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Abstract

Being developed with a single language in mind, namely Java, the Java Virtual Machine
(JVM) nowadays is targeted by numerous programming languages. Automatic memory
management, Just-In-Time (JIT) compilation, and adaptive optimizations provided by
the JVM make it an attractive target for different language implementations. Even
though being targeted by so many languages, the JVM has been tuned with respect to
characteristics of Java programs only – different heuristics for the garbage collector
or compiler optimizations are focused more on Java programs. In this dissertation,
we aim at contributing to the understanding of the workloads imposed on the JVM
by both dynamically-typed and statically-typed JVM languages. We introduce a new
set of dynamic metrics and an easy-to-use toolchain for collecting the latter. We apply
our toolchain to applications written in six JVM languages – Java, Scala, Clojure,
Jython, JRuby, and JavaScript. We identify differences and commonalities between the
examined languages and discuss their implications. Moreover, we have a close look
at one of the most efficient compiler optimizations – method inlining. We present the
decision tree of the HotSpot JVM’s JIT compiler and analyze how well the JVM performs
in inlining the workloads written in different JVM languages.
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Chapter 1

Introduction

1.1 Motivation

Modern applications have brought about a paradigm shift in software development.
With different application parts calling for different levels of performance and produc-
tivity, developers use different languages for the various tasks at hand. Very often, core
application parts are written in a statically-typed languages, data management uses a
suitable domain-specific language (DSL), and the glue code that binds all the pieces
together is written in a dynamically-typed language. This development style is called
polyglot programming, and promotes using the right language for a particular task [90].

This shift has gained support even in popular managed runtimes such as the .NET
Common Language Runtime and the Java Virtual Machine (JVM), which are mainly
known for automatic memory management, high performance through Just-In-Time
(JIT) compilation and optimization, and a rich class library. In case of the JVM, the in-
troduction of scripting support (JSR-223) and support for dynamically-typed languages
(JSR-292) to the Java platform enables scripting in Java programs and simplifies the
development of dynamic language runtimes. Consequently, developers of literally hun-
dreds of programming languages target the JVM as the host for their language—both to
avoid developing a new runtime from scratch, and to benefit from the JVM’s maturity,
ubiquity, and performance. Today, programs written in popular dynamic languages
such as JavaScript, Ruby, Python, or Clojure (a dialect of Lisp) can be run on the JVM,
creating an ecosystem that boosts developer productivity.

Even though being targeted by so many languages, the JVM was originally designed
with a single language in mind, namely Java, and therefore was tuned with respect to
characteristics of Java programs only. Dynamically-typed languages such as Clojure,
Groovy, JRuby, and Jython suffered from performance problems until recently. Some of
them have been addressed with introduction of the invokedynamic bytecode in Java 7,
intended to improve performance of dynamic JVM languages. However, it did not
result in significant performance benefits [116]. To gain performance when repurposing

1



2 1.1 Motivation

an existing JIT compiler for dynamically-typed languages, compiler developers are
encouraged to specialize the generic execution (inherent to such languages) as much as
possible, instead of overly relying on the original JIT to gain performance [25].

Making the JVM perform well with various statically- and dynamically-typed lan-
guages clearly requires significant effort, not only in optimizing the JVM itself, but
also, more importantly, in optimizing the bytecode-emitting language compilers. This
in turn requires that developers of both the language compilers and the JVM need
to understand the characteristics of the workloads imposed by various languages or
compilation strategies on the JVM. Therefore, the research question of this dissertation
is:

What are the differences in the workloads imposed on the JVM by different pro-
gramming languages?

In order to answer stated research question, we require the means of characterizing
the full range of workloads on the JVM, including applications written in different JVM
languages. Two classes of artifacts are useful for workload characterization: benchmarks
and metrics. The former draw representative samples from the space of application
code, while the latter identify useful performance dimensions within their behaviour.
Whereas benchmarking shows how well a system performs at different tasks, metrics
show in what way these tasks differ from each other, providing essential guidance for
optimization effort.

Ideally, metrics should capture the differing properties both of Java and non-Java
workloads and should provide useful information for developers of JVM languages
and JVM implementers. For example, a developer might hypothesize that a workload
performed poorly because of heap pressure generated by increased usage of boxed
primitive values, which are used relatively rarely in normal Java code, but frequently in
some other JVM languages such as in JRuby. Developers could optimize their bytecode
generator, for example, to try harder at using primitives in their unboxed form. A
dynamic metric of boxing behaviour would allow these developers to quantify the
effects of such optimizations.

Meanwhile, JVM developers may also benefit from the metrics, but in a rather
different way. JVM optimizations are dynamic and adaptive. Each optimization decision
is guarded by a heuristic decision procedure applied to profile data collected at runtime.
For example, the decision whether to inline a callee into a fast path depends on factors
such as the hotness of that call site (evaluated by dynamic profiling) and the size of the
callee. JVMs can therefore benefit from better heuristics which more accurately match
real workloads, including non-Java workloads.
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1.2 Contributions

Answering the research question of this dissertation requires versatile research that has
to address several needs: (i) the need for tools to perform workload characterization;
(ii) the need to rapidly develop those tools; (iii) the actual characterization of different
kinds of workloads on the JVM.

1.2.1 Toolchain for Workload Characterization

Dynamic program analysis tools support different software engineering tasks, including
profiling [15, 69], debugging [6, 26, 44, 132], and program comprehension [84, 104].
Identifying the intrinsic and differing properties of different JVM workloads can be
achieved also by means of dynamic program analysis tools.

There are several approaches serving workload characterization, however, no exist-
ing work has defined a comprehensive set of metrics and provided the tools to compute
them. Rather, existing approaches are fragmented across different infrastructures: many
lack portability by using a modified version of the JVM [38, 74], while others collect
only architecture-dependent metrics [114]. In addition, at least one well-known metric
suite implementation [41] runs with unnecessarily high performance overhead. Ideally,
metrics should be collected within reasonable time, since this enables the use of com-
plex, real-world workloads and shortens the development cycles. Metrics should also be
computed based on observation of the whole workload, which not all infrastructures
allow. For example, existing metrics collected using AspectJ are suboptimal since they
lack coverage of code from the Java class library [19, 27, 94].

We present our approach which bases all metrics on a unified infrastructure which
is JVM-portable, offers non-prohibitive runtime overhead with near-complete bytecode
coverage, and can compute a full suite of metrics “out of the box”. Among the metrics of
interest to be collected by our toolchain are object allocations, method and basic block
hotness, the degree of call-site polymorphism, stack usage and recursion, instruction
mix, use of immutability and synchronization, amount of unnecessary zeroing, and use
of hash codes.

1.2.2 Rapid Development of Dynamic Program Analysis Tools

All the tools from our toolchain rely on bytecode instrumentation, which is usually
performed by means of low-level libraries such as BCEL [124], ASM [91], Soot [127],
Shrike [66], or Javassist [28]. However, even with those libraries, bytecode instru-
mentation is an error-prone task and requires advanced expertise from the developers.
Due to the low-level nature of the Java bytecode, the resulting code is often verbose,
complex, and difficult to maintain or to extend.

The complexity associated with manipulating Java bytecode can be sometimes
avoided by using aspect-oriented programming (AOP) [70] to implement the instrumen-
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tation. This is possible because AOP provides a high-level abstraction over predefined
points in program execution (join points) and allows inserting code (advice) at a declar-
atively specified set of join points (pointcuts). Tools like the DJProf profiler [94], the
RacerAJ data race detector [19], or the Senseo Eclipse plugin for augmenting static
source views with dynamic metrics [104] are examples of successful applications of this
approach.

Having many choices for performing bytecode instrumentation, developers face
a hard time of choosing the proper instrumentation framework that allows rapid
development of efficient dynamic program analysis tools. To the best of our knowledge,
no such quantification is present in the literature concerning instrumentation of Java
programs. We address this problem by performing a thorough empirical evaluation:
(i) we conduct a controlled experiment to determine which bytecode instrumentation
framework increases developer productivity; (ii) we collect different performance and
source-code metrics for recasts of ten open-source dynamic program analysis tools in
order to find out which framework allows development of efficient dynamic program
analysis tools.

1.2.3 Workload Characterization of JVM Languages

Recently, dynamic languages gained a lot of attention due to their flexibility and ease
of use. While originally designed for scripting purposes only (e.g., for text processing
or for glueing together different components in a large system), they are currently
used as general-purpose programming languages along with statically typed ones. After
introducing scripting support (JSR-223) and support for dynamically-typed languages
(JSR-292), the JVM has become an attractive environment for developers of new
dynamic programming languages. However, the JVM appeared two decades ago with
a single language in mind and was build specifically for running Java applications;
therefore, its heuristics were tuned for efficiently running Java applications. The
question whether workloads written in a non-Java language run efficiently on the JVM
remains open.

In this dissertation we perform a thorough workload characterization of popular
JVM languages such as Java, Clojure, JRuby, Jython, JavaScript, and Scala. We collect
numerous bytecode-level metrics and discuss their implications. Moreover, we shed a
light on the most efficient compiler optimization, namely method inlining, and identify
whether the JVM handles workloads written in different JVM languages equally well as
Java workloads.

1.3 Dissertation Outline

This dissertation is structured as follows:
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• Chapter 2 discusses the state of the art in the area of workload characterization.
It gives an overview of the existing techniques and discusses their limitations.
The chapter also discusses bytecode and binary instrumentation techniques that
are usually used in the the area of dynamic program analysis. Finally, it gives an
overview of studies that compare programming languages.

• Chapter 3 introduces a user study on three popular frameworks for performing
bytecode instrumentation. It presents a controlled experiment which aims at
identifying a framework that boosts developer productivity. The chapter also
presents a second case study, empirical evaluation of the recasts of instrumentation
parts of ten existing open-source dynamic program analysis tools.

• Chapter 4 focuses on our toolchain for collecting various dynamic metrics. It gives
an overview of the metrics that can be collected by our toolchain, together with a
detailed description of the techniques for collecting the metrics.

• Chapter 5 presents the study – workload characterization of six different JVM
languages (Clojure, Java, JavaScript, JRuby, Jython, and Scala). The chapter
presents the results of applying our toolchain to workloads written in the exam-
ined languages and discusses the collected metrics.

• Chapter 6 concludes the dissertation and outlines future research directions
opened by this work.

1.4 Publications

This dissertation is based on several published and submitted work. The empirical
evaluation of different instrumentation frameworks (Chapter 3) was published in:

• Aibek Sarimbekov, Yudi Zheng, Danilo Ansaloni, Lubomír Bulej, Lukáš Marek, Wal-
ter Binder, Petr Tůma, and Zhengwei Qi. Dynamic Program Analysis – Reconciling
Developer Productivity and Tool Performance. Science of Computer Programming.,
2014.

• Aibek Sarimbekov, Yudi Zheng, Danilo Ansaloni, Lubomír Bulej, Lukáš Marek,
Walter Binder, Petr Tůma, and Zhengwei Qi. Productive Development of Dynamic
Program Analysis Tools with DiSL. In Proceedings of 22nd Australasian Software
Engineering Conference (ASWEC), pp. 11–19. Melbourne, Australia, 2013.

The description of the toolchain and new dynamic metrics (Chapter 4) was published
in:

• Aibek Sarimbekov, Andreas Sewe, Stephen Kell, Yudi Zheng, Walter Binder,
Lubomír Bulej, and Danilo Ansaloni. A comprehensive toolchain for workload
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characterization across JVM languages. In Proceedings of the 11th Workshop on
Program Analysis for Software Tools and Engineering (PASTE), pp. 9–16. Seattle,
Washington, 2013.

The work on the calling context profiler JP2 and on its applicability (Chapter 4) was
published in:

• Aibek Sarimbekov, Andreas Sewe, Walter Binder, Philippe Moret, and Mira Mezini.
JP2: Call-site Aware Calling Context Profiling for the Java Virtual Machine. Science
of Computer Programming.79:146–157, 2014.

• Aibek Sarimbekov, Walter Binder, Philippe Moret, Andreas Sewe, Mira Mezini,
and Martin Schoeberl. Portable and Accurate Collection of Calling-Context-
Sensitive Bytecode Metrics for the Java Virtual Machine. In Proceedings of the
9th International Conference on the Principles and Practice of Programming in Java
(PPPJ), pp. 11–20, Kongens Lyngby, Denmark, 2011.

• Aibek Sarimbekov, Philippe Moret, Walter Binder, Andreas Sewe, and Mira Mezini.
Complete and Platform-Independent Calling Context Profiling for the Java Virtual
Machine. In Proceedings of the 6th Workshop on Bytecode Semantics, Verification,
Analysis and Transformation (BYTECODE), pp. 61–74. Saarbrucken, Germany,
2011.

• Aibek Sarimbekov, Walter Binder, Andreas Sewe, Mira Mezini, and Alex Villazón.
JP2 – Collecting Dynamic Bytecode Metrics in JVMs. In Proceedings of the Con-
ference Companion on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pp. 35–36, Portland, Oregon, 2011.

The work on workload characterization of different JVM languages (Chapter 5) was
published in (or is under review in):

• Aibek Sarimbekov, Lukas Stadler, Lubomír Bulej, Andreas Sewe, Andrej Podzimek,
Yudi Zheng, and Walter Binder. Workload Characterization of JVM Languages.
Currently under review in Software: Practice and Experience, 2014.

• Aibek Sarimbekov, Andrej Podzimek, Lubomír Bulej, Yudi Zheng, Nathan Ricci,
and Walter Binder. Characteristics of dynamic JVM languages. In Proceedings
of the 7th Workshop on Virtual Machines and Intermediate Languages (VMIL), pp.
11–20. Indianapolis, Indiana, 2013.

• Andreas Sewe, Mira Mezini, Aibek Sarimbekov, Danilo Ansaloni, Walter Binder,
Nathan P. Ricci, and Samuel Z. Guyer. new Scala() instance of Java: a comparison
of the memory behaviour of Java and Scala programs. In Proceedings of Interna-
tional Symposium of Memory Managment (ISMM), pp. 97–108, Beijing, China,
2012.
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• Andreas Sewe, Mira Mezini, Aibek Sarimbekov, and Walter Binder. Da Capo con
Scala: Design and Analysis of a Scala Benchmark Suite for the Java Virtual Ma-
chine. In Proceedings of the Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pp. 657–676, Portland, Oregon, 2011.

During my Ph.D. studies I was also involved in other projects that resulted in the
following publications:

• Lukáš Marek, Yudi Zheng, Danilo Ansaloni, Lubomír Bulej, Aibek Sarimbekov,
Walter Binder and Petr Tůma. Introduction to Dynamic Program Analysis with
DiSL. Science of Computer Programming, 2014.

• Aibek Sarimbekov. Comparison of Instrumentation Techniques for Dynamic
Program Analysis. In Proceedings of 12th International Conference Companion on
Aspect-oriented Software Development (AOSD), pp. 31–32, Fukuoka, Japan, 2013.

• Lukáš Marek, Stephen Kell, Yudi Zheng, Lubomír Bulej, Walter Binder, Petr Tůma,
Danilo Ansaloni, Aibek Sarimbekov, and Andreas Sewe. ShadowVM: Robust
and Comprehensive Dynamic Analysis for the Java Platform. In Proceedings of
12th International Conference on Generative Programming: Concepts & Experiences
(GPCE), pp. 105–114, Indianapolis, Indiana 2013.

• Lukáš Marek, Yudi Zheng, Danilo Ansaloni, Lubomír Bulej, Aibek Sarimbekov,
Walter Binder, and Zhengwei Qi. Introduction to Dynamic Program Analysis with
DiSL. In Proceedings of 4th International Conference on Performance Engineering,
(ICPE), pp. 429–430, Prague, Czech Republic, 2013.

• Danilo Ansaloni, Walter Binder, Christoph Bockish, Eric Bodden, Kardelen Hatun,
Lukáš Marek, Zhengwei Qi, Aibek Sarimbekov, Andreas Sewe, Petr Tůma and Yudi
Zheng. Challenges for Refinement and Composition of Instrumentations: Position
Paper. In Proceedings of 11th International Conference on Software Composition
(SC), pp. 86–96, Prague, Czech Republic, 2012.

• Lukáš Marek, Yudi Zheng, Danilo Ansaloni, Aibek Sarimbekov, Walter Binder, and
Zhengwei Qi. Java Bytecode Instrumentation Made Easy: The DiSL Framework
for Dynamic Program Analysis. In Proceedings of 10th Asian Symposium on
Programming Languages and Systems (APLAS), pp. 256–263, Kyoto, Japan, 2012.

• Walter Binder, Philippe Moret, Danilo Ansaloni, Aibek Sarimbekov, Akira Yokokawa,
and Éric Tanter. Towards a domain-specific aspect language for dynamic program
analysis: position paper. In Proceedings of 6th Workshop on Domain-specific
Aspect Languages (DSAL), pp. 9–11, Porto de Galinhas, Brasil, 2011.
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Chapter 2

State of the Art

2.1 Overview

In this chapter we discuss the state of the art in the area of workload characterization
and comparison of programming languages. We give an overview of the existing
techniques and discuss their limitations. We first describe what feedback-directed
optimizations (FDO) are and discuss their relevance to this dissertation. The chapter
also presents one of the main techniques used in FDO, namely program instrumentation.

2.2 Feedback-Directed Optimizations

Feedback-directed optimization is a well-known mechanism used for improving program
execution based on its runtime behaviour. There are two types of FDO: off-line and
online. In an off-line FDO the programmer first runs the application, gathers some
statistics summarizing the behavior of the examined application and after using the
collected statistics creates a new version of the application. Therefore, off-line refers to
the fact that optimization takes place only after the application run [118], opposed to
the online one, where optimizations take place during the application runtime. FDO
techniques are heavily used in the area of computer architecture, i.e., in the production
of processor chips [49, 103]. Caches, instruction scheduling, register allocations –
all these are examples of FDO. FDO is also used in other fields, such as compiler
development and software engineering.

Profile-guided compilation (PGC) [35, 64, 117] is a widely known technique used by
modern compilers. In PGC the compiler tries to optimize the parts of the program that
are frequently executed. Different profiling techniques, such as block [97], edge [45],
or path [12] profiling are used to identify frequently executed program parts.

Another approach is offline optimization based on continuous profiling, where
the profile collection takes place on the user’s machine continuously [3]. After the
application terminates, the system will reoptimize the program offline, if necessary.

9



10 2.3 Workload Characterization

Opposed to PGC this approach is considered to be more adaptive and to incur less
overhead [3, 61, 135].

Techniques for code generation [36, 53] stage the compilation of the program so
that the optimization can take place during the program run, instead of performing
the optimization during the compile time as in the previously discussed approaches.
Partial evaluation is used to identify which parts of the application can benefit from the
optimizations based on the information that can be collected during the runtime only.
Since the majority of the optimizations anyway happens at compile time, this approach
exhibits low overhead.

The most prominent FDO technique in the area of compiler development is online
adaptive optimizations [4, 31, 92, 122]. As an example of this technique, one can
consider HotSpot’s JIT compiler [92] and IBM Jikes RVM’s adaptive optimization
system [4]. The optimization process in these systems is two staged, first the code
is run in interpreted mode and after determining the frequently executed code the
system performs additional optimizations. A similar approach is used by the Dynamo
system [11].

The work presented in this dissertation uses the techniques that fall in the category
of offline FDO. However, our system does not perform any optimizations, we leave this
task to the developer who should take responsibilities between different trade-offs that
usually happen while making optimizations (e.g., longer startup time vs. faster startup
time) [63]. Another reason for not performing optimizations is our primary design
goal: we opted to use a standard JVM and do not rely on any modified version of it.
An example of such an approach is described in [5], where the authors extended the
adaptive optimization system of the Jikes RVM [4]. Our primary goal was to equip
JVM developers and JVM language implementers with tools that provide insights of
the behaviour imposed by novel JVM languages. Therefore, our system only hints at
possible optimizations that can be made.

2.3 Workload Characterization

After a careful study of the related work in the area of workload characterization, we
identified several limitations that we try to address with our approach.

Excessive overhead.
Dufour et al. [41] define dynamic platform-independent metrics that serve for catego-

rizing programs according to their dynamic behaviour in five areas: size, data structure,
memory use, concurrency, and polymorphism. The tool *J [42] used by the authors
relies on the JVMPI1, a deprecated2 profiling interface for the JVM. Apart from being

1http://docs.oracle.com/javase/1.5.0/docs/guide/jvmpi/index.html
2JVMPI was deprecated in Java 5, and JVMTI is now offered instead.

http://docs.oracle.com/javase/1.5.0/docs/guide/jvmpi/index.html
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not maintained anymore, it exhibits huge performance overhead making their approach
hardly applicable to more complex Java workloads.

Ricci et al. [101] created a tool named ElephantTracks that implements the Merlin
algorithm [59] for computing object life times. It produces traces that contain each
object allocation and death, method entries and exits, and all pointer update events.
Garbage collector (GC) implementers design and evaluate new GC algorithms by
simulation based on those traces. However, this tracing tool introduces prohibitive
overhead (e.g., it can take several days to run it on a single DaCapo benchmark with
small workload size).

Architecture-dependent metrics.
Ammons et al. [2] use hardware performance counters for performing context sen-

sitive and flow sensitive profiling. The authors rely on binary instrumentation using
Executable Editing Library in order to record profiling data. Their tool records hardware
counters of UltraSPARC processors, such as instructions executed, cycles executed, and
cache misses. Calling-context trees (CCT) are used to represent the execution of the
application and each CCT is associated with hardware metrics.

Shiv et al. [115] compare the SPECjvm20083 and SPECjvm984 benchmark suites.
The authors present a quantitative evaluation based on different JVM- and architecture-
dependent metrics; they look at the effectiveness of Java runtime systems including JIT
compilation, dynamic optimizations, synchronization, and object allocation, and report
the statistics also for SPECjAppServer20045 and SPECjbb20056.

These approaches strongly depend on the chosen architecture and cannot be gener-
alized. Moreover, as shown in [62], microarchitecture-dependent metrics hide inherent
program behaviour, while microarchitecture-independent metrics are more effective
and useful in workload characterization.

Modified JVM.
Daly et al. [38] analyze the Java Grande benchmark suite [24] using JVM-independent

metrics. The authors consider static and dynamic instruction mix and use five different
Java-to-bytecode compilers in order to identify the impact of the choice of a compiler
on the dynamic bytecode frequency. For collecting the metrics of interest, the authors
use a modified version of the Kaffe Java Virtual Machine7.

Other researchers also use a modified version of a virtual machine in order to
facilitate workload characterization, thus sacrificing portability. For instance, Gregg
et al. [55] use a modified version of the Kaffe Java Virtual Machine for collecting a
number of actual invocations to native methods. This approach is also used in [57, 74].

3http://www.spec.org/jvm2008/
4http://www.spec.org/jvm98/
5http://www.spec.org/jAppServer2004
6http://www.spec.org/jbb2005
7http://www.kaffe.org/
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Ha et al. [56] implemented a concurrent analysis framework for multicore hardware.
Their implementation is based on a modified version of the Jikes RVM [1]. To assess the
framework the authors created 5 different well-known dynamic analyses and applied
them to the SPECjvm2008 and the Dacapo 2006 benchmarks.

Limited coverage.
Pearce et al. [94] applied aspect-oriented programming (AOP) to create profiling tools.

The authors used AspectJ to profile heap usage and object lifetime. Even though the
study shows that AspectJ eases the development of tools for workload characterization,
it suffers from a severe limitation. It has limited coverage and does not support profiling
classes from the Java class library. The same limitation is true for most AOP-based
approaches.

Bodden et al. [19] created RacerAJ that implements the ERASER algorithm [109] for
data-race detection. At runtime, RacerAJ monitors all field accesses and lock acquisitions
and releases, and reports a potential data race when a field had a write access from
multiple threads without synchronizing the accesses. To maintain various per-thread
and per-field data structures, RacerAJ uses an AOP-based instrumentation to intercept
all field accesses, and all lock acquisitions and releases, both due to synchronized
method invocations and due to entering syncrhonized blocks.

Chen et al. [27] developed an aspect-based memory leak detector for Java programs
named FindLeaks. The tool identifies loitering objects using the constructor call and
field set join points of AspectJ. It reports loitering objects, their construction site and
their referencing objects. It also points out where in the source code references to
loitering objects were created. However, the tool does not allow to identify a memory
leak if no explicit allocation is made in the application code. This limitation can be
solved by analyzing also the classes from the Java class library [128, 129].

Other approaches.
Jovic et al. [69] developed the tool LagHunter for detecting performance problems in

interactive applications. The authors propose to measure latency instead of the common
method hotness metric. Their tool collects so-called landmark methods that contain
timing information for measuring lags. These landmark methods represent potential
performance issues. In contrast to approaches using complete traces of method calls
and returns, LagHunter results in small performance overhead. The authors used their
tool for finding performance problems in the Eclipse IDE.

Zaparanuks et al. [134] presented an algorithmic profiling tool. The intention of
the tool is to identify to what extent the implementation of an algorithm contributes to
the overall performance by automatically producing cost functions. Using these cost
functions, developers can understand the complexity of the algorithm and see which
inputs cause long execution times.

Binder et al. [14] evaluate the contribution of native methods to Java workloads,
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using SPECjvm98 and SPECjbb20058 benchmarks on a previous release of the Java
JRE 1.6. They conclude that less than 20% of the execution time is spent in native code,
thus confirming that platform-independent performance analysis is appropriate for most
of the Java workloads.

Ratanaworabhan et al. [100] compare JavaScript benchmarks with real web appli-
cations and compute different static and dynamic platform-independent metrics, such
as instruction mix, method hotness, number of executed instructions. The authors
use an instrumented version of the popular Internet Explorer browser, however the
methodology is browser agnostic and can be used with any browser.

Richards et al. [102] apply the same approach to analyze the dynamic behavior of
JavaScript, although they do not consider event-driven web applications that happen to
be often the case of nowadays popular JavaScript applications as shown in [102].

In contrast to existing work, our approach is focused on obtaining dynamic metrics
that spot potential optimizations. Our approach is based on bytecode instrumentation
and can be run on any production JVM. It produces JVM-independent metrics that
can be obtained in a reasonable amount of time. Our approach supports full bytecode
coverage, i.e., it covers every method that has bytecode representation (including
dynamically downloaded or generated classes together with the classes from the Java
class library).

2.4 Programming Languages Comparison

The first attempts of comparing different languages were done 4 decades ago [126],
where Algol 68 and PL/I were compared. Then, several other papers were published on
the same topic [81, 123].

In [99] the authors present an empirical evaluation of 7 different programming
languages. Performance, source code metrics, and memory consumption of C, C++,
Java, Tcl, Ruby, Python, and Rexx applications are considered. As workloads, the authors
use different implementations of the same application written in different languages
by different programmers, thus avoiding the threat to validity of comparing a single
implementation of an application.

In [58] the authors conduct a controlled experiment with subjects in order to
compare object-oriented languages with procedural ones in the area of software mainte-
nance. The authors asked the subjects to perform a set of typical software maintenance
tasks and assess the difficulty of each task. C and Objective-C are the languages that
were compared during the experiment. The authors find that systems developed in
object-oriented languages are easier to maintain compared to systems developed in
procedural languages.

In [10] the author compares 5 different parallel programming languages based
on different paradigms. The author implemented 3 parallel programs in all the 5

8http://www.spec.org/jbb2005/
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languages and reported on the programming experience, language implementation
and performance. Since no platform exists on which all the languages can run, fair
performance comparison was not possible, although the author used many different
platforms in order to give rough estimations of the observed performance.

In [50] the authors report on a comprehensive comparison of parametric polymor-
phism in six programming languages: C++, Standard ML, Haskell, Eiffel, Java9, and
Generic C#. The authors wanted to identify what language features were necessary to
support generic programming and to provide guidance for the development of language
support for generics.

While the topic on comparison of programming languages has always been popular,
our intentions are different from previous work in the area. In this dissertation we
are not comparing the performance of either programming language, instead we try
to identify how well the JVM handles them. Therefore, the methodology used in our
dissertation is rather different. The details of the study will follow in Chapter 5.

2.5 Instrumentation

In the following section we give an overview of instrumentation techniques for creating
tools for workload characterization. Even though we rely on bytecode instrumen-
tation for building our tools, for the sake of completeness we describe also binary
instrumentation techniques.

2.5.1 Binary Instrumentation

Binary instrumentation helps one to analyze native methods that do not have any
bytecode representation.

ATOM [119] is a binary instrumentation framework for building customized pro-
gram analysis tools. ATOM allows selective instrumentation – only specified points in
the application are targets for the instrumentation. The user has to provide a file that
contains an instrumentation routine, a file with analysis routines and the application
that has to be instrumented. ATOM takes care of avoiding interference between the
code in the analysis routine and the code in the application itself by having two copies
of the method in the executable.

Pin [77] is a tool that follows the ATOM approach. The tool developer needs to
analyze an application at the instruction level without the need for detailed knowledge
of the underlying architecture. Pin can attach to a running application, instrument it,
collect profiles and, finally, detach. Pin has a rich API allowing to write customized
instrumentation tools in C/C++.

Javana [78] is a tool that performs binary instrumentation underneath the virtual
machine. High-level language constructs such as objects, methods, and threads are

9The authors use Java 5.
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linked to the low-level native instructions and memory addresses in a vertical map
through event handling mechanism. The instrumentation layer communicates with
the virtual machine. Javana allows different events to be intercepted, such as class
loading, object allocation and relocation, method compilation, Java thread creation and
termination. Javana uses a modified version of the Jikes RVM [1].

DIOTA [79] is a tool that allows instrumentation of the running application. DIOTA
does not alter the original application, it generates an instrumented version on the fly
and keeps it in another memory location. The generated code will be created in such a
way, that all data accesses will be taken from the original application, whereas code
accesses will be taken from the instrumented version. In such a way, self-modifying
code can be handled correctly. DIOTA uses backends that are responsible for what and
how the code has to be instrumented.

Valgrind [85] is a dynamic binary instrumentation framework with a distinguishing
feature, the support for shadow values. It is used for developing tools that detect
memory-management problems, by intercepting all memory reads and writes, memory
allocations, and frees. Valgrind’s core and the tool to be instrumented are loaded into a
single process in order to avoid inter-process communication overhead.

EEL [73] is a tool for editing executables. It provides abstractions that allow one
to modify executables without being concerned about the underlying architecture or
operating system. Moreover, EEL provides portability across a wide range of systems.
EEL provides five abstractions: executable, routine, control flow graph, instruction,
and snippet. EEL allows editing control flow graphs by deleting or adding instructions,
however it can be potentially dangerous, since instructions that corrupt the state of an
application can be inserted.

DynamoRIO [23] is a framework for building customized program analysis tools. It
operates with two kinds of code sequences: basic blocks and traces that are represented
as linked lists of instructions. DynamoRIO copies basic blocks into a code cache and
then executes them natively. A context switch happens at the end of each basic block
and the control returns to DynamoRIO for copying the next basic block. The goal of
DynamoRIO is to observe and manipulate, if needed, every single instruction prior to
execution.

2.5.2 Bytecode Instrumentation

Java bytecode instrumentation is a common technique used in dynamic program analysis
tools. It is usually performed by means of low-level libraries that require in-depth
knowledge of the bytecode.

BCEL [37] provides a low-level API to analyze, create, and transform Java class files.
Java classes are represented as objects that contain all the information of the given
class: constant pools, methods, fields and bytecode instructions.

ASM [91] is similar to BCEL and allows generation of stub classes or other proxy
classes. It also supports load-time transformation of Java classes. Classes in ASM can
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be represented in two ways: an object representation that exposes each class file as a
tree of objects and an event-based representation that generates an event each time a
specific element of a class file is parsed.

WALA [67] stands for IBM T.J. Watson Libraries for Analysis. WALA contains
libraries both for static and dynamic program analysis. While WALA IR is immutable
and no code generation is provided, it has limited code transformation abilities through
Shrike. Shrike has a patch-based API that atomically applies all modifications to a given
method body. For load-time bytecode transformations one has to use Dila [65] which is
based on Shrike.

Spoon [93] is a framework for program transformation and static analysis in Java,
which reifies the program with respect to a meta-model. This allows for direct access
and modification of its structure at compile-time and enables template-based AOP, users
can insert code, e.g., before or after a method body. Spoon uses source code-level
transformations.

Javassist [28] is a load-time bytecode manipulation library that enables structural
reflection, i.e. alter data structures in the program, which are statically fixed at compile
time. Javassist provides convenient source-level abstractions, allowing its use without
knowledge of Java bytecode. It additionally supports bytecode-level API allowing one
to directly edit the class file.

Soot [127] is a bytecode optimization framework. Soot supports multiple bytecode
representations in order to simplify the analysis and the transformation of Java bytecode.
Soot can be used as a stand alone tool to optimize or inspect Java class files, as well as
a framework to develop optimizations or transformations on Java bytecode.

Josh [29] is an AspectJ-like language that allows developers to define domain-specific
extensions to the pointcut language. Josh is inspired by the idea of the open-compiler
approach [72]. Internal structure and the behaviour of the compiler is represented as
understandable abstractions and the open-compiler provides programming interface to
customize the compiler through the abstractions. Extensions to the pointcut language
can be developed as optional libraries or compiler plug-ins. Josh is built on top of
Javassist [28].

Sofya [71] is a framework that allows rapid development of dynamic program
analysis tools. It has a layered architecture in which the lower levels act as an abstraction
layer on top of BCEL, while the top layers hide low-level details about the bytecode
format and offer a publish/subscribe API that promotes composition and reuse of
analyses. An Event Description Language (EDL) allows programmers to define custom
streams of events, which can be filtered, splitted, and routed to the analyses.

RoadRunner [47] is a framework for composing different small and simple analyses
for concurrent programs. Each analysis can stand on its own, but by composing them
one can obtain more complex ones. Each dynamic analysis is essentially a filter over
event streams, and filters can be chained. Per program run, only one chain of analyses
can be specified, thus avoiding the combination of arbitrary analyses in incompatible



17 2.5 Instrumentation

way.
Chord10 is a framework that provides a set of common static and dynamic analyses

for Java. Moreover, developers can specify custom analyses, possibly on top of the
existing ones. Chord provides a rich and extensible set of low-level events that can be
intercepted.

DiSL [80, 136] is a domain-specific language for instrumentation. DiSL enables
rapid development of efficient instrumentations for Java-based dynamic program analy-
sis tools. It is built on top of ASM and provides higher abstraction layer at which the
instrumentations can be specified.

10http://pag.gatech.edu/chord

http://pag.gatech.edu/chord
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Chapter 3

Rapid Development of Dynamic
Program Analysis Tools

3.1 Motivation

With the growing complexity of computer software, dynamic program analysis (DPA)
has become an invaluable tool for obtaining information about computer programs
that is difficult to ascertain from the source code alone. Existing DPA tools aid in a
wide range of tasks, including profiling [15], debugging [6, 44, 132], and program
comprehension [84, 104]. DPA tools also serve the task of workload characterization
that we aim to conduct in this dissertation.

The implementation of a typical DPA tool usually comprises an analysis part and an
instrumentation part. The analysis part implements algorithms and data structures, and
determines what points in the execution of the analyzed program must be observed.
The instrumentation part is responsible for inserting code into the analyzed program.
The inserted code then notifies the analysis part whenever the execution of the analyzed
program reaches any of the points that must be observed.

There are many ways to instrument a program, but the focus of this dissertation
is on Java bytecode manipulation. Since Java bytecode is similar to machine code,
manipulating it is considered difficult and is usually performed using libraries such
as BCEL [124], ASM [91], Soot [127], Shrike [66], or Javassist [28]. However, even
with those libraries, writing the instrumentation part of a DPA tool is error-prone and
requires advanced expertise from the developers. Due to the low-level nature of the
Java bytecode, the resulting code is often verbose, complex, and difficult to maintain or
to extend.

The complexity associated with manipulating Java bytecode can be sometimes
avoided by using aspect-oriented programming (AOP) [70] to implement the instrumen-
tation part of a DPA tool. This is possible because AOP provides a high-level abstraction
over predefined points in program execution (join points) and allows inserting code

19
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(advice) at a declaratively specified set of join points (pointcuts). Tools like the DJProf
profiler [94], the RacerAJ data race detector [19], or the Senseo Eclipse plugin for
augmenting static source views with dynamic metrics [104], are examples of successful
applications of this approach.

AOP, however, is not a general solution to DPA needs—mainly because AOP was
not primarily designed for DPA. AspectJ, the de-facto standard AOP language for Java,
only provides a limited selection of join point types and thus does not allow inserting
code at the boundaries of, e.g., basic blocks, loops, or individual bytecodes. Another
important drawback is the lack of support for custom static analysis at instrumentation
time, which can be used, e.g., to precompute static information accessible at runtime,
or to select join points that need to be captured. An AOP-based DPA tool will usually
perform such tasks at runtime, which can significantly increase the overhead of the
inserted code. This is further aggravated by the fact that access to certain static and
dynamic context information is not very efficient [16].

To leverage the syntactic conciseness of the pointcut-advice mechanism found
in AOP without sacrificing the expressiveness and performance attainable by using
the low-level bytecode manipulation libraries, the DiSL [80, 136] framework was
introduced. DiSL is an open-source framework that enables rapid development of
efficient instrumentations for Java-based DPA tools. DiSL achieves this by relying on
AOP principles to raise the abstraction level (thus reducing the effort needed to develop
an instrumentation), while avoiding the DPA-related shortcomings of AOP languages
(thus increasing the expressive power and enabling instrumentations that perform as
well as instrumentations developed using low-level bytecode manipulation libraries).

Having many choices for specifying instrumentations, DPA tool developers face a
hard time of choosing the right instrumentation framework that fully satisfies their
needs. To the best of our knowledge, no such quantification is present in the literature
concerning instrumentation of Java programs.

The purpose of this chapter, therefore, is to quantify the usefulness of instrumen-
tation frameworks when developing DPA tools. Specifically, we aim to address the
following research questions:

RQ1 Which instrumentation framework improves developer productivity in writing
instrumentations for DPA?

RQ2 Do instrumentations written in a high-level style perform as fast as their equiva-
lents written using low-level libraries?

To answer the research questions, we conduct a controlled experiment to determine
the framework that increases developer productivity. We also perform an extensive
evaluation of 10 existing open source DPA tools, in which we reimplement their instru-
mentation parts using DiSL, which offer a high-level approach for writing instrumen-
tations. We compare reimplemented and the original instrumentation parts of those
10 DPA tools. With respect to RQ1, the controlled experiment provides evidence of
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increased developer productivity, supported by the evidence of more concise expression
of equivalent instrumentations obtained by comparing the sizes of the original and
DiSL-based instrumentations in terms of logical lines of code. Regarding RQ2, we
compare the overhead of the evaluated DPA tools on benchmarks from the DaCapo [17]
suite using both the original and the DiSL-based instrumentation.

3.2 Background: DiSL Overview

DiSL1 is a domain-specific language that provides developers of DPA tools with high-
level concepts similar to those in AOP, without taking away the expressiveness and
performance that can be attained when developing instrumentations using low-level
bytecode manipulation libraries.

The key concepts raising the level of abstraction in DiSL instrumentations are
markers and snippets, complemented by scopes and guards. A marker represents a class
of potential instrumentation sites and is similar to a join point in AOP. DiSL provides a
predefined set of markers at the granularity of methods, basic blocks, loops, exception
handlers, and individual bytecodes. Since DiSL follows an open join point model,
programmers can implement custom markers to represent the desired instrumentation
sites.

Snippets contain the instrumentation code and are similar to advice in AOP. Snippets
are inlined before or after an instrumentation site, with the usual semantics found in
AOP. The snippet code can access any kind of static context information (e.g., class and
method name, basic block index), and may also inspect the dynamic context of the
executing method (e.g., stack and method arguments).

Scopes and guards restrict the application of snippets. While scopes are based on
method signature matching, guards contain Java code capturing potentially complex
conditionals evaluated at instrumentation time. Snippets annotated with markers,
scopes, and guards are colocated in a class referred to as DiSL instrumentation, which is
similar to an aspect in AOP.

To illustrate the basic DiSL concepts and their similarity to AOP, Figures 3.1 and 3.2
show the source code of a simple tracing tool implemented using AspectJ and DiSL,
respectively. On each method entry and method exit, the tool should output the full
name of the method and its signature.

In the AspectJ version, the executionPointcut () construct selects method executions
restricted to the desired class, while the before () and after () constructs define the
advice code that should be run before and after method execution. Within the advice
code, the thisJoinPointStaticPart pseudo-variable is used to access static information,
e.g., method name, related to each join-point where the advice is applied.

In the DiSL version, we define two code snippets, represented by the onMethodEntry()
and onMethodExit() methods, that print out the method name and signature before

1http://disl.ow2.org

http://disl.ow2.org
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pointcut executionPointcut () : execution (* HelloWorld.* (..));

before (): executionPointcut () {
System.out.println ("On "+ thisJoinPointStaticPart.getSignature () +" method entry");

}

after (): executionPointcut () {
System.out.println ("On "+ thisJoinPointStaticPart.getSignature () +" method exit");

}

Figure 3.1. Tracing tool implemented using AspectJ.

@Before (marker = BodyMarker.class, scope = "*.HelloWorld.*")
void onMethodEntry (MethodStaticContext msc) {
System.out.println ("On "+ msc.thisMethodFullName () +" method entry");

}

@After (marker = BodyMarker.class, scope = "*.HelloWorld.*")
void onMethodExit (MethodStaticContext msc) {
System.out.println ("On "+ msc.thisMethodFullName () +" method exit");

}

Figure 3.2. Tracing tool implemented using DiSL.

and after executing a method body. The method name and signature is obtained from
a method static context, which is accessed through the msc method argument. To
determine when—relative to the desired point in program execution—the snippets
should be executed, we use the @Before and @After annotations. The annotation
parameters determine where to apply the snippets. The marker parameter selects the
whole method body, and the scope parameter restricts the selection only to methods of
the HelloWorld class.

To demonstrate the more advanced features of DiSL, Figure 3.3 shows a DiSL-
based implementation of the instrumentation part of a field-immutability analysis tool,
which identifies fields that were never written to outside the dynamic extent of the
constructor [111]. This notion of immutability is dynamic by nature, and while it
differs from the classic notion of immutability found in the literature [51, 52], it still
provides a developer with valuable insights. The analysis (not shown) driven by the
instrumentation tracks all field accesses and object allocations, and keeps a small state
machine for each instance field. Every field can be in one of the three states: virgin (i.e.,
not read or not written to), immutable (i.e., read or was written to inside the dynamic
extent of its owner object’s constructor), or mutable (otherwise).

To implement the instrumentation for such an analysis in DiSL, we define two snip-
pets, beforeFieldWrite and beforeFieldRead, which intercept the putfield and getfield
bytecodes, respectively. Inside the snippets, we extract the reference to the instance
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in which the field is being accessed from the operand stack, and pass it along with
the field identifier and a queue of objects under construction to the analysis class,
ImmutabilityAnalysis2, using the onFieldWrite and onFieldRead methods, respectively.

To extract values from the operand stack (in this case the object reference), we
use the DynamicContext API, which allows obtaining the values from arbitrary (valid)
operand stack slots. The type of access to a field is determined by the bytecode
instruction to which the snippets are bound, and the instruction in turn determines the
operand stack layout we can expect when the corresponding snippet is executed. For
field reads we therefore extract the object reference from the top of the operand stack,
while for field writes we extract the reference from the second position from the top.
The field identifier is obtained through a custom MethodStaticContext.

After each object allocation, we use the afterInitialization snippet to pass the newly
allocated object, along with the identification of its allocation site, to the analysis
runtime class using the onObjectInitialization method. As in the case of field accesses,
the DynamicContext API is used to extract the reference to the newly allocated object
from the operand stack.

The ThreadLocal static variable objectsUnderConstruction holds a stack of cur-
rently executing constructors, which the analysis uses to determine whether the
owner of a field being accessed is under construction. To maintain the stack, the
beforeConstructor snippet pushes the object under construction on the stack, whereas
the afterConstructor snippet pops the stack. The ConstructorsOnly guard is used at
instrumentation time to restrict the application of the two stack-maintenance snippets
to constructors only.

3.3 Quantifying the Impact of DiSL

In this section we present the controlled experiment conducted to answer the first
research question of this chapter. We first introduce the experiment design, including
task and subject descriptions, and then present the results of the experiment followed
by a discussion of threats to the validity of the study.

3.3.1 Experiment Design

The purpose of the experiment is to quantitatively evaluate the effectiveness of high-
level framework for writing instrumentations for DPA tools compared to the use of a
low-level bytecode manipulation library. We claim that using DiSL, developers of DPA
tools can improve their productivity and the correctness of the resulting tools. In terms
of hypothesis testing, we have formulated the following null hypotheses:

2For sake of brevity, we omit the description and the source code of the analysis runtime class, because
it is not important in the context of instrumentation—it merely defines an API that the instrumentation
will use to notify the analysis about events in the base program.
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/** INSTRUMENTATION CLASS **/
public class DiSLClass {
@ThreadLocal
private static Deque <Object> objectsUnderConstruction;

/** STACK MAINTENANCE **/
@Before (marker = BodyMarker.class, guard = ConstructorsOnly.class)
public static void beforeConstructor (DynamicContext dc) {
try {
if (objectsUnderConstruction == null) {
objectsUnderConstruction = new ArrayDeque <Object> ();

}

objectsUnderConstruction.push (dc.getThis ());
} catch (Throwable t) {
t.printStackTrace ();

}
}

@After (marker = BodyMarker.class, guard = ConstructorsOnly.class)
public static void afterConstructor () {
ImmutabilityAnalysis.instanceOf ().popStackIfNonNull (objectsUnderConstruction);

}

/** ALLOCATION SITE **/
@AfterReturning (marker = BytecodeMarker.class, args = "new")
public static void afterInitialization (MyMethodStaticContext sc, DynamicContext dc) {
ImmutabilityAnalysis.instanceOf ().onObjectInitialization (
dc.getStackValue (0, Object.class), // the allocated object
sc.getAllocationSite () // the allocation site

);
}

/** FIELD ACCESSES **/
@Before (marker = BytecodeMarker.class, args = "putfield")
public static void beforeFieldWrite (MyMethodStaticContext sc, DynamicContext dc) {
ImmutabilityAnalysis.instanceOf ().onFieldWrite (
dc.getStackValue (1, Object.class), // the accessed object
sc.getFieldId (), // the field identifier
objectsUnderConstruction // the stack of constructors

);
}

@Before (marker = BytecodeMarker.class, args = "getfield")
public static void beforeFieldRead (MyMethodStaticContext sc, DynamicContext dc) {
ImmutabilityAnalysis.instanceOf ().onFieldRead (
dc.getStackValue (0, Object.class), // the accessed object
sc.getFieldId (), // the field identifier
objectsUnderConstruction // the stack of constructors

);
}

}

/** GUARD CLASS **/
class ConstructorsOnly {
@GuardMethod
public static boolean isApplicable (MethodStaticContext msc) {
return msc.thisMethodName ().equals ("<init>");

}
}

Figure 3.3. Field-immutability analysis tool implemented in DiSL.
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H10: Implementing DPA tools with DiSL does not reduce the development time of the
tools.

H20: Implementing DPA tools with DiSL does not improve the correctness of the tools.

We therefore need to determine if there is evidence that would allow us to refute
the two null hypotheses in favor of the corresponding alternative hypotheses:

H1: Implementing DPA tools with DiSL reduces the development time of the tools.

H2: Implementing DPA tools with DiSL improves the correctness of the tools.

The rationale behind the first alternative hypothesis is that DiSL provides high-level
language constructs that enable users to rapidly specify compact instrumentations that
are easy to write and to maintain. The second alternative hypothesis is motivated by the
fact that DiSL does not require knowledge of low-level details of the JVM and bytecodes
from the developer, although more advanced developers can extend DiSL for special
use cases.

To test the hypotheses H10 and H20, we define a series of tasks in which the
subjects, split between a control and an experimental group, have to implement different
instrumentations similar to those commonly found in DPA tools. The subjects in
the control group have to solve the tasks using only ASM, while the subjects in the
experimental group have to use DiSL.

The choice of ASM as the tool for the control group was driven by several factors.
The goal of the experiment was to quantify the impact of the abstractions and the
programming model provided by high-level approach on the development of instrumen-
tations for DPA tools. We did a thorough research of existing bytecode manipulation
libraries and frameworks, and ASM came out as a clear winner with respect to flexi-
bility and performance, both aspects crucial for development of efficient DPA tools. In
addition, ASM is a mature, well-maintained library with an established community. As a
result, ASM is often used for instrumentation development (and bytecode manipulation
in general) both in academia and industry. We maintain that when a developer is asked
to instrument an application by manipulating Java bytecode, ASM will most probably
be the library of choice.

DiSL was developed as an abstraction layer on top of ASM precisely because of
the above reasons, but with a completely different programming model inspired by
AOP, tailored for instrumentation development. Using ASM as the baseline allowed
us to quantify the impact of the abstraction layer and programming model on the
instrumentation development process, compared to a lower-level, but commonly used
programming model provided by ASM as the de-facto standard library.
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Task Description

0 a) On method entry, print the method name.

b) Count the number of NEW bytecodes in the method.

c) On each basic block entry, print its index in the method.

d) Before each lock acquisition, invoke a given method that receives the object to be locked
as its argument.

1 On method entry, print the number of method arguments.

2 Before array allocation, invoke a given method that receives the array length as its
argument.

3 Upon method completion, invoke a given method that receives the dynamic execution
count of a particular bytecode instruction as its argument.

4 Before each AASTORE bytecode, invoke a given method that receives the object to be stored
in the array together with the corresponding array index as its arguments.

5 On each INVOKEVIRTUAL bytecode, invoke a given method that takes only the receiver of
the invoke bytecode as its argument.

6 On each non-static field write access, invoke a given method that receives the object whose
field is written to, and the value of the field as its arguments. Invocation shall be made
only when writing non-null reference values.

Table 3.1. Description of instrumentation tasks

3.3.2 Task Design

With respect to the instrumentation tasks to be solved during the experiment, we
maintain two important criteria: the tasks shall be representative of instrumentations
that are used in real-world applications, and they should not be biased towards either
ASM or DiSL. Table 3.1 provides descriptions of the instrumentation tasks the subjects
have to implement. Those are examples of typical instrumentations that are used in
profiling, testing, reverse engineering, and debugging.

To familiarize themselves with all the concepts needed for solving the tasks, the
subjects first had to complete a bootstrap task 0.

3.3.3 Subjects and Experimental Procedure

In total, we had 16 subjects—BSc., MSc., and PhD students from Shanghai Jiao Tong
University—participate in the experiment on a voluntary basis. Prior to the experiment,
all subjects were asked to complete a self-assessment questionnaire regarding their
expertise in object-oriented programming (OOP), Java, Eclipse, DPA, Java bytecode,
ASM, and AOP. The subjects rated themselves on a scale from 0 (no experience) to 4
(expert), and on average achieved a level of 2.6 for OOP, 2.5 for Java, 2.5 for Eclipse,
0.75 for DPA, 0.6 for JVM bytecode, 0 for ASM, and 0.12 for AOP. Our subjects can
be thus considered average (from knowledgeable to advanced) Java developers who
had experience with Eclipse and with writing very simple instrumentation tasks, but
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with little knowledge of DPA and JVM in general, and with no expertise in ASM and
AOP. Based on the self-assessment results, the subjects were assigned to the control and
experimental groups so as to maintain approximately equal distribution of expertise.

The subjects in both groups were given a thorough tutorial on DPA, JVM internals,
and ASM. The ASM tutorial focused on the tree API, which is considered easier to
understand and use. In addition, the subjects in the experimental group were given
a tutorial on DiSL. Since the DiSL programming model is conceptually closer to AOP
and significantly differs from the programming model provided by low-level bytecode
manipulation libraries, including ASM, we saw no benefit in giving the tutorial on DiSL
also to the subjects in the control group. The tutorial was based on the experience of
the author of this dissertation with dynamic program analysis and was given in form of
an informal 3-hour lecture. The subjects were free to ask clarification questions. The
experiment was performed in a single session in order to minimize the experimental bias
(e.g., by giving different tutorials on the same topic) that could affect the experimental
results. The session was supervised, allowing the subjects to ask clarification questions
and preventing them from cheating. The subjects were not familiar with the goal of the
experiment and the hypotheses.

We provided the subjects with disk images for VirtualBox,3 which was the only
piece of software that had to be installed. Each disk image contained all the software
necessary to complete the tasks: Eclipse IDE, Apache Ant, and ASM installed on an
Ubuntu 10.4 operating system. In addition, the disk images for the experimental group
also contained an installation of DiSL. All subjects received the task descriptions and a
debriefing questionnaire, which required the subjects to rate the perceived time pressure
and task difficulty. The tasks had to be completed in 180 minutes, giving a 30 minutes
time slot for each task.

3.3.4 Variables and Analysis

The only independent variable in our experiment is the availability of DiSL during the
tasks.

The first dependent variable is the time the subjects spend to implement the instru-
mentations, measured by having the subjects write down the current time when starting
and finishing a task. Since the session is supervised and going back to the previous task
is not allowed, there is no chance for the subjects to cheat.

The second dependent variable is the correctness of the implemented solutions.
This is assessed by code reviews and by manual verification. A fully correct solution is
awarded 4 points, no solution 0 points, partially correct solutions can get from 1 to 3
points.

For hypothesis testing, we use the parametric one-tailed Student’s t-test, after
validating the assumptions of normality and equal variance using the Kolmogorov-

3http://www.virtualbox.org/

http://www.virtualbox.org/
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Figure 3.4. Box plots for development time spent (left) and correctness of the tools
(right). The red dot represents an outlier.

Smirnov and Levene’s tests. We maintain the typical confidence level of 99% (α = 0.01)
for all tests. All calculations were made using the SPSS statistical package.

3.3.5 Experimental Results

Development Time

On average, the DiSL group spent 63% less time writing the instrumentations. The time
spent by the two groups to complete the tasks is visualized as a box plot in Figure 3.4.

To assess whether the positive impact on the development time observed with DiSL
has a statistical significance, we test the null hypothesis H10, which says that DiSL
does not reduce the development time. Neither Kolmogorov-Smirnov nor Levene’s tests
indicate a violation of the Student’s t-test assumptions. The application of the latter
gives a p-value4 of 0.001, which is one order of magnitude less than α = 0.01 (see
Table 3.2). We therefore reject the null hypothesis in favor of the alternative hypothesis,
which means that the time spent is statistically significantly reduced by the availability
of DiSL.

We attribute the substantial time difference to the fact that instrumentations writ-
ten using ASM are very verbose and low-level, whereas DiSL allows one to write
instrumentations at a higher level of abstraction.

4In statistical testing, the p-value is the probability of obtaining a result at least as extreme as the one
that was observed, provided that the null hypothesis is true. Generally, if the p-value is less than the chosen
significance level (e.g., 0.01), then obtaining such a result with the null hypothesis being true is highly
unlikely, and the null hypothesis is therefore rejected.
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Time [minutes] Correctness [points]
ASM DiSL ASM DiSL

Summary statistics
mean 148.62 54.62 8.75 18.75
difference -63.2% +46.6%
min 130 17 2 8
max 180 140 18 24
median 145 45.5 7 19
stdev. 18.73 38.96 5.92 4.68

Assumption checks
Kolmogorov-Smirnov Z 0.267 0.203 0.241 0.396
Levene F 1.291 1.939

One-tailed Student’s t-test
df 14 14
t 6.150 -3.746
p-value <0.001 0.002

Table 3.2. Descriptive statistics of the experimental results

Instrumentation Correctness

As reported in Table 3.2, the average amount of points scored by a subject in the
experimental (DiSL) group is 46.6% higher than in the control (ASM) group. A box plot
for the results is shown in Figure 3.4.

To test the null hypothesis H20, which says that there is no impact of using DiSL
on instrumentation correctness, we again apply the Student’s t-test, since neither
Kolmogorov-Smirnov nor Levene’s tests indicate a violation of the normality assump-
tions. The t-test gives a p-value of 0.002 (see Table 3.2) which is again an order of
magnitude less than α = 0.01. We therefore reject the null hypothesis in favor of the
alternative hypothesis H2, which means that the correctness of instrumentations is
statistically significantly improved by the availability of DiSL.

3.3.6 Threats to Validity

Internal Validity

There is a chance that the subjects participating in the experiment may not have
been competent enough. To minimize the impact of this uncertainty, we ensured that
the subjects had expertise at least at the level of average Java developers by using a
preliminary self-assessment questionnaire. Moreover, we ensured that the subjects were
equally distributed among the control group and the experimental group according to
their expertise. Also both groups were given a thorough tutorial on DPA and had to
complete task 0 before starting to solve the evaluated tasks.

The instrumentation tasks were designed by the author of this dissertation (who
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is also a contributor to the DiSL framework), and therefore could be biased towards
DiSL. To avoid this threat, we created instrumentations that are representative and used
in some real-world scenarios. We asked other faculty members, who are not involved
in the DiSL project but are familiar with DPA, to provide their comments on the tasks.
Additionally, the tasks may have been too difficult and the time slot of 30 minutes may
have been insufficient. To address this threat, we conducted a pilot study at Charles
University in Prague and collected feedback about the perceived task difficulty and
time pressure, which allowed us to adjust the difficulty of the instrumentation tasks.
Moreover, the pilot study allowed us to adjust the tutorial and refine the documentation
of DiSL.

External Validity

One can question the generalization of our results given the limited representativeness
of the subjects and tasks. Even though the literature [40] suggests to avoid using only
students in a controlled experiment, we could not attract other subjects to participate
in our experiment.

Another threat to external validity is the fact that we compare high-level (DiSL)
and low-level (ASM) approaches for instrumentation development. This choice is a
necessary consequence of considering DPA tools to be the primary targets for DiSL-
based instrumentations—high-level bytecode manipulation frameworks typically have
limitations with respect to flexibility of instrumentation and control over inserted code,
both of which are crucial for development of efficient DPA tools.

While low-level libraries can be typically used for a wide range of tasks, it is the
focus on a specific purpose that allows high-level libraries to hide the low-level details
common to that particular purpose. In this sense, DiSL was specifically designed for
instrumentation development, while other high-level frameworks often target general
code manipulation and transformation tasks. Our study quantifies the impact of in-
troducing a high-level, AOP-inspired API on the developer productivity compared to
the common practice. An additional user study involving DiSL and other high-level
bytecode manipulation frameworks could explore the suitability of various high-level
interfaces for instrumentation development, but that would not invalidate our study.

Results Summary and Future Work

In summary, the experiment confirms that DiSL improves developer productivity com-
pared to ASM, the library of choice for bytecode manipulation in DPA tools. In terms of
development time and instrumentation correctness, the improvement is both practically
and statistically significant.

However, our study can be possibly improved in several ways. The controlled
experiment presented in this chapter has a “between” subject design. Conducting a
similar study with a “with-in” subject design, where subjects from the control and
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the experimental groups swap the tasks after the first experiment might provide new
insights and strengthen the results. Moreover, comparing DiSL with other high-level
approaches for performing instrumentations (e.g., AspectJ) would be an interesting
continuation of this work.

3.4 DiSL Tools Are Concise and Efficient

In this section we present another experiment—an extensive evaluation of high-level
approach in the context of 10 existing open-source DPA tools. We have identified and
recasted the instrumentation part of each tool in DiSL, without touching the analysis
part. We then compared the amount of code required to implement the DiSL-based
instrumentation, as well as its performance, to the original instrumentation. In the
following text, we will refer to the unmodified version of a tool as original, and to the
version using an equivalent DiSL-based instrumentation as recasted.

3.4.1 Overview of Recasted Analysis Tools

To establish a common context for both parts of the evaluation, we first present a short
overview of each tool. To improve clarity, all descriptions adhere to a common template:
we start with a high-level overview of the tool, then we describe the instrumentation
logic used to trigger the analysis actions, and finally we point out the DiSL features
used to reimplement the instrumentation.

The original instrumentations were implemented mostly using ASM, or AspectJ, with
C used in one case. Most of the ASM-based and AOP-based tools rely on a Java agent,
which is part of the java.lang.instrument API, and perform load-time instrumentation
of all (loaded) classes.

Cobertura5 is a tool for Java code coverage analysis. At runtime, Cobertura collects
coverage information for every line of source code and for every branch.

Cobertura uses an ASM-based instrumentation to intercept branch instructions
and blocks of bytecode corresponding to lines of code, and to invoke the method
corresponding to the intercepted event on the analysis class to update the coverage
information.

The recasted instrumentation uses three custom markers to capture the same join
points as Cobertura, and a synthetic local variable to indicate whether a branch occurred.

EMMA6 is a tool for Java code coverage analysis. During instrumentation, EMMA
analyzes the classes and collects various static information, including the number of
methods in a class, and the number of basic blocks in a method. At runtime, EMMA
collects coverage information for every basic block of every method in every class.

5http://cobertura.sourceforge.net/
6http://emma.sourceforge.net

http://cobertura.sourceforge.net/
http://emma.sourceforge.net
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EMMA uses ASM for both static analysis and instrumentation to intercept every
method entry, where it associates a two-dimensional array with each class, and every
basic block exit, where it updates the array to mark a basic block visited.

The recasted instrumentation uses the DiSL method body marker to intercept
method entry, where it registers the two-dimensional array with EMMA, and a basic
block marker to intercept basic block entry, where it triggers the update of coverage
information. The array is stored in a per-class synthetic static field, which can be shared
among snippets executed in different methods. A guard is used to filter out interface
classes.

HPROF [87] is a heap and CPU profiler for Java distributed with the HotSpot JVM.
Since HPROF is a native JVM agent implemented in C, we have reimplemented one of
its features in Java to enable comparison with a DiSL-based tool. Our tool only provides
the heap allocation statistics feature of HPROF, and uses a DiSL-based instrumentation
to collect data. We therefore use HPROF∗ as a designation for “HPROF with only the
heap allocation statistics feature” in the following text, and all comparisons against the
original HPROF only concern that single feature.

To keep track of allocated objects, the HPROF∗ agent uses the Java Virtual Machine
Tool Interface (JVMTI) [89] to intercept object allocation and death events, and collects
type, size, and allocation site for each object.

The recasted instrumentation uses the DiSL bytecode marker to intercept object and
array allocations, and a dynamic context API to obtain the references to newly allocated
objects from the operand stack.

JCarder7 is a tool for finding potential deadlocks in multi-threaded Java applications.
At runtime, JCarder constructs a dependency graph for threads and locks, and if the
graph contains a cycle, JCarder reports a potential deadlock.

To maintain the dependency graph, JCarder uses an ASM-based instrumentation to
intercept acquisition and release of locks. To simplify the instrumentation, synchronized
methods are converted to normal methods with explicit locking.

The recasted instrumentation uses the DiSL bytecode marker to intercept the lock
acquisition/release bytecodes, and a method body marker with a guard to intercept
synchronized method entry and exit. A custom static context is used to precompute the
static method description required by the analysis class, and the dynamic context API is
used to extract the lock reference from the stack.

JP2 [107] is a calling-context profiler for Java. For each method, JP2 collects various
static metrics (i.e., method names, number and sizes of basic blocks) and dynamic
metrics (i.e., method invocations, basic block executions, and number of executed
bytecodes), and associates them with a corresponding node in a calling-context tree
(CCT) [2], grouped by the position of the method call-site in the caller.

JP2 uses an ASM-based instrumentation to intercept method entry and exit, basic
block entry, and execution of bytecodes that may trigger method invocation or execu-

7http://www.jcarder.org/

http://www.jcarder.org/
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tion of class initializers upon loading a class. Static information is collected during
instrumentation.

The recasted instrumentation uses default DiSL markers (method body, basic block,
and bytecode) to update the CCT upon method entry and exit. Thread-local variables
are used to access the CCT instance and call-site position in the bytecode, while synthetic
local variables are used to cache and share CCT nodes and call-site position between
snippets. Static information is collected at instrumentation time using the method body,
basic block, and bytecode static contexts.

JRat8 is a call graph profiler for Java. For each method, JRat collects the execution
time of each invocation, grouped by the caller. The data is used to produce a call graph
with execution time statistics, which allows to attribute the time spent in a particular
method to individual callers.

To measure method execution time and to determine the caller, JRat uses an ASM-
based instrumentation to intercept each method entry and exit.

The recasted instrumentation uses the DiSL method body marker to intercept
method invocations, a synthetic local variable to share time stamps between snippets,
and a per-method synthetic static field to store the instance of an analysis class. A guard
is used to avoid instrumentation of constructors and static class initializers.

RacerAJ [18] is a tool for finding potential data races in multi-threaded Java appli-
cations. At runtime, RacerAJ monitors all field accesses and lock acquisitions/releases,
and reports a potential data race when a field is accessed from multiple threads without
holding a lock that synchronizes the accesses.

To maintain various per-thread and per-field data structures, RacerAJ uses an AOP-
based instrumentation to intercept all field accesses, and all lock acquisitions/releases,
both explicit and implicit due to synchronized methods.

The recasted instrumentation uses the DiSL bytecode marker to intercept the lock
acquisition/release and field access bytecodes, and a method body marker together
with a guard to intercept synchronized method entry and exit. A custom static context
is used to obtain a field identifier and the name of the class owning the field that is
being accessed. A class static context is used to identify a field access site, while the
dynamic context API is used to extract the lock reference from the stack.

ReCrash [6] is a tool for reproducing software failures. During program execution,
ReCrash snapshots method arguments leading to failures and uses them to generate
unit tests that reproduce the failure.

ReCrash uses an ASM-based instrumentation to intercept method entry, where it
snapshots the method arguments, normal method exit, where it discards the snapshot,
and abnormal method exit (only in the main method), where it uses the snapshot to
generate a test case.

The recasted instrumentation uses the DiSL method body marker to intercept
method entry and normal/abnormal method exit. A per-method synthetic static field

8http://jrat.sourceforge.net/

http://jrat.sourceforge.net/
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is used to cache method static information, while a synthetic local variable is used to
share the index of the argument snapshot between snippets on method entry and exit.
The dynamic context API is used to take a snapshot of method arguments, and a guard
filters out private methods, methods without arguments, empty methods, static class
initializers, and constructors.

Senseo [104] is a tool for profiling and code comprehension. For each method
invocation, Senseo collects calling-context specific information, which a plugin9 then
makes available to the user via enriched code views in the Eclipse IDE.

Senseo uses an AspectJ-based instrumentation, and intercepts each method entry
and exit to count method invocations and uses join point API to collect statistics on
method arguments and return types. Within methods, it also intercepts object allocations
to count the number of allocated objects.

The recasted instrumentation uses the DiSL method body marker to intercept
method invocation, and a bytecode marker to intercept object allocations. Method
arguments and newly allocated objects are accessed via the dynamic context API. Guards
are used to differentiate between methods that only accept and return primitive types
and methods that work with reference types.

TamiFlex [20] is a tool that helps other (static analysis) tools deal with reflection
and dynamically generated classes in Java. TamiFlex logs all reflective method calls
and dumps all loaded classes, including those that are dynamically generated, to the
disk. The collected information can be used to perform static analysis either with a
TamiFlex-aware tool or, after transforming all reflective calls to actual method calls,
with any other static analysis tool.

TamiFlex uses an ASM-based instrumentation in its Play-out agent to intercept
method invocations on the instances of the Class, Constructor, and Method reflection
classes.

The recasted instrumentation of the Play-out agent uses the DiSL method body
marker restricted by a scope to intercept exits from methods in the aforementioned
reflection classes. A corresponding snippet is used for each transformation from the
Play-out agent. Support for dumping both the original and instrumented classes is
present in DiSL and has been used.

3.4.2 Instrumentation Conciseness Evaluation

Based on the experience with recasting the instrumentation parts of the tools in this
evaluation, we usually expect the instrumentations implemented using DiSL to require
less logical source lines of code (SLOC) than their ASM-based equivalents. Even though
“less code” does not generally mean “better code”, we assume that in the same context
and for the same task, a shorter implementation can be considered more concise, and
thus easier to write, understand, and maintain, if it also enables increased developer

9http://scg.unibe.ch/research/senseo

http://scg.unibe.ch/research/senseo
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Figure 3.5. Logical source lines of code (SLOC) counts for original and DiSL-based
instrumentations.
We use to denote instrumentations originally based on ASM, and to denote those
based on AspectJ.

productivity.
Since the study in Section 3.3 shows that DiSL indeed positively impacts productivity

compared to ASM, we use the SLOC count as a metric to compare different implemen-
tations of equivalent instrumentations in DPA tools. As a result, we provide quantitative
evidence that DiSL-based instrumentations are more concise than their ASM-based
equivalents, but not as concise as the AOP-based variants.

The plot in Figure 3.5 shows the SLOC counts10 of both the DiSL-based and the
original instrumentations for each tool. Each data point in the plot corresponds to a
single tool, with the SLOC count of the original instrumentation on the x-axis, and the
SLOC count of the DiSL-based instrumentation on the y-axis.

Figure 3.5 indicates that DiSL-based instrumentations generally require less code
than their ASM-based counterparts, because bytecode manipulation, even when using
ASM, results in more verbose code. The extreme savings in the case of EMMA are
due to EMMA having to implement its own static analysis, whereas the DiSL-based
instrumentation can use the static context information provided by DiSL.

10Calculated using Unified CodeCount by CSSE USC, rel. 2011.10, http://sunset.usc.edu/research/
CODECOUNT.

http://sunset.usc.edu/research/CODECOUNT
http://sunset.usc.edu/research/CODECOUNT
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In line with our expectations, the DiSL-based instrumentations require more code
than their AOP-based equivalents. This can be partially attributed to DiSL being an
embedded language hosted in Java, whereas AOP has the advantage of being a separate
language. Moreover, DiSL instrumentations also include code that is evaluated at in-
strumentation time, which increases the code size, but provides significant performance
benefits at runtime. However, in the context of instrumentations for DPA, DiSL is more
flexible and expressive than AOP without impairing the performance of the resulting
tools.

The results for HPROF were intentionally omitted from the plot, because we were
unable to isolate the instrumentation code for HPROF∗ from the rest of the application.
In total, HPROF consists of more than 9000 SLOC written in C, whereas our version
of HPROF∗ written in Java consists of 168 SLOC, of which 39 is the DiSL-based
instrumentation.

3.4.3 Instrumentation Performance Evaluation

In this section, we conduct a series of experiments to provide answer to RQ2, i.e.,
whether DiSL-based instrumentations perform as fast as the equivalent instrumentations
written using low-level bytecode manipulation libraries.

To evaluate the instrumentation performance, we compare the execution time
of the original and the recasted tools on benchmarks from the DaCapo [17] suite
(release 9.12). Of the fourteen benchmarks present in the suite, we excluded tradesoap,
tradebeans and tomcat due to well known issues11 unrelated to DiSL. All experiments
were run on a multicore platform12 with all non-essential system services disabled.

We present results for startup and steady-state performance in Figure 3.6 and
Figure 3.7, respectively. Both figures contain a separate plot for each of the evaluated
tools, displaying the overhead factor of a particular tool during the execution of each
individual DaCapo benchmark. The data points marked in gray represent the execution
of a single DaCapo benchmark, with the overhead factor of the original and the recasted
tool on the x-axis and the y-axis, respectively. The single black data point in each plot
represents the geometric mean of overhead factors from all benchmarks. The diagonal
line serves to indicate the data points for which the overhead factor of the original
and the recasted tool is the same. To determine the startup overhead, we executed 3
runs of a single iteration of each benchmark and measured the time from the start of
the process till the end of the iteration to capture the instrumentation overhead. We
relied on the filesystem cache to mitigate the influence of I/O operations during startup.
To determine the steady-state overhead, we made a single run with 10 iterations of

11See bug ID 2955469 (hardcoded timeout in tradesoap and tradebeans) and bug ID 2934521 (Stack-
OverflowError in tomcat) in the DaCapo bug tracker at http://sourceforge.net/tracker/?group_id=
172498&atid=861957.

12Four quad-core Intel Xeon CPUs E7340, 2.4 GHz, 16 GB RAM, Ubuntu GNU/Linux 11.04 64-bit with
kernel 2.6.38, Oracle Java HotSpot 64-bit Server VM 1.6.0_29.

http://sourceforge.net/tracker/?group_id=172498&atid=861957
http://sourceforge.net/tracker/?group_id=172498&atid=861957
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each benchmark and excluded the first 5 iterations to minimize the influence of startup
transients and interpreted code. The number of iterations to exclude was determined
by visual inspection of the data from the benchmarks.

Concerning the startup overhead, the results in Figure 3.6 indicate that DiSL often
slows down the startup phase of a benchmark. This can be partially attributed to
DiSL using ASM to first create a tree representation of every class and only applying
the exclusion filters at the level of methods. In this case, DiSL could be improved to
decide early whether a class needs to be instrumented at all and thus avoid processing
classes that need not be touched. Another source of overhead is evaluating guards
and computing static context information for snippets that require it. In this case, the
higher overhead at instrumentation time is traded for a lower overhead at runtime, as
discussed below. The startup phase overhead is only important for applications where
the amount of class loading relative to other code execution is high. We believe these
cases to be rare.

Concerning the steady-state overhead, the results in Figure 3.7 show that the
recasted tools are typically about as fast as their original counterparts, sometimes much
faster, but never much slower. Performance improvements can be observed in the case
of AOP-based tools (RacerAJ and Senseo both use AspectJ for instrumentation), and in
the case of HPROF. The improved performance can be attributed mainly to the fact that
DiSL allows to use static information at instrumentation time to precisely control where
to insert snippet code, hence avoiding costly checks and static information computation
(often comprising string concatenations) at runtime. The need for runtime checks is
extremely pronounced with HPROF, which needs to filter the events related to program
execution emitted by the JVM. Additional performance gains can be attributed to the
ability of DiSL snippets to efficiently access the constant pool and the JVM operand
stack, which is particularly relevant in comparisons with AOP-based tools.

3.5 Summary

In this chapter we aimed in identifying an instrumentation framework that allows rapid
development of dynamic program analysis tools, as we needed one to base our tools on.
In this regard we performed a thorough evaluation and assessment of DiSL [80, 136], a
new abstraction layer on top of the well-known bytecode manipulation library ASM [91].
DiSL is a domain-specific aspect language especially designed for instrumentation-based
dynamic program analysis. The design of DiSL aims at reconciling (i) a convenient high-
level programming model to reduce tool development time, (ii) high expressiveness to
enable the implementation of any instrumentation-based dynamic analysis tool, and
(iii) efficiency of the generated code to ensure good tool performance.

First, we conducted a controlled experiment to compare DiSL with ASM, measuring
development time and correctness of the developed tools for 6 common dynamic
analysis tasks. We showed that the use of DiSL reduced development time and improved
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tool correctness with both practical and statistical significance. Second, we recasted
10 open-source software engineering tools with DiSL, showing quantitative evidence
that DiSL-based tools are (i) considerably more concise than equivalent tools based
on ASM and (ii) only slightly more verbose than equivalent tools implemented in
AspectJ. Regarding performance, DiSL-based tools incur higher startup overhead than
ASM-based tools but yield comparable steady-state performance; DiSL-based tools
significantly outperform tools implemented in AspectJ, both in terms of startup and
steady-state performance. We conclude that DiSL is a valuable abstraction layer on
top of ASM which indeed succeeds in boosting the productivity of tool developers. In
contrast to AspectJ, DiSL neither limits expressiveness nor impairs performance of the
resulting tools.

Based on the results of these experiments, we chose DiSL as an instrumentation
framework for developing our workload characterization toolchain. Details on the
toolchain will follow in the Chapter 4.



Chapter 4

Toolchain for Workload
Characterization

4.1 Dynamic Metrics

Similar to performance evaluation (benchmarking), workload characterization employs
benchmarks (representing samples from the domain of applications) to induce workload
on the observed system while collecting metrics that characterize different aspects of the
behavior of the system. However, unlike benchmarking, which aims to determine how
well a system performs at different tasks, workload characterization aims to determine
in what way these tasks differ from each other, providing essential guidance, e.g., for
optimization effort. Ideally, the metrics characterizing JVM workloads should capture
the differences between Java and non-Java workloads and—when correlated with JVM
performance on a particular workload—they should provide developers of both JVM
languages and the JVM itself with useful insights.

For example, a developer might hypothesize that a workload performed poorly
because of heap pressure generated by increased usage of boxed primitive values,
which are used relatively rarely in normal Java code, but frequently in some other
JVM languages such as in JRuby. JVM language developers could optimize their
bytecode generator, for example, to try harder at using primitives in their unboxed
form. A dynamic metric capturing the boxing behavior of a particular workload would
allow these developers to quantify the effects of such optimizations. Meanwhile, JVM
developers may benefit from the metrics in a different way. Because JVM optimizations
are dynamic and adaptive, each optimization decision is guarded by a heuristic decision
procedure applied to profile data collected at runtime. For example, the decision
whether to inline a callee into a fast path depends on factors such as the hotness of that
call site (evaluated by dynamic profiling) and the size of the callee. JVMs can therefore
benefit from better heuristics which more accurately match real workloads, including
non-Java workloads.

41



42 4.1 Dynamic Metrics

For maximum benefit, there must be an easy way for developers to compute these
metrics over workloads of their choosing. However, no existing work has defined a
comprehensive set of such metrics and provided the tools to compute them. Rather,
existing approaches are fragmented across different infrastructures: many lack porta-
bility due to using a modified version of the JVM [38, 74], while others collect only
architecture-dependent metrics [114]. In addition, at least one well-known metric suite
implementation [41] runs with unnecessarily high performance overhead. Ideally, met-
rics should be collected within reasonable time, since this enables the use of complex,
real-world workloads and shortens the development cycles. Metrics should also be
computed based on observation of the whole workload, which not all infrastructures
allow. For example, existing metrics collected using AspectJ are suboptimal since they
lack coverage of code from the Java class library [19, 27, 94].

Our approach bases all metrics on a unified infrastructure which is JVM-portable,
offers non-prohibitive runtime overhead with near-complete bytecode coverage, and can
compute a full suite of metrics “out of the box”. All the metrics are dynamic, meaning
that they can be evaluated only by running a program with some input. The significance
of dynamic metrics—in contrast to static metrics such as code size, or instruction
distribution—has been motivated elsewhere by Dufour et al. [41], who defined a list
of sixty metrics considered useful for guiding optimization of Java programs. Our
infrastructure can compute all of these metrics.

However, the workloads produced by the various JVM languages exhibit properties
that vary significantly between Java and non-Java workloads, and require additional
metrics for proper characterization. In this section we present such metrics, summarized
in Table 4.1. Like those of Dufour et al., the new metrics are defined at the bytecode
level, making them JVM-independent and allowing portable implementation. We believe
that the new metrics are comprehensive with respect to the current selection of JVM
languages, in that they cover the differences arising from these languages’ distinct
semantics. In turn, these differences imply that different optimizations will be required
on the part of JVM and language (front-end) developers. We have therefore grouped
the metrics according to the language-level concerns which motivate them: object access,
object allocation, and code generation. We now review each group in turn.

4.1.1 Object access concerns

Object access concerns affect optimizations related to sharing of objects among threads.
Accessing shared objects requires locking, unless immutable data structures are used.
Our metrics thefore focus on identifying effectively immutable objects, the kind of locks
used, and the kind of access to shared objects.

Immutability. In recent years, functional languages have gained much attention. In
general, functional programs tend to use immutable data structures to avoid side
effects, which makes such programs amenable to parallelization. Finding objects
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Metric family Description of metrics

Argument passing distribution of floating point arguments over all dynamic invocations (see text)
distribution of reference arguments over all dynamic invocations (see text)

Basic block hotness contribution of the top 20% of basic blocks to the dynamic total number of basic block
executions

Call-site polymorphism distribution of target method count over all dynamically-dispatched calls
number of dynamically-dispatched call sites targeting a given number of methods
number call sites using each of the four invoke instructions
number of calls made using each of the four invoke instructions.

Instruction mix execution counts for each distinct bytecode instruction (opcode)
Method hotness contribution of the top 20% of methods to the dynamic total number of method execu-

tions
Stack usage and recursion depth distribution of stack heights upon recursive calls
Use of boxed types number of boxed primitives allocated

number of boxed primitives requested (using valueOf; see text)

Field sharing number of objects partially read-shared between different threads
number of objects partially write-shared between different threads
number of objects fully read-shared between different threads
number of objects fully write-shared between different threads

Field synchronization number of objects synchronized on
the average number of locking operations per object
the maximum nesting depth reached per lock

Field immutability number of fields immutable, counted once per containing object
number of fields immutable (per class)
number of objects immutable (all fields immutable).
number of classes immutable (all fields immutable for all objects)

Implicit zeroing number of primitive fields unnecessarily zeroed
number of reference fields unnecessarily zeroed

Use of identity hashcodes execution counts of overridden hashCode methods.
execution counts of System.identityHashCode methods.
execution counts of default Object.hashCode method.

Object churn distance distribution of object churn distances (see text)
Object lifetimes distribution of object survival times (see text)
Object sizes distribution of object sizes (see text)

Table 4.1. Metrics that can be computed by our toolchain.

that are effectively immutable can help a developer to identify code locations where
using immutable types could simplify parallelization. In addition, popular compiler
optimization techniques benefit from immutable objects and data structures [96]. One
example of such an optimization is load elimination, which replaces repeated memory
accesses to the immutable objects with access to a compiler-generated temporary (likely
to be stored in a register). However, this optimization is defeated in the presence of
method calls or synchronization. Immutable objects avoid this problem, since they are
known not to change across method calls.

To characterize immutability, we define four metrics, distinguishing between class
and object immutability: number of instance fields that are per-object immutable,
number of objects that are immutable (i.e., all fields immutable), number of fields that
are immutable in all allocated objects of the defining class, and number of classes for
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which all allocated instances are immutable.1

Lock usage and sharing. Since locking operations come at a cost, researchers have
developed thin locks [9] and biased locks [98] to minimize the runtime overhead and
memory cost. Thin locks are used in the situation where most locks are never subject to
contention by multiple threads. Moreover, if most of the locks are only acquired by a
single thread, biased locks are used. To apply synchronization optimizations one has to
identify the common-case nature of locking operations in the application. We count the
number of objects synchronized on, and the average number of locking operations per
object, and the maximum nesting depth reached per (recursive) lock.

Unnecessary synchronization. Immutability and sharing analyses can be used in
combination to aid in removal of unnecessary synchronization [21]. Ordinarily, objects
shared among different threads potentially require some synchronization. However,
the synchronization is redundant if we find that the object is immutable. The metrics
capture the number of objects shared between different threads, with separate counts
for read-only sharing (two or more readers; exactly one writer, i.e. the allocating thread)
and write-sharing (two or more writers; any number of readers). As in the case of
the immutability analysis, we distinguish between fully and partially shared objects,
yielding four distinct metrics in total.

4.1.2 Object allocation concerns

In a managed runtime, developers rely on a garbage collector (GC) to reclaim unused
memory. While such a programming model greatly simplifies development, abusing it
may result in undesirable pressure on the GC, causing significant performance degra-
dation. This is of paramount importance for developers of JVM language compilers,
because their decisions regarding minute details in the implementation of various lan-
guage constructs may greatly influence the character of the workload imposed on the
JVM.

Use of boxed types. Different languages make differing use of boxed primitives. For
example, all primitive values in JRuby are boxed. However, boxing is expensive because
it creates additional heap pressure and can defeat optimization passes usually applied
to stack- and register-allocated primitive values. Different optimization techniques can
be used to reduce performance overhead incurred by boxed values. Therefore, a metric
characterizing the extent of boxing in the workload is very useful. Our two metrics here
are the counts of boxed primitives allocated and boxed primitives requested (by calls to
valueOf() methods on Integer, Byte and so on).

Object churn. Creation of many temporary objects (i.e., object churn), which may

1Many of our metrics are collected as raw numbers, but could be more usefully represented as fractions.
Although we do not state this explicitly from hereon, in all such cases the relevant total is available for use
as a divisor. As such, both fractions and raw numbers are available.
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or not be boxed types, is detrimental to performance, since it comes at a cost of very
frequent garbage collection and inhibits parallelization if temporary objects require
synchronization [113]. Dufour et al. [43] showed that object churn is the main source
of performance overhead in framework-intensive Java applications. Identifying places
where object churn happens leverages performance understanding and is the basis of
escape analysis [30, 83].

Object churn distance is a metric defined recently by Sewe et al. [111], and which
has been shown to exhibit variation between Java and Scala workloads.

We illustrate the concepts behind the metric in Figure 4.1. For each object, we keep
track of the calling contexts where an object has been allocated and where it died, i.e.,
stopped being referenced. The dynamic churn distance is then the distance between
the allocation and the death calling contexts via the closest capturing (common parent)
context. This metric is of particular importance in dynamic languages where primitive
types are boxed—these workloads exhibit lower average churn distances. We group
objects by their churn distances and count the frequency for each group.

Impact of zeroing. According to the JVM specification [76], every primitive and
reference type has to be initialized to a zero value—0 in case of primitive types, false
in case of a boolean type, and null in case of a reference type. Yang et al. [133] have
shown that zeroing has a large impact on performance. However, different languages
have different rules concerning the initialization of fields, and different programming
styles lead to greater or lesser extents of explicit initialization. For example, more
declarative languages are less likely to rely on constructor-based piecewise imperative
initialization of objects than conventional Java code.

A zero initialization analysis can help compiler developers to see whether implicit
zeroing is actually necessary—fields that are written before they are first read do not
need to be explicitly zeroed. Our zeroing analysis records occurrences of this pattern.
The metric is a count of unnecessary zeroing of primitive and reference fields.

Identity hash codes. The JVM requires that every object has a hash code. If the
object does not override the hashCode() method, then identityHashCode() is used instead.
Implementation of the latter varies between JVM implementations, but commonly, a
computed identity hash code is stored in the header of each object. This incurs costs in
memory and cache usage. The overhead can be eliminated by using header compression
techniques that define the default hash code of an object to be its address [8]. The
hashcode is explicitly stored only if an object has been moved by the GC and its identity
hash code has been exposed—in such case, an extra header slot is lazily added to the
object.

In workloads where the identity hash code is rarely used, this extra slot will rarely
be allocated, yielding lower memory consumption with little runtime cost. In other
workloads, eagerly allocating the header space for the hash code will yield better perfor-
mance. Consequently, some heuristic is necessary to decide between the two approaches.



46 4.1 Dynamic Metrics

main(String[])

]

=

capturing context

Figure 4.1. The churn distance of an object is computed as the distance between its
allocation (]) and death (=) calling contexts via their closest capturing context.

We define three metrics over binned invocation counts: frequency of objects receiving
overridden hashCode invocations; frequency of objects receiving System.identityHashCode

invocations; frequency of objects receiving the default Object.hashCode invocation (either
by lack of override, or use of super).

Object lifetimes and sizes. Some languages allocate more, smaller and/or shorter-
lived objects than others. Object lifetime analysis is of particular importance for GC
developers. New GC algorithms are designed and evaluated by simulation based on
object lifetime traces. An example of such an algorithm is lifetime-aware GC [68], in
which the allocator lays out objects based on their death-time predictions. At each
collection only objects that are expected to die are scavenged. An object’s lifetime
together with its size provide an estimate of the GC cost, since larger objects that live
longer incur greater overhead than small, short-lived ones.

Our lifetime metric counts objects binned according to their survival time measured
in cumulative bytes allocated (≤1MiB, sim. 2MiB, 4MiB and 100MiB, and a separate bin
for objects not surviving beyond nursery collection). The size metric collects a binned
distribution of object sizes (including the header).

4.1.3 Code generation concerns

To take advantage of the infrastructure provided by a JVM, i.e., its just-in-time (JIT)
compiler and the GC, a JVM language should be compiled into Java bytecode—while
interpreted JVM languages exist, the optimization performed by the JVM only apply to
the interpreter and not to the code it is executing. For compiled JVM languages, the
resulting bytecode executed by the JVM plays a major role in the resulting performance.
To aid in compiler construction, the last set of metrics characterizes properties that affect
dynamic optimizations, which in turn depend on the use of virtual dispatch, the density
of procedural abstraction, argument passing behaviors, and the overall instruction mix.

Instruction mix. An instruction mix metric can describe the nature of the application—
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whether it is floating-point intensive or pointer intensive. This is relevant because, for
example, some languages are more commonly used for numerical computations. This
metric can be used for checking the diversity of the benchmarks in a benchmark suite,
thus verifying that the benchmark suite indeed covers different application domains.
Some interpreters such as in CACAO VM use super instructions [46, 54]. Instruction
mix metric can identify right bytecode instruction sequences that can be used as super
superinstructions. Moreover, this metric can lead to possible dynamic optimizations. For
instance, array bounds check removal for array intensive applications can help further
optimizations like code motion and loop transformations.

To classify applications based on the instruction mix they execute, the bytecodes
executed by the JVM are split into groups that are specific to particular application types.
In contrast to Dufour et al. [41], who grouped over 200 individual bytecodes manually,
we use principal component analysis (PCA) [95] to reduce the dimensionality of the
data, and to obtain a high-level view of the instruction mix in which the groupings of
bytecode instructions are tailored to the workload.

Stack usage and recursion depth. This is an important metric for the developers of
dynamic languages supporting the functional programming paradigm, e.g., Clojure.
Functional languages often leverage recursion to perform iterations. Therefore it is very
important for compiler developers of those languages to perform tail call elimination,
such that an executed method will not allocate any new stack frames and perform
recursive calls in constant space.

Our metric collects the distribution of stack heights upon each of three cases of
method calls: all method calls, “potentially recursive” calls (virtual calls which can
dispatch to the same method), and “true recursive” calls (which actually do dispatch in
this way, whether virtually or by final).

Argument passing. Information on parameters passed to methods can be used by JVM
developers to choose an optimal calling convention in JIT-compiled code, making use of
the registers available on the target architecture. Some architectures require particular
types of arguments to be passed differently, for example, using special floating-point
registers. We partition arguments into three kinds—integer primitive values, references
and floating-point values—and count each separately for each call. Our metrics bin
all method invocations by their total argument count, then for each bin, compute a
5-vector counting the number of those arguments that are floating-point (zero to four
and ≥5; elements beyond the total argument count are always zero), and similarly for
reference arguments.

Basic-block hotness. Hotness metrics are fundamental, since any JVM with a just-
in-time compiler optimizes the code based on its hotness (i.e., the code that is most
frequently executed). While hotness is traditionally identified at the granularity of
methods, modern dynamic compilers instead use trace-based approaches which rely
on identifying sequences of hot basic blocks (possibly crossing method boundaries).
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These are particularly popular among contemporary dynamic language implementations
such as PyPy [22] or Mozilla’s TraceMonkey Javascript implementation.2 Therefore, a
finer-grained hotness metric is useful.

Having both method and basic block hotness data can indicate the relative gains
from different compiler optimizations (say, inlining versus loop unrolling). Our metrics
report to which extent the most executed 20% of all (distinct) methods in the code
contribute to overall dynamic bytecode execution, and likewise for basic blocks.

4.2 Toolchain Description

In the following we describe the toolchain for collecting different kinds of metrics
discussed in the previous section. Our toolchain consists of several distinct tools with a
common infrastructure which is designed for ease of use and extension.

4.2.1 Deployment and Use

The primary goal of our infrastructure is to avoid imposing unnecessary overheads
on developers wanting to make use of dynamic metrics. These include learning and
setting up multiple new runtime environments and/or instrumentation tools. To avoid
such overheads, all our tools are implemented using DiSL, a domain specific language
for instrumentation. DiSL provides full bytecode coverage, meaning execution within
the Java class library is covered. This is essential for the accuracy of our metrics.
Each metric can be computed for a given workload application using a single script
invocation. Execution produces a trace, whose contents vary according to the metric
being computed. A separate post-processor script uses the trace to calculate the metric’s
value. This separation is useful because in some cases multiple metrics can be computed
from the same trace; several of our metrics exploit this, as we explain shortly (§4.2.2).

Since all instrumentation is done using the same high-level domain-specific lan-
guage (DiSL), our implementations are amenable to customization with relatively low
familiarization overhead. We envisage they can usefully be tweaked and extended for
specific needs, such as dumping the trace in a different format or adding a custom
online analysis. A subset of our metrics are query-based, and these offer an additional
level of customizability, since custom queries can be written in the high-level XQuery
language.

The tools in our toolchain exhibit acceptable runtime overhead. Among the most
heavyweight of our tools is JP2, which produces calling context trees; this incurs an
overhead factor of roughly 100 [108]. However, this cost is amortized in that many
different metrics are computed (as queries) over its output. Object lifetime analysis also
relies on heavyweight instrumentation. However, other tools instrument considerably

2https://developer.mozilla.org/en-US/docs/SpiderMonkey/Internals/Tracing_JIT

https://developer.mozilla.org/en-US/docs/SpiderMonkey/Internals/Tracing_JIT
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public class FieldState {
private State currentState = State.VIRGIN;
private enum State { VIRGIN, IMMUTABLE, MUTABLE };
private boolean defaultInit = false;
public synchronized void onRead() {
switch (currentState) {
case VIRGIN:
defaultInit = true;
currentState = State.IMMUTABLE;
break;

} }
public synchronized void onWrite(boolean isInConstructor) {
switch(currentState) {
case VIRGIN:
case IMMUTABLE:
currentState = isInConstructor ? State.IMMUTABLE : State.MUTABLE;
break;

}
}
/* ... */

}

Figure 4.2. The field immutability state machine.

fewer events—for example, hashcode analysis instruments only a few method entries—
and incur correspondingly less overhead. We note that our instrumentation-based
approach generally outperforms like-for-like metric implementations using the older
JVMPI interface, including those described by Dufour et al. [41].

Metrics such as field immutability, zeroing, field sharing, and use of identity hash-
codes are collected via custom tools that use DiSL to perform bytecode instrumentation.
In each case, the instrumentation maintains shadow state for each object. Depending
on the analysis different events are intercepted and different information is stored in a
shadow state. For example, to measure immutability, our shadow object keeps track of
all field accesses to the underlying object, according to a state machine. Each shadow
object records the class name, object allocation site and an array of field states, each of
which is a state machine with states virgin (i.e., not read or not written to), immutable
(i.e., read or was written to inside the dynamic extent of its owner object’s constructor),
or mutable (otherwise). Figure 4.2 depicts the corresponding FieldState class.

A suitably modified version of this shadow object approach is used in field sharing,
field synchronization and hash code analysis (storing counters for thread accesses,
counters for monitor ownership, and counters for executions of Object.hashCode() and
System.identityHashCode() methods, respectively).
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Figure 4.3. Query-based metrics are implemented on top of JP2 [108].

4.2.2 Query-based Metrics

Many of our metrics are defined as queries over trace data. Specifically, these are
metrics concerning instruction mix, call-site polymorphism, stack usage and recursion
depth, argument passing, method and basic block hotness, and use of boxed types.
All these metrics are obtained using JP2 [107, 108], which has been reimplemented
using the DiSL instrumentation framework to fit well into our framework. JP2 is a
calling-context profiler which produces execution traces in the form of an annotated
calling-context tree (CCT). Each node in a CCT corresponds to a particular callchain
and keeps the dynamic metrics, such as number of method invocations and number
of executed bytecodes. JP2 is call-site aware, meaning different call sites in the same
method are distinguished even if their target method is the same. Unlike many other
profilers, JP2 performs both inter- and intra-procedural analysis and reports dynamic
execution counts for each basic-block of code in methods.

JP2 provides complete dumps of an entire execution, including coverage within the
Java class library and some coverage of native code. Although native methods do not
have any bytecode representation, JP2 uses JVMTI’s native method prefixing feature to
insert bytecode wrappers for each native method. Control flow within native methods is
covered only from points where these call back into Java code or other prefixed natives.

Figure 4.3 depicts a three-step process of computing dynamic metrics with JP2. First,
the application is instrumented for profiling; second, the collected profile is dumped in
an XML-based format for later offline analysis; finally, the desired metrics are computed
offline. Dumping in XML format allows using off-the-shelf tools for metrics computation.
We use XQuery for formulating metrics as queries.
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for $method in functx:distinct-nodes(
for $bb in $methods/dcg:basicBlock
order by $bb/dcg:executionCount/xs:

long(.) descending
return $bb/..)

Figure 4.4. Example of a query for identifying methods with hottest basic blocks. dcg
refers to “dynamic call graph”, referring to the calling context tree. Other identifiers
are self-explanatory.

4.2.3 Instrumentation

Some of the information needed for our metrics’ computation is not stored in a CCT, but
depends on static properties of class files. For this, we use another facility of JP2, which
can dump a list of all classes loaded during execution. These classes are converted to
an XML representation to allow querying alongside the CCT data [108]. Many of our
queries make use of the ability to cross-reference between CCT and class data.

Figure 4.4 shows an example of a query for identifying methods with hottest basic
blocks. It can be useful for finding methods with rich intra-procedural control flow, but
with low method execution counts that cannot be spotted with typical profilers. The
algorithm is straightforward: return the methods of the application, sorted in decreasing
order of the total execution counts over all their contained basic blocks.

A key benefit of the query-based design is that custom queries can be used to
formulate previously unanticipated metrics. For example, dumped CCTs contain enough
information to recover a k-calling context forest, which offers an alternative (k-bounded)
level of context sensitivity offering advantages in certain scenarios [7].

The separation between dumps and queries avoids potential problems with nonde-
terminism. Multiple different metrics can be computed without the need for repeated
application runs, hence avoiding any risk of divergent behaviour across such runs.
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Chapter 5

Workload Characterization of JVM
Languages

5.1 Experimental Setup

To obtain information necessary to answer the research question of this dissertation,
we used our toolchain to collect the presented dynamic metrics. We analyzed the
collected data, looking for significant differences between the pure Java workloads and
the workloads induced by JVM languages, which may hint at optimization opportunities
for programs executing on the JVM.

5.1.1 Examined Metrics

In Section 5.2 we present details and discuss results for the following metrics:

Call-site Polymorphism. Hints at opportunities for optimizations at polymorphic call-
sites, e.g. inline caching [60] (based on the number of receiver types), or method
inlining [39] (based on the number of target methods).

Field, Object, and Class Immutability. Enables load elimination [13] (replacing re-
peated accesses to immutable objects with an access to a compiler-generated
temporary stored in a register), and identifies objects and side-effect-free data
structures amenable to parallelization.

Object Lifetimes. Determines garbage-collector (GC) workload, and aids in design and
evaluation of new GC algorithms, e.g. the lifetime-aware GC [68].

Unnecessary Zeroing. Hints at opportunities for eliminating unnecessary zeroing of
memory for newly allocated objects, which comes with a performance penalty [133].

53
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Identity Hash-code Usage. Hints at opportunities for reducing header size for objects
that never need to store their identity hash code (often derived from their memory
location upon first request [8]).

While we have collected the full range of dynamic metrics for different workloads,
in this dissertation we only discuss metrics that show striking difference between static
and dynamic languages. Thanks to our toolchain, we were able to collect metrics that
cover both the application (and the coressponding language runtime) and the Java
Class Library (including any proprietary JVM vendor-specific classes) on a standard
JVM.

5.1.2 Workloads

The lack of an established benchmark suite—something akin to the DaCapo [17]
or SPECjvm2008 [125] suites, but for JVM languages other than Java—is a widely
recognized issue. A new benchmark suite has recently been proposed for Scala [112],
but there is no such suite for most dynamic languages, including those we consider
here.

The closest to a benchmark suite for dynamic languages is the Computer Language
Benchmarks Game (CLBG) project [32], which collects and compares performance
results for various benchmarks implemented in many different programming languages,
including Java, Clojure, Python, Scala, JavaScript, and Ruby, which we chose for
the comparison. Each benchmark describes an algorithm, and there is an idiomatic
implementation of that algorithm in each language. Considering their size and focus on
algorithms, the CLBG benchmarks fall into the category of micro-benchmarks, and only
represent a certain aspect of real-world applications. The authors of the CLBG project
are well aware of this, and explicitly warn against jumping to conclusions1. Despite
some controversies, and for the lack of any better multi-language benchmark suite,
the CLBG project remains a popular source of rough estimates of raw performance
achievable by many programming languages.

Benchmarks from the CLBG project have been used in the recent study on per-
formance differences between Python compilers [25]. Li et al. [75] published an
exploratory study characterizing workloads for five JVM languages using CLBG bench-
marks. To provide complementary results for comparable workloads, we have decided
to adopt the approach of Li et al., and based our study (mostly, but not completely) on
9 CLBG benchmarks, listed in Table 5.1 along with a brief description and inputs used.

Still, to avoid relying solely on micro-benchmarks, we complemented our workload
selection with 3 real-world application benchmarks for each examined JVM language,
listed in Table 5.2. These unfortunately lack the nice property of being idiomatic
implementations of the same task. The avrora, eclipse, fop and jython benchmarks
come from the DaCapo suite [17], while apparat, factorie, and scalac come from the

1http://benchmarksgame.alioth.debian.org/dont-jump-to-conclusions.php

http://benchmarksgame.alioth.debian.org/dont-jump-to-conclusions.php
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Benchmark Description Input

binarytrees Allocate and deallocate many binary trees 16

fannkuch-redux Repeatedly access a tiny integer-sequence 10

fasta Generate and write random DNA sequences 150,000

k-nucleotide Repeatedly update hashtables and k-nucleotide strings fasta output

mandelbrot Generate a Mandelbrot set and write a portable bitmap 1,000

nbody Perform an N-body simulation of the Jovian planets 500,000

regexdna Match DNA 8-mers and substitute nucleotides for IUB code fasta output

revcomp Read DNA sequences and write their reverse-complement fasta output

spectral-norm Calculate an eigenvalue using the power method 500

Table 5.1. Benchmarks from the CLBG project (implemented in Java, Clojure, Ruby,
Python, Scala, and JavaScript) selected for workload characterization.

Scala Benchmarking suite [112]. deltablue, raytrace, and richards come from the
Octane benchmarking suite [86]. clj-pdf [33], frak [48], minilight [82], scavis [110],
rubyflux [105], voodoo [130], opal [88], and clojure-script [34] are open-source
projects from GitHub.

5.1.3 Measurement Context

All metrics were collected with Java 1.6, Clojure 1.5.1, JRuby 1.7.3, Rhino 1.7,
Scala 2.10.3, and Jython 2.7 runtimes, yielding a total of 72 different language-
benchmark combinations, all executed using the OpenJDK 1.6.0_27 JRE running on
Ubuntu Linux 12.0.4.2. Due to the high number of combinations and extensive du-
ration of the experiments, we have not included different language runtimes among
independent variables. Similarly, we have not varied the execution platform, because
the metrics are defined at the bytecode level, and can be considered largely JVM2 and
platform independent.

5.2 Experiment Results

5.2.1 Call-site Polymorphism

Hot polymorphic call-sites are good candidates for optimizations such as inline caching [60]
and method inlining [39, 121], which specialize code paths to frequent receiver types
or target methods. In the case of dynamic languages targeting the JVM, specialization
is considered to be one of the most beneficial performance optimizations [25]. In our
study, we collected metrics that are indicative specifically for method inlining, which

2Different vendors may provide different implementation of the Java Class Library as well as other
proprietary classes in their JVM.
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Application Description Input
C

lo
ju

re clojure-script A compiler for Clojure that targets JavaScript twitterbuzz source
clj-pdf A library for generating PDFs from Clojure default example
frak A library for transforming strings into regular expressions default example

Ja
va

avrora A simulator of programs running on a grid of AVR microcontrollers DaCapo default
eclipse An integrated development envinronent (IDE) DaCapo default
fop An output-independent print formatter DaCapo default

Ja
va

Sc
ri

pt deltablue A one-way constraint solver Octane default
raytracer A ray tracer benchmark Octane default
richards An OS kernel simulation benchmark Octane default

JR
ub

y opal A Ruby to JavaScript compiler meteor source
rubyflux A Ruby to Java compiler meteor source
voodoo Image manipulation library for Ruby simple image

Jy
th

on jython An interpreter of Python running on the JVM DaCapo default
minilight A minimal global illumination renderer default example
scavis A scientific computation environment Matrix multiplication

Sc
al

a apparat Framework to optimize ABC, SWC, and SWF files Scalabench default
factorie Toolkit for deployable probabilistic modeling Scalabench default
scalac Compiler for the Scala 2 language Scalabench default

Table 5.2. Real-world applications selected as benchmarks to complement the CLBG
benchmarks for workload characterization.

removes costly method invocations and increases the effective scope of subsequent
optimizations.

The results consist of two sets of histograms for each language, derived from the
number of target methods and the number of calls made at each polymorphic call-site
during the execution of each workload. The plots in Figures 5.2–5.6 show the number
of call sites binned according to the number of targeted methods (x-axis), with an extra
bin for call-sites targeting 15 or more methods. The plots in Figures 5.8–5.12 then show
the actual number of invocations performed at those call sites.

We observe that polymorphic invocations in the CLBG benchmarks do not target
more than 6 methods for Java, and more than 11 methods for Scala (with the majority
below 6). This is not surprising, given the microbenchmark nature of the CLBG
workloads. The situation is vastly different—and more realistic—with the real-world
applications. Still, on average, 98.2% of the call sites (accounting for 90.8% of all
method calls) only had a single target in the case of Java and 97% of the call sites
(accounting for 80% of all method calls) target a single method in the case of Scala.

The microbenchmark nature of the CLBG workloads is much less pronounced
(compared to the real application workloads) in the case of dynamic JVM languages.
This suggests that even the CLBG workloads do exhibit some of the traits representative
of a particular dynamic language.

The results for the Clojure workloads show that polymorphic invocations target 1 to
10 methods, with an average of 99.3% of the call sites (accounting for 91.2% of method



57 5.2 Experiment Results

calls) actually targeting a single method. The results for the Jython workloads show
that polymorphic invocations mostly target 1 to 10 methods, with a small number of
sites targeting 15 or more methods. Invocations at such sites are surprisingly frequent,
but still 98.7% of the call sites (accounting for 91.7% of method calls) target a single
method.

Interestingly, JavaScript stands out from the rest of the dynamic languages, and
the results look similar to those of Scala—the number of targets in both languages is
similar, but JavaScript workloads perform more calls at callsites with lower number of
targets. Also, the diference between microbenchmarks and real-world applications is
not as pronounced as in the case of Scala. On average, 98% of the call sites (accounting
for 86% of the method calls) target a single method.

Finally, the results for JRuby show little difference between the CLBG benchmarks
and the real-world application, and consistently show a significant number of call-sites
with 15 or more targets. Interestingly, the number of calls made at those sites is
surprisingly high—comparable with the other sites. However, on average, 98.4% of the
call sites (accounting for 88% of method calls) target a single method.
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Figure 5.1. The number of dynamically-dispatched call sites targeting a given number
of methods for the Clojure benchmarks.
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Figure 5.2. The number of dynamically-dispatched call sites targeting a given number
of methods for the Java benchmarks.
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Figure 5.3. The number of dynamically-dispatched call sites targeting a given number
of methods for the JavaScript benchmarks.
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Figure 5.4. The number of dynamically-dispatched call sites targeting a given number
of methods for the JRuby benchmarks.
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Figure 5.5. The number of dynamically-dispatched call sites targeting a given number
of methods for the Jython benchmarks.
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Figure 5.6. The number of dynamically-dispatched call sites targeting a given number
of methods for the Scala benchmarks.



61 5.2 Experiment Results

101

106

1011

#
C

al
lS

it
es

binarytrees fannkuch fasta knucleotide

102

106

1010

#
C

al
lS

it
es

mandelbrot nbody regexdna revcomp

5 10 15+
102

106

1010

# Targets

#
C

al
lS

it
es

spectralnorm

5 10 15+

# Targets

clojure-script

5 10 15+

# Targets

clj-pdf

5 10 15+

# Targets

frak

Figure 5.7. The number of dynamically-dispatched calls made at call sites with a given
number of targets for the Clojure benchmarks.
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Figure 5.8. The number of dynamically-dispatched calls made at call sites with a given
number of targets for the Java benchmarks.
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Figure 5.9. The number of dynamically-dispatched calls made at call sites with a given
number of targets for the JavaScript benchmarks.
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Figure 5.10. The number of dynamically-dispatched calls made at call sites with
a given number of targets for the JRuby benchmarks.
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Figure 5.11. The number of dynamically-dispatched calls made at call sites with
a given number of targets for the Jython benchmarks.
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Figure 5.12. The number of dynamically-dispatched calls made at call sites with
a given number of targets for the Scala benchmarks.
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5.2.2 Field, Object, and Class Immutability

In our study of the dynamic behavior of JVM workloads, we use an extended notion of
immutability instead of the “classic” definition: an object field is considered immutable
if it is never written to outside the dynamic extent of that object’s constructor. This
notion is dynamic in the sense that it holds only for a particular program execution or
for a specific program input [106, 111].

Extending this notion to objects and classes, we distinguish (1) per-object immutable
fields, assigned at most once during the entire program execution, (2) immutable
objects, consisting only of immutable fields, and (3) immutable classes, for which only
immutable objects were observed. The results shown in Figure 5.13 indicate that
there is a significant fraction of immutable fields (as per our definition) in most of
the studied workloads, without significant differences between the CLBG and real-
world benchmarks. Except in the Java binarytrees CLBG workload, we observed more
than 50% of immutable fields in all benchmarks, with Clojure having the highest
average number of immutable fields. Another interesting observation is that JavaScript
benchmarks have very little fraction of reference instance fields.

At the granularity of objects, the results in Figure 5.14 show varying immutability
ratios across different workloads. The ratios are consistently high, especially for the
dynamic languages (mostly over 50%), with Clojure, JavaScript, and JRuby scoring
almost 100% on five workloads (with four workloads common to Clojure and JRuby).
This can be attributed to the large amount of boxing and auxiliary objects created by
the language runtimes [75].

Finally, at the granularity of classes, the results in Figure 5.15 show consistent
fractions of immutable classes across different workloads (except for Jython), with
significant differences between the languages. These systematic differences can be
attributed both to different coding styles typical for the respective languages, and
to the number of helper classes produced by a particular dynamic language runtime
environment.
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Figure 5.14. Fraction of immutable objects
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Figure 5.15. Fraction of immutable classes
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5.2.3 Identity Hash-code Usage

The JVM requires every object to have a hash code. The default implementation of
the hashCode method in the Object class uses the System.identityHashCode method
to ensure that every object satisfies the JVM requirement. The computed hash code is
usually stored in the object header, which increases memory and cache usage—JVMs
therefore tend to use an object’s address as its implicit identity hash code, and store it
explicitly only upon first request (to make it persistent in presence of a copying GC).

That said, performance may be improved by allocating the extra header slot either
eagerly or lazily, depending on the usage of identity hash codes in a workload. Since
systematic variations in hash code usage were identified between Java and Scala
workloads [111], we also analyzed hash code usage of the workloads in our study.

The results shown in Figure 5.16 suggest that the identity hash code is never
requested for a vast majority of objects. Despite a comparatively frequent use of hash
code in the Java and Scala workloads, the use of identity hash code remains well below
2% for most workloads. The dynamic languages appear to be using hash code very little,
the exception being the knucleotide benchmark in the cases of Jython and JavaScript.
Clojure shows the highest use of hash code among dynamic languages, in contrast to
JRuby and JavaScript. The highest amount of per-object hash code operations can be
found in JavaScript. Among the real-world benchmarks, only the eclipse and clojure-
script benchmarks had objects on which both an overriden and the identity hash code
methods were invoked.

Because dynamic languages appear to produce many short-lived objects (c.f. Sec-
tion 5.2.5), the results suggest that object header compression with lazy identity hash
code slot allocation is an adequate heuristic for the dynamic language runtimes, espe-
cially for JRuby and JavaScript.
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Figure 5.16. Fraction of objects hashed using an overriden hashCode method ( ),
the identityHashCode method ( ), or both ( ), along with an average number of hash
operations per object.
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5.2.4 Unnecessary Zeroing

The Java language specification requires that all fields have a default value of null,
false or 0, unless explicitly initialized. The explicit zeroing may cause unnecessary
overhead [133], especially in the case of fields assigned (without being first read)
within the dynamic extent of a constructor Our analysis detects and reports such fields.

A JVM could potentially try optimize away some of the initialization overhead, e.g.,
by not zeroing unused fields where appropriate, but it would have to ensure that the
(uninitialized) field values are never exposed to the garbage collector. While such an
optimization can make the results of our analysis less accurate, trying to detect and
correctly handle the effect of this optimization in our analysis would be difficult, and
possibly require making it JVM-specific, which is what we want to avoid. We therefore
do not take these potential optimizations into account, and consider zeroing of an
unused field to be mandatory.

Figure 5.17 shows the amount of unnecessary zeroing (according to our metric)
performed by the workloads in our study. For the CLBG benchmarks, Clojure exhibits
the highest average percentage of unnecessary zeroing (85.9%), followed by JavaScript
(77.8%), Scala (71.74%), Jython (66.4%), JRuby (46.04%) and Java (49.03%). Inter-
estingly, this language ordering appears to partially correlate with the ordering imposed
by the percentage of immutable instance fields (shown in Figure 5.13) with average
values of 91.5% for Clojure, 90.8% for JavaScript, 89.2% for JRuby, 86.8% for Jython,
83.9% for Scala, and 73.4% for Java. Our results therefore suggest that the more
immutable instance fields exist, the more unnecessary zeroing takes place. In other
words: fields are assigned once in the constructor, not through setters.
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Figure 5.17. Unnecessary ( , ) and necessary ( , ) zeroing of primitive ( , ) and
reference ( , ) instance fields.
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5.2.5 Object Lifetimes

Object sizes and lifetimes characterize a program’s memory management “habits” and
largely determine the GC workload due to the program’s execution. To approximate
and analyze the GC behavior, we used ElephantTracks [101] to collect object allocation,
field update, and object death traces, and run them through a GC simulator configured
for a generational collection scheme with a 4 MiB nursery, and 4 GiB old generation.
None of the microbenchmarks allocated enough memory to trigger a full heap (old
generation) collection.

The results are summarized in Table 5.3. The mark column contains the number of
times the GC marked an object live, the cons column contains the number of allocated
objects, and the nursery survival column contains the fraction of allocated objects that
survive a nursery collection.

The most striking difference is the number of objects allocated by the dynamic
language CLBG benchmarks compared to their Java and Scala counterparts—in all
of them, the Java and Scala workloads allocate at least one order or magnitude less
objects, and in some cases even several orders less. The results for the statically typed
languages, such as Java and Scala are not too surprising—given the microbenchmark
nature of the CLBG workloads—but they indicate how inherently costly the dynamic
language features are in terms of increased GC workload.

The plots in Figures 5.19-5.23, show the evolution of the object survival rate plotted
against logical time expressed as cumulative memory allocated by a benchmark. The
Java fannkuch-redux, fasta, mandlebrot, nbody, and spectralnorm benchmarks are not
shown, because they allocate less than 1 MiB.

The results show that while the workloads written in the dynamic languages allocate
much more objects than their counterparts written in the static languages, most of the
objects die young, suggesting that they are mainly temporaries resulting from features
specific to dynamic languages.
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Figure 5.18. Fraction of objects surviving more than a given amount of allocation in
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Figure 5.19. Fraction of objects surviving more than a given amount of allocation in
the Java benchmarks
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Figure 5.20. Fraction of objects surviving more than a given amount of allocation in
the JRuby benchmarks
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Figure 5.21. Fraction of objects surviving more than a given amount of allocation in
the Jython benchmarks
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Figure 5.22. Fraction of objects surviving more than a given amount of allocation in
the Scala benchmarks
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Figure 5.23. Fraction of objects surviving more than a given amount of allocation in
the JavaScript benchmarks
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5.3 Inlining in the JVM

Method inlining improves performance of programs by removing the overhead of
method calls. By expanding the scope for analysis and optimizations in the caller,
inlining increases the potential for intra-procedural optimizations and specialization
of the code being inlined. In a JVM, inlining is performed by the JIT compiler. Given
the importance of inlining, we investigate the ability of the HotSpot JVM to perform
inlining with bytecode originating from different JVM languages.

In this section, we first present an overview of the inlining decisions made by
the compiler—a result of studying the source code of the server JIT compiler in the
HotSpot JVM. Then, having modified the compiler to collect traces of actual inlining
decisions while the JVM was executing the workloads from our study, we present metrics
calculated using these traces. The metrics provide insights into differences between
JVM languages that affect inlining, and include the fraction of inlined and not inlined
methods, the fraction of decompiled methods, the distribution of inlining levels, and
the distribution of top ten reasons for which inlining did and did not happen.

5.3.1 Inlining Decision

While inlining can facilitate dramatic performance increases, its main effect, code
duplication within methods, comes at a certain cost:

• The size of the compiled methods will increase significantly, so that more memory
is required to store it. This leads to a larger memory usage and, subsequently,
more frequent evictions of compiled methods because of memory pressure.

• Code caches within the CPU will be polluted with multiple versions of the same
method, so that the caches also suffer from more memory pressure and more
frequent evictions.

• Compilation time increases because of the larger compilation scope. If optimiza-
tions within the compiler are not designed carefully, they may exhibit a non-linear
growth in complexity.

A JIT compiler therefore needs to constantly make decisions whether to inline, or
to not inline a particular method, balancing the costs and benefits of inlining at each
call site. Because it is not possible to determine the optimal set of inlined call sites,
compilers employ complex heuristics to make the inlining decisions. The heuristic used
by the HotSpot server compiler, extracted from the compiler source code in form of a
decision tree, is shown in Figure 5.24. The decision tree is basically an expert system
applied to static and dynamic information about the code being executed, which tells
the compiler whether to inline or to not inline a method. When considering a specific call
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site, the compiler traverses3 the tree from the root until it reaches a leaf representing a
decision.

The compiler first checks whether the target method is a compiler intrinsic—a
special method that is always inlined. The server compiler differentiates between
system intrinsics and method handle intrinsics. In the next step, the compiler checks
the usage of strict floating point arithmetics. If either the caller or the callee requires it
but the other does not, the call cannot be inlined.

If the call site is polymorphic and the call needs dispatching, the compiler consults
the dynamic profiling information to determine whether there is a prominent target
for that call site, i.e., whether the call at this particular call site has exactly one or two
receivers, or whether there is a major (more frequent) receiver when there are more
than two potential targets. If there is no prominent target for this particular call site,
the call cannot be inlined and has to undergo virtual method dispatch. Otherwise, the
call site is considered for inlining, but is subjected to additional checks to avoid inlining
in situations in which the potential performance benefits may not materialize or may be
negated by the adverse effects of code duplication.

If the call site was not encountered often enough during profiling, i.e., the call site is
considered cold, or if the size of the target method exceeds a certain limit, the decision
will be to not inline. These two checks will be skipped if the call site is forcibly inlined or
if the call site received many thrown exceptions. Afterwards, simple accessor methods
will be always inlined, while for other methods, all of the following conditions must
hold for them to be inlined:

• The current method’s intermediate representation needs to be below a certain
limit.

• The call site needs to have been reached during profiling.

• Inlining must not be disabled.

• The current number of nested inlining scopes needs to be below a certain limit.

• The current number of nested recursive inlining scopes needs to be below a
certain limit.

• The sum of the bytecode counts of all inlined methods needs to stay below a
certain limit.

To capture the inlining decisions taken during execution, we modified the compiler
to collect the inlining decisions for each call site. In the following two sections, we sum-
marize the main reasons for inlining and not inlining methods for each JVM language

3The decision tree is actually represented as conditional code in the compiler source code, not an actual
data structure. By traversing the tree we mean executing conditional statement in order implied by the
decision tree.
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Figure 5.24. Decision tree of the HotSpot JVM’s JIT compiler.
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and workload in our study. Each decision basically represents a path from the root of
the decision tree to one of its leaves. To explain why a particular decision was made,
we encode this path using a sequence of mnemonic codes that capture the outcome
of the conditionals along the path. Each mnemonic code starts with a capital letter so
that multiple codes in a sequence can be easily distinguished. Table 5.4 summarizes
the individual mnemonic codes, and needs to be consulted when interpreting the re-
sults presenting inlining decisions. For example, a combination of mnemonic codes
reading “SSmFTsA” encodes a positive inlining decision due to the inlinee being an
accessor method (A), in addition to being a synthetic (S), static monomorphic (Sm),
and frequently called (F) method of trivial size (Ts).

5.3.2 Top Reasons for Inlining Methods

We first consider the positive inlining decisions. Figure 5.25 shows the distribution
of reasons that account for 90% of methods that were inlined. Each color denotes a
distinct decision, comprising a combination of reasons. For the sake of readability we
filtered out reasons that account for less than 2%, which turned out to be especially
pronounced in the case of Clojure. To interpret the results, we cross-reference the
legend in Figure 5.25 with Table 5.4.

We observe that in the case of Java, the results for the CLBG workloads are so varied
and irregular, that it is impossible to come up with a meaningful interpretation. This is
because the CLBG benchmarks are too small for JVM-native language. The situation
improves significantly with the real-world workloads, where most inlining applies to
frequently called (hot) static methods (both normal and trivial-sized).

In the case of Scala, also a statically typed language, the results for the CLBG
workloads appear to suffer from the same problem as in Java—the benchmarks being
too small to really exercise the language runtime. Still, they are partially consistent
with the results for the real-world workloads. In contrast to Java, we note much more
trivial-sized static methods being inlined.

In the case of Clojure, we observe inlining of a large amount of static accessor-style
methods and system intrinsics. The CLBG workloads appear similar to the real-world
workload, except for higher amount of inlined system intrinsic methods.

In the case of JavaScript, the results for the CLBG and the real-world workloads
are consistent, which suggests that a significant amount of JavaScript runtime code
gets executed even with microbenchmarks. Most of the inlined methods are static
(both normal and trivial-sized), with inlining performed surprisingly even for significant
amount of cold call sites and methods. A small amount (but more than with the
other languages) of inlined methods was actually virtual, but profiled monomorphic or
bimorphic.

In the case of JRuby, we can again observe a certain similarity between the CLBG
and the real-world workloads, indicating that significant amount of framework code
gets executed even with the microbenchmarks. Interestingly, the CLBG workloads
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Code Description Code Description
Contextual Information Reasons for non-inlining

Cc Cold callsite Ctb Inlinee already compiled to big method
Pb Profiled bimorphic Ctm Inlinee already compiled to medium method
Pm Profiled monomophic Ie Inlinee was executed infrequently
S Synthetic method Mrl Maximum recursive inlining level reached
Sm Static monomorphic Ml Maximum inlining level reached
Ts Trivial size N Inlinee is native method

Reasons for Inlining Nmm No major megamorphic receiver
A Inlinee is accessor method Ne Inlinee was never executed
F Inlining frequently called method Tbc Inlinee too big for cold callsite
Mhi Inlinee is method handle intrinsic Tbh Inlinee to big for hot callsite
Nf Inlining non-frequent method Uc Unreached callsite
Si Inlinee is system intrinsic

Table 5.4. Decision codes for inlining and non-inlining reasons.

exhibit inlining of a significant number of synthetic method handle intrinsics compared
to the real-world workloads, which we attribute to the relative smaller size of the CLBG
workloads. The real-world workloads exhibit a striking similarity among themselves,
despite representing rather different tasks (compiler vs. image manipulation).

The results for Jython are similar to JavaScript, which is interesting, because unlike
JavaScript, Jython is an interpreter. In contrast to JavaScript, there are more inlined
system intrinsic and static accessor methods. As in the case of JavaScript, the results for
the CLBG and the real-world workloads are rather similar, indicating that significant
amount of framework code gets executed even with microbenchmarks.



82 5.3 Inlining in the JVM

bi
na

ry
tre

es

fan
nk

uc
h
fas

ta

kn
uc

leo
tid

e

m
an

de
lb

ro
t

nb
od

y

reg
ex

dn
a

rev
co

mp

sp
ec

tra
ln

or
m

clj
-p

df

clo
ju

res
cri

pt
fra

k
0 %

20%

40%

60%

80%

100%
Clojure

bi
na

ry
tre

es

fan
nk

uc
h
fas

ta

kn
uc

leo
tid

e

m
an

de
lb

ro
t

nb
od

y

reg
ex

dn
a

rev
co

mp

sp
ec

tra
ln

or
m
av

ro
ra fop

ec
lip

se

Java

bi
na

ry
tre

es

fan
nk

uc
h
fas

ta

kn
uc

leo
tid

e

m
an

de
lb

ro
t

nb
od

y

reg
ex

dn
a

rev
co

mp

sp
ec

tra
ln

or
m

de
lta

bl
ue

ray
tra

ce

ric
ha

rd
s

0 %

20%

40%

60%

80%

100%
Javascript

bi
na

ry
tre

es

fan
nk

uc
h
fas

ta

kn
uc

leo
tid

e

m
an

de
lb

ro
t

nb
od

y

reg
ex

dn
a

rev
co

mp

sp
ec

tra
ln

or
m

vo
od

ooop
al

ru
by

flu
x

JRuby

bi
na

ry
tre

es

fan
nk

uc
h
fas

ta

kn
uc

leo
tid

e

m
an

de
lb

ro
t

nb
od

y

reg
ex

dn
a

rev
co

mp

sp
ec

tra
ln

or
m

jyt
ho

n

m
in

ili
gh

t

sc
av

is
0%

20 %

40 %

60 %

80 %

100%
Jython

bi
na

ry
tre

es

fan
nk

uc
h
fas

ta

kn
uc

leo
tid

e

m
an

de
lb

ro
t

nb
od

y

reg
ex

dn
a

rev
co

mp

sp
ec

tra
ln

or
m

ap
pa

rat

fac
tor

ie

sc
ala

c

Scala

Si SmNfTs SmNf SmFTsA SmFTs SmF FPm
SmNfTsA SmCc FTsAPm FTsPb FTsPm SSmFTsA SMhi

Figure 5.25. Distribution of top 10 reasons for inlining that account for 90% of all
inlined methods.
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5.3.3 Top Reasons for Not Inlining Methods

We now consider the negative inlining decisions. Figure 5.26 shows the distribution of
reasons that account for 90% of methods that were not inlined. To interpret the results,
we again cross-reference the legend in Figure 5.26 with Table 5.4.

The results for Java confirm the fact that the CLBG benchmarks are too small for a
JVM-native language. However, in the case of the real-world workloads, many methods
were not inlined because they have already been compiled to medium-sized or big
methods.

The results for Scala again exhibit certain similarity to Java, due to the results for the
CLBG workloads significantly deviating from the results for the real-world workloads.
The prevailing reason for not inlining methods in the CLBG workloads was that the
methods were too big for a cold call site. The reasons get more diverse but somewhat
more consistent for the real-world workloads. In addition to methods being too big
to inline, we can observe the appearance of polymorphic call sites without a major
receiver.

In the case of Clojure, many methods were too big or cold, in addition to being
considered at cold call sites. In most workloads, there were polymorphic call sites
without a major receiver as well as a significant amount of unreached call sites. The
latter is caused by the compiler generating code to handle special cases that never
occurred at runtime. There are no striking differences between the CLBG and real-world
workloads.

In the case of JavaScript, methods were not inlined mainly because they were
too big, and considered at cold or even unreached call sites. Overall, the results
appear qualitatively similar to Clojure, except for the different proportions. In contrast
to Clojure, there were not much unreached call sites at which hot methods were
considered for inlining. The results for the CLBG workloads do not deviate significantly
from the results for the real-world workloads.

The results for JRuby are very consistent across all workloads. The prominent reason
for not inlining was again the methods being too big for a cold call site, and a significant
amount of unreached call sites.

The results for Jython are qualitatively similar to JRuby, again with different pro-
portions between variants of similar reasons (methods being too big to inline), but
still quite consistent across all workloads. Compared to JRuby, there is an increased
proportion of hot methods considered at unreached call sites.
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5.3.4 Inlining Depths

The inlining depth metric represents the number of methods inlined at a given level.
Overall, it should provide an approximation of the additional levels of abstractions intro-
duced by language implementations and the VM facilities they use (e.g., invokedynamic).

The results of the inlining depth analysis for the CLBG workloads are shown in
Figures 5.27-5.32. We observe that JRuby has the deepest inlining structure—this is a
symptom of JRuby using invokedynamic and the specific invokedynamic implementation
that adds additional inlining levels. A single call from one JRuby method to another
regularly incurs 5-10 inlining levels.

Jython and Clojure use deeply nested static helper functions throughout the gener-
ated code, which leads to a large amount of deeply nested inlining. JavaScript shows
a smaller amount of inlining, albeit still reaching 10 levels for many of the CLBG
workloads.

Scala only adds one or two levels of indirection when compared to the Java code.
Scala was designed from the start with execution on top of a JVM in mind, and its
language structure can be represented efficiently in Java bytecode. In general, Scala
introduces additional layers of abstraction when compared to Java, so that inlining
should have a larger influence on the performance of Scala code than it has on Java
code. This assumption is supported by the observation made in [120].

The results for Java only show at most four levels of inlining. Since Java does not
need abstractions to run on a JVM, this is an approximation of the level of inlining
naturally present in the algorithm implemented by a particular CLBG benchmark.

The situation is vastly different in the case of real-world workloads, as shown in
Figures 5.27-5.32. In the cases of Java and (especially) Scala, these workloads appear
to be much more complex than the CLBG workloads. Interestingly, in the case of JRuby,
the real-world workloads appear to be actually less complex than the CLBG workloads.
This suggests that the inlining depths reported for the JRuby in the figure are actually
more indicative of the workload character than the language implementation.
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Figure 5.27. The number of methods inlined at a given level for the Clojure bench-
marks.
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Figure 5.28. The number of methods inlined at a given level for the Java benchmarks.
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Figure 5.29. The number of methods inlined at a given level for the JavaScript
benchmarks.
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Figure 5.30. The number of methods inlined at a given level for the JRuby benchmarks.
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Figure 5.31. The number of methods inlined at a given level for the Jython benchmarks.
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Figure 5.32. The number of methods inlined at a given level for the Scala benchmarks.
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5.3.5 Fraction of Inlined Methods

The results in Figure 5.33 show the fraction of inlined methods. Again, we can observe
that the results for Java and (to a certain extent) Scala show significant variance,
suggesting that the CLBG workloads for these two languages are rather small and
not representative enough. The results for Java are more indicative of the workload
algorithm structure, while the results for other languages show primarily the inlining
behavior of the language runtime.

The use of the invokedynamic bytecode instruction in JRuby leads to many successful
inlinings, which correlates with the high inlining depths presented earlier. The results
for JavaScript show a rather high proportion of unsuccessful inlining attempts, which
hints at the generated code calling large helper methods—this is supported by the
breakdown of reasons for not inlining methods in Section 5.3.3. The results for the
real-world workloads in Scala show the largest fraction of successful inlinings, which
again correlates with the high inlining depths observed earlier.
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Figure 5.33. Fraction of inlined ( ) and not inlined ( ) methods.
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5.3.6 Fraction of Decompiled Methods

To achieve high performance, the JVM sometimes performs aggressive optimizations
that are based on rather optimistic assumptions [131]. This includes static assumptions
about the system’s state (e.g., the hierarchy of loaded classes), and dynamic assumptions
about the behavior of the application (e.g., unreached branches within the application
code). When the assumptions that a JIT compiler made when compiling a method do
not or cease to hold, the method will be invalidated and its compiled version discarded.
The fraction of decompiled methods metric shows how good the JVM is in making
assumptions about the code it executes.

The results of this analysis are shown in Figure 5.34. The significant variations
in the results for Java and Scala again suggest that the CLBG workloads fail to stress
the language runtime of these languages. The results for JRuby, Jython and Clojure
are very consistent. With the CLBG workloads, Clojure exhibits an increased amount
of decompiled methods compared to the other two languages, but the difference is
less pronounced with the real-world workloads. In the case of JavaScript, there are
benchmarks with no decompilation whatsoever, but there are also many cases where a
large fraction of methods gets decompiled. This suggests that assumptions made for the
JavaScript workloads often do not hold during the lifetime of the application.
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Figure 5.34. Fraction of decompiled methods.
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5.3.7 Summary

There is a noticable trend in the results for dynamic languages: the microbenchmarks
from CLBG apparently manage to exercise a significant amount of the language runtime
code, resulting in workloads that do not differ much for real-world workloads. However,
the situation is vastly different with the statically typed languages, i.e., Java and Scala.
The microbenchmark nature of the CLBG workloads is clearly evident in all the metrics,
especially when compared to the results for the real-world workloads. This means that
conclusions concerning statically typed JVM languages can be misleading when based
solely on observations of microbenchmark behavior. This is consistent with general
benchmarking practices. The interesting result is that this is not necessarily the case
with dynamic JVM languages, which include a significant amount of language runtime
and framework code in their execution.

The primary reasons for inlining methods vary between the languages, but remain
rather consistent for workloads in the same language. The majority of inlined methods
are either static, where the inlining decision boils down to method size and other
properties, or intrinsic. Inlining of virtual methods is much less common, and was more
visible only in the case of JavaScript, where the JVM managed to inline some methods
profiled monomorphic, bimorphic, and megamorphic with a major receiver.

The primary reasons for not inlining methods were mostly method sizes in conjunc-
tion with cold or even unreached call sites generated by dynamic language compilers.
Qualitatively, the results for many dynamic languages were similar, with different pro-
portions between various decisions. Each language exhibited a specific set of negative
inlining decisions, but these tended to be in minority compared to negative decisions
related to method sizes.

The results of the inlining depth analysis suggest the dynamic languages employ
additional level of abstractions to execute the workload code, with JRuby having the
deepest inlining structure. Compared to other dynamic languages, JavaScript appears
to be somewhat inlining-unfriendly and unpredictable for the JIT compiler, as evidenced
by the cases with high ratio of decompiled methods.
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Chapter 6

Conclusions

The introduction of scripting support and support for dynamically-typed languages
to the Java platform made the JVM and its runtime library an attractive target for
the developers of new dynamic programming languages. Those are typically more
expressive—trading raw performance of the statically-typed languages for increased
developer productivity—and by targeting the JVM, their authors hope to gain the per-
formance and maturity of the Java platform, while enjoying the benefits of the dynamic
languages. However, the optimizations found in JVM implementations have been mostly
tuned with Java in mind, therefore the sought-after benefits do not automatically come
just from running on the JVM.

In this dissertation, we performed workload characterization for 72 different work-
loads produced by benchmarks and applications written in Java, Scala, Clojure, Jython,
JavaScript, and JRuby. Using our workload characterization suite [106], we collected
and analyzed terabytes of data resulting from weeks of running experiments with the
aim to contribute to the understanding of the characteristics of workloads produced
by static and dynamic languages executing on the JVM. Due to the lack of a proper
benchmarking suite for dynamic languages, we opted, like Li et al. [75] before us, to use
the benchmarks from the CLBG project augmented with several real-world applications
as the workloads for our study. Moreover, we had a close look at one of the most
effective compiler optimizations, namely method inlining. We have shown the decision
tree of the HotSpot JVM’s JIT compiler and gathered statistics about the ability of the
JVM to inline for different JVM workloads. Here we summarize the findings of our
study:

Call-site Polymorphism. Despite high number of polymorphic call-sites targeting mul-
tiple methods, a very high percentage of method invocations actually happens at
sites that only target a single method.

Field, Object, and Class Immutability. The dynamic languages use a significant amount
of immutable classes and objects.

95



96 6.1 Summary of Contributions

Object Lifetimes. Compared to static languages, the dynamic language workloads
allocate significantly more objects, but most of them do not live for long, which
suggests that many temporaries are used (often resulting from unnecessary boxing
and unboxing of primitive types).

Unnecessary Zeroing. The dynamic languages (especially Clojure and Jython) exhibit
a significant amount of unnecessary zeroing. This correlates with the significant
amount of short-lived immutable objects allocated by the respective dynamic
language workloads.

Identity Hash-code Usage. All the workloads use the identity hash code very scarcely,
suggesting that object header compression with lazy handling of identity hash
code storage is an appropriate heuristic for reducing object memory and cache
footprint.

Inlining. Java and Scala behave very different from the dynamic languages in every
metric. The runtime system that dynamic languages have to employ heavily
influences the code the JIT sees. In particular, the JVM is bad in handling the
JavaScript workloads.

6.1 Summary of Contributions

In the following we summarize the contributions of this dissertation.

Rapid Development of Dynamic Program Analysis Tools. In this dissertation we per-
formed a thorough evaluation of bytecode instrumentation frameworks for devel-
oping dynamic program analysis tools. In this regard, we conducted a controlled
experiment to compare DiSL with ASM, measuring development time and cor-
rectness of the developed tools. Secondly, we recasted 10 open-source software
engineering tools with DiSL, showing quantitative evidence that DiSL-based tools
are (i) considerably more concise than equivalent tools based on ASM and (ii) only
slightly more verbose than equivalent tools implemented in AspectJ. Moreover,
DiSL aims at reconciling (iii) efficiency of the generated code to ensure good tool
performance.

Toolchain for Workload Characterization. We introduced a new set of dynamic plat-
form-independent metrics that capture differing properties of workloads running
on the JVM. We developed a toolchain based on a unified infrastructure which is
JVM-portable, offers non-prohibitive runtime overhead with near-complete byte-
code coverage, and can compute a full suite of metrics “out of the box”. Among
the metrics of interest to be collected by our toolchain are object allocations,
method and basic block hotness, the degree of call-site polymorphism, stack usage
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and recursion depth, instruction mix, use of immutability and synchronization,
amount of unnecessary zeroing, and use of hash code.

Workload Characterization of JVM Languages. We performed a thorough evaluation
of six JVM languages on micro-benchmarks and real-world applications. We col-
lected a full range of dynamic metrics with our toolchain and identified differing
properties imposed by Java and non-Java workloads. We elaborated on our
findings and spotted cases for potential optimization.

Inlining in the JVM. We investigated the ability of the JVM to perform a fundamental
optimization—inlining—on workloads written in different JVM languages. We
revealed the HotSpot JVM server compiler’s inlining heuristics. We presented an
analysis of JVM inlining behavior and performed the first in-depth investigation
for six JVM languages.

6.2 Future Work

The work presented in this dissertation opens several future work directions. In the
following we give an overview of future research plans:

Empirical evaluation of a broad range of bytecode instrumentation frameworks.
We believe that more comprehensive evaluation of bytecode instrumentation
frameworks will be valuable for the community. In this dissertation we considered
only three tools, ASM, AspectJ, and DiSL. Possible future work would be a study
involving more instrumentation frameworks both offering high-level and low-level
approaches for performing instrumentations, such as Chord, Soot, Javassist, Josh
and others.

Introduction of new metrics. Dynamic metrics that we presented in this disseration
serve a specific problem, namely tuning a multi-language infrastructure. There-
fore, all the metrics were collected at the bytecode level. However, it would
be interesting to extend our toolchain for collecting metrics specific to certain
non-Java languages, such as JavaScript. Among the metrics of interest could be
prototype-based object creation, field additions, and so on.

In-depth analysis of optimization opportunities. In this dissertation we performed
a first step towards understanding the differing properties of JVM workloads.
We characterized a full range of JVM workloads, however we did not perform
any optimization. We left the optimization decision making as a task for JVM
implementers and developers of JVM language compilers. Possible future direction
would be to incorporate our findings and perform the optimizations either at the
language compiler level or at the JVM level.
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Workload characterization of languages that run on .NET. The study presented in
this dissertation was focused on the JVM, however the methodology can be
generalized to the case of .NET (CLR and DLR), although, the instrumentation
would be slightly different. Therefore, workload characterization of languages
that run on .NET will shed a light on how different the platforms are. Such a
study would be of great importance to the developers of JVM language compilers
for specializing their compilers to the specific back-end (i.e., JVM or .NET).
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