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Abstract 

In this paper we present an empirical analysis of the residential demand for electricity using 

annual aggregate data at the state level for 48 US states from 1995 to 2007. Earlier literature has 

examined residential energy consumption at the state level using annual or monthly data, 

focusing on the variation in price elasticities of demand across states or regions, but has failed to 

recognize or address two major issues. The first is that, when fitting dynamic panel models, the 

lagged consumption term in the right-hand side of the demand equation is endogenous. This has 

resulted in potentially inconsistent estimates of the long-run price elasticity of demand. The 

second is that energy price is likely mismeasured.  

 

To address these issues, we estimate a dynamic partial adjustment model using the Kiviet 

corrected Least Square Dummy Variables (LSDV) (1995) and the Blundell-Bond (1998) 

estimators. We find that the long-term elasticities produced by the Blundell-Bond system GMM 

methods are largest, and that from the bias-corrected LSDV is greater than that from the 

conventional LSDV. From an energy policy point of view, the results obtained using the 

Blundell-Bond estimator where we instrument for price imply that a carbon tax or other price-

based policy may be effective in discouraging residential electricity consumption and hence 

curbing greenhouse gas emissions in an electricity system mainly based on coal and gas power 

plants. 

 

JEL Classification: D, D2, Q, Q4, Q5. 

Keywords: residential electricity and gas demand; US states, panel data, dynamic panel data 

models, partial adjustment model. 
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1. Introduction 

 

Inducing residential consumers to use electricity more efficiently has been a growing 

concern for the government in many countries because of climate change, security of supply and 

an electric power system based on power plants that mainly use nonrenewable resources such as 

coal and oil. Buildings account for some 30-40% of energy use, and policy instruments are 

currently in use or are being considered at many locales to help reduce energy use in the 

residential sector. These include price increases through the introduction of an ecological tax, 

mandatory energy-saving measures in the construction and renovation of buildings, and 

subsidies to promote the construction and renovation of energy-saving buildings. These 

measures would encourage conservation or energy efficiency investments. Both are currently 

considered important for reducing CO2 emissions, especially in the US, where coal-fired power 

plants account for a large share of electricity generation.  

The effectiveness of a price policy depends upon the price elasticity of demand for 

electricity. Underlying this energy pricing policy question is the proper specification and 

estimation of an electricity demand equation.  Much literature in the last 30 years has focused on 

the use of aggregate nationwide or state-level data to fit energy demand equations and estimate 

its elasticity with respect to price.  

The majority of these studies have used panel data and a dynamic adjustment approach 

(Halvorsen (1975), Houthakker (1980), Baltagi et. Al. (2002), Kamerschen and Porter (2004), 

Bernstein and Griffin (2006) and Paul et al. (2009)).  Because they use panel data, most of these 

studies control for unobserved heterogeneity using fixed or random effects, sometimes 

combined with a simple instrumental variable approach. The short-run price elasticities of the 
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residential demand for electricity in the US range from -0.20 to -0.35, and the long-run price 

elasticity vary even more widely, ranging from -0.3 to -0.8. 

With the exception of Baltagi et al. (2002), however, most of these studies have failed 

to recognize and address the possible endogeneity of lagged consumption, which is often 

included in the right-hand side of the demand equation, and so the estimates of the price 

elasticity are suspect. Moreover, these studies are generally based on data from the 1970s and 

the 1980s, and there is no reason to believe that the same responsiveness to price changes 

observed in periods of rapidly increasing prices (e.g., the 1970s and early 1980s) would hold in 

periods of stable or decreasing energy prices (Haas and Schipper, 1998).   

Despite the potentially serious consequences on the estimated price elasticity, in the 

literature little attention has been devoted to the possibility that the price of energy might be 

mismeasured. In two recent studies that use household-level data, Alberini et al. (forthcoming) 

and Fell et al. (2010) discuss the implications of energy prices that are measured with an error 

term and implement different approaches to address this problem. Neither exploits the dynamic 

nature of the data. 

We wish to examine how sensitive the price elasticities are to the choice of the 

econometric estimation technique. From a policy perspective, understanding what drives the 

different results is important, because the different estimates of the price elasticity imply 

different conclusions about the effects of electricity pricing policies.  

In this paper, we ask three research questions. First, what are the current short-run and 

long-run price elasticities of the residential electricity demand in the US? Second, are the 

estimates of the elasticity robust to attempts to address a major econometric problem with 

dynamic adjustment models of electricity demand, namely, the correlation between the lagged 
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demand and the error term? Third, how are results affected by the possibility that the energy 

price is mismeasured? 

To answer these questions, we use a panel of data documenting annual residential 

energy demand at the state level in the US for 1995-2007. We estimate a partial adjustment 

model where the dependent variable is log electricity use per capita in the state (i.e., electricity 

consumption in the residential sector, divided by population), and the regressors, in addition to 

the lagged dependent variable, include the log transformations of the price of electricity, the 

price of the closest substitute (gas), income and other controls.  

Holding the time period and the specification the same, we focus on the role of 

different estimation techniques suited for dynamic panel models. We experiment with bias-

corrected least-squares dummy variables and Blundell-Bond GMM estimation, and further 

instrument for price to address the measurement error. We find that changing the estimation 

technique alone results in changes in the long-run price elasticity of electricity demand of up to 

70%, whereas the short-term estimates can be as far apart as 88% of each other.  

The remainder of the paper is organized as follows. We briefly review the literature in 

section 2. The model is described in section 3. The data are described in section 4. The 

econometric methods are described in section 5.  The estimation results are presented in Section 

5. Section 6 concludes. 

 

2. Literature Review  

 Earlier efforts to study the residential electricity demand in the US using aggregate state-

level panels include Halvorsen (1975), Houthakker (1980), Baltagi et. Al. (2002), Kamerschen 
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and Porter (2004), Bernstein and Griffin (2006) and Paul et al. (2009).
1
  Virtually all of these 

studies include similar controls, such as weather and income, in the right-hand side of the model, 

but differ for the time period covered by the sample, the specification of the price variable, and 

the estimation procedure.  

 Regarding the time period covered, much of this earlier work relies on data from the 

1970s and 1980s, and only Bernstein and Griffin (2006), and Paul et al. (2009) cover the years 

until 2006. The majority of these studies use average energy prices. In terms of specification of 

the model and estimation technique, fixed or random effects models were used, combined with a 

simple instrumental variable approach. The only study that uses recent advances in the 

estimation of dynamic panel data models (e.g., the Anderson and Hsiao, 1982, and Arellano and 

Bond, 1991, estimators) is Baltagi et. al. (2002), which, however, is based on old data (1970-

1990).   

 The two most recent studies (Bernstein and Griffin, 2006, and Paul et al., 2008) use more 

recent data and dynamic models, but do not attempt to address the possibility that lagged 

consumption is endogenous, when included in the right-hand side of the regression equation.  

Specifically, Bernstein and Griffin (2006) estimate the electricity and gas consumption in the 

residential sector in the US using a panel of data at the state level from 1977 to 2004.  The main 

goal of their study is to determine whether the relationship between prices and 

demand differs at the regional level.  

 They adopt a partial adjustment model that includes the average prices of electricity and 

gas, one-year lags for each of these variables, and lagged electricity consumption. Controls 

include per capita income and a climate index. These authors use a log-log functional form, 

                                                 
1
 For a recent exhaustive review on studies estimating the residential electricity demand see Espey and Espey 

(2004). 
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state-specific fixed effects, and year effects. When attention is restricted to residential electricity 

demand, the short- and long-term own price elasticities are -0.243 and -0.32, respectively. 

Bernstein and Griffin (2006) conclude that residential electricity demand is price-inelastic and 

that these elasticities are virtually the same as those from studies performed 20 years earlier. 

Paul et al. (2008) use monthly average price and electricity demand data at the state level 

for 1990-2006. They specify partial adjustment models that include state fixed effects, monthly 

HDDs and CDDs, and daylight hours, among other controls. The price elasticities of demand are 

allowed to vary across states and regions. When averaged over the nation, the own price 

elasticity is -0.13 in the short run and -0.36 in the long run, confirming once again that the 

demand for electricity is price-inelastic.  

Paul et al. argue that price is exogenous in the demand equation, but raise the possibility 

that demand might be serially correlated, in which case lagged demand and the state-specific 

fixed effects would be correlated, making the LSDV estimator biased and inconsistent. They 

report that attempts to instrument for lagged electricity demand using past prices (plus all of the 

exogenous variables) or past prices and past demand (plus all of the exogenous variables) were 

unsuccessful and resulted in unstable estimates. They therefore report only the LSDV estimation 

results.  

In sum, the two most recent studies on residential energy demand both use the same 

econometric technique, LSDV, which is based on the “within” variation in all variables. 

Furthermore, these two studies do not attempt to address two major econometric problems with 

dynamic adjustment electricity demand models, namely, the correlation between the lagged 

demand and the error term, and the possibility that the average price of energy at the state level is 

affected by measurement error.  
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To our knowledge, the issue of mismeasured energy prices is rarely addressed in the 

literature. Alberini et al. (forthcoming) instrument for the price of electricity faced by households 

using state-level averages, which do not exploit the dynamic aspect of the data. They further 

check what happens to the estimates of the price elasticities when attention is restricted to those 

households for whom the measurement error is argued to be the smallest. Fell et al. (2010) take 

an entirely different approach, relying on a structural model that is estimated using GMM and 

omits prices altogether. As we explain below, in this paper we examine how the price elasticities 

change when econometric techniques are used that address all of these concerns.  

 

3. The Model  

Residential demand for energy is derived from the demand for a warm house, cooked 

food, hot water, lighting, etc., and can be specified using the basic framework of household 

production theory.
2
 Households purchase “goods” on the market which serve as inputs to 

produce the “commodities” that enter in the argument of the household's utility function.
3
 

In the US residential sector, the most important fuels used are electricity (100% of the 

households) and gas (~60% of the households). Fuel oil (~7% of the households), liquefied 

petroleum gas  (LPG; ~1.5% of the households), and kerosene  (~1.5% of the households) 

are less important. Ignoring the less common fuels, we assume that a household 

combines electricity, gas and capital equipment to produce a composite energy commodity.  

 The production function of the composite energy commodity S can be written as:  

                                                 
2
 See Thomas (1987) and Deaton and Muellbauer (1980). See Flaig (1990) and  Filippini (1999)  for an application 

of household production theory to electricity demand analysis. 
3
 Approximately 45% of the energy used in a household is for appliances and lighting, whereas space 

heating, water heating and air conditioning account for 30%.  
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 ),,( CSGESS   (1) 

where E is electricity, G is gas, and CS is the capital stock consisting of appliances. The output 

of the composite commodity S, namely energy services, is thus determined by the amount of 

electricity and gas purchased as well as the quantity of the capital stock of appliances.  

 Energy services S enters in the utility function of the household as an argument, along 

with aggregate consumption X. The utility function is influenced by household characteristics Z 

and by the weather in the area where the household resides. We denote climate and weather 

variables as W.  Formally,  

 ),;),,,(( WZXCSGESUU   (2) 

The household maximizes utility subject to a budget constraint, 

 0 XSPY S  (3) 

where Y is money income and PS is price of the composite energy commodity. The price of 

aggregate consumption X is assumed to be one. 

 The solution to this optimization problem yields demand functions for E, G, CS and X: 

);,,,(**
WZ,YPPPEE CSGE

                             
(4) 

);,,,(**
WZ,YPPPGG CSGE                              (5) 

);,,,(**
WZ,YPPPCSCS CSGE            (6) 

);,,,(**
WZ,YPPPXX CSGE                                                                    (7)  

Equations (4)-(7) describe the long-run equilibrium of the household. This model is 

static in that it assumes an instantaneous adjustment to new equilibrium values when prices or 

income change. Specifically, it is assumed that the household can change both the rate of 
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utilization and the stock of appliances, adjusting them instantaneously and jointly to variations in 

prices or income, so that the short-run and long-run elasticities are the same.  

 In this paper attention is restricted to the demand for electricity. Based on equation (4) 

and on the available data (see section 4) and using a log-log functional form we posit the static 

empirical model of electricity demand:  

  itHDDitHSitINCGEitGEPEitPEiit HDDHSINCPPE lnlnlnlnlnln   

    ititCDD CDD   ln  (8) 

where Eit is aggregate electricity consumption per capita, INCit is income per capita, PEit is the 

real average price of electricity, PGit is the real average price of gas, HSit is household size, 

HDDit and CDDit are the heating and cooling degree days in state i in year t, and  it is the 

disturbance term.
4
 Since energy consumption and the regressors are in logarithms, the 

coefficients are directly interpreted as demand elasticities.  The i  terms allow for unobserved 

state-specific heterogeneity. Depending on the assumptions one is prepared to make about their 

correlation with the other right-hand side variables in (8), they may be regarded as fixed 

intercepts (“fixed effects”) or random variables (“random effects”).   

Actual electricity consumption may differ from the long-run equilibrium consumption, 

because the equipment stock cannot adjust easily to the long-run equilibrium. A partial adjustment 

mechanism allows for this situation.  This model assumes that the change in log actual demand 

between any two periods t−1 and t is only some fraction (λ) of the difference between the 

logarithm of actual demand in period t−1 and the logarithm of the long-run equilibrium demand 

in period t. Formally, 

                                                 
4
 Functional forms commonly assumed when estimating ad-hoc energy demand models  include the linear, semi-log 

and log-log forms. One of the advantages of the log-log functional form is that the coefficients are directly 

interpretable as demand elasticities. Xiao et. al. (2007) show in an empirical analysis of residential energy demand 

that the log–linear model is superior to the linear model. 
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)ln(lnlnln 1

*

1   tttt EEEE         (9) 

where 0<λ<1, and we have suppressed the i subscript to avoid clutter.  

This implies that given an optimum, but unobservable, level of electricity, demand only 

gradually converges towards the optimum level between any two time periods. Assume that 

desired energy use (for example, desired electricity consumption) can be expressed as 

)exp(*
Xγ  GEt PPE , where  and  are the long-term elasticities with respect to the price 

of electricity and gas, and X is a vector of variables influencing demand for energy, including 

income, climate, characteristics of the stock of housing, etc.  On inserting this expression into 

(9), we get  

11 lnlnlnlnlnln   tGEtt EPPEE  Xγ .   (10) 

On re-arranging and appending an econometric error term, we obtain the regression equation: 

  1ln)1(lnlnlnln tGEt EPPE Xγ .   (11) 

This expression shows that the short-run elasticities are the regression coefficients on the log 

prices, whereas the long-run elasticities can be computed by dividing these short-run elasticities 

(i.e., the coefficients on the log prices) by the estimate of . In turn, the latter is easily obtained 

as 1 minus the coefficient on 1ln tE . 

In this paper, the dynamic version of the electricity demand model based on the partial 

adjustment hypothesis is specified as: 

   itHSitINCGEitGEPEitPEtiEiit HSINCPPEE lnlnlnlnlnln 1,   

    .lnln ititCDDitHDD CDDHDD    (12) 

 In sum, in the remainder of this paper, we estimate equations (8) and (12), which we 

interpret as a static and dynamic model, respectively, of electricity consumption for the 
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representative consumer in the US.  The parameters of interest are the short- and long-run 

elasticities with respect to the price of electricity.  Our goal is to see how the estimates of the 

elasticities change when i) we model unobserved heterogeneity using fixed or random effects, ii) 

we deploy alternate estimation techniques for the dynamic model, and iii) regard price as 

mismeasured. 

 

4. The Data 

We compiled annual data for all the states in the US (50 states plus the District of 

Columbia, for a total of 51 units) from 1995 to 2007. For the purposes of this paper, however, 

attention is restricted to the contiguous US states (Alaska and Hawaii are excluded), and we 

further drop Rhode Island because of incomplete information. Descriptive statistics for the 

remaining 48 states are presented in table 1. 

Residential electricity consumption figures and prices are provided by the Energy 

Information Agency. Population and household income are from the Bureau of Economic 

Analysis of the US Census Bureau.
5
 We obtained heating and cooling degree days from the 

National Climatic Data Center at NOAA. The typical size of a household is obtained by dividing 

population by the number of housing units, where the latter variable comes from the US Census 

Bureau.  

 

 

 

 

                                                 
5
 The price of electricity and gas, and income, are converted to real prices by dividing by the consumer price index 

(Bureau of Labor Statistics, 2010). 
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Table 1. Definition of Variables and Descriptive Statistics. N=624. 

Variable  Label  Mean Std. Dev. Min. Max. 

electricity demand per capita, KWh el_kwh 4537 1209 2147 7086 

price of electricity per KWh (1982-84 
dollars) price per KWh 0.048516 0.012534 0.029797 0.091198 

price of gas per cubic meter (1982-84 
dollars) price per m3 0.005204 0.0015 0.002617 0.010445 

population/detached houses household size 2.34673 0.164712 1.888274 2.994109 

Income per capita (thou. 1982-84 dollars) 
Income per 
capita 14700 2346 10239 26120 

heating degree days (base: 65 F) HDD 5087.375 1998.374 555 10745 

Cooling degree days (base: 65 F) CDD 1142.109 795.8133 128 3870 

 

Two key variables in the model are the prices of electricity and gas. Regarding the 

electricity price, the only information available at the state level for the residential sector is the 

average price, which is calculated by the EIA as the revenue of the utilities coming from the 

residential sector divided by electricity sales to the residential sector (as documented by the 

utilities in the EIA Form 861 submitted every year to the agency). The average gas price used in 

this study is calculated by the EIA as the total sales divided by gas consumption in the 

residential sector.  

We display the price of electricity (in real 1982-1984 dollars) for selected states 

(California, Texas, New York and Florida, the four largest in terms of population) in Figure 1. 

Figure 1 shows that electricity prices vary dramatically between states.  They also vary within a 

state over time, but to a much lesser degree.  We remind the reader that during our study period, 

electricity markets were regulated everywhere until about 2000. Several states allowed 

deregulation starting in or around 2000, but even so, the price and provision of electricity to 
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residential and other customers is subject to the oversight and approval of the state public utility 

commission.  

 

Figure 1: Price of electricity in selected states (cents per KWh, 1982-1984)  

 

 

4. Econometric Specification and Estimation  

A. Econometric Techniques 

When static energy demand models are estimated using panel data, it is customary to 

account for unobserved heterogeneity using fixed or random effects. The appropriate estimation 

techniques are the “within” estimator (also termed LSDV, see Greene, 2007) and GLS (see 

Baltagi, 1996), respectively. We begin our empirical work with estimating the static model in 

equation (8) under these two alternate assumptions about the nature of the unobserved 

heterogeneity.  
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Next, we turn to dynamic equation (12). Dynamic panel data models that include fixed or 

random effects are problematic. A major concern is that the lagged dependent variable in the 

right-hand side might be serially correlated and hence correlated with the error term, which 

makes the LSDV and GLS estimators (for models with fixed and random effects, respectively) 

biased and inconsistent, since )( 1,1,   iti yy , where Ey ln  and 1,iy  is the average lagged log 

consumption within state i, is correlated with )( iit    (see Baltagi, 1995). The bias of the 

coefficient of the lagged dependent variable vanishes as T gets large, but the LSDV and the GLS 

estimators remain biased and inconsistent for N large and T small.  

Specifically, assuming that the coefficient on the lagged dependent variable is positive, it 

can be shown that its OLS estimate is biased upwards, while the LSDV estimator is biased 

downwards.
6
 Therefore, a consistent estimate should lie between the two, which suggests a 

possible estimation approach. 

Kiviet (1995) derives an approximation for the bias of the LSDV estimator when the 

errors are serially uncorrelated and the regressors are strongly exogenous, and proposes an 

estimator that is derived by subtracting a consistent estimate of this bias from the LSDV 

estimator.
7
 An alternative approach is to first-difference the data, thus eliminating the state-

specific effects: 

(13)  itittiit yy    βx1,  

where x denotes all exogenous regressors in the right-hand side of equation (12), and to use 

2, tiy  and itx  as instruments for 1,  tiy  (Anderson and Hsiao, 1981). 

                                                 
6
 For a discussion on this issue see Nickell (1981) and Harris et al. (2008). 

7
 Since the bias is negative if the true coefficient on the lagged dependent variable is positive, this means that we add 

a positive quantity to the LSDV estimator. 
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 Arellano and Bond (1991) point out that the latter approach is inefficient and argue that 

additional instruments can be obtaining by exploiting the orthogonality conditions that exist 

between the lagged values of tiy ,  and the disturbances in (13).
8
 The Arellano-Bond procedure is 

generalized method of moments (GMM) estimator that is implemented in two steps. In practice, 

the Arellano-Bond estimator has been shown to be biased in small sample, and the bias increases 

with the number of instruments and orthogonality conditions. Moreover, Arellano and Bond 

(1991) show that the asymptotic approximation of the standard errors of their two-step GMM 

estimator is biased downwards, and Judson and Owen (1999) and Arellano and Bond (1991) find 

that the one-step estimator outperforms the two-step estimator.  

In addition to the possible “instability” of the Arellano-Bond estimator with respect to 

minor changes in the selection of the instruments (see Harris et al., 2008, page 254), one concern 

is that the above mentioned estimators were developed primarily for situations with large N and 

small T. In our case, N is modest and should be treated as fixed (since the number of U.S. states 

does not change), and T is small. Using Monte Carlo simulations, Judson and Owen (1999) show 

that with balanced dynamic panels characterized by T  20, and N  50, as is the case here, the 

Kiviet corrected LSDV (LSDVC) estimator of  (the coefficient on the lagged dependent 

variable) outperforms the Anderson-Hsiao and the Arellano-Bond estimators, in the sense that it 

has lower mean square errors.
9
 They also find that imposing restrictions on the number of lagged 

dependent variables and exogenous instruments to be used with the Arellano-Bond estimator 

does not materially reduce the performance of this technique. 

                                                 
8
 See Baltagi (2008), p. 154, for details on the efficiency issues and chapter 8 for a discussion of the orthogonality 

conditions. 
9
 With unbalanced panels, by the time T reaches 30, Judson and Owen found the LSDV estimator without bias 

correction is superior to the Arellano-Bond estimators. Bruno (2005) develops the LSDVC estimator for unbalanced 

panel.  
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Under the additional assumption of quasi-stationarity of tiy , , 1,  tiy  is  uncorrelated with 

it . Blundell and Bond (1998) suggest a “system” GMM estimation where one stacks the model 

in the levels and in the first differences, imposes the cross-equation restrictions that the 

coefficients entering in the two models be the same, and uses the full set of instruments 

(corresponding to the full set of orthogonality conditions for both models). Blundell and Bond 

report that in simulation the “system” GMM estimator is more efficient and stable than the 

Arellano-Bond procedure. Further, as shown by Hayakawa (2007), the small sample bias of the 

“system” GMM estimator is smaller than that of the Arellano-Bond estimator. This implies that 

this econometric approach can also be used with relatively small data sets. 

Therefore, based on this discussion and the fact that our dataset has N=48 and T=13, we 

estimate our dynamic models using the LSDVC and the Blundell-Bond GMM (BB-GMM) 

estimators with various restrictions on the number of orthogonality conditions.
10

 Moreover, in 

this first round of estimation, we treat the price of electricity, the price of gas, HDDs, CDDs, 

population and household size as exogenous variables.  

 

B. Prices and Measurement Errors 

As mentioned, we use the average price of electricity to residential customers, as 

reported by the EIA, and in our first round of estimation we regard it as exogenous. Bernstein 

and Griffin (2006) and Paul et al. (2009) consider the average price as exogenous on the grounds 

that it is set by regulation. In what follows, we discuss three issues with the price variable, 

                                                 
10

 A small N constrains the researcher to limit the number of instruments used for estimation. With a small N, it is 

important to keep the number of instruments less than or equal to the number of groups (or cross-sectional units, 

which in our case are the states) to improve efficiency and prevent the Sargan test from becoming weak. We use the 

second lag of the dependent variable as an instrument. We experimented with further lags, but observed a 

considerable loss of efficiency and rather imprecise estimates.  See Cameron and Trivedi (2009) for a discussion of 

this issue. 
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namely i) whether average price is the appropriate price variable, ii) whether average price is 

endogenous or exogenous, and iii) the issue of measurement error. 

Regarding i), there is considerable debate in the literature as to whether consumers 

respond to the marginal price or to the average price, which are different from one another in the 

presence of fixed fees and/or block pricing.
11

 When utilities apply block pricing, the 

theoretically appropriate measure is block marginal price (Taylor, 1975; White and Reiss, 2005), 

which is clearly not available in this case. However, Shin (1985) argues that households will 

respond to average price, which is easily calculated from the electricity bill, rather than to actual 

block marginal price, which is costly to determine.
12

 Using household-level data, Borenstein 

(2008, 2009) and Ito (2010) also support the hypothesis that households tend to respond to 

average price.  

Depending on the nature of the data used, using the average price, however, can create 

an endogeneity problem. If micro-level data are used, two-part and block pricing schemes mean 

that the average price depends on the quantity consumed by the household, and are therefore 

endogenous with one another.  At the aggregate level, however, Shin (1985) argues that the 

potential for the price to be endogenous with consumption—issue ii) above—is mitigated by the 

presence of many different pricing levels and schemes at different locales.  

We are, however, concerned about iii), the issue of measurement error. Our price variable 

is computed by the U.S. Energy Information Administration (EIA) as the average revenue per 

kWh of sales by all electric power retailers to a State. For this reason, we are concerned that it 

                                                 
11

 Some utilities also use time-of-use rates. It would be interesting to analyze household electricity demand by time-

of-use using aggregate data at the state level, but to our knowledge the data needed for this type of analysis are not 

available for the US. In the literature, there are only few studies that analyze the residential electricity demand by 

time-of-use using aggregate data. See Filippini (1995, 2010). 
12

 Typically the US electric utilities utilize a block rate design. This implies that the marginal price for each 

household varies with the quantity of electricity consumed, and can vary from season to season, making it difficult 

for a household to keep track of it.  
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might be affected by measurement error. For starters, the EIA does sometimes “miss” some retail 

electricity suppliers. Second, the electric power retailers in a state may apply different tariff 

structures (block pricing, time-of-use pricing) that are poorly reflected in the data. Third, the EIA 

data are an ex post annual average, but consumers may make their decisions based on expected 

prices (Borenstein, 2008, 2009; Ito, 2010). 

Standard econometric theory shows when a regressor is mismeasured, and the 

measurement error is classical (i.e., the measurement error has mean zero and is uncorrelated 

with the true regressor and with the econometric error term in the regression), the estimated 

regression coefficient is biased towards zero (Greene, 2007, p. 325). Here, this would make the 

demand appear to be more inelastic to price than it truly is. 

How can one get around the problem of a mismeasured regressor? Suppose it was 

possible to find another measure of price, and that this new measure of price was also affected 

by measurement error. Let itp  be true price, and let observed price be ititit epp * , where ite  

is a classical measurement error (i.e., a disturbance term with mean zero and constant variance 

that is uncorrelated with true price and with all other variables in the regression equation). Let *

itr  

be the additional proxy for price, with ititit upr * , with itu  a classical measurement error. It 

can be shown that the covariance between these two mismeasured price variables is the variance 

of true price (i.e.,
 

)( itpVar ), and this information can be used to correct the bias of the estimated 

coefficient on mismeasured price (Black and Kniesner, 2003). 

Alternatively, *

itr  can be used to instrument for *

itp  and produce consistent estimates of 

the coefficient on *

itp . In this paper, we use lagged prices (up to two lags) to instrument for 
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current prices. In sum, in the dynamic specification we combine instrumental variable estimation 

for one regressor, price, within the Blundell-Bond estimation of equation (13). 
13

 

 

 

5. Estimation Results 

 

Table 2 displays the regression results for the static model. We account for unobserved 

heterogeneity by using fixed effects (and the LSDV estimation technique) in column (A) and 

random effects in column (B). All of the coefficients have the expected signs and are statistically 

significant. The “within” estimator produces slightly smaller price elasticities, but the GLS and 

within estimates are close (within 15% of each other). These results are in line with the results 

from the earlier literature.  

Table 2. Estimation results: Static Model. 

 

Dependent variable: log residential 
electricity consumption per capita 

(A) 
Fixed Effects Model  

(LSDV) 

(B) 
Random Effects 

Model (GLS) 

 
Coeff. T stat Coeff. T stat 

Intercept  4.1042 10.36 5.1031 12.44 

Lnpel -0.2179 -12.03 -0.2536 -13.25 

Lnpgas 0.0486 4.73 0.0583 5.29 

Lnic 0.2839 9.35 0.2171 6.83 

Lnhs -0.7476 -7.89 -0.7703 -7.87 

LnHDD 0.1472 7.42 0.0948 4.78 

LnCDD 0.0799 10.21 0.0864 10.35 

     sample size 624 
 

624 
 R square within 0.7970 

 
0.7918 

 R square between 0.0652 
 

0.3401 
 R square overall 0.1010 

 
0.3270 

  

 

                                                 
13

 Our use of past prices as instruments is in contrast with Alberini et al. (forthcoming), where the instrument for 

individual prices is the state-level average price. 



19 

 

 

 

Table 3 displays the regression results for the dynamic model obtained using i) 

conventional LSDV, ii) LSDVC, iii) a selected variant of the BB-GMM (BB-GMM-1), and iv) a 

version of the BB-GMM (BB-GMM-2) where we instrument for price, which is endogenous if it 

is measured with error. Although we expect i) to be biased, we report it in table 4 for comparison 

purposes. 

Most of the coefficients in the LSDV model have the expected signs and are 

statistically significant. However, as mentioned, due to the correlation between the lagged 

dependent variable and the error term, we expect the LSDV estimates to be biased and 

inconsistent.  

The majority of the coefficients in the LSDVC model and in the BB-GMM-1 and BB-

GMM-2 models have the expected signs and are statistically significant. Moreover, the p-value 

of the test statistics of serial correlation (for AR1 and AR2 processes) and overidentifying 

restrictions (Sargan) show that in the two BB-GMM models there is no significant second-order 

autocorrelation, which is crucial for the validity of the instruments. Furthermore, the p-value of 

the Sargan test statistic indicates that the null hypothesis that the overidentifying restrictions are 

valid is not rejected.  

The results are comforting in that the coefficients on the price variables and that on the 

lagged dependent variable (which are used to compute the long-run elasticities) are significant 

and carry the expected signs in all models. The magnitude of the electricity price coefficients 

obtained using the LSDV, corrected LSDV, and Blundell-Bond GMM that instruments for 

electricity prices are relatively similar. This implies that the short-run elasticities will also be 

similar. It is striking that the Blundell-Bond GMM technique that assumes prices to be 
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exogenous produces a short-run elasticity that is only half as large as those from the other 

techniques.  

As expected, the coefficient on the lagged dependent variable changes dramatically 

from one estimation procedure to the next. The LSDVC coefficient on this variable is about 36% 

larger than its LSDV counterpart. The two Blundell-Bond procedures results in estimated 

coefficients of 0.81 and 0.79, respectively. These two coefficients are very similar to one 

another, and represent a 19% increase over the LSDVC estimate, which in turn is larger than the 

LSDV estimate. 

Based on these findings, we expect the long-term elasticities to be largest with 

Blundell-Bond GMM-2, and indeed this expectation is borne out in the elasticity figures 

displayed in table 4. Table 4 reports the estimates of the short and long-run own price elasticities, 

along with standard errors around them, for the consistent estimators of table 3. The estimated 

short-run own price elasticities vary between -0.08 and -0.15. These values imply that at least in 

the short-run, raising the price of electricity does not create much of an incentive for customers 

to decrease electricity consumption. Low as they might be, -0.15 is (in absolute magnitude) 88% 

larger than -0.08.  
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Table 3. Dynamic Model. Dependent variable: log residential electricity consumption per capita 
 

 
LSDV LSDVC BB-GMM1 BB-GMM2 

 
Coeff. t stat. Coeff. t stat. Coeff. t stat. Coeff. t stat. 

intercept 1.858311 4.05     1.258141 1.38 0.483547 0.48 

lagged lnelpc 0.49761 15.25 0.682531 19.64 0.811038 18.34 0.791011 23.63 

Lnpel -0.15842 -9.85 -0.13812 -8.04 -0.08317 -2.24 -0.15235 -3.55 

Lnpgas -0.03068 -2.55 -0.02745 -1.87 0.018566 0.86 0.008243 0.38 

Lnic 0.063719 1.78 0.052963 1.04 -0.09284 -1.29 0.045463 0.45 

Lnhs -0.21625 -2.68 -0.14794 -1.32 0.004938 0.03 -0.2847 -1.7 

Lnhdd 0.093101 4.68 0.095626 4.56 0.065177 2.89 0.028774 1.4 

Lncdd 0.072958 10.65 0.076846 9 0.07682 5.91 0.06648 5.48 

1997 year dummy -0.02605 -5.83 -0.0301 -5.76 -0.03667 -5.79 -0.04352 -6.52 

1998 year dummy -0.00831 -1.43 -0.00886 -1.21 0.000143 0.01 -0.02003 -1.68 

1999 year dummy -0.01571 -2.7 -0.01883 -2.42 -0.01875 -1.99 -0.04026 -3.06 

2000 year dummy 0.002348 0.37 -0.00103 -0.13 0.006231 0.47 -0.02339 -1.31 

2001 year dummy -0.00579 -0.72 -0.01455 -1.35 -0.02173 -1.18 -0.04763 -1.87 

2002 year dummy 0.011643 1.49 0.003198 0.29 0.013855 0.72 -0.02027 -0.83 

2003 year dummy -0.00125 -0.14 -0.01664 -1.42 -0.01375 -0.66 -0.05044 -1.75 

2004 year dummy 0.016889 1.66 0.002225 0.17 0.006182 0.27 -0.03573 -1.1 

2005 year dummy 0.044141 3.89 0.027436 1.78 0.023867 0.9 -0.01469 -0.42 

2006 year dummy 0.02346 1.82 -0.00127 -0.07 -0.02057 -0.78 -0.06262 -1.72 

2007 year dummy 0.046243 3.85 0.024211 1.49 0.024613 0.91 -0.01721 -0.46 

         Sargan test  (p-value) 

 
0.0000 

   
0.9922 

 
0.1016 

Arellano-Bond AR1 test (p-value 

 
0.0000 

   
0.0000 

 
0.0000 

Arellano-Bond AR2 test (p-value) 

 
0.2204 

   
0.2204 

 
0.1159 

Note: BB-GMM-1  instruments for lag electricity up to second lags. BB-GMM-2 treats lag electricity and log price as endogenous.  Instruments for lag electricity 

up to second lags and instruments for the price variable first and second lags. Note: Robust standard errors has been used for the computation of the t-values. 

Sargan test from Two-Step Estimator.  
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The story is much less clear-cut for the long-run elasticity. The estimated long-run 

own electricity price elasticities is approximately -0.43 in the LSDVC and BB-GMM-1 and -

0.73 in the BB-GMM-2. The difference is striking (70%), and is mainly due to the fact that the 

different estimators produce widely different estimates of the coefficient on the lagged demand 

variable. Because the LSDVC and BB-GMM-1 estimators suffer from the bias determined by 

the measurement error of the electricity price variable, we regard BB-GMM-2 as the most 

appropriate estimation technique and its coefficient estimates as the most reliable. For this 

model, the own price elasticity is high enough that the impact of an increase of the electricity 

price on electricity consumption is relatively important, at least in the long run, and that a 

pricing policy holds promise.   

 

 

Table 4. Short and long-run elasticities implied by the dynamic models. 

 

own price elasticity 
LSDVC  
 

BB-GMM-1 
 

BB-GMM-2 
 

short run -0.13812 -0.08317 -0.15235 

long run -0.43508 -0.44219 -0.72898 

st err (LR elasticity) 
 

 
0.127850 
 

0.20996 
 

0.191381 
 

 

6. Conclusions 

In this study, we have examined the demand for electricity in the residential sector in 

the US. For this purpose, a log-log static and a log-log dynamic model for electricity 

consumption were estimated using annual state-level data for 48 states over 13 years. 

Several estimation techniques are possible for static and dynamic panel data models. 

Our dataset is characterized by a relatively small N and T, so we must choose the econometric 
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estimation technique judiciously. We use the LSDVC estimator proposed by Kiviet and the 

“system” GMM estimator proposed by Blundell and Bond (1998). Moreover, to remedy a 

possible measurement error in the electricity price variable, which makes state-level price and 

residential electricity econometrically endogenous, we also used a dynamic specification that 

combine instrumental variable estimation for one regressor, price, within the Blundell-Bond 

“system” estimation.  

The short-run elasticities vary between -0.08 and -0.15, and the long run price 

elasticities between -0.45 and -0.75. Changing the estimation technique alone, therefore, 

changes the estimated elasticities by 70% -88%. Our preferred estimation technique is the 

Blundell-Bond that instruments for price, because it is stable, efficient and “safe” if the price is 

mismeasured, as we argue is the case. Neglecting this latter problem would understate the 

responsiveness to price, and indeed when we instrument for price to correct for the 

measurement error, the demand is more elastic.    

From an energy policy point of view, the results obtained using the version of the BB-

GMM (BB-GMM-2), where we instrument for price, imply that there is room for discouraging 

residential electricity consumption using price increases. Energy price increases may be 

attained, for example, by raising the tax levied per KWh sold.  In an electricity system mainly 

based on power plants that burn fossil fuels, they may also result from imposing a carbon tax to 

curb greenhouse gas emissions (National  Academy of Sciences, 2010) or follow from the 

implementation of a cap-and-trade program (US EPA, 2009, 2010; Congressional Budget 

Office, 2009). In the latter two cases, the reduction in energy consumption would presumably 

achieve additional reductions in CO2 and conventional pollutant emissions with respect to those 

attained with the mere shift towards cleaner sources.   
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