (if
the vehicle does not get exactly empty after serving a customer). Furthermore,
we set∆p = (Q−1)cQp(n) with reference to lemma 12 and use τn+1 = τ1 for ease
of notation.

fvrpsd(τ)

= cdummy+ d(τ1,τ2) + d(τn,τ1)

+
n
∑

i=2

Q
∑

j=1

P(load at cust. i is j)P(demand > j) (d(τi,τ1) + d(τ1,τi))

+
n−1
∑

i=2

Q
∑

j=1

P(load at cust. i is j)P(demand = j) (d(τi,τ1) + d(τ1,τi+1))

+
n−1
∑

i=2

Q
∑

j=1

P(load at cust. i is j)P(demand 6= j) d(τi,τi+1)

≥ cdummy+ d(τ1,τ2) + d(τn,τ1)

+
n
∑

i=2

Q
∑

j=1

(1/Q−∆p)P(demand > j) (d(τi,τ1) + d(τ1,τi))

+
n−1
∑

i=2

Q
∑

j=1

(1/Q−∆p)P(demand = j) (d(τi,τ1) + d(τ1,τi+1))

+
n−1
∑

i=2

Q
∑

j=1

(1/Q−∆p)P(demand 6= j) d(τi,τi+1)

52 3.2 The VRPSD

= cdummy+ d(τ1,τ2) + d(τn,τ1)

+(1/Q−∆p)
Q
∑

j=1

P(demand > j)
n
∑

i=2

(d(τi,τ1) + d(τ1,τi))

+(1/Q−∆p)
Q
∑

j=1

P(demand = j)
n−1
∑

i=2

(d(τi,τ1) + d(τ1,τi+1))

+(1/Q−∆p)
Q
∑

j=1

P(demand 6= j)
n−1
∑

i=2

d(τi,τi+1)

= cdummy+ d(τ1,τ2) + d(τn,τ1)

+(1/Q−∆p)
Q
∑

j=1

P(demand > j)
n
∑

i=2

(d(τi,τ1) + d(τ1,τi))

+(1/Q−∆p)
�

1− 2−Q
�

n−1
∑

i=2

(d(τi,τ1) + d(τ1,τi+1))

+(1/Q−∆p)
�

Q− 1+ 2−Q
�

n−1
∑

i=2

d(τi,τi+1)

= cdummy+∆pQd(τ1,τ2) +∆pQd(τn,τ1)

+(1/Q−∆p)
Q
∑

j=1

P(demand > j)
n
∑

i=2

(d(τi,τ1) + d(τ1,τi))

+(1/Q−∆p)
�

1− 2−Q
�

n
∑

i=1

(d(τi,τ1) + d(τ1,τi+1))

+(1/Q−∆p)
�

Q− 1+ 2−Q
�

n
∑

i=1

d(τi,τi+1)

= cdummy+∆pQd(τ1,τ2) +∆pQd(τn,τ1)

+(1/Q−∆p)
Q
∑

j=1

P(demand > j)
n
∑

i=2

(d(τi,τ1) + d(τ1,τi))

+(1/Q−∆p)
�

1− 2−Q
�

n
∑

i=1

(d(τi,τ1) + d(τ1,τi+1))

+(1/Q−∆p)
�

Q− 1+ 2−Q
�

ftsp(τ)

53 3.2 The VRPSD

Analog we get the following upper bound, which holds for any solution τ.

fvrpsd(τ) ≤ cdummy−∆pQd(τ1,τ2)−∆pQd(τn,τ1)

+ (1/Q+∆p)
Q
∑

j=1

P(demand > j)
n
∑

i=2

(d(τi,τ1) + d(τ1,τi))

+ (1/Q+∆p)
�

1− 2−Q
�

n
∑

i=1

(d(τi,τ1) + d(τ1,τi+1))

+ (1/Q+∆p)
�

Q− 1+ 2−Q
�

ftsp(τ)

Using these bounds with an optimal solution τvrpsd for the VEHICLE ROUTING

PROBLEM WITH STOCHASTIC DEMANDS and an optimal solution τtsp for the TRAV-
ELING SALESMAN PROBLEM, we get the following result.

Theorem 9. Let τvrpsd be an optimal solution for the VEHICLE ROUTING PROBLEM

WITH STOCHASTIC DEMANDS and let τtsp be an optimal solution for the TRAVELING

SALESMAN PROBLEM. Then we have the following bound for the solution costs of
τvrpsd for the TRAVELING SALESMAN PROBLEM.

ftsp

�

τvrpsd
�

≤
2∆p (Q+ 1)n+

�

1/Q+∆p

�

�

Q− 1+ 2−Q�

�

1/Q−∆p

�

�

Q− 1+ 2−Q
�

ftsp
�

τtsp� .

Proof. Let ∆ = fvrpsd (τtsp)− fvrpsd

�

τvrpsd
�

. Since τvrpsd is an optimal solution
for the VRPSD, we have ∆ ≥ 0. Furthermore, we can bound ∆ from above in
the following way.

54 3.2 The VRPSD

∆ ≤ cdummy−∆pQd
�

τ
tsp
1 ,τtsp

2

�

−∆pQd
�

τtsp
n ,τtsp

1

�

+ (1/Q+∆p)
Q
∑

j=1

P(demand > j)
n
∑

i=2

�

d
�

τ
tsp
i ,τtsp

1

�

+ d
�

τ
tsp
1 ,τtsp

i

��

+ (1/Q+∆p)
�

1− 2−Q
�

n
∑

i=1

�

d
�

τ
tsp
i ,τtsp

1

�

+ d
�

τ
tsp
1 ,τtsp

i+1

��

+ (1/Q+∆p)
�

Q− 1+ 2−Q
�

ftsp
�

τtsp�

− cdummy−∆pQd
�

τ
vrpsd
1 ,τvrpsd

2

�

−∆pQd
�

τvrpsd
n ,τvrpsd

1

�

− (1/Q−∆p)
Q
∑

j=1

P(demand > j)
n
∑

i=2

�

d
�

τ
vrpsd
i ,τvrpsd

1

�

+ d
�

τ
vrpsd
1 ,τvrpsd

i

��

− (1/Q−∆p)
�

1− 2−Q
�

n
∑

i=1

�

d
�

τ
vrpsd
i ,τvrpsd

1

�

+ d
�

τ
vrpsd
1 ,τvrpsd

i+1

��

− (1/Q−∆p)
�

Q− 1+ 2−Q
�

ftsp

�

τvrpsd
�

≤ 2∆p

Q
∑

j=1

P(demand > j)
n
∑

i=2

�

d
�

τ
tsp
i ,τtsp

1

�

+ d
�

τ
tsp
1 ,τtsp

i

��

+ 2∆p

�

1− 2−Q
�

n
∑

i=1

�

d
�

τ
tsp
i ,τtsp

1

�

+ d
�

τ
tsp
1 ,τtsp

i+1

��

+ (1/Q+∆p)
�

Q− 1+ 2−Q
�

ftsp
�

τtsp�

− (1/Q−∆p)
�

Q− 1+ 2−Q
�

ftsp

�

τvrpsd
�

≤ 2∆pQnftsp
�

τtsp�+ 2∆pnftsp
�

τtsp�

+ (1/Q+∆p)
�

Q− 1+ 2−Q
�

ftsp
�

τtsp�

− (1/Q−∆p)
�

Q− 1+ 2−Q
�

ftsp

�

τvrpsd
�

≤
�

2∆p(Q+ 1)n+ (1/Q+∆p)
�

Q− 1+ 2−Q
��

ftsp
�

τtsp�

− (1/Q−∆p)
�

Q− 1+ 2−Q
�

ftsp

�

τvrpsd
�

Putting both inequalities together, we have

0≤∆≤
�

2∆p(Q+ 1)n+ (1/Q+∆p)
�

Q− 1+ 2−Q
��

ftsp
�

τtsp�

− (1/Q−∆p)
�

Q− 1+ 2−Q
�

ftsp

�

τvrpsd
�

,

55 3.3 The VRPSDC

and therefore

ftsp

�

τvrpsd
�

≤
2∆p(Q+ 1)n+ (1/Q+∆p)

�

Q− 1+ 2−Q�

(1/Q−∆p)
�

Q− 1+ 2−Q
� ftsp

�

τtsp� ,

as desired.

Since we can use any constant integral number for Q and any polynomial in n
for p(n), the factor in the formula of theorem 9 can be adjusted arbitrarily close
to 1. That means, an optimal solution for the VRPSD gives us a 1+ ε approxi-
mation for the TSP, for any ε > 0. Since computing the latter approximation is
NP-hard, we get the following result.

Theorem 10. It is NP-hard to compute an optimal solution for substantially
stochastic instances of the METRIC VEHICLE ROUTING PROBLEM WITH STOCHASTIC

DEMANDS.

This is the first hardness result for substantially stochastic instances of the
VEHICLE ROUTING PROBLEM WITH STOCHASTIC DEMANDS and gives a strong moti-
vation for using heuristics to optimize stochastic instances of this problem.

3.3 The Vehicle Routing Problem with
Stochastic Demands and Customers

In this section we give a reduction from the METRIC TRAVELING SALESMAN PROB-
LEM to substantially stochastic instances of the METRIC VEHICLE ROUTING PROBLEM

WITH STOCHASTIC DEMANDS AND CUSTOMERS. The reduction used here is a combi-
nation of the reductions from the previous two sections. In this section we only
provide sketches of the proofs and point out differences to the previous sections.

Given an instance for the METRIC TSP with n vertices, we construct an in-
stance for the METRIC VRPSDC in the following way. Like in section 3.2 all the
vertices are used as customers in the VRPSDC instance, while one arbitrary ver-
tex is used as the depot . Additionally, p(n) dummy customers are used, where
p(n) is some polynomial in n. Analog to section 3.1 we use q(n) copies for each
of the non dummy customers, where q(n) is also a polynomial in n. The probabil-
ities for requiring a visit are set to 1/2 for all customers and the demand distribu-
tions are set to B(Q, 1/2) binomial distributions for all customers. The distances
between non dummy customers and the depot remain unchanged compared to
the TSP instance. Distances between dummy customers are set to 0 and the

56 3.3 The VRPSDC

distance between dummy customers and the depot are set to L := 23Q+4nq(n)l,
where l is the longest distance in the original TSP instance. The distances be-
tween dummy customers and non dummy customers are set analog to section
3.2 to the sum of the distances between the dummy customers and the depot
and between the depot and the corresponding non dummy customer.

Now we can proof results analog to lemma 10 and lemma 11 in section
3.2. Since the customers are only visited with a certain probability, we have to
say that a customer has been processed (instead of visited). Otherwise, both
lemmata remain valid, using a bound for the probabilities of 2−Q−1 instead of
2−Q. Note that the constant L has been adjusted, such that the other proofs
remain valid with the new bound of the probabilities.

In the next step we show that in an optimal solution the dummy customers
have to be processed at the very beginning of the tour. We have to change the
proofs slightly in this case, because a block of dummy customers can be skipped
completely for some realizations of the random events. Here we show in a first
step with a proof analog to that of proposition 5, that the first block of dummy
customers has to be visited at the very beginning of the tour. In a second step we
show that if there are multiple blocks of dummy customers (where the first block
is located at the very beginning of the tour), we can improve the solution quality
by merging the second block at the location of the first one. In those cases,
where the second block is skipped in the a posteriori tour, the solution costs are
not affected. In the cases, where the first block is skipped, the solution costs
decrease, which can be shown analog to proposition 5. In those cases, where
both blocks are not skipped, the solution costs decrease, which can be shown
analog to proposition 4. All in all, we can retrieve a result analog to theorem 8.

It remains to show that we can transform any optimal tour containing more
than n− 1 groups of the non dummy customers to an optimal tour with n− 1
groups in polynomial time. This can be shown completely analog to proposition
2.

Finally, we have to show that an optimal solution with n− 1 groups of non
dummy customers provides us with a good approximation for the original TSP
instance. Analog to section 3.1 we derive a TSP solution from the ordering of the
depot and the n−1 groups of the optimal VRPSDC solution. The bounds used in
section 3.2 for the solution costs also change. For the lower bound we only focus
on the case where at least one customer in each of the groups has to be visited,
which introduces an additional factor of 1− n2−q(n). For the upper bound we
use this same factor and additionally bound the other case, which occurs with a
probability of at most n2−q(n), appropriately. Note that although customers are
skipped, the costs for the a posteriori solution could in principle increase due to

57 3.4 Discussion and Conclusions

different restocking costs. But since this case occurs with a probability arbitrarily
close to 0, we can bound the costs tolerantly by a multiple of the costs for the
other case. In total the approximation factor of theorem 9 changes slightly, but
it is still possible to adjust it arbitrarily close to 1.

All in all, we have shown that we can transform any optimal solution for
the VRPSDC instance to an optimal solution for the VRPSDC instance with ex-
actly n− 1 groups of the non dummy customers. In such a solution the dummy
customers have to be visited at the very beginning of the tour. Using adequate
polynomials p(n) and q(n) as well as an adequate vehicle capacity Q, we can
derive any 1+ ε approximation for the original TSP instance from the optimal
VRPSDC solution in polynomial time. Since it is NP-hard to compute such an
approximation, we have shown the following result.

Theorem 11. It is NP-hard to compute an optimal solution for substantially
stochastic instances of the METRIC VEHICLE ROUTING PROBLEM WITH STOCHASTIC

DEMANDS AND CUSTOMERS.

Like for the problems in the previous sections it is the first time that hardness
results for substantially stochastic instances of the VEHICLE ROUTING PROBLEM

WITH STOCHASTIC DEMANDS AND CUSTOMERS problem are shown. These results
are of great importance to justify the usage of heuristics for the optimization of
those problems.

3.4 Discussion and Conclusions

In this chapter we have shown that it is NP-hard to compute optimal solutions
and certain approximations for (substantially) stochastic instances of some im-
portant stochastic vehicle routing problems. In fact, stochastic instances are of
high interest for practical applications and they are the reason why stochastic
vehicle routing problems problems are not treated as non-stochastic problems.

With our results we could gain more insight into the structure of these prob-
lems. Furthermore, our results justify the common usage of heuristics for large
substantially stochastic instances of stochastic vehicle routing problems. We
hope that the results can be extended and generalized, for example to other
stochastic combinatorial optimization problems, or to stronger results for the
problems investigated in this chapter. Finally, we hope that the insights gained
about the structure of the problems considered in this chapter can also be used
for the development of better heuristics for these problems.

58 3.4 Discussion and Conclusions

We finish this chapter with a discussion of the results obtained within the
sections 3.1, 3.2 and 3.3. In particular, we focus on possible generalizations of
our results.

3.4.1 Stochastic Instances of the PTSP

We have shown that it is NP-hard to compute a 2n approximation for stochastic
instances of the PTSP. Although these instances are stochastic, the probabilities
that are used are very close to 1. In this way the PTSP instances are very similar
to TSP instances and therefore it is not surprising that inapproximability results
can be transferred from the TSP to the PTSP. The only important condition is
that the distances and probabilities used in the PTSP instance can be encoded
efficiently with regard to the size of the HC instance. This can be guaranteed for
approximation factors, which can be encoded efficiently regarding the size of the
HC instance. Thus our result can be strengthened easily to such approximations
factors. The results could also be generalized to instances with heterogeneous
probabilities, as long as the probability for the event that all customers require
a visit in one particular realization is sufficiently close to 1.

3.4.2 Stochastic Instances of the Metric PTSP

We have proved that it is NP-hard to compute a 117
116
−ε approximation for stochas-

tic instances of the METRIC PTSP with asymmetric distances and a 220
219
−ε approx-

imation for stochastic instances of the METRIC PTSP with symmetric distances.
The key fact is that the probability for the event that all customers require a
visit simultaneously is asymptotically converging to 1. Thus the results could
be generalized to instances with heterogeneous probabilities or instances with
probabilities not that close to 1, especially considering stronger bounds instead
of the union bound. Another possible generalization would be to use instances
with probabilities, such that the probability for the event, that all customers re-
quire a visit simultaneously, is asymptotically a constant close to 1. In that case
the assumptions on the probabilities are not that strong, but therefore the inap-
proximability result gets weaker. In fact, we have shown later in section 3.1 that
we can use weaker assumptions on the probabilities, still obtaining the same
inapproximability results.

A very important generalization is with respect to hardness results for special
classes of metric instances. One such class, which is especially important in
practical applications, consists of Euclidean instances, where the travel times are
taken as distances from an Euclidean space. For example, in Trevisan [2000] it

59 3.4 Discussion and Conclusions

has been shown, that the TSP on Euclidean instances in log n dimensions with
any lp norm, is Max SNP-hard. This result can be easily used to show that the
PTSP on stochastic Euclidean instances in log n dimensions with any lp norm is
also Max SNP-hard.

3.4.3 Substantially Stochastic Instances of the Metric PTSP

Here we have shown that it is NP-hard to compute a 117
116
− ε approximation for

substantially stochastic instances of the METRIC PTSP with asymmetric distances
and a 220

219
− ε approximation for substantially stochastic instances of the METRIC

PTSP with symmetric distances. The important difference to the previous results
is that the instances are using constant probabilities and are therefore denoted
as substantially stochastic. In Bianchi et al. [2003] it has been shown that the
PTSP and the TSP differ in general quite a lot on such instances and therefore
these instances are of particular interest.

In our analysis we used the fact that the probability of the event that at least
one customer in each group requires a visit is asymptotically converging to 1.
That means the results can be easily generalized to instances with other, possibly
heterogeneous probabilities and to other, possibly heterogeneous numbers for
the copies of customers. Obviously larger probabilities can be used without
affecting the results, but even polynomially small probabilities could be used
leading to the same results.

As for the previous reduction, one very important generalization is with re-
spect to hardness results for special classes of metric instances. In this way we
can show that the PTSP on substantially stochastic Euclidean instances in log n
dimensions with any lp norm is also Max SNP-hard.

3.4.4 The Vehicle Routing Problem with Stochastic Demands

For the METRIC VRPSD we could show that it is NP-hard to compute an optimal
solution for substantially stochastic instances. The results can be generalized
to other, possibly heterogeneous demand distributions, as long as it is possible
to show that in an optimal solution all the dummy customers are visited at the
beginning and as long as the distribution of goods in the vehicle is close to the
uniform distribution after the dummy customers are processed. In chapter 2
some mild conditions for the latter requirement are given.

As for the PTSP reductions, the results can also be generalized with respect
to hardness results for special classes of metric instances. For example, it can be
shown that it is NP-hard to compute optimal solutions for Euclidean instances in

60 3.4 Discussion and Conclusions

log n dimensions with any lp norm. Otherwise, we would have a PTAS for the
TSP on Euclidean instances in log n dimensions with any lp norm and this would
be a contradiction to the results in Trevisan [2000].

3.4.5 The Vehicle Routing Problem with Stochastic Demands and
Customers

For the METRIC VRPSDC we could prove that it is NP-hard to compute an op-
timal solution for substantially stochastic instances. Since the reduction was a
combination of the reductions for the PTSP and the VRPSD, we refer for pos-
sible generalizations to the generalizations for these reductions. We only want
to mention that also for this problem generalizations with respect to hardness
results for special classes of metric instances are possible. For example, it is NP-
hard to compute optimal solutions for Euclidean instances in log n dimensions
with any lp norm due to the same argument which has been used for the VRPSD.

Chapter 4

Hardness Results for the Probabilistic
Traveling Salesman Problem with
Deadlines

In this chapter we will discuss some hardness results regarding the PROBABILISTIC

TRAVELING SALESMAN PROBLEM WITH DEADLINES. The corresponding publications
are Weyland et al. [2012a,d]. Although the PTSPD seems to be similar to the
PTSP, and in fact the problem definitions are quite similar as we have seen,
the introduction of deadlines significantly changes the structure of the problem.
Most of the solution approaches for the PTSP cannot be used for the PTSPD
in a straightforward manner. In particular, the polynomial time approach for
the evaluation of the PTSP objective function cannot be adapted for the PTSPD.
Additionally, applying the available analytical approximations for the PTSP ob-
jective function does not result in a satisfactory approximation behavior, since
it is not clear at all how penalties for missed deadlines can be approximated
properly. We will see in this chapter that there are also significant differences
regarding the complexity of different computational tasks for the PTSPD and the
PTSP.

The remaining part of this chapter is organized in the following way. We
start with results about the complexity of several computational tasks regarding
the PTSPD. After that we focus on the PTSPD objective function. Here we dis-
cuss the worst case performance of the existing approximations for the objective
function. Finally, we show an inapproximability result for the objective function
of a slightly more general problem. We finish with a discussion of our results.

61

62 4.1 Hardness Results for the PTSPD

4.1 Hardness Results for the PTSPD

In this section we prove results about the complexity of several computational
tasks related to the PTSPD. In fact, we will see that there is an interesting con-
nection between the PTSPD and the class of counting problems, #P (Arora and
Barak [2009]). The task for these counting problems is to compute the number
of feasible solutions for problems in NP. There are also other equivalent defini-
tions, but we do not want to go too much into detail here. For our work it is of
great importance that the whole polynomial hierarchy (including the complexity
class NP) can be solved using a polynomial time computation with one call to a
problem in #P (Arora and Barak [2009]). Showing that a problem is #P-hard is
therefore a stronger result than showing that it is “only” NP-hard. In Dyer and
Stougie [2006] it has been already shown that two-stage stochastic program-
ming is #P-hard in general. In fact, it has been shown that even the computa-
tion of the recourse costs for such problems is #P-hard in general. These results
were shown by a polynomial reduction from a #P-complete problem to an arti-
ficial two-stage stochastic programming problem. In this section we strengthen
these results and show for the first time that a particular a priori optimization
problem with practical relevance is #P-hard. More in detail, we will show that it
is #P-hard to compute the probabilities of deadline violations for Euclidean in-
stances of the PTSPD in general. Based on this result we continue to show that
the evaluation of the objective function is #P-hard for Euclidean instances of the
PTSPD. The same holds for the closely related task of computing the difference
between the costs of two solutions for any reasonable local search neighborhood.
Although even the evaluation of the objective function is a computationally de-
manding task, this does not immediately imply any results about the complexity
of the optimization and decision variants of the PTSPD. Nonetheless, we will
show that also these two tasks are #P-hard for Euclidean instances.

In this chapter we focus on the PTSPD RECOURSE I with fixed penalties (Camp-
bell and Thomas [2008b]). This is the variant of the PTSPD which has been
formally introduced in chapter 1. Nonetheless, the same results extend to all
the four variants of the PTSPD. Before we finally start with the proofs, we want
to formally introduce the counting version of the well-known KNAPSACK PROB-
LEM (Salkin and De Kluyver [1975]), called #KNAPSACK, since the proofs are all
based on a reduction from this problem. Note that #KNAPSACK is #P-complete
(Morris and Sinclair [2004]).

Problem 7 (#KNAPSACK). Given a row vector w ∈ Rn and a bound W ∈ R, the
problem is to compute the cardinality of the set S = {x ∈ Bn | wx ≤W}.

63 4.1 Hardness Results for the PTSPD

In words, the task is to compute the number of feasible solutions for the
KNAPSACK PROBLEM. These are solutions which respect the upper bound for the
total weight of selected items. Note that for this problem only the weights and
not the values of the items are of interest. Therefore, the values of the items are
not included in the problem definition.

4.1.1 Computing the Probabilities of Deadline Violations

We begin with showing that computing the probabilities of deadline violations
for Euclidean instances of the PTSPD is #P-hard. For this purpose we use a
polynomial time reduction from #KNAPSACK. We show that we are able to solve
#KNAPSACK if we are able to compute the probabilities with which deadlines for
Euclidean instances of the PTSPD are violated.

Theorem 12. Computing the probabilities of deadlines violations for Euclidean
instances of the PTSPD is #P-hard.

Proof. Given an instance for the #KNAPSACK PROBLEM according to definition 7,
we create an instance for the Euclidean PTSPD as depicted in figure 4.1. We
put the depot and n vertices equally spaced on a line. The distances between
two consecutive vertices is some constant q and the probabilities for all these
vertices are set to 1. The depot, v0, is located at the very left, the other vertices
are denoted from left to right with v1, v2, . . . , vn. Between each pair of vertices
vi−1 and vi, i ∈ {1, 2, . . . , n}, we put another vertex ui in a way, such that the
distance to both vertices vi−1 and vi is q/2+ wi/2. The probabilities for these
new vertices are set to 1/2. Finally, vertex vn gets assigned a deadline of nq+W ,
for all the other vertices we do not impose a deadline (i.e. we set the deadline
to some sufficiently high value).

We have constructed the instance in a way, such that there exists a bijection
between the different realizations of the random events and the different binary
vectors x of the original #KNAPSACK PROBLEM. Here we denote by the term
realization of the random events a specific scenario in which certain vertices are
present while the other vertices are not present. For a realization r, where the
vertices ui, i ∈ T , are present, the corresponding vector x(r) is defined according
to x i = 1 if and only if i ∈ T . Now let our a priori solution visit the vertices from
left to right, i.e. in the order v0, u1, v1, u2, v2, . . . , un, vn. The arrival time at vertex
vn for a certain realization r is then nq + wx(r). The inequality nq + wx(r) ≤
nq+W for the deadline of vertex vn is equal to the inequality wx(r)≤W for the
original problem. That means a realization for which the deadline at vertex vn is
met corresponds to a feasible solution of the original #KNAPSACK PROBLEM. On

64 4.1 Hardness Results for the PTSPD

v0 v1, p(v1) = 1 v2, p(v2) = 1 vn−1, p(vn−1) = 1 vn, p(vn) = 1

u1, p(u1) = 1/2

u2, p(u2) = 1/2

un, p(un) = 1/2

q

q+w1

2

q q

q+w1

2
q+w2

2
q+w2

2
q+wn

2
q+wn

2

t(vn) = nq +W

Figure 4.1. The instance of the Euclidean PTSPD used in theorems 12, 13
and 14. Penalty values are not included in the visualization. Missing dead-
lines correspond to sufficiently high values, such that they do not impose any
constraints.

the other hand, realizations which violate the deadline at vertex vn correspond
to infeasible solutions of the original problem. Since all realizations occur with
the same probability of 2−n, the probability with which the deadline of vertex
vn is met, multiplied with 2n, yields a solution for the original problem. In
other words, we are able to solve the original problem if we can compute the
probability with which the deadline at vertex vn is met (or violated).

Since the computational time for this reduction is polynomially bounded in
the input size of the original #KNAPSACK PROBLEM, we can conclude the proof.

4.1.2 Evaluating the Objective Function

In the previous section we have seen that it is #P-hard to compute the prob-
abilities for deadline violations of Euclidean PTSPD instances. The reduction
used for this proof contained only one vertex for which a deadline was imposed.
We have seen already that the objective function consists of the expected travel
time plus the expected penalties. Since we are able to efficiently compute the
expected travel time, we can derive the probabilities with which a deadline for
the instances of the previous section is violated from the costs of such a solution.
In the following we formalize this idea.

Theorem 13. Evaluating the objective function for Euclidean instances of the
PTSPD is #P-hard.

Proof. We use the same reduction as in the previous section and we additionally
show that we can efficiently compute the probability for a deadline violation at

65 4.1 Hardness Results for the PTSPD

vertex vn using the costs of the given a priori solution. We have the following
formula for the costs of the given solution τ.

fptspd(τ) = E(travel time for τ) +E(penalties for τ)

= E(travel time for τ) + P(deadline violation at vertex vn) · h(vn)

Here h(vn) is the fixed penalty value for a deadline violation at vertex vn

according to the definition of the PTSPD. That means we can express the proba-
bility for a deadline violation at vertex vn by

P(deadline violation at vertex vn) =
�

fptspd(τ)−E(travel time for τ)
�

/h(vn).

Given the costs of the solution, we are now able to efficiently compute the
probability with which the deadline at vertex vn is violated, since we are able to
efficiently compute the expected travel time. This concludes the proof.

4.1.3 Delta Evaluation in Local Search

Before we give hardness results for the decision variant and the optimization
variant of the PTSPD, we want to discuss hardness results regarding a very im-
portant speed-up technique for local search algorithms, namely delta evaluation.
Delta evaluation is used for computing the difference of the costs between two
neighbor solutions in a given local search neighborhood. We discuss these results
here, since they are strongly related to our previous results. Local search algo-
rithms play an important role for different stochastic vehicle routing problems
as we will see later and the technique of delta evaluation has been successfully
applied in many cases, usually leading to major runtime improvements. In fact,
such heuristics are currently the state-of-the-art methods for the PTSP (Birattari
et al. [2008a]; Weyland et al. [2009a]). Here we show that delta evaluation
is #P-hard in so-called reasonable local search neighborhoods for Euclidean in-
stances of the PTSPD. The overall idea is to use the same instances and solutions
as in the previous sections. We then show that starting from a solution, whose
costs can be computed efficiently, we arrive with a polynomially bounded num-
ber of local search steps at the solution used in the previous reductions. That
means we can compute the costs of this solution with polynomially many delta
evaluations. Before we give the formal proof, we define what we understand of
a reasonable local search neighborhood.

66 4.1 Hardness Results for the PTSPD

Definition 6. We call a local search neighborhood reasonable if every solution can
be reached from any starting solution within polynomially many local search steps,
and if these local search steps can be determined efficiently.

Note that this definition does not impose strong constraints on the local
search neighborhood. In fact, most of the local search neighborhoods used for
routing problems are reasonable local search neighborhoods according to our def-
inition (for example the local search neighborhoods described in Johnson and
McGeoch [1997]).

Theorem 14. Delta evaluation in reasonable local search neighborhoods for
Euclidean instances of the PTSPD is #P-hard.

Proof. We start again with the Euclidean PTSPD instances used in the proof of
theorems 12 and 13. This time we focus on the solution starting at the depot,
visiting customer vn, followed by all the customers from left to right and finishing
at the depot. The only deadline in this instance is imposed for customer vn. For
this solution the deadline is met, since the distance between v0 and vn is nq and
the deadline of vn is t(vn) = nq +W . Therefore the total costs of this solution
consist only of the expected travel times. And these expected travel times can be
computed efficiently.

Now let us call this solution τ1. Since we are using a reasonable local search
neighborhood there exists a sequence of at most polynomially many solutions τ1,
τ2, . . ., τm (that can be computed efficiently), where τm is the solution used in
the proof of theorems 12 and 13. Starting with the solution costs for τ1, we are
able to compute the solution costs of τm using m−1 delta evaluations in the local
search neighborhood. It is #P-hard to compute the costs of τm due to theorem
13, which concludes the proof.

4.1.4 The Decision Variant of the PTSPD

The decision variant of the PTSPD is the problem of deciding whether there
exists a solution with costs at most k or not. Here we show that the decision
variant for Euclidean instances of the PTSPD is #P-hard as well. The overall
idea is to modify the initial reduction of theorem 12 such that we know the
optimal solution. Finally, a binary search on the values of k for the decision
variant can be used to determine the probability with which the deadline of the
last customer is violated, which then allows us to solve the original instance of
#KNAPSACK PROBLEM.

Theorem 15. The decision variant of the Euclidean PTSPD is #P-hard.

67 4.1 Hardness Results for the PTSPD

Proof. Given an instance for the #KNAPSACK PROBLEM according to definition
7, we create an instance for the Euclidean PTSPD similar to that used in the
previous proofs. The PTSPD instance is visualized in figure 4.2. We use the
vertices of the previous proofs and add a new vertex x at the right side with a
distance of Q from vn. The deadline for this new vertex is set to nq+Q+W , which
corresponds to the constraint of the original #KNAPSACK PROBLEM instance. The
deadlines for all other vertices are set to Q.

With a sufficiently large value for Q (e.g. nq+
∑n

i=1 ui) and sufficiently large
values for the penalties for the vertices v1, v2, . . . , vn and u1, u2, . . . , un we can
ensure that x is visited in an optimal solution at the very end. We can then
further show that in an optimal solution all vertices are visited from left to right
(This can also be trivially guaranteed by using more complex values for the
deadlines of the vertices v1, v2, . . . , vn and u1, u2, . . . , un).

In this case the costs for an optimal solution are the expected travel times
plus the penalties for deadline violations at vertex x . Since we are able to
efficiently compute the expected travel times, we can determine the penalty
costs at vertex x with a binary search on the decision variant of the Eu-
clidean PTSPD. Let E(travel time) denote the expected travel time and let
P(deadline violation at vertex x) denote the probability for a deadline violation
at vertex x . Then the costs for an optimal solution are

E(travel time) + P(deadline violation at vertex x) · h(x).

With a binary search on the decision variant of the PTSPD, starting with
a bound of k = E(travel time) + h(x)/2, the costs of the optimal solution can
be determined within n steps. These costs can then be used to determine the
probability with which the deadline at customer x is met, which enables us to
solve the original #KNAPSACK PROBLEM instance.

4.1.5 The Optimization Variant of the PTSPD

Although we know already that the decision variant of the PTSPD is #P-hard, we
cannot immediately conclude that the optimization variant is #P-hard as well
(as it is for example done for NP-hard decision/optimization problems in Arora
and Barak [2009]), since we are not able to efficiently evaluate solutions. For
showing that the optimization variant of Euclidean instances of the PTSPD is #P-
hard, we further modify the instance used in the previous proof. The idea here is
that we create an instance where, depending on the probability with which the

68 4.1 Hardness Results for the PTSPD

v0 v1, p(v1) = 1 v2, p(v2) = 1 vn−1, p(vn−1) = 1 vn, p(vn) = 1

u1, p(u1) = 1/2

u2, p(u2) = 1/2

un, p(un) = 1/2

q

q+w1

2

q q

q+w1

2
q+w2

2
q+w2

2
q+wn

2
q+wn

2

t(vn) = Q

Q

x, p(x) = 1

t(x) = nq +Q+Wt(v1) = Q t(v2) = Q t(vn−1) = Q

t(u1) = Q

t(u2) = Q

t(un) = Q

Figure 4.2. The instance of the Euclidean PTSPD used in theorem 15. Penalty
values are not included in the visualization.

deadline which corresponds to the #KNAPSACK PROBLEM constraint is met, one
of two solutions τ1 and τ2 is the optimal solution. If this probability is below
a certain threshold, τ1 is the optimal solution, if the probability is above that
threshold, τ2 is the optimal solution. With a binary search on these threshold
values, we are then able to determine the probability with which the deadline
is met, which finally enables us to solve the original instance of the #KNAPSACK

PROBLEM.

Theorem 16. The optimization variant of the Euclidean PTSPD is #P-hard.

Proof. Given an instance for the #KNAPSACK PROBLEM according to definition
7, we create an instance for the Euclidean PTSPD as visualized in figure 4.3.
The main difference is that instead of the single vertex x that was used in the
previous proof, we have now two vertices x1 and x2, which are both at distance
Q from the vertex vn. The distance between x1 and x2 is also Q. The deadline for
vertex x1 is set to nq+Q+W and corresponds to the constraint of the original
#KNAPSACK PROBLEM, for x2 no deadline is imposed. As in the previous proof, it
is possible to show that the vertices are visited from left to right in an optimal
solution. For the last part of the tour there are two possibilities. Either x1 is
visited prior to x2 (we call this tour τ1) or x2 is visited prior to x1 (we call this
tour τ2). Using ∆= d(x2, v0)− d(x1, v0), the difference between the costs of τ2

and τ1 can be expressed by

fptspd(τ2)− fptspd(τ1) = h(x1)− ph(x1)−∆.

Here p is the probability that the deadline at customer x1 is violated for
solution τ1. In the case where τ2 is the optimal solution we have

69 4.2 Approximations for the PTSPD Objective Function

v0 v1, p(v1) = 1 v2, p(v2) = 1 vn−1, p(vn−1) = 1 vn, p(vn) = 1

u1, p(u1) = 1/2

u2, p(u2) = 1/2

un, p(un) = 1/2

q

q+w1

2

q q

q+w1

2
q+w2

2
q+w2

2
q+wn

2
q+wn

2

t(vn) = Qt(v1) = Q t(v2) = Q t(vn−1) = Q

t(u1) = Q

t(u2) = Q

t(un) = Q

Q

Q

Q

x1, p(x1) = 1

t(x1) = nq +Q+W

x2, p(x2) = 1

Figure 4.3. The instance of the Euclidean PTSPD used in theorem 16. Penalty
values are not included in the visualization. Missing deadlines correspond to
sufficiently high values, such that they do not impose any constraints.

h(x1)− ph(x1)−∆≤ 0

⇔ (1− p)h(x1)≤∆
⇔ 1− p ≤∆/h(x1).

In that case we know that the probability with which the deadline is met for
solution τ1 is bounded from above by ∆/h(x1). Analog we can show that in the
case where τ1 is the optimal solution the probability with which the deadline at
customer x1 is met for solution τ1 is bounded from below by ∆/h(x1). By using
different values for ∆ and/or h(x1) we are able to adjust this threshold value.

Now we can use a binary search on the optimization variant on instances
with different threshold values, starting with ∆/h(x1) = 1/2. Within n steps we
are then able to determine the probability with which the deadline at customer
x1 is met for solution τ1, which allows us then to solve the original #KNAPSACK

PROBLEM instance.

4.2 Approximations for the PTSPD Objective Function

In the previous section we have seen that the evaluation of the PTSPD objective
function is #P-hard for Euclidean instances. The approximability of the PTSPD
objective function is still an open problem. For practical applications differ-
ent approximations of this objective function are used (Campbell and Thomas

70 4.2 Approximations for the PTSPD Objective Function

[2009]; Weyland et al. [2012b]). In this section we focus on these approxi-
mations and investigate the worst-case approximation guarantees that are ob-
tained by these approaches. In Campbell and Thomas [2009] three different
approximations are introduced. One approach is based on the aggregation on
a temporal level and called temporal aggregation approximation. Using appro-
priate aggregation factors, this approach requires a polynomial runtime. Note
that approaches using temporal aggregation have been successfully applied for
different problems, including the PTSPD (Campbell and Thomas [2009]) and
the PTSP (Campbell [2006]). The second approach, denoted by expected value
approximation, computes the expected arrival times at customers which are then
used for the computation of penalties. That means that instead of the probability
distributions of the arrival times only the expected value of these arrival times
are used. The last approach is based on the recursive computation of the ob-
jective function and truncates parts that are supposed to contribute only very
small values to the overall costs. This approach is called truncation approxi-
mation. Unfortunately, this approach does not guarantee a polynomial runtime
and therefore we do not consider it in this section. We just want to note that
similar results hold also for this approach, although it is not a polynomial time
algorithm. Additionally, an approach based on Monte Carlo sampling has been
introduced in Weyland et al. [2012b] in the context of the PTSPD. Here Monte
Carlo sampling is used to approximate the expected travel times and penalties.
We denote this approach by Monte Carlo sampling approximation.

In the remaining part of this section we investigate the worst-case approx-
imation guarantees of the three approximations temporal aggregation approxi-
mation, expected value approximation and Monte Carlo sampling approximation.
We give a detailed explanation for each of these approximations and present ex-
amples to derive lower bounds for the worst-case approximation guarantees of
these approaches.

4.2.1 The Expected Value Approximation

As we stated before the expected value approximation does not use the probabil-
ity distributions of the arrival times at the customers to compute the penalties.
Instead of these probability distributions only the expected arrival times (under
the assumption that a visit is required) are used. This means that the formula
for the expected penalties of a solution τ changes to

E(penalties for τ) =
n
∑

i=2

p(τi)h(τi)Vτi
,

71 4.2 Approximations for the PTSPD Objective Function

where Vτi
is an indicator variable with a value of 1 if the expected arrival time

at customer τi violates the deadline of that customer and 0 otherwise. Since the
expected arrival times and the expected travel times can both be computed in
polynomial time, the expected value approximation requires only a polynomial
runtime.

By using only the expected arrival times this approximation completely ab-
stracts from the probability distributions describing the deadline violations at
the different customers. In the following we use this fact to prove that the ex-
pected value approximation cannot approximate the PTSPD objective function
within any reasonable factor.

Theorem 17. The expected value approximation cannot approximate the PTSPD
objective function within a factor of 2n.

Proof. To show that the expected value approximation cannot approximate the
PTSPD objective function within a factor of 2n in general, we create for a given
instance size n the instance depicted in figure 4.4. The a priori tour τ that is
used in this proof starts at the depot v0 and visits the customers in the order
v1, v2, . . . , vn. The vertices are located at three different locations. One for the
depot v0, one for v1 and one for all the other vertices. The distances between
these locations are all 4. All the vertices are visited with probability 1, except v1,
which has a visiting probability of 1/2. The only deadline is imposed on v2 with
t(v2) = 7.

The expected travel time for the given a priori tour is 1/2 ·12+1/2 ·8= 10.
For the arrival time at customer v2 we have to distinguish two cases. If v1 is
visited, then we arrive at vertex v2 at time 8. If v1 is not visited, we arrive at
vertex v2 at time 4. In the former case we do not meet the deadline of vertex v2,
in the latter case the deadline of vertex v2 is met. Since both events occur with
a probability of 1/2 the costs for τ are

fptspd(τ) = 10+ 1/2 · h(v2).

On the other hand, the expected arrival time at vertex v2 is 1/2·8+1/2·4= 6,
the expected value approximation computes costs of

f ev
ptspd(τ) = 10.

For a penalty value of h(v2) = 20 · 2n for vertex v2 the fraction between the
exact costs and the costs computed by the expected value approximation are

72 4.2 Approximations for the PTSPD Objective Function

v0 v2, . . . , vn

v1, p(v1) = 1/2

4

4 4

p(v2) = . . . = p(vn) = 1
t(v2) = 7

Figure 4.4. An Euclidean instance of the PTSPD that cannot be approximated
within a factor of 2n by the expected value approximation.

fptspd(τ)/ f ev
ptspd(τ) = (10+ 1/2 · h(v2))/10= 1+ 1/20 · h(v2)≥ 2n,

which concludes the proof.

4.2.2 The Temporal Aggregation Approximation

In chapter 1 we have discussed a recursive approach for the computation of the
expected penalties. It can be shown that this approach requires a computational
time of O (n2T), where T is an upper bound of the latest possible arrival time at
a customer. The idea of the temporal aggregation approximation is to scale the
travel times between the different locations by a common factor and to round
these resulting values. In this way the upper bound of the latest possible arrival
time is also decreased. For an aggregation factor of a the computational time
for the temporal aggregation approximation is O (n2T/a). Using appropriate ag-
gregation factors, a polynomial computational time can be obtained, since the
computation of the expected travel times requires only a polynomial runtime.

The approximation error for this method results from rounding errors of the
scaled distances between the different locations. These rounding errors influ-
ence the approximation of the expected travel time as well as the approximation
of the probabilities with which deadlines are violated at the different customers.
In the latter case even a small inaccuracy can lead to a huge approximation er-
ror for the overall costs. This observation is used in the following theorem to
prove that the temporal aggregation approximation is not able to approximate
the PTSPD objective function within any reasonable factor. In fact, we show that

73 4.2 Approximations for the PTSPD Objective Function

this even holds for the TRAVELING SALESMAN PROBLEM WITH DEADLINES (TSPD),
the non-stochastic variant of the PTSPD.

Theorem 18. The temporal aggregation approximation is not able to approximate
the PTSPD objective function within a factor of 2n.

Proof. To show the desired result, we create for a given instance size n the PT-
SPD instance depicted in figure 4.5. The depot v0 is located on the very left, then
a single vertex v1 is located right of the depot at a distance of 1 and all the other
vertices are located at the very right with a distance of 2n to v1 and a distance
of 2n + 1 to the depot v0. The probabilities for all customers are set to 1, which
means that we are even considering an instance of the TSPD, the non-stochastic
variant of the PTSPD. A deadline is only imposed on customer v2 with a value of
2n. The a priori tour τ used for this proof starts at the depot v0, visits v1 followed
by the other vertices v2, . . . , vn and finishes at the depot v0.

Since there is no stochasticity involved in the instance, we can easily compute
the costs of the a priori tour. The travel time simply sums up to 2(2n + 1). The
arrival time at customer v2 is 2n+1 and therefore the deadline is always missed,
which leads to additional costs of h(v2). In total the costs of τ are

fptspd(τ) = 2(2n+ 1) + h(v2).

Let us focus on the costs of τ computed by the temporal aggregation ap-
proximation. To ensure that the temporal aggregation approximation runs in
polynomial time, we have to use an aggregation factor of ≥ 2n/g(n) for some
polynomial g(n). For sufficiently large n the aggregated travel time between
v0 and v1 is 0. The aggregated travel time between v0 and any of the remain-
ing vertices is g(n). The same holds for the aggregated travel time between v1

and any of the remaining vertices and for the deadline imposed at customer v2.
Using these aggregated values, the deadline at customer v2 is always met and
therefore the costs computed by the temporal aggregation approximation are

f ta
ptspd(τ) = 2 · 2n.

For a penalty value of h(v2) = 22n+1 for vertex v2 the fraction between the
exact costs and the costs computed by the expected value approximation are

74 4.2 Approximations for the PTSPD Objective Function

v0 v1

1
. . .

v2, . . . , vn

p(v2) = . . . = p(vn) = 1p(v1) = 1

t(v2) = 2n

2n

Figure 4.5. An Euclidean instance of the PTSPD that cannot be approximated
within a factor of 2n by the temporal aggregation approximation.

fptspd(τ)/ f ta
ptspd(τ) = (2(2n+ 1) + h(v2))/2 · 2n

≥ h(v2)/2
n+1

= 22n+1/2n+1

= 2n.

This concludes the proof.

4.2.3 The Monte Carlo Sampling Approximation

For the Monte Carlo sampling approximation a set of s identically and indepen-
dently distributed scenarios, ω1,ω2, . . . ,ωs, are sampled according to the prob-
ability distribution given by the function p. Each of these scenarios determines
for each customer if a visit is required or not (in that specific scenario). Given
a specific scenario, the costs for the travel times and penalties for the a poste-
riori solution under that specific scenario can be computed straightforward in
linear runtime. Let c(τ,ωi) be those costs for a given solution τ and a given
sample ωi. Then s−1

∑s
i=1 c(τ,ωi) gives us an estimation for the exact objective

function. Since each evaluation of the function c can be performed in linear
time, the total computational time is O (ns). For a constant or a polynomially
bounded number of samples s, the Monte Carlo sampling approximation requires
a polynomial runtime.

Since the approximation quality varies with the randomly generated samples,
we have to consider this for our results. Therefore, we show in this section
that with high probability (regarding the generated samples) the Monte Carlo
sampling approximation is not able to approximate the PTSPD objective function
within a factor of 2n. We formalize this in the following theorem.

75 4.2 Approximations for the PTSPD Objective Function

Theorem 19. The Monte Carlo Sampling approximation using g(n) samples, where
g(n) is a polynomial in the input size, is not able to approximate the PTSPD objec-
tive function within a factor of 2n with a probability of at least 1− g(n)2−n.

Proof. For this proof we create a PTSPD instance as shown in figure 4.6. All the
vertices are located at only two different positions. Without loss of generality we
assume that the number of vertices is even. Vertices v0, v2, . . . , vn−1 are located
at the first position and vertices v1, v3, . . . , vn are located at the second position.
The travel time between these two positions is 2. The probabilities for all the
customers are set to 1/2 and the only deadline is imposed at customer vn with a
value of t(vn) = 2n− 1. The a priori solution τ used in this proof starts at the
depot v0, visits the customers in increasing order with respect to their indices
and finishes at the depot v0.

We will now bound the costs computed by the PTSPD objective function
and the costs computed by the Monte Carlo Sampling approximation using g(n)
samples selected according to the given probabilities. For the exact objective
function we focus only on the costs imposed by a deadline violation at customer
vn. The deadline at this customer is only violated if customer vn requires to be
visited and all the other customers were visited before. The probability for the
deadline violation is therefore 2−n and the costs can be bounded by

fptspd(τ)≥ 2−nh(vn).

Let us focus on the costs computed by exactly one sample selected randomly
according to the given probabilities. With a probability of 2−n all the customers
require to be visited in the randomly selected sample. In this case the costs
would be 2(n+ 1) + h(vn). On the other hand, if not all customers require to
be visited in the randomly selected sample, the deadline is not violated and the
costs can be bounded from above by 2(n+ 1), which is an upper bound on the
total travel time for any sample. This second case occurs with a probability of
1− 2−n.

To show that the Monte Carlo sampling approximation is not able to compute
a reasonable approximation using g(n) samples with a high probability, we fur-
ther investigate the second case. If we have g(n) samples, the probability that
the deadline at customer vn is met in all of these samples is at least 1− g(n)2−n.
The upper bound on the total travel time is an upper bound for the costs com-
puted by the Monte Carlo sampling approximation in this case. That means we
have

f mcs,g(n)
ptspd (τ)≤ 2(n+ 1)

76 4.3 Inapproximability Results for the Dependent PTSPD

v0, v2, . . . , vn−1 v1, v3, . . . , vn

p(v1) = p(v3) = . . . = p(vn) = 1/2

t(vn) = nq − 1

2

p(v2) = p(v4) = . . . = p(vn−1) = 1/2

Figure 4.6. An Euclidean instance of the PTSPD that cannot be approximated
within a factor of 2n by the Monte Carlo sampling approximation with high
probability (regarding the chosen samples).

with a probability of at least 1−g(n)2−n regarding the chosen samples. Using
a penalty value for customer vn of h(vn) = 22n2(n+ 1) we have with the same
probability

fptspd(τ)/ f mcs,g(n)
ptspd (τ) ≥ 2−nh(vn)/2(n+ 1)

= 2−n22n2(n+ 1)/2(n+ 1)

= 2n,

which concludes the proof.

4.3 Inapproximability Results for the
Dependent PTSPD

As stated before, the approximability of the PTSPD objective function is still a
very interesting open problem. In this section we show that the objective func-
tion of a slightly more general problem cannot be approximated within any rea-
sonable factor. Here we allow certain dependencies among the random events.
In fact, we consider only dependencies in which two random events are either
independent of each other, always occur together or are mutually exclusive. We
call the resulting problem the DEPENDENT PROBABILISTIC TRAVELING SALESMAN

PROBLEM WITH DEADLINES (DEPENDENT PTSPD). We omit a formal definition of
this problem here, since it is almost identical to that of the PTSPD. Just note
that the dependencies can be efficiently modeled by pairs of mutually disjoint
sets.

Using the additional structural properties given by the possible dependen-
cies among the random events we can show that the objective function of the
DEPENDENT PTSPD cannot be approximated within a factor of 2n. To prove this

77 4.3 Inapproximability Results for the Dependent PTSPD

statement we use a polynomial reduction from the well-known decision problem
3SAT (Karp [1972]).

For the 3SAT problem we have given a set of boolean variables Y . A literal of
a variable y ∈ Y is either the variable y itself or the negation of that variable, ȳ .
Additionally, m clauses with exactly 3 literals over the variables in Y are given.
The k-th clause can be represented as xk,1 ∨ xk,2 ∨ xk,3, where xk,1, xk,2, xk,3 are
literals over the variables in Y . A clause is satisfied for a given assignment of the
variables, if at least one of the literals of that clause evaluates to 1. We further
say that the formula given by the m clauses is satisfied for a given assignment of
the variables, if all clauses are satisfied by that assignment. The 3SAT problem
is now to decide for a given formula, if an assignment of the variables exists that
satisfies this formula. Let us state this more formally.

Problem 8 (3SAT). Given a set Y of n variables and a formula of m clauses x1,1 ∨
x1,2 ∨ x1,3, . . . , xm,1 ∨ xm,2 ∨ xm,3, each with exactly 3 literals over the variables
in Y , the problem is to decide if there exists an assignment of the variables which
satisfies the given formula.

The overall idea for showing the desired inapproximability result is to con-
struct an Euclidean instance for the DEPENDENT PTSPD with imposing a deadline
on only a single customer. If there does not exist an assignment for the 3SAT
instance satisfying all the clauses, the deadline is always met. On the other
hand, if there exists an assignment satisfying all the clauses, the deadline is vi-
olated at least with a very small probability. Using an appropriate value for the
penalty value, we can adjust the factor between the costs for these two cases to
an exponentially large value. Therefore a 2n approximation for the DEPENDENT

PTSPD objective function could be used to decide the original 3SAT instance. We
formalize this idea in the proof of the following theorem.

Theorem 20. The objective function of the DEPENDENT PTSPD cannot be approxi-
mated within a factor of 2n.

Proof. Given an instance for the 3SAT problem with m clauses over n variables,
we construct the following instance for the DEPENDENT PTSPD. For each clause
we construct a gadget as depicted for clause k in figure 4.7. This gadget consists
of two vertices vk−1 and vk and a location with three vertices which correspond to
the literals that occur in clause k. The travel time between these three locations
is 1. The probabilities for the vertices vk−1 and vk are 1, the probabilities for
the vertices corresponding to the literals are 1/2. The gadgets for the different
clauses are then connected at the common vertices vi. Additionally, we make

78 4.3 Inapproximability Results for the Dependent PTSPD

use of the dependencies among random events for the vertices corresponding to
literals. If a literal occurs multiple times, the corresponding vertices are either
all present or all not present. If a literal occurs in negated and non-negated
form, exactly one of the corresponding vertices are present. In this way we
have a bijection between variable assignments for the original 3SAT instance
and realizations of the random events for our instance of the DEPENDENT PTSPD.

As we stated earlier we want to show that if there exists an assignment sat-
isfying all the clauses, a deadline is violated with positive probability, while if
such an assignment does not exist, that deadline is not violated at all. To show
this, we define our a priori tour τ to start at the depot v0, visit the vertices cor-
responding to the literals of the first clause, continue with v1 and the vertices
corresponding to the literals of the second clause, and so on. At the end the tour
finishes at the depot after vertex vm has been visited. Additionally, we set the
deadline of vertex vm to 2m− 1/2.

Let us assume that we have an assignment satisfying all the clauses. Then
there exists a realization of the random events which corresponds to this as-
signment and which occurs with a probability of 2−n. Since the assignment is
satisfying all the clauses there is at least one of the vertices that correspond to
literals in each of the gadgets which requires to be visited. That means that the
travel time within each gadget is 2. We have m gadgets in total and therefore the
arrival time at vertex vm is 2m. In this case the deadline at vertex vm is violated.
The costs for our solution under the assumption that a truth assignment exists
can be bound by

ftrue(τ)≥ 2−nh(vm).

On the other hand, if there does not exist an assignment satisfying all the
clauses, the deadline at vertex vm is never violated. This is due to the fact that
for any realization of the random events there exists at least one gadget with
a total travel time of only 1. This gadget corresponds to a clause which is not
satisfied in the corresponding variable assignment. Therefore the arrival time at
customer vm is bounded from above by 2m−1 for any realization of the random
events. Using an upper bound of the expected travel time, we can bound the
costs for our solution under the assumption that no truth assignment exists by

ffalse(τ)≤ 3m.

Using a penalty value for vertex vm of h(vm) = 22n4m the ratio between these
two costs can be bounded from below by

79 4.4 Discussion and Conclusions

vk−1

xk,1, xk,2, xk,3

vk1

1 1

p(xk,1) = p(xk,2) = p(xk,3) = 1/2

p(vk−1) = 1 p(vk) = 1

Figure 4.7. The gadget for the instance of the Dependent PTSPD used in
theorem 20 for the k-th clause of the original 3SAT instance.

ftrue(τ)/ ffalse(τ) ≥ 2−nh(vm)/3m

= 2−n22n4m/3m

> 2n.

Since the ratio between the costs for a solution under the assumption that a
truth assignment exists and the costs for a solution under the assumption that no
such truth assignment exists is bounded from below by 2n, a 2n approximation
algorithm for the DEPENDENT PTSPD objective function could be used to the
decide the original 3SAT instance. This concludes the proof.

4.4 Discussion and Conclusions

In this chapter we have shown that various computational tasks related to the
PROBABILISTIC TRAVELING SALESMAN PROBLEM WITH DEADLINES are #P-hard even
for Euclidean instances: The computation of probabilities with which deadlines
are violated, the evaluation of solutions, delta evaluation in reasonable local
search neighborhoods, the decision variant of the PTSPD and the optimization
variant of the PTSPD. To our knowledge the former results are the first results
of this kind for stochastic vehicle routing problems. The latter results strengthen
the hardness results that the PTSPD inherits from the TSP. We have further in-
vestigated the worst-case approximation guarantees obtained by the existing

80 4.4 Discussion and Conclusions

approximations for the PTSPD objective function. None of those approaches
is able to approximate the PTSPD objective function even within an exponential
approximation ratio. Finally, we focused on the DEPENDENT PTSPD, a slightly
more general problem than the PTSPD. We were able to derive a strong inap-
proximability result for the objective function of the DEPENDENT PTSPD.

The results presented here open some directions for further research. First
of all, the approximability of the PTSPD objective function is a very interest-
ing open problem with practical relevance. Another very interesting topic is the
relation of counting problems and stochastic combinatorial optimization prob-
lems. It seems that there is a deep connection between these two classes of
problems and further research in this direction looks promising. Apart from that
it would be also of interest to transfer the results presented in this article to
other stochastic combinatorial optimization problems or other stochastic vehicle
routing problems. Maybe it is also possible to use the new results to strengthen
the inapproximability results for the optimization variant of the PTSPD.

Chapter 5

Heuristics for the Probabilistic
Traveling Salesman Problem

In this chapter we start with the more practically oriented part of the thesis. In
fact, we focus on the development of efficient heuristics for the PROBABILISTIC

TRAVELING SALESMAN PROBLEM. As we have stated already in chapter 1, instances
of up to 50 customers can be solved to optimality using a branch-and-cut algo-
rithm (Laporte et al. [1994]). Although this work dates back almost 20 years, no
significant improvements could be obtained meanwhile and it is still not possi-
ble to solve instances of realistic size to optimality. Therefore, the development
of efficient optimization approaches for the PTSP is focusing a lot on heuris-
tics. The current state-of-the-art methods are heuristics based on strong local
search algorithms combined with an approximation of the PTSP objective func-
tion (Birattari et al. [2008a,b]; Balaprakash et al. [2009a,b, 2010]). We believe
that this is a very promising approach, not only for the PTSP, but for stochastic
vehicle routing problems in general. Therefore, our work is continuing in this
direction.

We start with the development of efficient local search algorithms for the
PTSP. First, we examine different approaches for the approximation of the PTSP
objective function. Then we give an overview about common local search neigh-
borhoods for routing problems. After that we introduce several local search
algorithms using different local search neighborhoods and different approxima-
tions of the PTSP objective function. In an extensive computational study we
compare their performance on common benchmark instances and identify the
strongest local search algorithm. Finally, we use the strongest local search algo-
rithm within some more enhanced heuristics. Comparisons with state-of-the-art
approaches clearly show that we were able to obtain new state-of-the-art heuris-

81

82 5.1 Approximations for the PTSP Objective Function

tics for the PTSP in this way. The results presented in this chapter are based on
the publications Weyland et al. [2009a] and Weyland et al. [2009b].

5.1 Approximations for the PTSP Objective Function

As we have stated before, the state-of-the-art heuristics for the PTSP are using
approximations of the objective function to evaluate solutions. Heuristics are
known to be robust against slight noise in the objective function and therefore
a significant amount of computational time can be saved in this way. The exact
evaluation of solutions for the PTSP can be performed in a computational time
of O (n2) for solutions of size n (Jaillet [1985]). In this section we present three
different approximations for the PTSP objective function which achieve a linear
computational time (Branke and Guntsch [2004]; Birattari et al. [2008b]). Two
of them are based on the closed-form mathematical expression introduced in
chapter 1, the third one is based on Monte Carlo sampling.

5.1.1 The Depth Approximation

The depth approximation has been introduced in Branke and Guntsch [2004]
and is directly based on the closed-form mathematical expression of the objec-
tive function introduced in chapter 1. The costs of a tour represented by the
permutation τ : 〈n〉 → V is the sum of the costs caused by all of the edges. We
state this formula here again for convenience.

fptsp(τ) =
n
∑

i=1

n
∑

j=i+1

d(τi,τ j) p(τi) p(τ j)
j−1
∏

k=i+1

(1− p(τk))

+
n
∑

i=1

i−1
∑

j=1

d(τi,τ j) p(τi) p(τ j)
n
∏

k=i+1

(1− p(τk))
j−1
∏

k=1

(1− p(τk))

The key observation for the depth approximation is that edges whose nodes
are distant from each other in the given tour contribute less to the overall costs
than edges whose nodes are nearby in the given tour. This is due to the simple
fact that the probability for the occurrence of one of the former edges in an a
posteriori solution is smaller than the probability for the occurrence of one of
the latter edges. The idea is now to modify the mathematical formulation and
to truncate the second sum after adding a total of d ∈ N, d < n, summands. The
mathematical formulation changes to

83 5.1 Approximations for the PTSP Objective Function

f depth
ptsp (τ) =

n
∑

i=1

min{i+d,n}
∑

j=i+1

d(τi,τ j) p(τi) p(τ j)
j−1
∏

k=i+1

(1− p(τk))

+
n
∑

i=1

i+d−n
∑

j=1

d(τi,τ j) p(τi) p(τ j)
n
∏

k=i+1

(1− p(τk))
j−1
∏

k=1

(1− p(τk)).

The computational time for this method drops to O (dn) and is therefore
linear in the input size for a fixed value of d. The approximation accuracy of the
depth approximation for usage in heuristics is usually sufficient for values of d
between 20 and 40.

5.1.2 The Threshold Approximation

The threshold approximation is based on the same idea as the depth approxi-
mation (Branke and Guntsch [2004]). But instead of truncating the sum at a
different depth, the sum is truncated as soon as the probability for the corre-
sponding edges drops between a given threshold value t ∈ (0, 1). Since the
number of summands varies due to this property, the mathematical formulation
for this approximation is a little bit cumbersome. For a given threshold value
t ∈ (0, 1) we define for all i ∈ 〈n〉 the set

T (i) =

(

j ∈ {i+ 1, . . . , n} : p(τi) p(τ j)
j−1
∏

k=i+1

(1− p(τk))≥ t

)

∪

(

j ∈ {1, . . . , i− 1} : p(τi) p(τ j)
n
∏

k=i+1

(1− p(τk))
j−1
∏

k=1

(1− p(τk))≥ t

)

.

The formula for the threshold approximation can then be stated as follows.

f thr.
ptsp(τ) =

n
∑

i=1

∑

j∈{i+1,...,n}∩T (i)

d(τi,τ j) p(τi) p(τ j)
j−1
∏

k=i+1

(1− p(τk))

+
n
∑

i=1

∑

j∈{1,...i−1}∩T (i)

d(τi,τ j) p(τi) p(τ j)
n
∏

k=i+1

(1− p(τk))
j−1
∏

k=1

(1− p(τk))

The computational time for the threshold approximation depends heavily on
the probabilities of the different customers. For homogeneous probabilities it

84 5.1 Approximations for the PTSP Objective Function

drops to a linear runtime, for heterogeneous probabilities a rigorous analysis is
extremely difficult. For practical applications it is only of importance that also in
these cases a significant amount of computational time can be saved with respect
to an exact evaluation.

5.1.3 The Monte Carlo Sampling Approximation

The evaluation of the PTSP objective function is equivalent to compute an ex-
pected value and therefore it is quite natural to consider an approximation based
on Monte Carlo sampling (Shapiro [2003]). This approximation has been suc-
cessfully used for the PTSP in Birattari et al. [2008b]. Formally, we can describe
this approximation approach in the following way. Let X be the set of all a
priori solutions and let Ω be the set of all scenarios. Here a scenario is the
realization of the stochastic events corresponding to the presence/absence of
customers. Furthermore, let p : Ω → [0, 1], with

∑

ω∈Ω p(ω) = 1, represent
the probabilities of the different scenarios and let c : X × Ω → R+ represent
the costs of the a posteriori solutions for all combinations of solutions and sce-
narios. Note, that we can formulate the PTSP objective function in this way as
fptsp(τ) =

∑

ω∈Ω c(τ,ω)p(ω) for all τ ∈ X . Now we use Monte Carlo sampling
to estimate the exact objective function. For this purpose, we sample s identi-
cally and independently distributed scenarios, ω1,ω2, . . . ,ωs, according to the
probability distribution given by p. Then f mcs

ptsp (τ) = s−1
∑s

i=1 c(τ,ωi) gives us an
estimation for the exact objective function. Since the computation of the costs of
the a posteriori tour for a given solution and a given scenario requires a runtime
of O (n), the Monte Carlo sampling approximation has a total computational time
of O (ns). For a fixed number of samples, this is linear in the size of the solution.

This approach could lead to some difficulties if it is directly used within
heuristics. While evaluating a single solution or comparing multiple solutions,
different sets of samples can lead to different results. For example, it could lead
to the phenomenon of cycling in a local search algorithm, where a solution τ1 is
better than a solution τ2 for one set of samples, while for another set of samples
the solution τ1 is worse than the solution τ2. Furthermore, for each solution
evaluation s new samples have to be generated, which requires additional ran-
dom numbers and consumes additional computational time. To overcome these
difficulties s fixed samples can be used for all the solution evaluations, or at
least for a certain number of evaluations, after which the samples are replaced
by new ones. In this case the heuristic is no longer optimizing the exact objective
function, but like for the other approximations a slightly perturbed one.

85 5.2 Local Search Neighborhoods

x

y

z

(a) the initial tour

x

y

z

(b) the resulting tour

Figure 5.1. Illustration of a move in the 1-shift local search neighborhood.
Part (a) shows the initial situation. Then node x is removed from the tour and
reinserted between nodes y and z. The resulting tour is shown in part (b).

5.2 Local Search Neighborhoods

In this section we start with a detailed presentation of common local search
neighborhoods for routing problems. These local search neighborhoods are of
great importance for this thesis and are frequently used throughout the remain-
der of it. For a more comprehensive overview of such local search neighborhoods
in the context of the TRAVELING SALESMAN PROBLEM we refer to Johnson and Mc-
Geoch [1997].

We start with a presentation of the 1-shift neighborhood and the 2-opt neigh-
borhood. These neighborhoods together form the 2.5-opt neighborhood. Finally,
we present the 3-opt neighborhood, which includes all the other ones as special
cases.

5.2.1 The 1-shift Neighborhood

The 1-shift local search neighborhood is commonly used for routing problems
and defined on tours. It consists of all solutions that can be reached by removing
one node from the tour and inserting it at a different position in the tour. This
neighborhood is defined for tours starting at a specific location and also for
tours without a fixed starting point. Given a tour with n locations, the size
of the neighborhood is n(n− 2) = O (n2), since each of the n locations can be
inserted at n−2 potential insertion points. An illustration of a move in the 1-shift
neighborhood is given in figure 5.1.

86 5.2 Local Search Neighborhoods

x1

y2

y1

x2

(a) the initial tour

x1

y2

y1

x2

(b) the two separate parts

x1

y2

y1

x2

(c) the resulting tour

Figure 5.2. Illustration of a move in the 2-opt local search neighborhood. Part
(a) shows the initial situation. Then the edges between the nodes x1 and x2

and between the nodes y1 and y2 are removed. The two separate parts are
shown in part (b). These two parts are then reconnected to obtain the tour
shown in part (c).

5.2.2 The 2-opt Neighborhood

Like the 1-shift local search neighborhood, the 2-opt local search neighborhood is
commonly used for routing problems and defined on tours. A move in the 2-opt
neighborhood consists of the following steps. First, two non adjacent edges are
removed. This splits the tour into two separate parts. Those two parts are then
reconnected such that a different tour is obtained. For a given tour with n nodes,
we have n(n− 3)/2 possibilities to remove two non adjacent edges. Without an
orientation of the tour, there is only one unique possibility to reconnect the
two parts to obtain a different tour. Therefore the size of this neighborhood
is n(n − 3)/2 = O (n2) in this case. If the orientation of the tour matters, we
have two different possibilities to reconnect the two parts. For each possibility
the original orientation of one of the two parts is reversed. The size of the
neighborhood in this case is therefore n(n − 3) = O (n2). An illustration of a
typical move in the 2-opt local search neighborhood is given in figure 5.2.

5.2.3 The 2.5-opt Neighborhood

The 2.5-opt local search neighborhood is also commonly used for routing prob-
lems. It is a combination of the 1-shift neighborhood and the 2-opt neighbor-
hood. It consists of all the moves from these two neighborhoods. For a given tour
with n nodes, the size of the 2.5-opt neighborhood is therefore n(n− 2)+ n(n−
3)/2= O (n2) if the tour does not have an orientation, and n(n−2)+n(n−3) =
O (n2) if the orientation of the tour matters.

87 5.3 Local Search Algorithms

5.2.4 The 3-opt Neighborhood

The 3-opt neighborhood also belongs to the class of common local search neigh-
borhoods for routing problems. It is similar to the 2-opt neighborhood, the only
difference is that three edges are removed instead of two and that the result-
ing three separate parts can be combined to a new tour in up to seven different
ways (15 if the orientation of the tour matters). In most of the cases this upper
bound is obtained. Only if adjacent edges are removed, which is not forbidden
for the 3-opt neighborhood, there might be less possibilities. For a given tour
of n nodes, we have n(n − 1)(n − 2)/6 different possibilities to remove three
edges and therefore the size of the 3-opt neighborhood is O (n3). Note that this
is a higher order of growth compared to the other local search neighborhoods
that were introduced before. It is also interesting that the 3-opt neighborhood
contains the other neighborhoods as special cases. The 2-opt moves are obtained
by reconnecting two of the three segments in the same way as they have been
before. The 1-shift moves are obtained in the case where two of the three re-
moved edges were adjacent. An illustrative example for the 3-opt neighborhood
is given in figure 5.3.

5.3 Local Search Algorithms

In this section we present different local search algorithms for the PTSP. These
algorithms are based on the local search algorithm proposed in Birattari et al.
[2008b]. A high level description of a local search algorithm for optimization
problems in general is given in algorithm 1. In the first step we create an initial
solution. This can be done by a fast construction heuristic or purely random.
As long as this solution is not a local optimum with respect to the local search
neighborhood we are using, we replace the current solution with an improving
one. If there is no improving solution in the local search neighborhood, we
terminate the algorithm and return our current solution.

Algorithm 1 High level description of a local search algorithm.
1: Create an initial solution S
2: while S is not a local optimum

(with respect to the chosen neighborhood) do
3: Replace S by an improving solution
4: end while
5: return S

88 5.3 Local Search Algorithms

x1

x2

y1

y2
z1

z2

(a) the initial tour

x1

x2

y1

y2
z1

z2

(b) the three separate parts

x1

x2

y1

y2
z1

z2

(c) one resulting tour

x1

x2

y1

y2
z1

z2

(d) another resulting tour

Figure 5.3. Illustration of a move in the 3-opt local search neighborhood. Part
(a) shows the initial situation. Then the edges between the nodes x1 and x2,
between the nodes y1 and y2 and between the nodes z1 and z2 are removed.
The three separate parts are shown in part (b). These parts can then be
reconnected to obtain, among others, the tours shown in parts (c) and (d).

89 5.3 Local Search Algorithms

For the local search algorithms in this thesis we follow the first improvement
strategy with a random exploration of the local search neighborhood. That
means we examine the neighbor solutions in a random order and replace the
current solution as soon as we find an improving one. Preliminary experiments
have shown that this strategy leads to a better performance compared to other
common local search strategies. In Birattari et al. [2008b] four techniques were
used to further improve the performance. First of all, as we have already indi-
cated, approximations of the PTSP objective function are used for the evaluation
of solutions. The usage of these approximations allows us to use another tech-
nique, called delta evaluation. To compare the current solution with the solu-
tions in its neighborhood, we only compute the difference in the solution costs,
instead of evaluating the neighbor solutions from scratch. This technique leads
to a major improvement of the computational time. For all the approximations
we have introduced, the computational time is reduced by a remarkable factor
of n in this way. Then, a technique called neighborhood lists is used. Due to
some heuristic criterion each node has assigned a list with preferable neighbor
nodes. The heuristic criterion in our case is the distance between the nodes. We
now limit the local search moves to those moves that establish at least one new
edge between a node and another node in its neighborhood list. In this way the
computational time can be reduced, without decreasing the quality of the final
solution significantly. The last technique, which has a similar purpose as the
neighborhood lists is called don’t look bits. Each node has assigned a bit, which
indicates whether moves including this node are still worth to be examined. A
value of false indicates that we still consider moves including this node, a value
of true indicates that we “don’t look” for moves including this node anymore.
Initially, all moves are considered and the bits are set to false. As soon as we
have evidence that no move that includes a specific node leads to an improving
solution, the corresponding bit for this node is set to true. The node is only re-
activated if the tour is changed locally around that node. The implementations
of the latter two techniques are straightforward and we will not go more into
detail here. For the local search algorithms using the Monte Carlo sampling ap-
proximation we propose another improvement. Every time the current solution
is updated, we compute for each sample and each node the predecessor and the
successor of the given node in the a posteriori tour imposed by the given sample.
This small computation enables us to use delta evaluation more efficiently.

What is still open, is the selection of the local search neighborhood and the
selection of the approximation of the PTSP objective function. For our exper-
iments we propose the following combinations. The 1-shift neighborhood is
used with the Monte Carlo sampling approximation (1shift-delta). The 2.5-opt

90 5.3 Local Search Algorithms

neighborhood is used with the Monte Carlo sampling approximation (2.5opt-
sampling), the depth approximation (2.5opt-depth) and the threshold approxi-
mation (2.5opt-threshold). Like the 2.5-opt neighborhood, the 3-opt neighbor-
hood is used with the Monte Carlo sampling approximation (3opt-sampling),
the depth approximation (3opt-depth) and the threshold approximation (3opt-
threshold).

Additionally, we use the 2.5-opt and the 3-opt neighborhood with a com-
bined approach (2.5opt-combined, 3opt-combined). Here we alternate the local
search algorithms using the threshold approximation and the Monte Carlo sam-
pling approximation for i iterations. Here i is usually a value of between 1 and
3. A short overview about this approach is given in algorithm 2.

Algorithm 2 High level description of the combined local search algorithm.
1: Create an initial solution S
2: for i times do
3: Apply the local search algorithm using the threshold approximation on S

and store the result in S
4: Apply the local search algorithm using the Monte Carlo sampling approxi-

mation on S and store the result in S
5: end for
6: return S

We have stated earlier in this chapter that one of our goals was to identify
the strongest local search algorithm among existing local search algorithms and
the approaches introduced here. Here we mean with strongest local search al-
gorithm the algorithm which achieves the best tradeoff between computational
time and solution quality. For this purpose we performed computational exper-
iments on different common benchmark instances for the PTSP and with differ-
ent local search algorithms. In the remainder of this section we will discuss the
benchmark instances we have used for our experiments. After that we explain
our experimental setup. We finish with a presentation and discussion of the
results obtained.

5.3.1 Benchmark Instances

For our experiments we use a large set of different common benchmark in-
stances. Here we distinguish between three different types of instances. We
use instances from the TSPLIB benchmark (those instances are available at
www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/) supple-

91 5.3 Local Search Algorithms

mented with the probabilities for the customers (tsplib instances), Euclidean
instances, in which customers are distributed uniformly at random in the square
[0, 106] × [0,106] (uniform instances) and Euclidean instances, in which cus-
tomers are normally distributed around a certain number of centers, which
themselves are distributed uniformly at random in the square [0, 106]× [0, 106]
(clustered instances). We either have used the same probability for each cus-
tomer with typical values of 0.05, 0.1,0.2, . . . , 0.5, or we have selected the prob-
abilities uniformly from a fixed interval. Note that these kind of instances are
commonly used when different heuristics for the PTSP are compared (Birattari
et al. [2008a]; Balaprakash et al. [2010]).

5.3.2 Experimental Setup

The algorithms used for the experiments are those local search algorithms that
were discussed in section 5.3. For each of the algorithms we tried different pa-
rameters. Usually these parameters (number of samples, depth, threshold value,
number of iterations) define a tradeoff between the computational time and the
approximation accuracy. A series of 50 independent runs is then performed for
each algorithm on each benchmark instance. Here we calculated the average
runtime and the average solution quality (using the exact objective function),
together with their standard deviations. The algorithms were implemented in
C++ and compiled with common optimization flags. All the experiments were
performed on Quad-Core AMD Opteron systems running at 2GHz.

5.3.3 Results

Since local search algorithms should both be fast and produce good solutions,
the development of these algorithms can itself be seen as a kind of multi-objective
optimization problem. That means the goal is to find non-dominated algorithms
close to the (unknown) Pareto front. In figure 5.4 the average computational
times and the average solution costs of the new local search algorithms with dif-
ferent parameterizations (number of samples, depth, threshold value, number
of iterations) for uniform instances of size 1000 with probabilities of p = 0.1 are
visualized. Note that both axes here are logarithmic.

Representative numerical results, together with a comparison to state-of-the-
art local search algorithms from Birattari et al. [2008b], are given in table 5.1
for uniform instances of size 1000 with probabilities p = 0.1. The state-of-the-
art methods are highlighted in boldface and denoted by 2.5-opt-EEs-100 and
2.5-opt-EEs-1000. The algorithms are grouped according to the local search

92 5.3 Local Search Algorithms

 1e+07

 1 10 100

S
ol

ut
io

n
C

os
t (

lo
g-

sc
al

ed
)

Runtime (log-scaled)

3opt-combined
3opt-depth

3opt-threshold
3opt-sampling

2.5opt-combined
2.5opt-depth

2.5opt-threshold
2.5opt-sampling

1shift-delta

Figure 5.4. Solution cost / runtime surface of local search algorithms with
different parameterizations on uniform instances of size 1000 with probabilities
p = 0.1.

neighborhood that was used and within each group according to the solutions
costs. The first column contains the algorithm together with the parameters, the
second and third columns contain the average solution cost and the standard de-
viation of the solution cost, and finally the fourth and fifth columns contain the
average runtime and the standard deviation of the runtime. Results for other
uniform/tsplib instances and other probability distributions are similar. A fair
comparison with state-of-the-art algorithms on clustered instances was not pos-
sible, since the solution quality depends heavily on the (randomly generated)
instances that are used and therefore the variance with respect to the solution
quality is remarkably high. It is not clear, which (randomly generated) instances
have been used by other researchers in previous experiments. Due to the high
variance, the only way to compare different algorithms on this class of instances,
is to use the same subset of instances for all the different approaches. Unfortu-
nately, we could not perform such a comparison, but preliminary results with
reimplementations of other approaches suggest, that results are also similar for
clustered instances. All in all, each of the state-of-the-art local search algorithms
is dominated by at least one of the new local search algorithms with statisti-

93 5.4 Heuristics

cal significance. That means that one of the new algorithms is better in both,
runtime and solution quality, with respect to a t-test using a significance level
of 95%. The complete numerical results are available at the author’s website
(www.idsia.ch/~weyland/).

Algorithm Solution Cost Runtime
avg. s.d. avg. s.d.

3opt-combined (s = 200, t = 0.01, i = 3) 8974762 71386 117.8 3.3
3opt-combined (s = 200, t = 0.01, i = 1) 8993851 68678 43.5 2.3
3opt-threshold (t = 0.01) 9002175 77380 45.1 2.9
3opt-depth (d = 40) 9016480 88722 30.2 1.9
3opt-sampling (s = 200) 9133516 74004 11.5 0.6
2.5opt-combined (s = 200, t = 0.01, i = 3) 9041823 86862 9.7 0.3
2.5opt-combined (s = 200, t = 0.01, i = 1) 9127135 97081 4.0 0.2
2.5-opt-EEs-1000 9269830 120191 7.6 0.8
2.5opt-threshold (t = 0.01) 9292290 125378 5.4 0.4
2.5opt-depth (d = 40) 9292524 104783 3.4 0.2
2.5opt-sampling (s = 200) 9317110 89689 1.1 0.1
2.5-opt-EEs-100 9462476 89942 1.5 0.1
1shift-delta (s = 200) 9703702 199377 2.0 0.3

Table 5.1. Solution costs and runtimes of the new local search algorithms and
state-of-the-art local search algorithms on uniform instances of size 1000 with
probabilities p = 0.1. The former state-of-the-art methods are highlighted in
boldface.

Our results clearly indicate that the 2.5opt-combined and the 3opt-combined
local search algorithms are the most efficient approaches. In the next section we
use the local search algorithms presented in this section within some more com-
plex heuristics. Based on our results we expect the approaches using the 2.5opt-
combined and the 3opt-combined local search algorithms to perform best.

5.4 Heuristics

In this section we investigate the performance of random restart local search al-
gorithms (RRLS) and iterated local Search algorithms (ILS). For the underlying
local search algorithm we use the new local search algorithms 2.5opt-sampling,

94 5.4 Heuristics

2.5opt-depth, 2.5opt-threshold, 2.5opt-combined, 3opt-sampling, 3opt-depth,
3opt-threshold and 3opt-combined.

The random restart local search algorithm creates iteratively random solu-
tions and applies the underlying local search algorithm on these solutions. After
applying the local search algorithm, the solution cost is computed exactly (or
approximated with a sufficient accuracy) and compared to the cost of the best
solution found so far. If the new solution is better, it replaces the current best
solution for the next iteration. At the end the best solution found is returned.

The iterated local search algorithm uses the nearest neighbor heuristic to cre-
ate an initial solution. Then iteratively the current solution is perturbed using
multiple double-bridge moves (Johnson and McGeoch [1997]), and the under-
lying local search algorithm is applied on that solution. We have chosen double-
bridge moves for the perturbation since it is not possible to reverse these moves
using moves from the local search neighborhoods we are using. Analog to the
RRLS the solution cost is computed exactly (or approximated with a sufficient
accuracy) and compared to the cost of the best solution found so far. If the
new solution is better, it replaces the current best solution. At the end the best
solution found is returned.

A description of these algorithms is given in pseudocode in algorithm 3 and
algorithm 4.

Algorithm 3 Random restart local search for the PTSP
1: repeat
2: Create a random solution S
3: Use a local search algorithm with S as the initial solution and store the

result in S
4: if S is better than the best solution found so far then
5: Store S in S?

6: end if
7: until the termination criterion is fulfilled
8: return S?

We denote the resulting approaches by adding a prefix of ils- (for the iterated
local search algorithm) or rrls- (for the random restart local search algorithm)
to the identifier of the underlying local search algorithm. The iterated local
search algorithm using the 2.5opt-combined local search is then denoted by ils-
2.5opt-combined and the random restart local search algorithm using the 3opt-
threshold local search is denoted by rrls-3opt-threshold.

The computational studies that we will present in the remainder of this sec-

95 5.4 Heuristics

Algorithm 4 Iterated local search for the PTSP

1: Create an initial solution S
2: repeat
3: Use a local search algorithm with S as the initial solution and store the

result in S
4: if S is better than the best solution found so far then
5: Store S in S?

6: end if
7: Perform a perturbation of the solution S
8: until the termination criterion is fulfilled
9: return S?

tion were performed to compare the efficiency of the heuristics using the new
local search algorithms with the efficiency of existing heuristics for the PTSP.
For this purpose we performed computational experiments on the same bench-
mark instances as in the previous section. We will now explain our experimental
setup. After that we will finish the section with a presentation and discussion of
the results.

5.4.1 Experimental Setup

For the experiments with the random restart local search algorithms and the
iterated local search algorithms, we use basically the same setup as for the local
search algorithms. Here the execution time on each instance was set to one hour
and for each algorithm 20 runs were performed. For every run, intermediate
results were stored after each iteration. In this way fair comparisons to other
approaches, where runtimes of less than one hour were used, are possible.

5.4.2 Results

Representative numerical results on the tsplib instance rat783 with probabilities
p = 0.1 and on uniform instances of size 1000 with probabilities p = 0.1 are
given in table 5.2 and table 5.3, together with a comparison to state-of-the-art
algorithms from Balaprakash et al. [2009b]. The state-of-the-art methods are
highlighted in boldface and denoted by pACS+2.5-opt-EEais, ACS-EE and MMAS-
EE. In both tables the new algorithms are presented in the upper part of the
table and the state-of-the-art approaches are presented in the lower part of the
table. Within both groups the results are sorted according to the solution costs.

96 5.4 Heuristics

The first column contains the denotation of the algorithm, the second column
contains the average solution quality and the last column contains the standard
deviation of the solution quality. For a fair comparison with other results from
literature we report the results after a runtime of n2/1000 CPU seconds. Note
that in table 5.3 one of the approaches from literature used a runtime of 10000
CPU seconds.

The new algorithms based on the combined local search clearly outper-
form the state-of-the-art algorithms using the same computational time and
even outperform the best known PTSP heuristics regarding the final solution
quality. The complete numerical results are available at the author’s website
(www.idsia.ch/~weyland/). Results for other probability distributions are sim-
ilar. Those results are all statistically significant with respect to a t-test using a
significance level of 95%. It was not possible to make a fair comparison with
state-of-the-art algorithms on clustered instances due to the same reasons as in
the computational studies of the previous section.

Algorithm Solution Cost
Average Standard Deviation

ils-3opt-combined (s = 200, t = 0.01, i = 3) 3242.3 4.8
ils-2.5opt-combined (s = 200, t = 0.01, i = 3) 3242.5 2.8
rrls-3opt-combined (s = 200, t = 0.01, i = 3) 3244.3 6.0
rrls-2.5opt-combined (s = 200, t = 0.01, i = 3) 3245.3 3.3
ils-3opt-depth (d = 40) 3255.3 5.5
ils-2.5opt-depth (d = 40) 3268.6 6.1
rrls-3opt-depth (d = 40) 3280.0 12.2
ils-3opt-sampling (s = 200) 3286.5 2.9
rrls-3opt-sampling (s = 200) 3288.5 3.4
ils-2.5opt-sampling (s = 200) 3294.1 3.8
rrls-2.5opt-sampling (s = 200) 3354.1 6.6
rrls-2.5opt-depth (d = 40) 3373.9 14.9
pACS+2.5-opt-EEais 3258 5
ACS-EE 3260 6

Table 5.2. Solution costs obtained by the RRLS algorithms, the ILS algorithms
and state-of-the-art algorithms on the tsplib instance rat783 with probabilities
p = 0.1 for n2/1000 CPU seconds. The former state-of-the-art methods are
highlighted in boldface.

97 5.4 Heuristics

Algorithm Solution Cost
Average Standard Deviation

ils-2.5opt-combined (s = 200, t = 0.01, i = 3) 8868969 53539
rrls-2.5opt-combined (s = 200, t = 0.01, i = 3) 8876505 53033
rrls-3opt-depth (d = 40) 8885893 51515
ils-3opt-depth (d = 40) 8886279 53694
ils-3opt-combined (s = 200, t = 0.01, i = 3) 8887252 58646
rrls-3opt-combined (s = 200, t = 0.01, i = 3) 8895624 55689
ils-2.5opt-depth (d = 40) 8922169 57428
ils-3opt-sampling (s = 200) 8977799 61330
ils-2.5opt-sampling (s = 200) 8987609 51497
rrls-3opt-sampling (s = 200) 8990448 54652
rrls-2.5opt-depth (d = 40) 9022913 57942
rrls-2.5opt-sampling (s = 200) 9079896 57086
pACS+2.5-opt-EEais 8906639 49546
ACS-EE 8912265 49076
MMAS-EE (10000 CPU seconds) 8884442 73941

Table 5.3. Solution costs obtained by the RRLS algorithms, the ILS algorithms
and state-of-the-art algorithms on uniform instances of size 1000 with proba-
bilities p = 0.1 for n2/1000 = 1000 CPU seconds. The former state-of-the-art
methods are highlighted in boldface.

It is obvious, that the algorithms using the combined local search approach
are the strongest. But it is not clear, if the approaches based on 3-opt local search
algorithms are superior to the approaches based on 2.5-opt local search algo-
rithms and, if the iterated local search algorithms perform significantly different
from the random restart local search algorithms. Further investigations, focus-
ing on larger runtimes and/or larger input instances, are necessary to resolve
this problem. It is also possible that the comparison of absolute solution quality
values is the limiting factor here. The development of strong lower bounds for
the optimal solution quality would allow a comparison of relative solution qual-
ities (with respect to the optimal value) and probably in this case a difference
between the approaches will become apparent.

98 5.5 Discussion and Conclusions

5.5 Discussion and Conclusions

In this chapter we have presented new local search algorithms for the PTSP.
These algorithms are not dominated by any existing local search algorithm for
the PTSP in a Pareto sense on common benchmark instances. Many of these
algorithms require more computational time, but therefore they produce bet-
ter solutions. Using these new local search algorithms in a random restart lo-
cal search algorithm and an iterated local search algorithm, we obtained new
state-of-the-art heuristics for the PTSP. It remains an open question, whether the
random restart local search heuristic and the iterated local search heuristic per-
form better with the 3-opt local search operator or with the 2.5-opt local search
operator.

A possibility for future research would be to replace the local search al-
gorithms with more elaborate methods like tabu search or simulated anneal-
ing. The previous state-of-the-art algorithms for the PTSP (Balaprakash et al.
[2009b]) and also some other approaches (Branke and Guntsch [2004]) were
based on a hybridization of ant colony optimization with local search algorithms.
Therefore, an additional possibility for further research would be to use ant
colony optimization or other metaheuristics in combination with the new local
search algorithms.

Since the differences regarding the solution qualities are getting smaller for
recently introduced approaches, it would be very interesting to develop tech-
niques to obtain strong lower bounds for the solution qualities. With such lower
bounds, different approaches could be compared in a better way. Furthermore,
they would provide a measure of the potential for further improvements.

Chapter 6

Heuristics for the Probabilistic
Traveling Salesman Problem with
Deadlines

This chapter deals with the development of efficient heuristics for the PROBA-
BILISTIC TRAVELING SALESMAN PROBLEM WITH DEADLINES (Campbell and Thomas
[2008b]). For this purpose we try to use our experience with the development
of efficient heuristics for the PROBABILISTIC TRAVELING SALESMAN PROBLEM, which
was the central topic of the previous chapter. The underlying publications for
this chapter are Weyland et al. [2011b] and Weyland et al. [2012b].

Although the two problems seem to be quite similar, there are significant dif-
ferences as we have seen already in chapter 4. Many different computational
tasks related to the PTSPD are #P-hard: the evaluation of solutions, the opti-
mization variant, the decision variant and also delta evaluation in reasonable
local search neighborhoods. The situation is completely different for the PTSP.
There the evaluation of solutions can be performed in polynomial time. Fur-
thermore, the decision variant is NP-complete and the optimization variant is
NP-hard. The introduction of time dependencies in terms of deadlines changes
the computational complexity in a fundamental way. As for the PTSP, only very
small instances of the PROBABILISTIC TRAVELING SALESMAN PROBLEM WITH DEAD-
LINES can be solved to optimality using a reasonable amount of runtime. So far,
the only alternative approach is to use heuristics. The main difficulty here is
the computationally demanding objective function of the PTSPD. Therefore, dif-
ferent analytical approximations for the objective function have been proposed
in Campbell and Thomas [2009]. In this chapter we introduce an approxima-
tion for the objective function of the PTSPD based on Monte Carlo sampling and

99

100 6.1 An Approximation for the PTSPD Objective Function using MCS

using the novel method of quasi-parallel evaluation of samples. With compre-
hensive computational studies we reveal the efficiency of this approximation.
Additionally, based on this new approximation, we present an improved local
search algorithm and a random restart local search algorithm for solving the PT-
SPD and provide an extensive computational study on a large set of benchmark
instances.

The remainder of this chapter is organized as follows. We first introduce
in detail an approximation for the PTSPD objective function based on Monte
Carlo sampling. Then we propose an improvement for this approach, the quasi-
parallel evaluation of samples. We investigate the required computational time
and present some techniques and improvements regarding practical applications
of this method. After that we compare the new approximation of the objective
function with existing approximations, following the approach in Campbell and
Thomas [2009]. Based on the potential revealed in those experiments, we then
propose an improved local search algorithm and a random restart local search
algorithm for solving the PTSPD. Here we also present an extensive computa-
tional study of these heuristics on common benchmark instances for the PTSPD.
Finally, we finish the chapter with a discussion of the results and with conclu-
sions.

6.1 An Approximation for the PTSPD Objective
Function using Monte Carlo Sampling

In this part we show how Monte Carlo sampling can be used for an efficient ap-
proximation of the PTSPD objective function. We first discuss how the sampling-
based approximation for the PTSP objective function of chapter 5 can be adapted
for the PTSPD objective function. After that we introduce the novel method of
quasi-parallel evaluation of samples. With an analysis of the asymptotic com-
putational time and with additional computational studies we show that this
method leads to significant speed-ups for the approximative evaluation of PT-
SPD solutions compared to the sequential sampling-based approach.

6.1.1 The Basic Approximation of the Objective Function based
on Monte Carlo Sampling

The Monte Carlo sampling approximation of the PTSPD objective function is
analog to the Monte Carlo sampling approximation of the PTSP objective func-

101 6.1 An Approximation for the PTSPD Objective Function using MCS

tion which has been discussed in chapter 5 (Birattari et al. [2008a]). Therefore,
we only give a brief overview of this approach and discuss the modifications that
are necessary to adapt this approach for the PTSPD.

As for the PTSP, we use Monte Carlo sampling to sample s scenarios accord-
ing to the given probabilities for the customers’ presence. For a given a priori
tour, we then compute the costs of the a posteriori tours for each of the s sce-
narios and use the average of these costs as an approximation of the exact costs.
Given an a priori solution for the PTSPD and a sample, we can compute the
costs of the a posteriori tour for the given solution and the given sample in a
straightforward way in linear time O (n). Here we follow the approach for the
PTSP (Birattari et al. [2008a]) with a modification for the computation of the
penalties for missed deadlines. We just process the customers in the order given
by the a priori tour and for each customer that is present in the given sample,
we add the travel costs between the previously visited customer and the pro-
cessed customer to the overall costs, we update the total travel time and, in case
of a deadline violation, we add the corresponding penalty to the overall costs.
At the end we just add the travel costs between the last visited customer and
the depot to the overall costs. Since we have to examine s samples, the total
computational time for this approach is O (ns), including the time to generate
the s samples. In this approach the number of samples can be used to adjust
the runtime versus the approximation accuracy. For the usage in heuristics we
will use s fixed samples for all the solution evaluations due to the issues already
discussed in chapter 5.

Additionally, we want to mention at this point that most of the sampling-
based heuristics for the PTSP rely on the combination of the Monte Carlo sam-
pling approximation of the objective function with delta evaluation, an impor-
tant speed-up technique for the comparison of two solutions in a local search
neighborhood (Birattari et al. [2008a]). Unfortunately, it is not possible to use
delta evaluation in the context of the PTSPD. While the effect of a small change
in a solution is bounded locally for the PTSP, this is not longer the case for the
PTSPD due to the time dependencies introduced by the deadlines. This is one
of the reasons for developing the quasi-parallel evaluation of samples which will
be described in the following section.

6.1.2 Quasi-parallel Evaluation of Samples

An important improvement for the computational time of the approach dis-
cussed above can be achieved by using a quasi-parallel approach to evaluate
the samples. We discuss this technique for the PTSPD RECOURSE I with propor-

102 6.1 An Approximation for the PTSPD Objective Function using MCS

tional penalties, but it also works with the other models and it can easily be used
for other stochastic vehicle routing problems in which the presence of customers
is stochastic. In principle it could also be used for the PTSP, but most of the
approaches for the PTSP rely on a strong local search using the sampling-based
approximation of the objective function in combination with delta evaluation
(see chapter 5). Since the quasi-parallel evaluation of samples is not compati-
ble with delta evaluation it is not possible to further improve those approaches.
Nonetheless, it could be an interesting technique also for the PTSP, especially for
approaches that rely on the full evaluation of solutions (and are so far not com-
petitive with approaches based on local search). In the remaining part of this
section we discuss the quasi-parallel evaluation for the PTSPD RECOURSE I with
proportional penalties in detail. Note that only minor changes are necessary to
use this technique for the other models. Additionally, we give a theoretical anal-
ysis of the computational time required by this method. A computational study
comparing the efficiency of the sequential method with that of the quasi-parallel
evaluation concludes this section.

The costs of a solution for a specific sample depend only on the customers
that are present in that particular sample. This observation is the basis for the
quasi-parallel evaluation of samples. Instead of evaluating the samples sequen-
tially, the customers are processed in the order given by the solution and for each
customer only those samples are considered, in which this customer is present.
To apply this approach, additional data structures are required. For each cus-
tomer v ∈ V \ {v1} we create a set Rv containing the samples in which the cus-
tomer v is present and needs to be visited. This can already be done during
the creation of the samples. Moreover, we use for each sample r the variables
lastr , timer and penaltyr . During the run of the quasi-parallel evaluation these
variables store the last position visited for sample r (lastr), the cumulative travel
time for sample r (timer) and the cumulative penalty for sample r (penaltyr).
Additionally, we refer with R to the set of the available samples. Using those no-
tations the pseudocode for the quasi-parallel evaluation of samples is presented
in algorithm 12 for the recourse model with proportional penalties. At the be-
ginning of an evaluation, we set for each sample r the last location visited to the
depot, v1, and the cumulative travel time as well as the cumulative penalty to
0. Now we process the customers in the order given by the a priori solution. At
each customer v we only have to consider the samples contained in the set Rv,
since the customer v is skipped in the other samples. For each sample r in Rv

we first update timer by adding the travel time between the last visited location,
lastr , and v. If the deadline for this customer is not met, we add the correspond-
ing penalty to the cumulative penalty for this sample, penaltyr . Finally we set

103 6.1 An Approximation for the PTSPD Objective Function using MCS

the last location visited, lastr , to v. After all customers have been processed in
this way, we have to add for each sample r the travel time between the last cus-
tomer visited and the depot to the cumulative travel time, in order to close the
tour (i.e. the travel time between lastr and v1). Adding the average travel times
and the average penalties yields the desired estimation of the objective function.

Algorithm 5 Quasi-parallel evaluation of samples

1: for each sample r ∈ R do
2: lastr := v1

3: timer := 0
4: penaltyr := 0
5: end for
6: for each customer v (in the order given by the a priori solution) do
7: for each sample r ∈ Rv do
8: timer := timer + d(lastr , v)
9: if timer > t(v) then

10: penaltyr := penaltyr + h(v) · (timer − t(v))
11: end if
12: lastr := v
13: end for
14: end for
15: for each sample r ∈ R do
16: timer := timer + d(lastr , v1)
17: end for
18: return |R|−1

∑

r∈R timer + |R|−1
∑

r∈R penaltyr

We denote this approach with the term “quasi-parallel” since all samples are
evaluated at the same time, but not using multiple computational devices like in
the field of parallel computing.

In the remainder of this section we analyze the asymptotic computational
time for the quasi-parallel evaluation of samples and perform computational
studies comparing the computational times of the quasi-parallel evaluation of
samples and the sequential approach.

6.1.3 Theoretical Analysis of the Quasi-Parallel Evaluation
of Samples

Whereas the computational time for the sequential approach is O (ns), the com-
putational time using the technique of quasi-parallel evaluation drops to O (n+

104 6.1 An Approximation for the PTSPD Objective Function using MCS

s+q), where q is the sum of the number of customers that are present and need
to be visited over all samples. We will emphasize this fact in the following theo-
rem, where q is expressed in terms of the instance size n, the number of samples
s and the average probabilities of the customers, p̄.

Theorem 21. The expected computational time (with respect to the used samples)
for the evaluation of a solution using the technique of quasi-parallel sampling is
O (n+ s+ nsp̄). Here p̄ is the mean of the probabilities of the customers.

Proof. The initialization of the data structures and the summation at the end
require a computational time proportional to s, which explains the second term
of the total computational time. Since we iterate over n customers (even if
not all of them need to be visited in the used samples), we have to add for
technical reasons a term of n for the total computational time. Now let us focus
on the expected computational time of the actual computations. In total we
have to process q customers, where q is the total number of customers (over
all samples) that need to be visited. The computational time for each of the q
customers is constant. This results in an expected computational time of E(q).
The expectation of q can be calculated in the following way. Here Zr,v describes
the random variable that has a value of 1 if customer v needs to be visited in
sample r and a value of 0 if customer v does not need to be visited in sample r.
Additionally, we denote by

∑

r the summation over all samples and by
∑

v the
summation over all customers.

E(q) = E
�

∑

r

∑

v

Zr,v

�

=
∑

r

∑

v

E(Zr,v)

=
∑

r

∑

v

p(v) =
∑

r

np̄ = snp̄

The computational time is dominated by the last term for typical instances
and reasonable numbers of samples and therefore the expected computational
time (with respect to the used samples) for the complete quasi-parallel evalua-
tion is O (nsp̄) compared to the computational time of O (ns) for the sequential
approach. Note that p̄ is significantly smaller than 1 in reasonable instances for
the PTSPD. That means, the asymptotic computational time is improved with
respect to the sequential approach, in particular if the probabilities associated
with the customers are rather small.

105 6.1 An Approximation for the PTSPD Objective Function using MCS

6.1.4 Computational Studies for the Quasi-Parallel Evaluation
of Samples

Since constant factors, which are relevant for practical applications, are hid-
den within the asymptotic notation of the computational time, we additionally
perform a computational study to compare the sequential method and the quasi-
parallel evaluation in terms of efficiency. More in detail, we compare the num-
ber of samples that can be evaluated by both methods within a certain fixed
amount of time on benchmark instances for the model with proportional penal-
ties. For this purpose we use common benchmark instances (Campbell and
Thomas [2008b]) of sizes 40, 60 and 100 with four different types of customer
probabilities (denoted by 0.1, range, mixed, 0.9). These probability types lead
to different average probabilities. The benchmark instances are discussed more
in detail together with the computational studies later in this chapter. For each
combination of instance size and probability type we measure how many sam-
ples can be evaluated within a computational time of 60 seconds by both meth-
ods. The number of samples used for the evaluations is fixed to 1000. On the
one hand, this is a reasonable number of samples for usage within heuristics,
on the other hand the performance of both methods depends mainly on the
number of customers that need to be visited, and by using 1000 samples statisti-
cal fluctuations are negligible. The experiments are performed on a Quad-Core
AMD Opteron system running at 2GHz, the same system used for the experi-
ments in the following sections. Table 6.1 summarizes the number of samples
(in millions) that can be evaluated per second using the quasi-parallel evalua-
tion of samples and the sequential approach. Additionally, the speed-up gained
by using the quasi-parallel evaluation of samples instead of the serial approach
is shown. Here the speed-up is the ratio of the number of samples that are eval-
uated per second using the quasi-parallel approach and the number of samples
that are evaluated per second using the sequential approach. For all different
instances, even those with an average customer probability of 0.9, significant
speed-ups are achieved. The speed-ups are slightly affected by the instance size
and tend to increase with larger instances. This is due to the fact that the al-
gorithmic overhead for the quasi-parallel evaluation of samples diminishes with
the input size in comparison with the actual evaluation (the main loop in algo-
rithm 12). Nonetheless, they are mostly affected by the customer probabilities
and range from a factor of around 3.5 for instances with p̄ = 0.9 to a factor of
around 21 for instances with p̄ = 0.1.

All in all, the quasi-parallel evaluation leads to a significant improvement
of the efficiency for the approximative evaluation of solutions in comparison to

106 6.1 An Approximation for the PTSPD Objective Function using MCS

customer probabilities instance size serial quasi-parallel speed-up

0.1, p̄ = 0.1
40 1.33 27.10 20.40
60 0.89 19.20 21.64
100 0.52 11.35 21.76

range, p̄ ≈ 0.5
40 1.04 6.05 5.80
60 0.69 4.65 6.75
100 0.40 2.81 7.01

mixed, p̄ ≈ 0.55
40 1.17 6.67 5.68
60 0.76 4.17 5.52
100 0.49 2.6 5.46

0.9, p̄ = 0.9
40 1.10 3.86 3.49
60 0.76 2.66 3.52
100 0.42 1.58 3.78

Table 6.1. The number of samples evaluated per second (in millions) using the
quasi-parallel evaluation of samples and the sequential approach, as well as the
speed-up obtained by using the quasi-parallel evaluation of samples instead of
the sequential approach, for instances of sizes 40, 60 and 100 with the available
four different types of customer probabilities denoted by 0.1, range, mixed and
0.9.

107 6.2 A Comparison between Approximations for the Objective Function

the sequential approach. This is underlined by the theoretical analysis of the
asymptotic computational time, as well as by our computational studies.

6.2 A Comparison between Approximations for the
Objective Function

In the previous section we have introduced an approximation of the PTSPD ob-
jective function based on Monte Carlo sampling and using the novel method of
quasi-parallel evaluation of samples. In this section we want to compare the per-
formance of our new approximation with the three approximations introduced
in Campbell and Thomas [2009]. It has already been shown that they can be
used within heuristics in combination with the exact objective function, obtain-
ing solutions of competitive quality while the computational time is reduced dra-
matically. Since we are also interested in using the new approximation within
heuristics, we follow the approach of Campbell and Thomas [2009]. Here the
performance of the different approximations and the exact computation of the
objective function are compared using a simple local search algorithm. Note
that in the computational studies presented in Campbell and Thomas [2009] it
was not possible to match the results of the local search algorithm with the ex-
act objective function just by replacing the exact objective function with one of
the approximations. Only a combination of the approximations with the exact
objective function led to competitive results. As we will see in this section, the
situation is different for the sampling based approximation. Here we are able to
obtain competitive results without using the exact objective function at all.

6.2.1 Benchmark Instances

The benchmark instances used for our experiments were introduced and used
in Campbell and Thomas [2008b, 2009]. They are derived from instances for
the TRAVELING SALESMAN PROBLEM WITH TIME WINDOWS (TSPTW, Dumas et al.
[1995]). More in detail, the instances for the PTSPD are derived from the
TSPTW instances with time window lengths of 20 and instance sizes of 40, 60
and 100 in the following way. There are five TSPTW instances available for ev-
ery instance size of 40, 60 and 100. For each of those instances four different
types of customer probabilities are added. The first one uses probabilities taken
uniformly at random from [0,1] and is referred to as range. Then two types with
homogeneous probabilities of 0.1 and 0.9 are used. The last type is referred to as
mixed, here customer probabilities are taken uniformly at random from the two

108 6.2 A Comparison between Approximations for the Objective Function

values {0.1, 1.0}. Moreover, in those instances the penalty values are the same
for all customers. We distinguish between two different values for the penalties,
5 and 50, and between two different types of deadlines. The first deadline type
is called early and uses the starting times of the time windows for the original
TSPTW instances as deadlines. The second one is called late and uses the fin-
ishing times of the time windows as deadlines. In total we have 48 different
instance classes (3 different instance sizes, 4 probability types, 2 penalty values,
2 deadline types) consisting of 5 instances each.

6.2.2 Experimental Setup

For the experiments we have implemented the local search algorithm used in
Campbell and Thomas [2009]. This is a best improvement local search algo-
rithm using the 1-shift neighborhood (Bertsimas and Howell [1993]). The start-
ing solutions are generated in the same way as in Campbell and Thomas [2009]
using a quick heuristic for the non-stochastic variant of the PTSPD. Preliminary
experiments have shown that a number of 500 samples provides a good trade-
off between approximation accuracy and computational time. Therefore, we set
the number of samples to 500 for the experiments in this section. In total we
perform 20 runs on each of the available benchmark instances, which results
in 100 runs for each instance class. As before, the experiments are all per-
formed on a Quad-Core AMD Opteron system running at 2GHz. Here we com-
pare our approach with the three approximation-based approaches of Campbell
and Thomas [2009]. One approach is based on the recursive computation of
the objective function and truncates parts that are supposed to contribute only
very small values to the overall costs. This approach is denoted in the follow-
ing by TC. Another approach is based on the aggregation on a temporal level
and denoted by TA. Note that approaches using temporal aggregation have been
successfully applied for different problems, including the PTSPD (Campbell and
Thomas [2009]) and the PTSP (Campbell [2006]). The last approach, denoted
by EA, computes the expected arrival times at customers which are then used
for the computation of penalties. These approaches start with a run of the local
search algorithm using one of the approximations of the objective function. Then
iteratively the last local optimum is used as a starting solution for another run
of the local search algorithm using a more accurate approximation of the objec-
tive function, until finally the exact objective function is used. Note that for the
approach denoted by EA this results in only 2 iterations, while the other approx-
imations allow to gradually adjust the approximation accuracy at the expense of

109 6.2 A Comparison between Approximations for the Objective Function

additional computational time. For further details about those approximations
we again refer to Campbell and Thomas [2009].

6.2.3 Results

The results of our comparison are summarized in tables 6.2 and 6.3. Table 6.2
contains the average percental computational time for the local search algorithm
using the new approximation with respect to the local search algorithm based
on the approximations of Campbell and Thomas [2009]. Following the notation
of Campbell and Thomas [2009] we refer to these approaches with TC, TA and
EA. Let timeA(I) denote the average computational time required by algorithm A
on the instance I. Then the average computational time for algorithm A (in this
case the sampling-based approach) with respect to algorithm B (in this case one
of the other approaches) is defined as the average value timeA(I)/timeB(I) over
all instances I . Here a value of 5% indicates that the new approach requires 5%
of the computational time of the other approach. Table 6.3 contains the average
percental increase/decrease of the solution costs of the local search algorithm
using the new approximation with respect to the local search algorithm based
on the approximations of Campbell and Thomas [2009] for different classes of
instances. Again we refer to these approaches with TC, TA and EA, following
the notation of Campbell and Thomas [2009]. Let costA(I) denote the aver-
age cost of the solution obtained by algorithm A on the instance I. Then the
average increase/decrease of the solution costs of algorithm A (in this case the
sampling-based approach) with respect to algorithm B (in this case one of the
other approaches) is defined as the average value (costA(I)− costB(I))/costB(I)
over all instances I . That means a value of 5% represents an average increase of
the solution costs of 5%, whereas a value of -5% represents an average decrease
of the solution costs of 5%. In the part denoted by with outliers we are con-
sidering all the runs of the heuristic using our new approximation, in the part
denoted by without outliers we do not consider the 3 worst solutions from each
of the 20 runs.

Let us start with the discussion of the computational times. First of all, it is
not clear which machines are used for the experiments in Campbell and Thomas
[2008b, 2009]. Therefore, we have reimplemented the approach using the exact
objective function and performed some preliminary experiments on the machine
that was used for our experiments. The computational times (and also the so-
lution costs) reported in Campbell and Thomas [2008b] were matched up to a
very small constant factor. Still, we have to respect this in the interpretation of
the results. Over all instances, the new approach we propose requires in average

110 6.2 A Comparison between Approximations for the Objective Function

between 5.5% and 7.5% of the computational time of the other approaches. This
corresponds to a speed-up of a factor between 13 and 18. The most important
difference among the various classes of instances occurs for instances of different
sizes. While the average relative computational time is between 7% and 11%
for instances of size 40, it drops to a value between 1.5% and 4% for instances
of size 100. This shows that the performance of the new method scales much
better regarding the size of the instances. All in all, in terms of computational
time, the new approach is much more efficient than any of the other approaches.

Now the interesting question is if the new approach is able to obtain solu-
tions of competitive quality. The discussion of this aspect is a little bit more
complicated for various reasons and will be performed in the remaining part of
this section.

First of all, we can see in table 6.3 that the solutions obtained by our new ap-
proach are in average slightly better for probabilities of 0.1, competitive for the
probabilities range, slightly worse for the probabilities mixed and significantly
worse for probabilities of 0.9. Apart from that, the performance of the new ap-
proach is much better on larger instances. At the first glance those results do
not look very promising, especially for the instances with probabilities of 0.9,
but a more careful analysis reveals an interesting fact that explains this behav-
ior. Looking at the results of the different runs in detail, one can see that in a
very small number of runs, the new approach returns a local optimal solution
of very poor quality. Unfortunately, only one or two of those solutions of poor
quality are able to significantly influence the average solution costs. This phe-
nomenon occurs even more frequently for instances with customer probabilities
of 0.9, which explains the observations made above. Just as an example, for
one of the instances with size 100, proportional penalties, early deadlines and a
penalty value of 5 all the solutions have costs of around 800, except one solu-
tion with costs of around 2100 and another one with remarkably huge costs of
around 5800. This observation has already been made in Campbell and Thomas
[2009], where bad local optima occur very rarely. In Campbell and Thomas
[2009] one run for each instance was performed, whereas we perform 20 runs
on each instance. Therefore, it is very likely that the results of our experiments
are influenced in a negative way by those local optimal solutions of poor quality.
It is hard to say if the average solution costs are affected by the same phe-
nomenon as observed in Campbell and Thomas [2009] or if the occurrence of
bad local optima is more problematic for heuristics using the approximation of
the objective function based on Monte Carlo sampling. Nonetheless, such solu-
tions of poor quality are only obtained in very few runs. To get an impression
about the influence of the local optimal solutions of poor quality, table 6.3 also

111 6.2 A Comparison between Approximations for the Objective Function

instance TC [in %] TA [in %] EA [in %]
all 5.82 5.60 7.49

size 40 6.93 9.23 10.74
size 60 6.09 4.63 7.36
size 100 3.76 1.61 2.82

probability 0.1 4.13 4.23 3.79
probability 0.9 4.50 5.02 9.61

probability range 8.32 7.39 8.87
probability mixed 6.35 5.75 7.72

penalty 5 7.02 7.27 8.44
penalty 50 5.11 4.60 6.93

deadline early 5.54 4.85 4.70
deadline late 6.10 6.35 10.29

Table 6.2. The average relative computational time over different classes of
instances for the 1-shift best improvement local search algorithm using the
new approximation of the objective function with respect to the 1-shift best
improvement local search algorithm using the approximations of Campbell and
Thomas [2009].

contains the average percental increase/decrease of the solution costs are shown
without considering the 3 worst solutions in each of the 20 runs. Here the re-
sults are better in average and even competitive for instances with probabilities
of 0.9. Again, the performance on instances with penalty values of 50 and on
larger instances is much better.

Repeating the main results, the new approach is able to obtain solutions of
competitive or even better quality in most of the runs, whereas the computa-
tional time is reduced by a factor of between 13 and 18 in average, and even up
to a factor of around 50 for the instances of size 100. In contrast to the other ap-
proaches, the exact evaluation of the objective function is no longer needed and
the approach is able to obtain solutions of good quality on its own. Nonethe-
less, in very few runs local optima of poor quality are obtained, especially for
instances with customer probabilities of 0.9. This fact will be considered in
the following sections for the development of efficient heuristics for the PTSPD
based on the new approximation.

112 6.2 A Comparison between Approximations for the Objective Function

w
ith

outliers
w

ithout
outliers

instance
TC
[in

%
]

TA
[in

%
]

EA
[in

%
]

TC
[in

%
]

TA
[in

%
]

EA
[in

%
]

all
2.87

4.00
4.03

-2.36
-1.25

-1.22
size

40
5.20

5.50
6.03

-1.07
-0.73

-0.24
size

60
3.69

4.93
4.65

-1.09
0.12

-0.15
size

100
-1.84

0.34
0.11

-6.19
-4.08

-4.31
probability

0.1
-2.33

-0.24
-0.68

-2.85
-0.77

-1.21
probability

0.9
12.38

12.98
12.81

-0.90
-0.34

-0.49
probability

range
-0.66

0.13
0.96

-4.04
-3.21

-2.45
probability

m
ixed

2.10
3.11

3.03
-1.63

-0.68
-0.75

penalty
5

4.56
4.55

4.71
1.18

1.18
1.33

penalty
50

1.86
3.66

3.63
-4.48

-2.70
-2.76

deadline
early

2.81
4.11

4.36
-2.27

-0.98
-0.76

deadline
late

2.94
3.88

3.70
-2.44

-1.51
-1.68

Table
6.3.

T
he

average
increase/decrease

of
the

solution
costs

over
different

classes
of

instances
for

the
1-shift

best
im

provem
ent

localsearch
algorithm

using
the

new
approxim

ation
ofthe

objective
function

w
ith

respect
to

the
1-shift

best
im

provem
ent

localsearch
algorithm

using
the

approxim
ations

of
C
am

pbelland
T
hom

as
[2009]considering

all
the

runs
(w

ith
outliers)

and
w
ithout

considering
the

3
w
orst

solutions
obtained

in
each

of
the

20
runs

(w
ithout

outliers).

113 6.3 Local Search Algorithms for the PTSPD

6.3 Local Search Algorithms for the PTSPD

In this section we will examine different local search algorithms for the PTSPD
and identify the most efficient among them. Based on this local search algorithm
we then present in the next section a random restart local search algorithm. The
decisions taken during the development of the algorithms are highly influenced
by our previous work for the PTSP (see chapter 4) and by the results of the
previous sections. Heuristics using an approximation of the objective function
based on Monte Carlo sampling are widely used for the PTSP (Bianchi and Gam-
bardella [2007]; Balaprakash et al. [2010, 2009a,b]; Birattari et al. [2008b])
and are currently the most efficient heuristics for this problem (Balaprakash
et al. [2010]; Weyland et al. [2009b]). Especially, local search algorithms and
iterated versions like random restart local search algorithms and iterated local
search algorithms are extremely successful. We want to follow this approach
also for the PTSPD. First of all, the approximation of the PTSPD objective based
on Monte Carlo sampling together with the quasi-parallel evaluation of samples
allows for very efficient implementations of local search algorithms. The ab-
solute computational times for such local search algorithms are quite low and
within a few seconds, which also allows to use an iterated version of such a local
search algorithm. Furthermore, the facts that the local search algorithm returns
a solution of very poor quality in rare cases also supports the usage of an iterated
version of a local search algorithm. The overall idea is to develop an efficient
local search algorithm which is then used within a random restart local search
algorithm to efficiently compute solutions of high quality for the PTSPD.

In a first experiment we will therefore compare the efficiency of different
local search algorithms with different common local search neighborhoods. We
then take the best local search algorithm and integrate it into a random restart
local search algorithm in the following section. In section 6.2 we have only used
a 1-shift best improvement local search algorithm starting from a quick heuristic
solution for the non-stochastic variant of the PTSPD. We used this local search
algorithm mainly to compare the new approximation for the objective function
with other available approximations. For the PTSP it has been shown that first
improvement local search algorithms are much more efficient in terms of com-
putational time, while the quality of the solutions obtained was the same as for
the best improvement local search algorithm. Furthermore, it was not sufficient
to use the 1-shift local search neighborhood to obtain solutions of high quality
for the PTSP. Merely, a combination of the 1-shift neighborhood with the 2-opt
neighborhood (resulting in the so-called 2.5-opt neighborhood) turned out to be
efficient in terms of computational time and additionally is able to find solutions

114 6.3 Local Search Algorithms for the PTSPD

1-shift 2.5-opt

relative solution costs 0.993 0.754
relative computational times 0.304 1.199

Table 6.4. Average relative solution costs and average relative runtimes of
the 1-shift, 2-opt and 2.5-opt first improvement local search algorithms using
the sampling-based approximation of the objective function with 500 samples
with respect to the 1-shift best improvement local search algorithm using the
sampling-based approximation of the objective function with 500 samples over
all benchmark instances.

of high quality. In this section we compare first improvement local search algo-
rithms using the 1-shift and the 2.5-opt neighborhoods with the best improve-
ment local search algorithm from the last section using the 1-shift neighborhood.
Note that the local search algorithms used here are starting from a random solu-
tion, since we want to be able to integrate them later into a random restart local
search algorithm. We also use the same benchmark instances already introduced
in section 6.2.

6.3.1 Experimental Setup

For all the local search algorithms, we perform 20 runs on each of the available
benchmark instances, which results in 100 runs for each instance class. We then
measure the average computational time as well as the average solution costs
over all of the 100 runs per instance class. All experiments are performed on a
Quad-Core AMD Opteron system running at 2GHz and the complete numerical
results are available at the author’s website (www.idsia.ch/~weyland/).

6.3.2 Results

The results of this comparison are displayed in table 6.4. Here we see the aver-
age relative computational time and the average relative solution costs for the
different first improvement local search algorithms with respect to the 1-shift
best improvement local search algorithm. More in detail, let costA(I) denote
the average cost of the solution obtained by algorithm A on the instance I and
let timeA(I) denote the average computational time required by algorithm A
on the instance I. Then the average relative solution costs of algorithm A (in
this case the first improvement local search algorithm using the 1-shift/2.5-opt

115 6.4 A Random Restart Local Search Algorithm for the PTSPD

neighborhood) with respect to algorithm B (in this case the best improvement
local search algorithm using the 1-shift neighborhood) is the average value of
costA(I)/costB(I) over all instances I. In the same way, the average relative com-
putational time of algorithm A (in this case the first improvement local search
algorithm using the 1-shift/2.5-opt neighborhood) with respect to algorithm B
(in this case the best improvement local search algorithm using the 1-shift neigh-
borhood) is the average value of timeA(I)/timeB(I) over all instances I.

First of all, we see that we can drastically reduce the computational time if
we use a first improvement approach instead of a best improvement approach.
Additionally, even the costs of solutions are slightly lower for the first improve-
ment local search algorithm. As expected the average relative solution costs
are the best for the 2.5-opt first improvement local search algorithms. They are
around 25% lower than for the algorithms using the 1-shift neighborhood, which
is a remarkable improvement. On the other hand, this algorithm requires also
the largest computational time. Considering the fact that the absolute compu-
tational times for all approaches are within some seconds, it is certainly worth
to use the additional effort in terms of computational time to obtain such high
quality solutions. This means, that we have identified the 2.5-opt first improve-
ment local search algorithm for usage within the random restart local search
algorithm.

6.4 A Random Restart Local Search Algorithm for the
PTSPD

In this section we introduce a random restart local search algorithm for the PT-
SPD. This algorithm is based on the local search algorithms used in the previous
section. We will give a detailed description of the algorithm and finish with an
extensive computation study.

We have seen in section 6.2 that the 1-shift best improvement local search al-
gorithm using the approximation of the objective function based on Monte Carlo
sampling obtained solutions of poor quality in very few runs. Preliminary exper-
iments have shown that this also happens for the first improvement local search
algorithms using the 1-shift and the 2.5-opt neighborhoods. This is problematic
for a heuristic that is meant to efficiently compute solutions of high quality in
every run and therefore we propose the usage of the first improvement 2.5-opt
local search algorithm within a random restart local search algorithm. The ran-
dom restart local search algorithm (RRLS) iteratively performs a local search

116 6.4 A Random Restart Local Search Algorithm for the PTSPD

starting from a random solution for a specific number of iterations. At the end
the best local optimum found is returned.

Based on preliminary experiments with the 2.5-opt first improvement local
search algorithm, we set the number of iterations to 3. Since obtaining a lo-
cal optimal solution of poor quality occurred only in rare cases, in this way the
probability to obtain such a bad solution in all of the iterations is negligible. The
local optimal solutions obtained in the different iterations are then compared
with the sampling-based approximation using 105 samples. The sampling-based
approach with this large number of samples provides a sufficiently good approx-
imation to determine the overall best solution, while only a fraction of the com-
putational time of the exact evaluation is used. For the underlying local search
algorithm we use the 2.5-opt first improvement local search algorithm using the
approximation of the objective function based on Monte Carlo sampling. The
number of samples is set to 500 like for the experiments in section 6.2. Note
that we use the same benchmark instances as before.

6.4.1 Experimental Setup

For the experiments we use all the available benchmark instances. For each
instance we perform 5 runs, resulting in 25 runs for each instance class.
We then measure the average computational time as well as the average so-
lution costs over all of the 25 runs per instance class. Again, all the ex-
periments are performed on a Quad-Core AMD Opteron system running at
2GHz and the complete numerical results are available at the author’s website
(www.idsia.ch/~weyland/).

6.4.2 Results

The main goal of our computational studies is to provide numerical results on
the common benchmark instances for the PTSPD which can be used for com-
parisons with more sophisticated methods in the future. Nonetheless, we will
show that the random restart local search algorithm outperforms the heuristics
used in Campbell and Thomas [2008b, 2009] as well as the heuristics used in
the previous sections. The full numerical results of this computational studies
are available at the author’s website (www.idsia.ch/~weyland/).

First of all, in contrast to the local search algorithms on their own, the ran-
dom restart local search algorithm did not compute solutions of poor quality
with respect to the average solution quality in any of the 25 runs per instance

117 6.5 Discussion and Conclusions

class. This means we can expect this approach to obtain solutions of good qual-
ity in each run, which is an important fact for an efficient heuristic. Secondly,
as expected, the qualities of the final solutions are better for the random restart
local search algorithm in comparison to the local search algorithms used in this
chapter and in Campbell and Thomas [2009]. In table 6.5 the average decrease
in solution costs for the RRLS with respect to the 1-shift best improvement lo-
cal search algorithm using the approximations of Campbell and Thomas [2009]
(denoted by TC, TA and EA) and the approximation introduced in this chapter
(denoted by MCS) are shown. Again, we want to stress that those heuristics
were not designed with the goal of efficiency, and therefore it is not surpris-
ing that the RRLS is multiple orders of magnitude faster than those approaches.
Nonetheless, we use the comparison in table 6.5 to show that the usage of the
RRLS results in obtaining better solutions compared to those non iterative meth-
ods. Additionally, we can see that also for instances with customer probabilities
of 0.9 solutions of high quality are obtained, which was not the case for the
local search algorithm using the sampling-based approximation of the objective
function. In table 6.6 we have depicted the absolute computational times in
seconds for the different classes of instances. The computational times for the
new approaches depend mainly on the size of the instances and on the customer
probabilities. For all the instances the computational times are in the order of
some seconds, ranging from around 11 seconds for the instances of size 40 to
around 300 seconds for the instances of size 100. Regarding the computational
times for instance classes of different customer probabilities, the results confirm
our experimental and theoretical results about the quasi-parallel evaluation of
samples. Customer probabilities of 0.1 result in the lowest computational times,
customer probabilities of 0.9 result in the highest computational times and the
computational times for the other customer probabilities (range, mixed) are in
between.

6.5 Discussion and Conclusions

In this chapter we introduced an approximation for the objective function of the
PROBABILISTIC TRAVELING SALESMAN PROBLEM WITH DEADLINES based on Monte
Carlo sampling and using the novel approach of quasi-parallel evaluation of sam-
ples. With a theoretical analysis of the asymptotic computational time and addi-
tional computational studies we could show that the quasi-parallel evaluation of
samples significantly improves the conventional sampling-based approximation
of the PTSPD objective function. We then compared the new approximation of

118 6.5 Discussion and Conclusions

TC TA EA MCS

all -5.23% -4.14% -4.12% -7.31%
size 40 -3.84% -3.48% -3.01% -7.67%
size 60 -3.16% -1.97% -2.23% -6.24%

size 100 -10.41% -8.40% -8.62% -8.38%
prob. 0.1 -4.93% -2.88% -3.30% -2.62%
prob. 0.9 -3.90% -3.35% -3.50% -13.76%

prob. range -6.48% -5.64% -4.90% -5.58%
prob. mixed -5.60% -4.70% -4.77% -7.27%

pen. 5 -1.97% -1.97% -1.82% -6.11%
pen. 50 -7.18% -5.44% -5.50% -8.03%

deadl. early -5.19% -3.95% -3.73% -7.35%
deadl. late -5.26% -4.34% -4.51% -7.27%

Table 6.5. Average decrease in solution costs for the RRLS algorithm with re-
spect to the 1-shift best improvement local search algorithms using the different
approximations on different classes of instances.

instances computational time

all 96.61
size 40 11.16
size 60 47.71

size 100 298.12
probability 0.1 16.73
probability 0.9 176.79

probability range 93.22
probability mixed 99.68

penalty 5 116.99
penalty 50 84.38

deadline early 97.30
deadline late 95.92

Table 6.6. Average absolute computational times in seconds for the RRLS
algorithm on different classes of instances.

119 6.5 Discussion and Conclusions

the objective function to other approximations by integrating them into a simple
local search algorithm. The new approach was able to obtain solutions of better
or at least competitive quality in most of the runs, whereas the computational
time could be significantly reduced. In contrast to the other approximations,
which still require the usage of the exact objective function to obtain solutions
of good quality, our approach is completely independent of the exact objective
function. In very few runs local optima of poor quality were obtained by our
approach. Considering this fact and based on the experiences with the devel-
opment of efficient heuristics for the PTSP, we then proposed the usage of a
random restart local search algorithm for the PTSPD. At first, we identified the
2.5-opt first improvement local search algorithm as the strongest local search
algorithm for the PTSPD. We then use this local search algorithm within a ran-
dom restart local search algorithm. In fact, this is the first heuristic for the
PTSPD that is completely independent of the exact objective function. An ex-
tensive computational study regarding this heuristic, including comparisons to
other approaches, confirms the efficiency of this approach. Although a random
restart local search algorithm combined with the sampling-based approximation
of the objective function is currently the strongest approach for the PTSP, we do
not know if a similar situation holds for the PTSPD. Nonetheless, our approach
is the first algorithm meant to obtain solutions of good quality in a reasonable
runtime and with our computational studies we provide the basis for future
comparisons to more sophisticated methods. In fact, the absolute computational
times for our approach are quite low in the context of a priori optimization.
This results mainly from the efficient approximation of the objective function
using the quasi-parallel evaluation of samples. Therefore, it seems promising to
use more sophisticated heuristics based on our approximation to obtain better
solutions for the PTSPD.

120 6.5 Discussion and Conclusions

Chapter 7

Stochastic Vehicle Routing Problems
and GPGPU

In this chapter we introduce a metaheuristic framework based on general-
purpose computing on graphics processing units (GPGPU) for the optimization
of stochastic combinatorial optimization problems. More in detail, we propose to
use metaheuristics in combination with the Monte Carlo sampling approximation
of the objective function. The actual evaluation of the solutions is then paral-
lelized using the graphics processing unit (GPU) on the level of a single sample.
We verify the efficiency of our approach with a case-study on the PROBABILISTIC

TRAVELING SALESMAN PROBLEM WITH DEADLINES. The underlying publication for
this chapter is Weyland et al. [2012c].

The remaining part of this chapter is organized as follows. We first give an
overview about applications of GPGPU for solving combinatorial optimization
problems with metaheuristics. Then we discuss a general metaheuristic frame-
work based on GPGPU for combinatorial optimization problems. After that we
refine the metaheuristic framework and adapt it for stochastic combinatorial op-
timization problems. Finally, we apply the new approach to the PROBABILISTIC

TRAVELING SALESMAN PROBLEM WITH DEADLINES and perform extensive computa-
tional studies. Here we investigate the computational time for the evaluation
of solutions using the new approach. After that, we compare the efficiency of a
metaheuristic using the new approach with state-of-the-art methods. We finish
the chapter with discussions and conclusions.

121

122 7.1 Applications of GPGPU for Solving COPs with Metaheuristics

7.1 Applications of GPGPU for Solving Combinatorial
Optimization Problems with Metaheuristics

The application of GPGPU for solving combinatorial optimization problems with
metaheuristics is an emerging and fast growing field. Since the evaluation of
solutions is usually the most time-consuming task for heuristics, many of the
approaches evaluate solutions in parallel on the GPU. Some approaches go fur-
ther and outsource the computations for the most part or even completely on
the GPU. In the following we give an overview about successful applications of
metaheuristics using GPGPU. In Van Luong et al. [2009] a parallel local search
algorithm using the GPU is introduced. Computational studies on the QUADRATIC

ASSIGNMENT PROBLEM, the PERMUTED PERCEPTRON PROBLEM and the TRAVELING

SALESMAN PROBLEM show that significant speed-ups are possible compared to
a serial local search. Another work of the same authors focuses on the par-
allelization of large neighborhood local search algorithms for binary problems
(Van Luong et al. [2010]). Czapinski and Barnes [2011] deals with a parallel
tabu search algorithm. Here the authors show for the PERMUTATION FLOWSHOP

PROBLEM that significant speed-ups can be achieved with the proposed approach.
In Choong et al. [2010] a parallel variant of the simulated annealing algorithm
for FPGA placement is presented. Compared to serial approaches an average
speed-up of a factor of 10 could be obtained. A parallel ant colony optimiza-
tion algorithm for the optimization of nonlinear functions is introduced in Zhu
and Curry [2009]. This parallel approach is orders of magnitude faster than the
same approach on the CPU. Similar results could be obtained for another ant
colony optimization algorithm (Li et al. [2009]) and for several parallel evolu-
tionary algorithms (Tsutsui and Fujimoto [2009]; Chitty [2007]; Harding and
Banzhaf [2007]; Wong and Wong [2006]; Fok et al. [2007]). Recently, a dif-
ferential evolution algorithm for the optimization of continuous optimization
problems has been proposed that uses the GPU for the evaluation of the popu-
lation. As in the other cases, major speed-ups can be obtained compared to the
serial implementation.

7.2 A Metaheuristic Framework for Solving Stochastic
Combinatorial Optimization Problems on the GPU

In this section we present a general metaheuristic framework for solving a large
class of stochastic combinatorial optimization problems on GPUs. For a wide

123 7.2 A Metaheuristic Framework for Solving SCOPs on the GPU

variety of metaheuristics the computationally most expensive task is the evalu-
ation of the objective function and constraints for the candidate solutions. For
example, profiling results show that the state-of-the-art methods for the PTSPD
(Weyland et al. [2011b, 2012b]) spend more than 90% of the computation time
for those two tasks in many of the common benchmark instances. Since a lot
of metaheuristics create in each iteration a set of different solutions (or can be
adapted in a way that a set of different solutions is created), the evaluation of
the objective function and constraints for the solutions can be performed in par-
allel on the GPU. This approach is especially very promising for metaheuristics
creating a large number of solutions in each iteration and for combinatorial op-
timization problems where the computation of the objective function and of the
constraints has an easy control flow without many branches and jumps. There
exist many well known and established metaheuristics which can be used in
this way. Among them are evolutionary algorithms (Goldberg [1989]; Beyer
and Schwefel [2002]), where in each iteration all the new offspring solutions
have to be evaluated, best improvement local search (Aarts and Lenstra [2003])
and tabu search (Glover and Laguna [1998]; Jin et al. [2012]), where in one
iteration all solutions in a neighborhood of the current solution have to be evalu-
ated, ant colony optimization (Dorigo et al. [1999]; Dorigo and Stützle [2003]),
where in every iteration for each ant a solution is constructed that has to be eval-
uated and particle swarm optimization (Kennedy and Eberhart [1995]; Poli et al.
[2007]), where in each iteration each particle creates a solutions which needs to
be evaluated. Other metaheuristics can usually be adapted for this purpose. For
example, it is possible for a first improvement local search algorithm (Aarts and
Lenstra [2003]) or for a simulated annealing algorithm (Aarts and Korst [1990];
Laarhoven and Aarts [1987]) to create and evaluate in parallel a large number
of solutions in the neighborhood of the current solution. Using the results from
these evaluations the original metaheuristic can be simulated afterwards. Fol-
lowing this approach, in some cases solutions are created and evaluated in ad-
vance which would not have been created and evaluated in the original heuristic.
But as long as this overhead is dominated by the computational speed-up due
to the parallel evaluations, an overall speed-up is obtained. The metaheuristic
framework for solving general combinatorial optimization problems on GPUs is
depicted in algorithm 6. Here the tasks performed by the GPU are printed bold
italic.

There are mainly two drawbacks of this approach. First, the number of solu-
tions generated in each iteration has to be quite large to use the GPU efficiently.
Second, the evaluation of the objective function and constraints does not allow
for a straight control flow without branches and jumps in general. In the re-

124 7.2 A Metaheuristic Framework for Solving SCOPs on the GPU

Algorithm 6 Metaheuristic framework for combinatorial optimization problems

1: Initialize the metaheuristic (parameters, initial solutions, . . .)

2: while The termination criterion is not fulfilled do

3: Create a preferably large number of solutions

4: Evaluate the objective function for the new solutions in parallel

on the GPU

5: Evaluate the constraints for the new solutions in parallel on the GPU

6: Update the metaheuristic (solutions, parameters, . . .)

7: end while

8: return The solution obtained by the metaheuristic

maining part of this section we show how to overcome these two drawbacks for
a large class of stochastic combinatorial optimization problems. We focus on
stochastic combinatorial optimization problems for which the objective function
and the constraints can be approximately evaluated using Monte Carlo sam-
pling. There is a huge variety of stochastic combinatorial optimization problems
belonging to this class, ranging from chance constrained problems (Dror et al.
[1993]) to a priori optimization problems (Bertsimas et al. [1990]). More in
detail, the overall idea is to create a set of samples due to the given probabil-
ity distributions. These samples are then used for an approximative evaluation
of the objective function and the constraints. In this case it is even possible to
parallelize the evaluations on the level of a single sample instead of a single so-
lution. In other words, it is possible to parallelize the task of evaluating exactly
one sample on one solution, which leads to a much better grade of parallelism.
As a result, the number of solutions that have to be generated in each iteration
of the metaheuristic does not need to be as large as in the general case to guar-
antee that the GPU is used efficiently. Another advantage is that in most cases
the evaluation of exactly one sample on one solution has an easier control flow
with less branches and jumps compared to the full evaluation of the objective
function and the constraints.

All in all, it is possible to overcome both of the drawbacks mentioned before
for this class of stochastic combinatorial optimization problems. Following this
approach the metaheuristic needs to generate only a reasonable number of so-
lutions and the evaluations of the objective function and the constraints on the
sample level have a straight control flow. The resulting metaheuristic framework
is shown in algorithm 7. Again, the tasks performed by the GPU are printed bold
italic.

125 7.3 Solution Evaluation for the PTSPD on the GPU

Algorithm 7 Metaheuristic framework for stochastic combinatorial optimization

problems

1: Initialize the metaheuristic (parameters, initial solutions, . . .)

2: Generate a set of samples due to the given probability distributions

3: while The termination criterion is not fulfilled do

4: Create new solutions

5: Approximately evaluate the objective function for the new solutions in

parallel on the GPU (on the sample level)

6: Approximately evaluate the constraints for the new solutions in paral-

lel on the GPU (on the sample level)

7: Update the metaheuristic (solutions, parameters, . . .)

8: end while

9: return The solution obtained by the metaheuristic

The framework is very general and applies to the class of problems under
investigation. In sections 7.3 and 7.4 we show in detail how the framework can
be used for the optimization of the PROBABILISTIC TRAVELING SALESMAN PROBLEM

WITH DEADLINES. The results of this case study demonstrate the huge potential
of the proposed framework.

7.3 Solution Evaluation for the PTSPD on the GPU

Before we use the metaheuristic framework discussed in section 7.2 to tackle
the PROBABILISTIC TRAVELING SALESMAN PROBLEM WITH DEADLINES, we perform
experiments to determine the number of solutions and samples that have to be
used to utilize the GPU in an efficient way. Although it is quite easy to theo-
retically compute a lower bound for the number of solutions and samples, the
optimal number for these parameters also depends on factors like memory laten-
cies, cache misses and the number of registers used. Those factors highly depend
on the actual GPU that is used and it is very hard to incorporate those factors
into a model to theoretically compute the optimal number of solutions and sam-
ples that have to be evaluated in parallel. Therefore, we perform experiments
with different numbers of solutions to empirically determine those parameters
for later usage within the metaheuristic framework.

As we have seen in chapter 6, the most efficient heuristics for the PTSPD are
based on a local search algorithm using Monte Carlo sampling combined with

126 7.3 Solution Evaluation for the PTSPD on the GPU

statistical tests to evaluate solutions. For being able to use statistical tests effi-
ciently it is very important that only a small number of samples is used for the
evaluation of a solution in each iteration. This allows to perform statistical tests
in regular intervals to sort out solution that are worse than the current solution
or to accept an improving solution as soon as sufficient statistical evidence is
available. Therefore, we evaluate solutions always in packages of 32 samples in
each iteration. There are two different reasons to use this number. First, it has
been shown that performing statistical tests in regular intervals each time after
between 20 and 50 additional samples are used for the evaluation of a solution
leads to a very efficient usage of the statistical tests (Balaprakash et al. [2009a]).
Second, this number corresponds exactly to the number of different threads that
can be executed at the same time on one of the GPU processors. Note that
this number is the same for all GPUs that are compatible with the CUDA API
(www.nvidia.com/object/cuda_home_new.html). This means that we have to
determine with our experiments the number of solutions which should be eval-
uated in parallel on 32 samples each.

7.3.1 Experimental Setup

For our experiments we iteratively evaluate a number of solutions on (not nec-
essarily identical) packages of 32 samples and measure the average number of
samples that can be evaluated in one second. We have implemented this evalua-
tion mechanism in C using common compiler optimizations for the experiments
on the CPU. Here the solutions are evaluated one after another on the same
samples. Additionally, we have implemented the quasi-parallel evaluation of
samples which has been introduced in chapter 6. This method is currently the
state-of-the-art method to evaluate samples for the PTSPD. With this method
samples can be evaluated much faster on instances with low customer probabil-
ities. Note that the term quasi-parallel is somehow misleading in the context of
this chapter. Instead of computing the costs for the different samples after each
other, for the quasi-parallel evaluation the customers are processed in the order
given by the solution and for each customer the costs of the samples in which
this customer requires a visit are updated. This means that the samples are not
evaluated strictly after each other, but this approach is not a parallel one and the
computations are performed serially on a CPU. Moreover, we have implemented
the standard evaluation mechanism in C using CUDA and the same compiler
optimizations as before for the experiments on the GPU. Here the number of
solutions that are evaluated in parallel is the parameter we want to optimize.
More in detail, we want to find the number of solutions that have to be evalu-

127 7.3 Solution Evaluation for the PTSPD on the GPU

ated in parallel on the GPU, such that the ratio between the average number of
solutions evaluated per second on the GPU and the average number of solutions
evaluated per second on the CPU is maximized. For the number of solutions that
are evaluated in parallel, we have selected values between 256 and 16384 in
steps of 256.

Since the computational effort to evaluate solutions does not depend signif-
icantly on the actual solution we use randomly generated solutions for those
experiments. The computational effort also does not depend significantly on the
customer locations, the customer deadlines and the penalty values. Therefore
we use randomly generated instances of sizes 40, 60, 100, 150 and 200. For
the customers’ probabilities we use values of 0.1 for all customers, 0.9 for all
customers, values that are chosen uniformly at random from the set {0.1, 1.0}
(referred to as mixed probabilities) or values chosen uniformly at random in
[0, 1] (referred to as range probabilities). That means we have in total 20 dif-
ferent classes of instances for these experiments. We have chosen these instance
sizes and probabilities, since they are also used in the benchmark instances for
the PTSPD and in the experiments in section 7.4. These benchmark instances
were already discussed in detail in chapter 6 and for further details we refer
to this chapter. For each instance class we evaluate the solutions iteratively on
a Quad-Core AMD Opteron system running at 2GHz (for the serial and quasi-
parallel approaches) and on a system with a GeForce GTX 580 graphics card,
which has 16 streaming multiprocessors, each with 32 CUDA cores (for the par-
allel approach). The total computational time for each experiment was limited
to 60 seconds. At the end we computed the average number of solutions that
were evaluated in one second.

7.3.2 Results

Figure 7.1 contains a graph showing the number of evaluations that are per-
formed per second (in millions) for the three different approaches on instances
of size 100 with customer probabilities of 0.1. For the parallel evaluation on
the GPU we have fitted a curve through the available data points. Although
the quasi-parallel evaluation is more powerful than the serial evaluation, those
differences vanish if they are compared to the parallel approach. The curve rep-
resenting the parallel approach has a very steep trajectory in the area around
2000 solution evaluations and slowly approaches a limit for larger numbers of
solution evaluations. The graphs for instances of different sizes and with dif-
ferent probability types are similar to those presented in figure 7.1. They are
available at the author’s homepage (www.idsia.ch/~weyland/).

128 7.3 Solution Evaluation for the PTSPD on the GPU

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2000 4000 6000 8000 10000 12000 14000 16000

ev
al

ua
tio

ns
 p

er
 s

ec
on

d
(in

 m
ill

io
ns

)

number of solutions

cpu (serial)
cpu (quasi-parallel)

gpu (parallel)

Figure 7.1. The graphs show the average number of solution evaluations (in
millions) per second for the serial approach, the quasi-parallel approach and
the parallel approach on instances of size 100 with customer probabilities of
0.1.

129 7.4 Heuristics for the PTSPD on the GPU

In table 7.1 the average numbers of solution evaluations per second (in mil-
lions) for the serial approach, the quasi-parallel approach, the parallel approach
evaluating 512 solutions in parallel and the parallel approach evaluating 2048
solutions in parallel on the 20 different instance classes are shown. These results
are additionally visualized in figure 7.2 for the four different instance classes of
size 100. Significant speed-ups are obtained using the parallel approach instead
of the serial or the quasi-serial approach. In table 7.2 the speed-ups obtained by
the parallel approach evaluating 2048 solutions in parallel with respect to the
serial and the quasi-serial approach is shown. The parallel approach can evalu-
ate between 60 and 160 times more solutions than the serial approach on those
instance classes. Similar speed-ups are obtained for the parallel approach in
comparison with the quasi-parallel approach, except for the instance classes us-
ing probabilities of 0.1. But even for those instance classes the parallel approach
can evaluate between 10 and 30 times more solutions than the quasi-parallel
approach in the same time. The speed-up is even better if more solutions are
evaluated in parallel, but for some metaheuristics it could be difficult to provide
such large numbers of solutions in each iteration. Therefore, we omitted this
option in our experiments to obtain fair and realistic results.

All in all, the parallel evaluation of samples is a very promising alternative
to the serial and quasi-parallel evaluation for the PTSPD. Using a heuristic for
the PTSPD which can generate between 200 and 4000 solutions in each itera-
tion, the computational time for the solution evaluation can be decreased by a
factor of between 15 and 175, depending on the instance size and the customer
probabilities.

7.4 Heuristics for the PTSPD on the GPU

In this section we show how the metaheuristic framework of section 7.2 can be
used to speed up the state-of-the-art heuristics for the PTSPD. The current best
heuristics for the PTSPD were discussed in chapter 6. Those heuristics are ran-
dom restart local search algorithms using a first improvement local search algo-
rithm with a sampling-based approximation of the objective function. Extensive
profiling revealed that a huge amount of the computational time for those ap-
proaches is used for the evaluation of solutions. Therefore, it is very promising
to use the parallel evaluation of solutions on the sample level to speed up the
computations. Nonetheless, the algorithms have to be adapted for this purpose.
We start this section with a detailed description of the parallel random restart lo-
cal search algorithm. After that we describe the experimental setup and present
the results.

130 7.4 Heuristics for the PTSPD on the GPU

instance probability serial quasi-parallel parallel parallel

size type evaluation evaluation (512) (2048)

40

0.1 1.325 5.488 46.255 79.246

0.9 1.088 1.054 45.184 77.444

ranged 1.021 1.624 45.385 77.752

mixed 1.107 1.734 45.923 78.525

60

0.1 0.881 3.712 41.715 66.565

0.9 0.751 0.701 40.303 64.101

ranged 0.678 1.185 40.270 63.583

mixed 0.739 1.060 41.029 65.497

100

0.1 0.514 2.190 34.254 49.925

0.9 0.413 0.382 32.668 47.468

ranged 0.382 0.679 32.489 46.825

mixed 0.453 0.629 33.223 48.615

150

0.1 0.337 1.404 27.764 37.548

0.9 0.269 0.232 26.359 35.559

ranged 0.240 0.433 26.304 35.022

mixed 0.261 0.391 26.903 36.763

200

0.1 0.243 1.036 23.448 30.002

0.9 0.180 0.162 21.997 28.246

ranged 0.181 0.274 21.925 27.805

mixed 0.184 0.279 22.646 29.301

Table 7.1. This table contains the average number of solution evaluations (in
millions) per second on the 20 instance classes for the serial approach, the quasi-
parallel approach, the parallel approach evaluating 512 solutions in parallel and
the parallel approach evaluating 2048 solutions in parallel.

131 7.4 Heuristics for the PTSPD on the GPU

 0

 10

 20

 30

 40

 50

 60

0.1 0.9 ranged mixed

ev
al

ua
tio

ns
 p

er
 s

ec
on

d
(in

 m
ill

io
ns

)

probability type

serial
quasi-parallel
parallel (512)

parallel (2048)

Figure 7.2. This figure shows the average number of solution evaluations (in
millions) per second on instances of size 100 for the serial approach, the quasi-
parallel approach, the parallel approach evaluating 512 solutions in parallel and
the parallel approach evaluating 2048 solutions in parallel.

132 7.4 Heuristics for the PTSPD on the GPU

instance size probability type parallel / serial parallel / quasi-parallel

40

0.1 59.81 14.44

0.9 71.18 73.48

ranged 76.15 47.88

mixed 70.94 45.29

60

0.1 75.56 17.93

0.9 85.35 91.44

ranged 93.78 53.66

mixed 88.63 61.79

100

0.1 97.13 22.80

0.9 114.93 124.26

ranged 122.58 68.96

mixed 107.32 77.29

150

0.1 111.42 26.74

0.9 132.19 153.27

ranged 145.93 80.88

mixed 140.85 94.02

200

0.1 123.47 28.96

0.9 156.92 174.36

ranged 153.62 101.48

mixed 159.24 105.02

Table 7.2. This table contains the average speed-up for the evaluation of so-
lutions on the 20 instance classes for the parallel approach evaluating 2048
solutions in parallel with respect to the serial and the quasi-serial approach.

133 7.4 Heuristics for the PTSPD on the GPU

7.4.1 The Parallel Random Restart Local Search Algorithm

In a random restart local search algorithm several local search runs starting from
randomly generated solutions are performed after another. At the end the best
local optimum is returned as the final solution. For our parallel implementation
we initialize a certain number of local search algorithms at the beginning. Candi-
date solutions of all the different local search runs are then evaluated in parallel
using the GPU. In this way it is easy to obtain between 200 and 4000 solutions
in each iteration to use the GPU in an efficient way. For the underlying local
search algorithm we use the same as for the heuristics used in chapter 6, namely
a 2.5-opt first improvement local search using statistical tests. In each iteration
the local search algorithm explores the neighborhood of the current solution in
a random order. Each solution is evaluated in small packages of 32 samples. Af-
ter each package of samples is evaluated a statistical test is performed to check
whether there is enough statistical evidence that this solution is better/worse
than the current solution. In case the solution is better, the current solution is
replaced with this solution and a new iteration is started. In case the solution
is worse, the algorithm continues with the next solution in the neighborhood. If
there is no statistical evidence for the solution to be better/worse than the cur-
rent solution and a maximum number of samples has been evaluated, the mean
of the sample costs is used for the decision making. To be able to utilize the GPU
efficiently, we have to adapt this local search algorithm slightly for our parallel
approach. Since we want to benefit from the statistical tests, we evaluate mul-
tiple solutions for each local search run on one package of samples in parallel.
Then we check for all those solutions, if they are improving over the current so-
lution, if they are worse than the current solution or if they should be evaluated
on more samples. Before we start to discuss some implementation issues, we
would like to mention that the parallel adaption of the first improvement local
search differs slightly from the local search it is based on. First of all the local
search is not a strict first improvement local search anymore, since we evaluate
multiple solutions in parallel and use all the available information immediately
for decision making. Nonetheless, we expect both algorithms to perform in a
similar way as long as the number of solutions that are evaluated in parallel is
not too large compared to the size of the local search neighborhood. The sec-
ond difference is that in case an improving solution has been found some other
results that were already obtained in parallel have been computed for nothing.
But since the ratio between the number of improving solutions found during a
local search and the number of solutions that are evaluated during a local search
is usually very small, this factor should be negligible.

134 7.4 Heuristics for the PTSPD on the GPU

In algorithm 8 a high level overview of the proposed algorithm is shown. The
GPU related parts are printed bold italic. At the beginning the algorithm reads
the instance file and initializes all the necessary data structures for the CPU
and for the GPU. Then n local search algorithms are created and initialized. As
long as there are active local search algorithms, the local search algorithms are
requested to fill the evaluation slots. For this purpose a solution and the indices
of the samples which should be evaluated on this solution are provided. If all
evaluation slots are filled, the data is transferred to the GPU, which evaluates
the solutions on the corresponding samples in parallel. After the evaluation of
the solutions, the result data is transferred back from the GPU and the local
search algorithms process the results. At the end of the main loop all local
search algorithms which have already obtained a local optimum are indicated
as inactive and removed from the optimization process. When all local search
algorithms have found a local optimum, the algorithm returns the best local
optimum found as the final solution.

Algorithm 8 High level description of the proposed parallel random restart local

search algorithm on the GPU

1: Read instance file and initialize data structures

2: Initialize the GPU related data structures

3: Initialize n local search algorithms and store them in the set L
4: while L is not empty do

5: while there are free slots for the evaluation of solutions do

6: Select an algorithm from L
7: Request the algorithm to provide a solution for evaluation

8: end while

9: Transfer the relevant data to the GPU

10: Evaluate the solutions in parallel on the GPU

11: Transfer the result data from the GPU

12: for each algorithm in L do

13: Process the results obtained from the GPU

14: end for

15: Remove algorithms which have obtained a local optimum from L
16: end while

17: return The best local optimum

135 7.4 Heuristics for the PTSPD on the GPU

There are three important tasks for the local search algorithms: initializing,
providing solutions for the evaluation and processing the results from the eval-
uation. In the following we discuss these tasks more in detail.

In algorithm 9 the initialization process is depicted. At first m samples are
created according to the probability distributions given in the input instance.
Here m is the maximum number of samples that are used for the evaluation of
one solution. Then an initial solution is created uniformly at random. After that
two data structures are created, a stack and a queue. These data structures play
an important role in providing solutions for the evaluation and in processing
the results obtained from the GPU. The queue is initially empty and the stack is
filled with all the moves that lead to solutions in the neighborhood of the initial
solution. The order in which these moves are stored on the stack is according
to a uniform distribution. Additionally, for each of these moves the number of
samples which have already been used for the evaluation of this move is stored.
This number is initially set to 0.

Algorithm 10 shows how the local search algorithms provide the solutions for
the evaluation on the GPU. As long as the stack is not empty the solution on top
of the stack is removed from the stack and returned by this procedure. In case
this solution could be evaluated on other samples afterwards, it is additionally
stored at the end of the queue. In case the stack is already empty, but the queue
is not empty, the solution at the beginning of the queue is removed from the
queue and returned. Again, if this solution could be evaluated on other samples
afterwards, it is additionally reinserted at the end of the queue. In the rare case
where the stack and the queue are both empty, a dummy solution is returned.
The case in which both, the stack and the queue, are empty corresponds to the
rare case in which no more evaluations are required for the current neighbor-
hood of the local search algorithm. If the stack is empty, but there are still moves
stored in the queue, it means that there are more evaluation slots available for
the local search algorithms than the number of solutions in the current neigh-
borhood which have not been fully evaluated yet. In that case the solutions are
evaluated on more than one package of samples. The idea behind the stack is
that solutions which have already been evaluated on some packages of samples
are used for further evaluation with a higher priority than solutions which have
not been evaluated at all. Therefore, solutions that have already been partially
evaluated should always be on top of the stack.

This property is maintained in the last important task of the local search al-
gorithm, namely the processing of the results obtained by the GPU. This task
is described in algorithm 11. At the beginning of this procedure the queue is
emptied, since it is only used for providing solutions. Then the solutions are

136 7.4 Heuristics for the PTSPD on the GPU

processed in the same order in which they were provided for the evaluation. In
case a solution has been evaluated on the maximum number of available sam-
ples, the average sample costs are compared to the average sample costs of the
current solution. If the new solution is better it replaces the current solution,
the stack is reinitialized with the moves according to the neighborhood of the
new solution and the procedure terminates. Otherwise, the new solution has
been completely evaluated and is worse than the current solutions. Therefore,
it is not considered anymore. In case the solution has not been evaluated on the
maximum number of available samples, a statistical test is performed. If there
is sufficient statistical evidence for the fact that the new solution is better than
the current solution, the current solution is replaced by the new one, the stack is
reinitialized with the moves according to the neighborhood of the new solution
and the procedure terminates. If there is sufficient statistical evidence for the
fact that the new solution is worse than the current solution, it is not considered
anymore. If both statistical tests are negative the solution is reinserted on top of
the stack with the corresponding number of samples already used for the eval-
uation of this solution. In this way solutions that have been evaluated partially
are on top of the stack and therefore those solutions have a higher priority to be
evaluated in the next iteration.

All in all, we use several mechanisms to create an efficient adaptation of a
first improvement local search algorithm. Improving solutions are accepted as
soon as there is sufficient statistical evidence. The stack guarantees that solu-
tions that have already been evaluated on some samples have a higher priority
in the following iterations than solutions which have not been evaluated at all.
Additionally, the queue is used to occupy the available evaluation slots for the
local search algorithm in an efficient way.

Algorithm 9 Local Search: Initialization

1: Create m samples according to the probability distributions given in the in-

put instance

2: Create an initial solution x uniformly at random

3: Create a stack S
4: Create a queue Q
5: Fill the stack S with all moves that lead to solutions in the neighborhood of

x in an order uniformly at random

137 7.4 Heuristics for the PTSPD on the GPU

Algorithm 10 Local Search: Provide Solution

1: if the stack S is not empty then

2: Obtain the solution x ′ on top of S and remove it from S
3: if x ′ could be evaluated on other samples afterwards then

4: Put x ′ at the end of the queue

5: end if

6: return x ′ and the indices of the corresponding samples

7: else if the queue Q is not empty then

8: Obtain the solution x ′ from the beginning of Q and remove it from Q
9: if x ′ could be evaluated on other samples afterwards then

10: Put x ′ at the end of the queue

11: end if

12: return x ′ and the indices of the corresponding samples

13: else

14: return a dummy solution

15: end if

7.4.2 Experimental Setup

For the experiments we implemented the parallel random restart local search
algorithm described above in C using common compiler optimizations. For the
number of parallel local searches that are used within the proposed approach we
use values of 3, 10 and 30. For the maximum number of samples we use a value
of 1024. The samples are evaluated in packages of 32 samples, as described in
section 7.3. We use the same statistical test as in the serial version of this algo-
rithm (Weyland et al. [2011b]), namely a student t-test (Sheskin [2004]) with
a significance level of 98%. In this way we are able to perform a fair comparison
between the parallel and the serial version of the algorithm. For most of the
experiments we setup the GPU to evaluate 512 solutions in parallel. For larger
instances, especially in combination with the variant using 30 local searches, we
setup the GPU to evaluate up to 16384 solutions in parallel. The exact number
of parallel solution evaluations for the different experiments is available at the
author’s website (www.idsia.ch/~weyland/). For the benchmark instances we
use the same instances as in chapter 6. We additionally extended the benchmark
set for the PTSPD with larger instances. These new instances are constructed in
the same way as the others (Campbell and Thomas [2008b]). In total we have

138 7.4 Heuristics for the PTSPD on the GPU

Algorithm 11 Local Search: Process Results

1: Empty the queue Q
2: for each solution x ′ provided for evaluation (in the order they were pro-

vided) do
3: if the solution has been evaluated on the maximum number of samples

then
4: if x ′ is better than x then
5: x := x ′

6: Fill the stack S with all moves that lead to solutions in the neighbor-
hood of x in an order uniformly at random

7: return
8: end if
9: else

10: if x ′ is statistically better than x then
11: x := x ′

12: Fill the stack S with all moves that lead to solutions in the neighbor-
hood of x in an order uniformly at random

13: return
14: else if x ′ is statistically worse than x then
15: Do not consider x ′ as a possible improving solution for x anymore
16: else
17: Put the move leading to x ′ on the stack and update the corresponding

number of already evaluated samples for this solution
18: end if
19: end if
20: end for

80 different instance classes (5 different instance sizes, 4 probability types, 2
penalty values, 2 deadline types) consisting of 5 instances each. For our experi-
ments we have performed 20 runs on each of the 5 instances for every instance
class, resulting in 100 runs per instance class. We finally measured the average
computational time and the average solution costs for all the 100 runs. Due to
higher computational times for larger instances, we restricted the experiments
for the instances of size 150 to 25 runs per instance class and for the instances
of size 200 to 10 runs per instance class. All the experiments in this section were
performed on a system with a GeForce GTX 580 graphics card.

139 7.4 Heuristics for the PTSPD on the GPU

7.4.3 Results

In table 7.3 and in figure 7.3 we have shown the performance of the new algo-
rithms relative to that of the 2.5-opt random restart local search algorithm using
statistical tests and the sampling-based evaluation of solutions (Weyland et al.
[2011b]). This algorithm is evaluating the solutions in packages of 25 samples
with a maximum number of 1000 samples and performs 3 iterations in total.
The statistical test is the same which is used for our experiments. Note that
this algorithm is currently the state-of-the-art method for the PTSPD. In the ta-
ble the average relative computational time (average over timeparallel / timeserial)
and the average relative solution cost (average over costparallel / costserial) over all
instances and over some classes of instances characterized by different parame-
ters is shown. A value of 1.0 indicates that the algorithms perform in average in
the same way. Smaller values for the computational time indicate that the new
approach is faster in average, larger values for the computational time indicate
that the new approach is slower in average. For the solution costs, smaller val-
ues indicate that the new approach finds better solutions in average, whereas
larger values indicate that the new approach finds worse solutions in average.
With RRLS3, RRLS10 and RRLS30 we depict the new algorithm running 3, 10 and
30 local searches in parallel.

What we can see in table 7.3 and in figure 7.3 is the following. The paral-
lel random restart local search requires in average 24.6% of the computational
time required by the state-of-the-art algorithm using the same number of local
searches, while the quality of the solutions obtained is the same. The other par-
allel approaches with 10 and 30 local searches require 58.5% and 151.8% of the
computational time of the serial random restart local search. Here the solutions
are in average 1% and 1.4% better. Note that there is a sublinear increase in
computational time with respect to the number of local searches for most of the
benchmark instances. This is mainly due to the fact that the graphics card can be
occupied more efficiently if a larger number of local searches is used. Therefore,
the computational time of the approach with 30 local searches is in average only
a factor of about 7 larger than the computational time for the approach with 3
loacl searches, whereas the expected difference in computational time is a factor
of 10. Although the average results are quite good, we can see that the perfor-
mance of the parallel approach is not that good for the very small instances of
size 40, for the large instances of size 200 and for instances with customer prob-
abilities of 0.1. For instances with low customer probabilities the quasi-parallel
evaluation of samples leads to a huge speed-up for the serial approach. This ex-
plains the observations for the instances with customer probabilities of 0.1 and

140 7.4 Heuristics for the PTSPD on the GPU

will become more clear later in this section when we compare absolute compu-
tational times. The explanations for the behavior of the instances with sizes 40
and 200 can be given based on extensive profiling. In both cases the fraction
of the computational time spend for the evaluation of solutions is much smaller
than for the other instance classes and therefore the overall performance is not
affected that much by the parallel evaluation of the solutions. For the instances
of size 40 this originates from the algorithmic overhead and from the fact that
the neighborhood of the current solution is rather small. For the instances of
size 200 it is caused mainly by the creation of neighbor solutions which require
much more computational time for those instances. In fact, the computational
time for creating solutions in the 2-opt neighborhood grows quadratically with
the size of the instance. On the other hand, the performance of the new ap-
proach is much better on the other instance classes. For example, the parallel
random restart local search with 3 local searches is in average more than a factor
of 12 faster on instances of size 150 compared to the serial approach using the
same number of local searches. As long as instances with customer probabilities
of 0.1 are not considered, the parallel random restart local search with 30 local
searches is in average even faster than the serial approach with 3 local searches.

Tables 7.4 to 7.6 show the absolute average computational times and the
absolute average solution costs obtained by the new parallel random restart local
search with 3, 10 and 30 local searches and the serial random restart local search
for the instances of size 100, 150 and 200. The serial random restart local search
algorithm is denoted with RRLS. For the parallel approaches we use the same
notation as in table 7.3. Similar tables for instances of 40 and 60 are available
at the author’s website (www.idsia.ch/~weyland/). We can see that compared
to the algorithm RRLS the new parallel approach RRLS3 achieves a speed-up
by a factor of around 10 in most of the cases while obtaining solutions of the
same quality. Note that the algorithmic overhead, which is still computed on
the CPU, is the same for the serial and the parallel approach. Therefore, we
cannot expect speed-up factors as huge as in section 7.3 for the pure evaluation
of solutions. Since the algorithmic overhead is responsible for between 2% and
10% of the total computational time, the speed-up values depicted in tables 7.4
to 7.6 are quite close to the theoretical upper bound. Furthermore, we can see
that additional iterations of the parallel random restart local search algorithm
(RRLS10 and RRLS30) can be used to obtain better solutions while the absolute
computational times are still in the range of the serial approach with 3 iterations
(except for instances of size 200 and with customer probabilities of 0.1).

141 7.4 Heuristics for the PTSPD on the GPU

instances parallel RRLS3 parallel RRLS10 parallel RRLS30

rel. costs / time rel. costs / time rel. costs / time

all 1.004 0.246 0.991 0.585 0.986 1.518

size 40 1.007 0.514 0.997 0.898 0.997 2.138

size 60 1.000 0.286 0.996 0.640 0.994 1.537

size 100 1.001 0.128 0.985 0.261 0.975 0.651

size 150 1.001 0.072 0.990 0.194 0.983 0.487

size 200 1.012 0.230 0.989 0.930 0.979 2.775

prob. 0.1 0.999 0.667 0.997 1.590 0.996 4.089

prob. 0.9 1.006 0.051 0.985 0.149 0.979 0.411

prob. ranged 1.001 0.126 0.991 0.291 0.984 0.769

prob. mixed 1.009 0.139 0.993 0.308 0.985 0.801

deadl. early 1.002 0.238 0.991 0.586 0.987 1.512

deadl. late 1.007 0.254 0.992 0.583 0.984 1.523

penalty 5 1.002 0.227 0.992 0.556 0.985 1.448

penalty 50 1.006 0.265 0.990 0.613 0.986 1.587

Table 7.3. The average performance of the new approach relative to the 2.5-opt
random restart local search algorithm using statistical tests and the sampling-
based evaluation of solutions. Improvements are highlighted in boldface.

142 7.4 Heuristics for the PTSPD on the GPU

 0

 0.5

 1

 1.5

 2

al
l

si
ze

 4
0

si
ze

 6
0

si
ze

 1
00

si
ze

 1
50

si
ze

 2
00

pr
ob

. 0
.1

pr
ob

. 0
.9

pr
ob

. r
an

ge
d

pr
ob

. m
ix

ed

de
ad

l.
ea

rly

de
ad

l.
la

te

pe
na

lty
 5

pe
na

lty
 5

0

re
la

tiv
e

co
m

pu
ta

tio
na

l t
im

e

serial RRLS 3
parallel RRLS 3

parallel RRLS 10

Figure 7.3. The average computational time of the new approach relative to
the 2.5-opt random restart local search algorithm using statistical tests and
the sampling-based evaluation of solutions.

143 7.4 Heuristics for the PTSPD on the GPU

prob. deadl. pen. RRLS par. RRLS3 par. RRLS10 par. RRLS30

ranged early 5 418.51 420.06 413.60 408.39
(33.36) (1.94) (4.45) (11.59)

ranged early 50 1021.95 1010.87 1006.43 1001.58
(34.86) (2.28) (5.29) (14.15)

ranged late 5 331.14 330.59 323.45 315.47
(31.92) (1.96) (4.41) (11.46)

ranged late 50 339.12 338.19 329.84 321.16
(34.36) (2.30) (5.19) (13.30)

0.1 early 5 165.19 165.08 164.89 164.79
(21.43) (6.41) (14.02) (35.52)

0.1 early 50 239.39 239.30 238.49 238.17
(45.69) (21.44) (31.82) (75.35)

0.1 late 5 153.53 153.39 153.05 152.81
(19.16) (5.66) (13.23) (32.35)

0.1 late 50 157.37 157.10 156.60 156.25
(31.67) (12.18) (21.84) (56.66)

0.9 early 5 779.68 778.72 756.83 749.76
(51.87) (1.71) (3.89) (10.33)

0.9 early 50 3518.86 3524.21 3387.35 3380.97
(54.45) (1.75) (4.15) (11.21)

0.9 late 5 426.65 427.07 423.09 419.63
(48.27) (1.64) (3.73) (9.98)

0.9 late 50 429.40 426.91 423.68 421.25
(53.01) (1.67) (6.80) (10.53)

mixed early 5 433.93 435.30 423.91 419.28
(39.29) (2.06) (4.71) (12.31)

mixed early 50 1035.91 1048.63 1023.94 1018.01
(41.89) (2.47) (5.59) (14.53)

mixed late 5 339.42 342.16 334.21 327.67
(37.20) (1.99) (4.50) (11.73)

mixed late 50 341.86 344.24 337.00 331.56
(40.52) (2.41) (5.34) (13.73)

Table 7.4. Absolute solution costs and absolute computational times (in sec-
onds) on instances of size 100. The values without brackets are the solution
costs and the values within the brackets are the computational times. Best
values for each instance are highlighted in boldface.

144 7.4 Heuristics for the PTSPD on the GPU

prob. deadl. pen. RRLS par. RRLS3 par. RRLS10 par. RRLS30

ranged early 5 448.19 447.88 445.11 441.07
(142.45) (5.78) (14.31) (37.16)

ranged early 50 1082.84 1082.94 1079.72 1076.54
(156.51) (6.84) (17.09) (44.87)

ranged late 5 369.18 371.28 365.32 361.99
(147.20) (5.51) (14.07) (35.88)

ranged late 50 372.97 368.63 367.59 362.57
(157.11) (6.35) (16.40) (41.74)

0.1 early 5 186.52 186.40 186.22 186.17
(80.32) (14.20) (40.96) (86.69)

0.1 early 50 232.81 232.49 231.61 231.20
(134.61) (25.91) (75.87) (216.06)

0.1 late 5 178.48 178.28 178.14 178.05
(77.01) (13.67) (37.36) (82.91)

0.1 late 50 181.28 180.68 180.33 180.05
(102.83) (22.27) (52.37) (147.37)

0.9 early 5 792.12 798.92 782.94 778.61
(236.33) (5.03) (12.57) (34.62)

0.9 early 50 3357.15 3348.59 3339.74 3337.40
(237.82) (4.89) (12.93) (36.22)

0.9 late 5 488.04 487.70 477.46 472.43
(233.24) (4.72) (12.05) (33.68)

0.9 late 50 486.21 489.68 478.63 474.67
(230.72) (5.01) (24.83) (34.40)

mixed early 5 503.41 503.60 494.06 487.18
(172.80) (5.71) (14.61) (38.65)

mixed early 50 1375.04 1370.02 1363.91 1360.17
(178.85) (6.58) (17.34) (46.22)

mixed late 5 389.60 393.62 385.95 379.04
(162.08) (5.46) (14.06) (36.55)

mixed late 50 393.04 395.29 387.30 381.84
(177.43) (6.49) (16.53) (42.71)

Table 7.5. Absolute solution costs and absolute computational times (in sec-
onds) on instances of size 150. The values without brackets are the solution
costs and the values within the brackets are the computational times. Best
values for each instance are highlighted in boldface.

145 7.4 Heuristics for the PTSPD on the GPU

prob. deadl. pen. RRLS par. RRLS3 par. RRLS10 par. RRLS30

ranged early 5 518.41 524.20 513.00 510.03
(412.56) (39.37) (122.93) (361.43)

ranged early 50 1117.37 1120.26 1113.17 1104.71
(407.26) (48.27) (140.90) (423.59)

ranged late 5 438.22 437.85 431.56 425.50
(390.68) (38.00) (121.77) (346.74)

ranged late 50 443.19 450.85 436.15 434.00
(402.65) (50.16) (151.43) (444.49)

0.1 early 5 212.29 212.85 212.42 211.87
(206.49) (102.43) (470.96) (1486.77)

0.1 early 50 264.65 264.32 263.31 262.58
(310.64) (193.35) (1053.84) (2913.29)

0.1 late 5 202.63 203.84 202.60 202.35
(180.09) (102.95) (455.20) (1433.29)

0.1 late 50 205.20 206.24 206.10 204.77
(262.98) (262.12) (923.43) (2764.23)

0.9 early 5 900.94 916.64 883.88 863.71
(668.04) (23.63) (88.38) (251.05)

0.9 early 50 3711.44 3666.13 3481.28 3468.07
(656.23) (26.81) (97.61) (272.10)

0.9 late 5 565.52 565.09 555.35 542.73
(620.73) (24.14) (89.25) (249.45)

0.9 late 50 566.52 567.35 553.41 547.83
(616.40) (26.21) (88.94) (271.95)

mixed early 5 526.45 529.32 524.72 513.28
(469.58) (40.92) (137.55) (392.51)

mixed early 50 1127.78 1158.12 1116.48 1113.12
(487.55) (53.04) (158.28) (485.75)

mixed late 5 442.94 452.21 447.83 437.67
(463.24) (38.80) (133.08) (385.47)

mixed late 50 447.93 486.55 444.09 442.18
(467.51) (53.02) (166.05) (537.57)

Table 7.6. Absolute solution costs and absolute computational times (in sec-
onds) on instances of size 200. The values without brackets are the solution
costs and the values within the brackets are the computational times. Best
values for each instance are highlighted in boldface.

146 7.5 Discussion and Conclusions

7.5 Discussion and Conclusions

In this chapter we have introduced a general metaheuristic framework for solv-
ing stochastic combinatorial optimization problems based on general-purpose
computing on graphics processing units. This framework can be applied to all
stochastic combinatorial optimization problems for which the objective function
and the constraints can be efficiently approximated with Monte Carlo sampling.
In this way the evaluation of the objective function and the constraints can be
parallelized on a sample level, which allows an efficient utilization of the GPU.
Many existing metaheuristics can be used easily within the proposed framework
to benefit from the computational power provided by modern GPUs.

As a case study we applied the metaheuristic framework to a random restart
local search algorithm for the PROBABILISTIC TRAVELING SALESMAN PROBLEM WITH

DEADLINES. The resulting parallel heuristic leads to significant improvements
over state-of-the-art methods for the PTSPD. For most of the instances used in
this chapter the computational time could be reduced by more than an order
of magnitude. Additionally, we showed that the savings in computational time
could be used to obtain solutions with a better quality. Compared to the best
heuristics for the PTSPD using the exact objective function or analytical approx-
imations, the computational time could be reduced even by several orders of
magnitude. This reveals once again the power of sampling-based approaches
for the optimization of stochastic combinatorial optimization problems.

With the new framework sampling-based heuristics for stochastic combinato-
rial optimization problems become even more powerful and it is very promising
that this metaheuristic framework can also improve state-of-the-art methods for
other stochastic vehicle routing problems and for other stochastic combinatorial
optimization problems.

Chapter 8

A Vehicle Routing Problem for the
Collection of Exhausted Oil

In this chapter we focus on a real world application related to vehicle routing
problems. This real world application is part of a project for the recycling of ex-
hausted cooking oil into bio diesel fuel that has been initiated in 2010 by Caritas
Suisse. Several tasks are crucial for a successful outcome of this project. Among
them is the very important task of organizing an efficient and fairly balanced
transportation of the old cooking oil from various locations to the processing
plant. In this context fairly balanced means that the workload is distributed
almost evenly among the different drivers and working days. We show in this
chapter how we can use our experience with (stochastic) vehicle routing prob-
lems to contribute to this project. Additionally, it is very important for us to show
that the theoretical and practical results from the previous chapters on academic
problems can be transferred towards a real world problem. The project is cur-
rently in an early stage, and so far we were able to successfully support some
decisions at this early stage. There is still a lot of work that has to be done to
achieve our goal of an efficient and fair transportation of the old cooking oil.
Therefore, we will also discuss our ideas and plans regarding the next steps in
this project. Please note that so far stochasticity is not explicitly used in the
model of this problem. We plan to include it in the near future and our model
is constructed in a way that easily supports this. See the discussion at the end
of this chapter for more details. The underlying publication for this chapter is
Weyland et al. [2013b].

The remaining part of this chapter is organized in the following way. We
start with a description of the real world project. After that we will show how

147

148 8.1 The Project Description

the transportation component of our real world problem can be modeled in
terms of a vehicle routing problem. Using our experience from the optimization
of various (stochastic) vehicle routing problems we then propose a heuristic
to tackle this problem. We continue with computational studies, applying our
heuristic on the original data provided by Caritas Suisse and varying important
parameters like the location of the processing plant and the number of vehicles
used. Finally, we finish with a discussion and with conclusions.

8.1 The Project Description

In 2010 Caritas Suisse initiated a project for the recycling of exhausted cooking
oil into bio diesel fuel in Bali. In this region large quantities of exhausted cooking
oil are accumulated in restaurants and hotels. The appropriate disposal of this
cooking oil is still an unsolved problem and an inappropriate disposal could lead
to some serious problems, ranging from the pollution of water up to health risks
caused by reusing old cooking oil. The basic idea of the project is to organize and
perform an appropriate disposal of the exhausted cooking oil by recycling it into
bio diesel fuel. The quantities of oil that are accumulated in cooperating hotels
and restaurants are regularly collected and brought to a processing plant. At that
plant the oil is transformed into biofuel. In this way an appropriate disposal of
the old cooking oil is ensured. An overview about the region of Bali involved and
the cooperating hotels and restaurants (in gray) is given in figure 8.1, together
with the three potential locations for the processing plant that were identified
by Caritas Suisse (in red).

There are a lot of other important benefits resulting from this project. By en-
suring an appropriate disposal of the oil, the environment in Bali is protected and
risks for the health that are caused by reused oil are removed. Furthermore, the
project helps the people living in Bali by creating new job opportunities. Finally,
a contribution for the combat against climate change is made. Conventional fuel
can be substituted by the bio diesel fuel obtained during the recycling process.
Summarizing the benefits, it is a project with a huge potential for helping the
local people and protecting the environment.

8.2 The Formal Model

As stated in section 8.1, the goal of the project is to organize and perform an
appropriate disposal of exhausted cooking oil by recycling it into bio diesel fuel.

149 8.2 The Formal Model

Figure 8.1. Bali, Indonesia. The region where the project is run, with coop-
erating hotels and restaurants highlighted in gray and potential locations for
processing plants in red.

150 8.2 The Formal Model

This recycling process is performed at a plant and one important component of
the project is to provide an efficient transportation system for the collection of
the oil. In this section we discuss the process of deriving a formal model for this
transportation component.

More abstract we can see the transportation problem in the following way.
We have been given a set of 308 different locations for the collection of oil. For
each location we know the expected amount of oil that accumulates within one
week (ranging from 1 to 22 cans of 25 liters each). Additionally, we assume
that the location for the processing plant is given. In fact, there are only three
possible locations for the processing plant and therefore we do not include the
selection of the location into our model. The travel times between any two of
the locations are known. The task is to collect the oil and to transport it to the
location of the processing plant. For this purpose cans with a capacity of 25 liters
are used. The vehicles start at the processing plant, filled with empty cans. Then
they proceed to the different locations and exchange the empty cans with full
cans, which are at the end delivered to the processing plant. The total capacity
is 18 cans for each vehicle. The goal is to obtain a collection plan for a time
horizon of two weeks (10 working days), which is then executed iteratively. For
each vehicle and each working day routes have to be computed, such that all the
accumulated oil is collected from the different locations and such that the work-
load between the single routes is balanced. The travel time for each route is not
allowed to exceed eight hours due to working time constraints. Here the main
optimization objective is to compute fairly balanced routes, the minimization of
the total travel time is “only” a secondary objective. Nonetheless, the total travel
time should be in a reasonable domain. Therefore, the objective function is a
weighted sum of the travel time standard deviation among the different routes
and the total travel time, where more emphasis is given for the travel time stan-
dard deviation. Our problem can then be modeled as a variant of the PERIODIC

VEHICLE ROUTING PROBLEM (PVRP, see Angelelli and Speranza [2002]; Cordeau
et al. [1997]; Gaudioso and Paletta [1992]) and in the remaining part of this
section we will derive such a model.

First of all, for our real world problem we have to chose among three po-
tential locations for the processing plant and to specify the number of vehicles
used. Since we only have very few choices for those parameters, we do not
model them as decision variables. Instead, we assume that the location of the
processing plant and the number of vehicles is known. With some experiments
a proper choice can be made for those two parameters, which are then used as
fixed parameters for subsequent experiments. Another difference to the PVRP
is that we do not have the frequencies with which the different locations have

151 8.2 The Formal Model

to be visited. Therefore, we derive the number of visits for each location from
the given amount of oil that accumulates at that location within one week. With
these modifications our model can now be formulated in the following way.

We have been given a time horizon of 10 working days, a depot and a set
of locations together with the travel times between all the locations. For each
location we additionally know the required number of visits within the given
time horizon as well as the total amount of goods that have to be collected. For
this collection a fixed number of vehicles with a fixed capacity are available at
the depot. The optimization goal is to compute routes (starting at the depot,
visiting the locations and finishing at the depot) for all the vehicles in the given
time horizon, which minimize the standard deviation of travel times between
the different vehicles and working days, such that all goods are collected from
the different locations and such that the locations are visited exactly for the
specified number of times. Additionally, we want to assure that the total travel
time is within a reasonable domain. Therefore, we also include the total travel
time into the optimization objective. For the total travel time we use a much
smaller weight compared to the standard deviation of travel times between the
different vehicles and working days.

More formal, we have given a set V of locations, including a special element
v0, the depot. The function d : V × V → R+ is representing the travel times in
minutes between any two locations. We include in these travel times the time
required to load and unload the vehicle. The function s : V \ {v0} → N specifies
the number of visits for each customer and the function g : V \ {v0} → R+

specifies the demand for each customer in liters. We further assume that the
demand accumulates uniformly over the time horizon (respecting weekends).
The time horizon is 10 working days (2 weeks), the capacity of the cans c, the
capacity of the vehicle C and the number of vehicles k are given. A solution τ to
this problem is a set of routes τi, j (i ∈ {1, . . . , k}, j ∈ {1, . . . , 10}), starting at the
depot, finishing at the depot, visiting a customer at most once and respecting
the following constraints. Let t(τi, j) denote the total travel time of route τi, j

and let r(v, j) denote the demand of customer v ∈ V \ {v0} accumulated until
the customer gets visited at working day j.

(i) For all i ∈ {1, . . . , k}, j ∈ {1, . . . , 10} : t(τi, j)≤ 480

(ii) For all i ∈ {1, . . . , k}, j ∈ {1, . . . , 10} :
∑

v∈τi, j ,v 6=v0
br(v, j)/cc ≤ C

(iii) For all v ∈ V \ {v0} :
�

�{τi, j : i ∈ {1, . . . , k}, j ∈ {1, . . . , 10}, v ∈ τi, j}
�

�= s(v)

(iv) For all v ∈ V \ {v0}, j ∈ {1, . . . , 10} :
�

�{τi, j : i ∈ {1, . . . , k}, v ∈ τi, j}
�

�≤ 1

152 8.3 A Heuristic Approach

Constraint (i) ensures that the total travel time for each route does not ex-
ceed the working time limit of eight hours and constraint (ii) ensures that the
vehicle capacity is respected. The third constraint specifies that each customer
is visited the required number of times during the time horizon. Constraint (iv)
further ensures that a customer is not visited twice per day. The objective func-
tion now is a weighted sum of the total travel time,

f1(τ) =
∑

i∈{1,...,k}, j∈{1,...,10}

t(τi, j),

and the standard deviation of the travel time,

f2(τ) =

s

1

10k

∑

i∈{1,...,k}, j∈{1,...,10}

�

t(τi, j)− f1(τ)/10k
�2

.

Using a weight parameter α, the objective function can then be written as

f (τ) = α f1(τ) + f2(τ).

This allows us to formally state the problem.

Problem 9. Given a set V with a special element v0 ∈ V , a function d : V×V → R+,
a function s : V \ {v0} → N, a function g : V \ {v0} → R+ and values c ∈ N, C ∈ N
and k ∈ N, the problem is to compute a set of routes τ?, such that f (τ?) ≤ f (τ)
for any other set of routes τe.

8.3 A Heuristic Approach

Our background in the development of efficient heuristics for different vehicle
routing problems is strong and the considerations for obtaining a heuristic for
the problem in this work are based on this experience. Various such vehicle
routing problems are tackled for example in Donati et al. [2008]; Gambardella
et al. [2003a,b]; Montemanni et al. [2005, 2007]; Rizzoli et al. [2003, 2007].
At the end we decided to use a local search algorithm to tackle the problem in
this work. Different variants of local search algorithms could be applied suc-
cessfully for many vehicle routing problems (see Weyland et al. [2009a,b] for
representative examples) and considering the similarities to our problem, such
an approach seems very promising.

Preliminary experiments have shown that the number of locations that are
visited by the same vehicle at the same working day are usually quite small

153 8.3 A Heuristic Approach

and mainly in the range between 6 and 12. Having an assignment of between
6 and 12 locations for one vehicle, the optimal route can be computed in a
straightforward way. For this reason we propose a two level approach similar
to the assign first strategy used for PERIODIC VEHICLE ROUTING PROBLEMS (Bap-
tista et al. [2002]). The idea is to optimize the assignment of customers to
vehicles and working days on the first level using the local search algorithm.
An inner optimization mechanism is then used on the second level to optimize
the routes of the different vehicles and working days. An additional benefit of
the hybridization between the local search algorithm and an inner optimization
mechanism is the following. The changes imposed by the local search algorithm
affect a solution locally and this can be exploited by the second level optimiza-
tion mechanism, which only has to re-optimize the parts that have changed. In
the following we discuss our approach more in detail. We additionally give a
high level description of the approach in algorithm 12.

Algorithm 12 High level description of the heuristic.

1: Create a random assignment of locations to vehicles / working days

2: for each vehicle and working day do

3: Compute the optimal route for the corresponding assignment using the

second level optimization mechanism

4: end for

5: Use the resulting solution to start the local search algorithm

6: while the current solution is not a local optimal solution do

7: for each neighbor solution (explored in a random order) do

8: Perform the local search move

9: Re-optimize the routes which were changed

10: if the neighbor solution improves over the current solution then

11: Replace the current solution with the neighbor solution

12: Start a new iteration (go to 7)

13: end if

14: end for

15: end while

16: return The local optimum obtained by the local search algorithm

The heuristic starts by randomly assigning the different locations to vehicles
and working days. Then for each vehicle and each working day an optimal route

154 8.4 Computational Studies

is computed using the second level optimization mechanism. The resulting so-
lution is the starting solution for the local search algorithm. For the local search
neighborhoods we use a shift operator similar to the 1-shift operator which has
been introduced in chapter 5 and a swap operator. The shift operator takes a
location assigned to a specific vehicle and a specific working day and shifts it to
another vehicle and/or another working day. The swap operator considers two
different locations and interchanges their assignments to vehicles and working
days. In each iteration the local search algorithm explores all the solutions in the
local search neighborhoods induced by those two operators in a random order.
Note that both operators change only the assignment of locations to vehicles and
working days for exactly two pairs of vehicles and working days. Therefore, the
second level optimization mechanism is used to re-optimize the routes for only
those two assignments that differ from the current solution. Here the second
level optimization mechanism computes an optimal route by complete enumer-
ation in the case where at most 8 locations are assigned to a specific vehicle
and working day, whereas due to limitations of the computational time a fast
heuristic approach is used if more than 8 locations are involved. This heuris-
tic approach tries to insert the new location in the best possible way without
changing the order of the locations that are already visited by that vehicle on
that working day. The resulting solutions are then evaluated and compared to
the current solution. If an improving solution is found, this solution replaces
the current solution and a new iteration is started immediately. If there is no
improving solution in the neighborhood of the current solution, the local search
algorithm terminates and the local optimal solution is returned by our approach
as the final solution.

8.4 Computational Studies

In this section we show the results of a computational study performed with our
heuristic. For this purpose we use the original data of the problem which has
been provided by Caritas Suisse. There are still two very important properties
that need to be decided. One of them is the location of the processing plant.
Here we can chose between three different locations: Serangan, Jl. Kargo Permai
and Green School (see figure 8.1). The other one is the number of vehicles used.
The main purpose of the computational study is to support the decision process
about the location of the plant and the number of vehicles used. Therefore, we
run the algorithm several times with different locations for the processing plant
and with different numbers of vehicles.

155 8.4 Computational Studies

We have implemented the algorithm in ANSI C using the gcc compiler with
common optimization flags. For the experiments an Intel Core2 Duo machine
running at 2.53GHz was used. Due to feasibility constraints, we have used
values between 4 and 7 for the number of vehicles. Together with the three
different locations for the processing plant this results in a total of 12 experi-
ments. Each experiment was performed for a total of 10 runs. The results are
summarized in table 8.1. Here we report for each combination of the number of
vehicles and the plant location the average values obtained in the 10 different
runs for the total travel time, the travel time standard deviation and the min-
imum/maximum travel time over all vehicles and working days (all values in
hours). Notice that feasible solutions, where the travel times of all routes do not
exceed eight hours, are printed in boldface. Additionally, we have visualized the
total travel times and the travel time standard deviations for different vehicle
numbers and different plant locations in figures 8.2 (a) and 8.2 (b). Note that
this visualization contains only the feasible solutions.

First of all, we see that not all of the experiments result in feasible solutions.
Using 4 vehicles for the location Jl. Kargo Permai and 4 or 5 vehicles for the
location Green School leads to infeasible solutions, since the travel time of some
routes exceeds eight hours. One of the main goals in our work is to balance the
workload while maintaining efficient routes in terms of travel times. This goal
has been reached for the solutions using 4 or 5 vehicles for the location Serangan
and 5 vehicles for the location Jl. Kargo Permai. In terms of the total travel time,
solutions using the location Serangan seem to be slightly better than solutions
using the location Jl. Kargo Permai. Nonetheless, for a final decision additional
economical considerations and constraints (which are not part of our study)
have to be respected. Based on our results we are able to exclude the location
Green School for further considerations and to support the decision process in
this way. It is interesting to report that following our study, as well as additional
economic considerations, the location finally selected by Caritas Suisse has been
in fact Jl. Kargo Permai.

We want to finish this section with a short discussion about the performance
of our heuristic. The computational time for a single run is in the range of
between 3 and 10 minutes, depending on the number of vehicles and also on the
plant location. Additionally, our heuristic is able to fairly balance the workload
between single routes, especially if the number of vehicles is 4 or 5. In those
cases the difference between the longest and the shortest route over all vehicles
and working days is less than one hour. This is a remarkable achievement, in
particular because the single routes consist only of very few locations.

156 8.4 Computational Studies

plant location vehicles
travel time

total standard deviation minimum maximum

Serangan

4 279.40 0.12 6.67 7.39

5 299.85 0.12 5.64 6.37

6 308.32 0.18 4.72 5.97

7 307.79 0.21 4.05 5.92

Jl. Kargo Permai

4 339.30 0.11 8.13 8.87

5 352.60 0.14 6.68 7.62

6 354.35 0.20 5.52 7.04

7 365.49 0.22 4.88 6.76

Green School

4 411.68 0.14 9.95 10.77

5 418.67 0.18 7.78 9.09

6 425.95 0.27 6.36 7.79

7 436.24 0.25 5.80 7.19

Table 8.1. Computational results (absolute values in hours). Feasible solutions
are printed in boldface.

 0

 100

 200

 300

 400

 500

 600

Serangan Jl. Kargo Permai Green School

to
ta

l t
ra

ve
l t

im
e

[in
 h

ou
rs

]

4 vehicles
5 vehicles
6 vehicles
7 vehicles

(a) total travel times

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

Serangan Jl. Kargo Permai Green School

tr
av

el
 ti

m
e

st
an

da
rd

 d
ev

ia
tio

n
[in

 h
ou

rs
]

4 vehicles
5 vehicles
6 vehicles
7 vehicles

(b) standard deviations

Figure 8.2. The total travel times and the travel time standard deviations for
feasible solutions using different numbers of vehicles and different locations for
the plant. The results are given in hours, grouped by plant locations.

157 8.5 Discussion and Conclusions

8.5 Discussion and Conclusions

In this chapter we showed how to model the transportation component of a
real world oil collection problem as a vehicle routing problem. This problem
is an integral part of a recycling project in Bali, helping the people in this re-
gion, protecting the environment and making a contribution to combat climate
change. Based on our experience with vehicle routing problems we proposed
a local search algorithm for this problem. This algorithm assigns the different
collection points to the vehicles and the working days. An inner optimization
mechanism is then used to optimize the routes for the different vehicles and
working days. With this approach it is possible to obtain solutions in which the
workload among the vehicles and working days is fairly balanced. Additionally,
we could gain useful information for the decision process regarding the number
of vehicles and the location of the processing plant.

We want to finish the chapter with a brief outlook about our ideas and plans
for the future of this project. An important issue is that we have only very limited
information about the actual travel times between the different locations at the
moment. Here the idea is to gather additional and more reliable information in
a test phase of the project where the vehicles are used on computed routes to
verify our results. Depending on the results of this phase we could also decide
to model the travel times time-dependently and/or in a stochastic way. The
corresponding modifications to our current algorithm would be straightforward.
The other important issue is the modeling of the amount of oil that has to be
collected. So far we are using fixed values which are basically estimates of the
demands using average values. In the future we want to extend our model and to
incorporate also stochastic demands. By combining our existing algorithm with
an approach based on Monte Carlo sampling, as it has been used in chapters 5
and 6, only slight modifications are necessary in this case. All in all, we want to
use the available information in the best possible way to create a realistic model
for the transportation component and to obtain high quality solutions for this
problem. Based on the results of the other chapters and on our experience we
believe that using stochastic information for the demands (and maybe also for
the travel times) is the right choice here.

158 8.5 Discussion and Conclusions

Chapter 9

Conclusions

At the beginning of the thesis we have presented a convergence result for vehi-
cle routing problems with stochastic demands. Here we have shown a kind of
asymptotic equivalence between the VEHICLE ROUTING PROBLEM WITH STOCHASTIC

DEMANDS and the TRAVELING SALESMAN PROBLEM, as well as between the VEHICLE

ROUTING PROBLEM WITH STOCHASTIC DEMANDS AND CUSTOMERS and the PROBA-
BILISTIC TRAVELING SALESMAN PROBLEM. With this result we were able to give the
first theoretical explanations for some phenomena that were observed regarding
to those problems. We could further show that in certain situations it makes
sense to treat a vehicle routing problem with stochastic demands like a conven-
tional (non-stochastic) vehicle routing problem. Those results require that only
a single vehicle (or a very small number of vehicles) is used and that a lot of
restocking actions are performed. Additionally, the number of customers that
have to be served should be quite large. Here we also assume that the basic
restocking strategy is used. The cases in which those conditions are not fulfilled
are worth for further investigations. In fact, it is of high interest to characterize
those variants of vehicle routing problems with stochastic demands that differ
significantly from their non-stochastic counterparts.

We then continued with investigations of (substantially) stochastic instances
of stochastic vehicle routing problems. These problems also contain non-
stochastic instances as special cases. With (substantially) stochastic instances
we refer to instances which make extensive use of modeling input in a stochastic
way and which differ significantly from the non-stochastic instances. Here we
could show several hardness results for the exact optimization and the approx-
imation of the PROBABILISTIC TRAVELING SALESMAN PROBLEM, the VEHICLE ROUT-
ING PROBLEM WITH STOCHASTIC DEMANDS and the VEHICLE ROUTING PROBLEM WITH

STOCHASTIC DEMANDS AND CUSTOMERS. All in all, those problems remain difficult
to solve (or approximate), even if we consider only (substantially) stochastic in-

159

160

stances. We think that it is of great importance to show the hardness for such
stochastic instances, since those instances are the reason why stochastic vehicle
routing problems are used instead of conventional (non-stochastic) vehicle rout-
ing problems. We hope that similar results will be derived for other stochastic
combinatorial optimization problems in the future.

After that we focused on the complexity of several computational tasks re-
lated to the PROBABILISTIC TRAVELING SALESMAN PROBLEM WITH DEADLINES. We
could show that the following computational tasks are #P-hard for Euclidean
instances of the PTSPD: the computation of the probabilities for deadline vio-
lations, the evaluation of solutions, delta evaluation in reasonable local search
neighborhoods, the decision variant and the optimization variant. To our knowl-
edge, it has been shown for the first time that the evaluation of solutions for a
practically relevant stochastic vehicle routing problem is a difficult computa-
tional task itself. Additionally, we could show that the PTSPD is more difficult
to solve from a complexity point of view than its non-stochastic counterpart,
the TRAVELING SALESMAN PROBLEM WITH DEADLINES. In our opinion, similar re-
sults can be derived for a large number of other stochastic vehicle routing prob-
lems and stochastic combinatorial optimization problems. This shows that many
stochastic combinatorial optimization problems are much harder to solve from
a complexity point of view, a fact that has already been experienced by many
practitioners. Finally, we were able to reveal an interesting connection between
stochastic vehicle routing problems, or more general stochastic combinatorial
optimization problems, and the class #P of counting problems. We believe that
there is a very deep relationship between these two classes of problems. Re-
cently, we could also show that the complexity of various computational tasks
for counting problems are upper bounds for the complexity of several computa-
tional tasks for stochastic combinatorial optimization problems. Future research
in this direction seems to be of great importance.

In our first chapter regarding practical applications of stochastic vehicle rout-
ing problems, we developed efficient local search algorithms and efficient heuris-
tics for the PROBABILISTIC TRAVELING SALESMAN PROBLEM. The local search algo-
rithms are based on the former state-of-the-art local search algorithm and are
using a combination of an analytical approximation of the objective function
and an approximation based on Monte Carlo sampling. Additionally, many ad-
vanced local search techniques like don’t look bits, neighborhood lists and delta
evaluation were used for this algorithm. This local search algorithm was then
used within a random restart local search algorithm and an iterated local search
algorithm. These algorithms are currently the state-of-the-art methods for the
PTSP.

161

We then continued with the development of efficient problem solving meth-
ods for the PROBABILISTIC TRAVELING SALESMAN PROBLEM WITH DEADLINES. As we
have seen in earlier chapters this is a computationally very demanding prob-
lem and even the evaluation of the solutions is a computationally difficult task.
Therefore, the usage of heuristics, in particular in combination with approxima-
tions of the objective function, is very well motivated in this case. Approxima-
tions for the objective function introduced in literature do not lead to a satis-
factory approximation behavior and therefore we proposed an approximation
based on Monte Carlo sampling. Theoretically, this approximation also does
not lead to a satisfactory approximation behavior, but in practical applications
it outperforms the other methods by far. We used this approximation within a
local search algorithm and obtained very promising results. We then used this
local search algorithm within a random restart local search algorithm. This ap-
proach achieves very good results and is the current state-of-the-art method for
the PTSPD.

During our research for the PROBABILISTIC TRAVELING SALESMAN PROBLEM WITH

DEADLINES we were able to identify that sampling based methods for the opti-
mization of stochastic combinatorial optimization problems allow for an efficient
parallelization on a very low level. In fact, for many such problems it is possible
to parallelize the evaluation of solutions on the level of a single sample, that
means we perform the evaluation of one sample on one solution many times
in parallel. We proposed this approach as a framework for the optimization of
stochastic combinatorial optimization problems and applied this framework to
the PROBABILISTIC TRAVELING SALESMAN PROBLEM WITH DEADLINES. In this way
we could demonstrate the efficiency of our framework. The results obtained are
very promising, in fact the computational time for the state-of-the-art heuristics
for the PTSPD could be reduced by up to two orders of magnitude. We are sure
that these results also generalize to sampling based heuristics for other stochastic
vehicle routing problems and other stochastic combinatorial optimization prob-
lems.

We then turned to a real world vehicle routing problem, finishing our jour-
ney “from theory to practice”. This project has been initiated by the Caritas
Suisse and is still in an early stage. Here we were able to use our knowledge
and experience with the optimization of vehicle routing problems and stochas-
tic vehicle routing problems to support the early stage decision process for this
project. More in detail, our results could help in selecting a location for the de-
pot and in determining an appropriate number of vehicles that were purchased
for the project. For the future our model has to be changed in many different
ways. In particular, we have to consider better estimates for the travel times, the

162

actual stochastic demands and time dependent travel times, just to mention the
most important changes. For us it is very important that we could show that our
theoretical and practical results obtained in this thesis are not only of academic
interest. They can be easily adapted for tackling real world problems. So far
we have successfully supported an early stage decision process for the project
and we feel certain that we are also able to contribute to the project in other
fundamental ways.

At this point, let us come to a final conclusion. All in all, we strongly be-
lieve that with our work we could significantly contribute to both the theoret-
ical understanding and the practical applications of stochastic vehicle routing
problems. Our results open a lot of new directions for further research. In
our opinion the most promising ones are the following. First of all, we believe
that sampling based methods have a huge potential for solving stochastic ve-
hicle routing problems and stochastic combinatorial optimizations in general.
Surprisingly, there exist many problems for which such methods have not been
used yet and we hope that with our work we contribute towards a change of this
situation. Secondly, we think that it is important to prove hardness results for
(substantially) stochastic instances of stochastic vehicle routing problems and
stochastic combinatorial optimization problems. In this way we are able to give
a strong motivation for the usage of heuristics for solving these problems. Last
but not least, we are sure that there exists a deep relationship between stochas-
tic combinatorial optimization problems and the class #P of counting problems.
With our work we have shown a first connection between these two classes of
problems. We believe that there is much more to show and future research in
this direction seems to be extremely promising and of great importance.

Appendix A

Convergence Results for Vehicle
Routing Problems with
Stochastic Demands

In this chapter we present the material that has been omitted in chapter 2. It is
basically the proof for a simple property of cyclic matrices and proofs regarding
invariances of the gcd property.

A.1 Cyclic Matrices

Lemma 13. Let A= (ai j) be a m×m cyclic matrix and let B = (bi j) be a m×m
cyclic matrix. Then C = AB is a m×m cyclic matrix.

Proof. We have ∀i ∈ {0, 1, . . . , m− 1}, ∀ j ∈ {0, 1, . . . , m− 1} :

ci j =
m
∑

k=1

aik bk j

=
m
∑

k=1

ai+1,k+1 bk+1, j+1

=
m
∑

k=1

ai+1,k bk, j+1

= ci+1, j+1,

where the indices are taken modulo m.

163

164 A.2 Invariances of the gcd Property

A.2 Invariances of the gcd Property

First we show that the gcd property does not depend on the index of the strictly
positive entry relative to which the differences are taken.

Theorem 22. Let A= (ai j) be a cyclic m×m matrix with only non-negative entries
and with strictly positive entries ai10, ai20, . . . , ail0, i1 < i2 < . . . < il in the first
column. Then the following statements are equivalent:

(i) A fulfills the gcd property.

(ii) There exists a k ∈ {1,2, . . . , l}, s.t. the greatest common divisor of the differ-
ences ik − i j, j ∈ {1, 2, . . . , l} \ {k}, and m is 1.

(iii) For all k ∈ {1, 2, . . . , l} the greatest common divisor of the differences ik − i j,
j ∈ {1, 2, . . . , l} \ {k}, and m is 1.

Proof. The implications (i)⇒ (ii) and (iii)⇒ (i) are trivial. So it is sufficient to

prove the implication (ii) ⇒ (iii). Let k ∈ {1, 2, . . . , l} be a value fulfilling (ii).

We show that the property also holds for any other value k′ ∈ {1,2, . . . , l} \ {k}.
There exist values c1, c2, . . . , cl , d ∈ Z, s.t. the following equivalences hold.

gcd(ik − i1, . . . , ik − ik−1, ik − ik+1, . . . , ik − il , m) = 1

⇔
l
∑

t=1

ct(ik − it) + dm= 1

⇔
l
∑

t=1

ct(ik − ik′ + ik′ − it) + dm= 1

⇔
l
∑

t=1

ct(ik′ − it) +

−
l
∑

t=1

ct

!

(ik′ − ik) + dm= 1

⇔ gcd(ik′ − i1, . . . , ik′ − ik′−1, ik′ − ik′+1, . . . , ik′ − il , m) = 1

Here we use the fact that Z is a principal ideal ring. For details about prop-

erties of principal ideal rings, see e.g. Baldoni et al. [2008].

Now we show that the property also does not depend on the column, from
which we chose the indices of the strictly positive entries.

165 A.2 Invariances of the gcd Property

Theorem 23. Let A= (ai j) be a cyclic m×m matrix with only non-negative entries.
Then the following statements are equivalent:

(i) A fulfills the gcd property.

(ii) There exists a k ∈ {0, 1, . . . , m− 1}, s.t. the greatest common divisor of the
differences i(k)l − i(k)j , j ∈ {1,2, . . . , l−1}, and m is 1, where i(k)1 < i(k)2 < . . .<

i(k)l are the indices with strictly positive entries in column k.

(iii) For all k ∈ {0,1, . . . , m− 1} the greatest common divisor of the differences
i(k)l − i(k)j , j ∈ {1, 2, . . . , l − 1}, and m is 1, where i(k)1 < i(k)2 < . . . < i(k)l are
the indices with strictly positive entries in column k.

Proof. Again the implications (i) ⇒ (ii) and (iii) ⇒ (i) are trivial and we just

have to show the implication (ii) ⇒ (iii). For that purpose we show that if the

property in (ii) is fulfilled for any k > 0 then it is also fulfilled for k − 1 and if

the property is fulfilled for any k < m− 1 then it is also fulfilled for k + 1. In

this way we can prove (iii) by using this reasoning repeatedly. We show only the

implication from k to k− 1, since the implication from k to k+ 1 is analogue.

So let (ii) be fulfilled for some k > 0 and let i(k)1 < i(k)2 < . . . < i(k)l be the

indices with strictly positive entries in column k. Now we distinguish the two

cases, where the first entry in column k is zero or strictly positive, respectively.

In the first case we have i(k)1 > 0. Then the strictly positive entries in column

k− 1 are

i(k−1)
1 = i(k)1 − 1< i(k−1)

2 = i(k)2 − 1< . . .< i(k−1)
l = i(k)l − 1

due to the cyclic structure of A. That means the corresponding differences are

the same for both columns, since

i(k−1)
l − i(k−1)

j =
�

i(k)l − 1
�

−
�

i(k)j − 1
�

= i(k)l − i(k)j , j ∈ {1,2, . . . , l},

and thus (ii) holds for k− 1.

166 A.2 Invariances of the gcd Property

Now let i(k)1 = 0. In this case we have strictly positive entries in column k−1

at the row indices

i(k−1)
1 = i(k)2 − 1< i(k−1)

2 = i(k)3 − 1< . . .< i(k−1)
l−1 = i(k)l − 1< i(k−1)

l = m− 1,

again due to the cyclic structure of A. The differences with respect to the index

i(k−1)
l−1 (which is not the largest index of a strictly positive entry for column k−1)

are

i(k−1)
l−1 − i(k−1)

j =
�

i(k)l − 1
�

−
�

i(k)j+1− 1
�

= i(k)l − i(k)j+1, j ∈ {1,2, . . . , l − 2}

and

i(k−1)
l−1 − i(k−1)

l =
�

i(k)l − 1
�

− (m− 1) = i(k)l −m= i(k)l − i(k)1 −m.

Every common divisor of the differences i(k−1)
l−1 − i(k−1)

j , j ∈ {1,2, . . . , l−2, l}, and

m would also be a common divisor of the differences i(k)l −i(k)j , j ∈ {1,2, . . . , l−1},
and m, and vice versa. Since the greatest common divisor of the latter differ-

ences and m is 1, the greatest common divisor of the former differences and m
has to be 1, too. With theorem 22 we can conclude that the required property

also holds for column k− 1 in this case, which finishes the proof.

It is also possible to chose a row instead of a column for the definition of the
gcd property and to consider the indices of the strictly positive entries in that
row. Due to the cyclic structure, the entries in the first row of the matrix are
the same as in the last column, but in inverse order. We omit a formal proof for
that statement, but a similar reasoning as in the proof of the last theorem can be
used here.

Bibliography

E.H.L. Aarts and J. Korst. Simulated annealing and Boltzmann machines. Wiley
Chichester, 1990.

E.H.L. Aarts and J.K. Lenstra. Local search in combinatorial optimization. Prince-
ton University Press, 2003. ISBN 0691115222.

Z. Adar and J.M. Griffin. Uncertainty and the choice of pollution control instru-
ments. Journal of Environmental Economics and Management, 3(3):178–188,
1976.

C. Almeder and R.F. Hartl. A metaheuristic optimization approach for a real-
world stochastic flexible flow shop problem with limited buffer. International
Journal of Production Economics, 2012.

E. Angelelli and M.G. Speranza. The periodic vehicle routing problem with inter-
mediate facilities. European Journal of Operational Research, 137(2):233–247,
2002.

S. Arora and B. Barak. Computational complexity: A modern approach. Cam-
bridge University Press, 2009.

P. Balaprakash, M. Birattari, T. Stützle, and M. Dorigo. Adaptive sample size
and importance sampling in estimation-based local search for the probabilistic
traveling salesman problem. European Journal of Operational Research, 199
(1):98–110, 2009a.

P. Balaprakash, M. Birattari, T. Stützle, Z. Yuan, and M. Dorigo. Estimation-
based ant colony optimization and local search for the probabilistic traveling
salesman problem. Swarm Intelligence, 3(3):223–242, 2009b.

P. Balaprakash, M. Birattari, T. Stützle, and M. Dorigo. Estimation-based meta-
heuristics for the probabilistic traveling salesman problem. Computers and
Operations Research, 37(11):1939–1951, 2010.

167

168 Bibliography

M.W. Baldoni, C. Ciliberto, and G.M.P. Cattaneo. Elementary Number Theory,
Cryptography and Codes. Springer, 2008.

S. Baptista, R.C. Oliveira, and E. Zuquete. A period vehicle routing case study.
European Journal of Operational Research, 139(2):220–229, 2002.

G. Barbarosoǧlu and Y. Arda. A two-stage stochastic programming framework
for transportation planning in disaster response. Journal of the Operational
Research Society, 55(1):43–53, 2004.

C. Bastian and A.H.G. Rinnooy Kan. The stochastic vehicle routing problem
revisited. European Journal of Operational Research, 56(3):407–412, 1992.

A. Ben-Tal and A. Nemirovski. Robust optimization–methodology and applica-
tions. Mathematical Programming, 92(3):453–480, 2002.

A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust optimization. Princeton
University Press, 2009.

D.J. Bertsimas. A vehicle routing problem with stochastic demand. Operations
Research, 40(3):574–585, 1992.

D.J. Bertsimas and L.H. Howell. Further results on the probabilistic traveling
salesman problem. European Journal of Operational Research, 65(1):68–95,
1993.

D.J. Bertsimas, P. Jaillet, and A.R. Odoni. A priori optimization. Operations
Research, 38(6):1019–1033, 1990.

D.J. Bertsimas, P. Chervi, and M. Peterson. Computational approaches to stochas-
tic vehicle routing problems. Transportation science, 29(4):342–352, 1995.

H.G. Beyer and H.P. Schwefel. Evolution strategies–a comprehensive introduc-
tion. Natural computing, 1(1):3–52, 2002. ISSN 1567-7818.

H.G. Beyer and B. Sendhoff. Robust optimization–a comprehensive survey.
Computer methods in applied mechanics and engineering, 196(33):3190–3218,
2007.

L. Bianchi and L.M. Gambardella. Ant colony optimization and local search
based on exact and estimated objective values for the probabilistic traveling
salesman problem. Technical Report 06 - 07, IDSIA, Istituto Dalle Molle di
Studi sull’Intelligenza Artificiale, June 2007.

169 Bibliography

L. Bianchi, L.M. Gambardella, and M. Dorigo. An ant colony optimization ap-
proach to the probabilistic traveling salesman problem. Parallel Problem Solv-
ing from Nature–PPSN VII, pages 883–892, 2002a.

L. Bianchi, L.M. Gambardella, and M. Dorigo. Solving the homogeneous proba-
bilistic traveling salesman problem by the ACO metaheuristic. Ant Algorithms,
pages 25–38, 2002b.

L. Bianchi, L.M. Gambardella, and M. Dorigo. An ant colony optimization ap-
proach to the probabilistic traveling salesman problem. Lecture Notes in Com-
puter Science, pages 883–892, 2003.

L. Bianchi, M. Birattari, M. Chiarandini, M. Manfrin, M. Mastrolilli, L. Paquete,
O. Rossi-Doria, and T. Schiavinotto. Metaheuristics for the vehicle routing
problem with stochastic demands. In Parallel Problem Solving from Nature-
PPSN VIII, pages 450–460. Springer, 2004.

L. Bianchi, M. Birattari, M. Chiarandini, M. Manfrin, M. Mastrolilli, L. Paquete,
O. Rossi-Doria, and T. Schiavinotto. Hybrid metaheuristics for the vehicle
routing problem with stochastic demands. Journal of Mathematical Modelling
and Algorithms, 5(1):91–110, 2006.

L. Bianchi, M. Dorigo, L.M. Gambardella, and W.J. Gutjahr. A survey on meta-
heuristics for stochastic combinatorial optimization. Natural Computing, 8(2):
239–287, 2009.

M. Birattari, P. Balaprakash, T. Stützle, and M. Dorigo. Estimation-based local
search for stochastic combinatorial optimization using delta evaluations: A
case study on the probabilistic traveling salesman problem. INFORMS Journal
on Computing, 20(4):644–658, 2008a.

M. Birattari, P. Balaprakash, T. Stützle, and M. Dorigo. Estimation-based local
search for stochastic combinatorial optimization using delta evaluations: A
case study on the probabilistic traveling salesman problem. INFORMS Journal
on Computing, 20(4):644–658, 2008b.

J.R. Birge and F.V. Louveaux. A multicut algorithm for two-stage stochastic linear
programs. European Journal of Operational Research, 34(3):384–392, 1988.

H.J. Böckenhauer, J. Hromkovič, T. Mömke, and P. Widmayer. On the hardness
of reoptimization. SOFSEM 2008: Theory and Practice of Computer Science,
pages 50–65, 2008.

170 Bibliography

J. Branke and M. Guntsch. New ideas for applying ant colony optimization to
the probabilistic tsp. Applications of Evolutionary Computing, pages 127–134,
2003.

J. Branke and M. Guntsch. Solving the probabilistic tsp with ant colony opti-
mization. Journal of Mathematical Modelling and Algorithms, 3(4):403–425,
2004.

A.M. Campbell. Aggregation for the probabilistic traveling salesman problem.
Computers and Operations Research, 33(9):2703–2724, 2006.

A.M. Campbell and B.W. Thomas. Challenges and advances in a priori routing.
The Vehicle Routing Problem: Latest Advances and New Challenges, pages 123–
142, 2008a.

A.M. Campbell and B.W. Thomas. Probabilistic traveling salesman problem with
deadlines. Transportation Science, 42(1):1–21, 2008b.

A.M. Campbell and B.W. Thomas. Runtime reduction techniques for the proba-
bilistic traveling salesman problem with deadlines. Computers and Operations
Research, 36(4):1231–1248, 2009.

C.C. Carøe and J. Tind. L-shaped decomposition of two-stage stochastic pro-
grams with integer recourse. Mathematical Programming, 83(1):451–464,
1998.

R.L. Carraway, T.L. Morin, and H. Moskowitz. Generalized dynamic program-
ming for stochastic combinatorial optimization. Operations Research, 37(5):
819–829, 1989.

C. Cervellera, V.C.P. Chen, and A. Wen. Optimization of a large-scale water reser-
voir network by stochastic dynamic programming with efficient state space
discretization. European Journal of Operational Research, 171(3):1139–1151,
2006.

M.S. Chang, Y.L. Tseng, and J.W. Chen. A scenario planning approach for
the flood emergency logistics preparation problem under uncertainty. Trans-
portation Research Part E: Logistics and Transportation Review, 43(6):737–754,
2007.

G. Chen, M.S. Daskin, Z.J.M. Shen, and S. Uryasev. The α-reliable mean-excess
regret model for stochastic facility location modeling. Naval Research Logistics
(NRL), 53(7):617–626, 2006.

171 Bibliography

K. Chepuri and T. Homem-de Mello. Solving the vehicle routing problem with
stochastic demands using the cross-entropy method. Annals of Operations Re-
search, 134(1):153–181, 2005.

R.K. Cheung and C.Y. Chen. A two-stage stochastic network model and solution
methods for the dynamic empty container allocation problem. Transportation
Science, 32(2):142–162, 1998.

D.M. Chitty. A data parallel approach to genetic programming using pro-
grammable graphics hardware. In Proceedings of the 9th annual conference
on Genetic and evolutionary computation, pages 1566–1573. ACM, 2007.

A. Choong, R. Beidas, and J. Zhu. Parallelizing simulated annealing-based place-
ment using GPGPU. In 2010 International Conference on Field Programmable
Logic and Applications, pages 31–34. IEEE, 2010.

C.H. Christiansen and J. Lysgaard. A branch-and-price algorithm for the capac-
itated vehicle routing problem with stochastic demands. Operations Research
Letters, 35(6):773–781, 2007.

L. Cooper and L.J. Leblanc. Stochastic transportation problems and other new-
tork related convex problems. Naval Research Logistics Quarterly, 24(2):327–
337, 1977.

J.F. Cordeau, M. Gendreau, and G. Laporte. A tabu search heuristic for periodic
and multi-depot vehicle routing problems. Networks, 30(2):105–119, 1997.

M. Czapinski and S. Barnes. Tabu search with two approaches to parallel flow-
shop evaluation on CUDA platform. Journal of Parallel and Distributed Com-
puting, 71(6):802–811, 2011. ISSN 0743-7315.

E. Delage. Re-optimization of technician tours in dynamic environments with
stochastic service time. Rapport de stage du Master ORO, 2010.

M. Delgado, M.A. Vila, J. Kaprzyk, and J.L. Verdegay. Fuzzy optimization: Recent
advances. Springer-Verlag New York, Inc., 1994.

D. Dentcheva and W. Römisch. Optimal power generation under uncertainty via
stochastic programming. 1998.

K. Dhamdhere, R. Ravi, and M. Singh. On two-stage stochastic minimum span-
ning trees. Integer Programming and Combinatorial Optimization, pages 189–
199, 2005.

172 Bibliography

U. Diwekar. Optimization under uncertainty. Introduction to Applied Optimiza-
tion, pages 1–54, 2008.

A.V. Donati, R. Montemanni, N. Casagrande, A.E. Rizzoli, and L.M. Gambardella.
Time dependent vehicle routing problem with a multi ant colony system. Eu-
ropean Journal of Operational Research, 185(3):1174–1191, 2008.

M. Dorigo and T. Stützle. The ant colony optimization metaheuristic: Algo-
rithms, applications, and advances. Handbook of metaheuristics, pages 250–
285, 2003.

M. Dorigo, G. Di Caro, and L.M. Gambardella. Ant algorithms for discrete opti-
mization. Artificial life, 5(2):137–172, 1999. ISSN 1064-5462.

M. Dror and P. Trudeau. Stochastic vehicle routing with modified savings algo-
rithm. European Journal of Operational Research, 23(2):228–235, 1986.

M. Dror, G. Laporte, and F.V. Louveaux. Vehicle routing with stochastic demands
and restricted failures. Mathematical Methods of Operations Research, 37(3):
273–283, 1993. ISSN 1432-2994.

Y. Dumas, J. Desrosiers, E. Gelinas, and M.M. Solomon. An optimal algorithm
for the traveling salesman problem with time windows. Operations Research,
43(2):367–371, 1995.

M. Dyer and L. Stougie. Computational complexity of stochastic programming
problems. Mathematical Programming, 106(3):423–432, 2006.

Y.M. Ermoliev and G. Leonardi. Some proposals for stochastic facility location
models. Mathematical Modelling, 3(5):407–420, 1982.

K.L. Fok, T.T. Wong, and M.L. Wong. Evolutionary computing on consumer
graphics hardware. Intelligent systems, 22(2):69–78, 2007. ISSN 1541-1672.

T.D. Frank, P.J. Beek, and R. Friedrich. Fokker-Planck perspective on stochastic
delay systems: Exact solutions and data analysis of biological systems. Physical
Review E, 68(2):021912, 2003.

R.M. Freund. Optimization under uncertainty. Massachusetts Institute of Technol-
ogy, pages 18–27, 2004.

173 Bibliography

F. FuCe, W. Hui, and Z.L. Ying. Solving the vehicle routing problem with stochas-
tic demands and customers. In Sixth International Conference on Parallel
and Distributed Computing, Applications and Technologies, PDCAT 2005., pages
736–739, 2005.

L.M. Gambardella, N. Casagrande, R. Montemanni, F. Oliverio, and A.E. Rizzoli.
Ant colony optimization applied to industrial vehicle routing problems. In
ECCO 2003, XVI Conference of the European Chapter on Combinatorial Optimi-
sation, pages 5–7, 2003a.

L.M. Gambardella, A.E. Rizzoli, F. Oliverio, N. Casagrande, A.V. Donati, R. Mon-
temanni, and E. Lucibello. Ant colony optimization for vehicle routing in ad-
vanced logistic systems. In Proceedings of MAS 2003 – International Workshop
on Modeling and Applied Simulation, Bergeggi, Italy, pages 3–9, 2003b.

M. Gaudioso and G. Paletta. A heuristic for the periodic vehicle routing problem.
Transportation Science, 26(2):86–92, 1992.

M. Gendreau, G. Laporte, and R. Séguin. An exact algorithm for the vehicle rout-
ing problem with stochastic demands and customers. Transportation Science,
29(2):143–155, 1995.

M. Gendreau, G. Laporte, and R. Séguin. Stochastic vehicle routing. European
Journal of Operational Research, 88(1):3–12, 1996a.

M. Gendreau, G. Laporte, and R. Séguin. A tabu search heuristic for the vehicle
routing problem with stochastic demands and customers. Operations Research,
44(3):469–477, 1996b.

F. Glover and M. Laguna. Tabu search. Kluwer Academic Pub, 1998. ISBN
0792381874.

D.E. Goldberg. Genetic algorithms in search, optimization, and machine learning.
Addison-Wesley, 1989. ISBN 0201157675.

G.H. Golub and C.F. Van Loan. Matrix computations. Johns Hopkins University
Press, 1996.

H. Gordon. Discrete probability. Springer, 1997.

L. Gouveia and S. Voß. A classification of formulations for the (time-dependent)
traveling salesman problem. European Journal of Operational Research, 83(1):
69–82, 1995.

174 Bibliography

G. Grimmett and D. Welsh. Probability: An introduction. Clarendon Press, 1986.

W. Gutjahr. A converging ACO algorithm for stochastic combinatorial optimiza-
tion. Stochastic Algorithms: Foundations and Applications, pages 10–25, 2003.

W. Gutjahr. S-ACO: An ant-based approach to combinatorial optimization under
uncertainty. Ant Colony Optimization and Swarm Intelligence, pages 157–174,
2004.

M. Haimovich and A.H.G. Rinnooy Kan. Bounds and heuristics for capacitated
routing problems. Mathematics of Operations Research, pages 527–542, 1985.

S. Harding and W. Banzhaf. Fast genetic programming on GPUs. Genetic Pro-
gramming, pages 90–101, 2007.

M. Hariga and M. Ben-Daya. Some stochastic inventory models with determin-
istic variable lead time. European Journal of Operational Research, 113(1):
42–51, 1999.

M. Held and R.M. Karp. The traveling-salesman problem and minimum spanning
trees. Operations Research, 18(6):1138–1162, 1970.

V.C. Hemmelmayr, K.F. Doerner, and R.F. Hartl. A variable neighborhood search
heuristic for periodic routing problems. European Journal of Operational Re-
search, 195(3):791–802, 2009.

P.V. Hentenryck and R. Bent. Online stochastic combinatorial optimization. The
MIT Press, 2009.

C. Hjorring and J. Holt. New optimality cuts for a single-vehicle stochastic rout-
ing problem. Annals of Operations Research, 86:569–584, 1999.

A. Hoff, A.G. Lium, A. Løkketangen, and T.G. Crainic. A metaheuristic for
stochastic service network design. Journal of Heuristics, 16(5):653–679, 2010.

R.D. Horan. Cost-effective and stochastic dominance approaches to stochas-
tic pollution control. Environmental and Resource Economics, 18(4):373–389,
2001.

R.A. Horn and C.R. Johnson. Matrix analysis. Cambridge University Press, 1990.

G.H. Huang and D.P. Loucks. An inexact two-stage stochastic programming
model for water resources management under uncertainty. Civil Engineering
Systems, 17(2):95–118, 2000.

175 Bibliography

L.M. Hvattum, A. Løkketangen, and G. Laporte. Solving a dynamic and stochas-
tic vehicle routing problem with a sample scenario hedging heuristic. Trans-
portation Science, 40(4):421–438, 2006.

L.M. Hvattum, A. Løkketangen, and G. Laporte. Scenario tree-based heuristics
for stochastic inventory-routing problems. INFORMS Journal on Computing,
21(2):268–285, 2009.

N. Immorlica, D. Karger, M. Minkoff, and V.S. Mirrokni. On the costs and ben-
efits of procrastination: Approximation algorithms for stochastic combinato-
rial optimization problems. In Proceedings of the fifteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 691–700. Society for Industrial and
Applied Mathematics, 2004.

M. Inuiguchi and J. Ramık. Possibilistic linear programming: A brief review of
fuzzy mathematical programming and a comparison with stochastic program-
ming in portfolio selection problem. Fuzzy sets and systems, 111(1):3–28,
2000.

S.S. Isukapalli, A. Roy, and P.G. Georgopoulos. Stochastic response surface meth-
ods (SRSMs) for uncertainty propagation: Application to environmental and
biological systems. Risk analysis, 18(3):351–363, 1998.

P. Jaillet. Probabilistic traveling salesman problems. PhD thesis, M. I. T., Dept. of
Civil Engineering, 1985.

J. Jin, T.G. Crainic, and A. Løkketangen. A parallel multi-neighborhood cooper-
ative tabu search for capacitated vehicle routing problems. European Journal
of Operational Research, 222(3):441–451, 2012.

D.S. Johnson and L.A. McGeoch. The traveling salesman problem: A case study
in local optimization. Local search in combinatorial optimization, pages 215–
310, 1997.

M. Karamouz and H.V. Vasiliadis. Bayesian stochastic optimization of reservoir
operation using uncertain forecasts. Water Resources Research, 28(5):1221–
1232, 1992.

R.M. Karp. Reducibility among combinatorial problems. Complexity of Computer
Computations, 1972.

J. Kennedy and R. Eberhart. Particle swarm optimization. In IEEE International
Conference on Neural Networks, volume 4, pages 1942–1948, 1995.

176 Bibliography

A.S. Kenyon and D.P. Morton. Stochastic vehicle routing with random travel
times. Transportation Science, 37(1):69–82, 2003.

W.K. Klein Haneveld and M.H. van der Vlerk. Stochastic integer programming:
General models and algorithms. Annals of Operations Research, 85:39–57,
1999.

P.J.M. Laarhoven and E.H.L. Aarts. Simulated annealing: Theory and applications.
Springer, 1987. ISBN 9027725136.

G. Laporte, F.V. Louveaux, and H. Mercure. A priori optimization of the prob-
abilistic traveling salesman problem. Operations research, 42(3):543–549,
1994.

G. Laporte, F.V. Louveaux, and L. Van Hamme. An integer L-shaped algorithm for
the capacitated vehicle routing problem with stochastic demands. Operations
Research, 50(3):415–423, 2002.

G. Latouche and V. Ramaswami. Introduction to matrix analytic methods in
stochastic modeling, volume 5. Society for Industrial Mathematics, 1987.

E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys. The traveling
salesman problem: A guided tour of combinatorial optimization. Wiley New
York, 1985.

J. Li, X. Hu, Z. Pang, and K. Qian. A parallel ant colony optimization algorithm
based on fine-grained model with GPU-acceleration. International Journal of
Innovative Computing, Information and Control, 5(11):3707–3716, 2009.

S. Lin. Computer solutions of the traveling salesman problem. Bell System Tech-
nical Journal, 44(10):2245–2269, 1965.

B. Liu and K.K. Lai. Stochastic programming models for vehicle routing prob-
lems. In Focus on computational neurobiology, pages 13–27. Nova Science
Publishers, Inc., 2004.

J. Liu. Portfolio selection in stochastic environments. PhD thesis, Stanford Univer-
sity, 1999.

Y.H. Liu. A hybrid scatter search for the probabilistic traveling salesman problem.
Computers and Operations Research, 34(10):2949–2963, 2007.

177 Bibliography

Y.H. Liu. Diversified local search strategy under scatter search framework for
the probabilistic traveling salesman problem. European Journal of Operational
Research, 191(2):332–346, 2008a.

Y.H. Liu. A memetic algorithm for the probabilistic traveling salesman problem.
In IEEE Congress on Evolutionary Computation, CEC 2008, pages 146–152,
2008b.

Y.H. Liu. Different initial solution generators in genetic algorithms for solving
the probabilistic traveling salesman problem. Applied mathematics and com-
putation, 216(1):125–137, 2010.

F.V. Louveaux and D. Peeters. A dual-based procedure for stochastic facility loca-
tion. Operations research, 40(3):564–573, 1992.

J. Lu, D.W.C. Ho, and Z. Wang. Pinning stabilization of linearly coupled stochas-
tic neural networks via minimum number of controllers. IEEE Transactions on
Neural Networks, 20(10):1617–1629, 2009.

A. Lucena. Time-dependent traveling salesman problem–the deliveryman case.
Networks, 20(6):753–763, 1990.

M.K. Luhandjula and M.M. Gupta. On fuzzy stochastic optimization. Fuzzy Sets
and Systems, 81(1):47–55, 1996.

I. Maqsood and G.H. Huang. A two-stage interval-stochastic programming model
for waste management under uncertainty. Journal of the Air and Waste Man-
agement Association, 53(5):540–552, 2003.

Y. Marinakis and M. Marinaki. A hybrid honey bees mating optimization algo-
rithm for the probabilistic traveling salesman problem. In IEEE Congress on
Evolutionary Computation, CEC 2009, pages 1762–1769, 2009.

Y. Marinakis and M. Marinaki. A hybrid multi-swarm particle swarm optimiza-
tion algorithm for the probabilistic traveling salesman problem. Computers
and Operations Research, 37(3):432–442, 2010.

Y. Marinakis, A. Migdalas, and P.M. Pardalos. Expanding neighborhood search–
GRASP for the probabilistic traveling salesman problem. Optimization Letters,
2(3):351–361, 2008.

178 Bibliography

J.E. Mendoza, B. Castanier, C. Guéret, A.L. Medaglia, and N. Velasco. A memetic
algorithm for the multi-compartment vehicle routing problem with stochastic
demands. Computers and Operations Research, 37(11):1886–1898, 2010.

J.E. Mendoza, B. Castanier, C. Guéret, A.L. Medaglia, and N. Velasco. Con-
structive heuristics for the multicompartment vehicle routing problem with
stochastic demands. Transportation Science, 45(3):346–363, 2011.

E. Miller-Hooks and H. Mahmassani. Path comparisons for a priori and time-
adaptive decisions in stochastic, time-varying networks. European Journal of
Operational Research, 146(1):67–82, 2003.

R. Montemanni, L.M. Gambardella, A.E. Rizzoli, and A.V. Donati. Ant colony
system for a dynamic vehicle routing problem. Journal of Combinatorial Opti-
mization, 10:327–343, 2005.

R. Montemanni, J. Barta, M. Mastrolilli, and L.M. Gambardella. The robust
traveling salesman problem with interval data. Transportation Science, 41(3):
366–381, 2007.

B. Morris and A. Sinclair. Random walks on truncated cubes and sampling 0-1
knapsack solutions. SIAM Journal on Computing, 34:195, 2004.

C. Murat and V.T. Paschos. A priori optimization for the probabilistic maxi-
mum independent set problem. Theoretical Computer Science, 270(1):561–
590, 2002.

C.V. Negoita and D.A. Ralescu. On fuzzy optimization. Kybernetes, 6(3):193–195,
1977.

C. Novoa and R. Storer. An approximate dynamic programming approach for
the vehicle routing problem with stochastic demands. European Journal of
Operational Research, 196(2):509–515, 2009.

M.P. Nowak and W. Römisch. Stochastic lagrangian relaxation applied to power
scheduling in a hydro-thermal system under uncertainty. Annals of Operations
Research, 100(1):251–272, 2000.

T. Nuortio, J. Kytöjoki, H. Niska, and O. Bräysy. Improved route planning and
scheduling of waste collection and transport. Expert Systems with Applications,
30(2):223–232, 2006.

179 Bibliography

C.H. Papadimitriou and S. Vempala. On the approximability of the traveling
salesman problem. Combinatorica, 26(1):101–120, 2006.

R. Poli, J. Kennedy, and T. Blackwell. Particle swarm optimization. Swarm intel-
ligence, 1(1):33–57, 2007. ISSN 1935-3812.

E.L. Porteus. Stochastic inventory theory. Handbooks in Operations Research and
Management Science, 2:605–652, 1990.

W.B. Powell and H. Topaloglu. Stochastic programming in transportation and
logistics. Handbooks in Operations Research and Management Science, 10:555–
635, 2003.

W. Rei, M. Gendreau, and P. Soriano. A hybrid Monte Carlo local branching algo-
rithm for the single vehicle routing problem with stochastic demands. Trans-
portation Science, 44(1):136–146, 2010.

D. Revuz. Markov chains. North Holland, 2005.

A.E. Rizzoli, N. Casagrande, A.V. Donati, L.M. Gambardella, D. Lepori, R. Mon-
temanni, P. Pina, and M. Zaffalon. Planning and optimization of vehicle routes
for fuel oil distribution. In Proceedings of MODSIM 2003 – Integrative Modeling
of Biophysical, Social and Economic Systems for Resource Management Solutions,
volume 4, pages 2024–2029, 2003.

A.E. Rizzoli, R. Montemanni, E. Lucibello, and L.M. Gambardella. Ant colony
optimisation for real world vehicle routing problems: From theory to applica-
tions. Swarm Intelligence, 1(2):135–151, 2007.

N.V. Sahinidis. Optimization under uncertainty: State-of-the-art and opportuni-
ties. Computers and Chemical Engineering, 28(6):971–983, 2004.

H.M. Salkin and C.A. De Kluyver. The knapsack problem: A survey. Naval
Research Logistics Quarterly, 22(1):127–144, 1975.

P.A. Samuelson. Lifetime portfolio selection by dynamic stochastic programming.
The Review of Economics and Statistics, 51(3):239–246, 1969.

M. Schatzman and J. Taylor. Numerical analysis: A mathematical introduction.
Clarendon Press Oxford, 2002.

M. Schilde, K.F. Doerner, and R.F. Hartl. Metaheuristics for the dynamic stochas-
tic dial-a-ride problem with expected return transports. Computers and Oper-
ations Research, 38(12):1719–1730, 2011.

180 Bibliography

R. Schultz, L. Stougie, and M.H. Vlerk. Two-stage stochastic integer program-
ming: A survey. Statistica Neerlandica, 50(3):404–416, 2008.

N. Secomandi. A rollout policy for the vehicle routing problem with stochastic
demands. Operations Research, 49(5):796–802, 2001.

N. Secomandi and F. Margot. Reoptimization approaches for the vehicle-routing
problem with stochastic demands. Operations research, 57(1):214–230, 2009.

A. Shapiro. Monte Carlo sampling methods. Handbooks in Operations Research
and Management Science, 10:353–425, 2003.

D.J. Sheskin. Handbook of parametric and nonparametric statistical procedures.
2004. Chapman & Hall / CRC, Boca Raton, FL, 2004.

J. Shu, C.P. Teo, and Z.J.M. Shen. Stochastic transportation-inventory network
design problem. Operations Research, 53(1):48–60, 2005.

J.R. Stedinger, B.F. Sule, and D.P. Loucks. Stochastic dynamic programming mod-
els for reservoir operation optimization. Water Resources Research, 20(11):
1499–1505, 1984.

W.R. Stewart and B.L. Golden. Stochastic vehicle routing: A comprehensive
approach. European Journal of Operational Research, 14(4):371–385, 1983.

I. Sungur, F. Ordóñez, and M. Dessouky. A robust optimization approach for the
capacitated vehicle routing problem with demand uncertainty. IIE Transac-
tions, 40(5):509–523, 2008.

H. Tang and E. Miller-Hooks. Approximate procedures for probabilistic traveling
salesperson problem. Transportation Research Record: Journal of the Trans-
portation Research Board, 1882(-1):27–36, 2004.

L. Trevisan. When hamming meets Euclid: The approximability of geometric
TSP and steiner tree. SIAM Journal on Computing, 30(2):475–485, 2000.

S. Tsutsui and N. Fujimoto. Solving quadratic assignment problems by genetic
algorithms with GPU computation: A case study. In Proceedings of the 11th
Annual Conference Companion on Genetic and Evolutionary Computation Con-
ference: Late Breaking Papers, pages 2523–2530. ACM, 2009.

S. Uryasev and P.M. Pardalos. Stochastic optimization: Algorithms and applica-
tions. Springer, 2001.

181 Bibliography

T. Van Luong, N. Melab, and E.G. Talbi. Parallel local search on GPU. Technical
Report RR-6915, INRIA, Institut National de Recherche en Informatique et en
Automatique, 2009.

T. Van Luong, N. Melab, and E.G. Talbi. Large neighborhood local search op-
timization on graphics processing units. In IEEE International Symposium
on Parallel and Distributed Processing, Workshops and PhD Forum (IPDPSW),
2010, pages 1–8, 2010.

R.J. Vander Wiel and N.V. Sahinidis. An exact solution approach for the time-
dependent traveling-salesman problem. Naval Research Logistics (NRL), 43(6):
797–820, 1996.

Z. Wang, H. Qiao, and K.J. Burnham. On stabilization of bilinear uncertain time-
delay stochastic systems with markovian jumping parameters. IEEE Transac-
tions on Automatic Control, 47(4):640–646, 2002.

Z. Wang, Y. Liu, and X. Liu. Exponential stabilization of a class of stochastic
system with markovian jump parameters and mode-dependent mixed time-
delays. IEEE Transactions on Automatic Control, 55(7):1656–1662, 2010.

D. Weyland, L. Bianchi, and L.M. Gambardella. New approximation-based local
search algorithms for the probabilistic traveling salesman problem. In Proceed-
ings of the 12th International Conference on Computer Aided Systems Theory
(Eurocast 2009), 2009a.

D. Weyland, L. Bianchi, and L.M. Gambardella. New heuristics for the prob-
abilistic traveling salesman problem. In Proceedings of the VIII Metaheuristic
International Conference (MIC 2009), 2009b.

D. Weyland, R. Montemanni, and L.M. Gambardella. Hardness results for sub-
stantially stochastic vehicle routing problems. submitted, 2011a.

D. Weyland, R. Montemanni, and L.M. Gambardella. Using statistical tests for
improving state-of-the-art heuristics for the probabilistic traveling salesman
problem with deadlines. In Proceedings of the 13th International Conference
on Computer Aided Systems Theory (Eurocast 2011), volume 6927, pages 448–
455, 2011b.

D. Weyland, R. Montemanni, and L.M. Gambardella. On the computational
complexity of the probabilistic traveling salesman problem with deadlines.
submitted, 2012a.

182 Bibliography

D. Weyland, R. Montemanni, and L.M. Gambardella. Heuristics for the prob-
abilistic traveling salesman problem with deadlines based on quasi-parallel
Monte Carlo sampling. Computers and Operations Research, to appear, 2012b.

D. Weyland, R. Montemanni, and L.M. Gambardella. A metaheuristic framework
for stochastic combinatorial optimization problems based on GPGPU with a
case study on the probabilistic traveling salesman problem with deadlines.
Journal of Parallel and Distributed Computing, 2012c.

D. Weyland, R. Montemanni, and L.M. Gambardella. Hardness results for the
probabilistic traveling salesman problem with deadlines. In Proceedings of
ISCO 2012 - The 2nd International Symposium on Combinatorial Optimization,
2012d.

D. Weyland, R. Montemanni, and L.M. Gambardella. Convergence results for
vehicle routing problems with stochastic demands. In 3rd Annual International
Conference on Operations Research and Statistics (ORS 2013), 2013a.

D. Weyland, M. Salani, R. Montemanni, and L.M. Gambardella. Vehicle routing
for exhausted oil collection. Journal of Traffic and Logistics Engineering, 1(1):
5–8, 2013b.

D.J. Wilkinson. Stochastic modelling for quantitative description of heteroge-
neous biological systems. Nature Reviews Genetics, 10(2):122–133, 2009.

T.H.F. Wong and N.L.G. Somes. A stochastic approach to designing wetlands for
stormwater pollution control. Water science and technology, 32(1):145–152,
1995.

T.T. Wong and M. Wong. Parallel evolutionary algorithms on consumer-level
graphics processing unit. Parallel Evolutionary Computations, pages 133–155,
2006.

C. Wu, R. Jeraj, G.H. Olivera, and T.R. Mackie. Re-optimization in adaptive
radiotherapy. Physics in medicine and biology, 47(17):3181, 2002.

W.H. Yang, K. Mathur, and R.H. Ballou. Stochastic vehicle routing problem with
restocking. Transportation Science, 34(1):99–112, 2000.

F. You and I.E. Grossmann. Mixed-integer nonlinear programming models and
algorithms for large-scale supply chain design with stochastic inventory man-
agement. Industrial and Engineering Chemistry Research, 47(20):7802–7817,
2008.

183 Bibliography

Y.S. Zheng. On properties of stochastic inventory systems. Management Science,
38(1):87–103, 1992.

X.Y. Zhou and D. Li. Continuous-time mean-variance portfolio selection: A
stochastic LQ framework. Applied Mathematics and Optimization, 42(1):19–
33, 2000.

W. Zhu and J. Curry. Parallel ant colony for nonlinear function optimization with
graphics hardware acceleration. In Systems, Man and Cybernetics, SMC 2009,
pages 1803–1808, 2009.

	Contents
	Introduction
	Classification of the Research Area
	The Main Optimization Problems used in this Thesis
	Outline

	Convergence Results for VRPs with Stochastic Demands
	A Markov Chain Model
	Convergence Results
	Convergence Speed for Binomial Demand Distributions
	Discussion
	Conclusions

	Hardness Results for Stochastic VRPs
	The PTSP
	The VRPSD
	The VRPSDC
	Discussion and Conclusions

	Hardness Results for the PTSPD
	Hardness Results for the PTSPD
	Approximations for the PTSPD Objective Function
	Inapproximability Results for the Dependent PTSPD
	Discussion and Conclusions

	Heuristics for the PTSP
	Approximations for the PTSP Objective Function
	Local Search Neighborhoods
	Local Search Algorithms
	Heuristics
	Discussion and Conclusions

	Heuristics for the PTSPD
	An Approximation for the PTSPD Objective Function using MCS
	A Comparison between Approximations for the Objective Function
	Local Search Algorithms for the PTSPD
	A Random Restart Local Search Algorithm for the PTSPD
	Discussion and Conclusions

	Stochastic Vehicle Routing Problems and GPGPU
	Applications of GPGPU for Solving COPs with Metaheuristics
	A Metaheuristic Framework for Solving SCOPs on the GPU
	Solution Evaluation for the PTSPD on the GPU
	Heuristics for the PTSPD on the GPU
	Discussion and Conclusions

	A Vehicle Routing Problem for the Collection of Exhausted Oil
	The Project Description
	The Formal Model
	A Heuristic Approach
	Computational Studies
	Discussion and Conclusions

	Conclusions
	Convergence Results for VRPs with Stochastic Demands
	Cyclic Matrices
	Invariances of the gcd Property

	Bibliography

