
Open-world Software:
Specification, Verification, and Beyond

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Domenico Bianculli
Dott. Mag. Ing., Politecnico di Milano, Italy

under the supervision of

Prof. Carlo Ghezzi

July 2012





Dissertation Committee

Prof. Walter Binder Università della Svizzera italiana, Switzerland
Prof. Mehdi Jazayeri Università della Svizzera italiana, Switzerland

Prof. Tevfik Bultan University of California, Santa Barbara, USA
Prof. Schahram Dustdar Technische Universität Wien, Austria
Prof. Sebastián Uchitel Universidad de Buenos Aires, Argentina

Dissertation accepted on 18 July 2012

Prof. Carlo Ghezzi
Research Advisor

Politecnico di Milano, Italy

Prof. Antonio Carzaniga
PhD Program Director

i



I certify that except where due acknowledgement has been given, the work pre-
sented in this thesis is that of the author alone; the work has not been submitted
previously, in whole or in part, to qualify for any other academic award; and the con-
tent of the thesis is the result of work which has been carried out since the official
commencement date of the approved research program.

Domenico Bianculli
Lugano, 18 July 2012

ii



To the memory of my mother Serafina
who did not live long enough

to see this accomplishment

iii



iv



In the case of all things which have several parts
and in which the totality is not, as it were, a mere heap,
but the whole is something beside the parts,
there is a cause

ARISTOTLE, Metaphysics
(translation by W. D. Ross)

v



vi



Contents

Contents vii

Figures xi

Tables xiii

I Overture 1

1 Introduction 3
1.1 Open-world Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Problem Statement and Research Goals . . . . . . . . . . . . . . . . . . . . 5
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Dissemination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Background 13
2.1 BPEL in a Nutshell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Temporal Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Labeled Transition Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Floyd Grammars and Attribute Grammars . . . . . . . . . . . . . . . . . . . 18

II Specification 21

3 Analysis of Property Specification Patterns in SBAs 23
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 A Bird’s Eye View of Specification Patterns . . . . . . . . . . . . . . . . . . . 24
3.3 The Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Research Literature Data . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 Industrial Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

vii



viii Contents

4 The SOLOIST Specification Language 35
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Language Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 The Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.2 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.3 Informal Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.4 Formal Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 SOLOIST at Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5 Translation to Linear Temporal Logic . . . . . . . . . . . . . . . . . . . . . . 43
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Intermezzo 1: Specification - State of the Art 49
5.1 On Specification Languages for SBAs . . . . . . . . . . . . . . . . . . . . . . 49
5.2 On Property Specifications Patterns . . . . . . . . . . . . . . . . . . . . . . . 51

III Verification 53

6 Interface Decomposition for Service Compositions 55
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Running Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3 Service Composition and Global Interface Specification Models . . . . . . 57

6.3.1 Service Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3.2 Global Interface Specification . . . . . . . . . . . . . . . . . . . . . . 60

6.4 Decomposing Interface Specifications . . . . . . . . . . . . . . . . . . . . . . 61
6.4.1 Basic Decomposition Approach . . . . . . . . . . . . . . . . . . . . . 62
6.4.2 Heuristic-based Decomposition Technique . . . . . . . . . . . . . . 64

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.5.1 Validation of the Generated Interfaces . . . . . . . . . . . . . . . . . 66
6.5.2 Limitations of the Heuristic . . . . . . . . . . . . . . . . . . . . . . . 67

6.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.6.1 Car Rental (full version) . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.6.2 Order Booking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7 Incremental Verification: a Syntactic-Semantic Approach 73
7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2 Syntactic-Semantic Incrementality . . . . . . . . . . . . . . . . . . . . . . . . 74

7.2.1 Syntactic Incrementality . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.2.2 Semantic Incrementality . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.3 SiDECAR at Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



ix Contents

7.3.1 Reachability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.3.2 Attribute Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.3.3 Application to the Example . . . . . . . . . . . . . . . . . . . . . . . 83

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8 Intermezzo 2: Verification - State of the Art 87
8.1 On Interface Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.2 On Incremental Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

IV Reputation Management 91

9 Reputation Management of Composite Services 93
9.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
9.2 REMAN at a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

9.2.1 Server-side Software Architecture . . . . . . . . . . . . . . . . . . . 95
9.2.2 Client-side Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 96
9.2.3 System Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

9.3 Reputation Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
9.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
9.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
9.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
9.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

V Finale 105

10 Conclusion 107
10.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

10.1.1 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
10.1.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
10.1.3 Reputation Management . . . . . . . . . . . . . . . . . . . . . . . . . 109

10.2 Limitations and Open Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
10.3 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Bibliography 113

Colophon 127



x Contents



Figures

2.1 Graphical notation for BPEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Rules for the LTS operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Example of an operator grammar and its operator precedence matrix . . 19

3.1 Number of case studies considered per year . . . . . . . . . . . . . . . . . . 28
3.2 Comparison of the usage frequency of patterns of the “D” group . . . . . 31
3.3 Comparison of patterns usage between the research and the industrial

case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Sequence of events over a time window K , with observation interval h
(semantics of the V and M modalities) . . . . . . . . . . . . . . . . . . . . . 39

4.2 Sequence of pairs of events over a time window K (semantics of the D
modality) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Formal semantics of SOLOIST . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.1 The Simple Car Rental example . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 Notation and general model of the service interface decomposition prob-

lem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3 Pseudo-code of the BUILDINTERFACE function . . . . . . . . . . . . . . . . . 60
6.4 Interface computed for the CI service . . . . . . . . . . . . . . . . . . . . . . 69

7.1 Operator grammar for arithmetic expressions . . . . . . . . . . . . . . . . . 75
7.2 Abstract syntax tree of the expression ‘5*4+2+6*7*8’ . . . . . . . . . . . . 75
7.3 Partial parse trees of the terms 7*8 and 9 and their nesting within the

global syntax tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.4 Syntax tree rooted in the axiom 〈S〉, with a subtree rooted in the non-

terminal 〈N〉 generating the string xwz . . . . . . . . . . . . . . . . . . . . . 77
7.5 Parallel incremental update of a parse tree . . . . . . . . . . . . . . . . . . 77
7.6 Incremental evaluation of semantic attributes . . . . . . . . . . . . . . . . . 78
7.7 The grammar of the Mini language . . . . . . . . . . . . . . . . . . . . . . . 79
7.8 The two versions of the example program . . . . . . . . . . . . . . . . . . . 80
7.9 Syntax trees of the two versions of the example program . . . . . . . . . . 81

xi



xii Figures

7.10 Property automaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

9.1 REMAN architecture and system interactions . . . . . . . . . . . . . . . . . . 95



Tables

3.1 Number of papers considered, per scientific venue, per year . . . . . . . . 29
3.2 Patterns usage in research specifications . . . . . . . . . . . . . . . . . . . . 30
3.3 Patterns usage in industrial specifications . . . . . . . . . . . . . . . . . . . 32

9.1 Performance analysis - deployment time . . . . . . . . . . . . . . . . . . . . 103
9.2 Performance analysis - execution time . . . . . . . . . . . . . . . . . . . . . 104

xiii



xiv Tables



Abstract

Open-world software systems are built by composing heterogeneous, third-party com-
ponents, whose behavior and interactions cannot be fully controlled or predicted;
moreover, the environment they interact with is characterized by frequent, unexpected,
and welcome changes. This class of software exhibits new features that often demand
for rethinking and extending the traditional methodologies and the accompanying
methods and techniques.

In this thesis we deal with a particular class of open-world software, represented
by service-based applications (SBAs). We focus on three specific aspects related to
the development and provisioning of SBAs: specification, verification, and reputation
management. With respect to these aspects, we provide methods and techniques that
are i) suitable to deal with aspects such as change, evolution, and reliance on third-
parties, and ii) able to improve the overall quality of the systems they are applied to.

More specifically, concerning specification, we report on the findings of a study that
analyzed requirements specifications of SBAs developed in research settings and in in-
dustrial settings. These findings have then driven the design of SOLOIST, a language
used to specify the interactions of SBAs. Regarding verification, our contribution is
twofold; we propose: i) a technique for automatically generating the behavioral inter-
faces of the partner services of a service composition, by decomposing the requirements
specification of the composite service; ii) a framework for the definition of verification
procedures (encoded as synthesis of semantic attributes associated with a grammar)
that are made incremental using an approach based on incremental parsing and at-
tributes evaluation techniques. Finally, as for reputation management, we present a
reputation-aware service execution infrastructure, which manages the reputation of
services used by composite SBAs in an automated and transparent manner.

xv



xvi



Acknowledgments

Pursuing a PhD degree is a long journey; in my case, it took even longer than originally
planned. One of the perks of such a long journey was the opportunity to interact with
many people, who directly and indirectly contributed to my personal and professional
growth, as well as to the end result, i.e., this dissertation. In the following paragraphs I
want to say thank you to all of them, with the inherent disclaimer about completeness.

Carlo Ghezzi has been my long-time advisor since 2003. After realizing how much
space it would have taken to express my gratitude to him, I decided to manifest it in a
more appropriate form elsewhere [34]. Here I want to acknowledge “only” his support
and patience, his continuous feedback and constant inspiration, his enthusiasm and
friendship.

The official PhD enrollment record at USI lists Mehdi Jazayeri as my academic
advisor. Any description of this role would be inadequate to explain what Mehdi has
represented for me in these six years. Besides keeping track of my progress, he devoted
plenty of his time to engage in various conversations with me, during which I learned a
lot about research, teaching, academia, university management, the USA, and of course
software engineering and programming languages. He gave me the opportunity to be
the teaching assistant for his Programming Languages “PL” course: I really enjoyed our
discussions on how to shape the course, class by class, edition by edition.

All my co-authors played an important role in developing many ideas presented in
this dissertation and provided valuable feedback on my work. Needless to say, they had
to become inured with my work schedule and with my constant issues in assigning pri-
ority to tasks. Among them, Luciano Baresi, Walter Binder, Dimitra Giannakopoulou,
Dino Mandrioli, Corina S. Păsăreanu, Cesare Pautasso, and Pierluigi San Pietro offered
me a different, often complementary, perspective of the topics I explored with them.
I had also the privilege of working together with some great friends. Paola acted as
unofficial mentor during the first years of my PhD, almost continuing her function
from the time of my master thesis; over the years, the amount of research work done
together has decreased but the intensity of our fabulous friendship has skyrocketed.
Sam, the BPEL master, has always spared, in each work session, five minutes to check
and comment on the latest news (and rumors) about (upcoming) products designed
near the Infinite Loop. Antonio has been my comrade-in-arms while crossing the bro-
ken ground of syntactic-semantic incremental verification during the last months of my

xvii



xviii

PhD (and in the ones following the graduation, if I can make an educated guess); he is
an invaluable associate, not only for his availability for late night conference calls and
for putting up with my typography fixation while writing papers.

My PhD studies have been spatially located, over time, in three distinct places that
provided a stimulating environment in which to work. USI-INF welcomed me even be-
fore I joined as a PhD student and quickly became my new academic home beyond the
Swiss-Italian border. I want to thank Alessandra, Alessio, (il) D’Ambros, Regaz, and Tof
for the very frequent chats, often on work progress/frustration as well as future, unde-
fined career plans; the members of the REVEAL, STAR, and MJ research groups for the
pleasant discussions; Alex Wolf, Michele Lanza, and Antonio Carzaniga for providing—
each of them in his specific way—precious advices as PhD program directors; the staff
of the Dean’s office and the faculty program manager for their administrative sup-
port. The DEEP-SE group at Politecnico di Milano represented my second academic
home: thanks to all group members and in particular to all fellow PhD students for
the many interesting discussions (definitely not always on scientific matters!) as well
as the amusing group lunches/dinners/parties. Dimitra Giannakopoulou and Corina
S. Păsăreanu kindly agreed to host me at NASA Ames Research Center; special thanks
go to the two of them for trusting me even in the darkest moments of dashed hope.
I also want to thank Christina and Saba of Mission Critical Technologies Inc. for their
administrative support; my Summer 2009 fellow interns (especially those wearing a
glaring red, restricted access badge), the members of the Robust Software Engineering
group, and the other MCT employees on site at Ames for the many lunches and din-
ners together; Franco Raimondi for bringing a touch of Italy during that Californian
summer and for sharing his tips and his experience as a postdoc-in-London with me.

Part of the work presented in chapter 3 was performed thanks to the kind availabil-
ity of Credit Suisse AG, specifically Mr. Patrick Senti and his team.

During the six years of my PhD I also had the pleasure of meeting and interacting
with many colleagues at the annual conference(s) on software engineering, and also
as part of the PLASTIC and S-CUBE research projects.

I was very lucky to have some amazing friends that helped me in having a life out-
side the academic world. Thanks to the many friends (based) in Moliterno, Milano,
Roma, and the Santa Clara county, who were always there for a chat, a call, un aper-
itivo, a drink or a dinner together, and also for hosting me at their place during my
quick trips. Special thanks go to the set of “special” friends that I like to call the stars:
{Gomeisa, Gienah, Spica, Vega, Porrima, Nekkar, Markab, Furud, {Formalhaut, Girtab},
Acrab, Meissa, {Alpheratz, Caph}}. Some of them know the meaning behind this asso-
ciative array, some will eventually know, some will probably never know; in any case,
they brought, often unawares, light in my moments of darkness.

Finally, I want to express my gratitude to mom (RIP), dad, and all my relatives, for
being supportive and always understanding me and my geographical distance.



Part I

Overture





Chapter 1

Introduction

1.1 Open-world Software

Early approaches to software engineering, developed in the late ’60s and in the early
’70, were targeted to discipline the software process and improve software quality, by
defining exact stages and proposing criteria to step from one stage to another. For
example, one of these early attempts is represented by the waterfall development pro-
cess [130].

These early approaches were proposed based on some fundamental assumptions,
which reflected the way software was developed and meant to operate at that time:

• organizations were monolithic;

• software development was centralized inside each organization;

• software modules were statically bound to each other;

• the final system was deployed on a well-known infrastructure, which could be
even physically centralized;

• the environment with which a software interacted (i.e., the world) was assumed
to be static, that is software requirements were considered to be stable.

All these assumptions represent what is collectively called closed-world assumption
in [11].

Nevertheless, since the early proposal of Parnas to “design for change” [121], in
the last three decades software engineering has shifted towards a type of software that
is characterized by a different set of assumptions:

• software development and provisioning is decentralized, since it involves multiple
stakeholders belonging to different organizations;

3



4 1.1 Open-world Software

• systems are assembled out of components that provide a specific functionality
and are provided by independent third-parties;

• bindings among components are often delayed until the execution;

• bindings among components may dynamically vary to accommodate changes that
support the evolution of the environment with which the software system inter-
acts;

• physical deployment of the system requires a heterogeneous and distributed net-
work infrastructure.

In their seminal paper [11], Baresi et al. collectively call these assumptions open-world
assumption; the software developed following these assumptions is consequently called
open-world software.

In the last years, service-oriented architectures (SOAs [82]) have emerged as a
promising solution to the problem of developing decentralized, distributed, and evolv-
able applications [55]. In these architectures, services represent software components
that provide specific functionality, exposed for possible use by many clients, who can
dynamically discover and access them through network infrastructures. This architec-
tural paradigm has been adopted in new and innovative computing domains, like am-
bient intelligence, context-aware applications, and pervasive computing. Many tech-
nologies, such as Web services, Jini and OSGi, have been associated with SOAs.

The applications developed according to the principles of service orientation are
called service-based applications (SBAs1). SBAs are developed, deployed, and operated
by organizations that behave as service providers, and they are used by different client
organizations. Clients can be final users or they can act as service integrators, who
provide new added-value services by composing existing services, possibly offered by
others. Service compositions, also called service orchestrations, can be defined in high-
level, workflow-style languages such as BPEL [5].

SBAs represent an instantiation of the class of open-world software. Indeed, one
peculiarity of this class of software is their intrinsic tendency to change and evolve, dy-
namically and autonomously [120]. A simple example of such change is represented
by a provider performing a regular maintenance activity, which could modify an exist-
ing service into an upgraded but, regrettably, incorrect and/or incompatible version,
which could break the compatibility or the service level agreement (SLA) with its ex-
isting clients. In some cases, a service provider could dynamically modify the exported
service in a malicious way, for example offering a lower-quality service than the one
promised through the SLA. Furthermore, new services may be developed and pub-
lished in registries, and then discovered dynamically by possible clients; conversely,
previously available services may disappear or become unavailable. Moreover, service

1In the rest of this document, we use the terms “SBA” and “service” interchangeably.



5 1.2 Problem Statement and Research Goals

compositions may make use of dynamic binding techniques to support continuous evo-
lution and contextual adaptation. This implies that at design time the external services
orchestrated in a service composition are only known through their abstract interface,
while their concrete identity may become known only later at run time, when bindings
are resolved.

Since an SBA consists of a composition of existing services, no complete view and
control of the entire application is in the hands of a single organization, but rather a
multi-stakeholder playground emerges, which requires new strategies to deal with the
decentralized and autonomous evolution of different parts of a system.

1.2 Problem Statement and Research Goals

In [11], the authors defined a research agenda for open-world software, identifying
new challenges related to specification, verification2, monitoring, trust, implementa-
tion, and self-management. In this thesis we decided to take up three of them, con-
textualized in the domain of SBAs, as described in the formulation of the problem
statement:

Open, dynamic software systems, such as applications built out of the compo-
sition of services, demand rethinking methods and techniques for specifica-
tion, verification, and reputation3 management, to cope with the specific
facets of this class of software.

This statement leads to the definition of the following overall research goal:

To design new methods and techniques for specification, verification, and rep-
utation management of open-world software, in particular for the case of
service-based applications. These methods and techniques should be i) suit-
able to deal with aspects such as change, evolution, and reliance on third-
parties, and ii) able to improve the overall quality of these applications.

Research Goals

The overall research goal can be decomposed into four smaller research goals, de-
scribed below.

2In this thesis, the term verification is used in a general and broad sense, which encompasses all the
activities undertaken to ascertain that a software meets its objectives. Often the term validation [40]
is also used vis-a-vis verification to indicate specific activities (and goals) and V&V (verification and
validation) is used as a catch-all term.

3We assume reputation as a basic concept associated with trust.



6 1.2 Problem Statement and Research Goals

Research goal 1 - Specification language

Specifying the interactions of a service composition with its partner services encom-
passes different functional and non-functional aspects, which might not be completely
supported by traditional specification languages. This calls for new specification lan-
guages, tailored for the domain of SBAs, as expressed by the first research goal:

(RG1) To understand the expressiveness requirements of a specification lan-
guage that aims at describing both functional and non-functional properties
of the interactions of a service composition with its partner services, and to
develop a specification language based on these requirements.

Research goal 2 - Change-aware verification

Given the dynamic and evolving nature of SBAs, change management practices applied
in the context of SBAs impose time constraints that are often too costly, in terms of ex-
ecution time and memory consumption, for verification techniques. Hence, the second
research goal can be formulated as:

(RG2) To develop verification techniques that can deal efficiently with changes
occurring in SBAs.

Research goal 3 - Generation of the interface specification of third-party services

The external services with which a service composition interacts are usually known by
means of their syntactical interface. However, an interface providing more informa-
tion, such as a behavioral specification, could be more useful to a service integrator for
assessing that a certain external service can contribute to fulfill the functional require-
ments of the composite application. Thus, the third research goal is:

(RG3) To design an analysis technique to generate the behavioral interfaces
of the external services, given the requirements specification of a composite
service.

Research goal 4 - Reputation management

The overall correctness and quality of service of composite services is largely affected
by their constituent web services. Composite services have to operate in an open and
dynamically changing environment in order to leverage the best performing services
available at the moment. Hence, there is the need for an efficient mechanism to pro-
vide reliable service rankings and to exploit them at run time. Accordingly, the fourth
research goal is:

(RG4) To design a run-time infrastructure that manages services’ reputation
and exploit it to enable self-tuning and self-healing properties in the execution
of composite services.



7 1.3 Contributions

1.3 Contributions

In this section we outline the contributions of the thesis, mapping them to the research
goals stated above.

Research goal 1 - Specification language

The contributions addressing this research goal are as follows:

Analysis of property specification patterns in SBAs. We performed a study on the
use of property specification patterns in SBAs, by comparing the usage of specifi-
cation patterns in published research case studies—representing almost ten years
of research in the area of specification, verification, and validation of SBAs—with
a large body of specifications written by our industrial partner over a similar time
period. The outcome of this study indicated new requirements for the develop-
ment of specification languages for SBAs. This study is described in chapter 3.

The SOLOIST specification language. Based on the results of the aforementioned
study, we designed from scratch SOLOIST, a specification language for service
composition interactions, driven by the requirements of expressiveness and sup-
port for automated verification tools. SOLOIST is illustrated in chapter 4.

Research goal 2 - Change-aware verification

The contribution addressing this research goal is the following:

A syntactic-semantic approach for incremental verification. We designed SiDECAR,
a general framework for the definition of verification procedures, which are
made incremental by the framework itself. The analysis executed within the
verification procedure is driven by the syntactic structure of the software system.
The verification procedure is encoded within the semantic attributes associated
with the grammar generating the system description. Incrementality is achieved
by coupling the evaluation of semantic attributes with an incremental parsing
technique. The framework enables the definition and the execution of efficient,
incremental verification procedures. SiDECAR is illustrated in chapter 7.

Research goal 3 - Generation of the interface specification of third-party services

This research goal has been addressed with the following contribution:

Interface decomposition for service compositions. We developed a technique for au-
tomatically generating the behavioral interfaces of the partner services of a ser-
vice compositions, by decomposing the requirements specification of a service



8 1.4 Dissemination

composition. The technique generates behavioral interfaces that constitute re-
quired specifications for the partner services; these specifications guarantee that
the composite service will fulfill its required safety properties at run time, while
it interacts with the external services. Since we assume that the behavioral de-
scriptions of external services are not available, our technique is based on the
purely syntactical knowledge of their interfaces. This technique is presented in
chapter 6.

Research goal 4 - Reputation management

This research goal has been addressed with the following contribution:

A pro-active reputation management infrastructure for composite Web services.
We designed REMAN, a reputation management infrastructure for composite Web
services. It supports the aggregation of clients’ feedback on the perceived quality
of service (QoS) of external services, using reputation mechanisms to build ser-
vice rankings. Changes in rankings are pro-actively notified to composite service
clients to enable self-tuning properties in their execution. REMAN is described in
chapter 9.

1.4 Dissemination

The research work we performed during the PhD program has lead to several publi-
cations. This section lists them, divided into two categories: i) publications that are
fundamental for the thesis contributions; and ii) publications that are related to the
thesis.

Conference papers

• D. Bianculli, C. Ghezzi, C. Pautasso, and P. Senti. Specification patterns from
research to industry: a case study in service-based applications. In ICSE 2012:
Proceedings of the 34th International Conference on Software Engineering, pages
968–976. IEEE, 2012.

This paper is the basis of chapter 3. It presents the results of our study—
performed in collaboration with Credit Suisse AG—on specification patterns for
service-based applications, focused on industrial SBAs in the banking domain.
The outcome of this study deeply influenced the design of the SOLOIST lan-
guage, introduced in chapter 4.

• D. Bianculli, C. Ghezzi, and P. San Pietro. The tale of SOLOIST: a specification
language for service compositions interactions. In FACS 2012: Proceedings of the



9 1.4 Dissemination

9th International Symposium on Formal Aspects of Component Software, 2012. To
appear.

This paper is the basis of chapter 4. It contains the definition of the SOLOIST
language as well as its translation into linear temporal logic.

• D. Bianculli, D. Giannakopoulou, and C. S. Păsăreanu. Interface decomposition
for service compositions. In ICSE 2011: Proceedings of the 33rd International
Conference on Software Engineering, pages 501–510. ACM, 2011.

This paper is the basis for chapter 6. It illustrates a technique for decomposing
interface specifications of service compositions. This work has been developed as
part of our collaboration with the Robust Software Engineering group of NASA
Ames Research Center.

• D. Bianculli, W. Binder, L. Drago, and C. Ghezzi. Transparent reputation man-
agement for composite Web services. In ICWS 2008: Proceedings of the IEEE
International Conference on Web Services, pages 621–628. IEEE, 2008,

and

• D. Bianculli, W. Binder, L. Drago, and C. Ghezzi. ReMan: A pro-active reputation
management infrastructure for composite Web services. In ICSE 2009: Proceed-
ings of the 31st International Conference on Software Engineering, pages 623–626.
IEEE, 2009. Formal Research Demo.

These two papers are the basis of chapter 9. They present a reputation infras-
tructure to automatically and transparently monitor the execution of composite
services. The infrastructure enables self-tuning and self-healing properties in the
execution of composite services.

Unpublished reports

• D. Bianculli, A. Filieri, C. Ghezzi, and D. Mandrioli. A syntactic-semantic ap-
proach to incremental verification. Internal Report.

Part of this report is the basis for chapter 7. The report presents SiDECAR and its
application to define two kinds of verification: software reliability analysis and
reachability analysis.

Related publications

Journal papers

• L. Baresi, D. Bianculli, C. Ghezzi, S. Guinea, and P. Spoletini. Validation of web
service compositions. IET Softw., 1(6):219–232, 2007.



10 1.4 Dissemination

Book chapters

• D. Bianculli, C. Ghezzi, P. Spoletini, L. Baresi, and S. Guinea. A guided tour
through SAVVY-WS: a methodology for specifying and validating Web service
compositions. In Advances in Software Engineering, volume 5316 of LNCS, pages
131–160. Springer, 2008.

Conference papers

• D. Bianculli, W. Binder, and M. L. Drago. Automated performance assessment
for service-oriented middleware: a case study on BPEL engines. In WWW 2010:
Proceedings of the 19th International Conference on World Wide Web, pages 141–
150. ACM, 2010.

• D. Bianculli, W. Binder, and M. L. Drago. SOABench: Performance evaluation of
service-oriented middleware made easy. In ICSE 2010: Proceedings (Volume 2) of
the 32nd International Conference on Software Engineering, pages 301–302. ACM,
2010. Informal Research Demo.

• L. Baresi, D. Bianculli, S. Guinea, and P. Spoletini. Keep it small, keep it real:
Efficient run-time verification of web service compositions. In FMOODS/FORTE
2009: Proceedings of IFIP international conference on Formal Techniques for Dis-
tributed Systems, volume 5522 of LNCS, pages 26–40. Springer, 2009.

• D. Bianculli, R. Jurca, W. Binder, C. Ghezzi, and B. Faltings. Automated dynamic
maintenance of composite services based on service reputation. In ICSOC’07:
Proceedings of the 5th International Conference on Service-oriented computing, vol-
ume 4749 of LNCS, pages 449–455. Springer, 2007.

• L. Baresi, D. Bianculli, C. Ghezzi, S. Guinea, and P. Spoletini. A timed extension
of WSCoL. In ICWS 2007: Proceedings of the IEEE International Conference on Web
Services, pages 663–670. IEEE, 2007.

• D. Bianculli, C. Ghezzi, and P. Spoletini. A model checking approach to verify
BPEL4WS workflows. In SOCA 2007: Proceedings of the 2007 IEEE International
Conference on Service-Oriented Computing and Applications, pages 13–20. IEEE,
2007.

• D. Bianculli, A. Morzenti, M. Pradella, and P. San Pietro and Paola Spoletini.
Trio2Promela: a model checker for temporal metric specifications. In ICSE 2007
Companion: Companion of the proceedings of the 29th International Conference on
Software Engineering, pages 61–62. IEEE, 2007. Informal Research Demo.



11 1.5 Structure of the Thesis

• D. Bianculli, P. Spoletini, A. Morzenti, M. Pradella, and P. San Pietro. Model
checking temporal metric specification with Trio2Promela. In FSEN 2007: Pro-
ceedings of International Symposium on Fundamentals of Software Engineering,
volume 4767 of LNCS, pages 388–395. Springer, 2007.

Workshop papers

• D. Bianculli, C. Ghezzi, and C. Pautasso. Embedding continuous lifelong verifi-
cation in service life cycles. In PESOS 2009: Proceedings of the First International
Workshop on Principles of Engineering Service-oriented Systems, pages 99–102.
IEEE, 2009.

• D. Bianculli. Lifelong verification of dynamic service compositions. In FSEDS ’08:
Proceedings of the 2008 Foundations of Software Engineering Doctoral Symposium,
co-located with ACM SIGSOFT 2008/FSE 16, pages 1–4. ACM, 2008.

• D. Bianculli and C. Ghezzi. SAVVY-WS at a glance: supporting verifiable dynamic
service compositions. In ARAMIS 2008: Proceedings of the 1st International Work-
shop on Automated engineeRing of Autonomous and run-tiMe evolvIng Systems,
pages 49–56. IEEE, 2008.

• D. Bianculli and C. Ghezzi. Towards a methodology for lifelong validation of ser-
vice compositions. In SDSOA 2008: Proceedings of the 2nd International Workshop
on Systems Development in SOA Environments, pages 7–12. ACM, 2008.

• D. Bianculli and C. Ghezzi. Monitoring conversational web services. In IW-
SOSWE’07: Proceedings of the 2nd International Workshop on Service-Oriented
Software Engineering, pages 15–21. ACM, 2007.

1.5 Structure of the Thesis

The rest of this thesis is structured as follows. Chapter 2 provides background informa-
tion on service compositions and some formal models used in the following chapters.
There are then three parts, each one corresponding to one of the main challenges re-
lated to open-world software tackled in this thesis. Part II, on specification, includes
chapter 3 on the study of property specification patterns, chapter 4 on the SOLOIST
language, and chapter 5, which provides a short summary of the relevant literature
related to the content of the part. Part III contains chapter 6 on the technique for de-
composing interface specifications of service compositions, chapter 7 on SiDECAR and
incremental verification, and chapter 8, which summarizes the state of the art relevant
for this part. Part IV, with chapter 9, describes the REMAN reputation management
infrastructure. Finally, chapter 10 concludes the thesis, by discussing open issues and
future research directions.



12 1.5 Structure of the Thesis



Chapter 2

Background

This chapter provides some background information on notations and formal models
used in the remaining of the thesis. Section 2.1 introduces BPEL [5], the de facto
standard for defining composite applications based on Web services. All the exam-
ples of service compositions presented in this thesis are defined in BPEL. Section 2.2
presents concepts related to temporal logics, which are then used in chapter 4. Sec-
tion 2.3 formally defines labeled transition systems (LTSs) and the operations that can
be performed over them; LTSs are used in chapter 6 to model (and specify) the service
behavior. Section 2.4 introduces Floyd grammars and attribute grammars, at the base
of the approach described in chapter 7.

2.1 BPEL in a Nutshell

BPEL —Business Process Execution Language (for Web Services)—is a high-level XML-
based language for the definition and execution of business processes. It supports
the definition of workflows that provide new services, by composing external Web
services in an orchestrated manner. The definition of a workflow contains a set of
global variables and the workflow logic is expressed as a composition of activities;
variables and activities can be defined at different visibility levels within the process
using the scope construct.

Activities include primitives for communicating with other services (receive, invoke,
reply), for executing assignments (assign) to variables, for signaling faults (throw), for
pausing (wait), and for stopping the execution of a process (terminate). Moreover,
constructs like sequence, while, and switch provide standard control structures to order
activities and to define loops and branches. The pick construct makes the process wait
for the arrival of one of several possible incoming messages or for the occurrence of a
time-out, after which it executes the activities associated with the event.

The language also supports the concurrent execution of activities by means of the
flow construct. Synchronization among the activities of a flow may be expressed using

13



14 2.1 BPEL in a Nutshell

Activity Shape Activity Shape Activity Shape

receive wait pick

invoke terminate flow

reply sequence fault handler
!

assign switch event handler

throw
!

while compensation handler

Figure 2.1. Graphical notation for BPEL

the link construct; a link can have a guard, which is called transitionCondition. Since
an activity can be the target of more than one link, it may define a joinCondition for
evaluating the transitionCondition of each incoming link. By default, if the joinCondi-
tion of an activity evaluates to false, a fault is generated. Alternatively, BPEL supports
Dead Path Elimination, to propagate a false condition rather than a fault over a path,
thus disabling the activities along that path.

Each scope (including the top-level one) may contain the definition of the following
handlers:

• An event handler reacts to an event by executing—concurrently with the main
activity of the scope—the activity specified in its body. In BPEL there are two
types of events: message events, associated with incoming messages, and alarms
based on a timer.

• A fault handler catches faults in the local scope. If a suitable fault handler is not
defined, the fault is propagated to the enclosing scope.

• A compensation handler restores the effects of a previously completed transac-
tion. The compensation handler for a scope is invoked by using the compensate
activity, from a fault handler or compensation handler associated with the parent
scope.

The graphical notation for BPEL activities used across this thesis is shown in figure 2.1.



15 2.2 Temporal Logics

2.2 Temporal Logics

The language of PLTL, Linear Temporal Logic with past operators [86], is composed by
the following elements:

1. a set Π of atomic proposition;

2. two propositional connectives, ¬, ∧ (from which the other traditional connectives
can be defined);

3. four temporal operators: X (“next”), Y (“yesterday”), U (“until”), S (“since”).

The syntax of PLTL formulae is given by the following rules:

• if φ ∈ Π, then φ is a formula;

• if φ and ψ are formulae, then ¬φ, φ ∧ψ, φUψ, φSψ, Xφ, Yφ are formulae;

• nothing else is a formula.

Other temporal operators may be defined from the primitive ones; for example, the
“eventually” operator can be defined as Fφ ≡>Uφ

The semantics of PLTL is defined onω-words. Given a finite alphabet Σ, anω-word
over Σ is an infinite sequence w = w0w1w2 . . ., with wi ∈ Σ for every i ≥ 0. An element
wi of w = w0w1w2 . . . is denoted as w(i). For all PLTL formulae φ, for all w ∈

�

2Π
�ω

,
for all natural numbers i, the satisfaction relation w, i |= φ is defined as follows:

w, i |= p iff p ∈ w(i), with p ∈ Π
w, i |= ¬φ iff w, i 6|= φ
w, i |= φ ∧ψ iff w, i |= φ and w, i |=ψ
w, i |= Xφ iff w, i+ 1 |= φ
w, i |= φUψ iff for some k > 0: w, i+ k |=ψ,

and for all j 0< j < k : w, i+ j |= φ
w, i |= Yφ iff i > 0 and w, i− 1 |= φ
w, i |= φSψ iff for some k > 0: i− k ≥ 0, w, i− k |=ψ,

and for all j 0< j < k : w, i− j |= φ
A PLTL formula φ is satisfied on an ω-word w iff w, 0 |= φ.

2.3 Labeled Transition Systems

Labeled Transition Systems are defined as follows. Let Act be the universal set of
observable actions and let τ denote an internal action that cannot be observed by the
environment of a component. Let π denote a special error state, which models safety
violations in the associated transition system. A Labeled Transition System M is a 4-
tuple




Q, A,δ, q0
�

where Q is a finite non-empty set of states; A= αM∪{τ}, with αM ⊆



16 2.3 Labeled Transition Systems

Act is the actions alphabet; δ ⊆ Q× A×Q is a transition relation; q0 ∈ Q is the initial
state. Moreover, let Π denote a special LTS defined as Π = 〈{π}, Act,∅,π〉.

An LTS M =



Q, A,δ, q0
�

is non-deterministic if it contains τ-transitions or if there
exists (q, a, q′), (q, a, q′′) ∈ δ such that q′ 6= q′′. Otherwise, M is deterministic.

An LTS is complete if in each state a transition is defined upon each action of the
alphabet; more formally, M =




Q,αM ∪ {τ},δ, q0
�

is complete if and only if ∀q ∈
Q,∀a ∈ αM ,∃q′ ∈ Q | (q, a, q′) ∈ δ. If an LTS M is not complete, it can be completed
with a sink state and the transitions leading to it; the resulting LTS is denoted as
M̂ . Formally, given an LTS M =




Q,αM ∪ {τ},δ, q0
�

, its complete-by-construction
variant is M̂ = 〈Q ∪ {q̂},αM̂ ∪ {τ},δ′, q0〉, where αM̂ = αM ,δ′ = δ ∪ {(q̂, a, q̂) | a ∈
αM} ∪ {(q, a, q̂) | a ∈ αM ∧¬∃q′ ∈Q | (q, a, q′) ∈ δ}.

For an LTS M =



Q, A,δ, q0
�

, there is a pathσ from state q to state q′, with q, q′ ∈Q,
if there exists a set of states {q1, . . . , qn} ⊆ Q and a sequence of actions 〈a1, . . . , an−1〉,
with each ai ∈ A, such that q = q1 ∧ q′ = qn ∧ ∀i, 1 ≤ i ≤ n − 1, (qi , ai , qi+1) ∈ δ.
The sequence of actions 〈a1, . . . , an−1〉, where the τ-transitions are ignored, is called
the trace defined by the path σ. A trace of an LTS M is a trace defined by a path
that originates in the initial state; i.e., it is a finite sequence of observable actions
that label the transitions that M can perform starting at its initial state. The set of
traces of M is denoted as Tr(M). For an LTS M , errTr(M) ⊆ Tr(M) is the set of traces
{t ∈ Tr(M) | ∃ a path σ from q0 to π and t is defined by σ}; errTr(M) is called the set
of error traces of M . Furthermore, given a trace t and a set A ⊆ Act, the expression
(t � A ) denotes the trace obtained from t by removing all occurrences of actions
a 6∈ A ; “�” is the restriction operator for traces.

In some cases, it might be useful to explicitly indicate that an LTS has the error state
π, reachable from the initial state. For an LTS M =




Q, A,δ, q0
�

, we use the notation
Mπ if and only if π ∈Q and errTr(M) 6=∅. This notation can be combined with the one
denoting the completion-by-construction, as in M̂π, to identify an LTS that is complete
and that contains the error state (reachable from the initial state).

Operators

Let M =



Q, A,δ, q0
�

and M ′ =
¬

Q′, A′,δ′, q′0
¶

, with q′0 6= π. M transits into M ′ with

action a, denoted M
a−→ M ′, if (q0, a, q′0) ∈ δ, with Q = Q′, A= A′,δ = δ′. Moreover,

we say that M transits into Π with action a, denoted as M
a−→ Π, if (q0, a,π) ∈ δ.

The interface operator “↑” is used to make unobservable some actions of an LTS.
Given an LTS M =




Q, A,δ, q0
�

and a set of observable actionsA ⊆ Act, M ↑ A is de-
fined as follows. If M = Π, M ↑ A = Π. For M 6= Π, M ↑ A = 
Q, (αM ∩A )∪ {τ}, q0,δ′

�

,
where δ′ is described by the rules shown in figure 2.2a. The semantics of this operator
ensures that errTr(M) 6=∅ if and only if errTr(M ↑ A ) 6=∅.

Two LTSs can be combined by means of the parallel composition “‖” operator, which
is commutative and associative. Given two LTSs M1 =

¬

Q1, A1,δ1, q1
0

¶

and M2 =



17 2.3 Labeled Transition Systems

M
a−→ M ′, a ∈A

M ↑ A a−→ M ′ ↑ A
M

a−→ M ′, a 6∈ A
M ↑ A τ−→ M ′ ↑ A

(a) Rules for the interface operator

M1
a−→ M ′1

M1 ‖ M2
a−→ M ′1 ‖ M2

M2
a−→ M ′2

M1 ‖ M2
a−→ M1 ‖ M ′2

M1
a−→ M ′1, M2

a−→ M ′2
M1 ‖ M2

a−→ M ′1 ‖ M ′2
a 6∈ αM2 a 6∈ αM1 a ∈ (αM1 ∩αM2)

(b) Rules for the parallel composition operator

Figure 2.2. Rules for the LTS operators

¬

Q2, A2,δ2, q2
0

¶

, the parallel composition M1 ‖ M2 is defined as follows. If either M1 =
Π or M2 = Π, then M1 ‖ M2 = Π. Otherwise, M1 ‖ M2 is an LTS M =




Q, A,δ, q0
�

where Q =Q1×Q2, q0 = (q1
0, q2

0), A= A1 ∪A2 and δ is described by the rules shown in
figure 2.2b.

The traces of a parallel composition are defined as follows: Tr(M1 ‖ M2) = {t |
(t � αM1) ∈ Tr(M1) ∧ (t � αM2) ∈ Tr(M2) ∧ t ∈ (αM1 ∪ αM2)∗}. As for error traces, a
parallel composition has an error trace if at least one of its components has an error
trace. In symbols: errTr(M1 ‖ M2) = {t ∈ Tr(M1 ‖ M2) | (t � αM1) ∈ errTr(M1) ∨ (t �
αM2) ∈ errTr(M2)}.

Safety Properties

A safety property can be specified as a deterministic LTS that contains no π state. The
set of traces Tr(P) of a property P defines the set of acceptable behaviors over αP.
An LTS M satisfies P, denoted as M |= P if and only if Tr(M ↑ αP) ⊆ Tr(P). For a
property LTS P we can define the error LTS Perr as follows: given P =




Q,αP,δ, q0
�

,
Perr =




Q ∪ {π},αPerr,δ
′, q0
�

, where αPerr = αP, δ′ = δ ∪ {(q, a,π) | (q, a) ∈ Q×αP ∧
¬∃q′ ∈Q | (q, a, q′) ∈ δ}. Note that the error LTS is complete by construction1.

Let M be an LTS such that errTr(M) =∅. We detect possible violations of a property
P by the component M by computing M ‖ Perr. As shown in [46], the execution of M
leads to a violation of a property P if and only if errTr(M ‖ Perr) 6=∅, i.e., if and only if
the π state is reachable in M ‖ Perr.

1Since an error LTS models a safety property violation, it is customary not to include self-loops for π,
which are implied.



18 2.4 Floyd Grammars and Attribute Grammars

2.4 Floyd Grammars and Attribute Grammars

The definitions provided in this section are based on [50]. For more information on
formal languages and grammars, we refer the reader to classic textbooks such as [132].

Floyd Grammars

A context-free (CF) grammar G is a tuple G = 〈VN , VT , P, S〉, where VN is a finite set
of non-terminal symbols; VT is a finite set of terminal symbols, disjoint from VN ;
P ⊆ VN×(VN∪VT )∗ is a relation whose elements represent the productions of the gram-
mar; S ∈ VN is the axiom or start symbol. We use the following naming convention,
unless otherwise specified: lowercase letters at the beginning of the alphabet (a, b, c)
denote terminal symbols, while those at the end of the alphabet (u, v, x , y, w, z) de-
note terminal strings; symbols enclosed in chevrons, such as 〈A〉, denote non-terminal
symbols.

For a grammar G, the immediate derivation relation, denoted by ⇒, is defined on
(VN ∪ VT )∗ : α⇒ β if and only if (γ,δ) ∈ P, γ ∈ VN , α1,α2,β ∈ (VN ∪ VT )∗, such that

α= α1γα2 and β = α1δα2. Its reflexive transitive closure is denoted by
∗⇒.

A production is in operator form if its right hand side has no adjacent non-terminals,
and an operator grammar contains only productions in operator form. Any CF gram-
mar admits an equivalent operator grammar [132]. A classic example of an operator
grammar is the one generating arithmetic expressions, shown in figure 2.3a, where ‘n’
stands for any number.

Floyd grammars [63], also called operator precedence grammars2, can be defined
starting from operator grammars by effectively defining a binary relation on VT named
precedence. Given two terminals, the precedence relation between them can be one
of three types: equal-precedence (

.
=), takes-precedence (m), and yields-precedence (l).

The meaning of the precedence relation is analogous to the one between arithmetic
operators. It can be computed in a fully automatic way for any operator grammar;
see [61] for more details. It is convenient to represent the precedence relation in a
VT × VT matrix, named operator precedence matrix (OPM). An entry ma,b of an OPM
represents the set of operator precedence relations holding between terminals a and
b. For example, figure 2.3b shows the OPM for the grammar depicted in figure 2.3a.
Precedence relations have not to be total, nor symmetric. If an entry ma,b of an OPM
M is empty, the occurrence of the terminal a followed by the terminal b represents a
malformed input, which cannot be generated by the grammar.

Definition 1 (Floyd Grammars). G is a Floyd grammar if and only if its OPM is a
conflict-free matrix, i.e., for each a, b ∈ VT , |ma,b| ≤ 1.

2We follow the convention introduced in [50], which names this kind of grammars Floyd grammars
to honor the memory of Robert Floyd and also to avoid confusion with other similarly named but quite
different types of precedence grammars.



19 2.4 Floyd Grammars and Attribute Grammars

〈E〉 ::= 〈E〉 ‘+’ 〈T〉 | 〈T〉
〈T〉 ::= 〈T〉 ‘*’ ‘n’ | ‘n’

(a)

‘n’ ‘*’ ‘+’
‘n’ m m
‘*’

.
=

‘+’ l l m

(b)

Figure 2.3. Example of an operator grammar and its operator precedence matrix

Attribute Grammars

Attribute Grammars have been proposed by Knuth as a way to express the semantics of
programming languages [89]. Attribute grammars extend CF grammars by associating
attributes and semantic functions to the production rules of a CF grammar; attributes
define the “meaning” of the corresponding nodes in the syntax tree of a sentence gen-
erated by the grammar.

Attributes can be of two types: synthesized attributes characterize an information
flow in bottom-up direction, from descendent nodes (of a syntax tree) to their ances-
tors; inherited attributes are used to specify the flow of information top-down, from
ancestors to descendants. In this thesis we consider only synthesized attributes. In
fact, it can be proved that they are semantically complete, meaning that any inher-
ited attribute can be translated into a (set of) synthesized attribute(s) reproducing the
same information [89].

An attribute grammar that has only synthesized attributes is called an S-attributed
grammar. Such a grammar can be obtained from a context-free grammar G by adding
a finite set of attributes SYN and a set SF of semantic functions. Each symbol 〈X〉 ∈ VN

has a set of (synthesized) attributes SYN(〈X〉); SYN =
⋃

〈X〉∈VN
SYN(〈X〉). We use the

symbol α to denote a generic element of SYN; we assume that each α takes values from
a corresponding domain Tα. The set SF consists of functions, each of them associated
with a production in P. For each attribute α of the left hand side of p, a function
fpα ∈ SF synthesizes the value of α based on (a subset of) the attributes of the elements
constituting the right hand side of p.

For example, the grammar in figure 2.3a can be extended to an attribute grammar
that computes the value of an expression. All nodes have only one attribute called
value, with Tvalue = N. The set of semantic functions SF can be directly defined as
below, where semantic functions are enclosed in braces next to each production:

〈E0〉::=〈E1〉 ‘+’ 〈T〉 {value(〈E0〉) = value(〈E1〉) + value(〈T〉)}
〈E〉 ::=〈T〉 {value(〈E〉) = value(〈T〉)}
〈T0〉::=〈T1〉 ‘*’ ‘n’ {value(〈T0〉) = value(〈T1〉) ∗ eval(‘n’)}
〈T〉 ::= ‘n’ {value(〈T〉) = eval(‘n’)}



20 2.4 Floyd Grammars and Attribute Grammars

The + and ∗ operators appearing within braces correspond, respectively, to the
standard operations of arithmetic addition and multiplication, and eval(·) evaluates
its input as a number. Notice also that, within a production, different occurrences of
the same grammar symbol are denoted by distinct subscripts.



Part II

Specification





Chapter 3

Analysis of Property Specification
Patterns in SBAs

3.1 Overview

The concept of pattern has been initially proposed in the domain of architecture by
Christopher Alexander [2], to represent:

“the description of a problem which occurs over and over again in our envi-
ronment, and then describes the core of the solution to that problem, in such
a way that you can use this solution a million times over, without ever doing
it the same way twice”.

This idea of pattern has then been adopted in software engineering with the con-
cept of design patterns [67], as reusable solutions for recurring problems in software
design. Subsequently, the concept of design patterns has been embraced in differ-
ent sub-domains of software engineering, from architectural patterns to reengineering
patterns, including property specification patterns.

Property specification patterns [56] have been proposed in the late ’90s in the
context of finite-state verification, as a means to express recurring properties in a gen-
eralized form, which could be formalized in different specification languages, such as
temporal logic. Specification patterns aimed at bridging the gap between finite-state
verification tools (e.g., model checkers) and practitioners, by providing the latter with
a powerful instrument for writing down properties to be fed to a formal verification
tool. Given the origin of property specification patterns, most of past work has focused
on the application of patterns to the specification (and the verification) of concurrent
and real-time systems (for example, see [49]), with limited applications outside the
research setting.

One of the questions that we asked ourselves during our research was whether ex-
isting requirements specification languages were expressive enough to formalize com-
mon requirements specifications used by SBAs practitioners. This led to the definition

23



24 3.2 A Bird’s Eye View of Specification Patterns

of a new research goal: evaluating the use of specification patterns for expressing
properties of industrial SBAs, to assess whether existing and well-known specification
patterns are adequate or not. If this is not the case, our next goal will become gath-
ering substantial evidence for new specification patterns and/or language constructs
required to support their practical use in industrial settings.

For these reasons, we conducted a study on the use of specification patterns in
SBAs. The study has been performed by analyzing the requirements specifications of
two sets of case studies. One set was composed of case studies extracted from research
papers in the area of specification, verification and validation of SBAs, which appeared
in the main publishing venues of software engineering and service-oriented computing
within the last 10 years. The other set was composed of case studies corresponding to
service interfaces written over a similar time period and used within the SBAs devel-
oped by our industrial partner, which operates in the banking domain.

During the analysis, we matched each SBA requirements specification against the
patterns belonging to the specification pattern systems we selected from the research
literature. When a match was not possible, we tried to classify the requirements speci-
fication according to a new pattern system, specific to the service provisioning domain,
that we had been building during the matching process. Finally, we compared the
results, in terms of matched patterns, for the research and the industrial case studies.

The chapter is organized as follows. Section 3.2 illustrates the specification pat-
terns considered for the study. Section 3.3 describes the methodology used to conduct
the study and presents its results, which are then discussed in section 3.4.

3.2 A Bird’s Eye View of Specification Patterns

In this section we summarize the patterns we have used to classify the surveyed ser-
vice specifications. We have categorized them in four groups: the first three groups
correspond to systems of specification patterns well-known in the software engineer-
ing research community, but not necessarily used in the context of SBAs, while the last
one includes patterns that are more specific to service provisioning. For each pattern
we include a brief description as well as a simple property expressed using the pattern;
in the sample properties, we use the letters P, S, T, and Z to denote events or states of
a system execution.

The “D” Group

The first group corresponds to the property specification pattern system originally pro-
posed by Dwyer et al. in [56]. This system includes nine parameterizable, high-level,
formal specification abstractions. These patterns can be combined with five scopes
(“global”, “before”, “after”, “between”, and “after until”), to indicate the portions of a
system execution in which a certain pattern should hold. Note that in the rest of the



25 3.2 A Bird’s Eye View of Specification Patterns

chapter, we do not distinguish among the different scopes with which a certain pattern
has been used, and report usage data aggregated over all possible scopes. The patterns
are1:

Absence (D1) describes a portion of a system’s execution that is free of certain
events or states, as in “it is never the case that P holds”.

Universality (D2) describes a portion of a system’s execution that contains only
states that have a desired property, as in “it is always the case that P holds”.

Existence (D3) describes a portion of a system’s execution that contains an in-
stance of certain events or states, as in “P eventually holds”.

Bounded existence (D4) describes a portion of a system’s execution that contains
at most a specified number of instances of a designated state transition or event, as in
“it is always the case that the transitions to state P occur at most 2 times”.

Precedence (D5) describes relationships between a pair of events or states, where
the occurrence of the first is a necessary pre-condition for an occurrence of the second,
as in “it is always the case that if P holds, then S previously held”.

Response (D6) describes cause-effect relationships between a pair of events or
states, where an occurrence of the first must be followed by an occurrence of the
second, as in “it is always the case that if P holds, then S eventually holds”.

Response chains (D7) is a generalization of the response pattern, as it describes
relationships between sequences of individual states or events, as in “it is always the
case that if P holds, and is succeeded by S, then T eventually holds after S”.

Precedence chains (D8) is a generalization of the precedence pattern, as it de-
scribes relationships between sequences of individual states or events, as in “it is always
the case that if P holds, then S previously held and was preceded by T”.

Constrained chain patterns (D9) describes a variant of response and precedence
chain patterns that restricts user specified events from occurring between pairs of states
or events in the chain sequences, as in “it is always the case that if P holds, then S
eventually holds and is succeeded by T where Z does not hold between S and T”.

The “R” Group

The second group of patterns has been proposed by Konrad and Cheng [90] in the
context of real-time specifications. This pattern system includes five patterns (and the
same five scopes as in [56]) as well as a structured English grammar that supports
both qualitative and real-time specification patterns. The five patterns are:

Minimum duration (R1) indicates the minimum amount of time a state formula
has to hold once it becomes true, as in “it is always the case that once P becomes
satisfied, it holds for at least k time units”.

Maximum duration (R2) describes that a state formula always holds for less than
a specified amount of time, as in “it is always the case that once P becomes satisfied, it

1A detailed description is available at http://patterns.projects.cis.ksu.edu.

http://patterns.projects.cis.ksu.edu


26 3.2 A Bird’s Eye View of Specification Patterns

holds for less than k time units”.
Bounded recurrence (R3) indicates the amount of time in which a state formula

has to hold at least once, as in “it is always the case that P holds at least every k time
units”.

Bounded response (R4) indicates the maximum amount of time that passes after
a state formula holds until another state formula becomes true, as in “it is always the
case that if P holds, then S holds after at most k time units”.

Bounded invariance (R5) indicates the minimum amount of time a state formula
must hold once another state formula is satisfied, as in “it is always the case that if P
holds, then S holds for at least k time units”.

The “G” Group

Another system of real-time specification patterns was developed, around the same
time as the previous one, by Gruhn and Laue [73]. The system includes the actual
patterns, certain types of combined events that can be used within specifications, and
scopes that determine patterns validity. As for scopes, the authors support the pos-
sibility to express that a property holds before, after, and until a certain number of
time units (possibly zero) have passed since the last occurrence of a certain event. The
patterns are:

Time-bounded existence (G1) is the timed version of pattern D3, meaning that
it can express properties such as “starting from the current point of time, P must occur
within k time units”.

Time-bounded response (G2) represents the same pattern as R4.
Precedence with delay (G3) represents, together with the next pattern, the timed

version of pattern D5. In this first variant, it can state properties such as “P must always
be preceded by S and at least k time units have passed since the occurrence of S”.

Time-restricted precedence (G4) is the second timed variant of pattern D5; it
can express properties such as “P must always be preceded by S and must occur within
at most k time units since the occurrence of S”.

The “S” Group

This group combines the patterns we found in the literature dealing with SBAs speci-
fications, which do not appear in the pattern systems described above; for this reason,
we group them all together under the service provisioning patterns label.

Average response time (S1) is a variant of the bounded response pattern (R4)
that uses the average operator to aggregate the response time over a certain time
window.

Counting the number of events (S2) is used (see, for example, [129]) to express
common non-functional requirements such as reliability (e.g., “number of errors in a



27 3.3 The Survey

given time window”) and throughput (e.g., “number of requests that a client is allowed
to submit in a given time window”).

Average number of events (S3) is a variant of the previous pattern that states
the average number of events occurred in a certain time interval within a certain time
window, as in “the average number of client requests per hour computed over the daily
business hours”.

Maximum number of events (S4) is another variant of the S2 pattern that ag-
gregates events using the maximum operator, as in “the maximum number of client
requests per hour computed over the daily business hours”.

Absolute time (S5) indicates events that should occur at a time that satisfies an
absolute time constraint, as in “if the booking is done in the first week of March, a
discount is given” (taken from [85]).

Unbounded Elapsed time (S6) indicates the time elapsed since the last occur-
rence of a certain event.

Data-awareness (S7) is a pattern denoting properties that refer to the actual data
content of messages exchanged between services as in “every ID present in a message
cannot appear in any future message” (taken from [76]).

Note that patterns S1–S4 express aggregate statistics, without assuming any un-
derlying probabilistic model. Moreover, pattern S7 is usually used orthogonally in
combination with other patterns, to create their data-aware versions.

3.3 The Survey

In our study, we extracted specification patterns for SBAs by analyzing examples and
case studies both from the research literature and from industry.

We analyzed the requirements specifications for the SBA(s) described in each ex-
ample or case study, and manually classified each specification to match the patterns
defined in the previous section. The specifications were in many forms: some were
expressed using a specification formalism (e.g., a temporal logic), while others were
expressed in English. When a specification could not be easily matched with a pattern,
we used the criteria proposed in [57] to still count a specification as a match: a) for-
mal equivalence; b) equivalence by parameter substitution; c) variant of a pattern;
d) wrong formal specification with matching prose description.

Note that a single requirements specification may match more than one pattern;
for example, a property like:

if a message with a red code alert is received three times for the same patient
during a time span of a week, then doctors should send a confirmation for the
hospitalization of that patient within an hour from the reception of the last
alert message” (adapted from [9])



28 3.3 The Survey

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

1

3

10

16

13

18

18

16

9

1

0

0

1

2

29

8

10

6

8

11

24

number of case studies

Research literature

Industry

Figure 3.1. Number of case studies considered per year

is an instantiation of patterns R4 (bounded response time), S2 (counting) and S7 (data-
awareness).

The set of case studies we considered spans over more than ten years, as shown
in figure 3.1. Overall, we considered 104 case studies from the research literature
and 100 industrial ones. In the rest of this section we describe, for each of the two
categories of case studies, the data sources and the data themselves.

3.3.1 Research Literature Data

The research case studies have been extracted from papers published between 2002
and 2010; the reason for choosing 2002 as the left bound is that research in the area
of (Web) SBAs originated around that time. As publication venues to analyze, we
considered the main conferences in software engineering (ASE, FASE, SIGSOFT FSE,
ICSE), the main conferences in service-oriented computing (ECOWS, ICSOC, ICWS,
SCC, SERVICES, SOCA, WS-FM, WWW), the major journals in the two areas (respec-
tively, ACM TOSEM and IEEE TSE for software engineering, and ACM TWEB and IEEE
TSC for service-oriented computing). For each of these venues, we selected papers on
specification, validation, and verification of SBAs; from this set, subsequently, we only
considered papers with at least one case study with at least one requirements speci-



29 3.3 The Survey

Table 3.1. Number of papers considered, per scientific venue, per year

venue 2002 2003 2004 2005 2006 2007 2008 2009 2010

ASE 0 1 1 0 0 0 0 0 0
ECOWS – 0 0 1 0 2 0 2 1
FASE 0 0 0 1 0 0 1 0 0
FSE 0 0 0 0 0 0 1 1 1
ICSE 0 0 1 0 0 0 1 0 0
ICSOC – 0 3 3 0 2 1 1 1
ICWS – 0 1 1 4 3 2 2 1
SCC – – 0 1 0 1 1 1 0
SERVICES – – – – – – 0 0 0
SOCA – – – – – 1 – 0 0
WSFM – – 1 1 2 2 2 1 0
WWW 0 0 1 1 1 0 0 0 0
TOSEM 0 0 0 0 0 0 0 0 1
TSE 0 0 0 0 0 0 0 2 1
TWEB – – – – – 0 0 0 1
TSC – – – – – – 0 2 0
other 1 2 2 5 8 7 5 3 2

total 1 3 10 14 15 18 14 15 9

fication2. Moreover, we also included other papers on specification, verification, and
verification of SBAs that we were aware of and that had appeared in other venues;
however, these venues have not been systematically surveyed. An overview of the
number of papers considered, for each venue, is shown in table 3.1; note that the val-
ues displayed in the table on the row labeled “total” do not match the values shown in
figure 3.1 because in some cases the same paper illustrated more than one case study.

Although we analyzed 104 case studies, we counted only 36 distinct examples,
i.e., in many cases, the same example has been used in different case studies across
various papers. The top four recurring examples are “loan approval” (13 times), “travel
agency” (12 times), “online shopping” (11 times), and “car rental” (8 times).

Out of these case studies, we analyzed and classified 290 requirements specifica-
tions. We successfully matched 272 specifications against the patterns presented in
section 3.2; the pattern usage distribution is shown in table 3.2.

A portion of these data (the group corresponding to patterns D1–D8, representing
the 63% of the specifications) can be compared with existing data available in liter-
ature. Indeed, reference [57] presents the usage frequency for patterns in the “D”

2In few cases, we also considered papers that included at least one requirements specification formu-
lated in a general way, i.e., not related to a specific example or case study.



30 3.3 The Survey

Table 3.2. Patterns usage in research specifications

pattern occurrence distribution %

D6 76 27.9
R4 52 19.1
S7 47 17.3
D5 22 8.1
D1 20 7.4
S2 20 7.4
D2 19 7
D3 17 6.3
D7 8 2.9
D8 6 2.2
S1 5 1.8
D4 3 1.1
G1 2 0.7
S3 2 0.7
S5 2 0.7
S6 2 0.7
R3 1 0.4
G3 1 0.4
D9 0 0
R1 0 0
R2 0 0
R5 0 0
G4 0 0
S4 0 0

group, extracted from a set of 511 matched specifications belonging to various appli-
cation domains, such as hardware and communication protocols, control systems, and
distributed object systems. The comparison of our data for patterns D1–D8, with re-
spect to the data presented in [57] is shown in figure 3.2. Despite different rankings,
the five most common patterns are the same (D1, D2, D3, D5, and D6); moreover, the
most common pattern is D6 (response), with a similar usage frequency in both data
sets.

3.3.2 Industrial Data

The industrial case studies have been provided by our industrial partner Credit Suisse,
a world-leading financial services company headquartered in Switzerland.



31 3.3 The Survey

D1

D2

D3

D4

D5

D6

D7

D8

11.7

11.1

9.9

1.8

12.9

44.4

4.7

3.5

16.6

23.3

5.1

0.2

5.1

47.9

1.6

0.2

usage frequency of patterns

this study

study in [57]

Figure 3.2. Comparison of the usage frequency of patterns of the “D” group in
research case studies, as reported by our study and by reference [57]

Credit Suisse started to implement an SOA in 2000, as a means to leverage its en-
compassing set of “legacy” mainframe IT applications. In the process, Credit Suisse has
established one of the largest CORBA-based service backbones in industry, which has
recently been extended to support Web services standards [92]. Credit Suisse operates
the Interface Management System (IFMS) as a central information base for all service
interfaces available for reuse [116]. IFMS is an integral part of an application devel-
oper’s work process: not only it does provide documentation on interfaces, but it also
generates the required code artifacts (service stubs) to use a service. For new service
interfaces, IFMS provides a workflow covering all tasks related to definition, specifi-
cation, and quality management, thus linking the staff involved during the phases of
service development, testing and deployment.

The service specifications analyzed in this study were extracted from IFMS by se-
lecting a random subset of 100 service interfaces. They cover the whole range of
application domains at Credit Suisse, such as accounts, payments, customers, finan-
cial securities operations, and stock exchange. When an interface contained multiple
versions of a service, we extracted specifications from the most recent version. The
selected interfaces have been defined between 2000 and 2011.

The general structure of an interface document includes, among others, sections
about pre- and post-conditions of the service, as well as on non-functional assertions
under different usage conditions; we extracted requirement specifications from all
these sections, when available.

In total, we extracted 625 requirements specifications from the set of 100 case
studies. We matched 562 of them against the patterns presented in section 3.2; the
pattern usage distribution is shown in table 3.3.



32 3.4 Discussion

Table 3.3. Patterns usage in industrial specifications

pattern occurrence distribution %

S3 201 35.8
S4 168 29.9
S7 97 17.3
S1 91 16.2
D6 11 2
D1 1 0.2
D2 0 0
D3 0 0
D4 0 0
D5 0 0
D7 0 0
D8 0 0
D9 0 0
R1 0 0
R2 0 0
R3 0 0
R4 0 0
R5 0 0
G1 0 0
G3 0 0
G4 0 0
S2 0 0
S5 0 0
S6 0 0

3.4 Discussion

To compare them, the pattern usage distributions of tables 3.2 and 3.3 have been
combined and plotted on the chart displayed in figure 3.3. It is possible to immediately
see the discrepancy of pattern usage between research and industrial case studies, with
a separation line virtually drawn before the patterns of the “S” group.

It is clear that the majority of requirements specifications used in industrial settings
matches the S1, S3, S4 and S7 patterns; below, we discuss the usage of each of these
patterns in the two categories.

As for pattern S1 (“average response time”), we have already stated that it can be
considered a variant of pattern R4 (“response time”); moreover, R4 is the second most
used pattern in the specifications from the research literature. In light of this, we can



33 3.4 Discussion

D1 D2 D3 D4 D5 D6 D7 D8 D9 R1 R2 R3 R4 R5 G1 G3 G4 S1 S2 S3 S4 S5 S6 S7

0

5

10

15

20

25

30

35
pe

rc
en

ta
ge

of
pa

tt
er

ns
in

st
an

ce
s

Research literature

Industry

Figure 3.3. Comparison of patterns usage (percentage) between the research and
the industrial case studies

compare the usage of pattern S1 (16.2%) in industrial specifications with the combined
usage of patterns S1 and R4 (20.9%) in the ones from research literature; furthermore,
we should also consider that pattern R4 is not used at all in industrial specifications.
It is evident that the concept of response time has the same importance, in terms of
relevance for the specifications, in both categories of specifications. However, while
this concept is used exclusively in its aggregated form (through the average operator)
in the industrial specifications, this is not true for research case studies, where the
aggregate variant has been used only in five properties (found across five papers).

Similar observations can be made by comparing the usage of patterns S3 and S4
(respectively, “average” and “maximum number of events”), since they represent ag-
gregated variants of pattern S2 (“counting the number of events”). As for the other
pattern considered above, it is evident that industrial specifications use only aggre-
gated variants (through the average and maximum operators) of the concept repre-
sented by pattern S2. Moreover, aggregated variants of pattern S2 are used very rarely
in research case studies; in this case, only pattern S3 is used, and only in two prop-



34 3.5 Summary

erties (across two papers, from the same authors). Another point to consider is that
while counting patterns such as S3 and S4 represent the majority (65.7%) of industrial
specifications, the combined usage of patterns S2 and S3 in research specifications is
only 8.1%.

As for pattern S7 (“data-awareness”), the figure (17.3%) of its usage in both set
of case studies is the same. Indeed, we have noticed in both sets of specifications that
this pattern is often used to state pre-/post-conditions on data exchanged by a ser-
vice. We also note that some recent research (for example, see [76]) has investigated
support for data-aware properties in specification languages such as temporal logics,
representing a good example of an industrial need met by academic research.

Finally, the remaining patterns matched by industrial specifications have been D1
(“absence”), matched only once, and D6 (“response”), matched eleven times. These
two patterns actually represent the only patterns matched from the “D”, “R” and “G”
groups within the set of industrial case studies.

All the observations made above imply two main points:

• The majority of requirements specifications stated in industrial settings refers
to non-functional properties expressed using aggregate operators (e.g., average,
count, maximum). Similar requirements are found only rarely in the research
literature and when so, they are expressed using the non-aggregated versions of
the patterns.

• The specification patterns proposed in the research literature are barely used in
industrial settings. This may be an indication either of the lack of need for ex-
pressing such properties within industrial specifications or of the need for tech-
nology transfer in the area of requirements specification languages.

3.5 Summary

The study illustrated in this chapter compared the usage of property specification pat-
terns in requirements specifications of SBAs, between research and industrial case stud-
ies. The study showed that: a) the majority of requirements specifications stated in
industrial settings refers to specific aspects of service provisioning, which can be char-
acterized as a new class of specification patterns; b) the specification patterns proposed
in the research literature are barely used in industrial settings.

These considerations indicate that some needs of the industry are not fully met
by software engineering research. This suggests that new research directions in the
areas of requirements specification languages and of the related verification techniques
should be explored. In the following chapter, we present our response to the first need,
in terms of a new specification language for SBAs.



Chapter 4

The SOLOIST Specification
Language

4.1 Overview

This chapter introduces SOLOIST (SpecificatiOn Language fOr servIce compoSitions in-
Teractions), our language to specify properties of service compositions. SOLOIST builds
upon our previous experience on defining specification languages for service compo-
sitions; see, for example, Timed WS-CoL [8] and ALBERT [9]. In a certain sense,
SOLOIST can be seen as a profound revision of our previous attempts, designed on the
basis of the results of the study presented in the previous chapter. Our main goal has
been to design a formal language that is both expressive—to meet the requirements
raised from our field study—and, at the same time, usable with techniques and tools
for automated verification.

The chapter is structured as follows. Section 4.2 discusses some design choices
made during the definition of the language. Section 4.3 introduces SOLOIST, its syn-
tax, and its semantics (both informally and formally). Section 4.4 shows the use of
the language to specify some properties of a BPEL process. Section 4.5 illustrates the
translation of SOLOIST into linear temporal logic.

4.2 Language Design

Our starting point has been a temporal logic with metrics: this allows us to support
the patterns of the “D” [56], “R” [90], and “G” [73] groups, i.e., the ones prescribing
constraints on the order and/or the occurrence of events, possibly with (real-)time
information. The logic assumes a discrete time domain, with each occurrence of an
event denoted by a timestamp.

As for supporting the service provisioning patterns (“S” group), we made different
decisions. First, we decided not to support patterns referring to absolute or elapsed

35



36 4.2 Language Design

time (patterns S5 and S6), since this would have notably impacted on the complexity
of the translation. Moreover, our field study showed that both of them are used in less
than 1% of the specifications; given these data, we maintain this decision does not crit-
ically affect the expressiveness of the language as well as its reception by practitioners.

Pattern S7 is supported by adding a first-order quantification to the logic, following
the approach proposed in [76]. By making the simplifying assumption that domains
over which the quantification ranges are finite, the first-order quantification is mere
syntactic sugar, which does not impact on the decidability of the language, but helps
to improve its readability. The logic is also many-sorted, to support the different types
of the messages exchanged among services.

Regarding patterns S3 and S4, which define properties related to the aggregation
of events occurred in a certain time interval h within a certain time window K as in “the
average (maximum) number of service invocations per hour over the last 11.5 hours
of operation”, we run into different possibilities to represent the observation interval
h (i.e., one hour in the example) within the time window K (i.e., 11.5 hours in the
example ) considered to compute the aggregate value. It could be defined either as
a fixed window over adjacent, non-overlapping intervals, or as a sliding window over
overlapping intervals. The latter interpretation would require also to define a minimal
distance corresponding to the shift of the sliding window, which could be either a fixed
value, such as a system tick, or a variable value, such as the timestamp of each event
occurrence (meaning that the window slides variably, according to the occurrences of
the events). Furthermore, in both interpretations, one has to make a decision on how
to deal with time windows whose length is not an exact multiple of the observation
interval; in other words, how to consider the tail of the window whose length is less
than the one of the observation interval. This is the case for the property mentioned
above: assuming that a time unit corresponds to a minute, we have an observation
interval long 60 time units and a time window long 690 time units; the tail of the
window is then 690 mod 60 = 30. After consulting with our industrial partner and
evaluating its needs, we decided to support the interpretation with adjacent, non-
overlapping observation intervals, where tail intervals whose length is shorter then
the observation interval are ignored to express pattern S3 but considered to express
pattern S4.

Modeling pattern S2 was straightforward, while for pattern S1 we considered its
specific use in the context of SBAs. It shall be used to specify the average response time
of invocations made to a certain service over a certain time window. Since a service
may provide multiple operations, we decided to include the possibility to specify which
operations to consider when computing the aggregate response time, as well as the
calling points within the workflow of a service composition from which the invocations
originate. Moreover, every service invocation in the scope of an instance of pattern
S1 is assumed to be synchronous and actually corresponding to a pair of events, the
start and end one. These events corresponds to the start (end) of an invocation in a



37 4.3 The Language

precise location of the workflow; a start (end) of an invocation to the same operation
of a service but from a different location in the workflow is considered a distinct event.
Under these premises, we assume that two subsequent occurrences of the same start
or end event may not happen.

4.3 The Language

4.3.1 Preliminaries

A signature Σ is a tuple 〈S; F ; P〉 where:

• S is a set of sort symbols, i.e., names representing various domains;

• F is a set of pairs 〈 f ; s1 × . . .× sn → w〉 where n ≥ 0, f is a function symbol,
s1× . . .× sn→ w is the type of f , and s1, . . . , sn, w ∈ S;

• P is a set of pairs 〈p; s1× . . .× sn〉 where n≥ 0, p is predicate symbol, s1× . . .× sn

is the type of p, and s1, . . . , sn ∈ S.

The sets S, F, P of Σ are denoted by Sort(Σ), Func(Σ), Pred(Σ). Notice that constants
are modeled as nullary functions of the form c :→ w.

Let Σ be a signature. For each sort s ∈ Sort(Σ), we assume a set Vs of variables of
sort s disjoint from the constants in Func(Σ). Also, for each sort s ∈ S, we define the
set of terms of sort s by induction:

• a variable x ∈ Vs of sort s is a term of type s;

• if f : s1× . . .× sn→ w ∈ Func(Σ) and t1, . . . , tn are terms of type s1, . . . , sn respec-
tively, than f (t1, . . . , tn) is a term of type w.

An atom has the form p(t1, . . . , tn), with p(s1, . . . , sn) ∈ Pred(Σ) and terms t1, . . . , tn of
type s1, . . . , sn.

4.3.2 Syntax

A SOLOIST formula over Σ is defined inductively as follows:

• if t1, . . . , tn are terms of type s1, . . . , sn and p(s1, . . . , sn) ∈ Pred(Σ) is a predicate
symbol, then p(t1, . . . , tn) is a formula;

• if φ andψ are formulae and x is a variable, then ¬φ, φ∧ψ, ∃x : φ are formulae;

• if φ and ψ are formulae and I is a nonempty interval over N , then φUIψ and
φSIψ are formulae;



38 4.3 The Language

• if n, K ∈ N, ./ ∈ {<,≤,≥,>,=}, φ is a formula of the form p(t1, . . . , tn), with
p(s1, . . . , sn) ∈ Pred(Σ) and terms t1, . . . , tn of type s1, . . . , sn, then CK

./n(φ) is a
formula;

• if n, K , h ∈ N, ./ ∈ {<,≤,≥,>,=}, φ is a formula of the form p(t1, . . . , tn), with
p(s1, . . . , sn) ∈ Pred(Σ) and terms t1, . . . , tn of type s1, . . . , sn, then VK ,h

./n (φ) and
MK ,h
./n(φ) are formulae;

• if n, K ∈ N, ./ ∈ {<,≤,≥,>,=}, φ1, . . . ,φm,ψ1, . . . ,ψm are formulae of the form
p(t1, . . . , tn)—with p(s1, . . . , sn) ∈ Pred(Σ) and terms t1, . . . , tn of type s1, . . . , sn—
where for all i, 1 ≤ i ≤ n,φi 6= ψi , then DK

./n{(φ1,ψ1), . . . , (φm,ψm)} is a for-
mula.

Additional temporal modalities can be defined from the UI and SI modalities using
the usual conventions. Note that the arguments of modalities C,V,M,D can only be
atoms, i.e., positive literals; this reflects the fact that they represent the occurrences of
certain events, which are then aggregated as prescribed by the modality.

4.3.3 Informal Semantics

The informal semantics of SOLOIST is based on a sequence of timestamped predicates.
A predicate corresponds to an event, which models the execution of an activity defined
within a service composition; its arguments are the parameters possibly associated
with the activity, such as the input message of a service invocation.

The UI and SI modalities have the usual meaning in temporal logics (“Until” and
“Since”)1.

The CK
./n(φ) modality, evaluated in a certain time instant, states a bound on the

number of occurrences of an event φ, counted over a time window K; it expresses
pattern S2.

The VK ,h
./n (φ) modality, evaluated at a certain time instant τi , is used to express a

bound on the average number (with respect to an observation interval h, open to left
and closed to the right) of occurrences of an event φ, occurred within a time window
K; this corresponds to pattern S3. As discussed in section 4.2, since K may not be
an exact multiple of h, the actual time window over which occurrences of event φ are
counted is bounded by τi−bK

h
ch on the left and by τi on the right; similarly, the number

of observation intervals taken into account to compute the average is bK
h
c. Consider, for

example, the sequence of events depicted in figure 4.1, where black circles correspond
to occurrences of the φ event. Assuming τi = 42, K = 35, and h= 6 (values expressed
as time units), bK

h
c= b35

6
c= 5. The evaluation of the formula V35,6

./n (φ) at time instant

42 is then 2+1+2+4+1
5

./ n, where the numerator of the fraction to the left of ./ is the
number of event occurrences in the window bounded by τi and τi − 5h.

1As will be shown in the next subsection, a strict semantics is assumed for the UI and SI modalities.



39 4.3 The Language

�i � 6h �i � 5h �i � 4h �i � 3h �i � 2h �i � h

�i � K �i

Figure 4.1. Sequence of events over a time window K, with observation interval h
(semantics of the V and M modalities)

The MK ,h
./n(φ) modality, evaluated in a certain time instant τi , is used to express a

bound on the maximum number (with respect to an observation interval h, open to left
and closed to the right) of occurrences of an event φ, occurred within a time window
K; this corresponds to pattern S4. Differently from the V modality described above,
this modality takes also into account the events occurring in a tail interval, even if its
length is shorter than the one of the observation interval h. With reference to figure 4.1
and assuming the same values as above for τi , K , and h, the tail interval bounded by
τi−K on the left and τi−bK

h
ch= τi−5h on the right is also considered for computing

the aggregate value. This leads to a final evaluation for the formula equivalent to
max({1} ∪ {4} ∪ {2} ∪ {1} ∪ {2} ∪ {1}) ./ n= 4 ./ n, where the i-th singleton set in the
argument of the aggregate operator corresponds to the number of event occurrences
in the i-th observation interval within the time window.

The D modality, evaluated in a certain time window τi , expresses a bound on the
average time elapsed between pairs of specific adjacent events, occurred within a time
window K; it can be used to express pattern S1. Consider, for example, the sequence
of events depicted in figure 4.2, where capital letters in the lower part of the timeline
correspond to events, and numbers in the upper part of the timeline indicate time-

204 6 7 8 10 12 14 16 17

BA B A B C A D B A

ÇÇ Û X Û X

18

�i � K �i

Figure 4.2. Sequence of pairs of events over a time window K (semantics of the D
modality)



40 4.3 The Language

stamps; assume that the current time instant is τi = 18 and that K = 12. To express
a bound for the average distance between each occurrence of an event A and the first
subsequent occurrence of an event B, as well as for the pair of events (C , D), for the
previous 12 time units, one writes a formula like D12

./n{(A, B), (C , D)}, for some ./ and
n. With respect to τi = 18, the time window of length K = 12 includes the events (with
their respective timestamp) (A, 7), (B, 8), (C , 10), (A, 12), (D, 14), (B, 16), (A, 17),
enclosed in the rectangle in figure 4.2. The average time distance is then computed by
summing the differences between the timestamps of each (A, B) and (C , D) pair (each
pair of events is denoted by a different kind of arrow in figure 4.2), and dividing the
result for the number of the selected events pairs (3 in the example). Finally, the D
modality compares this result with value n, according to the relation defined by ./;
i.e., the evaluation of D12

./n{(A, B), (C , D)} is (8−7)+(16−12)+(14−10)
3

./ n. Note that the
event (A, 17) is ignored for computing the (average) distance, since it is not matched
by a corresponding B event within the selected time window.

4.3.4 Formal Semantics

A Σ-structure associates appropriate values to the elements of a signature Σ. A Σ-
structure D consists of:

• a non-empty set sD for each sort s ∈ Sort(Σ);

• a function f D : sD1 × . . .× sDn → wD for each function symbol f : s1 × . . .× sn →
w ∈ Func(Σ);

• a relation pD ⊆ sD1 × . . .× sDn for each predicate symbol p : s1× . . .× sn ∈ Pred(Σ);

A temporal first-order structure over Σ is a pair (D̄, τ̄), where D̄ = D0,D1, . . . is
a sequence of Σ-structures and τ̄ = τ0,τ1, . . . is a sequence of natural numbers (i.e.,
timestamps), where:

• the sequence τ̄ is monotonically increasing (i.e., τi < τi+1, for all i ≥ 0);

• for each Di in D̄, with i ≥ 0, for each s ∈ Sort(Σ), sDi = sDi+1;

• for each Di in D̄, with i ≥ 0, for each function symbol f ∈ Func(Σ), f Di = f Di+1 .

A variable assignment σ is a Sort(Σ)-indexed family of functions σs : Vs → sD that
maps every variable x ∈ Vs of sort s to an element σs(x) ∈ sD . Notation σ[x/d]
denotes the variable assignment that maps x to d and maps all other variables as σ
does.

The valuation function JtKDσ of term t for a Σ-structure D is defined inductively as
follows:



41 4.4 SOLOIST at Work

• if t is a variable x ∈ Vs, then JtKDσ = σs(x) ;

• if t is a term f (t1, . . . , tn) then JtKDσ = f D(Jt1KDσ , . . . , JtnKDσ).

For the sake of readability, we drop the superscript D and the subscript σ from the
valuation function J·K when they are clear from the context.

Given a temporal structure (D̄, τ̄) overΣ, a variable assignmentσ, symbols i, n, K , h ∈
N, ./ ∈ {<,≤,≥,>,=}, we define the satisfiability relation (D̄, τ̄,σ, i) |= φ for SOLOIST
formulae as depicted in figure 4.3.

(D̄, τ̄,σ, i) |= p(t1, . . . , tn) iff (Jt1K, . . . , JtnK) ∈ pDi

(D̄, τ̄,σ, i) |= ¬φ iff (D̄, τ̄,σ, i) 6|= φ
(D̄, τ̄,σ, i) |= φ ∧ψ iff (D̄, τ̄,σ, i) |= φ ∧ (D̄, τ̄,σ, i) |=ψ
(D̄, τ̄,σ, i) |= ∃x : φ iff (D̄, τ̄,σ[x/d], i) |= φ

for some d ∈ sD(with x of sort s)
(D̄, τ̄,σ, i) |= φSIψ iff for some j < i,τi −τ j ∈ I ,

(D̄, τ̄,σ, j) |=ψ and
for all k, j < k < i, (D̄, τ̄,σ, k) |= φ

(D̄, τ̄,σ, i) |= φUIψ iff for some j > i,τ j −τi ∈ I ,
(D̄, τ̄,σ, j) |=ψ and
for all k, i < k < j, (D̄, τ̄,σ, k) |= φ

(D̄, τ̄,σ, i) |= CK
./n(φ) iff c(τi − K ,τi ,φ) ./ n and τi ≥ K

(D̄, τ̄,σ, i) |= VK ,h
./n (φ) iff

c(τi − b K
h
ch,τi ,φ)

b K
h
c ./ n and τi ≥ K

(D̄, τ̄,σ, i) |=MK ,h
./n(φ) iff max

�

aggrc(m, K , h,φ)
	

./ n with
lb(m) =max{τi − K ,τi − (m+ 1)h}
and rb(m) = τi −mh, with τi ≥ K

(D̄, τ̄,σ, i) |=DK
./n{(φ1,ψ1), . . . , (φm,ψm)} iff

∑m
j=1

∑

(s,t)∈d(φ j ,ψ j ,τi ,K)
(τt −τs)

∑m
j=1 |d(φ j ,ψ j ,τi , K)| ./ n

with τi ≥ K
where
c(τa,τb,φ) = |�s | τa < τs ≤ τb and (D̄, τ̄,σ, s) |= φ	 |,
aggrc(m, K , h,φ) =

⋃

�

K
h

�

m=0

�

c(lb(m), rb(m),φ)
	

, and
d(φ,ψ,τi , K) =
�

(s, t) | τi − K < τs ≤ τi and (D̄, τ̄,σ, s) |= φ, t =min{u | τs < τu ≤ τi , (D̄, τ̄,σ, u) |=ψ}	.

Figure 4.3. Formal semantics of SOLOIST

4.4 SOLOIST at Work

In this section we show how SOLOIST can be used to specify properties related to the
interactions of a service composition described in BPEL.



42 4.4 SOLOIST at Work

Let A be the set of activities defined in a BPEL process2; A =Astart−inv ∪Aend−inv ∪
Arecv ∪Apick ∪Areply ∪Ahdlr ∪Aother where:

• Astart−inv (Aend−inv) is the set of start (end) events of all invoke activities3;

• Arecv is the set of all receive activities;

• Apick is the set of all pick activities;

• Areply is the set of all reply activities;

• Ahdlr is the set of events associated with all kinds of handlers;

• Aother is the set of activities that are not an invoke, a receive, a pick, a reply, or
related to a handler (e.g., an assign, a control structure activity).

Let Amsg = A \Aother be the set of activities that involve a data exchange, i.e., that
have either an input message or an output message attached with them. Each µ ∈Amsg

has an arity corresponding to the sum of the simple type variables by which its input
and output messages can be represented; each µ ∈Aother is nullary.

A signature Σ to specify the interactions of a BPEL process with partner services by
means of SOLOIST can be defined as follows:

• S is the set of XML simple types (e.g., integer, character, string);

• F is the set of functions defined by the scripting language used within the process
(e.g., XPath functions on integers and strings);

• P = A . A predicate may correspond to the execution of an activity; its arity
and type are then those of the corresponding activity. The usage of the equality
predicate between terms of the same XML type is also allowed.

Following the definitions in section 4.3, the variables of a BPEL process are parti-
tioned into various domains Vs, with s ∈ Sort(Σ).

We assume that the process has an integer variable foo, an invoke activity named
invA that takes and returns an integer, an invoke activity named invB with no input or
output parameters, three receive activities named recvP, recvQ, and recvR and a reply
activity term that takes no parameters. The detailed workflow structure of the process
as well as the other variables are of no interest for the purpose of this section and are
omitted for clarity.

Below we list some properties associated with this process and expressed in natural
language, followed by their translation into SOLOIST formulae. All properties are
under the scope of an implicit universal temporal quantification as in “In every process
run, . . . ”.

2Activities of a BPEL process can be uniquely identified by means of an XPath expression.
3A synchronous invoke is characterized both by a start event and by an end event; an asynchronous

invoke is characterized only by a start event.



43 4.5 Translation to Linear Temporal Logic

1. “At the end of the execution of the activity invA, the value of variable foo should be
equal to 42.”
G(∀x , y : invAend(x , y)→ foo= 42)

2. “The execution of activity recvP should alternate with the execution of activity
recvQ, though other activities different from recvQ (respectively, recvP) can be ex-
ecuted in between.”
G((recvP→¬recvPU(0,∞)recvQ)∧ (recvQ→¬recvQU(0,∞)recvP))

3. “The response time of activity invB should not exceed 4 time units.”
G(invBstart→ F[0,4] invBend)

4. “If activity invB has been invoked 4 times in the past 16 time units, than activity
recvR will be executed within 32 time units.”
G(C16

=4invB→ F[0,32]recvR)

5. “When activity term is executed, the average response time of all the invocations of
activity invB completed in the past 720 time units should be less than 3 time units.”
G(termend→D720

≤3 (invBstart, invBend))

6. “When activity term is executed, the average number of invocations, in an interval
of 60 time units, of activity invB during the past 720 time units should be less than
4”.
G(termend→ V720,60

≤4 (invBstart))

7. “When activity term is executed, the maximum number of invocations, in an interval
of 60 time units, of activity invB during the past 720 time units should be less than
5”.
G(termend→M720,60

≤5 (invBstart))

4.5 Translation to Linear Temporal Logic

In this section we show how SOLOIST can be translated into linear temporal logic.
This translation guarantees the decidability of SOLOIST based on well-known results
in temporal logic, allowing for its use with established verification techniques and
tools. The translation presented here has not been designed to guarantee efficiency in
verification but rather to be comprehensible.

SOLOIST is translated into a variant of linear temporal logic called MPLTL (Met-
ric Linear Temporal Logic with Past) [125], which is a syntactically-sugared version
of classical PLTL (see [86] and also section 2.2), defined over a mono-infinite dis-
crete model of time represented by ω-words. For simplicity, we assume that the logic
underlying SOLOIST is single-sorted; no expressiveness is lost, since it is well-known
that many-sorted first-order logic (on which SOLOIST is based) can be reduced to



44 4.5 Translation to Linear Temporal Logic

single-sorted first-order logic when the number of sorts is finite. Moreover, since we
assume that the domains corresponding to sorts are finite, we can drop the first-order
quantification and convert each quantifier into a conjunction or a disjunction of atomic
propositions. Similarly, n-ary predicate symbols (with n≥ 1) are converted into atomic
propositions. For example, a formula of the form ∃x : P(x), with x ranging over the
finite domain {1,2, 3}, is translated into the formula

∨

x∈{1,2,3} Px , where P1, P2, P3 are
atomic propositions. We denote with Π the finite set of atomic propositions used in
formulae obtained as described above.

These simplifications allow us to replace the temporal first-order structure (D̄, τ̄)
and the variable assignment σ used in the definition of the satisfiability relation of
SOLOIST with timed ω-words, i.e., ω-words over 2Π × N. For a timed ω-word z =
z0, z1, . . . , every element zk = (σk,δk) contains the set σk of atomic propositions that
are true at the natural timestamp denoted by τk =

∑k
i=0δi (with δi > 0 for all i > 0).

The satisfiability relation for SOLOIST can then be defined over timed ω-words, and it
is denoted by z, i

τ|= φ, with z being a timed ω-word and i ∈ N; we omit its definition
since it can be derived with straightforward transformations from the one illustrated
in figure 4.3.

Furthermore, we introduce a normal form where negations may only occur on
atoms (see, for example, [125]). First, we extend the syntax of the language by
introducing a dual version for each operator in the original syntax, except for the
CK
./n,VK ,h

./n ,MK ,h
./n ,DK

./n modalities4: the dual of ∧ is ∨; the dual of UI is “Release” RI :
φRIψ ≡ ¬(¬φUI¬ψ); the dual of SI is “Trigger” TI : φTIψ ≡ ¬(¬φSI¬ψ). For the
sake of brevity, we do not explicitly report the semantics of these dual operators; it can
be derived straightforwardly from the above definitions. A formula is in positive normal
form if its alphabet is {∧,∨,UI ,RI ,SI ,TI ,CK

./n,VK ,h
./n ,MK ,h

./n ,DK
./n}∪Π∪ Π̄, where Π̄ is the

set of formulae of the form ¬p for p ∈ Π. For the rest of this section, we assume that
SOLOIST formulae have been transformed into equivalent formulae in positive normal
form.

Under these assumptions, the translation of SOLOIST to MPLTL boils down to ex-
pressing the temporal modalities RI ,TI ,UI ,SI ,CK

./n,VK ,h
./n ,MK ,h

./n ,DK
./n in MPLTL, preserv-

ing their semantics.
First of all, we should remark that while in the semantics of SOLOIST the temporal

information is denoted by a natural timestamp, in MPLTL the temporal information is
implicitly defined by the integer position in an ω-word. However, the model based
on timed ω-words and the one based on ω-words can be transformed into each other.
Given an ω-word w such that w, i |= φ (where w, i |= φ denotes the satisfiability
relation over ω-words), it is possible to define a timed ω-word z = z0, z1, . . . , with
z0 = (w0, 0) and zk = (wk, 1) for k > 0, such that z, i

τ|= φ. Conversely, given a
SOLOIST timed ω-word z, we need to pinpoint in an MPLTL ω-word w the positions

4A negation in front of one of the CK
./n,VK ,h

./n ,MK ,h
./n ,DK

./n modalities becomes a negation of the relation
denoted by the ./ symbol, hence no dual version is needed for them.



45 4.5 Translation to Linear Temporal Logic

that correspond to timestamps in the z timed ω-word where an event occurred. We
add to the set Π a special propositional symbol e, which is true in each position corre-
sponding to a “valid” timestamp in the z timed ω-word. In the MPLTL semantics, an
ω-word w over Π ∪ {e} is defined as follows: wk = σk ∪ {e} whenever τk is defined,
and wk = ; otherwise. We then define a mapping ρ from SOLOIST dual normal form
formulae into MPLTL formulae, such that we can state that z, i

τ|= φ iff w,τi |= ρ(φ).
The mapping ρ is defined by induction as follows:

1. ρ(p(t1, . . . , tn)) = p(t1, . . . , tn).
2. ρ(¬p(t1, . . . , tn)) = ¬p(t1, . . . , tn).
3. If φ and ψ are formulae and x is a variable, then

ρ(φ ∧ψ) = ρ(φ)∧ρ(ψ);
ρ(φ ∨ψ) = ρ(φ)∨ρ(ψ);
ρ(∃x : φ) = ∃x : ρ(φ);
ρ(∀x : φ) = ∀x : ρ(φ).

4. If φ and ψ are formulae and I is a nonempty interval over N, then

ρ(φUIψ) = (¬e ∨ρ(φ))UI(e ∧ρ(ψ));
ρ(φSIψ) = (¬e ∨ρ(φ))SI(e ∧ρ(ψ));
ρ(φRIψ) = (e ∧ρ(φ))RI(¬e ∨ρ(ψ));
ρ(φTIψ) = (e ∧ρ(φ))TI(¬e ∨ρ(ψ)).

5. For CK
./n, we consider only the case CK

>n, since the other possible relations used
for ./ can be modeled with the following equivalences: CK

≤n ≡ ¬CK
>n; CK

≥n ≡ CK
>n−1;

CK
<n ≡ ¬CK

>n−1; CK
=n ≡ CK

>n−1 ∧¬CK
>n.

ρ(CK
>n(φ)) =

∨

0≤i1<...<in+1<K

�

Yi1(e ∧φ)∧ . . .∧Yin+1(e ∧φ)
�

where the MPLTL modality Y (“yesterday”) is the past version of “next” and refers to the
previous time instant. Intuitively, the above MPLTL formula states that in the previous
K time instants there have been at least n+ 1 occurrences of the event corresponding
to (e∧φ); such a situation satisfies the constraint associated with the original formula
defined in SOLOIST.

6. The mapping for the VK ,h
./n modality is defined in terms of the C modality:

ρ(VK ,h
./nφ) = ρ(C

b K
h c·h
./n·b K

h c
φ)

7. For the modality MK ,h
./n , we include only the two cases MK ,h

<n and MK ,h
>n , as the

others can be derived by properly combining instances of these two:

ρ(MK ,h
<nφ) =









b K
h c−1
∧

m=0

Ym·h�ρ
�

Ch
<nφ

��









∧

�

Yb
K
h c·h
�

ρ
�

C(K mod h)
<n φ

��

�



46 4.5 Translation to Linear Temporal Logic

ρ(MK ,h
>nφ) =









b K
h c−1
∨

m=0

Ym·h�ρ
�

Ch
>nφ

��









∨

�

Yb
K
h c·h
�

ρ
�

C(K mod h)
>n φ

��

�

The formulae above decompose the computation of the maximum number of occur-
rences of the event (e ∧φ) by suitably combining constraints on the number of occur-
rences of the event in each observation interval within the time window.

8. For the DK
./n modality, ρ(DK

./n(φ,ψ)) is defined5 as follows:

∨

0<h≤b K
2
c





















∨

0≤i1< j1<...ih< jh<K
and

�

∑h
m=1

jm−im
h

�

./n





















Yi1(e ∧φ)∧Y j1(e ∧ψ)∧
. . .

∧Yih(e ∧φ)∧Y jh(e ∧ψ)∧

¬









∨

0≤s<t<K
s 6∈{i1,...,ih}
t 6∈{ j1,..., jh}

�

Ys(e ∧φ)∧Yt(e ∧ψ)
�

















































The above formula considers all possible h occurrences (with h up to bK
2
c, as indicated

in the outer “or”) of pairs of events corresponding to (e ∧φ) and (e ∧ψ). The inner
“or” considers a sequence of h pairs of time instants (i1, j1), . . . (ih, jh), constrained by
the bound represented by ./ n. The top, right-hand part of the formula imposes that
every pair of time instants actually corresponds to the occurrence of a pair of events;
the bottom, right-hand part excludes the case that some pairs of events may occur at
time instants which are not in the above sequence.

The complexity of a formula resulting from the translation may be exponential
in the size of the constants occurring in the aggregate operators. Without aggregate
operators, the translation is linear in the size of the original formula. The only relevant
cases for aggregate operators are CK

>n and DK
./n, since the other modalities can easily

be defined in terms of these two. The mapping for CK
>nφ considers all subsets of n+ 1

integers of the set {0, . . . , K − 1}. Hence, it may require an MPLTL formula of size
proportional to (n+ 1)

� K
n+1

�

, which in the worst case, corresponding to n+ 1 = K
2

, is
O(K · 2K). The mapping of DK

./n(φ,ψ) essentially requires, in the worst case, to select
all possible subsets of set {0, . . . , K−1}, i.e., 2K subsets. Hence, again this may require
an MPLTL formula of size O(K · 2K). As remarked at the beginning of this section,
the translation presented above has been designed to show the possibility of reducing
SOLOIST to a linear temporal logic; nevertheless, future work will address efficiency
in the verification of SOLOIST formulae.

5For the sake of simplicity, we consider the case of only one pair of events (φ,ψ), but the formula can
be generalized to the case of multiple pairs (φi ,ψi).



47 4.6 Summary

4.6 Summary

This chapter introduced SOLOIST, a specification language for service compositions
interactions. The language is based on a many-sorted first-order metric temporal logic,
which has been extended with new temporal modalities that support aggregate oper-
ators for events occurring in a certain time window. Expressiveness was not the sole
requirement in designing this language. We also wanted the language to express spec-
ifications that could lead to automatic formal verification. Indeed, we also show that
SOLOIST, under certain assumptions, can be translated into linear temporal logic, al-
lowing for its use with established techniques and tools, both for design-time and for
run-time verification.



48 4.6 Summary



Chapter 5

Intermezzo 1:
Specification - State of the Art

In this chapter we report on the state of the art of specification languages for SBAs
(section 5.1) and of property specification patterns (section 5.2).

5.1 On Specification Languages for SBAs

During the field study described in chapter 3, we noticed that the three main formal
languages used by researchers in the field of SBAs to specify and verify properties
related to service interactions are LTL (Linear Temporal Logic), CTL (Computational
Tree Logic), and Event Calculus [91]. While the first two are mainly used to de-
scribe untimed temporal relations between events, Event Calculus has been the basis
to develop more expressive languages, such as EC-Assertion [108], which can express
service guarantees terms such as those captured by patterns S1 and S2. However, it
requires to introduce additional constructs in a formula, such as explicit variables to
track response time or event counters, as well as additional support formulae, like the
ones used to maintain a list of variables that are used to compute an aggregate value.
These additional variables and formulae decrease the readability of specifications and
make writing them more cumbersome and error-prone. We also noticed a recurring
presence of extensions of temporal logics with support for first-order quantification,
namely LTL-FO, CTL-FO [54], LTL-FO+ [75], and CTL-FO+ [76], which enrich the
underlying logic to express data-aware properties, captured by pattern S7.

Other specification languages, like WS-CoL [12] and RTML [6], are proposed as
assertion languages for BPEL compositions to promote “design by contract” [113], and
are usually integrated in a dynamic monitoring architecture. They are reminiscent
of assertion languages that were designed for specific programming languages such
as ANNA [106], an annotation language for Ada, and JML [99], the Java Modeling
Language.

49



50 5.1 On Specification Languages for SBAs

In the realm of SBAs there have also been several proposals of languages for spec-
ifying service level agreements, mainly targeting QoS attributes such as response time
and throughput; among them, we mention WSLA [87] and a timeliness-related ex-
tension of WS-Agreement [115]. These languages usually do not have any formal or
mathematical grounding, but in most cases they define an XML schema containing the
definition of the main QoS attributes and their data types. One exception is SLAng,
which—besides being defined on the top of standard modeling languages like EMOF
and OCL, to guarantee precision and understandability—has been mapped to timed
automata, to enable efficient run-time monitoring [129].

The fragment of SOLOIST corresponding to many-sorted metric first-order tempo-
ral logic is very similar to the work defined in [14], where a similar fragment is used
to define system policies, which are then monitored; however, this fragment, without
the other temporal operators introduced in SOLOIST, would have been inadequate to
express all the service provisioning patterns identified in our field study.

In the field of (temporal) logics, there have been several proposals to express prop-
erties related or similar to the ones captured by the service provisioning patterns de-
scribed in chapter 3. For example, references [96] and [97] propose, respectively,
Counting CTL and Counting LTL, which extend the temporal modalities of the under-
lying (non-metric) logic with the ability to constrain the number of states satisfying
certain sub-formulae along paths. In [16], a first-order policy specification language
is introduced; the language, based on past time linear temporal logic with first-order
quantifier, includes also a counting quantifier, used to express that a policy depends on
the number of times another policy was satisfied in the past. Rabinovich [128] presents
TLC, the metric temporal logic with counting modalities over continuous time, where
a counting modality Ck(X ) states that X is true at least at k points in the unit interval
ahead.

Aggregate operators have been studied in the context of mathematical logic, for
database query languages [77] and logic programming [122]. More recently, they
have also been considered in temporal logics, to express quantitative atomic assertions
related to accumulative values of variables along a computation [42]. de Alfaro [53]
introduces an operator to express bounds on the average time between events (con-
ceptually similar to the D operator of SOLOIST) in the context of probabilistic tempo-
ral logic, to specify and verify performance and reliability properties of discrete-time
probabilistic systems. Extensions of specification formalism with statistical operators
have also been proposed in the context of run-time verification. In [60], LTL is ex-
tended with operators that evaluate aggregate statistics over an execution trace. Ref-
erence [68] presents the LARVA verification tool, based on Dynamic Automata with
Timers and Events, which is able to evaluate statistical measures over dynamic inter-
vals, like the ones identified with the C,V,M,D modalities of SOLOIST; however, the
report does not provide enough details on the language used to specify the properties
to monitor.



51 5.2 On Property Specifications Patterns

5.2 On Property Specifications Patterns

Although in the study described in chapter 3 we have considered only three systems
of specification patterns (plus the “service provisioning” one derived from the study
itself), other similar systems have been presented in the literature. Below, we briefly
summarize the pattern systems we did not consider for the study and explain why we
opted for the ones presented in section 3.2.

In the area of qualitative temporal specifications, a catalogue of safety patterns
is presented in [39]; however, with respect to the “D” group, it is restricted only to
safety patterns occurring in the specification of industrial automation systems. Other
extensions of the “D” patterns are proposed in [45], which deals with the support
of events in LTL formulae, and in [137], where the PROPEL approach—based on a
“disciplined” natural language and finite state automata—is used to express fine-tuned
versions of the “D” patterns. Since in our case studies we wanted to assess the usage
of the “D” patterns at a high level, we did not go for such more specialized versions
of these patterns. As for the area of real-time specifications, a system of patterns
using structured English sentences is described in [62]; however, this work is tailored
for clocked computational tree logic, while we wanted to use specification language-
agnostic pattern systems, such as the “R” and “G” groups. VTS (Visual Timed Event
Scenario) [3] is a visual pattern language for expressing complex relations between
timed events, supporting real-time constraints.

Another class of specification patterns we did not include in the study is represented
by patterns for probabilistic quality properties [74]. For the sake of completeness,
we should say that three requirements specifications from the set of research case
studies were actual matches for two of the patterns introduced in [74], while none
of the specifications of the set of industrial case studies could be expressed using a
probabilistic property pattern. Patterns for probabilistic satisfaction of quantitative
properties are described in [101].

The study described in chapter 3 is also one of the few that reports quantitative
data on the usage of certain specification pattern systems in practical examples. Sim-
ilar data can also be found in [57], as shown in section 3.3.1; in [90], though the
usage distribution of each pattern is not actually disclosed; in [74], for probabilistic
property patterns; in [124], which presents a study—conceptually similar to ours—on
the analysis of the usage of the “R” patterns in the automotive domain.

The “D” group is also at the base of some work that focuses on the specification
and verification of service interactions in SBAs. For example, in [102], property pat-
terns are defined in an ontology, whose concepts can then be used by developers to
describe the interaction behavior of services as constraints. These constraints specify
the occurrence and sequencing rules of service invocations and are checked at run time
by a dedicated monitoring infrastructure. A similar approach is also followed in [135],
where service conversations are specified using a subset of UML 2.0 Sequence Dia-



52 5.2 On Property Specifications Patterns

grams, which are shown to be able to express all the “D” patterns. Reference [149]
presents PROPOLS, a specification language based on the “D” patterns, which adds
support for the logic composition of patterns; this language can be used to describe
some properties against which service composition workflows can be checked for com-
pliance with a static verification tool. Another specification language, PL, also based on
the “D” group, is presented in [144]; the language is used to express behavioral prop-
erties of business processes, which can then be automatically translated into a process
algebra for refinement checking.

Other work has defined specification languages for service interactions based on
real-time patterns, as for the case of the XTUS-Automata language proposed in [85],
which also presents the companion run-time monitoring infrastructure. This work
presents two additional patterns, “temporal properties over cardinalities” and “abso-
lute time properties”, which match, respectively, the S2 and S5 patterns identified in
our study.



Part III

Verification





Chapter 6

Interface Decomposition for
Service Compositions

6.1 Overview

In the dynamic and evolvable settings that characterize (service-based) open-world
software, service providers, in general, make available to service integrators only the
syntactical interface of the services they provide. It is often unrealistic to assume that
service providers will also make available some sort of “richer” interface descriptions
(e.g., a behavioral specification) of their services. This happens despite the fact that
such “richer” interface descriptions could be used by service integrators to assess that a
certain external service they rely on can contribute to fulfill the functional requirements
specifications of their composite applications.

It is then clear that an automated technique for deriving, from the requirements
specification of a composite service, the required interface of its partner services, could
improve the process followed by service integrators to assemble service compositions.

In this chapter, we propose a technique for the automatic generation of the behav-
ioral interfaces of the partner services, by decomposing the requirements specification
of a service composition. Our technique generates behavioral interfaces that constitute
required specifications for the partner services; these specifications guarantee that the
composite service will fulfill its required safety properties at run time, while it inter-
acts with the external services. Since we assume that the behavioral descriptions of
external services are not available, our technique is based on the purely syntactical
knowledge of their interfaces.

Once the behavioral specifications of the external services have been inferred, they
can serve multiple purposes. For example, they can be used with (semi-)automatic
composition mechanisms, for selecting the services that fulfill in the best way the func-
tional requirements of the composite service. Moreover, they can become clauses of the
SLAs negotiated with service providers. Furthermore, they can be translated into ver-

55



56 6.2 Running Example

ifiable run-time properties, which can be monitored while the system is operating, to
check if the external services behave as expected, e.g., to check if the service providers
meet the obligations they signed in the SLAs.

We use LTS (see section 2.3) to model the behavior of service compositions, the
global specifications of the environment with which a composite service interacts, and
the behavioral interfaces of the individual services.

The chapter is structured as follows. After describing the running example (sec-
tion 6.2), we introduce our formal models for service compositions and their interface
specification in section 6.3. Section 6.4 presents the interface decomposition problem,
illustrates our technique to solve it, and shows its correctness. Section 6.5 discusses
some approaches for the validation of the decomposition technique, as well as its short-
comings. Section 6.6 reports on the application of our approach to two case studies.

6.2 Running Example

Our running example is a simplified version of the Car Rental Agency one presented
in [32]; we call it Simple Car Rental (SCR). The example illustrates a service compo-
sition that is run at a car rental office branch. The composite service interacts with a
Car Broker (CB) service, which controls the operations of the branch; with a User Inter-
action (UI) service, through which customers can make car rental requests; with a Car
Information (CI) service, which maintains a database of cars availability and allocates
cars to customers; with a Car Parking Sensor (CPS) service, which exposes as a service
the sensor that senses cars as they are driven in or out of the parking lot of the branch.
The workflow of the composite service is sketched in figure 6.1.

The SCR service starts when it receives the startRental message from the CB
service. It then enters an infinite loop; at each iteration it can receive one of the
following messages:

• findCar. A customer requests to rent a car; the SCR service checks the avail-
ability of a car by invoking the lookupCar operation on the CI service. The
lookupCar operation returns its result—which can be either a negative answer
or an identifier corresponding to the digital key to access the car—in the result

variable, which is then passed as parameter to the findCarCB operation, a call-
back invoked on the UI service.

• carEnter and carExit. These two messages are sent out by the CPS service
when a car enters (respectively, exits) the parking lot. The process reacts to this
information by updating the cars database, invoking, respectively, the markAvail-
able and markUnavailable operations on the CI service.

• stopRental. The CB service stops the operations of the branch, terminating also
the composite service.



57 6.3 Service Composition and Global Interface Specification Models

onMessage onMessage onMessage onMessage

Car
Information

Service

Car Parking 
Sensor
Service

Car
Broker
Service

User
Interaction

Service

startRental

markCar
Available

markCar
UnavailablestopRentallookupCar

findCar stopRental carEnter carExit

findCarCB

Figure 6.1. The Simple Car Rental example

To keep the example compact, we assume that a single car is available in the
branch, and that the CI service is accessed only by the SCR service instance running in
the branch.

The correct execution of the SCR service depends on the functionalities provided
by the CI and CPS services. Therefore, in the next two sections we show the application
of our interface decomposition technique to derive the behavioral interfaces of these
two services.

6.3 Service Composition and Global Interface Specification
Models

In this section we present the formal model of service compositions and describe how
we can infer the global interface specification of the environment (i.e., the set of part-
ner services) with which a composite service interacts. We refer the reader to fig-
ure 6.2, for mapping symbols onto components.

6.3.1 Service Composition

A service composition C interacts with a set of external services denoted as E =
{E1, . . . , En}. Each service Ei ∈ E makes available a set of operations Oi = {oi

1, . . . , oi
m},

representing its syntactical interface. We assume that ∀i, j, 1 ≤ i ≤ n, i < j ≤ n, Oi ∩



58 6.3 Service Composition and Global Interface Specification Models

Î�

operation o1
1

operation o1
i

operation o1
m

operation oi
1

operation oi
i

operation oi
m

operation on
1

operation on
i

operation on
m

service Enservice Eiservice E1

· · · · · ·

O1 Oi On

baPerr

q0

q1

Î1� Îi� În�· · · · · ·

decomposition

E

MC

composite
service C

property P

Figure 6.2. Notation and general model of the service interface decomposition
problem

O j = ∅, since each operation can be unambiguously identified by its name combined
with the name of the service it belongs to (e.g., by means of the interface and service
elements of a WSDL 2.0 description [143]).

We assume that service compositions are implemented as BPEL processes, which
can be formalized in terms of labeled transition systems as shown in [65], with tools
such as WS-Engineer [64]. For a service C , let MC be the corresponding LTS.

The safety requirements on the behavior of the composite service C , when it inter-
acts with the external services E, can be modeled by a property LTS P. This LTS can
be synthesized, for example, from a specification in a temporal logic formalism such
as LTL or Fluent LTL [71]. Note that the property P implicitly defines the unwanted
behaviors, by means of the corresponding error LTS Perr.



59 6.3 Service Composition and Global Interface Specification Models

Modeling the SCR Example

In the example, we are interested in the environment constituted by the services
CI and CPS, so we have E = {CI, CPS}, OCI = {markAvailable, markUnavailable,
lookupCar} and OCPS = {carEnter, carExit}.

In the rest of this chapter, we use the FSP textual notation [107] to compactly
represent LTS models. In FSP, identifiers beginning with a lowercase letter denote
actions while identifiers beginning with an uppercase letter denote processes (states
in the underlying LTS); the symbol “->” denotes the action prefix operator, while the
vertical bar “|” denotes the choice operator. The following code snippet corresponds
to the LTS model of the SCR service:

range KEY = 0..1 //(0 means car not available)

SCR = (startRental -> Main),

Main = (findCar -> lookupCar[result:KEY] -> findCarCB[result] -> Main

| carExit -> markUnavailable -> Main

| carEnter -> markAvailable -> Main

| stopRental -> END).

Note that each operation invoked on the SCR service and on its partner services is mod-
eled as an action. Moreover, since the variable result ranges over the domain KEY,
the lookupCar action is internally represented as lookupCar[0] and lookupCar[1];
the same applies to findCarCB.

Service Behavior

The expected behavior of the SCR service is expressed by the following requirement:

“If the car enters the parking lot, and it does not exit until a customer requests
it for renting, then this request should not return a negative answer.”

This requirement can be formalized in Fluent LTL as the formula G(CarIn⇒ψ), where
CarIn is a fluent that changes value when the car is in the parking lot, and it is defined
as CarIn ≡ 〈carEnter,carExit〉 initially False; ψ is the auxiliary formula findCar⇒
(¬findCarCB[0] W findCarCB[1]). Here G and W are, respectively, the LTL temporal
operators “globally” and “weak until”. This Fluent LTL formula represents a safety
property and thus can be translated automatically [71] into an (error) LTS model,
whose textual description is shown below:

Perr = Q0,

Q0 = ({carExit, findCar, findCarCB[0..1]} -> Q0

|carEnter -> Q1),

Q1 = (carExit -> Q0

|{carEnter, findCarCB[0..1]} -> Q1

|findCar -> Q2),



60 6.3 Service Composition and Global Interface Specification Models

Q2 = (findCarCB[0] -> ERROR

|findCarCB[1] -> Q1

|{carEnter, findCar} -> Q2

|carExit -> Q3),

Q3 = (findCarCB[0] -> ERROR

|findCarCB[1] -> Q0

|carEnter -> Q2

|{carExit, findCar} -> Q3).

6.3.2 Global Interface Specification

The first step for defining the interface decomposition technique is to characterize
the global expectations from E in order for C to fulfill its requirement P; i.e., we
want to infer the global interface specification of the environment E with which C
interacts. By following the technique introduced in [72] and summarized below, we
can determine the global interface specification by computing the LTS Îπ, with Îπ =
BUILDINTERFACE((MC ‖ Perr), O), where O =

⋃|E|
i=1 Oi .

The pseudo-code of function BUILDINTERFACE is shown in figure 6.3. The func-
tion receives as first parameter an LTS model; the actual parameter that is passed
(MC ‖ Perr) contains all the traces that violate the property P. The actual value of
the second parameter actions, is the set of all the operations provided by the exter-
nal services and is used on line 2 as an operand of the interface operator, to get the
LTS named gen_interface. This LTS is further processed with a special determiniza-
tion step (line 3), provided internally by the LTSA tool [107]. This determinization
step performs τ-elimination and subset construction but, unlike standard automata
theory algorithms, it handles in a special way the π state. Since during the subset con-
struction the states of the deterministic LTS correspond to set of states of the original,
non-deterministic LTS, if any of the states in the set is π, then the entire set becomes
a π state in the deterministic LTS. This means that a trace that non-deterministically
may or may not lead to the error state has to be considered an error trace. In practical
terms, it means that performing a certain sequence of actions on the external services
does not guarantee that the service composition will not reach an error state. Subse-
quently, the LTS gen_interface is completed (line 4) with a sink state and the transitions

1: function BUILDINTERFACE(model, actions)
2: gen_interface← model ↑ actions
3: DETERMINIZE(gen_interface)
4: COMPLETEWITHSINKSTATE(gen_interface)
5: return gen_interface

Figure 6.3. Pseudo-code of the BUILDINTERFACE function



61 6.4 Decomposing Interface Specifications

leading to it, by invoking an auxiliary function. The missing transitions in the origi-
nal LTS represent behaviors of the external services that are never exercised by the
service composition; with the completion, they are made sink behaviors and thus no
restriction is imposed on them.

The notation used for the resulting LTS, Îπ, denotes that it contains the error state
(deriving from the error LTS Perr) and that it has been completed with a sink state.
Hereafter, we use the notation Î to refer to the variant of Îπ that does not contain
the error state, without the transitions leading to it. In symbols, given Îπ = 〈Q ∪
{π},α Îπ,δ, q0〉, Î = 〈Q,α Î ,δ′, q0〉, where α Î = α Îπ, δ′ = δ \ {(q, a,π) | a ∈ α Îπ}.

Application to the Example

The first parameter passed to the BUILDINTERFACE function is (SCR || Perr). As
for the second parameter, the list of actions passed to the function is composed by
markAvailable, markUnavailable, lookupCar[0] and lookupCar[1] (from CI), and
by carEnter and carExit (from CPS). The resulting interface Îπ is defined as follows:

Ipi = Q0,

Q0 = (lookupCar[0..1] -> Q0

|carExit -> Q1

|carEnter -> Q2

|{markUnavailable, markAvailable} -> SINK),

Q1 = (markUnavailable -> Q0

|{carExit, carEnter, markAvailable, lookupCar[KEY]} -> SINK),

Q2 = (markAvailable -> Q3

|{carExit, carEnter, markUnavailable, lookupCar[KEY]} -> SINK),

Q3 = (lookupCar[0] -> ERROR

|carExit -> Q1

|carEnter -> Q2

|lookupCar[1] -> Q3

|{markUnavailable, markAvailable} -> SINK),

SINK = ({carExit, carEnter, markUnavailable, markAvailable,

lookupCar[KEY]} -> SINK).

6.4 Decomposing Interface Specifications

The method described in section 6.3.2 computes the global interface specification of a
service composition, i.e., the behavior that its partner services, considered as a whole,
should manifest in order for the composite service to fulfill its requirements specifica-
tion. However, this “centralized” solution is not realistic for the domain of SBAs, since
each service is operated independently by its own provider, and has no knowledge
of the other services with which its client service (i.e., a composite service) interacts.



62 6.4 Decomposing Interface Specifications

Therefore, we argue it is necessary to define a more “distributed” approach, which
generates the individual behavioral interfaces for the partner services.

To this end, we define the interface decomposition problem as follows (refer to
figure 6.2 for mapping symbols onto components): given a service composition C ,
which interacts with a set of external services E = {E1, . . . , En} whose most general or
permissive behavior, as a whole, is represented by I , we decompose I into interface
specifications for the individual partner services, denoted as Ii , 1≤ i ≤ |E|.

The individual interface specifications obtained by means of the interface decom-
position technique should guarantee that the composite service fulfills its requirement
specification. This correctness requirement can be formally stated as:







|E|n

i=1

Ii






‖ MC |= P

In the rest of this section, we illustrate our technique for decomposing interface spec-
ifications and show its application to the SCR example. We first present a basic ap-
proach to the problem and observe that it generates over-constraining interfaces. Sub-
sequently, we propose our heuristic-based technique, which generates less constrain-
ing, but still correct behavioral interfaces.

Since the correct execution of the SCR example depends on the functionalities pro-
vided by the CI and CPS services, in the next two subsections we use our interface
decomposition technique to derive the behavioral interfaces of these two services.

6.4.1 Basic Decomposition Approach

A first approach to the problem of interface decomposition can be based on the intu-
ition that each external service can contribute to the global interface specification only
through the operations that it provides. Formally, this means the interface specification
Îiπ of an external service Ei can be computed as Îiπ = BUILDINTERFACE( Îπ, Oi).

Note that Îiπ contains the error state; as done for the case of the global interface
specification, we use the notation Îi to refer to the variant of Îiπ that contains neither
the error state nor the transitions leading to it.

However, simple experimentation with this technique reveals that such an ap-
proach generates interfaces that are too restrictive. For example, its application to
the running example generates the following interface specifications.

For the CI service, we restrict the global interface specification over the alphabet
{markUnavailable, markAvailable, lookupCar[0], lookupCar[1]}. The resulting
LTS is:

CI = Q0,

Q0 = ({lookupCar[0..1], markUnavailable} -> Q0

|markAvailable -> Q1),



63 6.4 Decomposing Interface Specifications

Q1 = (lookupCar[0] -> ERROR

|markUnavailable -> Q0

|{lookupCar[1], markAvailable} -> Q1).

It states that after a markAvailable operation, when the computation is in state Q1,
the lookupCar operation will return successfully (i.e., a value different from 0). Es-
sentially, state Q1 denotes the fact that the car is in the parking lot.

As for the CPS service, the global interface specification is restricted over the alpha-
bet {carEnter, carExit}. The resulting LTS is:

CPS = Q0,

Q0 = (carEnter -> ERROR

|carExit -> Q0).

This interface is too restrictive, since it disallows a car from ever entering the parking
lot. Furthermore, considering that according to the definition of the fluent CarIn, the
car is initially out of the parking, this interface in practice blocks any behavior from
the car.

In fact, we can make a stronger observation about the individual interfaces built in
this way:

Proposition 1. Let Îiπ = BUILDINTERFACE( Îπ, Oi), and Î ′iπ = BUILDINTERFACE((MC ‖
Perr), Oi). Then Îiπ and Î ′iπ are isomorphic.

Proof. By construction, function BUILDINTERFACE generates a canonical deterministic
LTS whose error traces are equal to the error traces of its first argument projected to the
alphabet represented by its second argument [72]. Since Îπ = BUILDINTERFACE((MC ‖
Perr), O), it follows that errTr( Îπ) = errTr((MC ‖ Perr) ↑ O). In a similar way, errTr( Îiπ) =
errTr( Îπ ↑ Oi). From these two statements, we derive that errTr( Îiπ) = errTr(((MC ‖
Perr) ↑ O) ↑ Oi). Since Oi ⊆ O, we conclude that errTr( Îiπ) = errTr((MC ‖ Perr) ↑
Oi). Additionally, Î ′iπ = BUILDINTERFACE((MC ‖ Perr), Oi) implies that errTr( Î ′iπ) =
errTr((MC ‖ Perr) ↑ Oi). Since the error traces of Îiπ and Î ′iπ are equal, we conclude
that the canonical representations Îiπ and Î ′iπ , generated by function BUILDINTERFACE,

are isomorphic, and therefore so are Îi and Îi
′.

As a result, each interface that we compute in this fashion is sufficient by itself, to
guarantee the global property on the system, meaning that ∀i, ( Îi ‖ MC) |= P, which

implies that
�f|E|

i=1 Îi

�

‖ MC |= P.
However, imposing such interfaces would be overly constraining. Moreover, a so-

lution that assigns the entire responsibility for achieving the global property to every
single service is not desirable. Ideally, we would like a solution that distributes the
responsibility to the partner services in a way that allows as much participation from



64 6.4 Decomposing Interface Specifications

each service as possible in the behavior of the service composition. To this end, in the
next section we propose a heuristic that avoids to unnecessarily constrain the interface
of partner services that cannot lead to error behaviors of the system.

6.4.2 Heuristic-based Decomposition Technique

The heuristic we propose to use is based on inspecting the actions that label the tran-
sitions that lead to the error state in the global interface specification. It may be the
case that none of these actions corresponds to one of the operations provided by the
partner service (hereafter referred to as Ei) for which we want to compute the behav-
ioral interface. This means that service Ei will never cause an error behavior in the
system constituted by the composite service and its partner services. In this case, the
behavioral interface of Ei can be obtained by decomposing a simplified model of the
global interface specification, which does not include the error behaviors that are not
directly ascribable to Ei .

More formally, for a service Ei with actions Oi , given a global interface specification
Îπ = 〈Q,αI ,δ, qo〉, the heuristic builds an auxiliary global interface specification, de-
noted with Iheu(i). This heuristic-based, auxiliary interface specification is computed
as Iheu(i) = 〈Q,αI ,δ′, qo〉, where δ′ = δ \ {(q, a,π) | a 6∈ Oi}. The definition of δ′

shows that the heuristic removes the transitions to the error state labeled with actions
(operations) not provided by Ei . Note that as a result of removing such transitions,
Iheu(i) may not be complete; note also the error state may be removed in case the
error transitions were ascribable only to the other services different from Ei . The in-
terface specification of the service Ei , denoted with Îiπ , can then be computed as Îiπ =
BUILDINTERFACE(Iheu(i), Oi).

Correctness

Before showing that this technique is a correct solution of the interface decomposition
problem, we introduce and prove some helper propositions.

Proposition 2. Given Îπ and Îiπ defined as above, the relation errTr(
f|E|

i=1 Îiπ)⊇ errTr( Îπ)
holds.

Proof. The proof is by contradiction. Suppose there is a trace t, such that t ∈ errTr( Îπ)
and that t 6∈ errTr(

f|E|
i=1 Îiπ). Let a be the last action in t, and (q, a, q′) the corresponding

transition that leads to the error state in Îπ. Since there must exist a k such that a ∈ Ok,
we know that transition (q, a, q′) will not be removed from Iheu(k). From the semantics
of the interface operator, we can then conclude that (t � Ok) ∈ errTr( Îkπ). Since for all

i, Îiπ is complete, we also know that t ∈ Tr(
f|E|

i=1 Îiπ). But since t leads to the error state

with at least one component of this, we conclude that t ∈ errTr(
f|E|

i=1 Îiπ), which is a
contradiction.



65 6.4 Decomposing Interface Specifications

Proposition 3. Given Î and Îi defined as above, the relation Tr(
f|E|

i=1 Îi)⊆ Tr( Î) holds.

Proof. Consider the set O of all the operations made available by the external services;
let O∗ represent its Kleene closure. Similarly, let Oi∗ be the Kleene closure of the set of
operations provided by an individual external service Ei . By construction, Î is obtained
from Îπ by removing the error state and the transitions leading to it. Hence, since no
trace of the Î interface leads to the error state, we know that Tr( Î) = O∗ \ errTr( Îπ);
similarly, ∀i, 1 ≤ i ≤ |E|, Tr( Îi) = Oi∗ \ errTr( Îiπ). Moreover, we know that a composite
process has an error trace, if at least one of its constituent processes has an error trace.
In symbols:

errTr(
f|E|

i=1 Îiπ) =
n

t ∈ Tr(
f|E|

i=1 Îiπ) | (t � O1) ∈ errTr( Î1π)

∨ (t � O2) ∈ errTr( Î2π) ∨ · · · ∨ (t � O|E|) ∈ errTr( Î|E|π)
o

.

Hence:

O∗ \ errTr(
f|E|

i=1 Îiπ) =
n

t ∈ Tr(
f|E|

i=1 Îiπ) |
(t � O1) 6∈ errTr( Î1π)∧ · · · ∧ (t � O|E|) 6∈ errTr( Î|E|π)

o

=
n

t ∈ Tr(
f|E|

i=1 Îiπ) | (t � O1) ∈
�

O1∗ \ errTr( Î1π)
�

∧· · · ∧ (t � O|E|) ∈
�

O|E|
∗ \ errTr( Î|E|π)

�o

=
n

t ∈ Tr(
f|E|

i=1 Îiπ) | (t � O1) ∈ Tr( Î1)∧ · · · (t � O|E|) ∈ Tr( ˆI|E|)
o

= Tr(
|E|n

i=1

Îi).

Since errTr(
f|E|

i=1 Îiπ) ⊇ errTr( Îπ) holds from Proposition 2, O∗ \ errTr(
f|E|

i=1 Îiπ) ⊆ O∗ \
errTr( Îπ) also holds. Hence Tr(

f|E|
i=1 Îi)⊆ Tr( Î).

We can now show the correctness of our heuristic-based decomposition technique,
by stating and proving the following proposition.

Proposition 4 (Correctness). Given the model of a service composition MC and the spec-
ification of its desired behavior P when interacting with a set of external services E, the
interfaces of the individual external services Îi , 1 ≤ i ≤ |E|, when computed applying the

aforementioned heuristic, satisfy the following relation:
�f|E|

i=1 Îi

�

‖ MC |= P.

Proof. From [72], we know Î ‖ MC |= P. Furthermore, from Proposition 3,
�f|E|

i=1 Îi

�

|=
Î . It follows that

�f|E|
i=1 Îi

�

‖ MC |= P.

Application to the Example

By analyzing the global interface specification Ipi showed in section 6.3.2, we notice
that the error state can be reached by executing, in state Q3, the transition labeled



66 6.5 Discussion

with lookupCar[0], which is an operation provided by the CI service. The heuristic
described above can then be applied to compute the interface for the CPS service.

We first create a refined model of the global interface, by removing the transitions
that lead to the error state and that are not labeled with actions belonging to the
alphabet of the CPS service:

Ipi_cps = Q0,

Q0 = (lookupCar[0..1] -> Q0

|carExit -> Q1

|carEnter -> Q2

|{markUnavailable, markAvailable} -> SINK),

Q1 = (markUnavailable -> Q0

|{carExit, carEnter, markAvailable, lookupCar[KEY]} -> SINK),

Q2 = (markAvailable -> Q3

|{carExit, carEnter, markUnavailable, lookupCar[KEY]} -> SINK),

Q3 = (carExit -> Q1

|carEnter -> Q2

|lookupCar[1] -> Q3

|{markUnavailable, markAvailable} -> SINK),

SINK = ({carExit, carEnter,

markUnavailable, markAvailable, lookupCar[KEY]} -> SINK).

Next, the global interface specification is restricted over the alphabet {carEnter,
carExit}; the resulting LTS is:

CPS = Q0,

Q0 = ({carEnter, carExit} -> Q0).

As expected, this new interface, obtained for the CPS service with the application of the
heuristic, allows for more behaviors than the one computed with the basic technique.
More specifically, in this case the interface represents the universal interface of service
CPS, i.e., the interface that allows any of its operations. Since the error behaviors of
the system are prevented by the interface of the other service (CI), there is no need to
constrain the interface of CPS.

As for the interface specification of service CI, the application of the heuristic does
not affect its generation, i.e., it coincides with the one shown in section 6.4.1.

6.5 Discussion

6.5.1 Validation of the Generated Interfaces

Although the definition of the interface decomposition problem includes a correctness
requirement, which guarantees that the generated interfaces will not lead the system
into the error state, this is not enough to characterize the quality of the generated



67 6.5 Discussion

interfaces. Ideally, they should be validated by using some kind of oracle, such as
descriptions of good and bad behaviors, usually defined by domain experts or encoded
in a certain model.

For example, assuming the availability of the implementation of a partner service
Ei , we could check whether Ei |= Îi , where Îi is derived from Îiπ , which is the interface
specification computed for Ei . This check can be performed with a model checker,
such as JavaPathFinder for Java-based implementations, or WS-Engineer for services
implemented in BPEL. However, this approach may rarely be feasible in the realm
of SBAs, since usually the implementations of the external services are not publicly
available. Violations identified during such checks may signify either that a partner
service is not appropriate for the desired composition, or that the interface generated
may need to be refined. A domain expert would therefore need to inspect violations
and decide on a course of action.

Domain expertise can also be used to validate directly the generated interfaces,
to assess if they are either too strict or too weak, by analyzing the allowed (or disal-
lowed) behaviors. In this sense, in section 6.4.1 we used our domain knowledge to
(informally) claim that the interface generated for the CPS service was too restrictive.

Specific to the interface decomposition problem is to check if some behaviors,
originally allowed by the global interface specification, are lost by the decomposi-
tion process. The lost behaviors can be discovered by checking the following relation:
Tr( Î) ⊆ Tr(

f|E|
i=1 Îi). This check can be performed with a model checker, such as LTSA.

We expect this relation to not always hold, since some behaviors will be lost, as said
above. However, when the check does not hold, the user can iteratively inspect each
counterexample, to discriminate whether it represents a sink behavior, which cannot
be realized in the actual system and thus can be ignored, or it is actually a missing
behavior, which can then be added to the interface specification, which is thus refined.

6.5.2 Limitations of the Heuristic

In the SCR example, the interfaces we obtained for the partner services were satisfac-
tory; however our experimentation has shown that this may not always be the case.

For example, consider an environment consisting of two services, E1 and E2, with
E1 providing operation c, and E2 providing operations a and b. Assume the following
LTS model represents the global interface:

S0 = (c -> S0 | b -> S1 | a -> S2),

S1 = (a -> S0 | b -> S1 | c -> S1),

S2 = (c -> ERROR | b -> S0 | a -> S2).

By decomposing this interface to compute Î1 and Î2, we notice that our heuristic blocks
E1 completely (no operation can be performed on it), while generates the universal
interface for E2.



68 6.6 Evaluation

More generally, our heuristic may block some good behaviors of the individual ser-
vices, which instead could be safely allowed. This may happen because an operation
of a service that directly leads to the error state, which is the one considered by our
heuristic, may be actually triggered by an operation of another service. In the ex-
ample above, the transition c -> ERROR is actually performed only after the transition
a -> S2 occurs; another heuristic could then allow E1 to perform c, while the interface
of E2 could mandate the execution of b and a in this order.

6.6 Evaluation

The interface specifications decomposition technique has been implemented in the
LTSA tool; here we report about the evaluation of our approach on two case stud-
ies. Each case study consisted of a service composition in the form of a BPEL process,
of the syntactical interfaces (WSDL description) of the partner services of the compo-
sition, and of an informal description of the requirements that the composition had to
fulfill.

The BPEL processes have been translated into the input format of the LTSA tool by
means of WS-Engineer; the requirements have been first formalized in a temporal logic
and then translated into an LTS description. The experiments have been executed on a
computer running Apple Mac OS X 10.6.4 with a 2.16 GHz Intel Core 2 Duo processor
and 2 GiB of memory.

6.6.1 Car Rental (full version)

This case study corresponds to the full-fledged version of the SCR example, with
which it also shares the same requirements specification. The main difference lies
in a fine-grained description of the BPEL process, which leads to more refined, and
sometimes verbose, interface descriptions. For example, the two single transitions
lookupCar[0..1] that in the running example correspond to invoking the lookupCar

operation of the CI service and receiving, as output parameter, either 0 or 1, are ex-
panded in a sequence of four operations: 〈cr_ci_invoke_lookupcar, cr_ci_receive_

lookupcar, cr_ckr.condition.read.false, cr_ckr.condition.read.true〉.
If we consider this kind of expansion, we easily conclude that the interfaces gener-

ated are equivalent to, but bigger (in term of the size of the model) than the ones built
obtained for the SCR example. For example, the interface of the CI service is the one
showed in figure 6.4. The interface of the CPS service, as before, remains the universal
interface.

In this example, the LTS model of the service composition contains 16 states and
20 transitions; the global interface specification contains 9 states and 22 transitions,
and was built in 70 ms; the interface specifications of the services CI and CPS were
built, respectively in 90 ms and 75 ms.



69 6.6 Evaluation

CIS = Q0,

Q0 = (cr_ci_invoke_markcarunavailable -> Q0

|cr_ci_invoke_lookupcar -> Q2

|cr_ci_invoke_markcaravailable -> Q3),

Q2 = (cr_ci_receive_lookupcar -> Q4),

Q3 = (cr_ci_invoke_markcarunavailable -> Q0

|cr_ci_invoke_markcaravailable -> Q3

|cr_ci_invoke_lookupcar -> Q5),

Q4 = (cr_ckr.condition.read.{false, true} -> Q0),

Q5 = (cr_ci_receive_lookupcar -> Q6),

Q6 = (cr_ckr.condition.read.false -> ERROR

|cr_ckr.condition.read.true -> Q3).

Figure 6.4. Interface computed for the CI service

Validation against Original Specifications

The original example definition (see [32]) contained a set of property specifications of
the behavior expected from the external services, manually written by the authors of
the paper. We consider these properties as a possible oracle for evaluating how well
our technique performs and thus we compared them with the ones generated by the
tool.

The specification of the CI, called CIUpdate, service was:

“If the car is marked as available in the CI Service, and the car is not marked
as unavailable until a lookupCar operation is invoked, then the lookupCar
operation should return successfully”.

It is clear that this behavior is captured by the interface specification generated for the
CI service.

For the CPS service, the specification was

“between two events signaling that the car exits from the parking lot, an event
signaling the entrance for the same car must occur”

It states the two events “car enter” and “car exit” should alternate. The interface spec-
ification obtained for this service, however, is the universal interface. In our opinion,
this result is still correct, even if less useful, because the CPS service cannot be respon-
sible for violations of the expected requirement.

In LTSA we have also implemented the possibility to search for and analyze lost
behaviors, by checking Tr( Î) ⊆ Tr(

f|E|
i=1 Îi). This check failed for the full Car Rental

example, revealing one lost behavior whose trace is:

cr_ci_invoke_markcaravailable, cr_ci_invoke_lookupcar,

cr_ci_receive_lookupcar,cr_ckr.condition.read.false.



70 6.6 Evaluation

This trace can be interpreted as

“if the car is marked as available in the parking lot, then a request for the car
will return a negative result”,

which is an incorrect behavior. Note that this behavior is disallowed by the structure of
the composite service, since cr_ci_invoke_markcaravailable will never be executed
as the first action. Therefore we can safely state that this behavior has been added to
the global interface specification through the completion with the sink state; it will
never occur in the real system. This is the reason for which it is also missing from the
interfaces derived for the partner services.

6.6.2 Order Booking

This case study has been taken from the set of processes distributed with the Oracle
SOA Suite 10gR3. It consists of a process that is started when a customer places an
order from a client web application. The process first inserts the order information in
a database through the ERPService, then it retrieves customer information by invoking
the CustomerService. The process checks the customer’s credit card by invoking the
CreditService and then determines if the order requires manual approval by invoking
the DecisionService (DS), which applies some business rules that take into account the
status (platinum or not) of the customer. For orders that require manual approval,
the process invokes the requiresApproval operation on the Manager Web service.
When an order is approved, the process requests, in parallel, quotes from the suppliers,
SelectManufacturer and RapidService, and then selects the supplier that responded with
the lower quote. Afterwards, a shipping method is chosen by checking the amount of
the order. After updating the order status on the database through the ERPService, the
project sends a confirmation email to the customer, by invoking the EmailService, and
then terminates.

A possible requirements specification for this composite service is:

“if a platinum customer places an order, it must be automatically approved;
otherwise it must be approved manually”.

This specification indirectly requires a certain behavior of the DS service, which we
picked as the service for which to compute the interface specification.

We translated this specification into a property LTS and then applied the interface
decomposition method based on the heuristic, to obtain the interface for the DS service.
Although we omit its textual representation, in essence, it states that

“if a platinum customer places an order, then the return value will not be
manual approval, and equivalently, if a non-platinum customer places an
order, then the return value will not be automatic-approval”.



71 6.7 Summary

This specification matches the one informally described in the documentation of the
example.

Since we were not interested in getting an individual interface specification for
each of the other partner services, we generated an interface for them when considered
as a whole and, as expected, we obtained the universal interface.

The LTS model of the composite service contains 80 states and 93 transitions; the
global interface specification contains 29 states and 63 transitions, and was built in
76 ms; the interface specification of the DS service contains 6 states and 12 transitions,
and was built in 82 ms. The interface for the rest of the components contains only one
state, allowing all possible behaviors (i.e., it encodes the universal environment). A
search for lost behaviors reveals two behaviors, which a manual inspection shows to
be sink behaviors.

6.7 Summary

The correct behavior of a service composition, with respect to its requirements spec-
ification, depends on a certain, expected behavior of its partner services. However,
most of the times the behavioral descriptions of the partner services are unknown. In
this chapter, we presented our novel technique to automatically generating the behav-
ioral interfaces of the partner services of a service composition, by decomposing the
requirements specification of the composite services. We have formalized this prob-
lem, proposed a heuristic-based technique to solve it, implemented this technique in
the LTSA tool, and applied it to two case studies.



72 6.7 Summary



Chapter 7

Incremental Verification:
a Syntactic-Semantic Approach

7.1 Overview

The evolution of software systems is a well-known phenomenon in software engineer-
ing [100]. Software may evolve because of a change in the requirements or in the
domain assumptions, leading to the development and deployment of many new ver-
sions of the software. This phenomenon is taken to extremes by open-world software,
which is required to react to changes in its environment, by (self-) adapting its behavior
while it is executing.

Support for these different kinds of software evolution should span through all the
steps of the software development process; in this chapter we focus on the verification
step. Incremental verification has been suggested as a possible approach to deal with
evolving software [136]. An incremental verification approach tries to reuse as much
as possible the results of a previous verification step, and accommodates within the
verification procedure—possibly in a “smart” way—the changes occurring in the new
version. By avoiding re-executing the verification process from scratch, incremental
verification may considerably reduce the verification time. This may speed up change
management, which may be subject to severe time constraints, especially if it needs to
be performed at run time, to support dynamic self-adaptation.

In this chapter we present our proposal for incremental verification, the SiDECAR
(Syntax-DrivEn inCrementAl veRification) framework. SiDECAR is a general frame-
work to define verification procedures, which are automatically enhanced with incre-
mentality by the framework itself. The framework follows a syntactic-semantic ap-
proach, since it assumes that the software artifact to be verified has a syntactic struc-
ture described by a formal grammar, and that the verification procedure is encoded as
synthesis of semantic attributes [89], associated with the grammar and evaluated by
traversing the syntax tree of the artifact. We based the framework on Floyd grammars

73



74 7.2 Syntactic-Semantic Incrementality

(see [63] for the original definition as well as section 2.4 for a brief overview) because
they allow for re-parsing, and hence semantic re-analysis, to be confined within an
inner portion of the input that encloses the changed part.

This property is the key for an efficient incremental verification procedure: since
the verification procedure is encoded within attributes, their evaluation proceeds in-
crementally, hand-in-hand with parsing.

The chapter is organized as follows. Section 7.2 shows how SiDECAR exploits Floyd
grammars to support syntactic-semantic incremental verification. In section 7.3 we
show SiDECAR at work, by encoding a standard verification procedure—reachability
analysis—as semantic attributes of the grammar of a simple programming language;
the verification procedure is then applied to two versions of an example program.

7.2 Syntactic-Semantic Incrementality

SiDECAR exploits a syntactic-semantic approach to define verification procedures that
are encoded as semantic functions associated with an attribute grammar. In this section
we show how Floyd grammars, equipped with a suitable attribute schema, can support
incrementality in such verification procedures in a natural and efficient way.

The main reason for the choice of Floyd grammars is that, unlike other more mod-
ern and used grammars that support deterministic parsing, they enjoy the locality prop-
erty, i.e., the possibility of starting the parsing from any arbitrary point of the sentence
to be analyzed, independent of the context within which the sentence is located. It can
be shown that, since the parsing of a Floyd grammar sentence is driven by precedence

relations, a partial syntax tree corresponding to a derivation 〈N〉 ∗⇒ x can be deter-
ministically built (in linear time) in a bottom-up way by using only a pair of single
characters, say, Ja, bK as the context of x (notice that necessarily a yields precedence
to the first character of x and the last character of x takes precedence over b).

Consider a scenario where, after having built a syntax tree for a given input pro-
gram (i.e., a certain input sentence), one or more parts of the programs are changed:
thanks to the locality property only the changes should be re-parsed. Afterwards, the
new local parse subtrees should be merged with the global parse tree using a suitable
criterion. We say that the matching condition is satisfied when, after having parsed a
substring, it is possible to identify the correct nesting point of its parse subtree within
the global one.

The same locality property also supports parallel parsing, possibly to be exploited in
a natural combination with incrementality: intuitively, the input can be split into many
chunks that can be parsed in parallel by processes executing on different units. The
results of the partial parsing processes can then be joined later on with great benefits
in terms of performance [7].

As an intuitive example, consider the arithmetic expression ‘5*4+2+6*7*8’, derived
from the grammar in figure 7.1 (equivalent to the one presented in section 2.4 and in-



75 7.2 Syntactic-Semantic Incrementality

〈E〉 ::= 〈E〉 ‘+’ 〈T〉 | 〈T〉
〈T〉 ::= 〈T〉 ‘*’ ‘n’ | ‘n’

Figure 7.1. Operator grammar for arithmetic expressions

cluded here for convenience); the corresponding syntax tree is depicted in figure 7.2.
Assume that the expression is modified in two points: the term 5*4 becomes 9, while
the term 6*7*8 becomes 7*8. Their new parse subtrees can clearly be built indepen-
dently, possibly in parallel; they are shown in figure 7.3a. The matching condition is
also satisfied, since the merging points of the two subtrees can be identified as well, as
depicted in figure 7.3b, where nesting points are emphasized in bold.

This nice property, which does not impose a strictly left-to-right parsing, has a price
in terms of generative power. For example, the LR grammars traditionally used to de-
scribe and parse programming languages do not enjoy this property. However they
can generate all the deterministic languages. Floyd grammars instead cannot. This
limitation is more of theoretical interest than of real practical impact. Most program-
ming languages in fact can be generated by a suitable Floyd grammar. For example,
the original paper on Floyd grammars [63] details the minor adjustments required by
the Algol 60 grammar to be treated as precedence grammar. More recently, to set up
the benchmark adopted in [7] to evaluate the performances of a parallel parser for
Floyd grammars, the original grammars of JSON, XML, and other languages needed
only very minor changes to satisfy the Floyd definition.

In conclusion, Floyd grammars appear as a natural choice to support our syntactic-
semantic approach to incremental (and possibly parallel) verification procedures.

E

〈T〉

8*〈T〉

7*〈T〉

6

+〈E〉

〈T〉

2

+〈E〉

〈T〉

4*〈T〉

5

Figure 7.2. Abstract syntax tree of the expression ‘5*4+2+6*7*8’



76 7.2 Syntactic-Semantic Incrementality

〈T1〉

9

〈T2〉

8*〈T〉

7

(a)

〈E〉

〈T2〉

8*〈T〉

7

+〈E〉

〈T〉

2

+〈E〉

〈T1〉

9

(b)

Figure 7.3. Partial parse trees of the terms 7*8 and 9 and their nesting within the
global syntax tree

7.2.1 Syntactic Incrementality

The intuition behind the example in figure 7.3 can be generalized and formalized to
obtain a general procedure for incremental parsing of Floyd grammars.

Consider a generic syntax tree as the one depicted in figure 7.4, in which the non-
terminal 〈N〉 generates the string xwz. Suppose that substring w is replaced by a new
string w′. An algorithm that considers the operator precedence relations of a Floyd
grammar can restart parsing from the substring w′ and its context Jx , zK, regardless of
the rest of the input. Reductions are applied by finding the innermost pair of l · · ·m
that overlaps with w′, possibly with

.
= relations in between, and then proceeding both

rightward and leftward until a matching condition is satisfied, as described in [61].

Suppose that the parsing of xw′z leads to the derivation 〈N〉 ∗⇒ xw′z, with the same

non-terminal 〈N〉 as in 〈N〉 ∗⇒ xwz: we say that the matching condition is satisfied.
Since the remaining part of the tree is not affected by the change in the input string,
the parsing process is completed after the old subtree rooted in 〈N〉 is replaced with
the new one.

A similar procedure can be applied in case of multiple changes to the input string,
with the possibility of supporting also parallel parsing. If the subtrees affected by
the changes are disjoint, i.e., their contexts do not overlap as depicted in figure 7.5,
the tasks of parsing the two new substrings xw′z and yv′s can be performed by two
processes and completed in a totally independent way. In case the two subtrees share
at least one node, the matching condition is not satisfied, and the two partial parsings
have to be merged together. The two changes can be re-parsed separately until the
respective subtrees share at least one node. Once the two processes executing the
parsing are about to apply a reduction involving (at least) one node shared by both
subtrees, the control is passed to only one of the processes, which then completes the



77 7.2 Syntactic-Semantic Incrementality

〈S〉

〈N〉

xwz

Figure 7.4. Syntax tree rooted in the axiom 〈S〉, with a subtree rooted in the
non-terminal 〈N〉 generating the string xwz

parsing by itself. This simple strategy can be significantly enhanced by means of a
more precise identification of the nodes that effectively need to be changed, e.g., by
jointly applying LR∩ RL techniques [70].

In the current prototypal implementation of SiDECAR, the incremental parser for
Floyd grammars has the following complexities: O(n), with n being the length of the
string, in case of parsing from scratch; O(m), with m being the size of the modified
subtree(s), in case of incremental parsing; O(1) for the matching condition test.

7.2.2 Semantic Incrementality

In a bottom-up parser, semantic actions are performed during a reduction. This allows
the re-computation of semantic attributes after a change to proceed hand-in-hand with
the re-parsing of the modified substring. Suppose that, after replacing w with w′,
incremental re-parsing builds a derivation 〈N〉 ∗⇒ xw′z, with the same non-terminal

〈N〉 as in 〈N〉 ∗⇒ xwz, so that the matching condition is verified. Assume also that 〈N〉
has an attribute αN . Two situations may occur related to the computation of αN :

〈S〉

〈N〉

xwz

〈M〉

yvs

Figure 7.5. Parallel incremental update of a parse tree



78 7.3 SiDECAR at Work

αS

αM

αN

αK

αP αQ

xw′z

Figure 7.6. Incremental evaluation of semantic attributes

1. The αN attribute associated with the new subtree rooted in 〈N〉 has the same
value as before the change. In this case, all the remaining attributes in the rest
of the tree will not be affected, and no further analysis is needed.

2. Despite the syntactic matching, the new value of αN is different from the one it
had before the change. In this case, as suggested by figure 7.6, only the attributes
on the path from 〈N〉 to the root 〈S〉 (e.g., αM ,αK ,αS) can change and thus need
to be recomputed. The values of the other attributes not on the path from 〈N〉 to
the root (e.g., αP and αQ) do not change: there is no need to recompute them.

7.3 SiDECAR at Work

In this section we show how to use SiDECAR by defining a verification procedure for
reachability analysis in control flows.

The first step to use SiDECAR is to define a Floyd grammar, from which the artifacts
(e.g., the programs) to be analyzed can be generated; we use programs written in the
Mini language, whose grammar is shown in figure 7.7. The Mini language includes the
major constructs of structured programming [41], from which one can derive modern
imperative programming languages as well as languages for defining workflows of
service compositions. For the sake of readability and to reduce the complexity of the
attribute schema, Mini programs support only (global) boolean variables and boolean
functions (with no input parameters). These assumptions can be relaxed, with no
impact on the applicability of the approach.

To show the benefits of incrementality, we detail the execution of reachability anal-
ysis on two versions of the same example program. The two versions of the example
program are shown in figure 7.8; they differ in the assignment at line 3, which deter-
mines the execution of the subsequent if statement, with implications on the results
of the analysis. Figure 7.9 depicts the syntax tree of version 1 of the program, as well



79 7.3 SiDECAR at Work

〈S〉 ::= ‘begin’ 〈stmtlist〉 ‘end’

〈stmtlist〉 ::= 〈stmt〉 ‘;’ 〈stmtlist〉
| 〈stmt〉 ‘;’

〈stmt〉 ::= 〈function-id〉 ‘(’ ‘)’
| 〈var-id〉 ‘:=’ ‘true’
| 〈var-id〉 ‘:=’ ‘false’
| 〈var-id〉 ‘:=’ 〈function-id〉 ‘(’ ‘)’
| ‘if’ 〈cond〉 ‘then’ 〈stmtlist〉 ‘else’ 〈stmtlist〉 ‘endif’
| ‘while’ 〈cond〉 ‘do’ 〈stmtlist〉 ‘endwhile’

〈var-id〉 ::= . . .

〈function-id〉 ::= . . .

〈cond〉 ::= . . .

Figure 7.7. The grammar of the Mini language

as the subtree that is different in version 2; nodes of the tree have been numbered for
quick reference.

The second step in using SiDECAR is to define the attribute schema that encodes
the analysis to be performed, in terms of the algorithm and of the data structures.
Although these items are specific to each analysis, the framework is general enough to
provide a common infrastructure that supports syntactic-semantic incrementality for
any analysis defined on the top of it.

Before describing reachability analysis and the corresponding attribute schema,
here we introduce some useful notations. Given a Mini program P, FP is the set of
boolean functions and VP the set of boolean variables defined within P; EP is the set
of boolean expressions that can appear as the condition of an if or a while statement
in P. An expression e ∈ EP is either a combination of boolean predicates on program
variables or a placeholder predicate labeled ∗. Hereafter, we drop the subscript P in
FP , VP , and EP whenever the program is clear from the context.

7.3.1 Reachability Analysis

Reachability analysis is a basic software model checking procedure, which solves the
safety verification problem: given a program and a safety property, we want to decide
whether there is an execution of the program that leads to a violation of the property.

In software model checking, it is common to use a transition-relation representa-
tion of programs [79], in which a program is characterized by a set of (typed) variables,
a set of control locations (including an initial one), and a set of transitions, from a
control location to another one, labeled with constraints on variables and/or with pro-
gram operations. Examples of this kind of representation are control-flow graphs [1]



80 7.3 SiDECAR at Work

1 begin

2 opA();

3 x := true;

4 if (x==true)

5 then opB();

6 else opA();

7 endif;

8 end

(a) Version 1

1 begin

2 opA();

3 x := false;

4 if (x==true)

5 then opB();

6 else opA();

7 endif;

8 end

(b) Version 2

Figure 7.8. The two versions of the example program

and control-flow automata [18]. A state of the program is characterized by a location
and by the valuation of the variables at that location. A computation of the program is
a (finite or infinite) sequence of states, where the sequence is induced by the transition
relation over locations. Checking for a safety property can be reduced to the problem
of checking for the reachability of a particular location, the error location, for example,
by properly instrumenting the program code according to the safety specification.

In the implementation of reachability analysis with SiDECAR we assume that the
safety property is defined as a property automaton [46], whose transitions correspond
either to a procedure call or to a function call that assigns a value to a variable. From
this automaton we then derive the corresponding image automaton, which traps viola-
tion of the property in an error location (called ERR).

Formally, let VA be the set of variable assignments from functions, i.e., VA = {x :=
f | x ∈ V and f ∈ F}. A property automaton A is a quadruple A= 〈S, T,δ, s0〉 where S
is a set of locations, T is the alphabet T = F∪VA, δ is the transition function δ : S×T →
S, and s0 is the initial location. Given a property automaton A, the corresponding image
automaton A′ is defined as A′ = 〈S∪{ERR}, T,δ′, s0〉, where δ′ = δ∪{(s, t, ERR) | (s, t) ∈
S × T ∧ ¬∃s′ ∈ S | (s, t, s′) ∈ δ}. An example of a property automaton specifying the
alternation of operations opA and opB on sequences starting with opA is depicted in
figure 7.10; transitions drawn with a dashed line are added to the property automaton
to obtain its image automaton.

Instead of analyzing the program code instrumented with the safety specification,
we check for the reachability of the error location in an execution trace of the image
automaton, as induced by the syntactic structure of the program.

More specifically, each location of the automaton is paired with a configuration of
the program, which consists of a mapping of the program variables and of the traversal
conditions for the paths taken so far. A configuration is invalid if the set of predicate
conditions holding at a certain location of the program is not compatible with the



81 7.3 SiDECAR at Work

〈S〉 0

〈stmlist〉 1

〈stmlist〉 5

〈stmlist〉 10

〈stmt〉 11

〈stmlist〉 18

〈stmt〉 19

〈function-id〉 20

opA() 21

〈stmlist〉 14

〈stmt〉 15

〈function-id〉 16

opB() 17

〈cond〉 12

x==true 13

〈stmt〉 6

true 9〈var-id〉 7

x 8

〈stmt〉 2

〈function-id〉 3

opA() 4

〈stmt〉 6

false 9〈var-id〉 7

x 8

Figure 7.9. The syntax tree of version 1 of the example program; the subtree in
the dashed box shows the difference (node 9) in the syntax tree of version 2

current variables mapping for that location. Formally, let VM : V 7→ {true, false} be
a mapping from program variables to their value (if defined). The set of possibile
configurations that can be reached during the execution of a program is denoted by
C = (VM× E)∪ {⊥}, where ⊥ stands for an invalid configuration.

Configurations of the program may change when variables are assigned a new
value, e.g., by a direct assignment of a literal or by assigning the return value of a
function. We use a function upd that updates a configuration and checks whether
it is valid or not. The function upd is defined as upd: (C × V ∪ {ε} × {true, false} ∪
{ε}× E ∪ {ε}× {true, false} ∪ {ε})→ C . The function takes a configuration, a variable,
its new value, a combination of boolean expressions (corresponding to a certain path
condition), its new value, and returns the new configuration; the ε symbol accounts
for empty parameters.

q0

ERR

q1

opA

opB opB

opA

Figure 7.10. A property automaton; dashed lines belong to the corresponding
image automaton



82 7.3 SiDECAR at Work

We call the pair 〈location of the image automaton, configuration of the program〉 an
extended state. A safety property represented as an image automaton is violated if it is
possible to reach from the initial extended state another extended state whose location
component is the ERR location. Each statement in the program defines a transition
from one extended state to another.

For example, a procedure call determines the location component in an extended
state by following the transition function of the image automaton corresponding to the
call. An assignment to a variable updates the program configuration component of an
extended state. In case a variable is assigned the return value of a function invocation,
both components of an extended state are updated.

Conditions in selection and loop statements are evaluated and the program config-
uration of the corresponding extended state is updated accordingly, to keep track of
which path conditions have been taken. For an if statement, we keep track of which
extended states could be reachable by executing the statement, considering both the
then branch and the else branch. For a while statement, we make the common assump-
tion that a certain constant K is provided to indicate the number of unrolling passes
of the loop. We then keep track of which extended states could be reachable, both in
case the loop is not executed and in case the loop is executed K times.

7.3.2 Attribute Schema

The set of attributes is defined as:

- SYN(〈S〉) = SYN(〈stmlist〉) = SYN(〈stmt〉) = {γ};

- SYN(〈cond〉) = {γ,ν};

- SYN(〈var-id〉) = SYN(〈function-id〉) = {η};

where:

• γ⊆ S×C×S×C is the relation that defines a transition from one extended state
to another one;

• ν is a string corresponding to the literal value of an expression e ∈ E;

• η is a string corresponding to the literal value of an identifier.

For the γ attribute of non-terminal 〈cond〉 we use the symbol γT (respectively γF ) to
denote the attribute γ evaluated when the condition 〈cond〉 is true (respectively, false).
We also define the operation of composing γ relations (denoted by the ◦ operator) as
follows: γ1◦γ2 = 〈s1, c1, s2, c2〉 such that there exist 〈s1, c1, si , ci〉 ∈ γ1 and 〈si , ci , s2, c2〉 ∈
γ2. The attribute schema is defined as follows, where we use the symbols s, s1, s2 and
c, c1, c2 to denote generic elements in S and C , respectively.



83 7.3 SiDECAR at Work

1. 〈S〉 ::= ‘begin’ 〈stmtlist〉 ‘end’

γ(〈S〉) := γ(〈stmtlist〉)
2. (a) 〈stmtlist0〉 ::= 〈stmt〉 ‘;’ 〈stmtlist1〉

γ(〈stmtlist0〉) := γ(〈stmt〉) ◦ γ(〈stmtlist1〉)
(b) 〈stmtlist〉 ::= 〈stmt〉 ‘;’

γ(〈stmtlist〉) := γ(〈stmt〉)
3. (a) 〈stmt〉 ::= 〈function-id〉 ‘(’ ‘)’

γ(〈stmt〉) := 〈s1, c, s2, c〉 such that there is f ∈ F with δ(s1, f ) = s2 and
η(〈function-id〉) = f

(b) 〈stmt〉 ::= 〈var-id〉 ‘:=’ ‘true’

γ(〈stmt〉) := 〈s, c1, s, c2〉 with c2 = upd(c1,η(〈var-id〉), true,ε,ε)
(c) 〈stmt〉 ::= 〈var-id〉 ‘:=’ ‘false’

γ(〈stmt〉) := 〈s, c1, s, c2〉 with c2 = upd(c1,η(〈var-id〉), false,ε,ε)
(d) 〈stmt〉 ::= 〈var-id〉 ‘=’ 〈function-id〉 ‘(’ ‘)’

γ(〈stmt〉) := 〈s1, c1, s2, c2〉 ∪ 〈s1, c1, s2, c3〉 such that there is f ∈ F with
δ(s1, f ) = s2, η(〈function-id〉) = f , c2 = upd(c1,η(〈var-id〉), true,ε,ε), and
c3 = upd(c1,η(〈var-id〉), false,ε,ε)

(e) 〈stmt〉 ::= ‘if’ 〈cond〉 ‘then’ 〈stmlist0〉 ‘else’ 〈stmlist1〉 ‘endif’

γ(〈stmt〉) := γT (〈cond〉) ◦ γ(〈stmtlist0〉)∪ γF (〈cond〉) ◦ γ(〈stmtlist1〉)
(f) 〈stmt〉 ::= ‘while’ 〈cond〉 ‘do’ 〈stmtlist〉 ‘endwhile’

γ(〈stmt〉) := γbody ◦ γF (〈cond〉) where γbody =
�

γT (〈cond〉) ◦ γ(〈stmtlist〉)
�K

4. 〈cond〉 ::= . . .
γ(〈cond〉) := γT (〈cond〉) ∪ γF (〈cond〉) = 〈s, c1, s, c2〉 ∪ 〈s, c1, s, c3〉 where c2 =
upd(c1,ε,ε,ν(〈cond〉), true) and c3 = upd(c1,ε,ε,ν(〈cond〉), false)

7.3.3 Application to the Example

We show how to perform reachability analysis with SiDECAR on the two versions of
the example program. For both examples, we consider the safety property specified
with the automaton in figure 7.10. In the steps of attribute synthesis, for brevity, we
use numbers to refer to the corresponding nodes in the syntax tree.

Example Program - Version 1

Given the abstract syntax tree depicted in figure 7.9, attributes are synthesized as
follows:

• γ(2) :=
�〈q0, c, q1, c〉, 〈q1, c, ERR, c〉	



84 7.3 SiDECAR at Work

• γ(6) := 〈s, c1, s, upd(c1,"x", true,ε,ε)〉

• γ(12) := γT (12)∪ γF (12) :=
〈s, c1, s, upd(c1,ε,ε,"x==true", true)〉 ∪ 〈s, c1, s, upd(c1,ε,ε,"x==true", false)〉

• γ(15) :=
�〈q1, c, q0, c〉, 〈q0, c, ERR, c〉	

• γ(14) := γ(15)

• γ(19) :=
�〈q0, c, q1, c〉, 〈q1, c, ERR, c〉	

• γ(18) := γ(19)

• γ(11) := γT (12) ◦ γ(14)∪ γF (12) ◦ γ(18) :=
〈s, c1, s, upd(c1,ε,ε,"x==true", true)〉 ◦ �〈q1, c, q0, c〉, 〈q0, c, ERR, c〉	
∪
〈s, c1, s, upd(c1,ε,ε,"x==true", false)〉 ◦ �〈q0, c, q1, c〉, 〈q1, c, ERR, c〉	 :=
{〈q1, c1, q0, upd(c1,ε,ε,"x==true", true)〉,
〈q0, c1, ERR, upd(c1,ε,ε,"x==true", true)〉,
〈q0, c1, q1, upd(c1,ε,ε,"x==true", false)〉,
〈q1, c1, ERR, upd(c1,ε,ε,"x==true", false)〉}

• γ(10) := γ(11)

• γ(5) := γ(6) ◦ γ(10) :=
{〈q1, c1, q0, upd(upd(c1,"x", true,ε,ε),ε,ε,"x==true", true)〉,
〈q0, c1, ERR, upd(upd(c1,"x", true,ε,ε),ε,ε,"x==true", true)〉,
〈q0, c1, q1,⊥〉,
〈q1, c1, ERR,⊥〉}

The last two tuples of γ(5) are discarded because they contain a ⊥ configuration. The
⊥ component of this configuration is returned by upd; according to its semantics, the
evaluation of the condition "x==true" to false is not compatible with the previous
configuration, where x is assigned the value true. Hence, we have:

• γ(5) := {〈q1, c1, q0, upd(upd(c1,"x", true,ε,ε),ε,ε,"x==true", true)〉,
〈q0, c1, ERR, upd(upd(c1,"x", true,ε,ε),ε,ε,"x==true", true)〉}

• γ(1) := γ(2) ◦ γ(5) := 〈q0, c, q0, upd(upd(c,"x", true,ε,ε),ε,ε,"x==true", true)〉

• γ(0) = γ(1) = 〈q0, c, q0, upd(upd(c,"x", true,ε,ε),ε,ε,"x==true", true)〉

The resulting γ(0) shows that the error location is not reachable from the initial ex-
tended state. Therefore we can conclude that the property will not be violated by any
execution of the program.



85 7.4 Summary

Example Program - Version 2

Version 2 of the example program differs from version 1 only in the assignment at
line 3, reflected in node 9 of the subtree shown in the box of figure 7.9. This change in
the syntax tree triggers the restart of parsing from the node, leading to the derivation
of the non-terminal 〈stmt〉 at node 6, which satisfies the matching condition. The
corresponding re-computation of the attributes proceeds from node 6 up to the root
requiring only the following steps:

• γ(6) := 〈s, c1, s, upd(c1,"x", false,ε,ε)〉
• γ(5) := γ(6) ◦ γ(10) :=
{〈q1, c1, q0,⊥〉,
〈q0, c1, ERR,⊥〉,
〈q0, c1, q1, upd(upd(c1,"x", false,ε,ε),ε,ε,"x==true", false)〉
〈q1, c1, ERR, upd(upd(c1,"x", false,ε,ε),ε,ε,"x==true", false)〉 }

The first two tuples of γ(5) are discarded because they contain a ⊥ configuration.
The ⊥ component of this configuration is returned by upd; according to its semantics,
the evaluation of the condition "x==true" to true is not compatible with the previous
configuration, where x is assigned the value false. Hence, we have:

• γ(5) := {〈q0, c1, q1, upd(upd(c1,"x", false,ε,ε),ε,ε,"x==true", false)〉,
〈q1, c1, ERR, upd(upd(c1,"x", false,ε,ε),ε,ε,"x==true", false)〉}

• γ(1) := γ(2) ◦ γ(5) :=
〈q0, c, ERR, upd(upd(c,"x", false,ε,ε),ε,ε,"x==true", false)〉

• γ(0) = γ(1) = 〈q0, c, ERR, upd(upd(c,"x", false,ε,ε),ε,ε,"x==true", false)〉
Note that we reuse results from the analysis of version 1, since γ(10) and γ(2) have not
changed. Although the example and its state space are small and not representative,
in the analysis of version 2 we processed only 7 tuples of the state space, compared
with the 26 ones processed for version 1: a reduction of about 75% of the state space.

Finally, looking at γ(0)we notice that the error location is actually reachable, which
means that version 2 of the program violates the safety property.

Despite its small size, the example gives a glimpse of the benefits of incrementality
in the SiDECAR approach, showing how the evaluation of each change in the input
program triggers only the recomputation of the semantic attributes affected by the
change, allowing for a high reuse of the previous results.

7.4 Summary

In this chapter we presented SiDECAR, our framework supporting a syntactic-semantic
approach for incremental verification. We also showed its application in the definition
of an incremental procedure for reachability analysis.



86 7.4 Summary

SiDECAR has only two usage requirements: 1) the artifact to be verified should
have a syntactic structure derivable from a Floyd grammar; 2) the verification proce-
dure has to be formalized as synthesis of semantic attributes. The expressiveness of
Floyd grammars and the well-known versatility of attribute grammars guarantee that
there is no practical limitation in using SiDECAR. Moreover, incrementality is automat-
ically provided by the framework without any further effort for the developer.

The parsing algorithm used within SiDECAR has a temporal complexity linear in
the length of the changes to be analyzed. Hence any change in the program has a
minimal impact on the adaptation of the abstract syntax tree, without any further con-
straint on the grammar. Semantic incrementality allows for low-impact (re)evaluation
of the attributes, by proceeding along the path from the node corresponding to the
change to the root, whose length is normally logarithmic with respect to the length
of the program. The use of SiDECAR may result in a significant reduction of the re-
analysis and semantic re-evaluation steps. The saving can be very relevant in the case
of large programs and rich and complex attributes schema.

We remark that the example presented in section 7.3 was not designed to be di-
rectly applied to real-world analysis, but to show, in a simple and readable way, the
generality of the approach. However, the generality and flexibility of Floyd gram-
mars allow for using in a natural way much richer languages than the Mini example
used here; on the other hand, having attribute grammars the same computational
power as Turing machines, they enable formalizing in this framework any algorith-
mic schema at any sophistication and complexity level. For example, in the case of
reachability analysis, a more elaborated attribute schema could support both new lan-
guage features (e.g., heap data structures) and different verification algorithms (e.g.,
abstraction-based techniques).



Chapter 8

Intermezzo 2:
Verification - State of the Art

In this chapter we report on the state of the art related to interface decomposition
(section 8.1) and to incremental verification (section 8.2).

8.1 On Interface Decomposition

The work presented in chapter 6 is closely related to the problem of synthesizing in-
dividual service behaviors from a choreography specification, such as conversation
protocols [66], WS-CDL models [127], and collaboration diagrams [131]. These ap-
proaches define a projection operation that derives the implementations of the par-
ticipating peers by filtering the global specification on the actions alphabet of each
peer, which is similar in spirit to the basic decomposition approach described in Sec-
tion 6.4.1; additionally, in [131], extra communication actions among the generated
peers are added in case some behaviors may not be realizable in a distributed fashion.
The difference with our work lies in the point of view adopted: the aforementioned ap-
proaches consider a superset of the possible behaviors and narrow it down to achieve
the exact behavior dictated by the choreography specification. In our work, we view
the global interface as the maximum behavior that could be allowed for the compo-
sition based on a property, and we generate a subset of the possible behaviors. Our
process is driven by the error behaviors that have to be blocked; error traces guide
us in the heuristic to assign to partner services the responsibility of blocking those be-
haviors. Still related to the synthesis problem, reference [104] shows, in the context
of verification of choreographies expressed in BPEL4CHOR, how a single participant
of a choreography can be synthesized starting from the description of the choreog-
raphy and from the BPEL models of the other participants. Besides the limitation of
synthesizing at most one participant, this work makes the assumption that the BPEL
models of the other participants are available; this assumption is unrealistic in the

87



88 8.1 On Interface Decomposition

context of open-world services. In defining our interface decomposition technique, we
have assumed synchronous interactions among services. For asynchronous systems,
recently Basu et al. [15] have proved the decidability of the choreography realizability
problem for systems communicating through asynchronous messages and unbounded
FIFO message queues. The problem of synthesizing distributed transition systems from
global specifications has been dealt with in [139]. This work assume the knowledge
of the complete distribution structure of the system; however, this is not a reasonable
working assumption in the context of SBAs, where partner services are usually seen as
black-boxes.

The problem of generating the interface of the environment of a system, given
a property it should satisfy, has been originally dealt with in [72], in the context of
model checking. However, the approach generates only the global interface, not the
interfaces of the individual components of the system. Other work [44] describes a
compositional reasoning approach for the verification of middleware-based software
architecture descriptions. Given a graphical scenario of the architecture of a generic
application in terms of Message Sequence Charts (MSCs), the approach tries to verify
the global property by verifying local properties of the architectural components. This
last step requires to decompose the global property into local properties; the decom-
position is based on the analysis of the structure of the MSCs, which is similar to our
heuristic that considers the structure of the global interface specification.

The use of a description of the system requirements to generate behavioral models
of the system components is also common in the context of behavioral model synthesis.
One approach [52] proposes to inductively synthesize the LTS models of each system
component from a set of end-users scenarios, both positive and negative, in the form
of MSCs. The approach operates at the stage of requirements, where users can in-
teractively refine the scenario-based description by answering questions; in our work,
we assume the requirements are fixed and thus rely on the accuracy of the specifica-
tion to get expressive interfaces. The approach presented in [4] derives operational
requirements (in the form of pre- and trigger-conditions) from goal models, using a
combination of model checking, inductive learning and manual elaboration of scenar-
ios; however, the approach does not support learning the operational requirements
for an individual component of a system. In [94], behavioral models, in the form of
Modal Transition Systems, are generated at the component level from a set of scenarios
and property specifications. The algorithm assumes that domain variables are used for
defining the pre- and post-conditions of component operations; however, for service
components, pre- and post-conditions might not available. Another technique [142]
constructs behavioral models (in the form of Modal Transition Systems) from both
safety properties and scenario-based specifications; however, the models generated
are at the system level, not at the component level.

Other approaches perform decomposition of a global specification either to reduce
the size of the model to verify by means of slicing [95, 43], or to support compositional



89 8.2 On Incremental Verification

verification for systems that are not structured into parallel components [112].
Inferring the specifications of components is also a goal shared with program spec-

ification miners, such as Adabu [51] and GK-tail [105]. These approaches usually
perform static analysis, code instrumentation and analysis of the execution traces to
derive the usage patterns of components and thus need to access the code of the com-
ponents for which you want to discover the specification. This latter step is not fea-
sible in the domain of service-oriented computing. In the context of Web services,
the Strawberry approach [17] derives the behavioral model of a service by analyzing
its syntactical interface and applying a combination of graph synthesis, heuristics and
testing. However, all these approaches consider the behavior of a single service (com-
ponent) in isolation, while we are interested in discovering the behavioral interfaces
of components that guarantee the requirements of the composite application.

8.2 On Incremental Verification

Different methodologies have been proposed in the literature as the basis for incremen-
tal1 verification techniques. They are mainly grounded in the assume-guarantee [80]
paradigm. This paradigm views systems as a collection of cooperating modules, each
of which has to guarantee certain properties. The verification methods based on this
paradigm are said to be compositional, since they allow reasoning about each module
separately and deducing properties about their integration. If the effect of a change
can be localized inside the boundary of a module, the other modules are not affected,
and their verification does not need to be redone. This feature is for example exploited
in [47], which proposes a framework for performing assume-guarantee reasoning in
an incremental and fully automatic fashion.

A second approach to incrementality is based on anticipating the changes that may
occur in the system. It does not rely on a precise modular structure of the system
nor suffers for the percolation of changes’ effects through interfaces; it is based on the
notion of partial evaluation, originally introduced in [58]. Partial evaluation can be
seen as a transformation from the original version of the program to a new version
called residual program, where the properties of interest have been partially computed
against the static parts, preserving the dependency on the variable ones. As soon as a
change is observed, the computation can be moved a further step toward completion
by fixing one or more variable parts according to the observations.

Other approaches for incremental verification based on (regression) model check-
ing reason in terms of the representation (e.g., a state-transition system) explored
during the verification, by assessing how it is affected by changes in the program. The
main idea is to maximize the reuse of the state space already explored for previous
versions of the program, isolating the parts of the state space that have changed in the

1Incidentally, the use of the term incremental model checking in the context of bounded model check-
ing [38] has a different meaning, since it refers to the possibility of changing the bound of the checking.



90 8.2 On Incremental Verification

new version. The first work in this line of research addressed modal mu-calculus [138].
Henzinger et al. [78] analyze a new version of the program by checking for the con-
formance of its (abstract) state space representation with respect to the one of the
previous version. When a discrepancy is found, the algorithm that recomputes the ab-
straction is restarted from that location. Depending on where the change is localized
in the program text, the algorithm could invalidate—and thus recompute—a possibly
large portion of the program state space.

Incremental approaches for explicit-state model checking of object-oriented pro-
grams, such as [98] and [146], analyze the state space checked for a previous version
and assess, respectively, either the transitions that do not need to be re-executed in a
certain exploration of the state space, or the states that can be pruned, because not
affected by the code change. These approaches tie incrementality to the low-level de-
tails of the verification procedure, while SiDECAR supports incrementality at a higher
level, independently from the algorithm and data structures defined in the attributes.
Conway et al. [48] define incremental algorithms for automaton-based safety program
analyses. Their granularity for the identification of reusable parts of the state space is
coarse-grained, since they take a function as the unit of change, while SiDECAR has
a finer granularity, at the statement level. A combination of a modular verification
technique that also reuse cached information from the checks of previous versions is
presented in [93] for aspect-oriented software.

The syntactic-semantic approach embedded in SiDECAR does not constrain incre-
mentality depending on on the modular structure of the artifacts, as instead required
by assume-guarantee approaches. Furthermore, it provides a general and unifying
methodology for defining verification procedures for functional and non-functional re-
quirements.



Part IV

Reputation Management





Chapter 9

Reputation Management of
Composite Services

9.1 Overview

The dependability of composite SBAs is largely affected by their constituent services.
Composite services have to adapt to the open, dynamically changing environment
where remote services may fail or new services may be offered at any moment. The
ability to bind to required services at run time is a key mechanism to cope with the
challenges of open-world software. As the market of available services for a given func-
tionality changes over the time, composite services that depend on that functionality
need to evolve, adapting their service bindings so as to leverage the best performing
services currently available.

Selecting the best service for a required functionality presupposes a reliable and
efficient mechanism to provide the service rankings. For this purpose, reputation mech-
anisms have been proposed [114]. They collect clients’ ratings on experienced ser-
vice behavior to compute the actual QoS delivered to clients and to rank functionally-
equivalent services accordingly. Reputation mechanisms therefore promote the sharing
of service monitoring information amongst clients. Researchers have shown that rep-
utation mechanisms can be designed to provide incentives that make honest reporting
rational for the clients [84].

However, current standard environments for the execution of composite services,
such as BPEL engines, do not integrate any reputation mechanisms. Although it is
possible to program composite services that explicitly interact with a reputation mech-
anism so as to report feedback on service interactions and to dynamically choose the
most efficient services, the needed development effort is prohibitive in practice. More-
over, feedback reporting on both experienced service functionality and QoS presumes
an appropriate monitoring infrastructure.

93



94 9.1 Overview

To overcome these issues, we designed REMAN, a reputation management infras-
tructure that serves the following goals:

1. To provide a mechanism for assessing service behavior and ranking functionally-
equivalent services based on past interactions with these services by other clients.

2. To support user notifications when particular reputation-related events occur,
allowing for an early discovery of possible failure situations.

3. To ensure reputation-enabled execution of composite services in a way that is
completely transparent to the programmer, who can concentrate exclusively on
the functional aspects of the composite service.

4. To allow for an open and extensible platform supporting a high degree of cus-
tomization of the way services’ reputation is computed.

The architecture of REMAN enables the transparent integration of reputation mech-
anisms in standard execution environments for composite services. It includes a cus-
tomizable reputation mechanism that is integrated with a customizable UDDI [118]
service repository, thus enabling reputation-aware service selection. The execution
environment running the composite service (a BPEL engine) is instrumented for moni-
toring service invocations and reporting feedback to a reputation mechanism that com-
putes services’ reputation.

REMAN supports subscriptions for service functionalities, resulting in notifications
upon changes in service reputation and upon the availability of better performing ser-
vices for a given functionality, respectively. These notifications enable the automated
update of service bindings, ensuring the automated evolution of composite service
in response to a dynamically changing service market. Although, for example, upon
receiving the notification that the reputation of a service has dropped below a given
threshold, a client could replace the affected service and hence avoid possible problems
before they actually occur, in this chapter we focus on the generic reputation infras-
tructure itself and do not address the concrete actions taken upon reputation-related
events, since these actions are specific to client policies.

To validate and evaluate our approach, we measured the overhead generated by
REMAN both for deployment and execution of composite services. We explore sepa-
rately the different aspects of our instrumentation, service execution monitoring and
communication with an external reputation mechanism, to assess how much each of
them contributes to the overall observed overhead.

The rest of the chapter is organized as follows. Section 9.2 describes the architec-
ture of REMAN. Section 9.3 presents the technique we use to estimate service reputa-
tion. Section 9.4 explains the implementation of the main components. Section 9.5
presents the results of our experimental evaluation. Section 9.6 concludes part IV by
surveying related work in the area of reputation management.



95 9.2 REMAN at a Glance

A1 A2

A3

A4

BPEL
service

Reputation Feeder

Event Manager

Monitor

Client

ServiceA

ServiceB

Reputation Manager

Subscription Manager

Enhanced Registry

 Server 

Service
Provider

BPEL 
engine

P1

P2

P3
D1

D2

F2

F1

R1

R2

Reputation Infrastructure

R2

other
service
clients

provides

Figure 9.1. REMAN architecture and system interactions

9.2 REMAN at a Glance

In the following, we describe the software architecture of REMAN, both at the server-
and the client-side. Afterwards, we explain the interactions among the system compo-
nents.

9.2.1 Server-side Software Architecture

The architecture of REMAN on the server side comprises three main components: the
enhanced registry, the reputation manager, and the subscription manager.

Enhanced Registry. It is a UDDI-compliant registry extended with functionalities sup-
porting REMAN. As a UDDI registry, it provides standard UDDI interfaces, which
supports service publishing and service discovery. The main extension included
by this registry is the functionality to query for QoS estimations of registered ser-
vices. The registry can be queried by providing either a specific service TModel
or the concrete service location and the WSDL interface it complies to.

Reputation Manager. It provides functionalities to manage the services registered for
reputation and to estimate their QoS. It exposes a public message queue where
service clients may post their feedback reports. Moreover, the Reputation Man-
ager receives UDDI-related events from the Enhanced Registry. For instance,
when a new service is registered into the service directory, this component cre-
ates the objects needed to represent those entities inside the infrastructure and
initializes their reputations to a default value.

The Reputation Manager is in charge of managing reputation policies. The repu-
tation policy is our abstraction for an algorithm that estimates service reputation.
Instead of providing an on-line algorithm for immediately processing feedback
reports as they arrive, we decided to introduce a scheduler, which invokes reputa-
tion policies periodically, to avoid minor fluctuations in the reputation estimates,
which could trigger unnecessary notifications.



96 9.2 REMAN at a Glance

This component is also aware of the concept of a reputation era, which is a
fixed-length time interval during which the reputation estimate of resources does
not change. All QoS reports received from clients during this period are stored
and then processed at the end of the era. This implies that both updates and
notifications of reputation-related events happen at the same time, right after
the end of an era and before the beginning of the next one. This solution leads
to steady QoS estimations through aggregation of feedbacks received within an
era.

Subscription Manager. It provides functionalities to notify service consumers when
reputation-related events occur and to manage the subscriptions to these events.
REMAN supports two event types: reputation decrease and availability of a service
with better reputation.

The former event is fired when the Reputation Manager communicates that the
reputation of a service has dropped below a certain threshold. Service users are
thus notified of a possible failure condition by means of these messages, so that
countermeasures can be taken. Upon subscription, each service client specifies
the services for which it should receive notifications on reputation decrease and
the reputation threshold for each service.

The latter event is used to notify service clients when the set of the “best” services
compliant with a particular specification (i.e., the services with the currently-
best reputation) changes. By means of these notifications, we let service clients
always know which are the best services available on the service market such
that when a possible failure occurs they may rebind to another service, which
exhibits a better behavior. Service clients subscribe to these events by specifying
the WSDL interface they are interested in.

Furthermore, REMAN includes some components implementing side facilities, such
as security-related operations (log-in procedures and management of access creden-
tials).

9.2.2 Client-side Architecture

At the client-side, the architecture comprises three components:

Monitor. It monitors the behavior of external services used by the BPEL service client,
by checking functional and non-functional properties expressed in WS-CoL [12]
and/or ALBERT [9]. Since feedbacks originate from the evaluation of these prop-
erties, the latter should specify the interaction with only one service, the one for
which the reputation will be computed accordingly.

Reputation Feeder. It provides methods to collect feedback reports and to send them
to the server component of REMAN.



97 9.2 REMAN at a Glance

Event Manager. It provides functionalities to subscribe to reputation-related events
and to react to such notifications.

Figure 9.1 illustrates the components of the architecture, both at the server-side
and at the client-side. It also depicts the messages exchanged when interacting with
the reputation infrastructure, which are described in the next subsection.

9.2.3 System Interactions

A typical usage scenario of REMAN is the following one:

1. Service providers publish their services (e.g., services A and B) using the UDDI-
compliant interface offered by the Enhanced Registry (message P1 in figure 9.1).
Internally, the Enhanced Registry notifies the Reputation Manager that a new ser-
vice has been registered, and thus that a default reputation should be assigned
to it (message P2). The Enhanced Registry also notifies the Subscription Manager
such that it can notify interested service clients of the availability of a new service
(message P3).

2. When service clients deploy their business processes into the BPEL engine, the
client part of REMAN logs into the server part (message D1), in order to get
access credentials for subsequent communications. Service clients communicate
the selected service bindings to the server using the Event Manager (message
D2); in this way, clients subscribe to events related to (the type of) services they
use. For example, the BPEL service depicted in figure 9.1 will communicate to
the Reputation Manager its bindings to services A and B, used within the business
process by the activities A1 and A3.

3. During execution, each time a client uses an external service, the built-in monitor
evaluates a rule associated with the interaction. The result of the evaluation is
sent to the Reputation Feeder (message F1), which generates a feedback report
on the behavior of the external service, to be sent (message F2) to the Reputation
Manager, on the server component of REMAN.

4. After collecting reputation feedback reports, the Reputation Manager updates the
reputation estimation of the services registered in the system. Whenever the Rep-
utation Manager computes a new value of the reputation of a service, it notifies
the Subscription Manager (message R1). The latter can then either communicate
(message R2) to all subscribed clients that the reputation of a service dropped
below a certain threshold, or it can notify them that a new service implementing
a certain WSDL interface and with a better reputation became available.



98 9.3 Reputation Estimation

9.3 Reputation Estimation

REMAN has been designed in an open and extensible way, so as to support different
methods for computing service reputation and to enable reputation estimation for new
kinds of entities (e.g., the reputation of a service provider could be defined by aggre-
gating the feedback reports received for all the services offered by the same provider).
The Reputation Manager ensures extensibility through the installation of new reputa-
tion policies provided as plugins.

The default reputation policy plugin in our reference implementation estimates
the reputation of each single service published in the infrastructure by using a binary-
based rating approach with reputation propagation. Reputation propagation captures the
concept that the Reputation Manager builds reputations by using indirect knowledge of
services. Binary-based means that service clients can rate services by using only boolean
values. These values correspond to the evaluation of logical formulae corresponding
to the monitored properties, from which feedback reports are created.

This binary-based rating approach is based on the endorsements-refusals ratio algo-
rithm. It generates the reputation by computing the ratio of the number of positive
feedbacks and the total number of feedbacks received until the computation of the
estimation is triggered by the system.

Let S be the set of services published in REMAN; F be the set of feedbacks f , where
each f is a tuple 〈s, v, t〉, with s ∈ S being the service that is the object of the feedback,
v ∈ {0,1} the value of the feedback and t ∈ N+ the timestamp at which the feedback
is received at the server. Let Fs,t = { f ∈ F | f .s = s ∧ f .t <= t }, s ∈ S, t ∈ N+, be
the feedback set, i.e, the set of the feedbacks received for a service s until time t; let
P(s, t) =

∑

f ∈Fs,t
f .v be the amount of endorsement received for service s until time

t, and N(s, t) = |Fs,t | be the number of total feedbacks received for a service s until
time t. The reputation ρ(s, t) for a service s at instant t is then computed using the
endorsement-refusals ratio as:

ρ(s, t) =
P(s, t)
N(s, t)

9.4 Implementation

REMAN has been entirely implemented as a JavaEE compliant application; the reason
for this choice is that the JavaEE platform is the de facto standard for the development
of back-end and distributed applications.

The Reputation Manager and the Subscription Manager have been implemented by
means of both stateless session beans and message-driven ones.

Most of the functionalities of the Enhanced Registry have been implemented by
means of stateless session beans; standard UDDI services are instead provided by
means of Web service beans and by the Grimoires UDDI registry [145]. Grimoires is a



99 9.5 Experimental Evaluation

registry enhanced with functionalities to add metadata information to UDDI concepts.
We adopted it both because it is open-source and because it allows for storing repu-
tation of services directly as a metadata in the registry. Actually, we used a modified
version of Grimoires, extended to support notifications about changes in the database
of UDDI entities.

Some operations, such as finding the best services compatible with a certain in-
terface, require a notion of service equivalence. We implemented a component that
performs the analysis of WSDL documents—associated with UDDI TModels—based on
syntactic checking1, and generates sets of compatible services.

At the client-side, service monitoring is performed within the ActiveBPEL engine2.
The version we have used has been already instrumented with the Dynamo monitoring
facility [13]. We extended this version with a functionality to send feedback when
a monitoring rule is evaluated, by using an aspect-oriented approach [88] so as to
minimize the impact on pre-existing code.

In terms of security, every message exchanged in the system is secured against tam-
pering; access to the system is granted by means of a public key mutual authentication
algorithm.

9.5 Experimental Evaluation

We evaluated the performance impact of REMAN with two BPEL processes, the LoanAp-
proval process defined in the BPEL specification [5] and the Radiology process available
in the WSCoL monitoring distribution [13]. In both cases, we implemented the exter-
nal services required by the BPEL process.

For each process, we measured both the BPEL process deployment time and the
process execution time in three different configurations: (original) vanilla BPEL en-
gine without any instrumentation; (monitor) BPEL engine instrumented to support the
Dynamo monitoring facility; (complete) BPEL engine instrumented to support both the
monitor and REMAN.

For our measurements, all components of our infrastructure as well as the external
services required by the two BPEL processes were started on a single machine, an Intel
Centrino Duo T2300 CPU with 2GB RAM, running GNU/Linux. To ensure reliable
measurements, we removed unnecessary processes as much as possible. REMAN was
deployed on JBoss AS 4.2.0-GA. We also used MySQL 5.0.45 as DBMS, ActiveBPEL 2.5

1The use of TModels (as pointers to WSDL documents) for checking service compatibility is recom-
mended in the UDDI specifications. However, as pointed out by the semantic web research community, a
syntactic comparison of WSDL service specifications could not be sufficient for determining service equiv-
alence. Several efforts are dealing with this issue [123, 117]; however they are out of the scope of this
work. Therefore, we designed the service equivalence checker as a replaceable component to support
different models of service equivalence.

2http://www.activevos.com/.

http://www.activevos.com/


100 9.6 Related Work

as BPEL engine, and the Grimoires Enhanced Registry 1.2.3 as UDDI registry. The BPEL
engine and the Grimoires registry were deployed on Apache Tomcat 5.5.25.

Regarding deployment time, we measured the wallclock time taken by the BPEL
engine to deploy the process. For each experiment, the application container was
restarted. Concerning process execution time, we ran an external client that invoked
the BPEL process 10 times with different parameters and we measured the overall wall-
clock time taken by that client. Due to the complexity of our middleware, measure-
ments are not exactly reproducible; this is a well-known phenomenon, for example in
Java-based environments, where measurement variances due to application-inherent
non-determinism are often amplified by differences in thread scheduling, dynamic just-
in-time compilation, or garbage collection [69]. In order to compensate for the mea-
surement variances, we repeated each experiment ten times (under the same settings)
and reported the geometric mean of the ten trials.

As for the test configuration of the reputation infrastructure, we set the reputation
era interval to ten seconds, and we used the endorsements-refusals ratio as reputation
policy.

Tables 9.1 and 9.2 show, respectively, the measured deployment time and the exe-
cution time for each process. For each trial, in addition to the execution time, we also
show the relative overhead factor (ovh column) with respect to the measurement in
the original, vanilla setting.

At deployment time, performance degradation is mostly due to REMAN instrumen-
tation. In fact, during this phase, REMAN has to analyze the business process and the
WSDL definitions of the external services it uses, to find the remote services within the
Reputation Manager’s internal registry. The complexity of this phase is proportional to
the number of external services the business process interacts with. Indeed, in the case
of the Radiology process, the analysis takes more time than in the case of the LoanAp-
proval process because the former interacts with eight remote services, whereas the
latter interacts only with two remote services. This explains why the complete instru-
mentation of the Radiology process causes a deployment overhead of 164% on average,
while it results only in 72% overhead for the LoanApproval process.

Concerning process execution, the relative overhead due to the instrumentation
code is surprisingly uniform for both processes, albeit their execution time in seconds
is significantly different. On average, the overhead caused by the monitoring is 26–
27%, whereas the overhead for complete instrumentation is about 63%. The relative
overhead of the REMAN framework on the top of the monitoring framework is, on
average, about 25%.

9.6 Related Work

Several mechanisms to evaluate trust and reputation have been proposed in litera-
ture; see [81] for a complete survey and [114] for a classification of such mecha-



101 9.6 Related Work

nisms driven by the concepts of contextualization and personalization. Although in
this chapter QoS refers to the experienced service behavior (including both functional
and non-functional aspects), often in the context of SBAs, QoS typically denotes the
performance metrics of services [119]. Approaches that select services based on QoS
usually extend service registries to support this type of information. An example is
UDDIe [133], which extends UDDI with support for the concept of blue pages, i.e., in-
formation on the QoS properties of a service, which are published by service providers
and can be used in queries by service clients. Match-making between properties guar-
anteed by providers and properties required by clients relies upon the find operators
defined in the standard UDDI specification. A similar extended registry is described
in [141], where a service broker performs QoS-based selection by using an ontology
reasoning mechanism for match-making. A common weakness of these approaches
is that they rely on the assumption that providers are honest and only advertise QoS
properties that they can guarantee.

In [110], the authors propose a conceptual model for Web service reputation; this
model is at the basis of an agent-based trust framework for service selection, described
in [111]. In contrast to our approach, the authors use a different architectural style,
where a software agent is attached to each Web service; the agents are in charge of
querying and reporting service reputation. Each service client builds its reputation of
services based on the local information provided by its neighbors.

A QoS-based service selection model is presented in [103]. The model takes into
account the feedback from users as well as other business-related criteria; moreover, it
is also extensible, to support multiple QoS selection criteria. Compared to REMAN, it
is neither pro-active (because variations of service reputation are not disseminated to
other service clients), nor transparent (since service requesters are required to support
specific mechanisms for ad-hoc execution monitoring and feedback reporting).

A service recommendation system is proposed in [109]. In this system, clients rate
services by using a comparative matrix containing the QoS values advertised by the
provider, and the QoS values measured at run time. However, the system does not use
Web service standards for service discovery and selection, but relies on ontology-based
descriptions. Moreover, user feedback reporting is not automated.

In [140], the authors describe a method to collect monitoring data from clients
and to use this information for service recommendations. However, the supported QoS
metrics are limited: they support only metrics related to client-side performance, such
as throughput, response time, or latency.

A collaborative filtering approach to derive prediction of QoS of Web services that
have not been used yet is proposed in [134] and is based on the experience of con-
sumers of similar services. However, the whole approach is poorly integrated in the
execution environment and it is neither fully automated nor transparent. Moreover, it
supports only the prediction based on the evaluation of timeliness-related QoS proper-
ties.



102 9.7 Summary

The approach described in [147] adopts a point of view that is complementary
to ours. The reputation of a composite service is derived based on the reputation of
the single services used within the composition. The reputation mechanism used to
compute the reputation of the single services is similar to ours.

The problem of trust and reputation management in open dynamic environments
is discussed in [148]. The authors propose some guidelines to build self-organizing
referral networks as a means for establishing trust in open environments. However,
the technology-agnostic, simulation-based approach adopted in the paper does not
allow for a concrete use in Web services-based architectures.

In [35] we proposed an architecture to share reliable service quality information
amongst clients, supported by a theoretical model of an incentive-compatible reputa-
tion mechanism [83]. However, the requirement of a bank paying for honest feed-
backs, postulated by the theoretical model, made the implementation impractical.

9.7 Summary

In this chapter we introduced REMAN, a reputation management infrastructure that
supports pro-active service selection for composite Web services. We use monitoring
techniques to collect information about functional and non-functional properties of
Web service behavior. The resulting feedback data are sent to the server component
of our infrastructure, which computes a reputation value for each service registered
in the infrastructure. Reputation information is then propagated back to the affected
service clients, which can use it to bind to the best available services in the evolving
service market.

This feature, integrated in existing state-of-the art run-time infrastructures and
compatible with industry standards, fosters dynamic adaptability and self-tuning prop-
erties in the execution of composite services.



103 9.7 Summary

Table 9.1. Performance analysis - deployment time

(a) LoanApproval process

original [s] monitoring [s] overhead complete [s] overhead

trial1 3.96 4.12 4.04% 6.91 74.49%
trial2 3.85 4.15 7.79% 6.72 74.55%
trial3 4.03 4.08 1.24% 6.82 69.23%
trial4 3.84 4.13 7.55% 6.74 75.52%
trial5 4.05 4.19 3.46% 6.83 68.64%
trial6 4.01 4.08 1.75% 6.94 73.07%
trial7 3.91 4.08 4.35% 6.72 71.87%
trial8 4.02 4.18 3.98% 6.92 72.14%
trial9 4.01 4.18 4.24% 6.91 72.32%
trial10 3.99 4.11 3.01% 6.87 72.18%

Geometric
mean

3.97 4.13 3.63% 6.84 72.37%

(b) Radiology process

original [s] monitoring [s] overhead complete [s] overhead

trial1 4.11 4.47 8.76% 11.40 177.37%
trial2 3.97 4.12 3.78% 10.62 167.63%
trial3 4.24 4.43 4.48% 10.75 153.50%
trial4 3.87 4.25 9.82% 10.57 173.04%
trial5 3.95 4.31 9.11% 10.94 176.78%
trial6 4.08 4.38 7.35% 10.91 167.36%
trial7 4.00 4.18 4.50% 10.13 153.17%
trial8 3.80 4.09 7.63% 9.37 146.66%
trial9 3.98 4.24 6.53% 11.22 182.14%
trial10 4.04 4.13 2.23% 9.83 143.49%

Geometric
mean

4.00 4.26 5.87% 10.56 163.58%



104 9.7 Summary

Table 9.2. Performance analysis - execution time

(a) LoanApproval process

original [s] monitoring [s] overhead complete [s] overhead

trial1 0.39 0.48 23.08% 0.57 46.15%
trial2 0.35 0.45 28.57% 0.59 68.57%
trial3 0.37 0.52 40.54% 0.65 75.68%
trial4 0.30 0.41 36.67% 0.43 43.33%
trial5 0.45 0.54 20.00% 0.68 51.11%
trial6 0.31 0.38 22.58% 0.57 83.87%
trial7 0.36 0.51 41.67% 0.59 63.89%
trial8 0.36 0.42 16.67% 0.61 69.44%
trial9 0.38 0.44 15.79% 0.65 71.05%
trial10 0.41 0.51 24.39% 0.73 78.05%

Geometric
mean

0.37 0.46 25.55% 0.60 63.67%

(b) Radiology process

original [s] monitoring [s] overhead complete [s] overhead

trial1 24.78 33.52 35.27% 41.51 67.51%
trial2 21.35 29.75 39.34% 38.65 81.03%
trial3 23.99 28.92 20.55% 37.89 57.94%
trial4 27.63 31.50 14.01% 42.59 54.14%
trial5 22.10 29.73 34.52% 39.82 80.18%
trial6 23.50 34.97 48.81% 37.84 61.02%
trial7 22.84 29.65 29.82% 41.56 81.96%
trial8 27.35 33.24 21.54% 36.92 34.99%
trial9 24.89 28.63 15.03% 40.93 64.44%
trial10 23.21 29.73 28.09% 38.79 67.13%

Geometric
mean

24.09 30.90 26.68% 39.61 63.35%



Part V

Finale





Chapter 10

Conclusion

Most traditional software engineering techniques have dealt with systems that lived in
a closed, controlled environment. Nevertheless, in the recent years software engineer-
ing has shifted towards a type of software that is characterized by a different set of
assumptions collectively known as the open-world assumption; for this reason, this new
kind of software is called open-world software.

The open-world assumption is characterized by several facets. Software develop-
ment and provisioning is decentralized, as it involves multiple stakeholders belonging
to different organizations; systems are thus assembled out of components that provide
a specific functionality and are provided by independent third parties; bindings among
components are often delayed until the execution and may dynamically vary to accom-
modate changes that support the evolution of the environment with which the system
interacts. Finally, the physical deployment of the system requires a heterogeneous and
distributed network infrastructure.

Open-world software—such as service-based applications developed by composing
different, third-party services—demands for rethinking and extending the traditional
software engineering methodologies and the accompanying methods and techniques.
In this thesis, we have considered three aspects: specification, verification, and reputa-
tion management, and have pursued the following research goal:

To design new methods and techniques for specification, verification, and rep-
utation management of open-world software, in particular for the case of
service-based applications. These methods and techniques should be i) suit-
able to deal with aspects such as change, evolution, and reliance on third-
parties, and ii) able to improve the overall quality of these applications.

In the rest of this chapter, we summarize the contributions (section 10.1) of the
thesis, and point out its limitations and open issues (section 10.2) as well as future
research directions originating from it (section 10.3).

107



108 10.1 Contributions

10.1 Contributions

The research goal indicated above has been addressed with the contributions summa-
rized, for each area of interest, in this section.

10.1.1 Specification

Analysis of property specification patterns in SBAs. We run a comparative study on
the use of specification patterns in SBAs. We compared the usage of patterns for
the requirements specifications of research and industrial case studies, gathered
over a time period of more than ten years. The results of this study show that the
industrial case studies tend not to use the specification patterns proposed in the
research literature, in favor of other patterns that characterize specific aspects
of service provisioning and that, conversely, are not common in research case
studies.

The SOLOIST specification language. After reasoning on the outcome of the study
mentioned above, we designed a new specification language, SOLOIST. Based
on a many-sorted first-order metric temporal logic, the language also includes
new temporal modalities that have been tailored to express properties that refer
to aggregate operations for events occurring in a certain time window. We have
also shown how SOLOIST can be translated into linear temporal logic, allowing
for its use with established techniques and tools for both design-time and run-
time verification.

10.1.2 Verification

Interface decomposition for service compositions. The correct behavior of a ser-
vice composition, with respect to its requirements specification, depends on a
certain, expected behavior of its partner services. However, most of the times
the behavioral descriptions of the partner services are unknown. We presented
our novel technique to automatically generating the behavioral interfaces of the
partner services of a service composition, by decomposing the requirements spec-
ification of the composite service.

A syntactic-semantic approach for incremental verification. We introduced a frame-
work, named SiDECAR, for the definition of verification procedures that are au-
tomatically enhanced with incrementality by the framework itself. SiDECAR sup-
ports a verification procedure encoded as synthesis of semantic attributes asso-
ciated with a grammar. The attributes are evaluated by traversing the syntax
tree that reflects the structure of the software system. By exploiting incremental
parsing and attributes evaluation techniques, SiDECAR reduces the complexity



109 10.2 Limitations and Open Issues

of the verification procedure in presence of changes. Hence, it may provide a
speed-up of the performance of a verification procedure.

10.1.3 Reputation Management

A pro-active reputation management infrastructure for composite Web services.
We presented REMAN, a reputation-aware service execution infrastructure that
manages the reputation of Web services used by BPEL orchestrations in an auto-
mated and transparent manner. We use monitoring techniques to collect infor-
mation about functional and non-functional properties of Web service behavior.
The resulting feedback data are sent to the server component of our infrastruc-
ture, which computes a reputation value for each service registered in the infras-
tructure. Reputation information is then propagated back to the affected service
clients, which can use it to bind to the best available services in the market.

10.2 Limitations and Open Issues

The work presented in this thesis is characterized by various limitations and open
issues.

As for the study illustrated in chapter 3, the validity of the results presented in it
may be affected by several threats. First, the case studies we have considered from
the published research literature may not be adequate representatives of research be-
ing developed in the domain of SBAs. Other studies could consider different scientific
venues and maybe even extract specifications from case studies presented in different
research sub-areas, such as service discovery and dynamic service composition. Simi-
larly, another threat is represented by the fact that we have analyzed the specifications
of case studies provided by a single industrial organization. Other industries adopting
SOAs could define different requirements for their services. Thus, the results obtained
so far could be broadened with a survey involving multiple industrial partners. The
matching of specifications with patterns has been performed manually by a single per-
son with six years of experience in the areas of formal specification and verification,
as well as service-oriented computing. Other people could classify the specifications
differently, especially when the matching with known patterns is not trivial. Further-
more, given that a certain percentage (10% in the case of research literature data, 20%
for the industrial ones) of the requirements specifications were expressed using natural
language, a certain degree of intrinsic ambiguity is involved in the interpretation of the
properties for the purpose of their classification. Finally, there is a inherent limitation
in the application of this kind of study, since it only focused on the specification written
either in papers or in technical documentation. A broader study could have focused on
surveying the missing concepts the engineers wanted to express, but could not because
of, for example, limitations in the specification language.



110 10.3 Future Directions

SOLOIST should not be seen as the “silver-bullet” of specification languages for
SBAs. Although it has been designed according to certain predefined requirements
(derived from the study reported in chapter 3), it is possible that other contexts or
application domains would require new types of operators within the language.

As remarked in section 6.5, the heuristic adopted by our interface decomposition
technique may block some good behaviors of the individual services, which instead
could be safely allowed. This may happen because an operation of a service that
directly leads to the error state, which is the one considered by our heuristic, may be
actually triggered by an operation of another service.

Regarding SiDECAR, we have not validated yet the feasibility of one of the re-
quirements for using it: the fact that the verification procedure that one wants to
make incremental by means of SiDECAR has to be formalized as synthesis of semantic
attributes. This is not a theoretical issue, since it is well-known that attribute gram-
mars have the same expressiveness of Turing machines. Rather, we have not fully
assessed the amount of work required to encode the algorithms associated with well-
established analysis techniques in an attribute grammar form. However, our prelim-
inary report [24] shows the application of SiDECAR to encode—besides reachability
analysis—also reliability prediction of a program, based on the expected reliability of
its parts.

As for REMAN, it currently lacks techniques for identifying unfair ratings and thus
evaluating raters’ credibility. These techniques could also be the basis for mechanisms
to discourage clients from cheating when reporting feedback.

10.3 Future Directions

This thesis sets the basis to follow different research directions in the future.
Concerning SOLOIST, our next steps will focus on its efficient verification based

on the Zot toolkit [126], by defining an efficient SMT-based encoding of the language.
Although Zot has been used so far for design-time verification, we also want to experi-
ment to embed it and its SOLOIST plug-in within a Web service monitoring architecture
(such as Dynamo [13]), to enable support also for run-time verification.

Our approach for decomposing interface specifications can be extended in multiple
ways. First, alternative heuristics could assess precisely to which extent a partner
service contributes to fulfill (or not) the global requirements, removing the present
limitation. This is particularly important in the case in which multiple partner services
have operations that could possibly lead to the error state. Secondly, support for the
refinement of the generated specifications can be added by extending the analysis of
the counterexamples to filter missing behaviors (for example, by performing behavior
realizability analysis as suggested in [131]). Last, we will consider the inclusion of the
support for timed property specifications, such as those expressed in SOLOIST.



111 10.3 Future Directions

Regarding SiDECAR, the generality of the methodology it advocates will drive us to
widen the scope of application to a number of scenarios. For example, at design time,
SiDECAR could effectively support designers in evaluating the impact of changes in
their products, in activities such as what-if analysis and regression verification, possibly
integrated within IDE tools. Existing techniques for automated verification based either
on model checking or on deductive approaches, as well as their optimizations, could
be adapted to use SiDECAR, exploiting the benefits of incrementality. At run time,
the incrementality provided by SiDECAR could be the key factor for efficient online
verification of continuously changing situations, which could then trigger and drive
the adaptation of self-adaptive systems. Furthermore, SiDECAR could also bring at run
time the same analyses so far limited to design time for efficiency reasons.

Future work on SiDECAR will address three main directions. First, we want to
support run-time changes of the language (and thus the grammar) in which the ar-
tifact to be verified is described, motivated by advanced adaptiveness capability sce-
narios. Secondly, we want to support specifications that can change, and still exploit
the benefit of incremental verification. Last, we will continue our work to develop
an incremental verification environment—by incorporating improvements to exploit
parallelism [7] and to apply finer incremental parsing techniques—and will conduct
experimental studies on real-world applications to quantify the effectiveness of SiDE-
CAR in the definition and the execution of state-of-the-art verification procedures.

As for REMAN, we want to explore methods to make the reputation estimation
context-aware such that multiple reputation values can be associated with a service on
the basis of the context in which it operates. Moreover, we want to include mechanisms
to discourage clients from cheating when reporting feedback.

Finally, our future vision is to integrate our approaches for specification, verifica-
tion, and reputation management, as well as other approaches [59] developed within
our group, into a unified framework that supports continuous quality assurance of
open-world software [27].



112 10.3 Future Directions



Bibliography

[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles, Tech-
niques, and Tools (2nd Edition). Addison-Wesley Longman Publishing Co., Inc.,
2006.

[2] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, and
S. Angel. A pattern language. Towns, buildings, construction. Oxford University
Press, 1977.

[3] A. Alfonso, V. Braberman, N. Kicillof, and A. Olivero. Visual timed event scenar-
ios. In ICSE 2004: Proceedings of the 26th International Conference on Software
Engineering, pages 168–177. IEEE Computer Society, 2004.

[4] D. Alrajeh, J. Kramer, A. Russo, and S. Uchitel. Learning operational require-
ments from goal models. In ICSE’09: Proceedings of the 31st International Con-
ference on Software Engineering, pages 265–275. IEEE Computer Society, 2009.

[5] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business Pro-
cess Execution Language for Web Services, Version 1.1, 2003.

[6] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti. Run-time monitoring of
instances and classes of web service compositions. In ICWS ’06: Proceedings
of the 2006 IEEE International Conference on Web Services, pages 63–71. IEEE
Computer Society, 2006.

[7] A. Barenghi, E. Viviani, S. Crespi Reghizzi, D. Mandrioli, and M. Pradella. PA-
PAGENO: a parallel parser generator for operator precedence grammars. In
SLE 2012: Proceedings of the 5th International Conference on Software Language
Engineering, 2012. to appear.

[8] L. Baresi, D. Bianculli, C. Ghezzi, S. Guinea, and P. Spoletini. A timed extension
of WSCoL. In ICWS 2007: Proceedings of the IEEE International Conference on
Web Services, pages 663–670. IEEE, 2007.

[9] L. Baresi, D. Bianculli, C. Ghezzi, S. Guinea, and P. Spoletini. Validation of web
service compositions. IET Softw., 1(6):219–232, 2007.

113



114 BIBLIOGRAPHY

[10] L. Baresi, D. Bianculli, S. Guinea, and P. Spoletini. Keep it small, keep it real:
Efficient run-time verification of web service compositions. In FMOODS/FORTE
2009: Proceedings of IFIP international conference on Formal Techniques for Dis-
tributed Systems, volume 5522 of LNCS, pages 26–40. Springer, 2009.

[11] L. Baresi, E. Di Nitto, and C. Ghezzi. Toward open-world software: Issues and
challenges. IEEE Computer, 39(10):36–43, 2006.

[12] L. Baresi and S. Guinea. Towards dynamic monitoring of WS-BPEL processes. In
ICSOC 2005: Proceedings of the 3rd International Conference on Service-Oriented
Computing, volume 3826 of LNCS, pages 269–282. Springer, 2005.

[13] L. Baresi, S. Guinea, and L. Pasquale. Self-healing BPEL processes with Dynamo
and the JBoss rule engine. In ESSPE’07: Proceedings of the 2007 International
Workshop on Engineering of Software Services for Pervasive Environments, pages
11–20. ACM, 2007.

[14] D. Basin, F. Klaedtke, and S. Müller. Policy monitoring in first-order temporal
logic. In CAV 2010 : Proceedings of the 22nd International Conference on Com-
puter Aided Verification, volume 6174 of LNCS, pages 1–18. Springer, 2010.

[15] S. Basu, T. Bultan, and M. Ouederni. Deciding choreography realizability. In
POPL 2012: Proceedings of the 39th ACM SIGACT-SIGPLAN Symposium on Prin-
ciples of Programming Languages, pages 191–202, 2012.

[16] A. Bauer, R. Gore, and A. Tiu. A first-order policy language for history-based
transaction monitoring. In ICTAC 2009: Proceedings of the 6th International
Colloquium on Theoretical Aspects of Computing, volume 5684 of LNCS, pages
96–111. Springer, 2009.

[17] A. Bertolino, P. Inverardi, P. Pelliccione, and M. Tivoli. Automatic synthesis of
behavior protocols for composable Web-services. In ESEC/FSE ’09: Proceedings
of the 7th joint meeting of the European Software Engineering Conference and the
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
pages 141–150. ACM, 2009.

[18] D. Beyer, T. Henzinger, R. Jhala, and R. Majumdar. The software model checker
BLAST. STTT, 9:505–525, 2007.

[19] D. Bianculli. Lifelong verification of dynamic service compositions. In FSEDS
’08: Proceedings of the 2008 Foundations of Software Engineering Doctoral Sym-
posium, co-located with ACM SIGSOFT 2008/FSE 16, pages 1–4. ACM, 2008.

[20] D. Bianculli, W. Binder, L. Drago, and C. Ghezzi. Transparent reputation man-
agement for composite Web services. In ICWS 2008: Proceedings of the IEEE
International Conference on Web Services, pages 621–628. IEEE, 2008.



115 BIBLIOGRAPHY

[21] D. Bianculli, W. Binder, L. Drago, and C. Ghezzi. ReMan: A pro-active repu-
tation management infrastructure for composite Web services. In ICSE 2009:
Proceedings of the 31st International Conference on Software Engineering, pages
623–626. IEEE, 2009. Formal Research Demo.

[22] D. Bianculli, W. Binder, and M. L. Drago. Automated performance assessment
for service-oriented middleware: a case study on BPEL engines. In WWW 2010:
Proceedings of the 19th International Conference on World Wide Web, pages 141–
150. ACM, 2010.

[23] D. Bianculli, W. Binder, and M. L. Drago. SOABench: Performance evaluation of
service-oriented middleware made easy. In ICSE 2010: Proceedings (Volume 2)
of the 32nd International Conference on Software Engineering, pages 301–302.
ACM, 2010. Informal Research Demo.

[24] D. Bianculli, A. Filieri, C. Ghezzi, and D. Mandrioli. A syntactic-semantic ap-
proach to incremental verification. Internal Report.

[25] D. Bianculli and C. Ghezzi. Monitoring conversational web services. In IW-
SOSWE’07: Proceedings of the 2nd International Workshop on Service-Oriented
Software Engineering, pages 15–21. ACM, 2007.

[26] D. Bianculli and C. Ghezzi. SAVVY-WS at a glance: supporting verifiable dy-
namic service compositions. In ARAMIS 2008: Proceedings of the 1st Interna-
tional Workshop on Automated engineeRing of Autonomous and run-tiMe evolvIng
Systems, pages 49–56. IEEE, 2008.

[27] D. Bianculli and C. Ghezzi. Towards a methodology for lifelong validation of ser-
vice compositions. In SDSOA 2008: Proceedings of the 2nd International Work-
shop on Systems Development in SOA Environments, pages 7–12. ACM, 2008.

[28] D. Bianculli, C. Ghezzi, and C. Pautasso. Embedding continuous lifelong verifi-
cation in service life cycles. In PESOS 2009: Proceedings of the First International
Workshop on Principles of Engineering Service-oriented Systems, pages 99–102.
IEEE, 2009.

[29] D. Bianculli, C. Ghezzi, C. Pautasso, and P. Senti. Specification patterns from
research to industry: a case study in service-based applications. In ICSE 2012:
Proceedings of the 34th International Conference on Software Engineering, pages
968–976. IEEE, 2012.

[30] D. Bianculli, C. Ghezzi, and P. San Pietro. The tale of SOLOIST: a specification
language for service compositions interactions. In FACS 2012: Proceedings of the
9th International Symposium on Formal Aspects of Component Software, 2012. To
appear.



116 BIBLIOGRAPHY

[31] D. Bianculli, C. Ghezzi, and P. Spoletini. A model checking approach to verify
BPEL4WS workflows. In SOCA 2007: Proceedings of the 2007 IEEE International
Conference on Service-Oriented Computing and Applications, pages 13–20. IEEE,
2007.

[32] D. Bianculli, C. Ghezzi, P. Spoletini, L. Baresi, and S. Guinea. A guided tour
through SAVVY-WS: a methodology for specifying and validating Web service
compositions. In Advances in Software Engineering, volume 5316 of LNCS, pages
131–160. Springer, 2008.

[33] D. Bianculli, D. Giannakopoulou, and C. S. Păsăreanu. Interface decomposition
for service compositions. In ICSE 2011: Proceedings of the 33rd International
Conference on Software Engineering, pages 501–510. ACM, 2011.

[34] D. Bianculli, M. Jazayeri, and M. Pezzè, editors. Matinée with Carlo Ghezzi -
from Programming Languages to Software Engineering. CreateSpace, June 2012.

[35] D. Bianculli, R. Jurca, W. Binder, C. Ghezzi, and B. Faltings. Automated dynamic
maintenance of composite services based on service reputation. In ICSOC’07:
Proceedings of the 5th International Conference on Service-oriented computing,
volume 4749 of LNCS, pages 449–455. Springer, 2007.

[36] D. Bianculli, A. Morzenti, M. Pradella, and P. San Pietro and Paola Spoletini.
Trio2Promela: a model checker for temporal metric specifications. In ICSE 2007
Companion: Companion of the proceedings of the 29th International Conference
on Software Engineering, pages 61–62. IEEE, 2007. Informal Research Demo.

[37] D. Bianculli, P. Spoletini, A. Morzenti, M. Pradella, and P. San Pietro. Model
checking temporal metric specification with Trio2Promela. In FSEN 2007: Pro-
ceedings of International Symposium on Fundamentals of Software Engineering,
volume 4767 of LNCS, pages 388–395. Springer, 2007.

[38] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu. Bounded model
checking. Advances in Computers, 58:118–149, 2003.

[39] F. Bitsch. Safety patterns — the key to formal specification of safety require-
ments. In SAFECOMP 2001: Proceedings of the 20th International Conference on
Computer Safety, Reliability and Security, volume 2187 of LNCS, pages 176–189.
Springer, 2001.

[40] B. W. Boehm. Verifying and validating software requirements and design speci-
fications. IEEE Softw., 1(1):75–88, 1984.

[41] C. Böhm and G. Jacopini. Flow diagrams, Turing machines and languages with
only two formation rules. Commun. ACM, 9(5):366–371, 1966.



117 BIBLIOGRAPHY

[42] U. Boker, K. Chatterjee, T. A. Henzinger, and O. Kupferman. Temporal specifica-
tions with accumulative values. In LICS’11: Proceedings of the 26th Symposium
on Logic in Computer Science, pages 43–52. IEEE Computer Society, 2011.

[43] I. Brückner. Slicing concurrent real-time system specifications for verification. In
IFM 2007: Proceedings of the 6th International Conference on Integrated Formal
Methods, volume 4591 of LNCS, pages 54–74. Springer, 2007.

[44] M. Caporuscio, P. Inverardi, and P. Pelliccione. Compositional verification of
middleware-based software architecture descriptions. In ICSE ’04: Proceedings
of the 26th International Conference on Software Engineering, pages 221–230.
IEEE, 2004.

[45] M. Chechik and D. O. Paun. Events in property patterns. In SPIN 1999: Proceed-
ings of the 5th and 6th International SPIN Workshops on Theoretical and Practical
Aspects of SPIN Model Checking, pages 154–167. Springer, 1999.

[46] S. C. Cheung and J. Kramer. Checking safety properties using compositional
reachability analysis. ACM Trans. Softw. Eng. Methodol., 8(1):49–78, 1999.

[47] J. M. Cobleigh, D. Giannakopoulou, and C. S. Păsăreanu. Learning assumptions
for compositional verification. In TACAS 2003: Proceedings of the 9th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of
Systems, volume 2619 of LNCS, pages 331–346. Springer, 2003.

[48] C. Conway, K. Namjoshi, D. Dams, and S. Edwards. Incremental algorithms for
inter-procedural analysis of safety properties. In CAV 2005: Proceedings of the
17th International Conference on Computer Aided Verification, volume 3576 of
LNCS, pages 387–400. Springer, 2005.

[49] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Păsăreanu, Robby, and
H. Zheng. Bandera: extracting finite-state models from Java source code. In
ICSE 2000: Proceedings of the 22nd International Conference on Software Engi-
neering, pages 439–448. ACM, 2000.

[50] S. Crespi Reghizzi and D. Mandrioli. Operator precedence and the visibly push-
down property. J. Comput. Syst. Sci., 2011. Accepted for publication.

[51] V. Dallmeier, C. Lindig, A. Wasylkowski, and A. Zeller. Mining object behavior
with ADABU. In WODA 2006: Proceedings of the 2006 international workshop
on Dynamic systems analysis, pages 17–24. ACM, 2006.

[52] C. Damas, B. Lambeau, P. Dupont, and A. van Lamsweerde. Generating an-
notated behavior models from end-user scenarios. IEEE Trans. Softw. Eng.,
31(12):1056–1073, 2005.



118 BIBLIOGRAPHY

[53] L. de Alfaro. Temporal logics for the specification of performance and reliability.
In STACS’97: Proceedings of the 14th Annual Symposium on Theoretical Aspects
of Computer Science, volume 1200 of LNCS, pages 165–176. Springer, 1997.

[54] A. Deutsch, L. Sui, and V. Vianu. Specification and verification of data-driven
web applications. J. Comput. Syst. Sci., 73(3):442–474, 2007.

[55] E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou, and K. Pohl. A journey to
highly dynamic, self-adaptive service-based applications. Autom. Softw. Eng.,
15(3-4):313–341, 2008.

[56] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Property specification patterns
for finite-state verification. In FMSP ’98: Proceedings of the 2nd workshop on
Formal methods in software practice, pages 7–15. ACM, 1998.

[57] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications
for finite-state verification. In ICSE ’99: Proceedings of the 1999 International
Conference on Software Engineering, pages 411–420. IEEE Computer Society,
1999.

[58] A. Ershov. On the partial computation principle. Inf. Process. Lett., 6(2):38–41,
1977.

[59] A. Filieri, C. Ghezzi, and G. Tamburrelli. A formal approach to adaptive soft-
ware: continuous assurance of non-functional requirements. Formal Asp. Com-
put., 24(2):163–186, 2012.

[60] B. Finkbeiner, S. Sankaranarayanan, and H. B. Sipma. Collecting statistics over
runtime executions. Formal Methods in System Design, 27:253–274, 2005.

[61] M. J. Fischer. Some properties of precedence languages. In STOC ’69: Proceed-
ings of the first annual ACM symposium on Theory of computing, pages 181–190.
ACM, 1969.

[62] S. Flake, W. Müller, and J. Ruf. Structured english for model checking specifica-
tion. In Trans. Amer. Math. Soc, pages 2547–2552. VDE Verlag, 2000.

[63] R. W. Floyd. Syntactic analysis and operator precedence. J. ACM, 10:316–333,
1963.

[64] H. Foster. WS-Engineer 2008: A service architecture, behaviour and deployment
verification platform. In ICSOC 2008: Proceedings of the 6th International Con-
ference on Service-Oriented Computing, volume 5364 of LNCS, pages 728–729.
Springer, 2008.



119 BIBLIOGRAPHY

[65] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based verification of Web
service compositions. In ASE 2003: Proceedings of the 18th IEEE International
Conference on Automated Software Engineering, pages 152–163. IEEE, 2003.

[66] X. Fu, T. Bultan, and J. Su. Conversation protocols: a formalism for specifica-
tion and verification of reactive electronic services. Theor. Comput. Sci., 328(1-
2):19–37, 2004.

[67] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[68] A. Gauci, G. J. Pace, and C. Colombo. Statistics and runtime verification. Tech-
nical Report 02-WICT-2009, University of Malta, 2009.

[69] A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigorous Java perfor-
mance evaluation. In OOPSLA’07: Proceedings of the 22nd conference on Object-
oriented programming systems and applications, pages 57–76. ACM, 2007.

[70] C. Ghezzi and D. Mandrioli. Incremental parsing. ACM Trans. Program. Lang.
Syst., 1(1):58–70, 1979.

[71] D. Giannakopoulou and J. Magee. Fluent model checking for event-based sys-
tems. In ESEC/FSE-11: Proceedings of the 11th ACM SIGSOFT Symposium on
Foundations of Software Engineering 2003 held jointly with 9th European Soft-
ware Engineering Conference, pages 257–266. ACM, 2003.

[72] D. Giannakopoulou, C. S. Păsăreanu, and H. Barringer. Assumption generation
for software component verification. In ASE 2002: Proceedings of the 17th IEEE
International Conference on Automated Software Engineering, pages 3–12. IEEE,
2002.

[73] V. Gruhn and R. Laue. Patterns for timed property specifications. Electron. Notes
Theor. Comput. Sci., 153(2):117–133, 2006.

[74] L. Grunske. Specification patterns for probabilistic quality properties. In ICSE
2008: Proceedings of the 30th International Conference on Software Engineering,
pages 31–40. ACM, 2008.

[75] S. Hallé and R. Villemaire. Runtime monitoring of message-based workflows
with data. In EDOC 2008: Proceedings of the 12th International IEEE Enterprise
Distributed Object Computing Conference, pages 63–72. IEEE Computer Society,
2008.

[76] S. Hallé, R. Villemaire, and O. Cherkaoui. Specifying and validating data-aware
temporal web service properties. IEEE Trans. Softw. Eng., 35(5):669–683, 2009.



120 BIBLIOGRAPHY

[77] L. Hella, L. Libkin, J. Nurmonen, and L. Wong. Logics with aggregate operators.
J. ACM, 48:880–907, July 2001.

[78] T. A. Henzinger, R. Jhala, R. Majumdar, and M. A. Sanvido. Extreme model
checking. In Verification: Theory and Practice, volume 2772 of LNCS, pages
180–181. Springer, 2004.

[79] R. Jhala and R. Majumdar. Software model checking. ACM Comput. Surv.,
41:21:1–21:54, 2009.

[80] C. B. Jones. Tentative steps toward a development method for interfering pro-
grams. ACM Trans. Program. Lang. Syst., 5(4):596–619, 1983.

[81] A. Josang, R. Ismail, and C. Boyd. A survey of trust and reputation systems for
online service provision. Decis. Support Syst., 43(2):618–644, 2007.

[82] N. Josuttis. SOA in Practice: The Art of Distributed System Design. O’Reilly Media,
Inc., 2007.

[83] R. Jurca, W. Binder, and B. Faltings. Reliable QoS Monitoring Based on Client
Feedback. In WWW’07: Proceedings of the 16th international conference on World
Wide Web, pages 1003–1011, 2007.

[84] R. Jurca and B. Faltings. Minimum Payments that Reward Honest Reputation
Feedback. In EC’06: Proceedings of the 7th conference on Electronic commerce,
pages 190–199. ACM, 2006.

[85] S. Kallel, A. Charfi, T. Dinkelaker, M. Mezini, and M. Jmaiel. Specifying and
monitoring temporal properties in web services compositions. In ECOWS 2009:
Proceedings of the 7th European Conference on Web Services, pages 148–157. IEEE
Computer Society, 2009.

[86] H. W. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University
of California at Los Angeles, USA, 1968.

[87] A. Keller and H. Ludwig. The WSLA framework: specifying and monitoring
service level agreement for web services. J. Netw. Syst. Manage., 11(1), 2003.

[88] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J. Loingtier, and
J. Irwin. Aspect-oriented programming. In ECOOP’97: Proceedings of the 11th
European conference on Object-Oriented Programming, volume 1241 of LNCS,
pages 220–242. Springer, 1997.

[89] D. E. Knuth. Semantics of context-free languages. Theory of Computing Systems,
2:127–145, 1968.



121 BIBLIOGRAPHY

[90] S. Konrad and B. H. C. Cheng. Real-time specification patterns. In ICSE ’05:
Proceedings of the 27th International Conference on Software Engineering, pages
372–381. IEEE Computer Society, 2005.

[91] R. Kowalski and M. Sergot. A logic-based calculus of events. New Gen. Comput.,
4(1):67–95, 1986.

[92] D. Krafzig, K. Banke, and D. Slama. Enterprise SOA: Service-Oriented Architecture
Best Practices. Prentice Hall, 2004.

[93] S. Krishnamurthi and K. Fisler. Foundations of incremental aspect model-
checking. ACM Trans. Softw. Eng. Methodol., 16(2):Article 7, 2007.

[94] I. Krka, Y. Brun, G. Edwards, and N. Medvidović. Synthesizing partial
component-level behavior models from system specifications. In ESEC/FSE ’09:
Proceedings of the 7th joint meeting of the European Software Engineering Confer-
ence and the ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 305–314. ACM, 2009.

[95] S. Labbe, J.-P. Gallois, and M. Pouzet. Slicing communicating automata spec-
ifications for efficient model reduction. In ASWEC’07: Proceedings of the 18th
Australian Software Engineering Conference, pages 191–200. IEEE Computer So-
ciety, 2007.

[96] F. Laroussinie, A. Meyer, and E. Petonnet. Counting CTL. In FOSSACS 2010: Pro-
ceedings of the 13th International Conference on Foundations of Software Science
and Computational Structures, volume 6014 of LNCS, pages 206–220, 2010.

[97] F. Laroussinie, A. Meyer, and E. Petonnet. Counting LTL. In TIME 2010: Pro-
ceedings of the 17th International Symposium on Temporal Representation and
Reasoning, pages 51–58. IEEE, 2010.

[98] S. Lauterburg, A. Sobeih, D. Marinov, and M. Viswanathan. Incremental state-
space exploration for programs with dynamically allocated data. In ICSE 2008:
Proceedings of the 30th International Conference on Software Engineering, pages
291–300. ACM, 2008.

[99] G. T. Leavens, A. L. Baker, and C. Ruby. JML: A notation for detailed design.
In H. Kilov, B. Rumpe, and I. Simmonds, editors, Behavioral Specifications of
Businesses and Systems, pages 175–188. Kluwer Academic Publishers, 1999.

[100] M. Lehman. Programs, life cycles, and laws of software evolution. Proceedings
of the IEEE, 68(9):1060 – 1076, 1980.

[101] E. Letier and A. van Lamsweerde. Reasoning about partial goal satisfaction
for requirements and design engineering. In FSE SIGSOFT 2004: Proceedings



122 BIBLIOGRAPHY

of the 12th ACM SIGSOFT international symposium on Foundations of software
engineering, pages 53–62. ACM, 2004.

[102] Z. Li, J. Han, and Y. Jin. Pattern-based specification and validation of web ser-
vices interaction properties. In ICSOC 2005: Proceedings of the 3rd International
Conference on Service-oriented computing, volume 3826 of LNCS, pages 73–86.
Springer, 2005.

[103] Y. Liu, A. H. Ngu, and L. Z. Zeng. QoS computation and policing in dynamic
web service selection. In WWW Alt. ’04: Proceedings of the 13th international
conference on World Wide Web - Alternate Track Papers & Posters, pages 66–73.
ACM, 2004.

[104] N. Lohmann, O. Kopp, F. Leymann, and W. Reisig. Analyzing BPEL4Chor: Veri-
fication and participant synthesis. In WS-FM 2007: Proceedings of the 4th Inter-
national Workshop on Web Services and Formal Methods, volume 4937 of LNCS,
pages 46–60. Springer, 2008.

[105] D. Lorenzoli, L. Mariani, and M. Pezzè. Automatic generation of software be-
havioral models. In ICSE’08: Proceedings of the 30th International Conference on
Software Engineering, pages 501–510. ACM, 2008.

[106] D. C. Luckham, F. W. von Henke, B. Krieg-Brueckner, and O. Owe. ANNA: a
language for annotating Ada programs. Springer, 1987.

[107] J. Magee and J. Kramer. Concurrency: State Models And Java Programs. John
Wiley & Sons, 2nd edition, 2006.

[108] K. Mahbub and G. Spanoudakis. Monitoring WS-Agreements: An event
calculus-based approach. In L. Baresi and E. Di Nitto, editors, Test and Anal-
ysis of Web Services, pages 265–306. Springer, 2007.

[109] U. S. Manikrao and T. V. Prabhakar. Dynamic selection of web services with
recommendation system. In NWESP ’05: Proceedings of the International Con-
ference on Next Generation Web Services Practices, page 117. IEEE Computer
Society, 2005.

[110] E. M. Maximilien and M. P. Singh. Conceptual model of web service reputation.
SIGMOD Rec., 31(4):36–41, 2002.

[111] E. M. Maximilien and M. P. Singh. Toward autonomic web services trust and se-
lection. In ICSOC ’04: Proceedings of the 2nd International Conference on Service-
Oriented Computing, pages 212–221. ACM, 2004.

[112] B. Metzler, H. Wehrheim, and D. Wonisch. Decomposition for compositional
verification. In ICFEM’08: Proceedings of the 10th International Conference on



123 BIBLIOGRAPHY

Formal Engineering Methods, volume 5256 of LNCS, pages 105–125. Springer,
2008.

[113] B. Meyer. Applying “Design by Contract”. Computer, 25(10):40–51, 1992.

[114] L. Mui. Computational Models of Trust and Reputation: Agents, Evolutionary
Games, and Social Networks. PhD thesis, Massachusetts Institute of Technology,
2003.

[115] C. Müller, O. Martín-Díaz, A. Ruiz-Cortés, M. Resinas, and P. Fernández. Im-
proving temporal-awareness of WS-Agreement. In ICSOC 2007: Proceedings of
the 5th International Conference on Service-Oriented Computing, volume 4749 of
LNCS, pages 193–206. Springer, 2007.

[116] S. Murer and B. Bonati. Managed Evolution: A Strategy for Very Large Informa-
tion Systems. Springer, 2010.

[117] M. Nagarajan, K. Verma, A. P. Sheth, J. Miller, and J. Lathem. Semantic Interop-
erability of Web Services - Challenges and Experiences. In ICWS’06: Proceedings
of the 2006 IEEE International Conference on Web Services, pages 373–382. IEEE
Computer Society, 2006.

[118] OASIS. UDDI Version 2 Specifications. https://www.oasis-open.org/

committees/uddi-spec/doc/tcspecs.htm, 2002.

[119] L. O’Brien, L. Bass, and P. Merson. Quality attributes and service-oriented archi-
tectures. Technical Report CMU/SEI-2005-TN-014, CMU - Software Engineer-
ing Institute, 2005.

[120] M. P. Papazoglou. The challenges of service evolution. In CAiSE 2008: Pro-
ceedings of the 20th international conference on Advanced Information Systems
Engineering, volume 5074 of LNCS, pages 1–15. Springer, 2008.

[121] D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Commun. ACM, 15(12):1053–1058, 1972.

[122] N. Pelov, M. Denecker, and M. Bruynooghe. Well-founded and stable semantics
of logic programs with aggregates. Theory and Practice of Logic Programming,
7(3):301–353, 2007.

[123] S. V. Pokraev, D. A. C. Quartel, M. W. A. Steen, and M. U. Reichert. Requirements
and method for assessment of service interoperability. In ICSOC’06: Proceedings
of the 4th International Conference on Service-Oriented Computing, volume 4294
of LNCS, pages 1–14. Springer, 2006.

https://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm
https://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm


124 BIBLIOGRAPHY

[124] A. Post, I. Menzel, and A. Podelski. Applying restricted English grammar on
automotive requirements — does it work? a case study. In REFQS 2011: Pro-
ceedings of the 17th International Working Conference on Requirements Engineer-
ing: Foundation for Software Quality, volume 6606 of LNCS, pages 166–180.
Springer, 2011.

[125] M. Pradella, A. Morzenti, and P. San Pietro. The symmetry of the past and
of the future: bi-infinite time in the verification of temporal properties. In
ESEC-FSE ’07: Proceedings of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on the foundations of
Software Engineering, pages 312–320. ACM, 2007.

[126] M. Pradella, A. Morzenti, and P. San Pietro. A metric encoding for bounded
model checking. In FM 2009: Proceedings of the Second World Congress on
Formal Methods, volume 5850 of LNCS, pages 741–756. Springer, 2009.

[127] Z. Qiu, X. Zhao, C. Cai, and H. Yang. Towards the theoretical foundation of
choreography. In WWW 2007: Proceedings of the 16th international conference
on World Wide Web, pages 973–982. ACM, 2007.

[128] A. Rabinovich. Complexity of metric temporal logics with counting and the
Pnueli modalities. In FORMATS 2008: Proceedings of the 6th International Con-
ference on Formal Modeling and Analysis of Timed Systems, volume 5215 of LNCS,
pages 93–108. Springer, 2008.

[129] F. Raimondi, J. Skene, and W. Emmerich. Efficient online monitoring of web-
service SLAs. In SIGSOFT ’08/FSE-16: Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pages 170–
180. ACM, 2008.

[130] W. W. Royce. Managing the development of large software systems. In IEEE
WESCON, pages 1–9. IEEE, 1970.

[131] G. Salaün and T. Bultan. Realizability of choreographies using process algebra
encodings. In IFM 2009: Proceedings of the 7th International Conference on
Integrated Formal Methods, volume 5423 of LNCS, pages 167–182. Springer,
2009.

[132] A. Salomaa. Formal languages. Academic Press, 1973.

[133] A. ShaikhAli, O. F. Rana, R. Al-Ali, and D. W. Walker. UDDIe: An extended
registry for web services. In SAINT’03: Proceedings of the 2003 Symposium on
Applications and the Internet Workshops, pages 85–89. IEEE Computer Society,
2003.



125 BIBLIOGRAPHY

[134] L. Shao, J. Zhang, Y. Wei, J. Zhao, B. Xie, and H. Mei. Personalized QoS Pre-
diction for Web Services via Collaborative Filtering. In ICWS 2007: Proceedings
of the 2007 IEEE International Conference on Web Services, pages 439–446. IEEE
Computer Society, 2007.

[135] J. Simmonds, M. Chechik, and S. Nejati. Property patterns for runtime monitor-
ing of web service conversations. In RV’08: Proceedings of the 8th International
Workshop on Runtime Verification, 2008.

[136] P. Sistla. Hybrid and incremental model-checking techniques. ACM Comput.
Surv., 28(4es), 1996.

[137] R. L. Smith, G. S. Avrunin, L. A. Clarke, and L. J. Osterweil. PROPEL: an ap-
proach supporting property elucidation. In ICSE 2002: Proceedings of the 22rd
International Conference on Software Engineering, pages 11–21. ACM, 2002.

[138] O. V. Sokolsky and S. A. Smolka. Incremental model checking in the modal
mu-calculus. In CAV 1994: Proceedings of the 6th International Conference on
Computer Aided Verification, volume 818 of LNCS, pages 351–363. Springer,
1994.

[139] A. Stefanescu. Automatic Synthesis of Distributed Systems. PhD thesis, University
of Stuttgart, 2006.

[140] N. Thio and S. Karunasekera. Web service recommendation based on client-
side performance estimation. In ASWEC ’07: Proceedings of the 18th Australian
Software Engineering Conference, pages 81–89. IEEE Computer Society, 2007.

[141] M. Tian, A. Gramm, T. Naumowicz, H. Ritter, and J. Schiller. A concept for
QoS integration in Web services. In WQW 2003: Proceedings of the Fourth in-
ternational conference on Web information systems engineering workshops. IEEE
Computer Society, 2003.

[142] S. Uchitel, G. Brunet, and M. Chechik. Synthesis of partial behavior models
from properties and scenarios. IEEE Trans. Softw. Eng., 35(3):384–406, 2009.

[143] W3C. Web Services Description Language (WSDL) Version 2.0. http://www.

w3.org/TR/wsdl20/, 2007.

[144] P. Wong and J. Gibbons. Property specifications for workflow modelling. In
IFM 2009: Proceedings of the 7th International Conference on Integrated Formal
Methods, volume 5423 of LNCS, pages 56–71. Springer, 2009.

[145] S. C. Wong, V. Tan, W. Fang, S. Miles, and L. Moreau. Grimoires: A Grid Registry
with a Metadata-Oriented Interface (part of Cluster Computing and Grid 2005
Works in Progress). IEEE Distributed Systems Online, 6(10), 2005.

http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/wsdl20/


126 BIBLIOGRAPHY

[146] G. Yang, M. Dwyer, and G. Rothermel. Regression model checking. In ICSM
2009: Proceedings of the 25th IEEE International Conference on Software Mainte-
nance, pages 115–124. IEEE Computer Society, 2009.

[147] S. J. H. Yang, J. S. F. Hsieh, B. C. W. Lan, and J.-Y. Chung. Composition and
evaluation of trustworthy web services. In BSN ’05: Proceedings of the IEEE
EEE05 international workshop on Business services networks, page 5. IEEE, 2005.

[148] P. Yolum and M. Singh. Engineering self-organizing referral networks for trust-
worthy service selection. IEEE Transactions on Systems, Man, and Cybernetics,
Part A, 35(3):396–407, 2005.

[149] J. Yu, T. Manh, J. Han, Y. Jin, Y. Han, and J. Wang. Pattern based property
specification and verification for service composition. In WISE 2006: Proceed-
ings of the 7th International Conference on Web Information Systems Engineering,
volume 4255 of LNCS, pages 156–168. Springer, 2006.



Colophon

This document was typeset using pdfLATEX (included in the MacTEX-2012 distribution),
an extension of the LATEX 2ε typesetting system, originally developed by Leslie Lamport
and based on Donald Knuth’s TEX.

The body of the text is typeset in 11pt Bitstream Charter with math support pro-
vided through the mathdesign package by the Math Design project. Sans serif text is
set in URW Classico (Optima); monospaced text is set in Bera Mono.

Text editing was done in GNU Emacs using the AUCTEX package. The bibliogra-
phy and citations were managed using BIBTEX with the help of BibDesk. Most of the
illustrations were drawn using the PGF/TikZ (pgf) package by Till Tantau; plots were
graphed with the PGFPLOTS (pgfplots) package by Christian Feuersänger. Sources of
this document were versioned using the Apache Subversion version control system.

The work contributing to this thesis has been written on different models of Apple
Macbook Pro (model identifier MacBookPro2,2, MacBookPro6,2, MacBookPro10,1),
running, over time, Mac OS X 10.4 Tiger, Mac OS X 10.5 Leopard, Mac OS X 10.6
Snow Leopard, Mac OS X 10.7 Lion, OS X 10.8 Mountain Lion.

127


	Front Matter
	Contents
	Figures
	Tables
	Abstract

	I Overture
	Introduction
	Open-world Software
	Problem Statement and Research Goals
	Contributions
	Dissemination
	Structure of the Thesis

	Background
	BPEL in a Nutshell
	Temporal Logics
	Labeled Transition Systems
	Floyd Grammars and Attribute Grammars


	II Specification
	Analysis of Property Specification Patterns in SBAs
	Overview
	A Bird's Eye View of Specification Patterns
	The Survey
	Research Literature Data
	Industrial Data

	Discussion
	Summary

	The SOLOIST Specification Language
	Overview
	Language Design
	The Language
	Preliminaries
	Syntax
	Informal Semantics
	Formal Semantics

	SOLOIST at Work
	Translation to Linear Temporal Logic
	Summary

	Intermezzo 1: Specification - State of the Art
	On Specification Languages for SBAs
	On Property Specifications Patterns


	III Verification
	Interface Decomposition for Service Compositions
	Overview
	Running Example
	Service Composition and Global Interface Specification Models
	Service Composition
	Global Interface Specification

	Decomposing Interface Specifications
	Basic Decomposition Approach
	Heuristic-based Decomposition Technique

	Discussion
	Validation of the Generated Interfaces
	Limitations of the Heuristic

	 Evaluation
	Car Rental (full version)
	Order Booking

	Summary

	Incremental Verification: a Syntactic-Semantic Approach
	Overview
	Syntactic-Semantic Incrementality
	Syntactic Incrementality
	Semantic Incrementality

	SiDECAR at Work
	Reachability Analysis
	Attribute Schema
	Application to the Example

	Summary

	Intermezzo 2: Verification - State of the Art
	On Interface Decomposition
	On Incremental Verification


	IV Reputation Management
	Reputation Management of Composite Services
	Overview
	ReMan at a Glance
	Server-side Software Architecture
	Client-side Architecture
	System Interactions

	Reputation Estimation
	Implementation
	Experimental Evaluation
	Related Work
	Summary


	V Finale
	Conclusion
	Contributions
	Specification
	Verification
	Reputation Management

	Limitations and Open Issues
	Future Directions


	Back Matter
	Bibliography
	Colophon


