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Abstract

Investments in financial assets exhibit different expected excess returns because of their different risks. We
can split the risk of an asset in two components: idiosyncratic and systematic risks. The investors reduce
the idiosyncratic risk component by diversification, i.e., by investing in a broad range of assets. On the
contrary, the systematic component represents the risk that is common to all assets and cannot be eliminated
by diversification. Therefore, in equilibrium the investors ask for a financial compensation to bear this kind
of risk. In linear factor models, systematic risk is represented by a set of pervasive factors. In such a setting,
the absence of arbitrage opportunities implies that the asset expected excess return is equal to risk premia
multiplied by factor loadings. Thus, risk premia are the rewards per unit of systematic risk borne by investors.
Since systematic risk is influenced by financial and macroeconomic variables, risk premia are expected to be
time-varying. A natural question that arises is how we can estimate these time-varying risk premia.

In this thesis, we develop a new econometric methodology to estimate the time-varying risk premia
implied by conditional linear asset pricing models. In contrast to the classical approach, we estimate risk
premia from a large dataset of returns of individual stocks instead of portfolios. The aim is to avoid the
potential bias and loss of information implied by sorting and grouping stocks into portfolios. When working
with individual stock returns we face several econometric challenges. First, our datasets are characterized
by large cross-sectional and time series dimensions, and this fact complicates the numerical implementation
and the study of the statistical properties of the estimators. Second, in available datasets, we do not observe
asset returns for all firms at all dates, i.e., the panel of stock returns is unbalanced. Third, data feature
cross-sectional dependence because of the correlation structure in error terms. To address these challenges,
we propose a new estimator that uses simple weighted two-pass regressions. Our estimation methodology
accounts for the unbalanced characteristic of large panel data. We study the large sample properties of our
estimators in a double asymptotics scheme that reflects the large dimensions of the dataset. In this setting, we
test the asset pricing restrictions induced by the no-arbitrage assumption in large economies and we address
consistent estimation of the large-dimensional variance-covariance matrix of the errors by sparsity methods.
We apply our methodology to a dataset of about ten thousands US stocks with monthly returns from July
1964 to December 2009. The conditional risk premia estimates are large and volatile in crisis periods, and

do not match risk premia estimates on standard sets of portfolios.
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Chapter 1

Introduction

A major aim of asset pricing theory is explaining the cross-sectional variation in expected excess returns
between financial assets. Idiosyncratic risk and systematic risk both affect returns of assets. However,
idiosyncratic risk is asset-specific, and is eliminated by diversification. On the opposite, systematic risk is
common to all assets, and cannot be eliminated by diversification. Thus, assets feature different expected
excess returns because of their different exposures to systematic risk. Consequently, modeling systematic
risk factors is necessary and crucial in the asset pricing literature. Linear factor models represent systematic
risk through a set of pervasive factors, and excess returns of assets follow a factor structure. According
to this setting, the expected excess return of an asset is a linear function of its sensitivities to changes in
each factor weighted by risk premia. The risk premium on a factor is the financial compensation asked by
investors to bear a unit of systematic risk on that factor. A broad financial econometrics literature deals with
linear factor models, and proposes approaches to estimate risk premia in several frameworks. In this chapter,
we first review the literature on linear factor models, and present the standard estimation methodologies and
the approaches to testing the asset pricing restrictions. Then, we describe the main theoretical and empirical

contributions of the thesis.

1.1 Linear factor models

The standard classical asset pricing models assume that the excess return of an asset follows an unconditional

linear factor model. Let R; ; denote the excess return of asset 7 at date ¢, where s = 1,...,nandt =1,...,T.



Linear factor models represent systematic risk by a vector of factors f;, and assume that the excess return
R; 4 satisfies:

Ry = a;+bfi+eiy

)

= /823% + €it, (1.1)

where vector f; gathers the values at time ¢ of K factors, z; = (1, f/)’, and vector 3; = (a;, b))’ contains the
intercept and the factor sensitivities of asset ¢. The error term ¢;; represents the idiosyncratic risk. Let us
define the error vector e; = [e14, ..., an,t]/. Then, in the simplest version of the model, the error terms &; are
independent and identically distributed (i.i.d.) over time and such that F [¢;] = 0 and the n x n variance-
covariance matrix ¥. = F [g,£}] is diagonal with E [5?74 = 04. Under these assumptions, the model has
a static strict, or exact, factor structure: the error terms are cross-sectionally uncorrelated. Moreover, the

expected excess return of an asset is a linear function of its factor loadings, b;:
E[R; 4] = bjA, (1.2)

where A is the time-invariant vector of K risk premia. The asset pricing restriction (1.2) implies that the
intercept a; is a linear function of b;:

a; = biv, (1.3)

where

v=A—E[f]. (1.4)

The simplest and most popular linear factor model is the Capital Asset Pricing Model (CAPM) by Sharpe
(1964), Lintner (1965) and Black (1972). The CAPM is an equilibrium model, i.e., it assumes an optimal
behaviour of investors and asset prices are the result of an equilibrium on asset demand and supply. The
investors, who are assumed to be risk averse, maximize their economic utilities considering only the mean
and variance of the portfolio. The underlying factor model for asset returns uses the market portfolio return as
the single systematic risk factor. In this context, the expected excess return of an asset is linear in the market
loading (beta). Furthermore, the CAPM accounts for an economy with a fix and small number of assets. In

order to derive the CAPM, we need to assume a particular form of the utility function of the investors. Lintner
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(1965) derives the model assuming either quadratic utility function, or an exponential utility function with
normality of returns. Sharpe (1964) and Lintner (1965) build the CAPM assuming that a risk-free asset exists
in the economy and investors can lend or borrow unlimited amounts at the risk-free rate. On the contrary,
Black (1972) proposes a version of the CAPM where a risk-free asset does not exist, and uses a proxy for the
riskless asset, namely the zero-beta portfolio. The CAPM has received critiques about its assumptions that
are not compatible with the empirical properties of asset returns. Roll (1977) highlights that the CAPM is
not empirically testable because the market portfolio is not observable. Indeed, we cannot build a portfolio
of all assets, and we have to use a proxy of the market portfolio in empirical analysis (see Kandel and
Stambaugh (1987)). Ross (1976) develops the Arbitrage Pricing Theory (APT) based on a multifactor model
and on the absence of arbitrage opportunity. In term of portfolio payoff, the no-arbitrage restriction ensures
that positive portfolio payoffs have positive prices (see e.g., Hansen and Richard (1987), Duffie (2001) and
Cochrane (2005)). The APT has been developed by assuming a large number of assets available in the
economy, an exact static factor-structure for the error terms in (1.1), and the absence of asymptotic arbitrage
opportunities. Ross (1976) proves that expected excess returns are approximately a linear function of factor

loadings as in Equation (1.2), such that

ST (E[Rig) - b))’ < . (1.5)
i=1
Building on the Ross (1976) critique, Fama and French (1993) find that expected returns are related also to
firm characteristics, and state that a single factor is not enough to explain expected returns. They develop an
asset pricing model that includes two other factors in addition to market excess returns: “small minus big”

(SMB) market capitalization and “high minus low” (HML) book-to-market ratio.

The assumption of an exact factor structure in asset returns is often rejected empirically. To fill this
gap, Chamberlain and Rothschild (1983, CR) introduce an approximate factor model that accounts for some
cross-sectional dependence in the error terms, i.e. E [g;.€:] = 045 # 0 for some i, = 1,...,n. An
approximate factor model assumes that there is a large number n of assets and .. is a non-diagonal matrix
with bounded eigenvalues as n increases, i.e., the proportion of non-zero correlations is small. This ensures
that each of the K factors represents a pervasive source of systematic risk in the cross-section of returns.

In this setting, CR generate no-arbitrage restrictions in large economies where the number of assets grows
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to infinity. In particular, if the asset excess returns follow an approximate factor model, then the expected
excess return is approximately a linear function of the factor loadings as in Equation (1.5), i.e., most assets
have small pricing errors. Shanken (1982) critiques this asset pricing restriction because it is not empirically
testable. Indeed, the condition is always verified on a finite number of assets. Al-Najjar (1998) derives the
empirically testable condition in (1.2) for a strict factor structure in a static, unconditional economy.

The specification in equations (1.1) and (1.2) disregards conditional information, and assumes constant
beta coefficients and risk premia. Since financial and macroeconomic variables influence systematic risk,
assuming time-varying factor loadings and risk premia is preferable. Conditional factor models aim at cap-
turing the time-varying influence of these variables in a simple setting. The excess return I?; ; satisfies the
conditional linear factor model:

Rip = aie + by fe + €ig, (1.6)

where the intercept and the factor loadings are functions of lagged common observable instruments Z;_1,
ie., aj; = a;(Z;—1) and b;; = b; (Z;—1) (Ferson and Harvey (1999)). The set of instruments can also
contain variables that are specific to stock . Avramov and Chordia (2006) allow b; ; to vary with common
instruments Z;_1 (macroeconomic variables), and asset specific instruments Z; ;1 (firm-level size and book-
to-market). Let F,, ; be the relevant information available in the economy with n assets at date ¢. Cochrane
(1996) and Jagannathan and Wang (1996) relax the assumption of constant risk premia, and equation (1.2)
becomes

E[R; 1| Fop—1] = b M, (1.7)

where )\; is the vector of risk premia at time ¢ and is function of lagged instrumental variables Z;_1, i.e.,
At = A(Z;—1). A broad finance literature deals with conditional factor models, see e.g., Shanken (1990),
Cochrane (1996), Ferson and Schadt (1996), Ferson and Harvey (1991, 1999), Lettau and Ludvigson (2001),
Petkova and Zhang (2005). Ghysels (1998) discusses pros and cons of modeling time-varying factor load-
ings. In particular, he shows that the potential misspecification of the time-varying specification makes the
conditional model less preferable than the unconditional one. Indeed, in case of misspecification, the pricing

errors with constant loadings b; could be smaller than using time-varying loadings b; ;.



1.2 Estimation approaches

Let us consider the unconditional linear factor model in equation (1.1) where f; is a vector of observable
factors. In this framework, we review the econometric approaches to estimate the vector of risk premia in
equation (1.2). Three methodologies are proposed in the literature: the two-pass cross-sectional regression

method, the Maximum Likelihood, and the Generalized Method of Moments.

i. Two-pass cross-sectional regression

The two-pass cross-sectional regression approach is the most popular methodology to estimate equity
risk premia in an unconditional linear multi-factor setting. Lintner (1965) proposes to estimate risk
premia in two steps. In the first step, the intercept a; and factor loadings b; are estimated by time-series

Ordinary Least Squares (OLS) regression on model (1.1) for each asset 4:

-1
B = (dzv 3;>/ = (Z th';) thRi,t-
t t

In the second step, the vector of risk premia is estimated by a cross-sectional OLS regression of average

excess returns on the Bi, that is
-1
A= (Z mg) S bk,
i i

= 1 . )
where R; = T Z R; ; is the average excess return of asset 4.
t

Fama and MacBeth (1973) suggest an alternative procedure to Lintner (1965) approach. They modify
the second step. Instead of estimating a single cross-sectional regression on average excess returns,

they run a cross-sectional OLS regression at each time ¢, and take the average of the cross sectional
—1

. 1 . R JR R
regression coefficients, i.e., A = T ; A¢, where \; = Z bibg Z biR; ;. This estimator of the
1 (]
risk premia is exactly the same obtained by Lintner (1965). However, Fama and MacBeth (1973)
treat the cross-sectional estimates {j\t, t=1,..., T} as a sample of realizations of the risk premia
estimator, and propose to estimate the asymptotic variance-covariance matrix of /7' (5\ — )\> with

Saruz =7 3 (h=4) (h-4)
t

An alternative estimation procedure can be obtained if we consider the asset pricing restriction written



as in (1.3). From (1.4), an equivalent expression of the estimator of risk premia vector is

A=+ f, (1.8)

-1
A A A - 1
where 0 = (Z b,b;) Z bja; and f = T Z f1 is the sample moments of E [f;].
i i t

In the classical literature, risk premia are estimated from a dataset of portfolio returns and the cross-
sectional dimension n is usually (much) smaller than the time series dimension 7'. For instance, we
might have n >~ 20 — 30 portfolios where monthly returns are observed over T' ~ 400 — 500 months.
Thus, the large sample properties of the estimators have been studied in a series of papers by keeping
fixed the cross-sectional dimension n and letting the time series dimension 7" increase to infinity (see
e.g., Shanken (1992), Jagannathan and Wang (1998), Shanken and Zhou (2007); see also the reviews
in Jagannathan, Skoulakis and Wang (2009), Goyal (2012)). In this setting, the asymptotic distribution
of risk premia merits consideration. We will denote by = the convergence in distribution. Let us
consider equations (1.1) and (1.3), and the corresponding estimators. In the homoskedasticity case

(i.e., the covariance between assets ¢ and j is constant over time), Shanken (1992) shows that

VT (X _ A) = N(0,3,), where Iy = (1 n XE;lA) S 4y,

with 3% = <71LB/B>_1 %B'EEB (:LB’B>_1, B = (b1,....,b,) and Xy = V [f,], for T — oo and n
fixed. From equation (1.8), we understand that the asymptotic variance of risk premia consists of two
components: the asymptotic variability of the second step estimator 7, i.e., (1 + N 2]71)\> >*, and the
asymptotic variability of observable factors, i.e., X ;. Jagannathan and Wang (1998) extend the results

to the heteroskedasticity case (see Section 2.3).

Despite its simplicity, the two-pass approach suffers from the Error-In-Variable (EIV) problem: the
risk premia estimator contains an estimation error through the estimated factor loadings b;. The EIV
implies a biased second pass estimator for finite 7. If we ignore the estimated errors in the bi, we
understate the asymptotic variance of risk premia. Indeed, the estimator by A, FMB proposed in Fama
and MacBeth (1973) is not a consistent estimator for >). On the contrary, Shanken (1992) shows

that the estimator 3. N = (1 + N 2;15\> DIy - that contains the term of correction N 2;15\, is
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1i.

iii.

consistent for 7' — oo. Shanken (1992) also proposes a modified OLS estimator that accounts for an
EIV correction and proves that it is consistent when n goes to infinity and 7’ is fixed. Furthermore, X is
usually estimated by the OLS estimator, that is efficient when the error terms are cross-sectional i.i.d..
These assumptions are clearly not satisfied empirically. Therefore, in order to increase efficiency,
Shanken and Zhou (2007) propose to estimate A by applying a Generalized Least Squares (GLS) or a

Weighted Least Squares (WLS) estimation approach in the second pass.

Maximum Likelihood (ML)

The ML approach is asymptotically efficient under the classical assumption that errors and factors are
mutually independent, independent across time and normally distributed. Plugging the asset pricing

restriction (1.2) in equation (1.1), the constrained linear factor model is

Riy = b A+ b; (fi — E[fi]) +€in- (1.9)

The ML estimator maximizes the likelihood function over the parameters b; for ¢ = 1, ..., n, A and the
covariance matrix Y. of the errors. Since the constraint is not linear (i.e., b; and A enter multiplied),
Gibbons (1982) suggests to apply the Gauss-Newton procedure, i.e., an iterative algorithm that makes
linear the constraint using a Taylor expansion and solves the maximization problem. Kandel (1984)
and Shanken (1985) extend the results by Gibbons (1982). In particular, Shanken (1982) shows that
the ML estimator and the GLS estimator are asymptotically equivalent as T" — co. This result stresses
the fact that the EIV problem is not eliminated estimating the parameters in a single step as in the ML

approach.

Generalized Method of Moments (GMM)

The GMM approach (Hansen (1982), Hansen and Singleton (1982)) allows to estimate the param-
eters in a single step accounting for serial correlation and conditional heteroskedasticity in error
terms. MacKinlay and Richardson (1991), and Zhou (1995) propose to estimate (1.1) and (1.2) by

the GMM methodology. A crucial point of this approach is the definition of the moments condi-

tions E [g (z+,0)] = 0, say, where vector z; involves the observable variables f; and R;; for each
i = 1,...,n, and the vector of parameters # contains transformations of A\, £ [f;] and b; for each
i = 1,...,n. We derive the moments conditions from equation E [R; ] = VA forany i = 1,...,n

7



where b; = Z;IC’ ov [ ft, R +]. By appropriately rearranging terms, the moments conditions are
E[Rij =b\ & E [Rm (1 ~ NS+ NS E [ft]ﬂ =0 & E[Ry,(1-0f)] =0,
-1
YA

1+ NS TE ()]
number of moments conditions is equal to the cross-sectional dimension n. The GMM estimator is

where 0 =

. In particular, (1 — @'f;) is the stochastic discount factor. Thus, the

0 = arg rnein g7 (0) Qrgr (),

1
where g7 (0) is the sample average of g (z¢,0), i.e, gr (0) = T Zg (z¢,60), and Qp is the n X n
t
optimal weighting matrix, i.e., the inverse of the asymptotic variance-covariance matrix of moment
conditions (see Hansen (1982)). The GMM estimator is hard to compute when the number of assets is

large. Indeed, one faces the numerical inversion of a large dimensional weighting matrix.

Let us now consider the conditional factor model in equations (1.6) and (1.7). Despite its empirical relevance,
statistical inference in time-varying risk premia models has received less attention in the literature. The two-
pass cross sectional approach allows to estimate time-varying factor loadings /3, + = (ai ., biyt)' in (1.6) by
rolling short-window regression methodology (see e.g., Ferson and Harvey (1991) and Lewellen and Nagel
(2006)). Then, one computes the cross-sectional regression in (1.7) using the estimated 3; ;. However,
conditional factor models imposes conditions on the information set F,, ;. Thus, Jagannathan and Wang
(1996) model expected returns and factor loadings as functions of instrumental variables, and define moment

conditions in a GMM framework.

1.3 Test of asset pricing restrictions

Let us consider the unconditional linear factor model in (1.1) and the asset pricing restriction in (1.2), or
(1.3). Gibbons, Ross and Shanken (1985, GRS) derive a test for the null hypothesis when the factors are
traded portfolios. In this case, the risk premia vector A is equal to the expected return of the factors E ( f;),

i.e., v = 0 by (1.4). The intercept a; is the pricing error on asset ¢. Let us consider the following null
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hypothesis

Ho : a; = 0 for all assets 1.

The GRS’s statistic to test this null hypothesis is fT = Ta'y"1G where a = [a1, ..., dn]/ and the variance-
covariance matrix €2 is a consistent estimator for {2 = (1 + N E;U) >c. Under the null hypothesis Hg, we
have éT = x2 as T — oo and n is fixed. GRS derive this result using the CAPM, where f; is a scalar factor
and corresponds to the market portfolio return. In this framework, assuming that the error terms ¢; are i.i.d.
over time, GRS interpret the statistic £&7 in term of a Sharpe ratio. In particular, & captures the difference
between the Sharpe ratio of a portfolio of n assets and the Sharpe ratio of the market portfolio. Larger values

of this deviation imply rejection of H,.

Let us consider the generalization of the GRS’s statistic when the factor are not tradable portfolios. The

null hypothesis becomes
Ho : there exists a vector v € RX such that a; = bgy for all assets 7.

The test statistic is éT =Té Q_lé, where € is the vector n x 1 of the error terms é; = a; — 6;1/ Under
the null hypothesis, éT = Xi? i as T — oo. The GRS’s statistic is usually computed in a classical setting

where the excess returns of portfolios are used as base assets.

The GRS’s statistic for the null hypothesis # is based on the sum of squared residuals of the second-
pass cross-sectional regression. This sum of squared residuals is related to the coefficient of determination p?
of the cross-sectional regression. Lewellen, Nagel and Shanken (2010) emphasize that high cross-sectional
p? does not always imply that the model makes a good job and provide suggestions to improve empirical
tests by simulation analysis. Kan, Robotti and Shanken (2012) study the asymptotic distribution of the cross-
sectional p? when n is fixed and T' — oo. In particular, they consider the misspecification problem of factor
models and provide test statistics based on p? to compare and measure the misspecification between the

models.

Alternative test statistics are proposed in the literature (see the review in Jagannathan, Schaumburg and
Zhou (2010)). Shanken (1985) proposes a statistic based on the maximum-likelihood estimation approach.
Shanken (1985, 1992) consider the asymptotic properties of the ML estimation and show that the second-pass

GLS estimator is asymptotically equal to the Gauss-Newton estimator (Gibbons (1982)). This result allows
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to compute a Likelihood Ratio test (LRT) that involves the quadratic form of pricing errors, the variance-
covariance matrix of the errors and the factors. Shanken and Zhou (2007) reformulate this problem in terms
of eigenvalues in order to study the distribution of the LRT statistic. MacKinlay and Richardson (1991) and
Zhou (1994) relax the assumption of normality of asset returns and provide alternative GMM tests of the

CAPM.

1.4 What do we do in this thesis?

We develop an econometric methodology to infer the time-varying behaviour of equity risk premia from
large stock returns databases under conditional linear factor models. In contrast to the classical setting, we
estimate time-varying risk premia on a large dataset of individual stocks returns, with large cross-sectional
and time-series dimensions. Using a large number of individual stocks instead of grouping assets in portfolios
helps to avoid the data-snooping bias as described in Lo and MacKinlay (1990). Indeed, aggregation can
mask the factor structure of asset returns and lead to misleading result on risk premia. We are not the first
to advocate the use of individual stocks (e.g., Litzenberger and Ramaswamy (1979), Berk (2000), Avramov
and Chordia (2006), Conrad, Cooper and Kaul (2003), Phalippou (2007), Lewellen, Nagel and Shanken
(2010)). Connor and Korajczyk (1988) use a large panel of individual stock returns to extract pervasive
latent factors. More recently, Ang, Liu and Schwarz (2008) argue that a lot of efficiency may be lost when
only considering portfolios as base assets, instead of individual stocks, to estimate equity risk premia in
unconditional models. Compared to Ang, Liu and Schwarz (2008), we consider a modeling framework that
is closer to the empirical features of stock returns data, and we provide a more in-depth study of the statistical

properties of the estimators.

Our theoretical contributions are threefold. First, we introduce a multi-period economy a la Hansen and
Richard (1987) with an approximate factor structure and a continuum of assets. We show that the absence
of asymptotic arbitrage opportunities in such an economy implies an empirically testable asset pricing re-
striction. We formalize the sampling scheme so that the assets in the sample are random draws from an
underlying population (Andrews (2005)). This ensures that cross-sectional limits exist and are invariant to
reordering of the assets. Such a construction is close to the setting advocated by Al-Najjar (1995, 1998,

1999) in a static framework with exact factor structure. The model accommodates conditional heteroskedas-
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ticity as well as weak cross-sectional dependence in the error terms (see Petersen (2008) for stressing the

importance of residual dependence when computing standard errors in finance panel data).

Second, we derive a new weighted two-pass cross-sectional estimator of the path over time of the risk
premia from large unbalanced panels of excess returns. We relate to the two-pass regression approach that is
simple and particularly easy to implement in our framework. Indeed, this approach can be easily extended
to accommodate unbalanced characteristics of panel data, i.e., the panel contains missing data (see e.g.,
Connor and Korajczyk (1987)). This requirement is useful in our framework because, using a dataset of
individual stocks returns, we do not observe asset returns for all firms at all dates. Moreover, the two-pass
methodology can be applied using any cross-sectional dimension. This characteristic justifies our choice
over more efficient, but numerically intractable, estimation methodologies. The first pass consists in com-
puting the time-series OLS estimator in order to estimate the intercept and the factor loadings of the linear
factor model for the excess returns. The second pass consists in computing the cross-sectional WLS estima-
tor by regressing the estimated intercept on the estimated factor loadings. The vector of risk premia is the
sum of the second pass estimate and the time average of the factors. We study the large sample properties
of the estimators using a different asymptotic scheme from the classical theory in order to match the large
dimensions of the dataset. Indeed, we study the large sample properties of our estimators applying a simulta-
neous asymptotics for n and 7" tending to infinity. From this point of view, our approach is methodologically
related to the recent literature developed by Stock and Watson (2002a,b), Bai (2003, 2009), Bai and Ng
(2002, 2006), Forni, Hallin, Lippi and Reichlin (2000, 2004, 2005), Pesaran (2006). These authors try to
extract information on the unobservable common factors from large panel data. Bai and Ng (2002) introduce
a linear factor model that accounts for heteroskedasticity in both the time and cross-section dimensions, and
accommodates weak serial and cross-section dependence. They provide estimators for the factor values and
the factor loadings. Bai (2003) derives the large-sample properties of these estimators when both n and T°
are large. In contrast to this literature, we assume observable factors and focus on the estimation of the
risk premia. We also relate the results to bias-corrected estimation (Hahn and Kuersteiner (2002), Hahn and
Newey (2004), Hahn and Kuersteiner (2011)) accounting for the well-known incidental parameter problem
in the panel literature (Neyman and Scott (1948)). We derive all properties for unbalanced panels to avoid
the survivorship bias inherent to studies restricted to balanced subsets of available stock return databases

(Brown, Goetzmann, Ross (1995)).
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Third, we provide a test of the asset pricing restrictions for the unconditional factor model underlying
the estimation. The test exploits the asymptotic distribution of the weighted sum of squared residuals of
the second-pass cross-sectional regression when n and 7' go to infinity. A consistent estimator for a large-
dimensional sparse covariance matrix is necessary to compute the statistic. We use a thresholded estimator
along the lines of Bickel and Levina (2008), El Karoui (2008) and Fan, Liao, and Mincheva (2011). We do
not attempt to apply the GRS statistics because of the large cross-sectional dimension. Numerical inversion

of the n x n matrix € is too unstable.

The outline of the thesis is as follows. In Chapter 2, we consider an unconditional linear factor model
and we illustrate our theoretical contributions in a simple setting. In Chapter 3, we extend all theoretical
results to cover conditional linear factor models. The conditioning information set includes instruments
common to all assets, e.g., macroeconomic variables, and asset specific instruments, e.g., firm characteristics
and stock returns. To make estimation feasible, we assume that the factor loadings are a linear function of
the lagged instruments, and risk premia are a linear function of lagged common instruments. Through an
appropriate redefinition of the parameters and explanatory variables, the conditional factor model can be
rewritten as a Seemingly Unrelated Regression (SUR) model where the regressors are stock-specific. This
allows us to adapt the methodology used for the unconditional factor model. In Chapter 4, we provide
an empirical analysis on a dataset of U.S. stock returns. We consider the Center for Research in Security
Prices (CRSP) database and take the Compustat database to match firm characteristics. The merged dataset
comprises about ten thousands stocks with monthly returns from July 1964 to December 2009. We look at
factor models popular in the empirical finance literature to explain monthly equity returns. They differ by the
choice of the factors. The first model is the CAPM (Sharpe (1964), Lintner (1965)) using market return as the
single factor. Then, we consider the three-factor model of Fama and French (1993) based on two additional
factors capturing the book-to-market and size effects, and a four-factor extension including a momentum
factor (Jegadeesh and Titman (1993), Carhart (1997)). We study both unconditional and conditional factor
models. For the conditional versions, we use both macrovariables and firm characteristics as instruments.
The estimated paths show that the risk premia are large and volatile in crisis periods, e.g., the oil crisis in
1973-1974, the market crash in October 1987, and the recent financial crisis. Furthermore, the conditional
risk premia estimates exhibit large positive and negative strays from unconditional estimates, and follow

the macroeconomic cycles. We compare the results obtained from our large dataset of individual stock
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returns with those obtained with standard datasets of portfolios returns, namely the 25 and 100 Fama-French
portfolios. We observe a disagreement between results obtained with portfolios and individual stocks in
terms of magnitude, sign and dynamic of the risk premia. The asset pricing restrictions are rejected for a
conditional four-factor model capturing market, size, value and momentum effects.

We show our Monte Carlo simulation results in Chapter 5 and robustness checks in Chapter 6. In Ap-
pendix A, we gather the technical assumptions and proofs of Propositions and some Lemmas. We use
high-level assumptions to get our results and show in Appendix A.4 that we meet all of them under a block
cross-sectional dependence structure on the error terms in a serially i.i.d. framework. We place all proofs of
technical lemmas in Appendix B. Finally, our approach permits inference for the cost of equity on individual
stocks, in a time-varying setting (Fama and French (1997)). We know from standard textbooks in corporate
finance that cost of equity = risk free rate + factor loadings x factor risk premia. It is part of the cost of
capital and is a central piece for evaluating investment projects by company managers. Therefore, we also

include some empirical results on the cost of equity in Appendix B.2.
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Chapter 2

Unconditional factor model

In this chapter, we consider an unconditional linear factor model in order to illustrate the main contributions

of the thesis in a simple setting. This covers the CAPM where the single factor is the excess market return.

2.1 Excess return generation and asset pricing restrictions

We start by describing the generating process for the excess returns before examining the implications of
absence of arbitrage opportunities in terms of model restrictions. We combine the constructions of Hansen
and Richard (1987) and Andrews (2005) to define a multi-period economy with a continuum of assets having
strictly stationary and ergodic return processes. We use such a formal construction to guarantee that (i) the
economy is invariant to time shifts, so that we can establish all properties by working at ¢ = 1, (ii) time series
averages converge almost surely to population expectations, (iii) under a suitable sampling mechanism (see
the next section), cross-sectional limits exist and are invariant to reordering of the assets, (iv) the derived
no-arbitrage restriction is empirically testable. This construction allows reconciling finance and econometric
analysis in a coherent framework.

Let (2, F,P) be a probability space. The random vector f admitting values in R¥, and the collection
of random variables (), v € [0, 1], are defined on this probability space. Moreover, let 3 = (a,b’)’ be
a vector function defined on [0, 1] with values in R x R¥. The dynamics is described by the measurable
time-shift transformation S mapping ? into itself. If w € € is the state of the world at time 0, then S*(w) is

the state at time ¢, where S? denotes the transformation S applied ¢ times successively. Transformation S is
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assumed to be measure-preserving and ergodic (i.e., any set in JF invariant under .S has measure either 1, or

0).

Assumption APR.1 The excess returns R;(7y) of asset v € [0,1] at dates t = 1,2, ... satisfy the uncondi-

tional linear factor model:

Ry(v) = a(7) +b(y) fe + eu(v), (2.1

where the random variables €;(7y) and f; are defined by &; (v, w) = e[y, St(w)] and fi(w) = f[S(w)].

Assumption APR.1 defines the excess return processes for an economy with a continuum of assets. The
index set is the interval [0, 1] without loss of generality. Vector f; gathers the values of the K observable
factors at date ¢, while the intercept a(~y) and factor sensitivities b(~y) of asset v € [0, 1] are time-invariant.
Since transformation S is measure-preserving and ergodic, all processes are strictly stationary and ergodic

(Doob (1953)). Let further define x; = (1, fff )/ which yields the compact formulation:

Ri(y) = B() i + (7). (2.2)

In order to define the information sets, let /o C F be a sub sigma-field. We assume that random vector f
is measurable w.r.t. 7. Define F; = {S7t(A), A € Fy}, t = 1,2, ..., through the inverse mapping S~
and assume that F; contains Jq. Then, the filtration F;, t = 1, 2, ..., characterizes the flow of information
available to investors.

Let us now introduce supplementary assumptions on factors, factor loadings, and error terms.
Assumption APR.2 The matrix / b(v)b(7y) dry is positive definite.

Assumption APR.2 implies non-degeneracy in the factor loadings across assets.
Assumption APR.3 Forany v € [0,1], E[ei(7)|Fi—1] = 0 and Covle (), ft|Fi—1] = 0.

Hence, the error terms have mean zero and are uncorrelated with the factors conditionally on information
Fi—1. In Assumption APR.4 (i) below, we impose an approximate factor structure for the conditional dis-
tribution of the error terms given F;_; in almost any countable collection of assets. More precisely, for any

sequence (7y;) in [0, 1], let X, ; , denote the n x n conditional variance-covariance matrix of the error vector
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[e:(71), -y ¢ ()] given Fy_1, for n € N. Let ur be the probability measure on the set ' = [0, 1]N of
sequences (7;) in [0, 1] induced by i.i.d. random sampling from a continuous distribution G with support

0,1].

Assumption APR.4 For any sequence (v;) in set J: (i) €igmax (Xctn) =o0(n), as n — oo, P-a.s.,

(ii) ugf1 €igmin (Xe,t.n) > 0, P-a.s., where J C T is such that pr(J) = 1, and eigmin (Xctn) and
n>

€lgmax (Xc t,n) denote the smallest and the largest eigenvalues of matrix Xz ¢ 5, (iii) €igmin (V[ fe|Fi—1]) >

0, P-a.s.

Assumption APR.4 (i) is weaker than boundedness of the largest eigenvalue, i.e., SUP €igmax (Xe,t.n) < 00,
P-as., as in CR. This is useful for the checks of Appendix A.4 under a block crq(l)isl—sectional dependence
structure. Assumptions APR.4 (ii)-(iii) are mild regularity conditions for the proof of Proposition 1.
Absence of asymptotic arbitrage opportunities generates asset pricing restrictions in large economies
(Ross (1976), CR). We define asymptotic arbitrage opportunities in terms of sequences of portfolios py,,

n € N. Portfolio p,, is defined by the share o ;, invested in the riskfree asset and the shares «; ,, invested in

n
the selected risky assets ;, for i = 1, ...., n. The shares are measurable w.r.t. 7. Then, C'(p,,) = Z Qi 18
i=0

n
the portfolio cost at ¢t = 0, and p,, = C'(pn)Ro + Z a; nR1(7;) is the portfolio payoff at t = 1, where Ry
i=1
denotes the riskfree gross return measurable w.r.t. Fo. We can work with ¢ = 1 because of stationarity.

Assumption APR.5 There are no asymptotic arbitrage opportunities in the economy, that is, there exists no

portfolio sequence (py,) such that lim P[p, > 0] =1 and lim P[C(p,) < 0,p, > 0] > 0.
n—oo n—o0

Assumption APR.5 excludes portfolios that approximate arbitrage opportunities when the number of in-
cluded assets increases. Arbitrage opportunities are investments with non-negative payoff in each state of
the world, and with non-positive cost and positive payoff in some states of the world as in Hansen and

Richard (1987), Definition 2.4. Then, Proposition 1 gives the asset pricing restriction.

Proposition 1 Under Assumptions APR.1-APR.5, there exists a unique vector v € R¥ such that
a(y) =b()'v, (2.3)

for almost all v € [0, 1].
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We can rewrite the asset pricing restriction as

E[R(7)] = b(7)'\, (2.4)

for almost all v € [0, 1], where A = v+ E [ f;] is the vector of the risk premia. In the CAPM, we have K = 1

and v = 0. When a factor f} ; is a portfolio excess return, we also have v, = 0,k =1,..., K.

Proposition 1 is already stated by Al-Najjar (1998) Proposition 2 for a strict factor structure in an uncon-
ditional economy (static case) with the definition of arbitrage as in CR. We extend his result to an approxi-
mate factor structure in a conditional economy (dynamic case) with the definition of arbitrage as in Hansen
and Richard (1987). Proposition 1 differs from CR Theorem 3 in terms of the returns generating framework,
the definition of asymptotic arbitrage opportunities, and the derived asset pricing restriction. Specifically,
we consider a multi-period economy with conditional information as opposed to a single period uncondi-
tional economy as in CR. We extend such a setting to time varying risk premia in Chapter 3. We prefer the
definition underlying Assumption APR.5 since it corresponds to the definition of arbitrage that is standard
in dynamic asset pricing theory (e.g., Duffie (2001)). As pointed out by Hansen and Richard (1987), Ross
(1978) has already chosen that type of definition. It also eases the proof based on new arguments. However,
in Appendix A.2, we derive the link between the no-arbitrage conditions in Assumptions A.1 i) and ii) of
CR, written P-a.s. w.r.t. the conditional information F and for almost every countable collection of assets,
and the asset pricing restriction (2.3) valid for the continuum of assets. Hence, we are able to characterize
the functions 8 = (a,b’)’ defined on [0, 1] that are compatible with absence of asymptotic arbitrage op-
portunities under both definitions of arbitrage in the continuum economy. CR derive the pricing restriction
Z (a(%) - b('yi)ly> ’ < o0, for some v € R¥ and for a given sequence (v;), while we derive the restric-

i=1
tion (2.3), for almost all v € [0,1]. In Appendix A.2, we show that the set of sequences (vy;) such that
[e.e]

uierﬂleK (a('yi) - b('yi)/u)z < oo has measure 1 under ur, when the asset pricing restriction (2.3) holds,
and mie:alsure 0, otherwise. This result is a consequence of the Kolmogorov zero-one law (see e.g. Billingsley
(1995)). In other words, validity of the summability condition in CR for a countable collection of assets
without validity of the asset pricing restriction (2.3) is an impossible event. From the proofs in Appendix

A.2, we also get a reverse implication compared to Proposition 1: when the asset pricing restriction (2.3)

does not hold, asymptotic arbitrage in the sense of Assumption APR.5, or of Assumptions A.1 i) and ii) of
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CR, exists for pyr-almost any countable collection of assets. The restriction in Proposition 1 is testable with
large equity datasets and large sample sizes (Section 2.5). Therefore we are not affected by the Shanken
(1982) critique, namely the problem that finiteness of the sum Z < a(v;) — b(%) ) for a given countable

economy cannot be tested empirically. The next section descrlbes how we get the data from sampling the

continuum of assets.

2.2 The sampling scheme

We estimate the risk premia from a sample of observations on returns and factors for n assets and T
dates. In available databases, we do not observe asset returns for all firms at all dates. We account for
the unbalanced nature of the panel through a collection of indicator variables I(y), v € [0, 1], and define
Li(y,w) = Iy, S*(w)]. Then I;() = 1 if the return of asset 7y is observable by the econometrician at date ¢,
and 0 otherwise (Connor and Korajczyk (1987)). To keep the factor structure linear, we assume a missing-

at-random design (Rubin (1976)), that is, independence between unobservability and returns generation.
Assumption SC.1 The random variables I;(vy), v € [0, 1], are independent of £4(vy), v € [0, 1], and f;.

Another design would require an explicit modeling of the link between the unobservability mechanism and
the returns process of the continuum of assets (Heckman (1979)); this would yield a nonlinear factor struc-
ture.

Assets are randomly drawn from the population according to a probability distribution G on [0, 1]. We
use a single distribution G in order to avoid the notational burden when working with different distributions

on different subintervals of [0, 1].

Assumption SC.2 The random variables ~;, i = 1,...,n, are i.i.d. indices, independent of £,(7y), I;(7),

v € [0, 1] and f, each with continuous distribution G with support |0, 1].

For any n,T" € N, the excess returns are R; ; = R;(7;) and the observability indicators are I; ; = I;(7;),
fori =1,...,n,and t = 1,...,T". The excess return R;; is observed if and only if I;; = 1. Similarly, let
Bi = B(vi) = (a;,b}) be the characteristics, €;; = €¢(7;) the error terms, and 0 = El[g; +€;+|%t, Vi, V5]

the conditional variances and covariances of the assets in the sample, where x; = {x¢, z¢_1, ...}. By random
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sampling, we get a random coefficient panel model (e.g. Hsiao (2003), Chapter 6). The characteristic [3; of
asset ¢ is random, and potentially correlated with the error terms ¢;; and the observability indicators I; ¢,
as well as the conditional variances o0; ¢, through the index ;. If the a;s and ;s were treated as given
parameters, and not as realizations of random variables, invoking cross-sectional LLNs and CLTs as in
some assumptions and parts of the proofs would have no sense. Moreover, cross-sectional limits would
be dependent on the selected ordering of the assets. Instead, our assumptions and results do not rely on a
specific ordering of assets. Random elements (ﬁ; s Oits €its IM)', ¢t = 1,...,n, are exchangeable (Andrews

(2005)). Hence, assets randomly drawn from the population have ex-ante the same features. However, given

a specific realization of the indices in the sample, assets have ex-post heterogeneous features.

2.3 Asymptotic properties of risk premium estimation

We consider a two-pass approach (Fama and MacBeth (1973), Black, Jensen and Scholes (1972)) building
on Equations (2.1) and (2.3).

First Pass: The first pass consists in computing time-series OLS estimators /3; = (&i,i)g)’ =

| . A 1 .
xii E Lo Ry for i = 1,...,n, where Q. ; = i g Iz-,t:rtxg and T; = E I; ;. In available pan-
i t t

els, the random sample size T; for asset ¢ can be small, and the inversion of matrix sz can be numer-
ically unstable. This can yield unreliable estimates of 8;. To address this, we introduce a trimming de-
vice: 12( =1 {CN (Qx,z) < X1,T, T, T < XZ,T}, where CN (Qz,z) :\/eigmax (Qx,z) /eigmin (Qaz,z)

denotes the condition number of matrix vai, 7,7 = T/T;, and the two sequences x1,7 > 0 and xyo 7 > 0

diverge asymptotically. The first trimming condition {C' N (Q“> < x1,7} keeps in the cross-section only
assets for which the time series regression is not too badly conditioned. A too large value of CN (Qm)
indicates multicollinearity problems and ill-conditioning (Belsley, Kuh, and Welsch (2004), Greene (2008)).
The second trimming condition {TLT < X27T} keeps in the cross-section only assets for which the time
series is not too short. We use both trimming conditions in the proofs of the asymptotic results.

Second Pass: The second pass consists in computing a cross-sectional estimator of v by regressing
the a;s on the b;s keeping the non-trimmed assets only. We use a WLS approach. The weights are esti-
mates of w; = v, 1 where the v; are the asymptotic variances of the standardized errors VT (di — B;u)

in the cross-sectional regression for large 7. We have v; = 7;¢,Q,'S:;Q; c,, where Q, = E [J;txé],
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1
Si; = plim 7 Zaii,t:ctx; = E [e} jzeai|vi]. 7 = plim 70 =E[Li4|v] ™, and ¢, = (1,—')". We use
1 T—o00

T—o0

~ A o~ N 1 ~
. . I A—1 -1 22 I /
the estimates 0; = TincﬁleviSiiQx’ic,;l, where S;; = T g Ii,tgz"tl't-%ts €t = Riy — Bizy and ¢p, =
(A
t

—1
(1, —24)". To estimate ¢,, we use the OLS estimator 1 = (Z 1i<lA)zlA)i> Z 1§<Bz~di, i.e., a first-step esti-
i i
mator with unit weights. The WLS estimator is:

A 1 A
p=Qy" =) ibids, (2.5)

A~

A 1 .5 N . C _ ..
where Qp = -~ Z wibib; and w; = 1?‘1}- L Weighting accounts for the statistical precision of the first-

(2

7
pass estimates. Under conditional homoskedasticity o ¢ = o0y; and a balanced panel 7; 7 = 1, we have
v; = c{,Q;lc,,aii. There, v; is directly proportional to ¢;;, and we can simply pick the weights as w; = 7; 1,

1
where &;; = T Z éit (Shanken (1992)). The final estimator of the risk premia vector is
t

N
A_V+T§t:ft. (2.6)

We can avoid the trimming on the condition number if we substitute Q; ! for Q;% in the first-pass estimator
definition. However, this increases the asymptotic variance of the bias corrected estimator of v, and does
not extend to the conditional case. Starting from the asset pricing restriction (2.4), another estimator of A is

.41 . _ 1 3
A= Qb_1 — w;b; R;, where R; = — I; 1 R; ;. This estimator is numerically equivalent to A in the bal-
n Z@, T; Zt
_ ~ 1 .
anced case, where I; ; = 1 for all 7 and ¢. In the unbalanced case, it is equal to A = 7 + le— E W;bib, f;,
n =
(2

_ 1 _
where f; = T g I; 1 f. Estimator A is often studied by the literature (see, e.g., Shanken (1992), Kandel and
7
t

Stambaugh (1995), Jagannathan and Wang (1998)), and is also consistent. Estimating F [f;] with a simple
average of the observed factor instead of a weighted average based on estimated betas simplifies the form of
the asymptotic distribution in the unbalanced case (see below and Section 2.4). This explains our preference
for \ over .

We derive the asymptotic properties under assumptions on the conditional distribution of the error terms.

Assumption A.1 There exists a positive constant M such that for all n:
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a) B [5¢’t|{5j,§,7j,j =1, ...,n},:@] =0, withejs 1 = {€jt-1,jt-2,} and vy = {T4, 241, };

. 1 1/2
b) — <oyt <M,i=1,...,n;¢)F - ZE [Uzgj,t|’7i7’7j] / < M, where 454 = E (€ 4€54|w¢,7%i, 7]

1
M
Assumption A.1 allows for a martingale difference sequence for the error terms (part a)) including potential
conditional heteroskedasticity (part b)) as well as weak cross-sectional dependence (part c¢)). In particular,
Assumption A.1 c) is the same as Assumption C.3 in Bai and Ng (2002), except that we have an expecta-
tion w.r.t. the random draws of assets. More general error structures are possible but complicate consistent
estimation of the asymptotic variances of the estimators (see Section 2.4).

Proposition 2 summarizes consistency of estimators 2 and ) under the double asymptotics n, T’ — oc.

Proposition 2 Under Assumptions APR.I-APR.5, SC.1-SC.2, A.l b) and C.I, CA4, C.5, we get
a) || —v|| =op (1) and b) HS\ - )\H = 0, (1), when n, T — oo such thatn = O (T"7) for 5 > 0.

Consistency of the estimators holds under double asymptotics such that the cross-sectional size n grows not
faster than a power of the time series size 7'. For instance, the conditions in Proposition 2 allow for n large
w.r.t. T' (short panel asymptotics) when 7y > 1. Shanken (1992) shows consistency of  and A for a fixed
n and T" — oo. This consistency does not imply Proposition 2. Shanken (1992) (see also Litzenberger and
Ramaswamy (1979)) further shows that we can estimate v consistently in the second pass with a modified
cross-sectional estimator for a fixed 7" and n — oo. Since A = v + E'[f;], consistent estimation of the risk
premia themselves is impossible for a fixed T" (see Shanken (1992) for the same point).

Proposition 3 below gives the large-sample distributions under the double asymptotics n, T — oo.

Let us define 7,7 = T/T;;, where T;; = Zlij,t and I;;; = I;4l;; fori,5 = 1,...,n. Let us further
t

: —1 /
define  7;; = plim 75,7 = E[Lij4|vi, ], Sij = plim — E gij, 1Ty = Ele; e xexy|vi,v;]  and
T—o0 T%oo

Qp = plim — Z w;b;b, =E[w;b;b}]. The following assumption describes the CLTs underlying the proof

n—oo 1

of the dlstrlbutlonal properties.

1 1
Assumption A.2 Asn,T — oo, a) — Zwm (Yir ®b;)) = N (0,5), where Y;p = — Z I yziei ¢
Vin 4 VT 4

Ui Sij @ bibl;

i

. 1 /
andSb—Jl}IgoE EZwin p Slj®bb = a.s. —HILH;OEZwlw]
7]
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Z fi = E[f)) =N (0.5)) , where 5y = lim —ZC’OU s fs) -

Assumptions A.2a) and b) require the asymptotic normality of cross-sectional and time series averages of
scaled error terms, and of time-series averages of factor values, respectively. These CLTs hold under weak

serial and cross-sectional dependencies such as temporal mixing and block dependence (see Appendix A.4).
Assumption A.3 Forany1 <t ,s <T,T € Nand~ € [0,1], we have E [st(7)255(7)|xﬂ =0.

Assumption A.3 is a symmetry condition on the error distribution given the factors. It is used to prove that
the sampling variability of the estimated weights w; does not impact the asymptotic distribution of estimator
v. Our setting differs from the standard feasible WLS framework since we have to estimate each incidental
parameter .S;;. We can dispense with Assumption A.3 if we use OLS to estimate parameter v, i.e., estimator

1, or if we put a more restrictive condition on the relative rate of n w.r.t. 7.

Proposition 3 Under Assumptions APR.I-APR.5, SC.1-SC.2, A.I-A.3, and C.I-C.5, we get:

N 1 . TiTi _1
a)VvnT <1/ —v— TB,,) =N (0,%,),withy, = a.s. -nlingo Qb — Zwl wj TZ_'J SUQ )bib;-
and the bias term is B, = Qb_l ( szn TEQQQE 15”6,23: iC ) with By = (0: Ix)', ¢p = (1, —ﬁ’)/, and
b) \/T(S\ - /\> = N (0,%y), whenn,T — 0o such thatn = O (T7) for 0 < 5 < 3.

The asymptotic variance matrix in Proposition 3 can be rewritten as:

-1 —1
1 1
S, =a.s- lim Sy, Sy = ( B.W, B > ~B W,V WB, (B;Wan) .
n—o0 n n
where B,, = (b1, ..., bp)", Wy, = diag(wi, ..., wy) and V,, = [vi5]i j=1,..n With v;; = TiTj Q. 1SZJQ
7'

which gives v; = v;. In the homoskedastic and balanced case, we have c:,Q Ccy = 1 + MNVIfi]~ I\ and
Vi = (1 + NVI[fi]7'1N)2. ., where ., = [0j]ij=1...n- Then, the asymptotic variance of # reduces to

-1 -1
1 1
a.s.- li_>m (L+NV[fi]™ ) ( B/ W, B ) — B W, Y. , W, By, <B;LWan> . In particular, in the
n—00 n n
CAPM, we have K = 1 and v = 0, which implies that \/\2/V[f;] is equal to the slope of the Capital

Market Line v/ E|[f]2/V'[f:], i.e., the Sharpe Ratio of the market portfolio.
Proposition 3 shows that the estimator  has a fast convergence rate V1 and features an asymptotic

bias term. Both a; and 32 in the definition of © contain an estimation error; for I;i, this is the well-known

23



Error-In-Variable (EIV) problem. The EIV problem does not impede consistency since we let T' grow to
infinity. However, it induces the bias term B, /T which centers the asymptotic distribution of ©. The upper
bound on the relative expansion rates of n and 7" in Proposition 3 is n = O(T7) for 4 < 3. The control
of first-pass estimation errors uniformly across assets requires that the cross-section dimension n is not too

large w.r.t. the time series dimension 7T'.

If we knew the true factor mean, for example E[f;] = 0, and did not need to estimate it, the estimator
U + E|f] of the risk premia would have the same fast rate v/nT" as the estimator of v, and would inherit its
asymptotic distribution. Since we do not know the true factor mean, only the variability of the factor drives

< 1
the asymptotic distribution of A, since the estimation error O), <1 / \/T) of the sample average T g fi dom-
t

inates the estimation error O, (1 / VnT +1 / T) of U. This result is an oracle property for A, namely that its
asymptotic distribution is the same irrespective of the knowledge of v. This property is in sharp difference
with the single asymptotics with a fixed n and 7' — oo. In the balanced case and with homoskedastic errors,
Theorem 1 of Shanken (1992) shows that the rate of ci){lvergence of \is v/T and that its asym_ptotic variance
is Xy =25+ %(1 + NV (:LB;LW”Bn> %BanEanBn (iB;Wan> , for fixed n
and 7" — oo. The two components in X ,, come from estimation of E[f;] and v, respectively. In the het-
eroskedastic setting with fixed n, a slight extension of Theorem 1 in Jagannathan and Wang (1998), or The-
orem 3.2 in Jagannathan, Skoulakis, and Wang (2009), to the unbalanced case yields Xy , = X + %Eym,
where %, , is defined in (2.7). Letting n — oo gives Xy under weak cross-sectional dependence. Thus,
exploiting the full cross-section of assets improves efficiency asymptotically, and the positive definite matrix

Y\n — 2y corresponds to the efficiency gain. Using a large number of assets instead of a small number of

portfolios does help to eliminate the contribution coming from estimation of v.

. .. . . . . . . 1
Proposition 3 suggests exploiting the analytical bias correction B, /T and using estimator /g =  — TBV

. N Q N 1 . . . .

instead of ©. Furthermore, \g = g + T Z ft delivers a bias-free estimator of A at order 1/7, which
t

shares the same root-1" asymptotic distribution as A.

Finally, we can relate the results of Proposition 3 to bias-corrected estimation accounting for the well-
known incidental parameter problem (Neyman and Scott (1948)) in the panel literature (see Lancaster (2000)
for a review). We can write model (2.1) under restriction (2.3) as R;; = b,(fi + v/) + €;+. In the likelihood

setting of Hahn and Newey (2004) (see also Hahn and Kuersteiner (2002)), the b;s correspond to the individ-
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ual fixed effects and v to the common parameter of interest. Available results on the fixed-effects approach
tell us: (i) the Maximum Likelihood (ML) estimator of v is inconsistent if n goes to infinity while 7" is held
fixed, (ii) the ML estimator of v is asymptotically biased even if 7' grows at the same rate as n, (iii) an
analytical bias correction may yield an estimator of v that is root-(n1") asymptotically normal and centered
at the truth if 7" grows faster than nl/3. The two-pass estimators  and ¥p exhibit the properties (i)-(iii) as
expected by analogy with unbiased estimation in large panels. This clear link with the incidental param-
eter literature highlights another advantage of working with v in the second pass regression. Chamberlain
(1992) considers a general random coefficient model nesting Model (1) under restriction (3). He establishes
asymptotic normality of an estimator of v for fixed 7" and balanced panel data. His estimator does not admit
a closed-form and requires a numerical optimization. This leads to computational difficulties in the con-
ditional extension of Chapter 3. This also makes the study of his estimator under double asymptotics and
cross-sectional dependence challenging. Recent advances on the incidental parameter problem in random

coefficient models for fixed 7" are Arellano and Bonhomme (2012) and Bonhomme (2012).

2.4 Confidence intervals

We can use Proposition 3 to build confidence intervals by means of consistent estimation of the asymptotic
variances. We can check with these intervals whether the risk of a given factor fj; is not remunerated,
ie., A\ = 0, or the restriction v, = 0 holds when the factor is traded. We estimate X by a standard HAC
estimator 3 # such as in Newey and West (1994) or Andrews and Monahan (1992). Hence, the construction of
confidence intervals with valid asymptotic coverage for components of Ais straightforward. On the contrary,
getting a HAC estimator for # appearing in the asymptotic distribution of A is not obvious in the unbalanced

case.

The construction of confidence intervals for the components of 7 is more difficult. Indeed, Y, involves

a limiting double sum over S;; scaled by n and not n?

. A naive approach consists in replacing S;; by
any consistent estimator such as S'ij = ;U Z Iijvtéi,téjjtxtxg, but this does not work here. To handle this,
we rely on recent proposals in the statistical iiterature on consistent estimation of large-dimensional sparse
covariance matrices by thresholding (Bickel and Levina (2008), El Karoui (2008)). Fan, Liao, and Mincheva

(2011) focus on the estimation of the variance-covariance matrix of the errors in large balanced panel with
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nonrandom coefficients.

The idea is to assume sparse contributions of the .S;;s to the double sum. Then, we only have to account
for sufficiently large contributions in the estimation, i.e., contributions larger than a threshold vanishing
asymptotically. Thresholding permits an estimation invariant to asset permutations; the absence of any
natural cross-sectional ordering among the matrices .S;; motivates this choice of estimator. In the following
assumption, we use the notion of sparsity suggested by Bickel and Levina (2008) adapted to our framework

with random coefficients.

Assumption A.4 There exist constants q,9 € [0, 1) such that max Z 195517 =0y (n%) .
i e
j

Assumption A.4 tells us that we can neglect most cross-asset contributions ||.S;;||. As sparsity increases, we
can choose coefficients ¢ and § closer to zero. Assumption A.4 does not impose sparsity of the covariance
matrix of the returns themselves. Assumption A.1 c) is also a sparsity condition, which ensures that the limit
matrix X, is well-defined when combined with Assumption C.4. We meet both sparsity assumptions, as well
as the approximate factor structure Assumption APR.4 (i), under weak cross-sectional dependence between
the error terms, for instance, under a block dependence structure (see Appendix A.4).

As in Bickel and Levina (2008), let us introduce the thresholded estimator S’Z-j = S’ijl {‘ S’ij

> /1} of
S;j, which we refer to as S’ij thresholded at x = k, 7. We can derive an asymptotically valid confidence

interval for the components of © from the next proposition giving a feasible asymptotic normality result.

Proposition 4 Under  Assumptions APR.I-APR.5, SC.1-SC.2, A.1-A4,C.1-C.5, we  have

~ 1 - - R 1 X . . . A R
S/ T (;9 - =B, - 1/> = N (0, Ix)with S, = Q' | =3 sy 2T (05151505 o)l | QY
n
17]

Tij,T

_ 1- /1
when n, T — oo such that n = O (TV) for 0 < 4 < min {3, n%q}, and k = M (;g;nn for a constant
M > 0andn € (0,1] as in Assumption C.1.

In Assumption C.1, we define constant 7 € (0, 1] which is related to the time series dependence of
processes (¢;;) and (x¢). We have n = 1, when (&;;) and () are serially i.i.d. as in Appendix A.4 and
Bickel and Levina (2008). The stronger the time series dependence (smaller 1) and the lower the sparsity
(g and 9 closer to 1), the more restrictive the condition on the relative rate 7. We cannot guarantee the

matrix made of thresholded blocks S’ij to be semi definite positive (sdp). However, we expect that the double
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summation on i and j makes ¥, sdp in empirical applications. In case it is not, El Karoui (2008) discusses

a few solutions based on shrinkage.

2.5 Tests of asset pricing restrictions

The null hypothesis underlying the asset pricing restriction (2.3) is
Hp - there exists v € R such that a(y) = b(v)'v, for almost all v € [0, 1].

This null hypothesis is written on the continuum of assets. Under Hp, we have E [(ai - bgy)Q} = 0. Since
we estimate v via the WLS cross-sectional regression of the estimates a; on the estimates l;i, we suggest a
test based on the weighted sum of squared residuals SSR of the cross-sectional regression. The weighted

. oA 1 . o 5 L ..
SSRis Q. = — Z wie?, with é; = c},ﬁi, which is an empirical counterpart of £ {wi (a; — b;y)ﬂ .
n “
(]
Let us define S;; 7 = T g Ii,tamxtxg, and introduce the commutation matrix W, ,, of order mn xmn

t
such that W, nvec[A] = vec[A'] for any matrix A € R™*", where the vector operator vec[-] stacks

the elements of an m x n matrix as a mn x 1 vector. If m = n, we write W, instead W,, ,,. For two
(K +1) x (K + 1) matrices A and B, equality Wk 11 (A® B) = (B ® A) Wik also holds (see Chapter
3 of Magnus and Neudecker (2007, MN) for other properties).

Assumption A.5 Forn,T — oo, we have — Z witi (Yir @ Yir —vec[Siur]) = N (0,Q), where the

asymptotic variance matrix is:

£2.2
O = nlgroloE szwj ;_Zj i © Sij + (Sij @ Sij) Wk41]
2.2
i7j
= ase lim n Z WiW;j——5= 2 [Sij ® Sij + (Sij @ Sij) Wik+1] -
7]

Assumption A.5 is a high-level CLT condition. We can prove this assumption under primitive conditions on
the time series and cross-sectional dependence. For instance, we prove in Appendix A.4 that Assumption
A.5 holds under a cross-sectional block dependence structure for the errors. Intuitively, the expression of the

variance-covariance matrix {2 is related to the result that, for random (K + 1) x 1 vectors Y] and Y3 which
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are jointly normal with covariance matrix S, we have Cov (Y1 ® ¥1,Y2a @ Y2) =S ®@ S+ (S ® S) Wik 1.
. . 1 .
Let us now introduce the following statistic £,7 = Tv/n <Qe — TB§> , where the recentering term sim-

plifies to BE =1 thanks to the weighting scheme. Under the null hypothesis g, we prove that

. . . 11

T = (7)60 [lecﬂ%@;l}) 7n > wir? (Yir ® Yir — vec [Sir]) + 0p (1), which implies
i

2 : 1 2 .1 2
&nr = N (0,3¢), where X¢ = 21111_>r1;O E - Zwiwjvij =2as.- nh_}n;o - Z wjw;v; asn, T — oo (see
1,7 4,7

~ 1
Appendix A.2.5). Then, a feasible testing procedure exploits the consistent estimator >z = 2— Z vj)iu)j@?j
n

i?j

. . TiTTIT ;A1 A
of the asymptotic variance Z¢, where 4;; = ———c,Q, ' S;;Q5 ‘.

Tij, T

Proposition 5 Under Ho, and Assumptions APR.I-APR.5, SC.1-SC.2, A.1-A.5 and C.1-C.5, we have

.1/ 5 _ 1—
X 1/2§nT = N (0,1),asn, T — oo such thatn = O (T7) for 0 < 7 < min{Q,n%q}.

. o 2 1 TiTj O
In the homoskedastic case, the asymptotic variance of §,,7 reduces to X¢ = 2a.s.- lim — g Z—QJ —
n—oo N L= T 0405
17]

. 1
For fixed n, we can rely on the test statistic T'Q)., which is asymptotically distributed as — Z eigjsz for
n =

J
j =1,....,(n— K), where the ij are independent chi-square variables with 1 degree of freedom, and

the coefficients eig; are the non-zero eigenvalues of matrix an / 2(Wn—Wan(B;LWan)_lB,'1Wn) nl /2
(see Kan, Robotti and Shanken (2012)). By letting n grow, the sum of chi-square variables converges to
a Gaussian variable after recentering and rescaling, which yields heuristically the result of Proposition 5.
The condition on the relative expansion rate of n and 1" for the distributional result on the test statistic in
Proposition 5 is more restrictive than the condition for feasible asymptotic normality of the estimators in
Proposition 4.
The alternative hypothesis is
Hi - Vier]gKE [(ai = b;y)z] > 0.

Let us define the pseudo-true value v, = arg Vier]lRfK QY (v), where Q¥ (v) = E [wi (ai — bgu)ﬂ (White
(1982), Gourieroux et al. (1984)) and population errors e; = a; — bjvoe = c;oo Bi,1=1,...,n, for all n. In

the next proposition, we prove consistency of the test, namely that the statistic igl/ zénT diverges to 400
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under the alternative hypothesis #; for large n and T". The test of the null H against the alternative H; is a

one-sided test. We also give the asymptotic distribution of estimators © and A under H;.

Proposition 6 Under Hi and Assumptions APR.I-APR.5, SC.1-SC.2, A.I-A.5 and C.1-C.5, we have:
1 4 - ~ 11 A A A
a) Vn <z> — 7B — 1/00> = N(0,%,.), where B,_ = Qb_lﬁ > T rEYQ, 1 8:Qy e and
i
Y. = Q, ' Blwleibibi]Q; ", and b) VT <5\ - /\OO> = N (0,X5), where Ao = Voo + E [fi], asn, T — oo

such that n = O (T7) for 1 < 7 < 3; ¢) 5 /*

_ : 1—q
2, p——— ».
0<7<m1n{,n25}

Under the alternative hypothesis H;, the convergence rate of ¥ is slower than under H, while the conver-

Enr 5 400, as n, T — oo such that n. = O (T7) for

gence rate of ) remains the same. The asymptotic distribution of the bias-adjusted estimator o — %Bym is
the same as the one got from a cross-sectional regression of a; on b;. The condition 4 > 1 in Propositions 6
a) and b) ensures that cross-sectional estimation of  has asymptotically no impact on the estimation of \.

To study the local asymptotic power, we can adopt the local alternative H1 7 : yierng Qu(v) = % > 0,
for a constant ¢» > 0. Then we can show that fnT = N (1), %¢), and the test is locally asymptotically pow-
erful. Pesaran and Yamagata (2008) consider a similar local analysis for a test of slope homogeneity in large
panels.

Finally, we can derive a test for the null hypothesis when the factors come from tradable assets, i.e., are

portfolio excess returns:
Ho : a(y) = 0 foralmost all y € [0,1] <  E[a?] =0,

against the alternative hypothesis

We only have to substitute a; for é;, and F1 = (1,0 )' for c; in Proposition 5. This gives an extension of
Gibbons, Ross and Shanken (1989) with double asymptotics. Implementing the original Gibbons, Ross and
Shanken (1989) test, which uses a weighting matrix corresponding to an inverted estimated n X n covariance
matrix, becomes quickly problematic. We expect to compensate the potential loss of power induced by
a diagonal weighting via the larger number of restrictions. Our Monte Carlo simulations show that the

test exhibits good power properties against both risk-based and non risk-based alternatives (e.g. MacKinlay

29



(1995)) already for a thousand assets with a time series dimension similar to the one in the empirical analysis.
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Chapter 3

Conditional factor model

In this chapter, we extend the setting of Chapter 2 to conditional specifications in order to model possibly
time-varying risk premia (see Connor and Korajczyk (1989) for an intertemporal competitive equilibrium
version of the APT yielding time-varying risk premia and Ludvigson (2011) for a discussion within scaled
consumption-based models). We do not follow rolling short-window regression approaches to account for
time-variation (Fama and French (1997), Lewellen and Nagel (2006)) since we favor a structural econometric
framework to conduct formal inference in large cross-sectional equity datasets. A five-year window of
monthly data yields a very short time-series panel for which asymptotics with fixed 7" and large n are better
suited, but keeping 7" fixed impedes consistent estimation of the risk premia as already mentioned in the

previous chapter.

3.1 Excess return generation and asset pricing restrictions

The following assumptions are the analogues of Assumptions APR.1 and APR.2, and Proposition 7 is the

analogue of Proposition 1.

Assumption APR.6 The excess returns Ri(y) of asset v € [0, 1] at dates t = 1,2, ... satisfy the conditional

linear factor model:

Ri(7) = a:(7) + bi() fi + (), (3.1)
where a;(7y,w) = a[y, St (w)] and by(y,w) = bly, ST™H(w)), for any w € Q and v € [0,1], and random
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variable a() and random vector b(~y), for v € [0, 1], are Fy-measurable.

The intercept a;(7) and factor sensitivity b;(y) of asset v € [0, 1] at time ¢ are F;_;-measurable, where the

information set F; is defined by F; = {S‘t (A),A e ]:0} for Fy € F, as in Chapter 2.

Assumption APR.7 The matrix / b(v)b(~y) dry is positive definite, P-a.s..

Since transformation S is measure preserving, Assumption APR.7 implies that the matrix / be ()b (v) dry

is positive definite, P-a.s., for any date t = 1,2, ....

Proposition 7 Under Assumptions APR.3-APR.7, for any date t = 1,2, ... there exists a unique random

vector vy € RX such that vy is Fy_1-measurable and:

ar(y) = be(7)'ve, (3.2)

P-a.s. and for almost all y € [0, 1].

We can rewrite the asset pricing restriction as

E [Re(7)|Fi=1] = be(7)' e, (3.3)

for almost all v € [0, 1], where \s = v, + E'[fi|F:—1] is the vector of the conditional risk premia.

To have a workable version of Equations (3.1) and (3.2), we further specify the conditioning information
and how coefficients depend on it. The conditioning information is such that instruments Z € RP and
Z(v) € RY, for v € [0,1], are Fo-measurable. Then, the information F; 1 contains Z; 1 and Z;_1(7),
for v € [0,1], where we define Z;(w) = Z[S'(w)] and Z;(vy,w) = Z[y, S'(w)]. The lagged instruments
Z;—1 are common to all stocks. They may include the constant and past observations of the factors and
some additional variables such as macroeconomic variables. The lagged instruments Z;_1(vy) are specific
to stock v. They may include past observations of firm characteristics and stock returns. To end up with
a linear regression model, we specify that the vector of factor sensitivities b;(y) is a linear function of
lagged instruments Z;_; (Shanken (1990), Ferson and Harvey (1991)) and Z;_1(~y) (Avramov and Chordia
(2006)): by(y) = B(Y)Zi—1 + C(7)Zi—1(7), where B(vy) € REXP and C () € RE*4, for any v € [0, 1]
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and t = 1,2,.... We can account for nonlinearities by including powers of some explanatory variables
among the lagged instruments. We also specify that the vector of risk premia is a linear function of lagged
instruments Z;_; (Cochrane (1996), Jagannathan and Wang (1996)): \; = AZ;_;, where A € RE*P_ for
any t. Furthermore, we assume that the conditional expectation of Z; given the information F;_; depends
on Z;_1 only and is linear, as, for instance, in an exogeneous Vector Autoregressive (VAR) model of order
1. Since f; is a subvector of Z;, then E [f;|F;_1] = FZ;_1, where F' € R¥>P, for any ¢. Under these
functional specifications the asset pricing restriction (3.2) implies that the intercept a;(~y) is a quadratic form

in lagged instruments Z; 1 and Z;_1(-y), namely:
a(y) =2, \B(y) (A=F)Zi 1+ Z1(7)C(Y) (A= F) Zy 1. (3.4)

This shows that assuming a priori linearity of a;(+y) in the lagged instruments Z; 1 and Z;_1 () is in general

not compatible with linearity of b () and E [f|Z¢—1].

The sampling scheme is the same as in Section 2.2, and we use the same type of notation, for example
bit = bi(vi), Bi = B(vi), Ci = C(v) and Z;;—1 = Zy_1(;). In particular, we allow for potential
correlation between parameters B;, C; and asset specific instruments Z; ;1 via the random index ;. Then,
the conditional factor model (3.1) with asset pricing restriction (3.4) written for the sample observations

becomes
Rit=2Z{ \Bi(A=F)Zi 1+ Zj; 1C{(A=F)Z1+ Z{_1Bifi + Z{,_1Cift +eis, (3.5)

which is nonlinear in the parameters A, F', B;, and C;. In order to implement the two-pass methodology in
a conditional context, we rewrite model (3.5) as a model that is linear in transformed parameters and new
regressors. The regressors include x2 ;s = <ft’ QZ_1,fi® Zé}t_l)/ € R% with dy = K(p + q). The first
components with common instruments take the interpretation of scaled factors (Cochrane (2005)), while the
second components do not since they depend on 7. The regressors also include the predetermined variables
T = (vech (X:)',Z_, ® Z{jt_l)/ € R% with d; = p(p+ 1)/2 + pq, where the symmetric matrix X; =
[ Xt k1] € RP*Pis such that X, = Zf_l,k, ifk=1and X;; =27, 121, otherwise, k,l =1,...,p.
The vector-half operator vech [-] stacks the lower elements of a p x p matrix asap (p + 1) /2 x 1 vector (see

Chapter 2 in Magnus and Neudecker (2007) for properties of this matrix tool). To parallel the analysis of the
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unconditional case, we can express model (3.5) as in (2.2) through appropriate redefinitions of the regressors
and loadings (see Appendix A.3):
Rit = Biwiy + iy, (3.6)

/ /
where z; ; = <a:’1 it Th t) has dimension d = dy + ds, and 3; = <ﬂi i b Z) is such that

/
Bri = VP, Ba,i = (vec [B]],vec [C{]’) ) (3.7)
v IDS[(A=F)Y @I, +I,® (A= F)W, k] 0
0 (A-F)®I,

The matrix D; is the p(p + 1)/2 x p? Moore-Penrose inverse of the duplication matrix D,, such that
vech [A] = D;{ vec [A] for any A € RP*P (see Chapter 3 in Magnus and Neudecker (2007)). When Z; = 1

and Z; 4 = 0, we have p = 1 and ¢ = 0, and model (3.6) reduces to model (2.2).

In (3.7), the dy x 1 vector 31 ; is a linear transformation of the da x 1 vector 32 ;. This clarifies that the
asset pricing restriction (3.4) implies a constraint on the distribution of random vector 3; via its support. The
coefficients of the linear transformation depend on matrix A — F'. For the purpose of estimating the loading

coefficients of the risk premia in matrix A, we rewrite the parameter restrictions as (see Appendix A.3):
/ / + / / / N/
Bri = By, v =vec [N = F'], By; = ([DF (Bio 1)) [Woa (CI@ 1,)]') - (3.8)

Furthermore, we can relate the d; x Kp matrix 33 ; to the vector 32 ; (see Appendix A.3):

vec [By;] = JaBo, (3.9)
. . L Jii 0
where the dipK X dy block-diagonal matrix of constants J, is given by J, =
0 Jag
with diagonal blocks Ji1 = Wyin)2px (I @ [(Ip ® D) (W @ I) (I, ® vec [I])])  and

J22 = Wygpr (Ix @ [(Ip @ Wyq) (Wpq ® Ip) (I; ® vec[Ip])]). The link (3.9) is instrumental in deriving
the asymptotic results. The parameters 3 ; and 2 ; correspond to the parameters a; and b; of the uncondi-
tional case, in which the matrix J, is equal to Ix. Equations (3.8) and (3.9) in the conditional setting are the

counterparts of restriction (2.3) in the unconditional setting.
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3.2 Asymptotic properties of time-varying risk premium estimation

We consider a two-pass approach building on Equations (3.6) and (3.8).
First Pass: The first pass consists in computing time-series OLS  estimators
Bi = (51,@76572) Q:z:zT

same trimming device as in Chapter 2.

A 1
. /
Iz 1 Ry, for i = 1,...,n, where Q. ; = T E I yxi4x; . We use the
(A
t

Second Pass: The second pass consists in computing a cross-sectional estimator of v by regressing the

Bl,i on the Bg’i keeping non-trimmed assets only. We use a WLS approach. The weights are estimates of

= (diag [vi])fl, where the v; are the asymptotic variances of the standardized errors VT (BU — Bgﬂ'V)

in the cross- sectional regression for large T". We have v; = TiC,',Q;}SZ-Z-Q;% Cy,where Q. ; = FE [x@txg,t ‘%] ,

Sii —F})Em detl'l tZL‘lt E [Efﬂfx@t:n;t]%],aii,t =F [e?ﬂxi’b%], andC, = (Ei — (Id1 ® 1/) JaEé)/,
oo

with E1 (Ig, : Odlde) Ey = (04yxd, : Idg)/. We use the estimates ©; = Ti,TC’/ﬁl Q;%S’uQ 1C,,1, where

Sy = ZI’ o tht%t, Eit = Riy — B}’xzt and Cp, = (Ei — (Id1 ® 19{) JaEé)/. To estimate C,, we

-1
use the OLS estimator 7, = (Z lfﬁélﬁgz> Z 14 B1,i» .., a first-step estimator with unit weights.
; i

The WLS estimator is:
oAl 5 A
= Q> Baaibi (3.10)
7
A 1 A A - : . o
where (g, = — Zﬂg abif3; and @; = 1) (diag[t;])”". The final estimator of the risk premia is
n &=
1

j\t = AZt,l, where we deduce A from the relationship vec [[X’ } = U+ vec [F’] with the estimator £’ ob-

-1
tained by a SUR regression of factors f; on lagged instruments Z;_1: F' = Z [iZ,_, <Z Zt_lZ£1> )
t t

The next assumption is similar to Assumption A.1.

Assumption B.1 There exists a positive constant M such that for all n,T':

) . 1 )
a)E [€i7t|{€j7ﬂ,$j’t,’)/j,j =1, ,n}] =0,withxj; = {xj, xj4-1, -}, b) i <ot <M,i=1,...,n

1 1/2
c) B - E E []aij7t|2 |fyi,’yj} < M, where 0 = E [€i7t5j7t\a:ii,xji,fyi,’yj].
—

Proposition 8 summarizes consistency of estimators 7 and A under the double asymptotics

n, T" — oo. It extends Proposition 2 to the conditional case.
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Proposition 8 Under Assumptions APR.3-APR.7,SC.1-SC.2,B.1b) and C.1,C.4-C.6, we  get
a) [0 —v| =0, (1), b) HA - AH =0y (1), when n, T — oo such thatn. = O (T"7) for 5 > 0.

Part b) implies sup Hj\t — )\tH = 0y (1) under boundedness of process Z; (Assumption C.4 written for the
conditional modellt).

Proposition 9 below gives the large-sample distributions under the double asymptotics n,7" — oo. It
extends Proposition 3 to the conditional case through adequate use of selection matrices. The following as-
sumptions are similar to Assumptions A.2 and A.3. We make use of Qg, = E |85 wifs,], Q. = E [Z,Z{],

/ -1 ~1 .
Sij = jghm E 0ij. %4, tazjt = E[5i7tej7txi7t:pj7tm,fyj] and Sg;; = Qm’ SijQxJ, otherwise, we keep the
~>oo

same notations as in Chapter 2.

Assumption B.2 Asn, T — o0, a) — Zn [ QmYzT) ®032} = N (0,S,,), whereY; 7 = \le”x”‘g”’

. 1 TiT; 1 TiT;
v = vec|fh ;w;] and Sy, = lim E | — g 1805 ® 'U3Z'USJ =a.s.- lim — g 1[S0.ij ® v3w3j]'
, n—o00 n s Tij n—oo n i Tij

1
b) ik > u®Zi1 = N(0,%y), where Sy = E [upu; ® Zy 1 Z]_] and wy = f; — FZ, 1.
t

Assumption B.3 Forany 1 <t,s <T, T € Nand~ € [0, 1], we have E [e,(7)?es(¥)| Zr, Z1(7)] = 0.

Proposition 9 Under Assumptions APR.3-APR.7,SC.1-SC.2,B.1-B.3 and C.I1-C.6, we  have
1 4 R R 1 A
a) vVnT (ﬁ —v— B,,) = N (0,%X,) where B, :QE;Jb— g T Ve [EQQ;%SZ-Z-Q;%C,;@Z} and
n - b 9
A

Y, = (UGC [C)] @ Qp, ) 3 (vec [Cl] ® Qp, ) with Jy, = (vec[lq,] ® Ixp) (Ig, @ Jo) and Cy = (B} —
(I, ® ') Jo B b) VTvec [A’ - A’} = N(0,54) where Sy = (I ® Q7Y) 2, (Ix ® Q1), when

n, T — oo such thatn = O (T7) for 0 < 7 < 3.

Since A\t =AZ;_y = (Z,_; @ Ix) Wp xvec [A'], part b) implies conditionally on Z;_; that
VT (5= ) = N (0, (Z11 @ Iic) Wy SaWicp (Z-1 @ 1)),

We can use Proposition 9 to build confidence intervals. It suffices to replace the unknown quantities @,
Q:, @, Xy, and v by their empirical counterparts. For matrix S,,,, we use the thresholded estimator g,;j as
in Section 2.4. Then, we can extend Proposition 4 to the conditional case under Assumptions B.1-B.3, A 4

and C.1-C.6.
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3.3 Tests of conditional asset pricing restrictions

Since the equations in (3.8) correspond to the asset pricing restriction (2.3), the null hypothesis of correct

specification of the conditional model is
Ho : there exists v € RPEX such that 8, () = B3(7)v, for almost all v € [0, 1],

where (1 () and 33 () are defined as 31 ; and /33 ; in Equations (3.7) and (3.8) replacing B () and C ()
for B; and C;. Under Ho, we have E [(B1,; — B83,) (B1,i — B3,v)] = 0. The alternative hypothesis is

Hi:  inf E[(Bi; — Bsiv) (Bri — Bsv)] > 0.

veERPE

o 1 ~ ~ ~
As in Section 2.5, we build the SSR Q = —~ » _ éjui;é;, with & = B1; — B3, = C},3; and the statistic
n

i

~ A 1 - N
énr =T/n <Q€ - TB§>, where B¢ = d;.

1
Assumption B.4 Forn,T — oo, we have NG g 72 [(Q;ll- ® Q;%) Yir ®Y;r — vec [S”T])} ® vec|w;]
n - b bl
1

= N (0,2), where the asymptotic variance matrix is:

2.2
TTj

. 1 i
@ = lm B |- Z £ [SQ.i5 ® Squij + (Squij @ Squij) Wa] @ (veclwilveclw;]')
VA
: 1 7—127—]'2 /
=as.- lim — Z A [S.ij ® Sq.ij + (Sq.ij ® Sq,ij) Wa] ® (vec[wi]veclw;]') .

7

Proposition 10 Under Hg and Assumptions APR.3-APR.7, SC.1-SC.2, B.1-B.4, A.4 and C.1-C.6, we have
2 2
1o - 1 TET? . NP A NP
S ur = N (0,1), where S¢ = 23 Ty [wi (c,ng7}SijQx7}c,;) W (C;Qx,;sﬁQx;cﬁ)]
(]

TisT

— 1_
asn, T — oo such thatn = O (T7) for 0 <7 < min{Q,n%q}-

Under H1, we have Sgl/génT RN 400, as in Proposition 6.

As in Section 2.5, the null hypothesis when the factors are tradable assets becomes:

Ho:  S1(y) = 0 for almost all v € [0, 1],
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against the alternative hypothesis
Hi: FE [ﬂi’i,@u] > 0.
N 1 A A N
We only have to substitute , = — Z B iwif1; for Qe, and By = (I, : Od1><d2)/ for C;. This gives
ne -
7
an extension of Gibbons, Ross and Shanken (1989) to the conditional case with double asymptotics. The
implementation of the original Gibbons, Ross and Shanken (1989) test is unfeasible here because of the large

number nd; of restrictions; each f3; ; is of dimension d; x 1, and the estimated covariance matrix to invert is

of dimension nd; x nd;.
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Chapter 4

Empirical results

4.1 Asset pricing model and data description

Our baseline asset pricing model is a four-factor model with f; = (7.1, Tsmb.t, Thmit, rmom’t)' where 7, ¢ 1s
the month ¢ excess return on CRSP NYSE/AMEX/Nasdaq value-weighted market portfolio over the risk free
rate, and 7,0 ¢, Thinl,t a0d Typ0m ¢ are the month ¢ returns on zero-investment factor-mimicking portfolios for
size, book-to-market, and momentum (see Fama and French (1993), Jegadeesh and Titman (1993), Carhart
(1997)). We proxy the risk free rate with the monthly 30-day T-bill beginning-of-month yield. To account
for time-varying alphas, betas and risk premia, we use a conditional specification based on two common
variables and a firm-level variable. We take the instruments Z; = (1, Z;')', where bivariate vector Z;
includes the term spread, proxied by the difference between yields on 10-year Treasury and three-month
T-bill, and the default spread, proxied by the yield difference between Moody’s Baa-rated and Aaa-rated
corporate bonds. We take a scalar Z;; corresponding to the book-to-market equity of firm . We refer to
Avramov and Chordia (2006) for convincing theoretical and empirical arguments in favor of the chosen
conditional specification. The vector x; ; has dimension d = 25, and parsimony explains why we have not
included e.g. the size of firm ¢ as an additional stock specific instrument. We report robustness checks with
other conditional specifications in the supplementary materials.

We compute the firm characteristics from Compustat as in the appendix of Fama and French (2008). The
CRSP database provides the monthly stock returns data and we exclude financial firms (Standard Industrial

Classification Codes between 6000 and 6999) as in Fama and French (2008). The dataset after matching
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CRSP and Compustat contents comprises n = 9,936 stocks, and covers the period from July 1964 to
December 2009 with T' = 546 months. For comparison purposes with a standard methodology for small n,
we consider the 25 and 100 Fama-French (FF) portfolios as base assets. We have downloaded the time series

of factors, portfolio returns, and portfolio characteristics from the website of Kenneth French.

4.2 Estimation results

We first present unconditional estimates before looking at the path of the time-varying estimates. We use
X1,7 = 15 as advocated by Greene (2008), together with y2 7 = 546/12 for the unconditional estimation and
X2,7 = 546/60 for the conditional estimation. In the results reported for each model, we denote by nX the
dimension of the cross-section after trimming. We compute confidence intervals with a data-driven threshold
selected by cross-validation as in Bickel and Levina (2008). Table 4.1 gathers the estimated annual risk
premia, with the corresponding confidence intervals at 95% level, for the following unconditional models:
the four-factor model, the Fama-French model, and the CAPM. For the Fama-French model and the CAPM,
the trimming level x1,7 is not binding when x2 7 = 546/12. In Table 4.2, we display the estimates of the
components of v. For individual stocks, we use bias-corrected estimates for A and v. For portfolios, we
use asymptotics for fixed n and T' — oo. The estimated risk premia for the market factor are of the same
magnitude and all positive across the three universes of assets and the three models. For the four-factor
model and the individual stocks, the size factor is positively remunerated (2.86%) and it is not significantly
different from zero. The value factor commands a significant negative reward (-4.60%). Phalippou (2007)
obtains a similar growth premium for portfolios built on stocks with a high institutional ownership. The
momentum factor is largely remunerated (7.16%) and significantly different from zero. For the 25 and 100
FF portfolios, we observe that the size factor is not significantly positively remunerated while the value factor
is significantly positively remunerated (4.81% and 5.11%). The momentum factor bears a significant positive
reward (34.03% and 17.29%). The large, but imprecise, estimate for the momentum premium when n = 25
and n = 100 comes from the estimate for v,y (25.40% and 8.66% ) that is much larger and less accurate
than the estimates for v,,, Venp and vy, (0.85%, -0.26%, 0.03%, and 0.55%, 0.01%, 0.33%). Moreover,
while the estimates of v,,, Vg and vy, are statistically not significant for portfolios, the estimates of v,

and vy, are statistically different from zero for individual stocks. In particular, the estimate of vy, is
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large and negative, which explains the negative estimate on the value premium displayed in Table 4.1. The
size, value and momentum factors are tradable in theory. In practice, their implementation faces transaction
costs due to rebalancing and short selling. A non zero v might capture these market imperfections (Cremers,

Petajisto, and Zitzewitz (2010)).

A potential explanation of the discrepancies revealed in Tables 4.1 and 4.2 between individual stocks
and portfolios is the much larger heterogeneity of the factor loadings for the former. As already discussed
in Lewellen, Nagel and Shanken (2010), the portfolio betas are all concentrated in the middle of the cross-
sectional distribution obtained from the individual stocks. Creating portfolios distorts information by shrink-
ing the dispersion of betas. The estimation results for the momentum factor exemplify the problems related
to a small number of portfolios exhibiting a tight factor structure. For A\, Agmp, and Mgy, We obtain similar
inferential results when we consider the Fama-French model. Our point estimates for A, Agpmp and App,,
for large n agree with Ang, Liu and Schwarz (2008). Our point estimates and confidence intervals for \,,,

Asmb and Ap,;, agree with the results reported by Shanken and Zhou (2007) for the 25 portfolios.

Let us now consider the conditional four-factor specification. Figure 4.1 plots the estimated time-varying
path of the four risk premia from the individual stocks. For comparison purpose, we also plot the uncon-
ditional estimates and the average lambda over time. A well-known bias coming from market-timing and
volatility-timing (Jagannathan and Wang (1996), Lewellen and Nagel (2006), Boguth, Carlson, Fisher and
Simutin (2011)) explains the discrepancy between the unconditional estimate and the average over time. Af-
ter trimming, we compute the risk premia on nX = 3,900 individual assets in the four-factor model. The
risk premia for the market, size and value factors feature a counter-cyclical pattern. Indeed, these risk premia
increase during economic contractions and decrease during economic booms. Gomes, Kogan and Zhang
(2003) and Zhang (2005) construct equilibrium models exhibiting a counter-cyclical behavior in size and
book-to-market effects. On the contrary, the risk premium for the momentum factor is pro-cyclical. Fur-
thermore, conditional estimates of the value premium are often negative and take positive values mostly in

recessions. The conditional estimates of the size premium are most of the time slightly positive.

Figure 4.2 plots the estimated time-varying path of the four risk premia from the 25 portfolios. We also
plot the unconditional estimates and the average lambda over time. The discrepancy between the uncondi-
tional estimate and the averages over time is also observed for n = 25. The conditional point estimates for

Amom,t are typically smaller than the unconditional estimate in Table 4.1. Finally, by comparing Figures
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4.1 and 4.2, we observe that the patterns of risk premia look similar except for the book-to-market factor.
Indeed, the risk premium for the value effect estimated from the 25 portfolios is pro-cyclical, contradicting
the counter-cyclical behavior predicted by finance theory. By comparing Figures 4.2 and 4.3, we observe

that increasing the number of portfolios to 100 does not help in reconciling the discrepancy.

4.3 Results on testing the asset pricing restrictions

As already discussed in Lewellen, Nagel and Shanken (2010), the 25 FF portfolios have four-factor market
and momentum betas close to one and zero, respectively. For the 100 FF portfolios, the dispersion around one
and zero is slightly larger. As depicted in Figure 1 by Lewellen, Nagel and Shanken (2010), this empirical
concentration implies that it is easy to get artificially large estimates /? of the cross-sectional R? for three-
and four-factor models. On the contrary, the observed heterogeneity in the betas coming from the individual
stocks impedes this. This suggests that it is much less easy to find factors that explain the cross-sectional
variation of expected excess returns on individual stocks than on portfolios. Reporting large /2, or small

SSR @, when n is large, is much more impressive than when 7 is small.

Table 4.3 gathers the results for the tests of the asset pricing restrictions in unconditional factor models.
As already mentioned, when n is large, we prefer working with test statistics based on the SSR Q. instead
of p? since the population R? is not well-defined with tradable factors under the null hypothesis of well-
specification (its denominator is zero). For the individual stocks, we compute the test statistics igl/ 2§nT
based on Qe and Qa as well as their associated one-side p-value. Our Monte Carlo simulations show that
we need to set a stronger trimming level x2 7 to compute the test statistic than to estimate the risk premium.
We use x2, 7 = 546/240. For the 25 and 100 FF portfolios, we compute weighted test statistics (Gibbons,
Ross and Shanken (1989)) as well as their associated p-values. For individual stocks, the test statistics
reject both null hypotheses Ho : a(y) = b(y) v and Ho : a(y) = 0 for the three specifications at 5%
level. Instead, the null hypothesis Ho : a(y) = b(7) v is not rejected for the four-factor specification
at 1% level. Similar conclusions are obtained when using the two sets of Fama-French portfolios as base
assets. Table 4.4 gathers the results for tests of the asset pricing restrictions in conditional specifications.
Contrary to the unconditional case, we do not report the values of the weighted test statistics (Gibbons,

Ross and Shanken (1989)) computed for portfolios because of the numerical instability in the inversion of
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the covariance matrix. The latter has dimension 2, 500 x 2, 500 for the conditional four-factor specification
with the 100FF portfolios. Instead, we report the values of the test statistics TQ. and TQa. For individual
stocks, the test statistics reject both null hypotheses Ho : 51 (7) = B3 (y) v and Ho : 1 () = 0 for the
three specifications at 5% level, but not for the conditional CAPM at 1% level. For portfolios, the two null
hypotheses are not rejected under the conditional CAPM even at 5% level.

For individual stocks, the rejection of the asset pricing restriction using a conditional multi-factor specifi-
cation (at 1% level), and the non rejection under an unconditional specification, might seem counterintuitive.
Indeed, for a given choice of the factors and instruments, the set of unconditional specifications satisfying
the no-arbitrage restriction a () = b (7)" v, is a strict subset of the collection of conditional specifications
with a; (y) = b; ()" 4. However, what we are testing here is whether the projection of the DGP on a
given conditional or unconditional factor specification is compatible with no-arbitrage. The set of uncondi-
tional factor models is included in the set of conditional factor models, and it may well be the case that the
projection of the DGP on the former set satisfies the no-arbitrage restrictions, while the projection on the
latter does not. Therefore, the results in Tables 4.3 and 4.4 for individual stocks are not incompatible with
each other. A similar argument might explain why in Table 4.4 we fail to reject the asset pricing restric-
tion Ho : (1 () = B3 () v under the conditional CAPM (at level 1% for individual assets, and 5% for
portfolios), while this restriction is rejected under the three- and four-factor specifications.

The analysis of the validity of the asset pricing restrictions could be completed by an analysis of correct
specification of the different conditional and unconditional factor models. A specification test would assess
whether the proposed set of linear factors captures the systematic risk component in equity returns, and
clearly differs from the test of the no-arbitrage restrictions introduced above. Developing a test of correct
specification of conditional factor models with an unbalanced panel and double asymptotics is beyond the

scope of the thesis. We leave this interesting topic for future research.
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Figure 4.1: Path of estimated annualized risk premia with n = 9, 936

65 70 75 80 85

Ahmi,t

The figure plots the path of estimated annualized risk premia M/S“? wmiy? M:Si and MSS:A and their pointwise confidence intervals
at 95% probability level. We also report the unconditional estimate (dashed horizontal line) and the average conditional estimate (solid
horizontal line). We consider all stocks as base assets (n = 9,936 and nX = 3,900). The vertical shaded arcas denote recessions
determined by the National Bureau of Economic Research (NBER). The recessions start at the peak of a business cycle and end at the

trough.

Asmb,t
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Figure 4.3: Path of estimated annualized risk premia with n = 100
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The figure plots the path of estimated annualized risk premia M/S,? MMSF? M/\::i and MSoSA and their pointwise confidence intervals
at 95% probability level. We use the returns of the 100 Fama-French portfolios. We also report the unconditional estimate (dashed
horizontal line) and the average conditional estimate (solid horizontal line). The vertical shaded areas denote recessions determined by
the National Bureau of Economic Research (NBER).
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Table 4.2: Estimated annualized v for the unconditional models

Stocks (n = 9,936)

Portfolios (n = 25)

Portfolios (n = 100)

bias corrected estimate (%)

95% conf. interval  point estimate (%)

95% conf. interval

point estimate (%)

95% conf. interval

Four-factor model

(n* =9,902)

Vm 3.29 (2.88, 3.69) 0.85 (-0.10, 1.79) 0.55 (-0.46, 1.57)
Vsmb -0.41 (-0.95, 0.13) -0.26 (-1.24,0.72) 0.01 (-1.14, 1.16)
Vhmi -9.38 (-10.12, -8.64) 0.03 (-0.95, 1.01) 0.33 (-0.63, 1.30)
Vmom -1.47 (-2.86,-0.08 ) 25.40 (1.80, 49.00) 8.66 (1.23, 16.10)

Fama-French model
(n* =19,904)

Vm 2.92 (2.48,3.35) 0.18 (-0.51, 0.87) 0.02 (-0.84, 0.88)
Vsmb -0.63 (-1.11, -0.15) -0.27 (-0.93, 0.40) 0.08 (-0.85, 1.01)
Vhmi -9.96 (-10.62, -9.31) 0.41 (-0.32, 1.15) 0.42 (-0.44, 1.28)

CAPM
(n* =9,904)
Vm 2.57 (2.17,2.97) 2.12 (0.85, 3.40) 2.30 (0.84,3.77)

The table contains the annualized estimates of the components of vector v for the market (14,), size (Vspp), book-to-market (v/p,,,7)
and momentum (Vp,om,) factors. We report the bias corrected estimates v of v for individual stocks (n = 9,936). In order to build
the confidence intervals, we compute S, in Proposition 4 for n = 9,936. When we consider 25 and 100 portfolios as base assets, we
compute an estimate of the variance-covariance matrix X, ,, defined in Section 2.4.
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Table 4.4: Test results for the asset pricing restrictions in the conditional models

Test of the null hypothesis Ho : 81 (v) = B3 (y) v Test of the null hypothesis Ho : 81 (7) =0
Stocks Portfolios (n = 25)  Portfolios (n = 100) Stocks Portfolios (n = 25)  Portfolios (n = 100)
Four-factor model
(n* =1,373) (n* =1,373)
Test statistic 3.2514 13.4815 11.6389 3.8683 14.3080 12.2098
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Fama-French model
(n* =1,393) (n* =1,393)
Test statistic 3.1253 15.7895 12.8938 3.8136 15.9038 13.0349
p-value 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000
CAPM
(n* =1,395) (n* =1,395)
Test statistic 1.7322 9.2934 9.5153 1.7381 9.6680 9.8007
p-value 0.0416 0.2076 0.1825 0.0411 0.0000 0.0000

We compute the statistics MMH\ wm:nﬁ based on @M and @a defined in Proposition 5 for the individual stocks to test the null hypotheses

Ho : Bri(y) =P (y)vand Hp : B (y) = 0, respectively. The trimming levels are x1 7 = 15 and x2 7 = 546/240. For n = 25 and
n = 100, we compute the test statistics 7' Qm and H@a. The table reports the p-values of the statistics.

50



Chapter 5

Monte-Carlo experiments

In this chapter, we perform simulation exercises on balanced and unbalanced panels in order to study the
properties of our estimation and testing approaches. We pay particular attention to the interaction between
panel dimensions n and 7 in finite samples since we face conditions like n = o(T®) for inference with
7, and n = o(T?) for inference with Q. and Q. in the theoretical results. The simulation design mimics
the empirical features of our data. The balanced case serves as benchmark to understand when 7" is not
sufficiently large w.r.t. n to apply the theory. The unbalanced case shows that we can exploit the guidelines
found for the balanced case when we substitute the average of the sample sizes of the individual assets, i.e.,
a kind of operative sample size, for 7. To summarize our Monte Carlo findings, we do not face any finite
sample distortions for the inference with © when n = 1,000 and 7' = 150, and with Qe and Qa when
n = 1,000 and T" = 350. In light of these results, we do not expect to face significant inference bias in our

empirical application.

5.1 Balanced panel

We simulate S datasets of excess returns from an unconditional one-factor model (CAPM), we estimate the
parameter v, and compute the test statistics. A simulated dataset includes: a vector of intercepts a® € R",
a vector of factor loadings b* € R™, and a variance-covariance matrix ° € R™*™, At each simulation
s=1,...,.5, werandomly draw n < 9,904 assets from the empirical sample that comprises 9, 904 individual

stocks. The assets are listed by industrial sectors. We use the classification proposed by Ferson and Harvey
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(1999). The vector b° is composed by the estimated factor loadings for the n randomly chosen assets. At each
simulation, we build a block diagonal matrix {2° with blocks matching industrial sectors. The n elements
of the main diagonal of 2° correspond to the variances of the estimated residuals of the individual assets.
The off-diagonal elements of €2° are covariances computed by fixing correlations within a block equal to
the average correlation of the industrial sector computed from the 9,904 x 9,904 thresholded variance-
covariance matrix of estimated residuals. Hence we get a setting in line with the block dependence case
developed in Appendix A.4.

In order to study the size and power properties of our procedure, we set the values of the intercepts a}

according to four data generating processes:

DGP1: The true parameter is vy = 0.00% and the af are generated under the null hypothesis Hy : af = 0;

)

DGP2: The true parameter is the empirical estimate of v, vy = 2.57%, and the a; are generated under the

null hypothesis Ho : af = bjvp;

DGP3: The aj are generated under the alternative hypothesis H, : af = (0.5 + 0.5) v, where vy =
2.57%;

DGP4: The a; are generated under the three-factor alternative hypothesis: H, : a; = bff(3) Vo,(3) Where
bj (3) € R? and vy, (3) = [2.92%, —0.63%, —9.96%)]’ are estimates for the Fama-French model on the
CRSP dataset.

DGP1 and DGP2 match two different null hypotheses. The null hypothesis for DGP1 assumes that the factor
comes from a tradable asset, and for DGP2 that it does not. DGP3 and DGP4 match two different alternative
hypotheses as suggested by MacKinlay (1995). DGP3 is a “non risk-based alternative”. It represents a
deviation from CAPM, which is unrelated to risk: we take the one-factor model calibrated on the data with
intercepts deviating from the no arbitrage restriction. DGP4 is a “risk-based alternative”. It represents a
deviation from CAPM, which comes from missing risk factors: we take intercepts from a three-factor model
calibrated on the data, and then we estimate a one-factor model.

Let us define the simulated excess returns R;, of asset ¢ at time ¢ as follows

te=a; +bifi+eiy, fori=1,...,n,andt =1,..., T, 5.D
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where f is the market excess return and €7, is the error term. The n X 1 error vectors & are independent
across time and Gaussian with mean zero and variance-covariance matrix {2°. We apply our estimation
approach on every simulated dataset of excess returns. We estimate the parameter v and we compute the
statistics described in Section 2.5. Since the panel is balanced, we do not need to fix x2 7. We only use
X1,7 = 15. However, this trimming level does not affect the number of assets n in the simulations. In order
to compute the thresholded estimator of the variance-covariance matrix of 2, namely 3, (see Proposition 4
in the paper), and the thresholded variance estimator f)g for the test statistics, we fix the parameter M equal
to 0.0780, that is used in the empirical application. We define the parameter M using a cross-validation
method as proposed in Bickel and Levina (2008). We build random subsamples from the CRSP sample. For
each subsample, we minimize a risk function that exploits the difference between a thresholded variance-

covariance matrix and a target variance-covariance matrix (see Bickel and Levina (2008) for details).

In order to understand how our estimation approach works for different finite samples, we perform ex-
ercises combining different values of the cross-sectional dimension n and the time dimension 7'. Table 5.1
reports estimation results for estimator 7, and for the bias-adjusted estimator 75, under DGP 1 and 2. The
results include the bias of both estimators, the variance and the Root Mean Square Error (RMSE) of estima-
tor 73, and the coverage of the 95% confidence interval for parameter v based on Proposition 4. The bias of
estimator ¥ is decreasing in absolute value with time series size 71" and is rather stable w.r.t. cross-sectional
size n. The analytical bias correction is rather effective, and the bias of estimator ¥ is small. For instance,
for sample sizes 7' = 150 and n = 1000, under DGP 2 the bias of estimator 7 is equal to —0.03, which
in absolute value is about 1% of the true value of the parameter v = 2.57. The variance of estimator U'p is
decreasing w.r.t. both time-series and cross-sectional sample sizes 1" and n. These features reflect the large
sample distribution of the estimators derived in Proposition 3. The coverage of the confidence intervals is

close to the nominal level 95% across the considered designs and sample sizes.

In Table 5.2, we display the rejection rates for the test of the null hypothesis v = 0 (tradable factor). This
null hypothesis is satisfied in DGP 1, and the rejection rates are rather close to the nominal size 5% of the
test, with a slight overrejection. In DGP 2, parameter v is different from zero, and the test features a power

equal to 100%.

Tables 5.3 and 5.4 report the results for the tests of the null hypotheses Ho : a () = 0and Ho : a () =

b (’y)' v, respectively. The test statistics are based on Qa and Qe as defined in Proposition 5. DGP 1 satisfies
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the null hypothesis for both tests. For 7' = 150, we observe an oversize, that is increasing w.r.t. cross-
sectional size n. The time series dimension 7' = 150 is likely too small compared to cross-sectional size
n = 1000 and this combination does not reflect the condition n = o(7?) for the validity of the asymptotic
Gaussian approximation of the statistics. For T' = 500 instead, the rejection rates of the tests are quite
close to the nominal size. DGP 2 satisfies the null hypothesis of the test based on Qe, but corresponds to an
alternative hypothesis for the test based on (.. The former statistic features a similar behaviour as under
DGP 1, while the power of the latter statistic is increasing w.r.t. n. Finally, the power of both statistics under
the "non risk-based"” and "risk-based" alternatives in DGP 3 and DGP 4 is very large, with rejection rates

close to 100% for all considered combinations of sample sizes n and T'.

5.2 Unbalanced panel

Let us repeat similar exercises as in the previous section, but with unbalanced characteristics for the simulated
datasets. We introduce these characteristics through a matrix of observability indicators I* € R™ T, The
matrix gathers the indicator vectors for the n randomly chosen assets. We fix the maximal sample size
T' = 546 as in the empirical application. In the unbalanced setting, the excess returns 2}, of asset ¢ at time

tis:

R}y =a] +bifi+eiy, it [}, =1 fori=1,...,n, andt =1,..., T, (5.2)

where I}, is the observability indicator of asset ¢ at time ¢.

In Tables 5.5 and 5.6, we provide the operative cross-sectional and time-series sample sizes in the Monte-
Carlo repetitions for trimming x1,7 = 15 and four different levels of trimming x2 7. More precisely, in Table
5.5 we report the average number 72X of retained assets across simulations, as well as the minimum min(nX)
and the maximum max(nX) across simulations. For the lowest level of trimming y2 7 = 7'/12, all assets are
kept in all simulations, while for the level of trimming x2 7 = 7'/60 on average we keep about two thirds
of the assets. In Table 5.6, we report the average across assets of the 7}, that are the average time-series
size T} for asset i across simulations, as well as the min and the max of the T}. Since the distribution of 7}
for an asset 1 is right-skewed, we also report the average across assets of the median 7;. For trimming level

x2,7 = T'/60, the average mean time-series size is about 180 months, while the average median time-series
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size is 140 months.

In Table 5.7, we display the results for estimators © and 7p. The bias adjustment reduces substantially
the bias for estimation of parameter v. For trimming level xo 7 = 7'/60, the coverage of the confidence
interval is close to the nominal size 95% for all considered cross-sectional sizes, while for xo 7 = 7'/12
the coverage deteriorates with increasing cross-sectional size. In comparison with Table 5.1, the bias and
variance of estimator g are larger than the ones obtained in the balanced case with time-series size 7' = 500.
However, for trimming level x2 7 = 7/60, the results are similar to the ones with 7" = 150 in Table 5. In
fact, this time-series size of the balanced panel reflects the operative sample sizes for that trimming level
observed in Table 5.6. Similar comments apply for Table 5.8, where we report the results for the test of the
hypothesis ¥ = 0. For trimming level x2 7 = T'/60, the size of the test is close to the nominal level 5%
under DGP 1, and the the power is 100% under DGP 2.

In Tables 5.9 and 5.10, we display the results for the tests based on Qa and Qe, respectively. For trimming
level xo 7 = T/120, we observe an oversize, that increases with the cross-sectional dimension. We get a
similar behaviour with more severe oversize with lower trimming levels (not reported). We expect these
findings from the results in the previous section. Indeed, for trimming level xo 7 = 7'/120, the operative
time-series sample size in Table 10 is around 200 months, and in Tables 5.3 and 5.4, for a balanced panel
with 7" = 150, the statistics are oversized. For trimming level xo 7 = 7°/240 with operative size of about
350 months, the oversize of the statistics is moderate. Finally, the power of the statistics is very large also in

the unbalanced case, and close to 100%.
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Table 5.1: Estimation of v, balanced case

T =150 DGP1 DGP 2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Bias(?) -0.0742  -0.0567 -0.0585 -0.0586 | -0.1630 -0.1472 -0.1484 -0.1493
Bias(¥B) -0.0244  -0.0063 -0.0082 -0.0083 | -0.0319 -0.0156 -0.0169 -0.0178
Var(0g) 0.1167 0.0394 0.0179 0.0121 0.1140 0.0401 0.0189 0.0121
RMSE(#5) | 0.3423 0.1985 0.1340 0.1102 0.3390 0.2007 0.1383 0.1114
Coverage 0.9320 0.9290 0.9350 0.9370 0.9370 0.9290 0.9320 0.9360
T = 500 DGP 1 DGP2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Bias (7) -0.0587 -0.0640 -0.0687 -0.0654 | -0.0847 -0.0926 -0.0972 -0.0937
Bias(¥p) -0.0002 -0.0063 -0.0110 -0.0077 | -0.0025 -0.0074 -0.0120 -0.0085
Var(2g) 0.0343 0.0113 0.0060 0.0040 0.0341 0.0114 0.0061 0.0041
RMSE(g) | 0.1851 0.1066 0.0781 0.0634 0.1846 0.1068 0.0788 0.0642
Coverage 0.9370 0.9340 0.9370 0.9390 0.9430 0.9370 0.9360 0.9320
Table 5.2: Test of v = 0, balanced case
T =150 DGP 1 DGP 2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Rejection rate | 0.0680 0.0710 0.0650 0.0630 | 1.0000 1.0000 1.0000  1.0000
T =500 DGP1 DGP 2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Rejection rate | 0.0630 0.0660 0.0630 0.0610 | 1.0000 1.0000 1.0000  1.0000
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Table 5.5: Operative cross-sectional sample size

trimming level X2, T = % X2, T = %
n 1,000 3,000 6,000 9,000 | 1,000 3,000 6,000 9,000
nX 1,000 3,000 6,000 9,000 | 660 2,000 4,000 6,000
min (nX) 1,000 3,000 6,000 9,000 | 600 1,900 3,900 5,900
max (nX) 1,000 3,000 6,000 9,000 | 700 2,100 4,100 6,100
trimming level X2, T = % X2,T = 545
n 1,000 3,000 6,000 9,000 [ 1,000 3,000 6,000 9,000
nX 400 1,250 2,400 3,600 140 430 850 1,250
min (nX) 350 1,100 2,300 3,500 100 370 800 1,200
max (n*) 440 1,300 2,500 3,650 170 470 900 1,300
Table 5.6: Operative time-series sample size
trimming level X2l =15 XoT = o5 X2l = o5 X2l = 305
mean (1) 130 180 240 360
min (7;) 110 160 210 350
max (T) 140 190 260 380
mean(median (73)) 90 140 197 330
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Table 5.7: Estimation of v, unbalanced case

trimming level: 2,7 = %
DGP1 DGP 2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Bias(?) -0.3059 -0.3119 -0.3047 -0.3021 | -0.4211 -0.4324 -0.4202 -0.4201
Bias(0p) -0.0893  -0.0954 -0.0880 -0.0854 | -0.1127 -0.1233 -0.1113 -0.1113
Var(2g) 0.1207  0.0409 0.0214 0.0124 | 0.1222  0.0405 0.0218 0.0124
RMSE(pg) | 0.3586  0.2235 0.1706  0.1402 | 0.3671 02360 0.1848 0.1574
Coverage 0.9230  0.9010 0.8740 0.8750 | 09180  0.8880  0.8410  0.8320
trimming level: 2,7 = %
DGP 1 DGP 2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Bias(?) -0.1703  -0.1738 -0.1675 -0.1596 | -0.2454 -0.2478 -0.0411 -0.2329
Bias(¥B) -0.0349  -0.0381 -0.0318 -0.0238 | -0.0453 -0.0474 -0.0411 -0.0325
Var(9p) 0.1294  0.0436  0.0231  0.0141 | 0.1281 0.0438  0.0232 0.0144
RMSE(#g) | 03613 02122  0.1551 0.1212 | 03606 02145 0.1578  0.1241
Coverage 0.9360  0.9310 0.9240 0.9350 | 0.9430 0.9310 0.9200  0.9300
Table 5.8: Test of v = 0, unbalanced case
trimming level: 2,7 = %
DGP1 DGP 2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Rejection rate | 0.0770  0.0990 0.1260  0.1250 | 1.0000 1.0000 1.0000  1.0000
trimming level: 2,7 = %
DGP 1 DGP 2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Rejection rate | 0.0640 0.0690 0.0760 0.0650 | 1.0000 1.0000 1.0000 1.0000
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Table 5.9: Test of the null hypothesis 7, : (; (7) = 0, unbalanced case

trimming level: x2, 7 = 11

20

DGP1 DGP 2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Size/Power | 0.1180 0.1710 0.2420  0.3030 | 0.6010 0.9410 0.9980  1.000
DGP 3 DGP 4
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Size/Power | 1.0000 1.0000 1.0000  1.0000 | 0.9990 1.0000  1.0000  1.0000
trimming level: x2,7 = HTO
DGP 1 DGP 2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Size/Power | 0.0880 0.0860 0.1020  0.1310 | 0.5320 0.8730  0.9920  1.0000
DGP 3 DGP 4
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Size/Power | 1.0000 1.0000 1.0000  1.0000 | 0.9740 1.0000 1.0000  1.0000

Table 5.10: Test of the null hypothesis 7, : 1 (7) = 33 (7) v, unbalanced case

trimming level: x2,7 = 1%0
DGP 1 DGP 2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Size/Power | 0.1130 0.1670 0.2370 0.3010 | 0.0940 0.2190 0.2590  0.3740
DGP 3 DGP 4
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Size/Power | 1.0000 1.0000 1.0000 1.0000 | 0.9990 1.0000 1.0000  1.0000
trimming level: x2,7 = KTO
DGP 1 DGP 2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Size/Power | 0.0800 0.0790 0.1000 0.1290 | 0.0790 0.0870  0.1080  0.1440
DGP 3 DGP 4
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Size/Power | 0.9990 1.0000 1.0000 1.0000 | 0.9690 1.0000 1.0000  1.0000
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Chapter 6

Robustness checks

In this chapter, we perform several checks to evaluate the robustness of the empirical results reported in
Chapter 4. In particular, we estimate the paths of the time-varying risk premia and we compute the test

statistics by:
a. Assuming several asset pricing models as baseline specification;
b. Using several sets of asset-specific instruments Z; ;_1;
c. Using several sets of common instruments Z;_1;

d. Assuming that the time-varying betas b; ; depend only on the asset-specific instruments.

In Table 6.1, we provide the details of the conditional specifications for the four exercises. We use the
following abbreviations. For common instruments, we denote by ts; the term spread, ds; the default spread,
and divY 'y the dividend yield. The dividend yield is provided by CRSP. For asset-specific instruments, we
denote by mc; ; the market capitalization, bmn; ; the book-to-market, and ind; ; the return of the correspond-
ing industry portfolio. For each exercise, when not explicitly indicated in Table 6.1, the specification is the
four-factor model, the vector of common instruments is Z;—1 = [1, ts4_1, dst,l]/ and the asset-specific
instrument is the scalar Z; ;_1 = bm;;_1. Table 6.1 reports the operative trimmed population of individual
stocks and the number of regressors in the first-pass time series regression for each exercise that we imple-
ment. Indeed, the population of individual stocks changes depending on the asset pricing model (Exercise a)

as an effect of the trimming conditions: the number of assets decreases as the number K of factors increases.
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Moreover, by using the four-factor model as baseline and modifying the sets of instruments, the number of

assets decreases as the number of regressors in the first pass increases (see Exercise c) .

We first present conditional estimates of risk premia by using several asset pricing models as baseline
(Exercise a). Panel A of Figure 6.1 compares the estimated time-varying paths of market risk premia when
we assume the four-factor model (shown in Chapter 4) and the CAPM. Panel B compares the estimates
5\m7t for the four-factor model and the Fama-French model. The paths look very similar. The discrepancy
between the estimates of the CAPM and the four-factor model is explained by the three factors (size, value
and momentum factor) that we introduce in the four-factor model. Figure 6.2 plots the estimated time-
varying paths of risk premia for the size and value factors computed on the four-factor model and on the
Fama-French model. The risk premium for the size factor is very similar for the two models. The value risk
premium for the Fama-French model takes slightly smaller values than that for the four-factor model and it

exhibits a counter-cyclical path. Overall, the conditional estimates of the risk premia are stable with respect

to the asset pricing model that is assumed for the excess returns.

Figures 6.3 and 6.4 plot the estimates of the risk premia by adopting several sets of asset-specific instru-
ments Z; ;1 (Exercise b). We do not modify the set of common instruments Z;_; compared to Chapter 4.
In Figure 6.3, we get the estimates by setting the scalar Z; ;1 equal to the market capitalization of firm .
In Figure 6.4, we set Z; ;1 equal to the monthly returns of the industry portfolio for the industry asset ¢
belongs to. We use the 48 Fama-French industry portfolios. The risk premia paths look very similar to the
results in Chapter 4. The results for the tests of the asset pricing restrictions for the conditional specifications

in Exercise b are reported in Table 6.2, upper panel. The test statistics reject the null hypotheses at 5% level.

The time-varying paths of the risk premia showed in Figures 6.5 and 6.6 are computed by modifying
the set of common instruments Z;_1 = [1, hl 1}/ (Exercise c). In Figure 6.5, Z; is a bivariate vector
that includes the default spread and the dividend yield. The paths of the risk premia for market, value
and momentum factors look similar to the results in Chapter 4. However, the risk premium for the size
factor features a very stable pattern that does not correspond to the unconditional estimate. In Figure 6.6,
vector Z; includes the term spread, the default spread, and the dividend yield. The paths of the risk premia
look similar to the results in Chapter 4. Introducing the dividend yield increases the discrepancy between
the unconditional estimates and the average over time of conditional estimates for the size and momentum

factors w.r.t. the results shown in Figure 4.1. On the contrary, this discrepancy is smaller for the value
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premium. Moreover, the risk premium of the momentum factor takes larger values than that in Figure 4.1.
We also notice that including the dividend yield among the common instruments decreases the number of
stocks after trimming. The test statistics reject the null hypothesis at 5% level (see Table 6.2), middle panel.

Finally, we consider conditional specifications in which the time-varying betas are linear functions of
asset specific instruments Z; ;1 only (Exercise d). The risk premia are modelled via common instruments
Zi—1 =1, tsi—1, dst_l]' as usual. In Figure 6.7, Z; ;1 is a bivariate vector that includes the constant and
the book-to-market equity of firm 7. In Figure 6.8, vector Z; ;1 includes the constant and the return of the
industry portfolio as asset-specific instrument. The paths of the risk premia for the four factors in Figure 6.7
look more volatile w.r.t. the paths in Figure 4.1. The risk premia for market, size and value factors in Figure
6.8 look similar to the results in Chapter 4. The risk premium for the momentum factor features a less stable
pattern, albeit its confidence intervals look similar to that in Figure 4.1. In Table 6.2, lower panel, the test
statistic does not reject the asset pricing restrinction Hg : 1 () = 3 () v for the conditional specification

with time-varying betas depending on book-to-market equity.
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Table 6.1: Operative cross-sectional sample size (nX), number of factors (K) and instruments (¢ and p) and first-pass regressors

(d) in the four exercises of robustness checks

nX K d nX K p q d
Exercise a. Exercise c.
CAPM 5225 1 13 | Zi_1 = [1,ds;_1,divY;_q) 1,107 4 3 1 25
Fama-French model 4,545 3 21 | Zy—1 =[1,dsi—1,ts1—1, &S\TL\ 667 4 4 1 34
Exercise b. Exercise d.
Zit—1 = MC;i 41 3,835 4 25 | Zip—1 = F?:ﬁTL\ 6208 4 3 2 8
Zit—1 =1ind; 1 4,748 4 25 | Zip—1 = F@S&i\L\ 6430 4 3 2 8
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Figure 6.1: Path of estimated annualized risk premia for the market factor
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Panel A plots the paths of estimated annualized market risk premia 5\m7t computed by using the four-factor
model (thin red line) and the CAPM (thick blue line). Panel B plot the paths of market risk premia 5\m7t
estimated by assuming the four-factor model (thin red line) and the Fama-French model (thick blue line). The
pointwise confidence intervals at 95% level are also displayed. The vertical shaded areas denote recessions
determined by the National Bureau of Economic Reasearch (NBER).
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Figure 6.2: Path of estimated annualized risk premia for the size and value factors

Panel A

Panel B

The figure plots the paths of estimated annualized risk premia j‘smb,t (Panel A) and j‘hml,t (Panel B) com-
puted by using the four-factor model (thin red line) and the Fama-French model (thick blue line). The
pointwise confidence intervals at 95% level are also displayed. The vertical shaded areas denote recessions
determined by the National Bureau of Economic Reasearch (NBER).
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Figure 6.3: Path of estimated annualized risk premia computed using Z; ; 1 = mc; ;1
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The figure plots the path of estimated annualized risk premia MS,? M%:S, M/\::i and MSDSA and their pointwise confidence inter-
vals at 95% level when market capitalization is used as asset-specific instrument. The vector of common instruments is Z;_1 =
1, tsi—1, %TL\. We also display the unconditional estimate (dashed horizontal line) and the average conditional estimate (solid
horizontal line). We consider all stocks as base assets (n = 9,936 and nX = 3,835). The vertical shaded arcas denote recessions
determined by the National Bureau of Economic Reasearch (NBER).
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Figure 6.5: Path of estimated annualized risk premia computed using Z; | = [1, ds;_1, divY; 1]
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The figure plots the path of estimated annualized risk premia M/SB MMSF? M:SZ and MSQSA and their pointwise confidence intervals
at 95% level when default spread and dividend yield are used as common instruments. The stock specific instrument is book-to-market
equity. We also display the unconditional estimate (dashed horizontal line) and the average conditional estimate (solid horizontal line).
We consider all stocks as base assets (n = 9,936 and nX = 1,107). The vertical shaded areas denote recessions determined by the
National Bureau of Economic Reasearch (NBER).
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Figure 6.7: Path of estimated annualized risk premia with time-varying betas modelled via Z; ; ; = [1, @gil_\
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The figure plots the path of estimated annualized risk premia M/SA, Mm:&,? M/:SZ and MSDSA and their pointwise confidence intervals
at 95% level when time-varying betas are linear functions of the book-to-market instrument only. The risk premia vector involves the
common instruments Z; 1 = [1, ts;_1, &wTL\. We also report the unconditional estimate (dashed horizontal line) and the average
conditional estimate (solid horizontal line). We consider all stocks (n = 9,936 and nX = 6, 208) as base assets. The vertical shaded
areas denote recessions determined by the National Bureau of Economic Reasearch (NBER).

72



‘(MAGN) YoI8aseay] JIouody Jo neding [euoneN 9y} £q pouILIo)op SUOISSIIAI
9J0UQp SBAIE PAPRYS [BONIAA AU, 'SIOSSE aseq Sk ()€F ‘9 = XU PUB 9C6 ‘6 = W) SD0IS [[B IOPISU0D A\ “(JUI[ [BIUOZLIOY PI[OS) JBWNSI
[eUONIPUOD aFeIAAR Q) puB (SUI] [BIUOZLIOY PAysep) 1ewWIlse [euonIpuodsun ay) 1odar os[e ap .\ﬁ\“wﬁ ‘=157 ‘1] = 1=z sjuownnsur
UOWIWIOD A} SOA[OAUL 10J09A BruIdId YSII OY], "SUInidI orjojiiod Ansnpur Jo SUONOUNJ JBQUI[ QI8 SBJOQ SUIAIBA-OWIN) UM [9AJ] %G6 I8
S[RAISIUT QOUSPYUOD astmIuIod Iy pue *Wowly pug F1UWYy Fqusy Wy pruroxd Ysu pazipenuue pajewnss Jo yred o) s1o1d 2imsy oy,

ot S0 00 56 06 S8 08 SL oL 99 ot S0 00 56 06 S8 08 SL oL 59

—oe- i —oe-

—og —0e
ot —or
—0s —o0s
—og —og
Fwouy gy
ot S0 00 56 06 S8 08 SL oL 90 ot S0 00 S6 06 S8 08 SL oL 59

T T T T T T T T 0¥ T T T T T T T T T 0%

—og- —oe-

—o0z- —oz-

Hoe 1 -1 [ Hoe

—or —ov
—0s —0s
—-09 -09
fQuus, S
— ey

[ Fipu ‘T = T7F17 eIA pajaport sejaq SurfieA-own yiim erwaad YSLI pazienuue pajewnsd Jo yied :§'9 ansiy

73






Chapter 7

Conclusions

The purpose of this thesis is to infer the path of risk premia from a large unbalanced panel of individual
stock returns. First, we provide theoretical contributions that concern the finance and the econometric theory
assuming an unconditional factor model for the excess return of an asset. Then, we extend the setting of
unconditional models to conditional linear factor models in order to capture time-varying factor loadings
and time-varying risk premia.

From the point of view of the finance theory, we derive an empirically testable no-arbitrage restriction in
a multi-period conditional economy with a continuum of assets and an approximate factor structure. In this
setting, our model accounts for conditional heteroskedasticity and weak cross-sectional dependence in the
error terms.

For the econometric contribution, we provide a new two-pass cross-sectional estimation approach that
allows us to estimate time-varying risk premia implied by conditional linear asset pricing model. We study
the large sample properties of the risk premia estimator under a double asymptotics in cross-sectional and
time-series dimensions. We also address testing for asset pricing restrictions induced by the no-arbitrage
assumption in large economies.

We provide an empirical analysis on returns for about ten thousands US stocks from July 1964 to De-
cember 2009. We look at three factor models popular in the empirical finance literature to explain monthly
equity returns: the CAPM, the three-factor Fama-French model, and the four-factor model that includes a
momentum factor. We present unconditional and conditional estimates for the dataset of individual stocks

and for 25 and 100 Fama-French portfolios. For individual stocks, we get that the conditional risk premia
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are large and volatile in crisis periods. They exhibit large positive and negative strays from unconditional
estimates, follow the macroeconomic cycles, and do not match risk premia estimates on standard sets of
portfolios.

This thesis is a first methodological step towards the econometric analysis of large-scale equity datasets.
We believe that the empirical results are interesting and encouraging. We conclude by mentioning two open
issues that we could not address in this work. The first issue concerns the identification of systematic risk
factors for individual stocks. In our empirical application, we consider the Fama-French three factor model
as the benchmark specification. This choice allows us to compare our empirical results with the results
available in the empirical finance literature using portfolio returns as base assets. However, the Fama-French
factors could explain only a part of the systematic risk of asset returns. A possibility is to identify latent
common factors by applying the asymptotic principal components (APC) method proposed by Connor and
Korajczyk (1986, 1987, 1988) (see also Stock and Watson (2002 a, b) and Bai and Ng (2002)). The second
issue is about the potential misspecification of the factor model. In the thesis, we assume that the linear
factor models are correctly specified. However, the one or three-factors specifications usually considered for
portfolios could be misspecified when we consider individual stocks as base assets. Under the maintained
assumption of a linear factor structure, misspecification can be due to an incorrect number of common
factors, or an incorrect selection of the observable factors. We could theoretically investigate the large
sample distributions of the estimators and test statistics under a misspecified factor model (see Kan, Robotti
and Shanken (2012)) accounting for the unbalanced characteristic of the dataset. Moreover, we could propose

a test of misspecification. These topics are interesting avenues for future research.
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Appendix A: Proofs of Propositions

A.1 Regularity conditions

In this Appendix, we list and comment the additional assumptions used to derive the large sample properties

of the estimators and test statistics. For unconditional models, we use Assumptions C.1-C.5 below with

Ty = (L ft/)/

Assumption C.1 There exist constants 0,7 € (0, 1] and C1,Co,Cs,Cy > 0 such that for all § > 0 and

T € N we have:

a)P [H; Z (mt:):ff —F [:):t:n;]) ‘

t
Furthermore, forall§ > 0, T € N, and 1 < k,l,m < K + 1, the same upper bound holds for:

> 5| < CiTexp {—C26°T"} + C36~ exp {—CuT"}.

1
b) sup P T th(v) (a:tx; - F [xtx;]) > (5] R
v€[0,1]
c) sup P ZIt YziEed(y)]| > 5];
~v€[0,1]
1
d) sup Pl Y (LML) = ElL()L(G))]| = 5] ;
7,7 €[0,1] ¢
e) sup P [ th ( Yer (Y, — E [5,5(7)575(7’)56,51:2}) > (5];
v, €[0,1]
f) sup P th Ny e ixeme(y)| = 1.
¥,7' €[0,1]

Assumption C.2 There exists a constant M > 0 such that for all T € N we have:

T2 COU(€?1(7)>5t2(7)5t3(7>’$T)|] < M.

t1,t2,t3

sup E
v€[0,1]
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Assumption C.3 There exists a constant M > 0 such that for all n, T € N we have:

1
a) E ZZEUCOU Eit1r € ]t2|xT77177])‘2|7i77j}2 < M.

1,5 t1,t2

1

2 2
b)E TlT2 E E [‘COU 82t161t27€]t3€]t4’xT77277])‘ "Y’La’yj:| SM;
4,J t1,t2,t3,t

1
2 3 9
¢ E Mﬂg > Uwvmn&mmm%mum%nﬂ\hmw] < M, where 1y == €7, — 0ii
1,7 t1,t2,t3,t4

(NI

2
d) E nT2 § :t ;t:t UCOU mtlmtg,ﬁgtgnjt4|$T,%a’Yg)} ’%‘ﬁj] < M;
7] 1,02,03,l4

[N

2
€)E ’I’LTSZ Z [‘COU 5'Lt151t251t37€]7t48]t56]t6|xTa’YZa’YJ>‘ ‘71)7]] SM,
3, t1,..5l6

D=

2
T3 E E |COU nltlglt251t37n]t45jt E]tG‘xT7fYZa’7j)| ’7@77‘] SM
7.] t17 7t6

Assumption C.4 a) There exists a constant M > 0 such that ||xi|| < M, P-a.s.. Moreover, b)

sup [|6(7) < coand¢) inf E[L(y)] > 0.
ve[0,1] v€[0,1]

Assumption C.5 The trimming constants satisfy x1,7 = O ((logT')"*) and x2, 7 = O ((log T')"*?), with k1,

Ko > 0.

Assumptions C.1 and C.2 restrict the serial dependence of the factors and the individual processes of
observability indicators and error terms. Specifically, Assumption C.1 a) gives an upper bound for large-
deviation probabilities of the sample average of random matrices x;x}. It implies that the first two sample
moments of the factor vector converge in probability to the corresponding population moments at a rate
Op(T*”/ 2(log T)¢), for some ¢ > 0. Assumptions C.1 b)-f) give similar upper bounds for large-deviation
probabilities of sample averages of processes involving factors, observability indicators and error terms, uni-
formly w.r.t. v € [0, 1]. We use these assumptions to prove the convergence of time series averages uniformly
across assets. Assumption C.2 involves conditional covariances of products of error terms. Assumptions C.1
and C.2 are satisfied e.g. when the factors and the individual processes of observability indicators and error
terms feature mixing serial dependence, with mixing coefficients uniformly bounded w.r.t. v € [0, 1] (see

e.g. Bosq (1998), Theorems 1.3 and 1.4). Assumptions C.3 a)-f) restrict both serial and cross-sectional
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dependence of the error terms. They involve conditional covariances between products of error terms &; 4
and innovations 7; ; = 51% — 0y for different assets and dates. These assumptions can be satisfied under
weak serial and cross-sectional dependence of the errors, such as temporal mixing and block dependence
across assets. Assumptions C.4 a) and b) require uniform upper bounds on factor values, factor loadings
and intercepts. Assumption C.4 c¢) implies that asymptotically the fraction of the time period in which an
asset return is observed is bounded away from zero uniformly across assets. Assumptions C.4 a)-c) ease the
proofs. Assumption C.5 gives an upper bound on the divergence rate of the trimming constants. The slow
logarithmic divergence rate allows to control the first-pass estimation error in the second-pass regression.
For conditional models, we use Assumptions C.1-C.5 with z; replaced by the extended vector of common
and firm-specific regressors as defined in Section 3.1. More precisely, for Assumption C.1a) we replace x; by
2(v) = (vech(Xy), Z{_1 @ Zy 1 (7)), [i® Z_1, fl ® Zt,l(fy)’)/, and require the bound to be valid uni-
formly w.r.t. v € [0, 1]. For Assumptions C.1 b)-f) we replace x; by z4(y). For Assumptions C.2 and C.3
we replace z7 by 27 (), and by z7(7;), z7(7;), respectively. For Assumption C.4a) we replace the bound

on ||x¢|| with bounds on || Z;||, and on || Z;(y)|| uniformly w.r.t. v € [0, 1]. Furthermore, we use:

Assumption C.6 There exists a constant M > 0 such that HE [utuﬂZt_l] H < M for all t, where

up = fy — E[ft’]:tfl]-

Assumption C.6 requires a bounded conditional variance-covariance matrix for the linear innovation wu; as-
sociated with the factor process. We use this assumption to prove that we can consistently estimate matrix ¥’

of the coefficients of the linear projection of factor f; on variables Z;_; by a SUR regression.

A.2 Unconditional factor model

A.2.1 Proof of Proposition 1 and link with Chamberlain and Rothschild (1983)

To ease notations, we assume w.l.o.g. that the continuous distribution G is uniform on [0, 1]. For a given
countable collection of assets 71,72, ... in [0, 1], let u,, = A, + B, E[f1|Fo] and X, = B, V[ f1|Fo|Bl, +
Yein, for n € N, be the mean vector and the covariance matrix of asset excess returns
(Ry(11), .., R1(7))  conditional on Fo, where A, = [a(y1), ...,a(7x)]s and By = [b(71), ..., b(7m)] -
Let e, = pin — By (B;Bnyl Bl = An — By (B,;Bn)

1 /
B, A,, be the residual of the orthogonal

79



projection of u, (and A,) onto the columns of B,. Furthermore, let P,, denote the set of portfolios p,
that invest in the risk-free asset and risky assets 7y, ..., v,, for n € N, with portfolio shares measurable
w.r.t. Fp, and let P denote the set of portfolio sequences (p,,), with p, € P,. For portfolio p,, € Py,
the cost, the conditional expected return, and the conditional variance are given by C(p,) = g + Oé;ILn,
E [pn|Fo] = RoC(pn) + a;un, and V [p,|Fo] = a/nEnan, where ¢, = (1, ..., 1)/ and a,, = (A1, ooy Q) -

Moreover, let p = sup E[p|Fo]/V [p|Fo]'/?, where the sup is w.r.t. portfolios p € U P, with C(p) = 0
p

neN
and p # 0, be the maximal Sharpe ratio of zero-cost portfolios. For expository purpose, we do not make

explicit the dependence of yi,,, Xy, €5, Pr, and p on the collection of assets (7y;).

The statement of Proposition 1 is proved by contradiction. Suppose that ian / [a(y) = b(y)'v)?dy =
VvER

-1
/[a('y) — b(7) Voo )2dry > 0, where vo :</ b(y)b (fy)'dq/) /b(fy)a(v)d'y. By the strong LLN and
Assumption APR.2, we have that:

n

HllealP = i > aloi) = b v > [la(y) — bxvac P, @)
veRE

as n — oo, for any sequence (y;) in a set 71 C I', with measure pr(J;) = 1. Let us now show that an
asymptotic arbitrage portfolio exists based on any sequence in J; (| J, where set J is defined in Assump-

tion APR 4 (i). Define the portfolio sequence (g, ) with investments o, = en and o, = —t), v, This

2
static portfolio has zero cost, i.e., C'(gn) = 0, while F [g,|Fo] = 1 and V ’[’qe:||‘|7-'g] < €igmax(Ze1n)lenl 72
Moreover, we have V' [g,, | Fo] = E [(qn - F [qn|]:o])2 \]:o} >F [(Qn - F [Qn|f0])2 |Fo,qn < 0| P gn < 0|Fp] >
P gy < 0|Fo] . Hence, we get: Plg, > 0[Fy] > 1 —V [gu|Fo] > 1 — €igmax(Zc1n)lenl 2. Thus, by
using €igmax(3e1,) = o(n) from Assumption APR.4 (i) and |le,|| =2 = O(1/n) from Equation (a.1),
we get P [g, > 0|/Fy] — 1, P-as.. By using the Law of Iterated Expectation and the Lebesgue domi-
nated convergence theorem, P [g,, > 0] — 1. Hence, portfolio (gy,,) is an asymptotic arbitrage opportunity.

Since asymptotic arbitrage portfolios are ruled out by Assumption APR.S, it follows that we must have
/[a('y) — b(7) Veo)?dy = 0, that is, a(y) = b(7)'v, for v = v, and almost all y € [0, 1]. Such vector v is

unique by Assumption APR.2, and Proposition 1 follows.

Let us now establish the link between the no-arbitrage conditions and asset pricing restrictions in CR on

the one hand, and the asset pricing restriction (2.3) in the other hand. Let J* C I be the set of countable col-
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lections of assets (+y;) such that P [Conditions (i) and (ii) hold for any static portfolio sequence (py,) in P] = 1,
where Conditions (i) and (ii) are: (i) If V' [p,|Fo] — 0 and C(p,) — 0, then E [p,|Fo] — 0; (ii) If
V pn|Fo] — 0, C(pn) — 1 and E [p,|Fo] — 9, then § > 0. Condition (i) means that, if the conditional
variability and cost vanish, so does the conditional expected return. Condition (ii) means that, if the con-
ditional variability vanishes and the cost is positive, the conditional expected return is non-negative. They
correspond to Conditions A.1 (i) and (ii) in CR written conditionally on g and for a given countable collec-
tion of assets (y;). Hence, the set [7* is the set permitting no asymptotic arbitrage opportunities in the sense

of CR almost surely (see also Chamberlain (1983)).

Proposition APR: Under Assumptions APR.1-APR.4, either
o
r ( inf > [a() — b)) < oo> — ur(J*) =1, or

K
veR i—1

o0
Ur ( ian [a(vi) — b(7)'v)* < oo) = pr(J*) = 0. The former case occurs if, and only if, the asset
veRA £
=1
pricing restriction (2.3) holds.

The fact that ur ( inf Z a(vi) — b(v) ] < oo) is either = 1, or = 0, is a consequence of the Kol-

veRK

oo
mogorov zero-one law (e.g., Billingsley (1995)). Indeed, inf Z[a(%) —b(v;)'v]* < o< if, and only if,
veRA £
=1

oo
inf [a(vi) — b(7:)'V]* < oo, for any n € N. Thus, the zero-one law applies since the event

veERK
1= 7L

o0
inf Z a(vi)—b(y;)'v]? < oo belongs to the tail sigma-field 7 = ﬂ o(vi,i=mn,n+1,...), and the

vERK n=1

Varlables v; are i.i.d. under measure up.

Proof of Proposition APR The proof involves four steps.

STEP 1: If ur <

step is proved by contradlctlon Suppose that the asset pricing restriction (2.3) does not hold, and thus

inf Z a(i) — b(i) ] < oo) > (, then the asset pricing restriction (2.3) holds. This
vERK

/[a(y) — () Voo)?dy > 0. Then, we get ur ( inf Z a(vi) — b(y)'v)* < oo) = 0, by the conver-

gence in (a.l).
(e.)

STEP 2: If the asset pricing restriction (2.3) holds, then up ( inf [a(y:)—b(y:)'v]? < oo) = 1. Indeed,

K
veR i1

oo
Ur (Z[a(’yi) — b(fy,-)’l/]2 = 0) = 1, if the asset pricing restriction (2.3) holds for some vector v € R¥.

i=1
STEP 3: If up (J*) > 0, then the asset pricing restriction (2.3) holds. By following the same arguments as in
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CR on p. 1295-1296, we have p* > 11,51, ftn and 31 | > €igmax(Se,1,0) " [In — Bn(By,Bn) ™" By], for

e, l,n
any (7;) in J*. Thus, we get: p*€igmax(Se,1,n) >ty (In — Br(ByBy) ' By) i = f&i@ |t — B || =

n

min ||A, — Byv||* = min Y [a(v;) — b(v;)'v]?, for any n € N, P-a.s.. Hence, we deduce
veRK veERK im1
1 1
. ~—b‘/2< 27-mxz 2
min ;Zl[a(%) () V] < p7 - eigmax(Ze,1.n), (@2)

for any n, P-a.s., and for any sequence (7;) in J*. Moreover, p < oo, P-a.s., by the same arguments as in
CR, Corollary 1, and by using that the condition in CR, footnote 6, is implied by our Assumption APR.4 (ii).
Then, by the convergence in (a.1), the LHS of Inequality (a.2) converges to / [a(y) = b(7) veo|?dr, for pur-
almost every sequence (vy;) in J*. From Assumption APR.4 (i), the RHS is o(1), P-a.s., for pp-almost every
sequence (v;) in . Since up (J*) > 0, it follows that /[a(fy) —b(y) veo)?dy = 0, ie., a(y) = b(y)'v, for
V = v and almost all y € [0, 1].

STEP 4: If the asset pricing restriction (2.3) holds, then pr (J*) = 1. If (2.3) holds, it follows that e,, = 0 and
pn = By (Bl B) B! iy, for all n, for up-almost all sequences (7;). Then, we get E[p,|Fo] = RoC(pn)
+0, By (B!, By, /n) ' Bl i, /1. Moreover, we have: V[p,| Fol = (B, an) V[ f1|Fol(Blanm) + oz/nEal,nan >
€igmin (V[ f1]F0]) HB;lan ’ , where eigmin (V[ f1]Fo]) > 0, P-a.s. (Assumption APR .4 (iii)). Since B}, B, /n

converges to a positive definite matrix and B, i1, /n is bounded, for pp-almost any sequence (7;), Conditions

(i) and (ii) in the definition of set J* follow, for up-almost any sequence (+y; ), that is, up(J™*) = 1.

A.2.2 Proof of Proposition 2

a) Consistency of 7. From Equation (2.5) and the asset pricing restriction (2.3), we have:
b —v= QY ibic, (B - i) (@3)
b n £ 107Cy, 7 i) - .
K3

The consistency of ¥ follows from the next Lemma, which is proved in Section A.2.2 c) below. The notation
I = Op og(an ) means that I, 7/ay 7 is bounded in probability by some power of the logarithmic term
log(T') as n, T — oc.

Lemma 1 Under Assumptions A.1 b), SC.1-SC.2, C.1, C.4 and C.5, we have:
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%

. 1 .
(i) sup LX]18; = Bill = Opog (T72): (i) supws = O(L); (i) — 3 by = wil = 0,(1); (iv) Qp = Qs =

0p(1), when n, T — oo such thatn = O (T7) for ¥ > 0.

b) Consistency of ). By Assumption C.la), we have Z ft —E[ft]]=o0,(1), and thus

. . 1

[ =A< o= v+ 7 2 fi= Bl =0 1),

c¢) Proof of Lemma 1: (i) We use Bi—ﬁi = %Q;%ET and ]_i(Ti,T < Xx2r. Moreover,
R R K+1 s

HQ;}HQ =Tr (Q;f) = Z /\;? <(K+1)CN (Qm) , where the )y ; are the eigenvalues of matrix

k=1
Qm’ and we use €igmaz (QM) > 1, which implies 12‘“@;}” < Cxi,r- Thus, sup 1i‘||BZ — Bill =
7

Op.log (T_1/2 sup HYzTH) from Assumption C.5. Now let 67 := T~/2(log T)(1+7)/(2C2) where 1, Cy >
7

0 are as in Assumption C.1 and 7 > 0 is such that n = O(T"7). We have:
P [T‘1/2 sup | Virl| = 5T] <P [T™V2Yip| > br] = nE [P (T2 ¥ir]) 2 bri )| <

Z It ZL‘té't

n sup P >or| <n(CiTex Co02T —1—03(5 ex cyT
p ( p{—CadrT"} T exp {-CiT"}) = O(1),

~v€[0,1]

from Assumption C.1 ¢). Part (i) follows. By using w; = v;l, 7 > 1 and €igmin(Si) > M~ eigmin(Qz)
from Assumption A.1 b), part (ii) follows. Part (iii) is proved in the supplementary materials by us-

. 1 .
ing Assumptions C.1, C.4 and C.5. Finally, part (iv) follows from Q, — Qp = - E (w;bib; — w;b;b})
i

1
+— g wibib'i — @y, by using parts (i)-(iii) and the LLN.
n =
1
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A.2.3 Proof of Proposition 3

a) Asymptotic normality of 2. From Equation (a.3) and by using B, - B = ; ;}Y;T we get:

Ti,
\/T
v-v = Q;lizwibi<B¢—5z‘>/0y+Qb_IiZﬂ7i(@—bi) (Bi_ﬁi)lcv

1.1 .
= = 1% > i b Y Qy tey + Qb Z Wit By Q1 Yir Y, Qe (a.4)
7

Let [; .= Z Wi b Y TQI ;Cv- Then, from Equation (a.4) and the definition of B,,, we get:

1 - A 1 A 1 A N
vnT(ﬁ—Bu—v) = Q'L+ =0y By > il Q7 i Yia Qs e, — 74 Q51505 oo
T T \/ﬁ Z ? El ) ) H

A_ 1 oAy
= Qb1[1+ﬁQb1E212. (@.5)

Let us first show that Qb_ll 1 is asymptotically normal. We use the next Lemma, which is proved below in

Subsection A.2.3 ¢).

1
Lemma 2 Under Assumptions A.1, A.3, SC.1-SC.2 and C.1, C.3-C.5, we have I, = % E w;Tb; Y, TQ ¢y + op(1),
i

when n, T — oo such thatn = O (T7) for ¥ > 0.

From Lemmas 1 (iv) and 2, and using vec [ABC| = [C" ® A] vec [B] (MN Theorem 2, p. 35), we have:
A A 1
Qb I = ( ZwmbY ) c,,—l—op(l) = (c’ngj1 ®Qb_1> \/ﬁ;wm (Yir ®b;) + op(1).

Then, we deduce lel 1= N (0,%,), by Assumptions A.2a) and C.1a) and Lemma 1 (iv).

1
Let us now show that — 1> = 0,(1). We have:

VT
1 R Al ' A _ N
I = N > it Q; (Yi,TY;j - Sii,T) Qricy NG Z Wi Q) ( TS — Sn;T) Qv
[
. 1 o
Z w;T; TQx i < i zz) Qx;CV - % Z wiTi,TQmi:SiiQa;'j: (Cﬁ - Cu)
7

=: (121 — I22 —Ip3)cy, — Ioa (¢ —cy) (a.6)
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N 1 1 . .
where SZQZ- = — E I; ts?txtx; and S;; 7 = — g I; 104 tx4xy. The various terms are bounded in the next
I]‘% ) s ) T - ) )
Lemma, which is proved in Appendix B.

Lemma 3 Under Assumptions A.1, A.3, SC.1-SC.2, C.1-C.5, (i) I; = Zwl - ( Y7 SZ-@T) Ot

1
+Op,log <éﬁ> = Op(l) + Op,log <\§ﬁ>’ (ii) Iz = Op,log <\/T + ?)) (iii) I23 = Op,log (?)

(iv) IQ4 = Op,log (\/ﬁ) and (V) Cp —Cy = p,log <
fory > 0.

, when n,T — oo such that n = O (T7)

RN
vn T

1 vn _
From Equation (a.6) and Lemma 3 we get —— 1 = 0,(1) + O <> Fromn = O(T7) with ¥ < 3,
q ( g JT 2 p( ) p,log VT (1T7) Y

we get I5 = 0p(1) and the conclusion follows.

1
VT
b) Asymptotic normality of \. We have T (5\ — )\) \F Z fi—E[fi]) + VT T (0 — v). By using

1 1
VT (0 —v) =0, <\/ﬁ + \/T) = 0, (1), the conclusion follows from Assumption A.2b).

¢) Proof of Lemma 2: Write:
1 N A A A
L = 7 > b YirQy e, + Z ;T 7biY; ( Qi — @z > = 11Q; ¢ + Iacy.
i

Let us decompose [1; as:

1
I, = %Zwmb Y/ r Z 1X — 1) wiTib; Y/T+—Zl w; (75,0 — 73) biYi
i
1 .
+%21§< (07 — vy )nTbY =: 11 + Tiie + Iz + T1g.

Similarly, for 715 we have:

7 A by (@} - 07+ A G o) oy (21 - 05)

=: 1121 -I- I199.

The conclusion follows by proving that terms 112, I113, [114, [121 and 199 are op(l).

Proof that I112 = op(1). We use the next Lemma.
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Lemma 4 Under Assumptions SC.1-SC.2, C.1b), d) and C.4 a), ¢): P[1¥ = 0] = O(T_B), forany b > 0.

In Lemma 4, the unconditional probability P [1X = 0] is independent of ¢ since the indices (;) are i.i.d. By
using the bound ||I112]| < 5% Z(l —1%)||Y; 7| from Assumptions C.4 b) and ¢) and Lemma 1 (ii), the
bound sup E[||Y; r|/|zT, IT, {%}z] < C from Assumptions A.1 a) and b), and Lemma 4, it follows I112 =
Op(\/ﬁlz_g), for any b > 0. Since n = O (T7), with ¥ > 0, we get I112 = o,(1).

Proof that I113 = op(1). We have E [HIngHQ\xL I, {%}] < % Z Z 1?1;-(]7'1'1 — TillTir —

ij
from Assumption A.1 a). By Cauchy-Schwarz inequality and Assumption A.1 c) we get ' [[| s ||*[{7i}] <
1/2 .
CM sup,cjoq1 £ (X770 — 7il* v = 7] 2. By using 7,7 — 7 = —7; TTZT Z it — E[Ii+|v]) and
. 4
1irir < xer weget sup B [1¥mr — 7'y =] < Cxar sup E T > (L(y) = ElL()])| | =o(1)
7€[0,1] v€[0,1] t
from Assumption C.5 and the next Lemma.
. 4

Lemma 5 Under Assumption C.1d): sup E T Z (Ie(y) — E[L(y)])| | =0T ™), for some ¢ > 0.

76[071] t
Then, 1113 = Op(l).

Proof that T114 = 0,(1). From &; ' — v, ' = —v;2 (0 — v;) + 0; Loy 2 (9 — v;)%, we get:

Iy = _T Z 1X0;2 (0; — v;) TirbiY] T + Z 10, to; —v;)? Tirbi Y] = Inian + Tiaz.

Let us first consider I7141. We have:

N -1 (& A—1 Al A-1
bi—vi = Tirch, Qi (Sn' - Sn‘) Qrico +2mi7(co — ) Qi SiQy iy
Al A-1 A1 -1 A—1
+7i7(Coy — ) Qi SiiQy i (coy — ¢) +27i 7€, (Qx,i - Q; ) SiiQy.icv
A— -1 A1 - - -
+Ti. 16, (Qmi - Q; ) Sii (Qx,i - Q; 1) ¢+ (rir — 1), Q7 ' SuQy te. (a7)

The contribution of the first two terms to I7747 is:
1 -
_ X 3 !
L = — ’I’L E 1; Ui Tclexl ( [ Sn) Qx lculb Y
A la A-1
hLine = ——F& g LYo, 77 (co, — ) Qi SiQy i€o,biY p.
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We first show I11412 = op(l) For this purpose, it is enough to show that ¢;, — ¢, = O,(T~°), for some
¢ > 0, and —Zl ( xiS“Qm) biYir =0, (X%Tng) forany k,l = 1,..., K + 1. The
first statement follows from the proof of Proposition 2 but with known weights equal to 1. To prove the
second statement, we use bounds 1X7; 7 < x27 and 12<HQ;,¢ | < Cx1,7 and Assumption A.1 c). Let us

now prove that 111411 = 0p(1). For this purpose, it is enough to show that

him g Sty (0 (S ) 052) Wir = () “

. R 5 T, T
for any k,l. By using &, = ;¢ — (52‘ — 51) =it — —2 7.0 IYZ T, we get:

\/T t

N 1 1 .
Sy — Sii = T Z I 4 (aftxtx; — Sii) + T Z I 4 (522715 — z-:?t) Ty
Yot Yot
T 272 3
oL W2 4,7 —

’T A—
\/Tlesz + \/7 jl" a'v $7} ivT

20 YirYrQLL, a9

S
~ 3

1 1
o 2 _ 2 L o 2
where W1 ;7 := VT 2 g I zxinie, mip = €5 — Oiig, Woir i= Nix g I; 1Gits Cip = 0qipxi — S,
¢

1 ) .
Wair: \/» Z I & txt s 5641) = T Z Ii,txf and x; is treated as a scalar to ease notation. Then:
¢

Jl = \/7 Z ]‘z i Ti T WL’L:TQJ: zb Y/ Z ]‘ZX ;2 ¥ W2ﬂ»TQz 2

ﬂ21 riWaid Qi YirQy ibi¥ir + Zl QLYY QY

= Ji + Jio + Jiz + Jua.

Let us consider J;1. We have:

1
E [Juler, Ir, {v}] = s ZZIZ v T bixf:csE €7 &4 2T, 7i] =0,
i

from Assumption A.3. Moreover, from Assumption C.4:

V [Jll‘mz’ IZv {71 — nT3 Z Z 1X1 7—] T”sz” HQz]H ’CO'U (771 tlgl t2777],t3€3 t4|xT77277]) ‘
1,7 t1,02,t3,t4

87



By using 1?||Q;1|| < Cxar. 1¥7i1 < X2, the Law of Iterated Expectations and Assumptions C.3 c¢)
and C.5, we get £ [Jy1] = 0 and V[Ji1] = o(1). Thus Ji; = o0p(1). By similar arguments and using
Assumptions A.1 ¢) and C.3 e), we get Ji2 = 0,(1), Ji3 = 0p(1) and J14 = 0,(1). Hence the bound in
Equation (a.8) follows, and I11411 = 0,(1). Paralleling the detailed arguments provided above, we can show
that all other remaining terms making /114 are also op(1).

Proof that I121 = op(1). From:
A A ~ (1 A A A A A A
Qui —Qr' =—0Q,; (T > Ligmah — Qx> Q' = —7mirQ, WirQ,' + Q. ;WrQ; ", (a10)
(]
t

1
where W;  := 7 Z L1z — Q) and Wy = Z T} — , We can write:
n ¢

1 _ A A A
Ly = <\/ﬁ Z 1?% lTl%TbiYi,,TQ 1Wz T+ —F= Z 1, i Ti,Tbin'/,TijWT> Qy !
%

= (I1o11 + T1212) Q;

Let us consider term /1211. From Assumption C.4, 1?“@;1 | < Cxirand 1§T¢7T < Xx2,7, we have:

Wi, Gl

2 CX%,TXZQ{T
E | Lon PP lzr, I, {vi}] < — Z Zt: |oijt
7‘7

1
Then, from Cauchy-Schwarz inequality, we get E [||I1211 ||2|{%}] < CX3pxor— g E[afj | fyj]l/Q
I b n I

,J
SupE [||W2T||4|72] , where supE [||W2T|| |72] < sup FE th :Etl'; — Qz)
7 76

from Assumptions C.1 b) and C.4 a). Then, from Assumptlons Alc) and C.5 it follows E[||I1211]|%] = o(1)

4
= O(T°)

and thus I1211 = op(1). Similarly we can show I1212 = 0p(1), and then I12; = op(1).

Proof that 112 = 0,(1). The statement follows by combining arguments similar as for 1114 and I;2;.
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A.2.4 Proof of Proposition 4

From Proposition 3, we have to show that &, — ¥, = op(1).By X, = (c{,Q;l ® le) S (Q;lc,, ® Q;l)

. . . Y /oA . - 1 T~ “ s
and ¥, = <C’I;Q;1 ® Qb_1> Sp (Q;lcg ® Qb_l), where S, = — E WiW; L TT5T Sij ® bib;-, and the con-
n‘= TijT
Z7‘7
sistency of @), and Qp, the statement follows if S, — S, = 0p(1). The leading terms in S, — S, are given

1 TiTj (& 1 - = i
by I3 := - Zwiwj#j (SZ-- — Sij) ® bib; and Iy := - ZwiijiTj(Tij}f — Tijl)Sz’j ® b;b’;, while the
%,] 7
other ones can be shown to be 0,,(1) by arguments similar to the proofs of Propositions 2 and 3.
Proof of I3 = o,(1). By using that ; < M, 75 > 1, w; < M and ||b;]| < M, I3 = op(1) follows

. 1 %

if we show: EZ S;i — Si;
z?]

that extend results in Bickel and Levina (2008) from the i.i.d. case to the time series case including random

= 0p (1) . For this purpose, we introduce the following Lemmas 6 and 7

individual effects.

Lemma 6 Let 1,1 := max‘ Sij — Sij Sij — Sij
27‘7

, and Y, (§) = max P H
Z?]

> f}, for & > 0. Under

1
Assumptions SC.1, SC.2, A4, — Z ‘ =0, (wnTn‘Squ + ok 4 UV, (1 —w) H)) ,
n
i,]

forany v e (0,1).

/1
Lemma 7 Under Assumptions SC.1, SC.2, C.1, C4 and C.5, if k=M c;%nn with M large, then

1
n2W,r (1 —v)k) = O(1), for any v € (0,1), and VY1 = O, (\/ ﬁ) when n, T — oo such that
n =0 (T7) fory > 0.

In Lemma 6, the probability P H S'ij - Sij

> f} is the same for all pairs (4, j) with i = j, and for all pairs
with ¢ # j, since this probability is marginal w.r.t. the individual random effects. From Lemmas 6 and 7, it

1 ~ logn (1=q)/2 - 1—gq
follows — Z ‘ Sij — Sij|| = Op ( > n’ | = o, (1), since n = O(T7) with 5 < n=—.
n 4=

Z7]

n 20
Proof of Iy = op(1). From w; < M, , < M and b; < M, we have E[||Ls||[{vi}] <

_ _ 1 . : . _ _
C'sup E[[Tw% — Tz»jl |4, 7‘7]5 Z I|Sij]|- By using the inequalities sup E[\lelT — T i, )
[2¥} ij [2¥)
1 .
< sup ]E T > (L(NL(Y) = E[L(y)1(y)] ' and ||Si;|| < E[|ijt|17i, ;). from Assumptions A.1
¥'€[0,1

¢
¢) and C.1 d) we get E[||I4]|]] = o(1), which implies I, = op(1).
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A.2.5 Proof of Proposition 5

By definition of Qe, we get the following result:

Lemma 8 Under Hg and Assumptions APR.I-APR.5, SC.1-SC.2, A.I-A.3 and C.I-C.5, we have

A . 2 11 o
Qe = — Zwi [c:, (ﬂz — BZ)} + Op.log <nT + T2>’ when n, T — oo such thatn = O (T7) for 5 > 0.

n
1

_ . 1 . 2
From Lemma 4 and n = O(T7) for 0 < 4 < 2, it follows &,p = — Zwl [CL\/T (BZ- — ﬂl)} +
vn
—7ircpQy 18 Q hc } + 0, (1). By using VT (3 < &) = 7;,7Q, 1Y, we get
~ 1 N a 1A A
Enr = 7 > wirirc, @yt (Yi,TYi/,T - 7'7;71}51'@') Qqico +0p (1)

1 R - A _ A—
- % Z wiTl%Tc:A/Qac,% (}/;»TYZT B Sii,T) Q:v zc \/‘ Z wl i TC Qa: i ( Ti ’;SN B Sii7T> Qx,zl‘cﬂ
i

+op (1) =: ¢, (I21 — Ioz — Inz)cy + 0p(1),
where 51, Iso and o3 are defined in (a.6). By Lemma 3 (i)-(iii), and the consistency of ©, we have
énT - Z Wy T; Y Sii,T) Q ¢y + Op log <\§:) + Op (1)

Moreover, from n = O(T7) with 4 < 2, the remainder term O,, ;o4 (v/1/T) is 0p(1). Then, by using
tr [A'B] = vec[A]' vec B, and vec [YY'] = (Y ® Y) for a vector Y, we get

Er = \}ﬁzi:wnftr{ e, Qyt (YirYir — Sn’,T)]WLOp(l)

= (vec [Q 10,/ D sz Yir ®Y;r —vec[Sir]) +0p(1).

By using Assumption A.5, and by consistency of 7 and Qu we get énT = N (0,%¢), where
Se = (vee [Q3 e, Q7)) Q (vee [Q3 e ¢,Q71]). By using MN Theorem 3 Chapter 2, we have

vee [Q; evc, Q5] (Sij @ Sig)vee [Q7 e, Q7] = 11 [55,Q; e Q7 515Q; e Qr ]
= (CLQZISMQ;CV)Q, (a.11)
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and

vec [Q;lcyclngl], (Sij @ Sij) Wi 1vec [Q;lcyclny] = (CLQ?SUQ;C,,)Q ) (a.12)

Then, from the definition of Q in Assumption A.5 and Equations (a.11) and (a.12), we deduce
Y¢=2as.- lim —Zwlw] Q;lSijQ; cl,)2. Finally, Eg = Y¢ + op(1) follows from
72

n—oo n ij

1 N -
EZHSU — Sl = 0p(1 "mdﬁZHS@'j = SijlI* = op(1).
i i

A.2.6 Proof of Proposition 6

a) Asymptotic normality of 7. By definition of 7 and under H;, we have

UV—Voo = Q;l% Z wil;iclywﬁi = Q;l% Z 1221'5@'6:,00 (Bz - Bz‘) + QJI% Z wibie;  (a.13)
= Q;l% Z W;b; (Bz - @')/Cuw + QbA% Z w; B (Bz - 51') (/Bz - ﬁi)l Cuo
+Qb_1% ;ﬁ}ibiei + Qb_l% ;wl (ZA)Z — bz‘) €e;.

Equation (a.13) is the analogue of Equation (a.3), and the consistency of ¥ for v, follows as in the proof of

Proposition 2 and by using E [w;b;e;] = 0. Thus, we get:

1 -~
\/’ﬁ <I;— TBVOO - VOO)

A 1 N A 1A 1A A
- le\ﬁzwmfb i@y + leEQ\waHT< Qi YirYirQy i Cue — iﬂ}Qx}SiiQx,zl'cﬁ>

+Qb fzwzb ez“‘Qb \fz — Ww; bez"‘Qb \/—szTzTez ZTQ 1E2
=:I51 + Isp + I53 + I54 + I55.

1
From Assumption SC.2 and E [w;bse;] = 0, we get NG > wibie; = N (0, E [w}ebibj]) by the CLT.
n =
(2
Thus, Is3 = N (0, Q;lE [w?e?bib;] Q, 1). Then, the asymptotic distribution of © follows if terms I,

Iso, I54 and I55 are o, (1). From similar arguments as for term /; in the proof of Proposition 3, we have
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wame TQ“ . = Op(1) and —ZmeeZ ZTQ IEQ Op(1). Thus Is; = op(1) and

Is5 = o0,(1). From similar arguments as for term I, in the proof of Proposition 3, we have Iso = o,(1).

Moreover, term I54 = op(l) from similar arguments as for /115 and I714.

b) Asymptotic normality of . We have v/T (5\ — )\oo) =T (v — Z fi— ) . By us-
ingy > 1and VT (0 — vs) = O ) + L op (1), the conclusion follows
g’y o) T P n \/T - Yp 9 .

c¢) Consistency of the test. By definition of Q.. we get the following result:

A 1 A 2
Lemma 9 Under 1 and Assumptions SC.1, SC.2, A.1-A.3, C.1-C.5, we have Qe = — Y iy [c; (5,~ - 5)}
n

i

1 1 _
+— Zwle —I—Oplog< \/7 \ﬁ) whenn,T — oo such that n = O (T7) for 7 > 0.

By similar arguments as in the proof of Proposition 5 and using 7 < 2, we get:

. A 1 T
_ . -1, 52
o = g W;T; f TY S“,T) Qo+ T\/ﬁ EZ wie; + Op log ( + ﬁ) + 0, (1)

Vn
= Tv/nE [wi (ai — b;yoo) ] +0,(T).

Under H;, we have E [wi (ai — b,-l/oo)z} > 0, since w; > 0 and (a; — bivsg)® > 0, P-as. Moreover,

Ye = ¥¢ +0p (1). Thus, E 1/2fnT = Tf( B {wi (a; — biveo) } + 0p (1)) .

A.3 Conditional factor model

A.3.1 Proof of Proposition 7

Proposition 7 is proved along similar lines as Proposition 1. Hence we only highlight the slight differences.
We can work at ¢t = 1 because of stationarity, and use that a; (), b1(7), for v € [0, 1], are Fp-measurable.
Then, the proof by contradiction uses the strong LLN applied conditionally on Jy and Assumption APR.7
as in the proof of Proposition 1. A result similar to Proposition APR also holds true with straightforward

modifications to accommodate the conditional case.
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A.3.2 Derivation of Equations (3.6) and (3.7)

From Equation (3.5) and by using vec[ABC| = [C' ® A] vec[B] (MN Theorem 2, p. 35), we get
Zi_\Bify = vec|Z{_Bif;] = [f{ ® Z;_y] vec [Bj] ,and Z;, ,Cifi = [f{ ® Z; 1] vec [C;], which gives
Zy \Bifi + Ziy Cife = 25,82,

Let us now consider the first two terms in the RHS of Equation (3.5). a) By definition of matrix X; in

Section 3.1, we have

1
Z, \Bi(AN-F)Z, 1, = 52;_1 [Bj (A—F)+ (A= F) Bi] Z4—1

1
= §vech [X:) vech [Bj (A — F)+ (A — F) B;] .
By using the Moore-Penrose inverse of the duplication matrix D,,, we get

vech [Bj (A — F) 4+ (A — F)' B;] = D} [vec [Bj (A — F)] 4+ vec [(A — F) By |.

Finally, by the properties of the vec operator and the commutation matrix W), i, we obtain

503 [vee [B{(A— F)] +uec[(A~ FY B]] = 3DF [(A—FY @1+ 1,@ (A~ F) Wy ic] wee [B]].

b) By the properties of the ¢r and vec operators, we have

Ziy Ci(AN=F)Zyy = tr [Zt_lz;t,lcg (A= F)] = vec [Zm_lzg,l]’vec [Ci (A — F)]

= (Z1-1® Zig) [(A - F)® I,] vec [C]] .

By combining a) and b), we get Z, B, (A —F) Z;_1 + Z{yt_lCZf (A-F)Zi—1 = 37,1,1‘,155171’ and 31; =
U3 ;.

A.3.3 Derivation of Equation (3.8)

/

We use 31, = (<;D;{ [vec [B] (A — F)] +vec [(A — F)’ BZ”> , (vec [Cf (A — F)D’) from Section

A.3.2. a) From the properties of the vec operator, we get
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vec [Bj (A = F)| +vec [(A = F) B;j] = (I, ® Bj) vec[A — F] + (B ® I,) vec [A' — F'] .

Since vec [A — F] = W, gvec[A — F'], we can factorize v = vec [A’ — F'] to obtain

5D [vee [BL(A — F)] +vee [(A— FY B]]| = .DF (I, @ B) Wy + Blo 1] v

By properties of commutation and duplication matrices (MN p. 54-58), we have (Ip ® B;) Wpk =
1
Wy (BZ’ ® Ip) and D;Wp = D;, then §D; [(Ip ® Bz’) Wy ik + B ® Ip] = D;{ (B; ® Ip).

b) From the properties of the vec operator, we get
vec [C] (A= F)| = (I, ® C]) vec[A — F] = (I, ® C}) Wy gvec [N — F'| =W, (C; @ I,) v.

A.3.4 Derivation of Equation (3.9)

/
We use vec [ﬁéz} = (vec {D;f (B} ® L)Y] vec[{Wyq (Cl @ Ip)}’]/> :
a) By MN Theorem 2 p. 35 and Exercise 1 p. 56, and by writing I, = I ® I, we obtain

vee [Dy (Bi®1,)] = (Iyx ® Dy)vec B ® 1)
= (IPK ® D;_) {Ig ® [(Wp ® Ip) (Ip ® vec [Ip])]} vec [B;]

= {Ixk® [(I,® D)) (W, ® 1)) (I, ® vec[L,])] } vec [Bj] .

Moreover, vec [{ Dy} (B} ® 1,)}'] = Wy(ps1) 2 prvec [ D (B @ 1,)].
b) Similarly, vec [W,q (Ci®1,)] = {Ix ® [(Ip ® Wpq) Wy ® I)) (Ig @ vec [I,])]} vec [C]]  and
vec [{Wpq (C; @ Ip) V'] = Wpgprvee [Wpq (C] @ 1)].

By combining a) and b) the conclusion follows.
A.3.5 Proof of Proposition 8
~ 1 ~ ~ ~
a) Consistency of 7. By definition of , we have: 7 — v = Q/gj— Z Bg Wi (517i — ﬁg,il/>. From Equa-
n — ’
(2
tion (3.9) and MN Theorem 2 p. 35, we get Bgﬂ‘V = vec[ulﬁg’i] = (Id1 ® 1/') vec[ﬁé’i] = (Idl ® 1/’) Ja32,i.
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Moreover, by using matrices F; and Fs, we obtain (BU — 5372‘1/) = [B] — (I, ® V') JES) B; = C,’,B, =
C, (BZ — 6,-) , from Equation (3.8). It follows that

p—v = @g;% Z B 1 ;Cy, (ﬂ} — @) : (a.14)

By comparing with Equation (a.3) and by using the same arguments as in the proof of Proposition 2 applied
to ﬂ:’%i instead of b;, the result follows.

b) Consistency of A. By definition of A, we deduce Hvec [f\’ — N }

‘ < ||p—-v|+ Hvec [F’ - F’}

‘.By

1
parta), |7 — v|| = op, (1). By the LLN and Assumptions C.1a), C.4a) and C.6, we have T Z Zy1Zy_1 =0, (1)
t

1 .
and T ZUtZ£_1 = 0p (1). Then, by Slustky theorem, we get that Hvec {F’ - F’}
t

‘ = 0y (1). The result

follows.

A.3.6 Proof of Proposition 9
a) Asymptotic normality of 2. From Equation (a.14) and by using VT (BZ — ﬁi) = TZ',TQA;}Y;T, we get
. N 5 A Aq 1 . Al
VT (0 —v) = ng,,l% > 7By iCLQ, i = Q531% > T hiCL QY
~ 11 . e . .\
+Q531% > 7 (53,i - /83,1') 0iCLQL Yir = Qglle1 + Iea.
i

Term Ig; is the analogue of term I; in the proof of Proposition 3. To analyse Ig2, we use the following

lemma.
Lemma 10 Let A be a m x n matrix and b be a n x 1 vector. Then, Ab = (vec [I,) ® I,,) vec [vec [A] V] .

. / .
By Lemma 10, Equation (3.9) and VTvec [(ﬁ&i — B37,~> ] = Ti,TJaEéQ;;Yi,T, we have

A 1 A A .
I = Qﬁglﬁ Z TzT (vec [Ig,] ® IKp) vec [JQEQQZ’%KVTY;”TQI}CVW}
K3

A A A . n 4 1 A
= Qg i Jyvec [EéQx,zl‘Yi,TYi/,TQx,%Cuwi] =\ 7B+ ﬁ@g;lﬁi’)a

1
NS
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1 A A C1A-1& A R
where Ig3 := NG E i Jyvec [Eé (QI}}Q,T}Q/’TQ:E}CV — T x}SiiQw}Cl;> wz}. We get:
i
T (o- LB, —v) = Q7 I + LQ*U (a.15)
T v - 63 61 \/T 63 63, .

which is the analogue of Equation (a.5) in the proof of Proposition 3. Let us now derive the asymptotic
behaviour of the terms in the RHS of (a.15). By MN Theorem 2 p. 35, we have
1 A
I = Tn ZTZ'7T [(YZ’TQE) ® (Bélﬁ)l)} vec [C}]. Similarly as in Lemma 2, we have
i

Ig1 = \}ﬁ Z’TZ’ {(Y/TQ;) ® (ﬁglwl)} vec [Cy)] + op(1). Then, by the properties of the vec operator,
i
we get Qgsllm = (vec ()] @ Qg;) \/15 Z T;vec [(YZ-"TQ;;) ® (ﬁgzwz)} + 0p(1). Moreover, by using
the equality vec [(YZ’TQE) ® (Bészz)] = (ZQ;%YlT) ® vec [ﬁélwz} (see MN Theorem 10 p. 55), we get
Qj, fon = (vee[C})' Q5 \/15 S 7 [(Qu Vi) © s + 0p(1). Then Q3 ey = N (0,%,) follows
i

from Assumption B.2 a). Let us now consider Ig3. By similar arguments as in the proof of Proposition 3

1
(control of term I5), —=1Is3 = 0y, (1). The conclusion follows.

VT
b) Asymptotic normality of vec (A’) We have v/Tvec [A’ — A’] = Tvec [F’ - F’} +VT (0 —v).By

-1
. 1 1
i Tvee [/~ F'| = |Ix® | 2> 217, — Zi .y and VT (0 —v)=
using VTvec K& th: 124 \/th:uﬂ@ 1 an f(l/ V)
1 1
Op (\/ﬁ + T) = op (1), the conclusion follows from Assumption B.2b).
A.3.7 Proof of Proposition 10

By similar arguments as in the proof of Proposition 5, we have:

Qe

1 (=) s (=) 0 3+ 3

! 2 )1 =1y s 1 1
— n7T Z 7_1‘7Tt7' [Cngx,z Y;,T}/;/’TQIJ C,)wl:| =+ O Jlog (W + j—,2> .
(2
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By using that 7; 7tr [C{,Q;i S’Wngi C},li)z} = 1}(11, Lemma 4 in the conditional case and n = O(T7)

with ¥ < 2, we get:

bt = \FZ Crtr [C’ i (Yz‘,TYi’,T - Ti,_Tlgz'z') QECW%} + 0p(1)
= 7 ZTQLLT [C’ wr (YirYir — Sir) Q;ZI-CQW} + op(1).

Now, by using tr(ABCD) = vec(D')'(C" @ A)vec(B) (MN Theorem 3, p. 35) and vec(ABC) = (C' ®

A)vec(B) for conformable matrices, we have:

tr [C’ Q) (YirY/r — Siix) Q;Zl.cﬁwi} = veclw;] (C}, ® C}) vec [Q“ (YirY{r — Sur) Q;ﬂ
= wveclwi] (C; ® C;) (QQ i®Q; %) vee [YirYir — Siir]
= vecwi] (Ch® C}) (@7} @ Q1) (Yir @ Yir — veelSiil)
= wvec[CLeCl] { [(Qz 'oQ; Z) Yir ®Yir — vec[Sz’z‘,T])] ® vec[wi]} :

Thus, we get &7 = vec [Ch @ Ol 7 Z 2 [(Q;} ® Q;i) (Yir ® Y1 — vec [S“T])} ® vec[w;]. From
i

Assumption B.4, we get £,7 = N(0, S¢), where X¢ = vec [C], @ C’I',]/Qvec [C}, ® C,]. Now, by using
that tr(ABCD) = vec(D) (A @ C")vec(B’) we have:

vee [Cl, @ O] [(Sq.i; ® Sq.j) ® veclwilveclw;]] vee [Cl, @ C1]
= tr[(Sq.ij ® 8q.ij) (Cv ® Cy) veclw;lvec[w;) (C}, ® Cy)]
= wvec[wi] [(C,50;Cv) ® (C),SqiCy)] veclw;] = tr [(C},80,;Cv) wj (C1,8q,iCv) wi
tr[(C1Q; 185,100 ) wy (CLRL185:QL 10y ) wil

and  similarly we have wec[C] ® C’;]/ [(Sq,ij ® Sq,ij)Wa ® veclw;veclw;]'] vee [C], @ C1]
=tr [(C{,Q;}-SUQ;;C ) w; (C’LQ;;Sin;%CV) wi}. Thus, we get the asymptotic variance matrix

Se =2 lim E 12’5 i (C1Q7185Q74C ) wy (CLQ7SS1QEIC ) wi] | From S = % +
Y]

n— o0 n
2y

op(1), the conclusion follows.
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A.4 Check of assumptions under block dependence

In this appendix, we verify that the eigenvalue condition in Assumption APR.4 (i), and the cross-sectional/time-
series dependence and CLT conditions in Assumptions A.1-A.5, are satisfied under a block-dependence

structure in a serially i.i.d. framework. Let us assume that:

BD.1 The errors &;(7) are i.i.d. over time with E[g;(y)] = 0 and E[g,(7)?] = 0, for all v € [0, 1]. For any
n, there exists a partition of the interval [0, 1] into J,, < n subintervals I3, ..., I 7, , such that ;(-y) and

e+(7') are independent if  and +' belong to different subintervals, and J,, — oo as n — oo.

JIn JIn
BD.2 The blocks are such that n Z B2 = 0(1), n%? Z B3 = o(1), where B,, = dG(v).
m=1 m=1 Im

BD.3 The factors (f;) and the indicators (I¢(v)), v € [0, 1], are i.i.d. over time, mutually independent, and

independent of the errors (£:(7)), v € [0, 1].

BD.4 There exists a constant M such that ||f;|| < M, P-as.. Moreover, sup FE[g;(7)|%] < oo,
v€[0,1]
sup [|B(7)|| < ocoand inf E[I(y)] > 0.
vel0,1] v€[0,1]

The block-dependence structure as in Assumption BD.1 is satisfied for instance when there are unobserved
industry-specific factors independent among industries and over time, as in Ang, Liu, Schwartz (2010). In
empirical applications, blocks can match industrial sectors. Then, the number J,, of blocks amounts to a
couple of dozens, and the number of assets n amounts to a couple of thousands. There are approximately
nB,, assets in block m, when n is large. In the asymptotic analysis, Assumption BD.2 on block sizes and
block number requires that the largest block size shrinks with n and that there are not too many large blocks,
i.e., the partition in independent blocks is sufficiently fine grained asymptotically. Within blocks, covariances

do not need to vanish asymptotically.

Lemma 11 Let Assumptions BD.1-4 on block dependence and Assumptions SC.1-SC.2 on random sampling
hold. Then, Assumptions APR.4 (i), A.1, A.2, A.3, A4 (withany q € (0,1) and 6 € (1/2,1)) and A.5 are

satisfied.

The proof of Lemma 11 uses a result on almost sure convergence in Stout (1974), a large deviation theorem
based on the Hoeffding’s inequality in Bosq (1998), and CLTs for martingale difference arrays in Davidson
(1994) and White (2001).
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Instead of a block structure, we can also assume that the covariance matrix is full, but with off-diagonal

elements vanishing asymptotically. In that setting, we can carry out similar checks.
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Appendix B: Supplementary materials

These supplementary materials provide the proofs of the technical lemmas used in Appendix A. Finally,
we derive inference for the cost of equity and include some empirical results for Ford Motor, Disney Walt,

Motorola and Sony (Appendix B.2).

B.1 Proofs of the technical lemmas

B.1.1 Proof of Lemma 1 (iii)

We  have  a; —w; = 1X(0; " — v ) + (1F — D)o; ! and  0; " — vt = =07t (B — vy).

Since wv; is uniformly lower bounded from part (ii)), we have Z |w; —w;| <

C— 1 4 +C— 1-— 1X . The second term in the RHS is o0,(1) from Lemma 4. To
sy el Y-y 0

prove that the first term is 0, (1) 1t is sufficient to show:
sup 15[0; — vi| = op(1). (b.1)
K3

We use Equation (a.7). Since 1 — v = O,(T~°¢), for some ¢ > 0 (by repeating the proof of Proposition 2
with known weights equal to 1), 15”@;1“ < Cxi,1, 171 < X217, ||Si]| < M, and by using Assumption

C.5, the uniform bound in (b.1) follows if we prove:

sup 1Y)|Ss — Sull = Op(T7), (b2)
sup 1Y]|Q,1 — Q' = 0p(T7), (b.3)
sup1}|n7T—Ti\ = 0,(T7°), (b.4)
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for some ¢ > 0. To prove the uniform bound (b.2), we use Equation (a.9). As in the proof of Lemma 1 (i), we
have sup T=Y2|Y;r| = Op,log(T*”/z) from Assumption C.1 ¢), and similarly sup T2\ Wiz + Wour|
= Op;og(T*”p) and sup T=Y2|Wa,r| = Op(T~"?), from Assumptions é.l e) and f), respectively.
Moreover, HQ(;? | <M Zand 1% 7 < x2,r. Thus, from Assumption C.5, bound (b.2) follows. To prove
(b.3) we use Q;i -Q, = —TZ-,TQ;; Wi rQ, 1 where W; r is defined as in Equation (a.10) and is such that

sup [|W; 7| :OPJOQ(T*”/ %) from Assumption C.I b). Finally, (b4) follows from |7;7 — 7| <
i

1 . 1
TirTi |7 Y (Lis — BElliglv))|, 1370 < X2 7 < M and by using SUp |75 > (Tie — ElLiglvl)| =

T
t t
Op,log(T*”ﬂ) from Assumption C.1 d).

B.1.2 Proof of Lemma 3
B.1.2.1 Part i)

Let us write [2; as:
1 . Al A
Iy = N Z wz'TfTle- (YirY{r — Sur) Qx}
i
1 . A A 1 . Al A AL
= % ; wiTz%TQw ' (Yi,TYz‘/,T - Sii,T) Qy L+ % ; wiTz‘Q,T (Qxi - Q; 1) (Yz‘,TYi/,T - Sii,T) Qz !
1 . Al A -
o= S Q! (VY - Sur) (@0} - Q2Y)
i
1 . A Al Al A
+— wiTz%T Qxi - Q:c ! ()/;7TY;/,T - Siin) Qxi - Qx !
Vi ’ ’
i
= Q;'LnQ; " + Q" + Qp Iy + Ins.
We control the terms separately.
1
Proof that 1211 = NG > wit? (YirYip = Sir) + Opiog(v/1/T) = Op(1) + Oprog(v/n/T). We use
i
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a decomposition similar to term I7; in the proof of Lemma 2:

1
Iy = Tn Z w;T? (YirY!r — Sir) Z (Yz‘,TY}fT — Siir)
i

1
+% XZ: LYw; (TZ%T - 71'2) (Yi,TYz‘/,T - Sii,T)

1 . _
—l-% Z 1X (07" — oY) 720 (YirYir — Siir) =: Io111 + I2112 + I2113 + I2114.
i
To prove Io111 = Op(1), take k,1 = 1,..., K, and consider (7 := sz YierYiir — SiikiT)-
Then:
E[Gurlor, Ir, {vi}] = szw] Zeov (YiraYirm, YikrYirler, I, vi, ;)

= ’I’LT2 E § W;W;T; T cov (51 t1€i,tas E4,t3E7, t4|$T77z”7]) I; tl-[z tQIj tg-l] ta Lt kLo 1 Tts kLty l-
1,5 t1,t2,13,t4

From Assumptions A.1 ¢), C.3 b) and C.4, it follows E[¢%;] = O(1). Hence, (7 = O,(1) and Iry1y =
Op(1). We can prove that I112 = 0,(1) and I2113 = 0p(1) by using arguments similar to terms /112 and
I113 in the proof of Lemma 2. Finally, let us prove that 2114 = O 1o4(+/1/T). Similarly to /314 in the proof
of Lemma 2, we use

bt —u = =072 (6 — i) + 0 oy 2 (6 — i), (b.5)

and Equation (a.7). We focus on term:
D141 = Z LYo b, Q) (Su - Sn’) Q,ico, (YirYir — Sur),

the other contributions to I2114 can be controlled similarly. Now, we use Equation (a.9) and treat x; as a
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scalar to ease notation. We have:

2 4 1 A
Iy = T 1 v, “1;pc), Qmﬂ'WLi,TQx’iCﬁl (YirY!/r — Sir)
n X
1
1 N A
X.—2.4 1 A-1 “1 /
Tz > 1w, Qi Wa i rQy teo, (Yir Vi — Siir)

+2—— Z 1%0; 2 fTCVl ;}W:s,i,TQ;Zl-Yi,TQ;%Cﬁl (YirYir — Sir)
Z 1}v TculQ Z)Q IYQ T /,TQ;?CM (Yi,TYi/,T - Sii,T)

= —cp (1211411 + Ip11412 + Io11413 + Io11414) €0y -

Let us focus on term I511411 and prove that it is O}, ;04 (1/n/T"). We have:
I>11411 = \/— Z 1 %7y 2W1 WY — \/— Z 1%v; 2 4TQ13W1 o7 Su,r = I2114111 + 2114112

Term 15114111 is such that:

Cx? TX2 T
|Ela11a111|27, I, {7i}]] < S |EMincincis v, vill,

- VnT?

1 t1,t2,t3
and

CX%,TX%T

nT4 Z Z |cov (it €ita€irts s Mjita €€t [TT5 Vis V5]

1,5 t1,..t6

Vibianler, Ir, {vi}] <

From Assumptions C.2, C.3 f) and C.5, we get E[l2114111] = Ojog(v/7/T) and V'[I2114111]) = o(1), which

implies 2114111 = Op 1og(/n/T'). The other terms making 2114 can be controlled similarly, and we get

Ini1a = Op 1og(v/1)T).

Proof that 1212 = op(1). We have:

1 _ A A
Iy = NG Z LYo, iy (Qggi - Q; 1) (YirYir — Siir)
.
1 . _ A A
+% Z L0, = v iy <in - Qx1> (YirY!r — Sir) = Ioi21 + I2122.



We focus on term 2121, use Equation (a.10) and treat x; as a scalar to ease notation. We have:

1
Io1 = —ﬁzl? TQ;E}WZTQ (YirY!r — Siir)

Z o e Qi WrQy (Yir Yy — Sir) = (Tz1211 + T21212) Q5 '

Let us focus on I21911. We have:

j, T | ’CO’U(ei7t18i’t2’ €j,ts€j,ta ‘xza Vi ’Yj) | .

9 CX%,TXS,T
Ell[izull*|er, I, {7i}] < TZ > w,

5,5 t1,...t4

By the Cauchy-Schwarz inequality, we get:

E[| o |P{v}] < CX%,TXS,T sup E[||Wizll*[v]"?

1/2
T2 E E COU E’ltlE’Lt27E]t3€jt4‘mT7f}/7/7’Y])| h/laf)/j] .
5,J t1,t2,13,ta

From Assumptions C.1 b), C.3b), C.4 a), and C.5, we deduce E[||I21211]|%|] = o(1), which implies I51211 =
op(1). Similar argument can be used to prove that the other terms making 22 are 0,(1).

Proof that 113 = 0,(1). This step uses arguments similar as for Io15.

B.1.2.2 Part (ii)

1 R Al Al . . . .
We have Ioy = \/ﬁ Z wiTZTQx; lei:TQa:;’ where W1 ; 7 is as in Equation (a.9). Write:
i

_ 1 o _ A A
Iy = 1r2n 1VVl i TQ + —— T Z 1X(0; " —v; 1)TZTQ$;W1¢,TQ$; =: Ioo1 + I29.
i

Ayt

Let us first consider I991. We have:

1
B[ 1221 "2‘3727 I, {vi} < CX%,TX%,TW Z Z ‘Cov(n’iﬂh 2 5,2 \f'fL Vi 7j)|‘
i, t1,t2

From Assumptions C.3 a) and C.5, it follows E[||I222]|%] = Ojoq(1/T'), and thus Izgs = O, 10(1/VT).

Let us now consider term I522. We use Equation (b.5), and plug in the decompositions (a.7) and (a.9).
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‘We focus on term c , 2221 of the resulting expansion, where:
—2 4 W2
Iz901 = E 1fv Wi

The other terms can be treated similarly. We have:

[12221|$T31T7 {71}] < CXI TXZT\FT2 Z Z |COU Eitrs zt2|xT7%)|

1 t1,t2

and

1
V[12221 |xZa IZa {7@}] < CX?,TX%,TW Z . tzt . |COU(77’L'¢1 Nistas Mj,t375,t4 |l‘z, Yis ’YJ)|
1,7 11,L2,13,l4

From Assumptions C.3 a) and C.5, it follows E[l2221] = Oj4(y/n/T). By Assumptions C.3 d) and C.5 we
can prove that V [I2221] = o(1), and it follows I2201 = Op(y/n/T).

B.1.2.3 Part (iii)

We have [53 = fT Z W;T; TQx ZVV;»,%T i T+ —— \fT Z W;T; TQJ: ‘;QI Y T, where W3 ; v and Q
are as in Equation (a.9) and we treat z; as a scalar to ease notatlon By similar arguments as in part (i) we
can prove that Io3 = Op 104(/n/T).

B.1.2.4 Part (iv)

The statement follows from Lemma 1 (ii)-(iii), 1X7; 7 < x2,7, 1?”@;1” < Cx1,7, bound (b.2), ||Si|| < M
and Assumption C.5.

B.1.2.5 Part (v)

1 /A
The statement follows from Equation (a.4), Lemma 1 (iv), /1 = Op(1) and — g ’LDiTZ-QTEzQ 1YZ TY TQ
n 4 '
1

= Op,loy(l)-
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B.1.3 Proof of Lemma 4
We have P[1X =0] <P[rr > x27] + P [CN (Q“> > Xl,T] =: P 7+ Py . Let us first control

1 _
Py pr. We have Py 7 <P [T zt: Iy < XQEF

1
<P [T Z (Im — 7';1) < Xng — M_1] , where we use
t
7; < M for all ¢ (Assumption C.4 c)). Then, for 0 < § < M_1/2 and T large such that M ! — Xng > 4§, we

1
get the upper bound Py ,r <P T Z (Lis — Ti_l) >4 . By using that
t

_ 1 _ 1

Ti 1 = E[I’L,t”ﬁ] and ]P) [ f Zt: (Iivt — Ti 1) Z (5 = E ]P) T zt: (Ii7t — E[Iz,t”YZ]) 2 5|’}/1]] S
1 _

sup P T Z (It(y) — E[It(y)])‘ > 5] , from Assumption C.1 d) it follows Py, = O(T "), for any
16[071] t
b> 0.

Let us now consider P ,7. By using HQMH < M (Assumption C.4 a)), we get eigmax(Qm,i) < M, and
thus CN (Qm) < M1/? {ezgmm(Q“)] 71/2. Hence P ;7 < PP [eigmm(Qm) < M/X%T}- By using that
Cigmin(Qur) = €igmin(Qs) = |Qui — Qull, we get Por <P [|Qui = Qull = €igmin(Qa) = M/xi 1z
Now, let 0 < & < €igmin(Qz)/2 and T large such that eigin(Qz) — M/X%,T > §. Then,

N 1
by using P |:||Q:EZ — Q| 2 5] <P [ T Z—Ti,t(ﬂﬁtiﬁt — Q)| > V5| +P [Ti,T > \[5} we  get
¢

Py, <P > V3| +O(T™"). The first term in the RHS is O(T?) by using

1
‘T Z Ii (i — Qy)
7

1 1
P||l= Zli (e — Q)| > V| < sup P||= th(’y)(a;tmt — Q)| > V8| and Assumption C.1 b).
r< - ) vepa [|T5
Then, Py 7 = O(T~?), for any b > 0.
B.1.4 Proof of Lemma 5
1
Let Wp(y) := T Z(It(fy) — E[li(y)]) and rp := T7% for 0 < a < n/2. Since |Wr(v)| < 1 for all

t
v € [0, 1], and from Assumption C.1 d), we have:

IN

1 1
swp E(Wr(M)Y] < sup E[Wr(y)]]= sup / P{Wr(y)| > 6]d8 < rp + sup / B{Wr(7)| > dd6
~e0,1] ~e[0,1] ~e[0,1] Jo ~e[0,1] Jrr

IN

T

1 1
rr + C1T/ exp { —C26*T"} d§ + Cyexp { —CyT"} / %dé
T T

IN

rr + C1T exp {—Cgr%T"} + Csexp {—C4T"} log(1/r7) = o(1).
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B.1.5 Proof of Lemma 6

By definition of gij, we have

228
2y

Sig {18, |2} ~ Sis

i — Sij

IN

1 ~
oM
2,7

Sijl{|is,; 1=} — Sij

lh]
>
iy
= I3 + I3o.

By Assumption A.4,

I = — Z||5w||1{usw||<n}<maXZHS 196179 < k' (n) = O, (/il_qn5),

2%

where co(n) = maX Z ||Szg 9= )

Let us now cons1der I39:

L1512 nsi0<s} T 5 Z 19611205, [ <riisis 12}

I3p =

(/.

|| {1805 || 215551120}

+= Z‘
mZaXZ‘S
—l—maxZ)

IA

)| L)1 | 2sili<n) + XD IS5, <120}
J

(/. U

HSZJH>I'€ ||S”||>F,;} — I33 + I34 + 135

From Assumption A.4, we have:

I35 < max ‘
Z?-]

m?XZ 15117 k9 = Op (Ynreo (n) £™9).
J

Let us study I33:

I3 < ‘ S
33 < IIlZaX Z S
J

ij — Sij
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()15, | 2mlsitany + 2% 2 1Sl Lgis, j<wy = To6 + Lar.
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(b.6)
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By Assumption A.4,
Izy7 < k7% (n). (b.3)

Now take v € (0,1). Let V; (€) := Z 1{ng‘jfsij‘|>€}7 for € > 0, then
J

I = max D |8 = Sul| Ly, omisyicon +max D[S = S| Lgs,  manciisyicn
J J
< max ‘ Sij — Sij|| max N; (1 — v) &) 4+ max ||Si; — Si;{| co (n) (vk) 7.
2,7 (2 1,7

Moreover, by the Chebyschev inequality, for any positive sequence R, we have:

2

P [max N;(e) > RnT} < nP[N;(e) > R,r] < " E[N;(e)] < max P H Sij — Sij|| > 6} ,
i nT nT b
which implies max NV; (€) = O, <n2 max P H Sij — Sl = e}) . Thus,
7 2
I3 = O, (wnTn2\IJnT (1 = v) k) + Ypreo () (UK)_q) . (b.9)
Finally, we consider I34. We have
Bu < a3 (|85 = S+ [85]) 215, pvasi iz
J
< max ‘ Sij = S| max Y Ly, zr) + FmAX Y Lis, 20}
7 J J
= Oy (¢nrco (n) K9+ co (n) £'79).. (b.10)

Combining (b.6)-(b.10) the result follows.
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B.1.6 Proof of Lemma 7

. A 1
. N / 0 / .
Byusing &;; = ;¢ — x} (BZ- — 5i> and S;; = T E I;j 1€ t€,1 x4y, we have:
) t

5 1 A 1 .
Sij = S?j - = Zfij,t&',tw; (ﬂj - ﬂ]) DTy — Z Iij.1€5.4) (ﬁi _ 51‘) 7,7,
T t Tij ¢
1 A / .
T > Lije (/Bi - Bi) T4 (5]' - Bj) 7T,
1) t
S = Aij = Bij + Cyj,

where A;; = Bj;. Then, for any i, j, we have ‘ Sij — Sij

<|

GO .

+ [[Ai |l + | Bijll + |Cij]l. We

getforany & > 0 :

G0

Vor (§) < maxP “
7,7

> &] 4 maxP [ 4y = &] + maxp |18 = &
4 1,7 4 2 4

b [0 2 §| = W (€/0) + 2P (/) + P €/, G1D)
where U0 (£/4) := max P ’ SZQ]- Sijl| > i, P (€/4) = majnyP [HAZJH > i], and
%) 2,

Py (£/4) := max P [”Cij || > = . Let us bound the three terms in the RHS of Inequality (b.11).
irj

A 1
a) Bound of \I/ng (5/4 We use that S% — SZ']' = Ti Z Iij,t (5i,t5j,t1'tl‘2 — SZJ)
ij 73

1
= Tij,T? Z Ii]’,t (5i,t5j,t$tl':§ —F [817t€j7txtl‘;|’yi’7j]) and Tij < M. Then:
t

155 = Sl < M

1
T Z Liji (sigejpmiay — E [5i,t5j,tfctx:€|%’}’j])H
t

+|7ijr — 7ij

1
T Z Lij (Ez‘,té—j,txtw;ﬁ - K [Ei,tfj,tﬂftfﬁghﬂj] ) H .
t
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‘We deduce:

Vor (£/4)
< maxP izli't(eitg'tmtxg_E[Sitg'txtxﬂ')/i')"]) > — § +ma,XP ‘TZ T — Ti'| > \/E
= 17] T t ]7 Iy ]7 b ]7 ] — 8M ] .7 —_— 8

P ! T - ! £
+ mf;X T Z ijt (€i,t€j,t$t$t — [5i,t5j,t$t$t’%7j]) > 3
’ t

< omaxP || LS Iy (eursyimia, — B [evgesenii])|| = <5 $maxP | — il 2 \/E
— ’L,j T - 2], 1, Js t 1, s t 1] — 8M 7’.] 1y = 8

=: 2P3 7+ Pynr,

forsmall . Weuse P3,,7 < sup P Z[t ( Yer(Y )y, — E [gt("}/)gt('y/)zt‘/pg]) > i
7' €[0,1] 8M

and Assumption C.1 e) to get P37 < C1T exp { C5¢ T”} + ¢ exp {—C4T’7}, for some constants

C1,C§,C§,C4 > 0. To bound Py,r, we use 7;; < M and |Tij,T —Tij| < TijTij,T’Ti;}_Tigl‘ <

£
T _ _ _
Tij 71 i ” < 2MP|1 ng 7'--1’, if |7'”T - < M 1/2. Thus, we have P,r <

‘TZJ = 7;1| 1) ij =

1 £ 1
~1 —1 - ~1 ~1
QH;E;XP ‘Tiij — Ty | > 2]\42\/;]’ for small {. By using 7;; 7 = T ;Iiﬂ and 7;;° = ELij 17, 4],

)

from Assumption C.1 d) we get:
e R ey L R Y | 1 o A RO R I | ey
i.j pT = oMV 8| T epy ||T 4 —2M2V 8

< C1Texp {—C3¢T} + O3 2 exp {~CuT} .

We deduce:
01 (€/4) < CfT exp {—C3E*T"} + C5¢ ' exp {—C4T"} . (b.12)

b) Bound of Py 7 (§/4) . For some constant C', we have

-5

1
| Ai|l < Crijr max | - Z Iij €040t 1T 1Tt m
9 7m t

Let x37 = (log T')%, for @ > 0. From a similar argument as in the proof of Lemma 4, and Assumption C.1
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d), we have max P [r;; 7 > x3.7] = O(T_E), for any b > 0. Thus,
Z7j

Pl,nT (5/4)
< H;%X]P) [szTgllaX ZIZthztxthtletm Hﬁ] 6]‘ = 456,

IN

max P [7; 7 > x3,7] + maxP [max
2% .3 k,lm

‘S
> d TiiT < T
\/ 4x3rC e X8

E Iij1€i 4% kTt 1Tt m
7

,

—|—max]P’ [Hﬂj ﬂjH and 7;;, 7 < X3,T]

TC
< (K +1)’maxmaxP lZ:I-e- Tt kTt [ Tpm| = ¢
~ g kdm T t ig,teitbt kLt iltm| = 4X3,TC
1/7 drip < o(T™). b.13
H/BJ ﬁ]H 4X3 C and 757 < x37| + ( ) ( )
By Assumption C.1 f),
1 § C5¢ }
max max P || = L 164 104 1T 1T > < CiTexp{ ——==>T"
e [th: i5,t€it Lt kLt I Tt m| = 4X3,TC > 1 P{ a1

(b.14)

X3,T
+C* 9
Vo«
Let us now focus on P Hﬁj — BjH > L and 77 < x3,7|. By using
dx37C

R 1 R
Hﬂj - /BjH < xar || Q2| T ijvtxtfj,t + X371 HQ;; -
t

1
T Z Ij,tmtgj,t
t
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when 7; 7 < x37, we get

eIl w5 ]
1 1 5 -

+P HQ;; - Q! ‘ |; ;Ij,txtﬁfj,t > ;\/EX31T
< ;Xt:fj,txtej,t > 16X§T0 HQlel_
51 -1 3 v |1 3 v
+P HQJKJ - Q5 ’ > (16)(::’,3) +P th:fj,txﬁjgt 2 <W>
1 1 A1 -1 € v
= th:Ij’txtgj’t = 16X3 Toxi,c 19 17|+ HQW*Q% ‘— (16 §7T0> (15

for small £. From Assumption C.1c), the first probability in the RHS of Inequality (b.15) is such that:
> 10217 < crrexpl-GEqm\ 4 op [ Nix
> < G -

16X3 C X%,T 3 13

To bound the second probability in the RHS of Inequality (b.15) we use the next Lemma.

1
T Y Liewes
t

(b.16)

I

1
Lemma 12 For any two non-singular matrices A and B such that ||A — B|| < 3 I|A we have:

1B~ — A7 < 2| A7Y)?|lA - BJ.
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From Lemma 12, we get:

¢ 1/4
P ‘ > (16X3Tc> Qx] Qz

41 -1
Qrj—

IN

p{

p“

P [)
for small £ > 0. From Assumption C.1b),

1/4
§ —1-2 * §
P > S~ Q < CiTexpl —Cy | —=—T1"
{ =5 <16x§7T0> 1zl ! 2 X3

+2C3 (”) exp {~CyT7} . (b.17)
Then, from (b.13)-(b.17) we get:

: 1/4
> (W> Qgch]
X317

1 1
> 510z

¢ 1/4
>l s ] s
2 16x3 7C

Qx,j - Qx

IN

Quj — Qu

Quj — Qu

3

. 3/2

C i ,
Pryr (€/4) < CTT exp { ~C3ET" /X3 } + 3\)/%3’T exp {~CuT"} + O(T™"), (b.18)

for small £ > 0 and some constants C7, C5, C3,Cy > 0.

¢) Bound of P 1 (€/4) . We have from Assumption C.4

1Ci;l

IN

—Bi

-5

k,J,m.,p

-5

E Iz] tLt kLt 1Tt mLt,p
Z_] t

IN

- Bi

Thus, we have:

Bz_ﬁi

Prr(€/4) < maxp [c
(2%

o] 2]

I=(6)"]
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By the same arguments as above, we get:

.. 3/2
3X3,1

3

Pyt (£/4) < CiTexp {—C5¢T" /X3 p} + exp {—C4T"}, (b.19)

for small £ > 0 and some constants C7, C5, C3,Cy > 0.

d) Conclusion. From inequalities (b.11), (b.12), (b.18) and (b.19) we deduce:

C; - 5
Vur (§) < OfT exp {=C34T"} + > exp {=CuT"} + O(T™),
T
where {7 := min{¢, §/X§,T}’ for small £ > 0 and constants Cf, C5,C5,Cy > 0. For { = (1 —v) k and

/1
k=M %, we get &7 = (1 — v) k for large 1" and

n2C Tn _
n’U,r (1-v)r) < Ci‘nQTeXp {—C’;M2 (1-— 0)2 logn} + = v)gMW / og exp {—CZT"}

+O(n* T " =0(1),

for b and M sufficiently large, when n, T — oo such that n = O (T"7) for ¥ > 0.

1
Finally, let us prove that ¢,7 = O, ( (;{;:) .Let € > 0. Then,
logn 2 A logn
P [wnTz o] < nPmaxP [) Sij = Sig|| = \/ e

= n®U,r < l(;g;ze) <n?W,r (1 —v)r) =0(1),

for large €. The conclusion follows.
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B.1.7 Proof of Lemma 8§

Under the null hypothesis Hg, and by definition of the fitted residual é;, we have

& = ai—bip+é (/3;-51-)
= ai— Y+, (B 5) ~ (- ) (b.20)
- éﬁ,(ﬁi—ﬁi)—b;(ﬁ—u).

By definition of Q.., it follows

Qe = 1 w; [CL (Bz - Bi):|2 sz i ( Bz) Cy —v) % Z:w,bzb’Z (0 —v

(0 —v) I 6y,

I = — (- w;T;, bY c-.
71 \/ﬁ \/72 (2 T v \/n7T

where I71; = Op(1) by the same arguments used to control term I; in the proof of Proposition 3. We have

. 1 . 1 1
U —v=0plog (\/7 T) and ¢, = Op (1) by Lemma 3 (v). Thus, I71 = O j0¢ (nT + T\/Tﬁ> .

1
Let us now consider I72. From Lemma 1 (ii)-(iii) and Lemma 3 (v), we have I72 = Oy, ¢ <T + T2> .
n

The conclusion follows.

B.1.8 Proof of Lemma 9
Under H1, and using Equation (b.20), we have é; = ¢; + ¢, (BZ — Bi> — b} (7 — v) . By definition of Q., it
follows:
O, = + Zwe? 4ot Zwé’ (B - ,3~) e —2 (0 — y)’lzwbe-

e n L 1€ n L 1Cp 7 7 7 n L 107C4

1 . .
+— sz[ ( IBZ)i| _2 szz< Bz) Cv _V)lﬁzwibib;(y_
(2

= Iy +Is2 + I3 + Igq + Ig5 + Igg. (b.21)
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1
From Equations (a.7) and (a.9) and similar arguments as in Section A.2.3 c), we have Ig; = — Z wie?—i—
n <

)

1
Op,iog <\/>> By similar arguments as for term [I; in the proof of Proposition 3, we have
1 1 . ;A1) 1 . 1 . 1
Igo = 7@ % ;wiTi,TeiYi,TQx,i Cy = Op 777,]7 . By using E ;wibiei = ; ;wibiei—i—
1 1 1 ) 1 1
Op,iog ﬁ =0, % + Op.10g ﬁ and ¥ — Voo = Op 109 % + 7 ) we get Ig3 =
1 1 1 .. 1 1
Op,log (n + ToT + T3> Similar as for Igp we have Igs = Op o9 (n\/T + m) From
1 1 1 1
U — Voo = Opog <n + T) , we have Igg = O 1og <n + T2> . The conclusion follows.

B.1.9 Proof of Lemma 10

By applying MN Theorem 2 p.35, Theorem 10 p. 55 and using W, 1 = I,, we have

Ab = vec (Ab) = (V' @ A)vec(I,)

® In) (In @ Wy 1 @ Iy (vee (V) @ vec (A))
'@ Iy) (I ® Iy) vec (vec (A) V)
© In)

vec (vec (A) V') .

B.1.10 Proof of Lemma 11
B.1.10.1 Assumption APR.4 (i)

We use that eigmax(A) < ax g |a; ;| for any matrix A = [a;j]; j=1,..n. Then, for any sequence (~y;) in
i=1,...,n 4
J=1

[0, 1] we have:

—Lyeesdn

n n
Cigmax(Ve,1n) < max 3 |Covler(i), (3]l <€ max Y 1{y; € I} (b.22)
ST =1 j=1
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where C' := sup FE[e(7)?]. Define:
v€[0,1]

J = {(%) :mirff?‘.’.fJnizl{”i € I} :0(1)}.

i=1

Then Assumption APR.4 (i) holds if up () = 1. From Theorem 2.1.1 in Stout (1974), it is enough to show
n

m=1,...Jn N m=1,...,Jn

oo

1

that Zup < max — Z v € I} > 6) < oo, for any ¢ > 0. Now, since max B, =o(1l),
n=1 i=1

n

1
~ > Ui € In} — Bu

=1

1 n
wehave;zp( max n21{7¢elm}>5)§,up< max

m=1,..Jn N 4 m=1,....Jn
=1

> 5/2), for

>5/2>,

for large n. To bound the probability in the RHS, we use |1{v; € I,,} — By,| < 1 and the Hoeffding’s

large n. Thus, we get:

1 " 1 n
Hr <mH11aXJ - Zl{% €ln} > s) < Jn Nax <|n Zl{% € IL,} — Bn

=1 =1

inequality (see Bosq (1998), Theorem 1.2) to get:

1 n
— v € I;} — B,
pr (‘nz {7i € Im}

i=1

> 5/2) < 2exp (—n52/8) .

Then, since J,, < n, we get:

o 1 n oo
Zup < max nzl{%‘GIm}>5> SQZnexp (—ne?/8) < o,
n=1

Z1od,
m Rt n—1

and the conclusion follows.

B.1.10.2 Assumption A.1

Conditions a) and b) are clearly satisfied under BD.1, BD.3 and BD.4. Let us now consider condition c). We

have 0y = Elet(vi)ee(v4)|vi, 5] =: 0i; independent of ¢. Thus, E[J%t]%, 7]-]1/2 = 0;5. By BD.1, BD 4

In JIn
and the Cauchy-Schwarz inequality 0;; = Z i, v € ImYEee(vi)er(vi)|vi, vl < C Z i,y € Im}s
m=1 m=1
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where C' = sup El[e;(7)?]. Hence, we get:
v€[0,1]

Tn Jn

1 1 1

" > Elog vyl < c > Y E[1{vi € In}] +o > D E[1{yi, 7 € Im}]
i

i m=1 i#j m=1
In In JIn
= CZBerC(n—l)ZB,Zn:O(l%—nZB%).
m=1 m=1 m=1

From BD.2, the RHS is O(1), and condition c) in Assumption A.1 follows.

B.1.10.3 Assumption A.2
Let us consider condition a). Under BD.1 and BD.3, we have S;; = 0;;Q, and

Sy = lim E Z wiw; L - 6,5(Qy @ bibl,) | . This limit is finite Gif it exists), since from BD.4 we have

n—oo ]

1 T 1 1 ;
. izj:wiwj TZT;U@']'(Qx ® bib})|| < C; Z |oij], and E . Z loij|| = O(1) from Assumption A.l.

,J 0,J
Moreover:
1 n 1 T n T
%sz‘Ti}/},T@bz‘ Z wiTilit (Tt @ bi) gip = —= Zﬁnu
i=1 t 1i=1 =1
1
where &, ; = T Z w;Til; ¢ (¢ @ b;) €54. The triangular array (&, ;) is a martingale difference sequence
n
i=1

w.r.t. the sigma-field F,,; = {ft,€it,7,? = 1,...,n}. From a multivariate version of Corollary 5.26 in

White (2001) the CLT in condition a) follows if we show:

() —Z [6n.t&n] = S,

T

@) 53 (60ibhs = Bléniinl) = 0p(1)

t=1

(iii) sup E[||&n.]*™°] = O(1), for some & > 0.

=1,...,

Moreover, we prove the alternative characterization of the asymptotic variance-covariance matrix:

n—,oo N ij

1 iTi
(iv) S, = a.s.- lim — Z WiW :_jO'U(Qx X blb;)
0]
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Let us check these conditions. (i) Let G,, = {7;,i = 1,...,n}. We have:

1 /
T Z E[{n,tfmt‘gn] = Z Z wzngsz |: i tI]t (I't.%'t ® bib; ) 5i,t€j,t|7i7 7ji|
t

— ﬂ Z Z wyw; T T B[ 41 417, 5] (E[:ctx;} ® bib;) Eleiseiilvi, ]
= —szw] UU (Qx®bb)

By taking expectation on both sides, condition (i) follows.

1 .
T Z (é-n,t,kfn,t,l - E[fn,t,kfn,t,l])’ where fn,t,k is the

t
k-th element of &, ;. Since E[(, 7] = 0, it is enough to show V'[(, 7| = o(1), for any k, [. We show this for

Let us now consider condition (ii). Define ¢, 7 =

k = 1, the proof for k # [ is similar. For expository purpose we omit the index k, and we write xf = x?.
We have:

Cn T T2 Z gnt T2 Z Cov (572L,t7 572L,s) ) (b23)
t#£s

where:
52 _1 AT T L+ L 22 2b:bic: 16
nt = o WiW;5TiTjditd Ly 0i05€5 €5t
i?j

o Consider first the terms C’ov(@%’t, 5721’ ¢) for t # s. By the variance decomposition formula:

Cov(&s 1, &ns) = B [Cov(& 1,65 (|Gn)] + Cov [E(&] 11Gn), B(E; (|Gn)] -

We have Cov(&] ;, €7 (|Gn) = 0 from the i.i.d. assumption over time. Moreover:

Jn
T3 1
E[&,1Gn] = szw] T”]on'ijbibj = Z Zaijaijl{%ﬁj € I},
t m=1 1,j
where a;; = wiwjﬂbiijm and Q, = E[z?]. Thus:
Tij
1 &
Cov [E(& 41Gn), E(&; |Gn)] = 3 > ) Cov(aijoil{vi, ) € I}, amora {1 € I}) -
m,p=11i,5,k,l
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In the above sum, the terms such that sets {7, 7} and {k,[} do not have a common element, vanish.
Consider now the sum of the terms such that ¢ = k (terms such that¢ = [, or j = k, or j = [ are

symmetric). Therefore, let us focus on the sum

J
1 n
Sn = o5 > D Cov(aijoi i, € I}, caroul{vi, i € Ip})

m,p=1 i,j,l

J
1 n
= 3 > Cov(aijoi1{viv; € I}, cuoul{vi, i € In})

m=1 1,5,1
1 &

3 > D Eloujoi v € Inm}] E [aqoul{vi,m € L}
m,p=1,m#p i,5,l

J
1 n
From BD.4, we have o;; < C'and 0;; < C. Thus, we get S, = O | —; E g El{vi,vj, v € Im}] | +
n

m=1 4,5,

1

JIn
E Z ZE [1{’}/@’7] € Im}] E [1{’717’71 € IPH . By USing thatZE[l{fY’hij’W € Im}] =

m7p:17m#p 7"7j7l ,L'7j7l
O (nBm +n°Bp +n°By,)  and > E[{vi,7; € In}| E[1{%, 7 € I,}] = O (nBmBy+
i?j?l

Tn In Tn 2
n*(B2,By+ BmB3) + n’B,BY)), weget S, =0 | 1/n+ > Br +n> Bj +n <Z B%)

m=1

O

m=1 m=1

The RHS is o(1) from BD.2. Thus, we have shown that:
Cov (&1 Ens) = o(1), (b24)

uniformly in ¢ # s.

o Consider now V[éfl,t]. By the variance decomposition formula:
V[fi,t] =FE [V(@%Agn)] +V [E(§Zt|gn)] .

By similar arguments as above, we have V [E(£2 ;|Gn)] = o(1) uniformly in ¢. Consider now term
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E [V (&2 ,1Gn)]. We have:

1
2 § :
V(fmt’gn) = ? wiijkmekanbibjbkbl
/[:7.].7]{:71

2 2
Cov (Liplj 1272 4658, Tt Ly T p a0t [ Yis Vi Vior V1) -
Moreover:

P P
Cov (Litljaaie; e, i swier ey

Yir Vis Vi Vi)

= E L Lde o dii1Vis Vis Yo V) B [€i€j0€ k0806 i Vis Voo 1) Ela] — UiijlTi}ITlglE[ﬂff]Q
From the block dependence structure in BD.1, the expectation E [g; 1€ 1€k t€1.Vis Vi, Yk, ] s dif-
ferent from zero only if a pair of indices are in a same block I,,, and the other pair is also in
a same block I, say, possibly with m = p. Similarly, o;;04; is different from zero only if ~;

and -; are in the same block and 7 and 7; are in the same block. From BD.4, we deduce that

JIn
1
V(€2,|Gn) < C— Z Z {7, v € Im}1{vk, 71 € I}, where in the double sum the elements
' n
i7j7k7l m’pzl
with m # p are not zero only if the pairs (-y;, ;) and (yx, ;) have no element in common. Thus:

Jn
EV(&4G)] = O % S EL {5k € Im}]

i,5,k0m=1
JIn

1
Z,],k,ll#k,l,j#k,l m,p=1m;ﬁp

JIn JIn
By using Z Z E{yi, vjs Y- € Im}] = O (Z (nBp, +n*B2, +n®B3 + n4B,§1)> and

i:jzkyl m=1 m=1
In JIn
S Bl{vi,ys € InJEM e L} =0 | > (n*BmB, +n*B}B, +n*BLB}) |,
ivj7k7l m,p:l m,p:l

we get:
Jn JIn, Jn
E[V(&,6.)] =0 (1 +n) Bh+(n) Br)+n’> Bé) .
m=1 m=1 m=1

By BD.2,n max B2 = O(1),and we get E [V(g,%,t|gn)] =0(1).

m=1,....n
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Thus, we have shown:

V(&) =0(), (b.25)

uniformly in ¢.

From (b.23), (b.24) and (b.25), we get V[(,7] = o(1), and condition (ii) follows. From (b.25) and by using
E[fr%,t] = O(1), condition (iii) follows for § = 2. Finally, condition (iv) follows from
1 TiTj 1 1 o
;Zwiwjgdijbib; = (1 +/\,V[ft])\)_2*2 !

i.j "

NIy, b’ and the next Lemma 13.
Tij 0ii0jj

1 1
Lemma 13 Under Assumptions BD.1-BD.4: — = Tk b; b’ — L, P-a.s., where:
n

~ Tij 041054

1 1
= lim F |— Tisj

1
i — bb’ = )d li )dryd
n—o00 n ZEJ: Tij 0ii0jj /0 ( 7+nl—>nolon Z/ /m 7 7 v ’Y’

)

with w(y,7) = EL (V) L(Y)] g s (1b(y') and w(7) = w(7,7).

Then, we have proved part a). Part b) follows by a standard CLT.

B.1.10.4 Assumption A.3

Assumption A.3 is satisfied since the errors are i.i.d. and have zero third moment (Assumption BD.1).

B.1.10.5 Assumption A.4

We have to show that max; » _; [|9;|¢ = Op(n?), for any ¢ € (0,1) and § > 1/2. From S;; = 0;;Q., and

an argument similar to (b.22):

n

maxz 1S;5]1T < C nllax Z 1{v; € I,} <Cn n11ax Bm+C max Z {v; € I} — Bn)| »

for any ¢ > 0. Let us derive (probability) bounds for the two terms in the RHS. From BD.2:

1/2
nmn%x\Bm] §\/ﬁ<nZ]Bm|2> =0 (Vn).
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Let e, :=n%, with § > 1/2. Then:

n n
P max Zl[l{w €ln} = Bul| Zen| < Jo max P Zl[l{w € In} — Byl > en
j= iz
< 2J,exp(—€2/(2n)) = o(1),

from the Hoeffding’s inequality (see Bosq (1998), Theorem 1.2), and J,, < n. Thus, we have shown that

n

max Z[l{’yj € In} — Bm]| = 0p(n?), and the conclusion follows.
m=1,....Jn |4 1
j:

B.1.10.6 Assumption A.5
We have Sj; 7 = 0;Q..; and Sij = 0ijQ. Letus denote by H = o ((f1), (L¢(7)),y € [0,1], 74,1 = 1,2,...)
the information in the factor path, the indicators paths and the individual random effects. The proof is in two

steps.

STEP 1: We first show that conditional on H we have
T 1= waz Yir ®Yir = Sr| = N(0,9), n,Toc, (b:26)

7272
P-a.s., where Sj; T = o“vec(Qx i)and Q = hm E Z wiw; L 2” azj Qe ® Q4+ (Qz @ Qz) Wi y1] .

For this purpose, we apply the Lyapunov CLT for heterogenous 1ndependent arrays (see Davidson (1994),
Theorem 23.11). Write

Tnr = fzzl{%ef}wz { T @Yir — zzT}_

i m=1

m,nT

where
7 _
Winnt = ;n Z Wi € I ywr? [Yi,T QYT — Sii,T} .
(A

Conditional on H, the variables W,,, ,,r, for m = 1, ..., J,, are independent, with zero mean. The conclusion
follows if we prove:

@) hm — Z V Wi H] = Q, P-as, and
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1
G i 73 S E [\\Wm,nTH?’ \H} — 0, P-as..

To show (i), we use:

J,
‘/[VVthTw?{] - ;fl EE: QU[uUTfo(jov[}2J“Q§SG;F,}Z]T @3}3J47{]
J,
= ;" Z wiijfT]? {E [(YzT ®Yir) (Yjr @ Yjr) |H] ”TS }’
1,5€0m

where Z denotes double sum over all 7,5 = 1,...,n such that v;,~v; € I,. Now, we have by the
1,5€Im
independence property over time:

B |(Yir @ Yir) (Yir © Yyr) [H]

1 ! !
= YN D > Eleiseipeiscial (fo) 7073 Litlinlislig (xtxs ® mpxq)
t s q

p
1 I ! 1 i !
= F [5@2755%’% %] Tz Z L1, (iﬁtﬂﬂt ® iUtﬂCt) + U?jﬁ Z Z Iiji1ijp (xtxt ® xpxp)
t

o ]j T2 ZZI”IJS (xtx ® T4 ) + O'Z] T2 ZZIU tLij s <wta? ® xsxt>
t  s#t
= E [ 7,t6‘]t’77/?’7]j| A1T+O-1JA2T+O-“ jjA3T+o-sz4T

T I , ,
T—g }Jt (:L‘t$t ® :Jct:rt) = O (T;;/T*) = O(1/T), uniformly in H. Let us de-
t v

A 1
fine Qx,ij = T Z Iijﬂgﬂjtﬂfé, then
1) t

Moreover, A; 7 =

1 ’ / 1 A N
Ay = T2 Z Z Lijidijp (thﬂCt ® prfL‘p) —Air= ﬁ (Qx,z‘j ® Qx,z’j) + 0 (1/T),
t D %],

/

Asr = % Z Z I 11 s (a:tx; ® xt$;> — Ay 1 = vec (Qm) vec (Qm]) + 0 (1/T1),
t s
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and

1 ’ /
Agr = T2 Z Z Lijilij s (lBtl‘s ® ivswt) — Ay
t s
1 /
= 752D il (1 © ws) (ws © 1) — Ay
t s

1 /
) Z Z Lij i i s (¢ @ x5) (24 @ x5) Wiy — Arr
t S

1 A N
- 2 (Qx,ij ® Qac,ij) Wiki1+0(1/T).
Tij T
Then, it follows that:
Jn TijQ o [ A . . A
V [Winr|H] = - Z Wil; 50 (Qto,z’j ® Qgij + Qu,ij ® Qx,ijWK-H)
1,5€Im 13,1

Jn 1
E 2_2
+O ;T P wleTZ Tj N
4,j€Im

where the O term is uniform w.r.t. . Thus, we get:
1 1 T,
TV WaarlH] = | =D wiwj 50 | Qe ® Qo+ Qe ® QW)
" om i.j

ij

1 2.2 2 11 2_2
+gz Z wiw; T T 005 + O Tﬁz Z ww; T T |

m 1,5€Im m i,5€0m

1 N R R N 1
where the o;; = 2 (Qx,ij ® Qzij + Qu,ij ® Qx,ijWKJrl) ) (Qr ® Qe + Qr ® Q:Wi41)areo(1)

5, T ij
2,2 2
. . .o TiT; _ _oTiTj Oj4j . .
uniformly in 4,35, and wiwjz—zjo% = (1+)\’2f1)\) QZ—ZJi Then, point i) follows from
o T Uiinj
ij ij

2 2
1 TT: O . 1 TiT: Of: . . Lo
— E 172]7” — L, P-ass., where L = lim F | — E Z—QJ Y| which is proved by similar ar-
n ) Tij 040345 n—r00 n g Tij 04054

guments as Lemma 13.
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Let us now prove point ii). We have:

1/3

S Wt < 3| 5wt (i o] |

IN

o)

3
) 5. 71/3
‘ SWENE$®EﬂIW} +wﬂ
1 7

)

[N\
Y-
(Y]
RS
1y
-~
]
IS
il

Now,
, 3
B[Wr vl ] < B[Wal 1] = £ | (vatir) 1
1
= ﬁ Z Ii,tl---Ii,tGE [Ei,tl---ei,t6|’7i] (1);11,‘152) (:UQSJJM) (5525%756) .
t1,....te

By the independence property, the non-zero terms F [g; 4, ...€; +4|7:] involve at most 3 different time indices,

which implies together with BD.4 that sup E [||Y1T @ Yir|? ]H} = O(1), P-a.s. Similarly sup ‘ :S’VMTH =0 (1),
i i

P-a.s. Thus, we get:

I JIn 3
,]31/2 Z_lE [HVVm,nTH3 "H} < C# Z_l <Z 1{%‘ S Im}) .

Then, point ii) follows from the next Lemma 14.

In 3
1
Lemma 14 Under Assumptions BD.1-BD.4: 3 Z (Z v € Im}> — 0, P-a.s.

m=1 %

STEP 2: We show that (b.26) implies the asymptotic normality condition in Assumption A.4. Indeed,
from (b.26) we have:

n,T—o0 A /a’Qa

for any o € R2(K+1) and for any z € R, and P-a.s. We now apply the Lebesgue dominated convergence

lim P [T < 2|H] = @ (Z) ,

theorem, by using that the sequence of random variables P [o/ T, < z|H] are such that P [/ Y, < z|H] <

1, uniformly in n and T'. We conclude that, for any o € R2E+1 > ¢ R:

. . z
Jim Pl <2 = Jim B (P < o) =2 (2.
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since © ( = ) is independent of the information set H. The conclusion follows.

Vo' Qo
B.1.11 Proof Lemma 12

Write:
Bl oAt = [A(T-a7 (A-B)] " —at = {1-at(a-B) T 1A
and use that, for a square matrix C such that ||C]| < 1, we have

(I-C)t'=I14+C+C?*+C%+ ...

and
5 2 [tef]
[-ort -1 <ici+ier+.. <y Sa
Thus, we get:
L AN A-B)| .,
B lfA 1 H A 1
[ I < o147
lA "4 - Bl
= 1-[[A-T]A- B
< 2)|a7Y*|a- B,

. Lo 1—
if [A— B < glA7".

B.1.12 Proof of Lemma 13

1 oy 1 1 1
Let us denote & ; = — —2—b;b’; = w (7;,7;). We have — == i+ — ,j- By the LLN
1 1 ! , 1
we get - zﬁ: i = - EZ: w(vi) — /0 w(7y)d~y, P-a.s.. Let us now consider the double sum - ; &.j- The
i#j
proof proceeds in three steps.
JIn
. 1 _ / ! . : !/ /
STEP 1: We first prove that — Z{m = L'+ 0p(1), where L' := nh_)rgon Z:I/I /I w(y,7")dydy'.
m= m

n —
i#]
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J
. .1 - 1 .
For this purpose, write - g §&ij= g X, where X, := - E ‘w(fyi,'yj)l{’yi,’yj € I,,}, by using
i#] m=1 i#]
block-dependence. Then, we have:

B[X,] = i;E[W(%m)l{%,% ctall=m-1) [ [ eyt = -1,

which implies:

JTL

1 o - /
E EZ&J =(n-1)) @n—L.
i#j m=1
Moreover:
1
VIXn] = =D Elwlir)w0m w1 % % € In}l = BlXn]?
i£j k£l
= L - (- 2)(n - 3)&2 + O(PB2) + O(m?B2)] — (n — 1)%2,
n
= O(nBL)+O0(nB2) +O(B2),
and:
1
Cov(Xm, Xp) = — > D Elw(i1)wmm) 1% € In 1w m € B} — E[Xm] ELX,)
i£§ k#l
1 o o
= 3 [n(n—1)(n —2)(n — 3)@mwy) — (n — 1)20nw, = O(annt),

for m # p, which implies:

J, J,
1 n n
Vi G| = D VIXal+ D) Cov(Xm, X,) =o(1),
27'&‘7 m=1 mvpzl)mip

from BD.2. Then, Step 1 follows.
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- 1 -
STEP 2: There exists a random variable L such that — Z &i,j — L, P-as.. To show this statement, we
n
) i#]
use that the event in which series — Z & ; converges is a tail event for the i.i.d. sequence (7;). Indeed,
n
i#]
1 ) 1 :
we have that — Z &i,j converges if, and only if, — Z &i,j converges, for any integer N. Then, by the
iz iGN i
Kolmogorov zero-one law, the event in which series — Z &i,j converges has probability either 1 or 0. The
n
i#j .
latter case however is excluded by Step 1. Therefore, the sequence — Z &i,; converges with probability 1,
n
i#]
and Step 2 follows.

- 1
STEP 3: We have L = I, with probability 1. Indeed, by Steps 1 and 2 it follows — > ~&;; — L' = 0,(1)
"
and — Z & — L = 0p(1). These equations imply that L — L' = 0,(1), which holds if and only if L = L

%#J
with probability 1 (since L and L’ are independent of n).

B.1.13 Proof of Lemma 14

The proof is similar to the one of Lemma 13 and we give only the main steps. First, we prove that
JVL

3
3/2 Z (Z 1{v € Im}> = 0p(1). Indeed, we have:
n -

J 3
1 & _ 3/2 3 ) _
3a 3 (Titen) | = S Eme -0 (w3 5
m=1 7 m=147,k
3
from Assumption BD.2, and we can show V' 3/2 Z (Z vy € Im}> = o(1). Second, by us-
ing the monotone convergence theorem and the Kolmogorov zero-one law, we can show that sequence

3
3 /2 Z (Z 1{v; € Im}> converges with probability 1. Third, we conclude that the limit is 0 with
n

probablhty 1.
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B.2 Cost of equity

We can use the results in Chapter 3 for estimation and inference on the cost of equity in conditional factor
models. We can estimate the time varying cost of equity CE;; = ry; + b;t/\t of firm ¢ with C/‘EM =
rie+ 3;7155%, where 7 ; is the risk-free rate. We have (see Appendix B.2.1)
VT (@t - CE,-,t) — YL BT (5 _ 51-)
+(Z)_y @ H,,) Wy sV Tvec [[\’ - A’} +op (1), (b.27)
!/ ~
where 1; ; = ()\2 ®Z,_1, N, ® Z{’tfl) . Standard results on OLS imply that estimator 3; is asymptotically

normal, v/T' (Bl — ﬁi) = N <0, TiQ%%SﬁQ%%), and independent of estimator A. Then, from Proposition
9, we deduce that /T (@” — CEi,t> = N (0, ECEZ.J), conditionally on Z;_;, where

Yo, = Tl ByQy i SiQy i Bxtbis + (Zi_y @ V) Wy k SaWk p (Zt-1 @ bit) -

Figure 1 plots the path of the estimated annualized costs of equity for Ford Motor, Disney, Motorola and

Sony. The cost of equity has risen tremendously during the recent subprime crisis.

B.2.1 Proof of Equation (b.27)

We have:
B A = tr [zt_lz;_lf}m i [zt_lz;,t_lé;fq = (Z)_, ® Z_,) vec [égA} +(Z_, ® Z},_,) vec [égA] .

Thus, we get:

VT (CEi - CEy)

(Zi-1® 2 ) VT (vee [BAA] = vec[BA)) + (2], @ 2}, 1) VT (vec |
(ZI_,® Z_)) [(A’ ®I ) VTvec [Bg . Bg] + (I, ® B}) VTvec [A . A”
+(Z @7, [(A’@I ) VTovec [O{—C{} + (I, ® C) VTwec [[\fA” .

;A} — vec [C’Z’A])

By using that A = A + 0,(1) and vec [A — A} = W, xvec [[\' - A'} , Equation (b.27) follows.
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Figure 1: Path of estimated annualized costs of equity

CE of Ford Motor CE of Disney Walt

60 60

CE of Sony

The figure plots the path of estimated annualized costs of equity for Ford Motor, Disney Walt, Motorola and Sony and their pointwise
confidence intervals at 95% probability level. We also report the average conditional estimate (solid horizontal line). The vertical shaded
areas denote recessions determinated by the National Bureau of Economic Research (NBER).
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