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Introduction

The limits of the Gaussian distribution for modeling returns of financial data have

been extensively documented by researchers (see for instance Fama (1965), Cont

(2001) and more recently Gabaix (2009) for a comprehensive review). In a Gaus-

sian setting, only the expected value and standard deviation (asymmetric deviations)

matter for an exhaustive description of returns and for risk measurement. In case

of departures from normality, such as in skewed and leptokurtic processes, we need

to introduce measures of asymmetry and we need to investigate the role of events

far away from the mean, i.e. in the tails. An accurate modeling of individual series

and portfolios returns is of primary importance for predictability, asset allocation and

derivative pricing purposes.

Understanding and reproducing the properties of low probability events, of moments

beyond the mean and the variance, thus capturing and investigating the role of asym-

metry and leptokurtosis, have been the topics of my research during my years of PhD

at the institute of Finance at USI.

My thesis consists of three essays1.

1. “Multiplicative Noise, Fast Convolution, and Pricing”,

Quantitative Finance, 14(3), (2014), 481-494.

In collaboration with Giacomo Bormetti, Scuola Normale Superiore di Pisa,

Italy.

2. “Downside Risk in Currency Markets, Do Skewness and Tails Mat-

ter?”, working paper.

3. “Country-Specific Characteristics, Equity Capital Flows and Carry

Trade”, working paper.

1Notice that the order the essays are presented is mere temporal.

3



1. Multiplicative Noise, Fast Convolution, and Pricing

This article deals with numerical characterization of non-normal stochastic processes,

that describe financial assets returns, and with their application to financial model-

ing. Realistic stochastic processes used for modeling the evolution of return/volatility

series do not allow, in general, for an analytical representation of the conditional prob-

ability density function of returns. Therefore, usually, time consuming lattice/Monte-

Carlo simulation methods have to be used. In this article we detail the application

of a Fast Convolution Algorithm (FCA) (Eydeland (1994)). The algorithm provides

a numerical solution to the problem of characterizing conditional probability density

functions at arbitrary time. Indeed by exploiting the repeated application of the

Chapman-Kolmogorov equation, we can reformulate the problem in terms of Fourier

and anti-Fourier transforms (then easily performed via fast Fourier transform -FFT-

algorithm) of the initial state vector. FCA methodology is therefore prone to several

financial applications, in particular to the computation of high dimensional integrals

in the context of option pricing. This is the application we choose to detail thor-

oughly. Because of their ability in reproducing statistical features of financial return

time series, such as thickness of the tails and scaling properties, we choose, as sam-

ple processes, the family of quadratic diffusion (Bormetti and Delpini (2010), Delpini

and Bormetti (2011)) and the family of piecewise linear diffusion (McCauley, and Gu-

naratne (2003), Alejandro-Quiñones et al. (2006)), both belonging to the big family of

multiplicative noise processes. In numerical sections we document considerable gains

in efficiency, a reduction in complexity and execution time of the FCA algorithm with

respect to Monte Carlo (MC) inspired techniques.

2. Downside Risk in Currency Markets, Do Skewness and Tails Mat-

ter? This working paper investigates the role of asymmetry and of low probability

exchange rates movements on the profitability of foreign currencies investment strate-

gies. To these purposes, a factor (SKEWHML) tracking the aggregate downside risk in
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FX markets and exploiting the asymmetries in exchange rate returns is introduced.

Using standard asset pricing tests, I find that this skewness factor plays a statistically

and economically significant role, explaining the cross section of currencies expected

excess returns. Therefore it is capable of providing at least partially, a rational expla-

nation to the high profitability of currency carry trade (CT) strategies. High values

of SKEWHML
M identify bad states of downside risk, owing to episodes of high interest

rate currencies depreciation and thef poor carry trade performance. Low interest rate

currencies positively co-move with skewness factor, thus they play the role of a hedge

by offering high returns in bad states for the skewness, low returns in good states. On

the contrary, high interest rate currencies are negatively correlated with the skewness

factor, thus they yield big abnormally positive profits to a US investor long foreign

currencies in low skewness realizations states (good states) and big losses when the

skewness factor assumes high and positive values. Therefore a carry trade investor,

having a long position in high and a short position in low interest rate currencies, is

extremely exposed to the downside risk mimicked by SKEWHML
M . Importantly, the

skewness factor keeps significance after accounting for the effect of volatility. Finally

by means of Extreme Value Theory techniques, we construct a factor, which turns out

to be related to SKEWHML
M , tracking the downside risk of deep-into-the-tails return

series observations, and we show that it is priced in the cross section of carry trade

excess returns. We therefore confirm that asymmetry and fat tails of exchange rate

return distribution (we measured either with SKEWHML
M or with the Tail factor) are

among the driving sources of carry trade time-varying risk premium, besides volatil-

ity.

This working paper reconciles two main strands of literature. The first, concerned

with currency return anomalies, investigates priced risk factors that can explain the

high profitability of currency strategies (see Lustig et al. (2011) PCA analysis and

HMLFX factor, Menkhoff et al. (2012) global volatility factor, Mueller et al. (2012)

correlation risk factor, Verdelhan (2012) dollar factor). The second studies down-
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side risk and crashes in currency markets, known to exhibit dramatic movements

even without fundamental news announcements (Brunnermeier Nagel and Pedersen

(2008), Fahri and Gabaix (2011), Fahri et al. (2009), Jurek (2008), Burnside et al.

(2011)).

We use data on spot and 1-month-forward exchange rates of the currencies of 47

different countries versus the USD. The data are downloaded from Datastream and

cover the sample period from January 1985 to March 2011 (monthly frequency, end

of month series).

3. Country-Specific Characteristics, Equity Capital Flows and Carry

Trade In this paper, we study country-specific characteristics and we assess their

impact on currency excess returns. We introduce a measure of country specific co-

dependence between carry trade excess returns and the equity market of the target

country in bad states of the local economy and we call it “downside beta”. With this

measure we can identify countries whose excess carry trade returns depend differently

and with different strength from the performance of their respective local equity

market. Moreover, by means of portfolio sorting approach, we asses that, besides

standard risk factors for the currency market, the country specific characteristics we

are investigating affect the performance of currency strategies. We indeed find that

the expected excess return decrease monotonically with the level of co-dependence.

We attribute our findings to capital movements of international equity investors who

react to local equity market conditions. Equity investors move their capital because

of portfolio rebalancing issues or in order to unwind positions in markets that are

experiencing negative returns. Not only our results are in agreement with previous

papers that investigate the links between currency and stock market (Hau and Rey

(2006), Francis et al. (2006) and Chaban (2009)), but also they enrich this literature

which is, to our knowledge, very little. Finally extreme value theory techniques are

employed in order to verify whether the results are driven by crashes of the equity
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markets, or if they are indeed truly reflecting downside aversion to bad states of the

local markets. No effect of country crashes is found in the data.

Overall our results underly the importance of downside measure of co-movement be-

tween the currency and the equity market. Indeed tracking the dependence measure

of carry trade from equity excess returns can be very useful as it might be exploited

for real-time portfolio selection, Sharpe ratio targeting, and many other applications.

This paper is related to different strands of literature: the one dealing with empiri-

cal microstructure issues in the forex market (Evans and Lyons (2002), Lyons (2001)),

the one dealing with downside aversion and downside risk (Roy (1952), Brunnermeier

and Pedersen (2009), Ang et al. (2006), Maggiori et al. (2012), Dobrynskaya (2012)),

and the one dealing with the role of extreme observations in return series and with

extreme value theory applications to finance (Poon et al. (2004)).

We use daily data of the equity indexes (Datastream Global Equity Indexes) of 42

different countries and of spot and 1-month-forward exchange rates of their respective

currencies versus the USD. All data are downloaded from Datastream. The sample

period starts in January 2 1986 and ends in December 30 2011.
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1 Multiplicative noise, fast convolution, and

pricing

Sofia Cazzaniga

University of Lugano and Swiss Finance Institute

Giacomo Bormetti

Scuola Normale Superiore, Pisa

Quantitative Finance, 14(3), (2014), 481-494

abstract

In this work we detail the application of a fast convolution algorithm to compute

high dimensional integrals in the context of multiplicative noise stochastic processes.

The algorithm provides a numerical solution to the problem of characterizing condi-

tional probability density functions at arbitrary time, and we apply it successfully to

quadratic and piecewise linear diffusion processes. The ability to reproduce statisti-

cal features of financial return time series, such as thickness of the tails and scaling

properties, makes this processes appealing for option pricing. Since exact analytical

results are lacking, we exploit the fast convolution as a numerical method alternative

to the Monte Carlo simulation both in the objective and risk neutral settings. In

numerical sections we document how fast convolution outperforms Monte Carlo both

in speed and efficiency terms.

Keywords: Computational Finance, Stochastic Processes, Non-Gaussian Option

Pricing, Numerical Methods for Option Pricing

*The authors acknowledge the support of the Scuola Normale Superiore Grant ‘Giovani

Ricercatori (2011/2012)’ and Prof. Giovanni Barone-Adesi for his precious advice.
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1.1 Introduction

Two of the basic problems computational finance has to deal with are the choice of the

optimal model driving the stochastic evolution of financial variables and, once a good can-

didate has been identified, the search of a reliable way for its fast and accurate simulation.

The former issue has been widely investigated both by econometricians, mathematicians,

and physicists, as demonstrated by the increasing literature on this topic, see for example

Campbell et al. (1997), Mandelbrot (1997), Mantegna and Stanley (2004), Bouchaud and

Potters (2003), McCauley (2004). Tracing back to the work of Mandelbrot (1963) and the

analysis in Fama (1965), empirical studies have shown that financial time series exhibit

features departing from the Gaussian assumption. In Cont (2001) a detailed review of the

stylized empirical facts emerging in various type of financial markets is presented and dis-

cussed. These findings are nowadays accepted as universal evidence, shared among different

markets in different periods. From Mandelbrot’s earlier results regarding cotton prices or

the thick tailed nature of the Dow Jones Industrial Average recognized by Fama, very het-

erogeneous models have been proposed in order to reproduce the degree of asymmetry and

the excess of kurtosis of the empirical distributions. Approaches directly developing from

distributional assumptions include the truncated Lévy model discussed by Mantegna and

Stanley (2004), and those employing generalized Student-t and exponential distributions,

see Bouchaud and Potters (2003); McCauley and Gunaratne (2003). Different mechanisms

that also capture the observed non trivial structure of higher order correlation functions

model the stochastic nature of the return volatility. Continuous time approaches have been

extensively analyzed and range from the fractional Brownian motion, Mandelbrot (1997),

to stochastic volatility models, for a review we suggest Fouque et al. (2000). Discrete

time models include AutoRegressive Conditional Heteroskedastic (ARCH) and Generalized

ARCH processes, Bollerslev (1986); Engle (1982), and multifractal models, Borland et al.

(2005), the latter being inspired by cascades originally introduced by Kolmogorov in the

context of turbulent flows. Turbulent velocity flows have also led to a series of empirical

works testing and strongly relying on the Markovian nature of foreign exchange returns,

Friedrich et al. (2000); Ghashghaie et al. (1996). The macroscopic description of the ob-
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served phenomena is provided in terms of a Fokker-Planck (FP) equation with linear drift

and quadratic diffusion coefficients. Processes leading to an equation with the same struc-

ture characterize several physical systems, as reviewed by Bormetti and Delpini (2010).

Also the statistical feedback mechanism proposed in Borland (2002a,b, 2007) can be recast

in terms of non linear diffusion, as originally remarked by McCauley et al. (2007a), who

also pointed out potential problems arising when computing expectations under power law

tailed distributions. Even though these drawbacks have been later amended in Vellekoop

and Nieuwenhuis (2007), McCauley et al. (2007b) propose switching to exponential tailed

PDFs. In particular, they develop a general approach to generate a Markovian process

obeying scaling relations starting from a driftless stochastic differential equation (SDE). In

the current paper we focus on the numerical characterization of these latter processes, of the

above mentioned quadratic diffusion processes, and on applications to financial modeling.

In this respect, especially for pricing purposes, i.e. to evaluate expectations of future pay-

offs, we need to reconstruct the conditional probability density function (PDF) describing

the stochastic dynamics. Yet a closed form expression for the density is rarely available. For

this reason several numerical procedures have been developed and have become common

practice, e.g. binomial and multinomial lattice algorithms, Monte Carlo (MC) simulation,

and partial differential equation solvers (for a review see Brandimarte (2006)). We decide to

investigate and widely exploit the fast convolution algorithm (FCA) introduced in Eydeland

(1994). The algorithm applies to Markovian stochastic processes: the repeated application

of the Chapman-Kolmogorov equation, and a clever problem re-formulation allows us to

rewrite functional integrals in terms of Fourier and inverse Fourier transform of the state

vector. Performing these operations via a fast Fourier transform (FFT) algorithm, numeri-

cal efficiency is achieved and computational complexity is notably reduced. It is interesting

to note that some of the key ingredients of the approach we are going to detail have been

also discussed in Chaudhary (2007), where a flexible numerical technique to price American

options is presented.

The structure of the paper is as follows. After introducing stochastic models we have

chosen to investigate, we detail step by step the FCA; in paragraph 1.4 we test its numerical
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performance against the standard MC approach for different specification of models and

parameter values. Section 1.5 is dedicated to financial applications to option pricing. In

1.6 we derive the risk neutral measure for the piecewise diffusion process of McCauley

and Gunaratne (2003), and the exact formula for Plain Vanilla pricing. We then consider

geometric Asian options by thoroughly developing the two dimensional setting required by

fast convolution, see paragraph 1.7. We exploit the formal analogy between the latter case

and the framework discussed by Vellekoop and Nieuwenhuis (2007) and Borland (2002a,b,

2007) to price Plain Vanilla options in paragraph 1.8, and in the final part we collect

numerical distributions and implied volatility surfaces proving the reliability of FCA. We

draw relevant conclusions and possible perspectives in section 1.10.

1.2 Stochastic processes with multiplicative noise

The multiplicative stochastic processes we investigate in this work correspond to the classes

of quadratic diffusion described in Bormetti and Delpini (2010); Delpini and Bormetti

(2010), and of piecewise linear diffusion introduced in McCauley and Gunaratne (2003),

later rediscussed by Alejandro-Quiñones et al. (2006) in a slightly different context.

As far as quadratic diffusion dynamics is concerned, we choose the following stochastic

partial differential specification

dXt =
aXt + b

g(t)
dt +

√
cX2

t + f Xt + e(t)
g(t)

dWt , (1)

with Xt0 = 0 initial time condition; dWt is the standard Brownian increment, 1/g(t) and e(t)

are non-negative smooth functions for t ≥ t0. We fix c > 0, and, in order for the micro-

dynamics to be well-defined, we require D2 .
= 4 c e(t)− f 2 ≥ 0: under our constraint the

square root argument is non negative, and this guarantees Xt to be a real valued process.

Several are the possible parametric forms we could have chosen in order to study quadratic

diffusion processes, yet we decide to follow Bormetti and Delpini (2010), where equation 1

has been extensively analyzed, as it reconciles both a high degree of generality and clarity,

besides being parsimonious. Alternatively, it can be cast in a Langevin equation whose

damping coefficient has a stochastic nature, Biró and Jakovác (2005). In Bormetti and
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Delpini (2010) equation (1) has been shown to govern the dynamics of a variety of complex

phenomena both in the field of natural science and in economics and finance: turbulent ve-

locity flows, Friedrich and Peinke (1997), power law spectra in e+e−, pp̄ and heavy ions col-

lisions, Wilk and W lodarczyk (2000), anomalous diffusion phenomena, Borland (1998), non

stationary scaling Markov processes, McCauley et al. (2007a). Moreover, the same dynam-

ics have been shown to describe heartbeat interval fluctuations, foreign exchange markets,

Ghashghaie et al. (1996); Ghasemi et al. (2006), option markets, Borland (2002a,b, 2007),

and the statistical features of medium-term log returns in a market with both fundamental

and technical traders, Shaw and Schofield (2012). The explicit analytical characterization

of the PDF associated to equation (1) has been carried out only for the steady state, while

Bormetti and Delpini (2010) provide a closed form characterization of these processes in

terms of the moments at all times and orders, and show that the choice of g(t) is crucial for

the understanding of the dynamics of the moments themselves. For instance, when e(t) = e

is constant, it is possible to characterize analytically the time evolution of the process Xt ,

and its convergence to the stationary state. If a is non negative or if e is time dependent, Xt

lacks stationarity; however, in the final section of this paper we will discuss an application of

this latter case to the context of financial option pricing, tracing back to Borland (2002a,b,

2007), and later revised by Vellekoop and Nieuwenhuis (2007).

The quadratic diffusion process (1) can be formally manipulated to reduce it in a more

convenient form by means of the Lamperti transform, as we will see in Section 1.3. Here,

we slightly simplify it, introducing a new time variable τ(t) =
∫ t

t0 ds/g(s), which we will refer

to as the integral time. In this new setting the process Xτ is described by the following

dynamics

dXτ = (aXτ + b)dτ +
√

cX2
τ + f Xτ + ẽ(τ)dWτ , (2)

with X0 = 0, a,b,c, f constant and ẽ(τ) = e(t(τ))2.

We now turn our attention to the second class of multiplicative noise we consider,

namely piecewise linear diffusions. Following McCauley et al. (2007a) and Alejandro-

2By virtue of the properties of g, τ is a monotonously increasing function of t, implying the

well-definiteness of the inverse function t(τ).
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Quiñones et al. (2006), this is a class of Markov processes generated locally by the driftless

SDE

dXt = σ

√
t2H−1

(
1 + ε

|Xt |
tH

)
dWt , with X0 = 0 , (3)

parametric in H > 0. This class is extremely interesting from a theoretical viewpoint, as all

the processes belonging to it share a main relevant property, called scaling, which relates

returns over different sampling intervals. More precisely, a stochastic process Xt is said to

scale with Hurst exponent H if the following equality holds in distribution

Xt = tHX1 .

Previous relation has several immediate consequences: as can be easily shown, the moments

of Xt must obey the relation

E[Xn
t ] = cntnH , (4)

for suitable constants cn; moreover, whenever returns are rescaled by a factor tH , the shape

of their distribution must scale according to

P(x, t) =
1
tH G(u) , (5)

where G is the so called scaling function, and u = x/tH . If we now consider the FP equation

associated to the SDE (3), we obtain

2H (uG(u))′+ σ
2 ((1 + ε |u|)G(u))′′ = 0 ,

which admits the following scaling solution

P(x, t) =
e−α

2σ2αεαΓ[α,α]tH exp
[
− |x|

σ2ε tH

](
1 + ε

|x|
tH

)α−1

, (6)

where α = 1/(σ2ε2) and Γ[a,z] =
∫

∞

z sa−1e−sds. In light of equation 4, to recover the diffusive

behaviour of log prices we need to fix H = 1/2. The interest in the above density function

is manifold, as it is characterized by a simple closed-form expression, from which we can

conclude that moments of all orders are finite quantities, and it also naturally captures the

excess of kurtosis observed in empirical densities. Moreover, as documented in Baldovin

and Stella (2007); Mantegna and Stanley (1995), scaling holds in practice in numerous data
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samples, ranging from equity index to FX returns time series. The solution provided by (6)

for H = 1/2 has to be preferred to a description in terms of Lévy distributions, for which

the relation (5) holds through the identification H = 1/α, with 0 < α ≤ 2, see Mandelbrot

(1963), but for α 6= 2 it implies the divergence of the variance, while for α = 2 it reduces

to the Normal case. McCauley and Gunaratne (2003) and McCauley (2004) derive closed-

form option pricing formulae for the density (6); yet they show that consistency between

scaling, exponential PDF and martingale option pricing requires the replacement of the Itô

correction for Xt under the risk neutral measure with a constant (see McCauley et al., 2007b,

section 2). We argue that this approximation is questionable, and we want to perform option

pricing without relying on it, therefore we need a numerical methodology whose efficiency

and flexibility promise to compensate for the absence of closed-form solution.

1.3 Fast convolution algorithm

In this section we review the fast convolution algorithm proposed in Eydeland (1994).

Let us consider the generic process Xτ, whose dynamics is described by the following

general SDE

dXτ = MX(Xτ,τ)dτ + DX(Xτ,τ)dWτ , Xτ=0 = X0 .

We start by transforming the process Xτ into one with unitary diffusion coefficient. This is

performed via the Lamperti transform (see Iacus, 2008, section 1.11.4), defined as

Zτ(Xτ,τ) =
∫ Xτ

X0

dX̂
DX(X̂ ,τ)

.

Under suitable regularity condition Itô Lemma can be applied to Zτ(Xτ,τ) and its dynamics

turns out to be

dZτ = MZ(Zτ,τ)dτ + dWτ , Zτ=0 = 0 , (7)

with

MZ(Zτ,τ) =
M̃X(X(Zτ),τ)

D̃X(X(Zτ),τ)
+

∂

∂τ

∫ X(Zτ)

X0

dX̂
DX(X̂ ,τ)

− 1
2

∂

∂X
DX (X ,τ)

∣∣∣∣
X(Zτ)

, (8)

where M̃X is the function MX(Xτ,τ) evaluated at X(Zτ), and analogously for D̃X . Our

aim is to provide an approximate expression for the transition probability density function
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p(zτ,τ|z0,0)3. We introduce an equally spaced time grid 0 = τ0,τ1, . . . ,τn = τ, with τi = i∆τ,

in a similar spirit to the path integral approach, see Baaqui (2007); Bormetti et al. (2006);

Dash (1989); Montagna et al. (2002). The repeated use of the Chapman-Kolmogorov equa-

tion in this discrete setting allows us to write the transition probability for a generic τ > 0

as a finite high dimensional integral

p(zn|z0)'
∫

zn

∫
zn−1

. . .
∫

z1

n−1

∏
i=1

dzi
π(zn|zn−1)π(zn−1|zn−2) . . .π(z1|z0) , (9)

where zi = z(τi), and π is the short time transition PDF that we chose equal to the Normal

density

π(zi+1|zi) =
1√

2π∆τ
exp
[
−(zi+1− zi−MZ(zi,τi)∆τ)2

2∆τ

]
.

By means of the new variables ξi .
= zi +MZ(zi,τi)∆τ, the transition becomes symmetric under

the exchange of zi+1 with ξi, i.e. π̃(zi+1|zi(ξi)) = π̃
(
(zi+1−ξi)2

)
. For each one dimensional

integration appearing in equation (9), we have

p(zi+1|z0) =
∫

zi
dzi

π(zi+1|zi)p(zi|z0) =
∫

ξi
dξ

i ∂zi

∂ξi π̃
(
(zi+1−ξ

i)2) p̃(zi(ξ
i)|z0) , (10)

where p̃(zi(ξi)|z0) is the density p(zi|z0) evaluated at zi(ξi), and similarly for π̃. If we in-

troduce a numerical integration grid of equally spaced points zi
j = ξi

j = zmin + j∆z for all

i = 0, . . . ,n and j = 0, . . . ,m−1, where neither zmin nor ∆z depend on the time label i, then

the PDF π̃(zi+1
j′ |ξi

j) associated to the transition of moving from point ξ j at time τi to point

z j′ at time τi+1 is a function only of the difference j′− j, i.e. π̃ j′ j
.
= π̃

(
( j′− j)2∆z2

)
. The

discrete matrix of transition probabilities

Π̃ =


π̃00 π̃01 . . . π̃0(m−1)

π̃10 π̃11 . . . π̃1(m−2)

...
...

. . .
...

π̃(m−1)0 π̃(m−1)1 . . . π̃(m−1)(m−1)

 , (11)

is therefore a symmetric Toeplitz matrix Π̃i j = Π̃|i− j|, with no dependence on the time

3From now on we will drop the explicit dependence on the time variable τ.
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variable. Letting

Pi+1 =


p(zi+1

0 |z0)

p(zi+1
1 |z0)
...

p(zi+1
m−1|z0)

 , Ji =



∂zi
0

∂ξi
0

0 . . . 0

0 ∂zi
1

∂ξi
1

. . . 0
...

...
. . .

...

0 0 . . .
∂zi

m−1
∂ξi

m−1


, P̃i

=


p̃(zi

0(ξi
0)|z0)

p̃(zi
1(ξi

1)|z0)
...

p̃(zi
m−1(ξi

m−1)|z0)

 , (12)

equation (10) can be approximated as

Pi+1
j ' ∆z

m−1

∑
k,l=0

Π̃ jkJi
klP̃

i
l .

The entries of P̃i
are computed by means of the linear interpolation operator

Ii =
1

∆z



zi
1−ξi

0 ξi
0− zi

0 0 . . . 0 0

0 zi
2−ξi

1 ξi
1− zi

1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . zi
m−1−ξi

m−2 ξi
m−2− zi

m−2

0 0 0 . . . zi
m−1−ξi

m−1 ξi
m−1− zi

m−2


(13)

applied to Pi. Similarly, equation (9) becomes

Pn ' (∆z)n−1
Π̃Jn−1In−1 . . .Π̃J2I2

Π̃J1I1P1 . (14)

Matrix multiplications in previous equation are extremely time consuming. Indeed, while

multiplying an m-vector by the m×m diagonal matrix J requires m operations, and analo-

gously for the I operator, multiplication of the Π̃ matrix by a vector requires m2 operations.

On top of this, the procedure must be repeated at each time step. As a consequence, the

dominant contribution grows as n×m2, and choosing a rather thick grid, computational

time rapidly explodes. However, the multiplication of a Toeplitz matrix by a vector can

be efficiently performed exploiting algorithms that are used in digital signal processing. By
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embedding Π̃ into a circulant matrix of dimensions 2m×2m

C =



π̃0 π̃1 . . . π̃m−1 0 π̃m−1 π̃m−2 . . . π̃1

π̃1 π̃0 . . . π̃m−2 π̃m−1 0 π̃m−1 . . . π̃2
...

...
. . .

...
...

...
. . .

. . .
...

π̃m−1 π̃m−2 . . . π̃0 π̃1 π̃2 . . . . . . 0

0 π̃m−1 . . . π̃1 π̃0 π̃1 . . . . . . π̃m−1

π̃m−1 0 . . . π̃2 π̃1 π̃0 π̃1 . . . π̃m−2
...

...
. . .

...
...

...
. . .

. . .
...

π̃1 π̃2 . . . 0 π̃m−1 π̃m−2 . . . π̃1 π̃0



, (15)

the product of Π̃ with a generic vector v is equal to the first m components of Cve, ve ∈R2m,

ve
.
= (vt,0, . . . ,0)

t
. Every circulant matrix can be expressed as C = UΛU∗, where U∗ denotes

the conjugate transpose of U, whose columns are U j = (1,e−πi j/m, . . . ,e−πi j(2m−1)/m)t/
√

2m for

j = 0, . . . ,2m−1, and Λ = diag(C0), with C0 the first row of the circulant matrix. Thanks to

this result, the product Cve can be performed exploiting the fast Fourier transform (FFT)

algorithm

Cve = Re
[
F −1 (F (C0) ·F (ve))

]
,

where F and F −1 are the FFT and inverse FFT operator, respectively, while · is the

component wise product. With the adoption of this approach, the computational time is

noticeably reduced: each FFT computation requires O(m× log2(2m)) operations. Finally, in

order to compute equation 14 we need to repeat the algorithm at each time step, and on the

whole the computational burden can be estimated to be of order O(n×m× log2 m), which

is definitely a satisfactory improvement with respect to the non-FFT based procedure.

1.4 Fast convolution at work: numerical result

Equipped with FCA we are now ready to approach the multiplicative processes previously

described. We want to check that the numerical results obtained by fast convolution con-

verge to the analytical solution, when available, or to the PDF reconstructed by means of

MC simulation. Moreover, we show that FCA provides an estimate of the distribution shape
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even in those low probability regions, such as the tails, which are inefficiently sampled by

the MC approach.

The Lamperti transform for process (2) can be explicitly computed as

Zτ =
∫ Xτ

X0

dX̂τ√
cX̂2

τ + f X̂τ + ẽ(τ)
=

1√
c

asinh

(
Xτ + f/(2c)√

A2
τ

)
−ζ

0
τ , (16)

with A2
τ = (4ẽτc− f 2)/(4c2), and ζ0

τ = asinh[(X0 + f/(2c))/
√

A2
τ ]/
√

c.

The related drift function is

MZ(Zτ,τ) =
1√
c

[(
a− c

2

)
− ẽ′τ

2cA2
τ

]
tanh

[√
c(Zτ + ζ

0
τ)
]
−

f
2c

(
a− c

2

)
−b + f

4√
cA2

τ cosh [
√

c(Zτ + ζ0
τ)]

+
ẽ′τ

2c
3
2 A2

τ

χ
0
τ ,

where χ0
τ = (X0 + f/(2c))/

√
A2

τ +(X0 + f/(2c))2, and the prime is a shorthand for the deriva-

tive w.r.t τ.

The first and simplest case we want to consider corresponds to the SDE (2) with time in-

dependent parameter e> 0, D2 > 0, and negative a. Whenever these conditions are satisfied,

the process converges exponentially to the stationary regime with a typical relaxation time

given by −1/a. Following Biró and Jakovác (2005) the stationary PDF can be computed

in closed-form as

Pst(x) ∝
1[(

x + f
2c

)2
+ D2

4c2

] 1+ν

2
exp

[
−2

a f −2bc

c
√

D2
atan

(
x
√

D2

2e + f x

)]
, (17)

with ν = 1−2a/c, and the inverse tangent function continues smoothly at x >−2e/ f . For

illustrative purposes we fix the five free parameters as a =−20, b = f = e = 0.1, and c = 4.5,

while the choices of g(t) and t0 are at the moment irrelevant since we work directly with

time τ. As evident from equation (17) all moments of order n higher than or equal to

ν diverge: as ν ' 9.9, only the first nine lowest moments converge. In figure 1a we plot

the time evolution of P̃(zτ,τ) for increasing values of τ = 0.01,0.05,0.1,1 as obtained by

means of FCA (zmin = −10.24, m = 213, ∆z = −2zmin/m, and ∆τ = 10−3). For τ = 1 we

also plot the histogram corresponding to MC simulation of the discrete process (parameter

of the Euler scheme approximation: ∆τ = 10−3, and number of MC paths NMC = 106),
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while the solid line represents the analytical solution easily derived from equation 17. In

figure 1b we show the same results in log-linear scale to emphasize the tail region. The

analytical information provides an overall check that the algorithm converges to the correct

distribution; however far from the stationary regime we have no precise information about

the PDF shape. In Bormetti and Delpini (2010) the scaling of the convergent moments is

computed analytically, but it is known that the knowledge of the moments does not allow

for a unequivocal reconstruction of the complete distribution. We can only rely on MC

simulation, but sampling of a low probability region requires on average a huge statistics

(we need NMC > 1/p to explore a p-probability region). At this point the advantages provided

by the fast convolution based approach are evident, as clearly shown by both panels. The

FCA curve for τ = 1 is in perfect agreement with the analytical prediction, both in central

and tail regions. MC histograms agree as well, but these results are extremely noisy and

very inaccurate for P̃(zτ,τ)10−4. FCA based results are even more impressive looking at

the computational time. Performances are strongly machine dependent, and for this reason

we do not quote absolute times, but measured relative values: to obtain τ = 1 bars MC

takes ten times longer than FCA4. As a consequence it needs 107 times longer to reach

the same accuracy at the P̃(zτ,τ)∼ 10−10 level. Similar results are obtained for the slightly

more complicated process used in Friedrich et al. (2000) to model foreign exchange rate

fluctuations. Their process is still mean reverting with a =−4.4×10−1, b = 0, c = 3.8×10−2,

and f = 3.04×10−3, though in this case the last parameter has a non trivial time dependence,

ẽ(τ) = 6.08×10−5 +6×10−3 exp(−0.5τ). Since it lacks stationarity in this case, all analytical

information on the PDF is lost, yet we can see from figures2a and 2b how the numerical

PDF evolves with time and we verify a striking matching between MC and FCA results.

Remarks similar to the previous case apply.

We now turn our attention to piecewise linear diffusion. The procedure is in this case

slightly subtle. Though the computation of the Lamperti transform of process (3) for

4Random number generators and FFT algorithms are provided by GNU Scientific Library.
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H = 1/2 and integral time τ = 2
√

t does not involve problematic issues, resulting in 5

Zτ =
2

σε
sign(Xτ)

(√
τ

2
+ ε |Xτ|−

√
τ

2

)
, (18)

the stochastic differential dZτ cannot be computed applying Itô Lemma straightforwardly.

As a function of Xτ and τ, Zτ lacks necessary regularity conditions for τ = 0 and Xτ = 0.

However, both difficulties can be overcome. The Xτ process does not suffer any problem at

τ = 0, therefore we can evolve from X0 to X1, and then exploit the one-to-one correspondence

between Xτ and Zτ. Moving from τ = 0 to τ = ∆τ, X1 remains delta distributed around zero,

and the same holds true for Z1. For τ≥ ∆τ the time derivative ∂Zτ/∂τ needed in dZτ can be

readily computed. The difficulty that arises with the computation of ∂2Zτ/∂X2
τ at zero can

be dealt with replacing the absolute value with the smooth approximation

|Xτ|s
.
= Xτ

(
2

1 + e−2kXτ

−1
)
.

This allows us to compute

d
dXτ

|Xτ|s =

(
2

1 + e−2kXτ

−1
)

+ 4kXτ

e−2kXτ

(1 + e−2kXτ)
2 ,

where the right term, for sufficiently large k, is approximately equal to sign(Xτ) (as can

be verified by direct inspection). In order to derive the dynamics of Zτ we need to invert

equation (18)

Xτ = sign(Zτ)
1
ε

[(
σε

2
|Zτ|+

√
τ

2

)2

− τ

2

]
, (19)

and to compute the drift coefficient by means of equation (8). After straightforward calcu-

lations, we eventually obtain the following expression

dZτ ' sign(Zτ)

[
1
2ε

(
1

σ2ε

2 |Zτ|+ σ
√

τ

2

− 1
σ
√

τ

2

)
− εσ2

4
1

σ2ε

2 |Zτ|+ σ
√

τ

2

]
dτ + dWτ .

Numerical results concerning this last process are reported in figure 3a (linear scale) and

in figure 3b (log-linear scale). We study the dependence of P̃(z,τ) on 1/(σ2ε). Indeed

for |x| � 1, P(x,τ) ∼ exp [−2 |x|/(σ2ετ)], and the value of the coefficient in the exponential

function is crucial to asses the convergence of the expectation of exp(x) with respect to

5The sign function is defined according to the convention sign(0) = 0.
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P(x,τ). We fix τ = 1, σ2 = 1, and ε = 0.5,1,2. The leptokurtosis of the PDF increases as far

as the value of ε increases. Parameters for the Euler scheme approximation are fixed as in

previous examples, while for the FCA we have slightly changed the value of ∆τ = 10−4 and

m = 211 keeping zmin = −10.24. For each one of the three cases we also plot the analytical

prediction, since for piecewise linear processes the solution is known in closed form. Also in

this last case there is good agreement between analytical and fast convolution PDF, while

limitations of the MC approach due to the finite statistics are evident from the symbols

depicted in Panel (b).

1.5 Financial applications

In the second part of this work we present and discuss how the results achieved in the

previous sessions can be exploited in finance, and in particular in the context of option

pricing. For both quadratic and piecewise diffusion we briefly review how to set the cor-

rect risk neutral framework. Then, for explanatory purposes, we apply the FCA to price

European Plain Vanilla and geometric Asian options, but the approach can be extended to

deal with different payoffs and different kinds of boundary conditions. For the remainder of

this paper, Xt = lnSt − lnSt0 is the logarithmic return obtained from the stochastic process

St describing the evolution of an asset price. As asset candidates we only consider equities

and foreign exchange rates.

1.6 A piecewise diffusion under risk-neutrality: Plain Vanilla

pricing

According to risk neutral valuation theory we need to find the dynamics of St or, equiva-

lently, Xt under the probability measure which makes all discounted asset prices martingales.

Whenever the Novikov condition for the process under consideration is verified, the Gir-

sanov theorem gives the recipe for the equivalent measure, and it also explains how the

dynamics of St coherently modifies. However, McCauley and Gunaratne (2003); McCauley

et al. (2007b) show how to compute the desired martingale directly from the Green function
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solving the FP equation associated to the dynamics

dSt = µStdt + σSt

√
1 + ε

|lnSt − lnSt0 |√
t

dWt , (20)

with St0 = S0. Just in the case of the original model of Black and Scholes (1973); Merton

(1973), a delta hedged strategy allows us to construct a locally risk neutral portfolio and to

derive the partial differential equation

∂O
∂t

+ rSt
∂O
∂St

+ σ
2S2

t

√
t + ε |lnSt − lnS0|

2
√

t
∂2O
∂S2

t
− rO = 0 , (21)

that is to be used to solve the pricing problem of a Plain Vanilla option O, with a risk free

interest rate r and for suitable boundary conditions. Introducing Ô(St , t)
.
= er(T−t)O(St , t)

and substituting in equation 21, it is readily verified that the hat price satisfies an equation

formally identical to the backward time FP equation associated with the dynamics 20 with

µ = r. The fair price of a call option is therefore predicted to be

O(S0, t0) = e−r(T−t0)
∫ +∞

−∞

dST (ST −K)+ GQ(ST ,T ;S0, t0) = e−r(T−t0)EQ [(ST −K)+|S0
]
,

where GQ is the Green function solving the FP equation in the risk neutral framework, and

K is the strike price. The dynamics of Xt under the new probability measure reads

dXt =

[
r− σ2

2

(
1 + ε

|Xt |√
t

)]
dt + σ

√
1 + ε

|Xt |√
t

dWQ
t , Xt0 = 0 . (22)

At variance with equation (3), a non trivial drift term appears and some comments are

mandatory. As recognized by McCauley and collaborators, whenever the drift depends ex-

plicitly on Xt there is no way to preserve scaling properties. However, in order to exploit

the analytical information provided by equation (6), corresponding to the Green function

GQ(XT ,T ;0,0) for the process (3), they replace the drift with a constant. We are instead

equipped with a computationally efficient algorithm, and so we can get rid of this approx-

imation and price options directly with the process (22). As in section 1.2, we switch to

integral time

dXτ =

(
r− σ2

2

)
τ

2
dτ− εσ2

2
|Xτ|dτ + σ

√
τ

2
+ ε |Xτ|dWQ

τ , X0 = 0 ,

24



and compute the Call option price as

O(S0, t0) = SD
0 EQ [(eXτ(T )− ek)+|X0

]
= SD

0 EQ
[
(eX(Zτ(T ))− ek)+|Z0

]
= SD

0

∫ +∞

−∞

dzτ(T )

e
sign(zτ(T ))

1
ε

[(
σε

2 |zτ(T )|+
√

τ(T )
2

)2

− τ(T )
2

]
− ek


+

pQ(zτ(T )|z0)

' SD
0 ∆z

m−1

∑
j=0

[
e

sign(zmin+ j∆z) 1
ε

[(
σε

2 |zmin+ j∆z|+
√

n∆τ

2

)2
− n∆τ

2

]
− ek

]+

Pn
j
Q , (23)

with τ(T ) = 2
√

T , discounted price SD
0 = e−r(T−t0)S0 and log-moneyness k = ln(K/S0). In

the third line of above equation we have made explicit the expectation in terms of the risk

neutral PDF associated to the process Zτ(T ), and we have substituted the expression of Xτ

as a function of Zτ given by equation (19). The vector Pn
j
Q of transition probability between

z0 and zn
j under the risk neutral measure Q has to be computed with the fast convolution

procedure described in section 1.3.

1.7 Exotic options: the geometric Asian case

Formula (23) can be extended to deal with payoffs with different dependence on Sτ, e.g.

digital options, covered call or strongly non-linear function f (Sτ), the only constraint being

EQ[ f (Sτ)|S0] < ∞. The case of a functional payoff depending multiplicatively on the price

along the path, i.e. f ([Sτ]) = ∏
n
i=0 fi(Si), is just slightly more complicated but in fact can

be easily managed, see Chiarella and El-Hassan (1997) for an application to bond pricing.

In this section, we address the problem of pricing a geometric Asian option, which requires

the computation of the expected value

EQ
[(

e
1

T−t0

∫ T
t0

lnSsds−K
)+

|S0

]
. (24)

As the positive part function is non-linear, the previous expression is quite tricky to evaluate

and requires some careful manipulations. Defining τ = 2(
√

t−√t0), the Asian price is given

by

OA(S0, t0) = SD
0 EQ

[(
e

1
T−t0

∫ τ(T )
0

(
τ′
2 +
√

t0
)

X
τ′dτ′− ek

)+

|X0

]
. (25)
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We exploit the discretization of the τ(T ) time interval in n equally spaced intervals of ampli-

tude ∆τ, and we replace the integral expression with a finite sum Un .
= ∑

n
j=1 ( j∆τ/2 +

√
t0)x j/n.

We then introduce the ancillary variables {U1, . . . ,Un} satisfying the following recursion re-

lation

U i+1 =
i

i + 1
U i +

(
∆τ

2
+

√
t0

i + 1

)
X i+1 , (26)

for i = 1, . . . ,n−1 and U1 =
(

∆τ

2 +
√

t0
)

X1. Exploiting the one-to-one correspondence between

Xτ and Zτ, it is possible to rewrite the Asian price as

OA(S0, t0) = SD
0

∫
un

dunA(un)pQU (un) = SD
0

∫
un

dun
∫

zn
dznA(un)pQUZ(un,zn) ,

with A(un) =

(
e2
√

T−√t0
T−t0

un
− ek

)+

. The only unknown quantity in the previous expression is

the joint distribution of Un and Zn, whose computation requires a recursion relation allow-

ing us to propagate pQUZ(ui,zi) to pQUZ(ui+1,zi+1) with the associated initial time condition

pQUZ(u1,z1) = δ(z1)δ(u1). The following equation holds

pQUZ(ui,zi+1) =
∫

zi
dzi pQUZ(ui,zi)π

Q(zi+1|zi) , (27)

and to proceed it is useful to make explicit the dependence of X i+1 on Zi+1 in equation (26)
U i+1 = i

i+1U i +
(

∆τ

2 +
√

t0
i+1

)
sign(Zi+1)1

ε

[(
σε|Zi+1|

2 +
√

τ

2

)2

− τ

2

]
Zi+1 = Zi+1 ,

(28)

where U i+1 is coupled with the dummy variable Zi+1. From previous relations we have

pQUZ(ui+1,zi+1) =

∣∣∣∣ ∂(ui,zi+1)

∂(ui+1,zi+1)

∣∣∣∣ pQUZ(ui(ui+1,zi+1),zi+1) , (29)

where the Jacobian is equal to (i+1)/i. Therefore starting from the distribution pQUZ(u1,z1),

and following the above procedure, after n−1 steps we obtain the desired pQUZ(un,zn). In-

troducing an mZ-node grid for Zi and an mU -node grid for U i, we can approximate the dis-

tribution pQUZ(ui,zi) with an mU ×mZ matrix Pi
jk
Q

, the row index j running over the nodes

of U i, the column index k over those of Zi. The Asian price can therefore be approximated

by

OA(S0, t0)' SD
0 ∆u∆z

mU−1

∑
j=0

A(un
j)

mZ−1

∑
k=0

Pi
jk
Q
.
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Since the time evolution corresponding to equation (27) is the most computationally inten-

sive operation implicit in previous approximation, we can perform it at each node ui
j by

means of FCA. The overall numerical complexity of the algorithm is essentially linear in

the total number of grid nodes, i.e O(n×mU ×mZ log2 mZ).

1.8 The Vellekoop-Nieuwenhuis-Borland model

The geometric Asian case just described is useful also in view of the last application we

present, which is related to the model for the stock price dynamics introduced in Borland

(2002a,b, 2007). The Borland model tries to generalize the standard Black&Scholes to

account for the empirical evidence of fat tailed return distributions and volatility smile,

still keeping a closed form formula for the price of Plain Vanilla instruments. It is a hy-

brid between stochastic volatility models and the standard Black&Scholes: the volatility

is stochastic, but the stock price and the volatility itself are driven by the same Brownian

motion. Analogies between the dynamics of turbulent flows in physics and that of financial

returns, bring Borland to make use of stochastic processes with statistical feedback, pro-

cesses originally developed in the thermostatistics context, in order to describe historical

returns. Statistical feedback processes are generalization of the Wiener noise: their prob-

ability density function is a Tsallis distribution, which depend parametrically on an index

q, originally called entropic index. Standard Brownian motion with normally distributed

returns corresponds to the case q = 1. Borland (2002a) instead shows that by choosing

q = 3/2, not only empirical distribution of several financial time series (S&P500 index, for-

eign exchange rates, stock prices, . . . ) are satisfactorily fitted, but also the cumulative

probability density function associated to this family of stochastic processes display power

tails (of index 3), this latter feature known to be an empirical regularity for many com-

plex systems, besides economics and finance6. Despite its theoretical elegance, the Borland

model has been widely questioned. As firstly pointed out by McCauley and collaborators,

Borland’s scaling version of the Tsallis dynamics reduces to equation (1) through a suitable

6Gabaix (2009) comprehensively reviews power law regularity in economics and finance, while

Gabaix et al. (2003) propose a model providing theoretical explanation.
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specification of g(t), a, b, c, f , and the deterministic function e(t), (see McCauley et al.,

2007a, section 7) and Bormetti and Delpini (2010). Therefore, instead of a feedback mecha-

nism, it would be more correct to speak of a local volatility model. Moreover, Vellekoop and

Nieuwenhuis (2007) have raised two main objections to the Borland model by proving that

it suffers from arbitrage opportunities and diverging payoff expectation, as a consequence

of the thickness of the tails. However, Vellekoop and Nieuwenhuis have preserved the main

ideas of the model and they have proposed a modified version amended from all drawbacks.

In their version stock prices follow the dynamics

dSt = µStdt + σStdΩt , St0 = S0 , (30)

dΩt = Σ(Ωt , t)dWt , Ωt0 = Ω0 , (31)

with

Σ(Ωt , t) =

 A−
α

2 P(Ωt , t)−
α

2 t > 0

0 t = 0 ,
and P(Ωt , t) =

1
Nt

(1 + αβtΩ
2
t )−

1
α , (32)

with βt = [(1−α)(2−α)t]−
2

2−α , Nt = A/
√

βt , A =
√

π

α
Γ
( 1

α
− 1

2

)
/Γ
( 1

α

)
, α∈

(
0, 1

2

)
7, and t0 ≥ 0.

In Vellekoop and Nieuwenhuis (2007) the existence of a solution for equation 31 is proved,

and it is shown how the unconditional distribution (i.e. Ωt0 = 0 for t0 = 0) reduces to the

generalized Student-t distribution. In general the conditional distribution deviates from it.

The log-return Xt satisfies the equation

XT = Xt + µ(T − t)− 1
2

σ
2
∫ T

t
Σ

2(s,Ωs)ds + σ(ΩT −Ωt) ,

for T > t ≥ t0. They verify that sufficient conditions hold for the applicability of the Girsanov

theorem, and they derive the risk neutral dynamics

dSt = rStdt + σStdΩ
Q
t , with dΩ

Q
t = Σ(Ωt , t)dWQ

t . (33)

This last process does not suffer any of the previous problems, however St (as a 1-D process)

does not satisfy the Markov property, but does when considered jointly with Ωt . In addition,

7The relation between Borland’s parameter q and α is given by q = α + 1.

28



the price of Plain Vanilla instruments cannot be given as a closed form formula. Indeed,

according to pricing theory we have

OC(S0,Ω0, t0) = SD
0 EQ

[(
er(T−t0)+σ(ΩT−Ω0)− 1

2 σ2 ∫ T
t0

Σ2(Ωs,s)ds− ek
)+ ∣∣∣S0,Ω0

]
,

and the expectation can only be computed via numerical techniques.

Given 32, we observe that the equation governing the evolution of dΩ
Q
t belongs to the

class of quadratic diffusion processes 1 through the identifications a = b = f = 0, c =

α/ [(1−α)(2−α)], e(t) = [(1−α)(2−α)]
α

2−α t2/(2−α), and g(t) = t. Switching to the integral

time τ = ln t/t0 for t0 > 0, and recalling equation 16, Zτ is readily computed

Zτ =
1√
c

[asinh(Cα,t0,τΩτ)− asinh(Cα,t0,τΩ0)] , (34)

where Cα,t0,τ =
√

αβt0 e−τ/(2−α). The price of a Plain Vanilla instrument can be computed

as

OC(S0,Z0, t0) = SD
0 EQ

[(
er(T−t0)+σ[Ω(Zτ(T ))−Ω(Z0)]− (2−α)σ2

4 [e(T )−e(t0)]− cσ2
2

∫ τ(T )
0 Ω(Z

τ′ )
2dτ′− ek

)+ ∣∣∣S0,Z0

]
(35)

with τ(T ) = lnT − ln t0. Defining the set of ancillary variables {U1, . . . ,Un} satisfing the

recursive relation

U i+1 = U i + ∆τΩ(Zi+1)2 , (36)

with U1 = ∆τΩ(Z1)2, the formal analogy with the Asian case discussed in the previous

section is evident. Computation of the expectation in 35 requires estimation of the joint

probability pQUZ(un,zn). The procedure is identical to the Asian case; equation (27) is still

valid, while the system (28) has to be coherently modified in
U i+1 = U i + ∆τ

C2
α,t0 ,(i+1)∆τ

sinh2 [√cZi+1 + asinh
(
Cα,t0,(i+1)∆τΩ(Z0)

)]
Zi+1 = Zi+1 .

The Jacobian in equation 29 simplifies to one, and, eventually, we can approximate the

Plain Vanilla price as

OC(S0,Z0, t0)' SD
0 ∆u∆z

mU−1

∑
j=0

mZ−1

∑
k=0

C(un
j ,z

n
k)Pi

jk
Q
,
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where C(un
j ,z

n
k) =

(
er(T−t0)− σ2

2
∫ T

t0
β
−α/2
s ds+σ[Ω(zn

k)−Ω(z0)]− ασ2
2(1−α)(2−α) un

j − ek
)+

, and compute it by means

of a fast convolution.

1.9 Numerical results

In this final section we sum up numerical results for the financial applications described in

paragraphs 1.6, 1.7, and 1.8.

Whenever we switch to the risk neutral measure for the piecewise linear process, corrections

terms in the SDE appear and an analytical expression for the density is no longer available.

Numerical simulation is mandatory, and the FCA algorithm, being both faster and much

more efficient, is a natural competitor to the MC approach. The transformed Zτ process is

enriched by the risk neutral correction (the second last term in the squared brackets)

dZτ ' sign(Zτ)

[
1
2ε

(
1

σ2ε

2 |Zτ|+ σ
√

τ

2

− 1
σ
√

τ

2

)
− εσ2

4
1

σ2ε

2 |Zτ|+ σ
√

τ

2

−1
2

(
σ2ε

2
|Zτ|+ σ

√
τ

2

)
+

r
σ2ε

2 |Zτ|+ σ
√

τ

2

]
dτ + dWτ ,

where r is the risk free rate. In figures 4a and 4b we draw risk neutral PDFs for r = 0.03

and remaining parameters as in figures 3a and 3b. The effect of the additional terms is

evident from their comparison. In particular, the increase of the skewness induced by the

risk neutral correction from linear plots in Panel (a) is remarkable . Turning our attention

to the pricing of Asian options, Figure 5a plots the joint density pQUZ(u,z), and associated

marginals for t0 = 0, τ = 1, σ2 = 1, and ε = 2. Parameters of the fast convolution are

zmin = −10.24, mZ = 210, umin = −2.56, mU = 211, and ∆τ = 10−3. In figure 5b we compare

the marginal PDF of Zτ, and analogously to paragraph 1.4 the agreement between FCA and

MC is striking in the central region.

As far as the pricing under the Vellekoop-Nieuwenhuis-Borland model is concerned,

we start plotting in figure 6a the joint bivariate density pQU,Z(u,z) for parameter values

zmin = −10.24, mZ = 210, umin = −5.12, mU = 211, ∆τ = 10−3, Ω0 = 0, α = 0.1, t0 = 0.2, and

T = 0.7. We notice that the fast convolution algorithm correctly predicts a non negative

support for the Uτ variable, even though the numerical grid spans uniformly the interval
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[umin,−umin]. In figure 6b we compare the distribution of Zτ obtained by means of FCA

and MC, finding a perfect match, and we also plot the PDF of Ω, easily derived given the

relationship between the two variables, see equation (34). In light of the agreement between

the two numerical procedures, we can use the FCA approach to efficiently price European

Call options, as explained in paragraph 1.8. In this respect in figures 7a, 7b, 8a, and 8b

we present our results in terms of implied Black-Scholes volatilities. Our choices of the

parameters are St0 = 100, r = 0.03, σ = 0.3, t0 = 0.2, Ω0 = 0,0.5, α = 0.1,0.4, K ∈ [70,130],

and T − t0 ∈ [0.5,2]. MC bands at 95% Confidence Level are plotted as dashed lines for the

shortest time to maturity, T − t0 = 0.5 with NMC = 5×107. FCA and MC volatility curves

are fully consistent. As expected surfaces exhibit a volatility smile, more pronounced for

small maturities and for Ω0 values deviating from zero. As already pointed out by Vellekoop

and Niueuwenhuis, a wider variety of volatility surfaces and flexibility of the model can be

obtained by manipulating the different values of Ω0.

1.10 Conclusion

In this paper we have addressed the problem of investigating performances of the fast con-

volution algorithm introduced by Eydeland (1994). Choosing different specifications of the

stochastic process, this has been carried out both with the reconstruction of conditional

probability densities at different time horizons and with the computation of prices of finan-

cial derivatives. FCA is an efficient grid algorithm relying on restating functional integrals

as sequences of ordinary finite dimensional integrals, and on converting the stochastic pro-

cess to a unitary diffusion one by means of the Lamperti transform. A reformulation of the

problem, then, allows those integrals to be evaluated efficiently by the use of fast Fourier

transform techniques.

The stochastic processes we have investigated belong to two classes of multiplicative

noise processes: the family of quadratic diffusion, see Bormetti and Delpini (2010); Delpini

and Bormetti (2010), and piecewise linear diffusions, see Alejandro-Quiñones et al. (2006);

McCauley and Gunaratne (2003). The analysis performed in this work provides a natural

complement to the analytical results obtained in Bormetti and Delpini (2010), where closed
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form solutions for the stationary PDF and for the convergent moments at arbitrary time

had been obtained. We have detailed a step by step numerical procedure able to provide an

accurate estimate for the probability distribution of the process even far from the stationary

regime. Similar results have been found for the piecewise diffusion. In this latter case, if the

dynamics is enriched with a non trivial drift term, scaling properties are no longer preserved

and all analytical information is lost. Since this is exactly the situation we faced when

switching to the risk neutral setting, FCA proved to be a very efficient and reliable approach

to the problem of option pricing. A detailed empirical analysis for different specifications

of the parameter values documents the superiority of the FCA approach to standard Monte

Carlo simulations. We have also demonstrated the flexibility of the approach when dealing

with exotic instruments, and exploited the formal analogy between geometric Asian option

pricing and Plain Vanilla pricing under the Vellekoop-Nieuwenhuis-Borland dynamics. As

it is an interesting hybrid between a geometric Brownian motion and a stochastic volatility

model, the latter provides a realistic description of the dynamics implied in the option

market. FCA is able to numerically reproduce a rich variety of implied volatility surfaces

improving the standard Monte Carlo approach.

Since, as we have documented, FCA turns out to be highly successful also in the case

of the Vellekoop-Nieuwenhuis-Borland model, a natural perspective is to concentrate future

research efforts on the extension of FCA to higher dimensional stochastic systems. This is

precisely the case of continuous time stochastic volatility models, see Fouque et al. (2000).

These models provide a flexible framework when modeling volatility, and they allow us

to reproduce several observed statistical regularities. For this reason they are nowadays

extensively exploited by quantitative sectors of banks and financial institutions. Given

the ability of the fast convolution to reconstruct densities over tail regions, and of the

investigated models to generate leptokurtic and scaling distributions, the present approach

is naturally suited for application in the context of financial risk management, e.g. Value-

at-Risk and coherent risk measures computation, see Bormetti et al. (2010, 2007); Jorion

(2007); McNeil et al. (2005).
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Figure 1: PDF of Zτ for increasing values of τ; solid line corresponds to the analytical
stationary solution, dashed ones to FCA, while bars in Panel (a) and symbols in Panel
(b) refer to MC simulation of the process for maturity τ = 1.
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Figure 2: PDF of Zτ for increasing values of τ; lines correspond to FCA, while bars
in Panel (a) and symbols in Panel (b) correspond to MC simulations.
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Figure 3: PDF of Zτ at time τ = 1 for σ2 = 1 and ε = 0.5,1,2. Panel (a): comparison
between analytical expressions (solid lines) and FCA (symbols); Panel (b): compari-
son between MC histograms (symbols) and FCA. Log-linear curves have been shifted
for readability.
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Figure 4: Piecewise diffusion: Risk neutral PDF of Zτ at time τ = 1 for r = 0.03,
σ2 = 1, and ε = 0.5,1,2. Comparison between Monte Carlo histograms (symbols) and
FCA (dashed and dotted lines); in Panel (b) curves have been shifted for readability.
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Figure 5: Piecewise diffusion: Bivariate risk neutral PDF of Zτ and Uτ, and their
corresponding marginals; ε = 2, σ2 = 1, t0 = 0, and τ = 1. In Panel (b) comparison
between Fast Convolution PDF of Z and MC histogram.
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Figure 6: Vellekoop-Nieuwenhuis-Borland model: Bivariate risk neutral PDF of Z
and U , and their corresponding marginals; α = 0.1, Ω0 = 0, t0 = 0.2, and T = 0.7. In
Panel (b) plot of the fast convolution PDFs of Z and Ω and MC histogram of Z.
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Figure 7: FCA implied volatility surfaces, α = 0.1, t0 = 0.2, Panel (a) Ω0 = 0, and
Panel (b) Ω0 = 0.5; dashed lines for T − t0 = 0.5 correspond to 95% Confidence Level
from MC simulation.

70

80

90

100

110

120

130

K

29

30

31

32

33

σ
im

p
(%

)

0.5
1

1.5
2

T − t0

(a)

70

80

90

100

110

120

130

K

29

30

31

32

33

σ
im

p
(%

)

0.5
1

1.5
2

T − t0

(b)

Figure 8: FCA implied volatility surfaces, α = 0.4, t0 = 0.2, Panel (a) Ω0 = 0, and
Panel (b) Ω0 = 0.5; dashed lines for T − t0 = 0.5 correspond to 95% Confidence Level
from MC simulation.
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2 Downside Risk in Currency Markets,

Do Skewness and Tails Matter?

Sofia Cazzaniga

University of Lugano and Swiss Finance Institute

abstract

We study downside risk in currency markets by means of a proxy for the skewness of a high-

minus-low currency portfolio, that measures the aggregate asymmetry of daily changes in

spot exchange rates involved in a carry-trade strategy. We find that this factor is priced in

the cross-section of forward discount sorted portfolios. The premium for the factor is about

6 basis points on a monthly basis for a sample period starting in January 1991 and ending

in March 2011. Results are robust to bid ask spreads, subsample analysis and to different

methodologies employed to estimate the market price of risk. Finally by means of Extreme

Value Theory technique we construct a factor, which turns out to be related to the skewness

proxy, tracking downside risk of deep-into-the-tails observations. We show that also this

factor is priced in the cross section.

Keywords: Foreign Exchange, Carry Trade, Downside Risk, Skewness, EVT, Tail Index
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2.1 Introduction

Modeling foreign exchange risk has always been controversial for researchers: for a long

time the attempt of overcoming the seminal result of Meese and Rogoff (1983), that proves

exchange rates to be described by a “near random walk” process, have failed. Indeed, even if

“our understanding of exchange rates has significantly improved, a number of challenges and

open questions remain [. . . ] enhanced by important events [. . . ] such as the launch of the

euro [. . . ] and the large number of currency crises which occurred during the 90es” (Sarno

and Taylor (2002)). Currency modeling is not a pure theoretical exercise for academics:

changes in exchange rates are a significant determinant of returns on several different for-

eign investments8, thus even practitioners are interested in deepening the comprehension of

the topic. Recently, though, the random walk benchmark has been successfully challenged,

see for instance Rossi (2006) (instability of the relationship between exchange rates and

fundamentals), Della Corte, Sarno and Tsiakas (2009) (Bayesian approach in a dynamic

asset allocation setting), Della Corte, Sarno and Sestieri (2012) (predictive power of a mea-

sure of US external imbalances on bilateral US exchange rates) and Della Corte, Ramadorai

and Sarno (2013) (cross-sectional predictive ability of currency volatility risk premium for

exchange rate returns).

In this paper we will focus on the famous “currency carry trade strategy”9.

A naive carry trade strategy consists in investing in currencies of countries yielding high

interest rates and funding this investment by borrowing currencies of countries with low in-

terest rates. The strategy exploits violations of the Uncovered Interest Rate Parity (UIP),

predicting zero returns on this kind of investments10. Several authors have proposed dif-

8Details on currency activity and volumes can be found in Galati, Melvin (2004), Galati, Heath

and McGuire (2007) end Gyntelberg and Remolona (2007)
9Notice that because of the high profitability of CT banks created indexes tracking its perfor-

mance, see for instance Barclay Capital Intelligent Carry, Credit Suisse FX Rolling Optimised Carry

Index (ROCI), Citigroup Beta 1, Deutsche Bank Harvest, Jp Morgan Income FX.
10According to UIP the spread between the risk free interest rates of two countries should be wiped

out by the depreciation of the highest or equivalently by the appreciation of the lowest interest rate

43



ferent explanations for UIP violation or equivalently for the abnormal carry trade returns:

failure of rational expectation hypothesis and inefficiency of foreign exchange markets, Lewis

(1989), Bacchetta and Wincoop (2010), Krasker (1980), Flood and Gaber (1980); lack of

adequacy of traditional regression models, Chinn and Meredith (2004), Chinn and Mered-

ith (2006), Baille and Bollerslev (2000), Maynard and Phillips (2001), Kirikos (2002) and

time-varying risk premium, Engel (1996) (who provides a survey of this literature up to

1996), Frachot (1999), Backus Foresi and Telmer (2001), Brandt and Santa-Clara (2002),

Alvarez, Atkeson and Kehoe (2010), Francis, Hasan and Hunter (2002), Hollifield and Yaron

(2003), Fahri and Gabaix (2011), Verdelhan (2010), Fahri, Fraiberger, Gabaix, Rancière and

Verdelhan (2009), Plantin and Shinn (2011).

Besides the articles previously mentioned, there is an extensive literature on currency

returns anomalies, dealing with forward premium puzzle, excess carry trade returns,

violations of uncovered interest rate parity (UIP) and extreme jumps movements.

Two strands of this literature are relevant to this paper.

The first group deals with the investigation of priced risk factors in currency mar-

kets, built by means of macroeconomic or financial variables. McCurdy and Morgan

(1991) develop an intertemporal asset pricing model in a conditional beta framework

and use a world equity index as benchmark for the aggregate portfolio, finding it to be

a source of systematic risk; Dahlquist and Bansal (2000) states that the risk premium

is country-specific, as systematically connected to GNP per capita, average inflation

rates, and inflation volatility. In a model with regime-dependent factor loadings,

Christiansen, Ranaldo and Soderllind (2010) find that the abnormal currency carry

trade returns can be explained by their exposure to the stock and bond market, and

use foreign exchange volatility and liquidity for identifying different regimes. Lustig

currency, i.e. “the expected foreign exchange gain from holding one currency rather than another

- the expected exchange rate change - must be counterbalanced by the opportunity cost of holding

funds in this currency rather than another - the interest rate differential” (Sarno and Taylor (2002)).

44



and Verdelhan (2007) study the cross section of currencies excess returns sorted on

interest rate differential and argue that the risk premium emerges because of the

correlation with consumption growth risk. Lustig, Roussanov and Verdelhan (2010)

take an APT-like approach and identify two risk factors: the currency market returns

available to a US investor (level factor) and a high minus low carry trade strategy

(slope factor). Not only the slope factor is proved to be priced, but it also explains

more than the 70% of the cross section of currency portfolios. Burnside, Eichen-

baum and Rebelo (2011) and Burnside, Eichenbaum and Rebelo (2007) challenge

some of previous results arguing that high Sharpe ratios cannot be a compensa-

tion for systematic risk (at least for developed countries), and affirm that they can

be explained by market frictions (bid-ask spreads, price pressure). Again Burnside,

Eichenbaum and Rebelo (2011) show that currency speculation strategies generate

large payoffs on average, which are uncorrelated with traditional risk factors, and,

in a microstructure approach framework, Burnside, Eichenbaum and Rebelo (2009)

suggest that the forward premium may be due to adverse selection risk. In summary

Burnside and his co-authors’ baseline thesis aim at showing that “traditional factors

are either uncorrelated with carry trade returns, i.e. they have zero betas, or the

betas are much too small to rationalize the magnitude of the returns to carry trade”,

Burnside (2011). Some recent papers, though, give additional support to the risk

based explanation of carry trade returns. Menkhoff, Sarno, Schmeling and Schrimpf

(2012) show that excess returns to the carry trade are a compensation for aggregate

time-varying volatility of exchange rates (Global FX Volatility) in the cross section of

five currencies portfolio excess returns. They find liquidity risk to be priced as well,

yet subsumed by global FX volatility innovations. Della Corte, Rime and Tsiakas

(2013) introduce a factor, called global imbalance risk factor, that captures the ex-

posure to the external imbalances of countries. Not only they prove the factor to be

priced and to win the horse race with the other factors available in the literature, but

they are able to provide a stringent economic rationale for its strong statistical power.
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The second relevant strand of literature studies downside risk and crashes in cur-

rency markets.

A well known feature of currency markets is the presence of extreme events: curren-

cies often experience big jumps. Consider for instance the 16% appreciation of the

Yen against the USD from October 4 to October 10 1998, in coincidence with the

crisis due to Russia and LTCM defaults; the appreciation of the Swiss franc and other

currencies against the USD immediately after the “9/11” and the “Madrid attack” of

March 2004 (Ranaldo and Söderlind (2010)); the big yen appreciations in 2007: of

7.7% on 16th of August and of 9% between the 7th and the 12th of November against

the AUD (Melvin, Taylor (2009)); and in Autumn 2008: “up 60% against the AUD

over 2 months, and up 30% against GBP (including 10% moves against both in five

hours on the morning of October 24)” (Jordà and Taylor (2009)). In addition the

“dramatic exchange rate movements occasionally happen without fundamental news

announcements [. . . ], analogously to what has been documented by Cutler, Poterba

and Summers (1989) and Fair (2002)” (Brunnermeier Nagel and Pedersen (2008))

for other asset classes. These huge outliers suggest that linear volatility models may

not be enough to measure risk in FX markets. Indeed return distributions exhibit

non-gaussian features, such as asymmetry (measured via skewness) and non-linear

return-volatility patterns, this latter property is extensively documented by Ranaldo

and Söderlind (2010). Skewness of exchange returns series has already been investi-

gated by several authors. It has been shown that carry trade returns and currencies

exchange rate returns have skewness significantly different from zero at different sam-

pling frequencies and time-horizons, and, since this skewness seems to be associated to

occasional large and negative returns, it is often referred to as a measurable proxy of

“downside risk”or of “crash risk”. In this framework Gyntelberg and Remolona (2007)

consider measures of downside risk (VaR and expected shortfall) to be the most suit-

able to describe the risk of carry trade strategies. By calibrating their model on
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currency option prices, Fahri, Fraiberger, Gabaix, Rancière and Verdelhan (2009) are

able to estimate disaster risk premia, and they show it accounts for 25% of carry trade

excess returns. Again Fahri and Gabaix (2011) propose a theoretical model in which

countries are differently exposed to disaster risk, modeled as a time-varying mean re-

verting process. Not only they provide explanation for the profitability of carry trade,

but their model also reproduces several puzzling features of the currency market, such

as the excess volatility of the exchange rate, the forward premium puzzle and the al-

most random walk exchange rate dynamics. By implementing carry trade within G10

currencies, Jurek (2008) documents that crash risk can explain excess returns of a

currency speculative strategy, but only to the extent of 30-40%. Nozaki (2010) be-

lieves crashes reflect non-linear adjustments of currencies towards their fundamental

values and thus sets up an hybrid strategy switching from naive carry trade to a fun-

damental strategy whenever the divergence of exchange rates from their fundamental

values exceeds a threshold. The hybrid strategy is proved to be preferred by a utility

maximizing investor, being short of crash risk. Downside risk in currency market has

been documented once more by Brunnermeier Nagel and Pedersen (2008) for quar-

terly and weekly returns and later on for monthly returns including the crisis turmoil

period by Anzuini and Fornari (2010). They interpret daily exchange rate skewness as

evidence of crash risk for carry trade returns, they perform a cross sectional analysis

and show that crash risk is driven by interest rate differential: currencies of countries

having on average high interest rates with respect to US are associated to positive

exchange rate returns skewness, that decreases towards negative values when mov-

ing to countries having on average low interest rates with respect to US. In addition

they state that crash risk is driven by liquidity risk, in the sense that crashes are

endogenous shocks due to unwinding of carry trade investments in periods of funding

constraints. To conclude, downside risk and crash risk in the currency market is an

highly up-to-date topic, as the recent thriving literature documents. The factor in-

troduced by Della Corte, Rime and Tsiakas (2013), previously mentioned, has been
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shown to be related to the sudden crashes experienced by CT returns. It is indeed

able to explain abrupt drawdowns characterizing the currency markets and it has a

clear interpretation in terms of macroeconomic fundamentals. Dobrynskaya (2012)

and Lettau, Maggiori and Weber (2013) document a strong correlation between carry

trade and global market risk during market downturns. They both provide systematic

evidences that downside market risk is priced in the cross-section and in particular

Lettau, Maggiori and Weber (2013) are able to reconcile the downside risk of curren-

cies with that of other asset classes, i.e. equities, sovereign portfolios and commodities.

In this paper we investigate if an aggregate exchange rate skewness measure, tracking

aggregate downside risk, is a source of systematic risk premium in the cross section

of currencies excess returns. We start constructing a variable that measures the ag-

gregate asymmetry in FX markets, SKEWHML
M . It captures the skewness of daily

exchange rate changes of currencies in the highest 25%-forward discount quantile

minus the changes of those in the lowest within a month. We prove this factor to

be cross-sectionally priced in a linear APT-like asset pricing framework. Therefore

we provide, at least partially, rational explanation to the high profitability of cur-

rency carry trade strategies. High values of the skewness factor identify bad states of

downside risk, owing to episodes of investment currencies drop and poor carry trade

performance. Since low interest rate currencies positively co-move with the skewness

factor, they play the role of a hedge by offering high returns in bad states for the

skewness, low returns in good states. On the contrary high interest rate currencies

are negatively correlated with the skewness factor, thus they return big abnormal

profits to a US investor in a long position in low skewness realizations states (good

states) and big losses when the skewness factor assumes high and positive values. As a

consequence carry trade investors, having a long position in high and a short position

in low interest rate currencies, are extremely exposed to the downside risk mimicked

by SKEWHML
M factor. We furthermore document that our asymmetric skewness factor
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is one of the driving sources of time-varying risk premium, though to a weaker extent

than volatility. This last result is coherent with the competing paper of Rafferty

(2011) who identifies a global currency skewness risk factor, à la Boyer, Mitton and

Vorknik (2010), that turns out to be correlated to SKEWHML
M , priced in the cross

section of currencies excess returns. Similarly to ours, his skewness factor tracks the

tendency of high interest rate investment currencies to depreciate sharply with respect

to low interest rate funding currencies. Our paper differs from Rafferty (2011) both

in the way the risk factor is computed, and in the analysis we perform on the role

played by extremal observations in the cross section of currencies. Indeed in addition

to SKEWHML
M factor, we identify a Tail factor, specifically shaped for collecting infor-

mation of events in the tails of exchange rate returns when sharp depreciations of the

investment currencies as a group relative to funding currencies as a group occur. The

tail factor is identified by means of extreme value theory techniques (EVT). It is the

high minus low portfolio in the cross section of currencies sorted according to the tail

index (that represents the degree of fatness of tails) of the right tail of daily exchange

returns. Observations in the right tail of daily exchange rate returns correspond to

states of the world where foreign currency depreciates and US dollar appreciates, i.e.

events extremely negative for a carry trade investor long high interest rate currencies

and short USD. This kind of events definitely contributes to the well-known skewness

pattern of daily exchange returns. Thus the tail factor analysis we perform and the

results we present confirm again the important explanatory power of the third mo-

ment of daily exchange rate distribution for the profitability of carry trade strategies.

This paper is structured as follow. In Section 2.2 data, computation of excess returns

and portfolio formation are described. Details on SKEWHML
M factor are reported in

section 2.3. Section 2.4 deals with descriptive statistics and other empirical evidences

on asymmetry properties of the cross section of daily exchange rate returns. Details

on the estimation procedure and empirical results are provided in section 2.5, while
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robustness checks can be found in section 2.6. In section 2.7 we describe the extreme

value techniques we employ and the construction of the tail factor. Finally section

2.9 concludes.

2.2 Currency data and Portfolios Formation

We consider data on spot and forward exchange rates. Let s be the log spot ex-

change rate and f the 1-month log forward exchange rate, both in units of foreign

currency per USD. In the empirical analysis we take the point of view of a US investor.

Data. The data are obtained from Datastream and cover the sample period from

January 1991 to March 2011. The analysis is carried out at the monthly frequency

(end of month series), though we need daily quotations to build the risk factors, as

explained in details in the next section.

The sample we consider consists of the currencies of the following 47 countries :

Australia, Austria, Belgium, Brazil, Bulgaria, Canada, Croatia, Cyprus, Czech re-

public, Denmark, Egypt, Euro area, Finland, France, Germany, Greece, Hong Kong,

Hungary, India, Indonesia, Ireland, Israel, Italy, Japan, Kuwait, Malaysia, Mexico,

Netherlands, New Zealand, Norway, Philippines, Poland, Portugal, Russia, Saudi

Arabia, Singapore, Slovakia, Slovenia, South Africa, South Korea, Spain, Sweden,

Switzerland, Taiwan, Thailand, Ukraine and United Kingdom.

Notice that a few of the currencies considered have partly pegged their exchange

rate to the USD. From January 1999 several European currencies are substituted

with the Euro. Following Lustig, Roussanov and Verdelhan (2010), we delete from

the sample observations which reveals violations of the covered interest rate parity. 11

11These violations are just a few: South Africa from July 1985 to August 1985 and Malaysia from

end of August 1998 to June 2005.
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Currencies and Portfolios Excess Returns. At the end of each month t, we

rank currencies on the basis of their forward discount premium ft − st , relative to

the Dollar. The ranking is updated on a monthly basis. Notice that sorting on

forward discount is equivalent to sorting according to interest rate differential with

respect to USD. This is guaranteed by covered interest rate parity which states that

ft−st ' i∗t − it , with i being the interest rate in US and i∗ the one in a foreign currency.

As a result, currencies are ranked from low interest rates (smallest forward discount),

to high interest rates (highest forward discount).

We compute the monthly excess returns on buying the foreign currency k in the for-

ward market and then selling it in the spot market, i.e. the mid quotes excess returns

for holding the foreign currency k for one month, are computed as

rxk
(t+1) =

 (ikt − it)−∆sk
t+1 = f k

t − sk
(t+1) for a long position

− f k
t + sk

(t+1) for a short position in the foreign currency.

(37)

We then construct five portfolios of currencies sorted according to the forward discount

in the previous month, whose excess returns are computed as the equally weighted

average of their currencies excess returns. As expected, the total number of currencies

in each portfolio varies through time, from a minimum of 2 currencies per portfolio,

to a maximum of 7. A currency is included in the portfolio ranking only if it has spot

and forward quotations both in the current and in the subsequent periods.

In addition to the five portfolios, we consider the “Dollar risk factor” (DOL) portfolio

(see Lustig, Roussanov and Verdelhan (2010)), defined as the average return from

borrowing USD and equally invest them in all available foreign currencies. DOL

returns can be simply computed by averaging the five portfolios returns. Adding this

factor to our empirical analysis is important as it tracks US dollar fluctuations against

a broad basket of currencies, i.e. the dollar risk. This risk cannot be neglect since we

take the point of view of a US investor.

Finally, we consider the carry trade portfolio HMLFX , defined as the return difference
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between the fifth and the first portfolios. It is the return from a zero-cost strategy

consisting in going short low interest rate currencies and going long those with high

interest rates.

2.3 Risk Factors

Volatility proxy - Menkhoff, Sarno, Schmeling and Schrimpf (2012) proxy

Global FX Volatility in month t as

σ
FX
t =

1
τt

∑
τ∈τt

[
∑

k∈Kτ

(∣∣∆sk
τ

∣∣
Kτ

)]
, (38)

where ∆sk
τ is the absolute daily log-return for each currency k on each day τ belonging

to the month with indices (t− 1, t], τt denotes the total number of trading days in

month t, Kτ denotes the number of available currencies on day τ. As Menkhoff, Sarno,

Schmeling and Schrimpf (2012), in the following analysis we will consider the volatility

innovations, residuals obtained after fitting an AR(1) model to σFX
t , denotes as ∆σFX

t .

Skewness proxy. We construct a proxy for the downside risk of a HML currency

strategy. Each month t, we sort the available currencies according to the forward dis-

count in (t−1) and we isolate those belonging to the quantile [0.75,1] (highest forward

discount) and to the quantile [0,0.25] (lowest). On each day τ within that month, we

then compute the daily spot exchange rate log-returns ∆sKht
τ for each currency Kh in

the highest quantile and average them over the currencies available, obtaining a time

series vector Hτt . Analogously, we compute ∆sKlt
τ for each currency Kl in the lowest

quantile and obtain Lτt by averaging over. Finally we define SKEWHML in month t

as the skewness over time of (Hτt −Lτt ) that is

SKEWHML
t = Skewness [Hτt −Lτt ] ,

Hτt =
1

Nht
∑

k∈Kht

∆sk
τ, Lτt =

1
Nlt

∑
k∈Klt

∆sk
τ, (39)
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where Skewness denotes the standard moment-based measure12. Nht and Nlt denote

respectively the numbers of available currencies in the highest and lowest quantile in

month (t− 1, t] and ∆sk
τ the time series vector of absolute daily log-returns for cur-

rency k between the previous end month labeled (t−1) (excluded) and the end month

t (included). Following Menkhoff, Sarno, Schmeling and Schrimpf (2012) we choose

equal weights for all currencies to avoid the results to be driven by factors such as

the volume of international trades.

As SKEWHML is not a return factor, we build its factor-mimicking portfolio counter-

part SKEWHML
M , so that the results of our future analysis can be interpreted more eas-

ily. SKEWHML
M can be obtained in two standard steps: firstly by regressing SKEWHML

on the excess returns of the five carry trade portfolios

SKEWHML
t+1 = α +

5

∑
i=1

βi rxi
t+1 + εt+1 (40)

in order to obtain β̂1, β̂2, β̂3, β̂4 and β̂5, and then computing

SKEWHML
M,(t+1) =

5

∑
i=1

β̂i rxi
t+1. (41)

As it will be clear later, SKEWHML
M,t+1 is an hedge against high interest rate currency

depreciation, we therefore find that it loads negatively on the fifth portfolio (β̂5 =

−0.043) and positively on the first (β̂1 = 0.042).

We plot DOL, ∆σFX and SKEWHML
M in figure 9, panels (a), (b) and (c).

[Figure 9 about here]

2.4 Empirical Evidences

Descriptive Statistics. Table 1 provides descriptive statistics of portfolios excess

log-returns considered in the empirical analysis.

12In analogy to Ghysels, Plazzi and Valkanov (2011) we adopt also“different measures of skewness”,

but our results do not change substantially.
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[Table 1 about here]

For each portfolio j, sorted monthly according to the forward discount in month t−1,

Panel I reports annualized mean returns and standard deviations (both in percent-

age points), skewness, kurtosis and Sharpe Ratios (SR) of monthly currency portfolio

log-returns. Currencies are sorted in five portfolios according to the 20% quantiles of

month t−1 forward discount. Portfolio 1 contains currencies with the lowest forward

discount, while Portfolio 5 contains those with the highest. Average coincides with

the DOL portfolio, defined as the average return of a strategy borrowing money in

US and investing in the foreign global money market; High−minus−Low is HMLFX

carry trade strategy: long portfolio 5 and short portfolio 1. We compute also standard

errors for the standard deviation, the skewness and the kurtosis by means of GMM

of Hansen (1982), coupled with the delta method. We clearly notice that the un-

conditional mean and unconditional Sharpe Ratio increase from low to high forward

discount currencies, while the unconditional skewness exhibits an overall decreasing

trend. Seeking for positive excess returns, the most naive strategies consist in go-

ing long a bunch of the highest forward discount currencies and short a bunch of

the lowest forward discount currencies (rx5− rx1). This is the carry trade portfolio

High-minus-Low that yields an average returns of 8.44% on annual basis, with cor-

responding Sharpe Ratio of 0.97. Notice that skewness is significant for portfolio 4

and 5 and the Sharpe ratio for portfolio 5, that is for high interest rate currencies

and for the carry portfolio. No clear pattern is detected in the unconditional kurtosis,

yet it is big and significant, suggesting that the distribution of the returns on the

five portfolios are characterized by fat tails. Panel II reports descriptive statistics for

daily exchange returns portfolios ∆s j, j = 1, . . .5, rebalanced every month according to

the one-month forward discount. Currencies belonging to the high forward discount

portfolio suffered on average a daily depreciation vis á vis the US $ while the others

registered in general an appreciation. Indeed, being k a generic foreign currency, a
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positive ∆sk
t+1 = log(Sk

t+1)− log(Sk
t ) denotes US dollar appreciation (i.e. currency k

depreciation) between period t and (t + 1); the opposite holds for a negative ∆st+1.

The unconditional cross section of standard deviation has an increasing behavior when

moving from low to high forward discount currencies, while there is not a clear pattern

for the unconditional kurtosis. Remarkably the skewness exhibits an overall increas-

ing pattern: the cross section of unconditional skewness has an increasing trend in

the forward discount. This is in agreement with the results of Brunnermeier Nagel

and Pedersen (2008) who study a sample of eight developed currencies against the

USD and document an almost linear cross-sectional relationship between the average

interest rate differential (between the foreign country and the USD) and the average

realized skewness of daily exchange rate returns within overlapping quarterly and

weekly time periods. These results mean that currencies with similar levels of inter-

est rates share both co-movement and exchange rate returns skewness sign. Moreover

since skewness is not diversified away when currencies are aggregated into portfolios,

as we show in table 1, and it increases conditionally on 1-M forward discount, we

naturally wonder whether extreme currency movements are correlated across differ-

ent countries, i.e. if the stylized facts we found are a systematic property of forward

discount sorted portfolios. That is why we will investigate the common risk factor

driving this correlation. Panel III reports the average frequency of portfolio switches.

At each rebalancing day t and for each portfolio k, we count the number of currencies

entering and exiting portfolio j with respect to time (t− 1), we divide this number

by the total number of currencies in that portfolio at time (t−1) and finally take the

average of these frequencies over time. From the frequencies of table 1, we can see

that currencies remains in the extreme portfolios for longer periods than in middle

portfolios, before the switching. On average, a currency stays four months in portfolio

1, three months in portfolio 2, 3, 4 and 5 and five months in portfolio 6. Finally the

average switching frequency across all portfolios is 34.21%, i.e. on average currencies

switch portfolio every 3 months.
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Cross Section of Empirical Skewness. As a first illustration of the stylized

cross sectional relationship just briefly mentioned, we consider a time-series-coherent

subsample of eleven developed currencies: Australian Dollar, Canadian Dollar, Den-

mark Krone, Japanese Yen, New Zealand Dollar, Norwegian Krone, Swedish Krone,

Swiss Franc, Singapore Dollar and Euro. We choose these currencies since they have

complete spot and forward exchange rate time series over the whole sample period,

the only exception being the Euro, whose series starts in January 1999.

[Figure 10 about here]

Figure 10 plots the cross sectional relationship between average 1-month forward

discount and respectively the unconditional 13 skewness of daily exchange rate move-

ments ∆s over the whole sample, panel (a), the average of ∆s skewness computed

within each quarter (non-overlapping periods), panel (b), and the average of ∆s skew-

ness within each month (non-overlapping periods), panel (c). We notice that in all

three plots the skewness/average skewness is positive and high for carry trade invest-

ment currencies, i.e. AUD, NZD, GBP, CAD (positive forward discount or equiva-

lently positive interest rate differential with US) and negative for funding currencies

(negative forward discount or equivalently negative interest rate differential with US),

say JPY, CHF. Ordinary Least Square fitting performance is rather high in all three

cases, having an R2 respectively of 66.09%, 86.15% and 81.37%.

[Figure 11 about here]

Figure 11 plots the time series of Japanese Yen/Australian dollar, panel (a) and of

Swiss franc/New Zealand Dollar, panel (b), skewness of within a month daily exchange

rate returns over the sample period considered. Clearly the funding currencies series

13I call this skewness unconditional in a time-series perspective. Notice that this skewness is

conditional cross sectionally on the interest rate differential.
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are shifted towards the bottom since the time-series mean of the skewness is negative,

while the investment currencies are shifted upward. Consider for instance panel (a).

The AUD and JPY series moves always in opposite directions. The same holds for the

NZD and CHF, and for all couples of investment-funding currencies. These evidences

suggest the existence of a time-varying risk of “directional” extreme daily exchange

rate movements, i.e. towards dollar appreciation for investment currencies and to-

wards dollar depreciation for funding currencies. Both these extreme movements are

indeed adverse to a carry trade investor.

We now focus on low interest rate currencies. The distribution of their daily exchange

returs is negatively skewed. This is illustrated in figure 12a where we depicted the

kernel density estimation of Japanese Yen versus US Dollar daily exchange rate re-

turn. The lower panel is in semi-logaritmic scale, that allows a clearer investigation

of the tails.

[Figure 12 about here]

Negative skewness means that negative ∆s outcomes experience larger absolute value

realizations than positive ∆s outcomes, even if with low probability. Now, let’s con-

sider a US investor shorting Japanese Yen, in order to gain from the interest rate

differential between Japan-US. A longer left tail means that negative ∆s events can

be more extreme than the positive events, i.e. the distribution of ∆s is skewed towards

dollar depreciation (low currency appreciation). If we now turn our attention to high

interest rate currencies, a US investor going long a foreign high interest rate currency

(say, Australian Dollar) has to deal with positively skewed interest rate returns (see

figure 12b), owing to episodes of large US $ appreciation, i.e. foreign currencies de-

preciation.

It is worth pointing out that these results are not driven by the use of USD as a base

currency: the empirical evidences are still there if we convert all exchange rates and

we take the point of view of an investor set in another country. Therefore a naive
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carry trade investor has to deal with asymmetric exchange rate returns distributions,

skewed towards small probability events, yet extremely inauspicious in profitability

terms. That is why currencies are said to “go down by the stairs and up by the ele-

vator” (Plantin and Shinn (2011), Brunnermeier and Pedersen (2009)).

2.5 Empirical Analysis

Asset Pricing Model and Estimation. We apply the standard linear SDF ap-

proach to asset pricing, with usual Euler equation

E[mt+1rx j
(t+1)] = 0, (42)

where rx j
(t+1) is the excess return of currency j at time (t + 1), and mt denotes the

stochastic discount factor. Since asset pricing tests are performed on excess return

levels and not on log excess returns, in analogy to Lustig, Roussanov and Verdelhan

(2010) We compute the level excess returns for currency k as rxk
(t+1) =

Fk
t −Sk

(t+1)

Sk
t

, with

F and S being the forward and spot exchange rate levels. As usual, we adopt for

mt a parametrization linear in the risk factors ht , i.e. mt = 1−b′(ht −µ), with h the

vector of factors, and µ the vector of their means. Eq. (42) with linearity assumption

implies a beta pricing model

E[rx j] = λ
′
β

j j = 1, . . . ,5 (43)

where the expected excess returns are the product of the risky exposures β
j (the

regression coefficients of portfolio excess returns on the factors) and the factor risk

prices λ. We estimate the model by mapping the asset pricing model into GMM

(Hansen (1982)), as illustrated by Cochrane (2005). We consider the following mo-

ment equations
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
E [rxt−α−βht ] = 0

E
[(

rxt−α−β
′ht
)
⊗ht

]
= 0

E [rx−βλ] = 0

(43)

The GMM procedure produces the same point estimates as the two pass Fama-

Macbeth regression method, allowing straight-away for the effect of generated re-

gression, and for heteroskedasticity-robust inference. We use the two step GMM

estimation with the efficient weighting matrix. In the first stage we start adopting

the identity matrix. Standard errors are based on Newey and West (1987).

Results. In this section we want to empirically test whether the skewness factor

SKEWHML
M helps the understanding of the cross section of FX excess returns.

Table 2 contains the results for the asset pricing test using the whole cross section of

currencies, with DOL and SKEWHML
M as risk factors.

[Table 2 about here]

Panel II reports the time series betas loadings on the factors for the five forward

discount-sorted portfolios. The loadings on the dollar risk factor are almost identi-

cal across all portfolios, this suggest that DOL captures the risk embedded in being

a US investor that chooses to invest in foreign currencies. Instead the loadings on

SKEW HML
M are positive for low interest rate (portfolio 1 and 2), negative for high

interest rate currencies (portfolios 4 and 5) and we recognize a monotone pattern in

βSKEW . Panel I reports a negative and statistically significant skewness factor price of

risk of −0.085% monthly. The negative sign is not surprising since high realizations

of the skewness factor (positive values), owing to episodes of high interest rate depre-

ciation and low interest rate appreciation, can be classified as bad states of the world

characterized by low and negative Sharpe ratios. This means that those currencies

that co-move positively with SKEW HML, i.e. low interest rate currencies belonging to

portfolios 1 and 2, return lower risk premia on average. They can be used to hedge
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the risk tracked by the skewness factor, since in bad states of the world for the skew-

ness their performance is on average positive. Because of this hedging properties,

investors are not reluctant to accept lower returns on this type of investment. On

the contrary investors require high risk premia on high interest rate currencies, that

being positively correlated with the skewness factor, amplify profit and losses. Overall

the spread in mean excess returns between high and low interest rate currencies is

rationalized by the decreasing monotone behavior of the loadings on SKEW HML. The

high returns on carry trade strategies are thus at least partly explained: a carry trade

investor, shorting low interest rate and investing in high interest rate currencies, loads

positively on the skewness factor; in other words it bears the risk of downside, i.e.

the risk of a sudden depreciation of the investment currency.

Having assessed that SKEW HML
M is priced in the cross-section of forward discount

sorted portfolios, We now test if its informative content is subsumed by ∆σFX . We

therefore GMM-estimate the asset pricing model with the three risk factors DOL,

∆σFX and of SKEWHML
M . The results for the whole sample period (January 1991-

March 2011) are reported table 3.

[Table 3 about here]

Not surprisingly the volatility factor, being probably estimated with more accuracy

run out the statistical significance of the skewness factor when the asset pricing test

is performed on the whole sample. Yet the result changes when we consider two

different subsamples identified by the introduction of the euro. Results can be found

in tables 4 for the post euro and 5 for the pre-euro era.

[Tables 4 and 5 about here]

In both cases the skewness risk premium is negative and statistically significant (being

around ∼−0.6% on a monthly basis) and the skewness betas loadings are decreasing
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in the forward discount. Interestingly in the pre-euro sample the volatility risk factor

is not significant while it co-exists with the skewness factor in the post-euro sample.

Moreover the skewness price of risk is a little higher in absolute value in the pre-euro

area. These empirical evidences might be driven by the Euro, whose introduction,

seen as a choice of monetary stability, has decreased the perception of the risk of

destabilizing currency crisis (i.e. downside risk tracked by SKEWHML
M ) and thus has

allowed the volatility risk to acquire more power. We find even further support for

this thesis if we consider the post-euro sample till July 2007, i.e. excluding the fi-

nancial crisis. In this case λskew =−0.0373 (unreported table) that is definitely much

smaller in absolute vale than the λskew = −0.076 of the pre-euro sample, denoting a

substantial decrease of downside risk.

We are aware of the fact that our results in the joint test of the three factors poten-

tially suffer from the non-zero correlation between ∆σFX and SKEWHML
M . A similar

problem, yet much more intense, and in a different context than ours, has been il-

lustrated by Barone-Adesi (1985) and brilliantly solved by means of the quadratic

market model (i.e. by means of a reparametrization).

Relationship with Liquidity Proxies. Given previous results, it is now inter-

esting to investigate the source of skewness in the FX market. Brunnermeier Nagel

and Pedersen (2008) state that liquidity, in particular funding liquidity, helps our un-

derstanding of risk premia in foreign exchange markets, as they affirm that crashes,

i.e. extreme inauspicious movements for carry trade that determine the skewness

of the strategy, are endogenously generated by the unwinding of carry trade when

funding liquidity tightens. Thus, I investigate the relationship of SKEWHML
M with

liquidity, by considering, as Menkhoff, Sarno, Schmeling and Schrimpf (2012), the

Pastor-Stambaugh liquidity risk factor (Pastor and Stambaugh (2003)), the TED

spread and a global aggregate measure of bid-ask spread, we call GLOBALba as mea-
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sures of liquidity/illiquidity. This latter is defined as

Φ
FX
t =

1
τt

∑
τ∈τt

[
∑

k∈Kτ

(
φk

τ

Kτ

)]
, (44)

with φk
τ the percentage bid-ask spread of currency k on day τ; the other symbols has

to be interpreted as in eq.(38).

We report the correlation of liquidity factors with ∆σFX and SKEWHML
M in table 6,

respectively Panel I and Panel II.

[Table 6 about here]

Overall we find that global foreign volatility innovations are positively correlated with

innovations in TED spread. This is in agreement with finance theory: the sign of the

illiquidity premium, if exists, should be negative, as an increase in illiquidity is a bad

state of the world for the investor, who expect to earn a lower expected return. Co-

herently ∆σFX is negatively correlated with Pastor-Stambaugh liquidity risk measure.

These results are consistent with those of Menkhoff, Sarno, Schmeling and Schrimpf

(2012), and with the standard known fact that liquidity and volatility are correlated,

though the moderate strength of the empirical correlations found.

The correlations are weaker when we compare liquidity-illiquidity measures with

SKEWHML
M . The correlations coefficients have reasonable signs but turn out to be

much lower in absolute intensity.

Thus, our downside risk SKEWHML
M does not seem to be considerably explained by

standard liquidity proxies, or at least by those considered here; this result is coherent

with Ang, Chen and Xing (2006), who study downside risk premium in the cross

section of stock returns and find that it cannot be a reward for liquidity risk, among

other hypothesis they consider. The investigation of the driving force behind skew-

ness, like for instance time-varying risk aversion, are left for future research; though,
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we cannot a-priori exclude the commonality of SKEWHML
M with other aspects of liq-

uidity, which is known to be a complex and multi-faceted concept. SKEWHML
M might

be, for instance, significantly correlated with the FX liquidity risk factors of Ranaldo,

Mancini and Wrampelmeyer (2013).

Other authors proposed different theoretical explanations for the emergence of neg-

ative skewness in carry trade excess returns. For instance Plantin and Shinn (2011)

believe in the mechanism of the bubble: in a game-theory setting they show that

crowding in carry trades can endogenously generate skewness as a consequence of

currency crashes. The greater the mass of speculators that enter the carry trade and

pile up, the more likely are positive excess returns; but at the same time, the greater

is the probability for a future unwind and a consequent crash. Ilut (2012), instead,

proposes an alternative explanation for negative skewness of carry trade returns based

on ambiguity averse agents. As they do not know the true stochastic process that

rules high and low interest rate currency dynamics, agents attach larger weight to

bad states (i.e. states of high interest rate currencies depreciation). This generates

the negative skewness.

2.6 Robustness Check

In this section We investigate robustness issues of the model by performing asset pric-

ing tests on returns of a smaller sample of currencies, that is only developed countries,

by using Fama-Macbeth estimation procedure with betas estimate on a rolling win-

dow and by computing returns net of bid-ask spreads.

Developed Countries. We also perform the analysis on a smaller cross section

containing only developed countries: Australia, Canada, Denmark, Euro area, Japan,

New Zealand, Norway, Sweden, Switzerland and Great Britain. The sample we con-

sider start in January 1991 and ends in March 2011. Results can be found in table 7
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and are absolutely compatible with those of the larger cross section.

[Table 7 about here]

The market price of risk is now −0.037% monthly, smaller in absolute value than the

−0.085% of table 2. This means that, as expected, on average developed countries

are less exposed to downside risk, than emerging. At the same time, though, the sig-

nificance of λskew for the subsample of developed countries ensures that our previous

results are not driven by the higher riskiness of emerging countries.

Rolling window Fama-Macbeth We estimate once again the model via the two-

step Fama and Macbeth (1973) procedure, see Cochrane (2005). We firstly run time

series regression of portfolio excess returns on the factors DOL and SKEWHML
M on a

rolling window of 5 years (60 monthly observations) thus obtaining the times series

of the factor loadings (βs) of each portfolio on each factor. In a second step for each

t we run cross a sectional regression of the five portfolio excess returns on the βs.

Eventually the prices of risk are obtained as sample averages of the second step es-

timates and their standard errors are computed from the sample variance-covariance

matrix. We report the results we find in table 8. We plot also the rolling βs of the

five portfolios in the figure below.

[Table 8 about here]

The price of risk for the skewness factor is negative and statistically significant; the

skewness beta loading of the high interest rate portfolio is negative for every t and

keeps below the others, as expected.

Bid-Ask Adjusted Returns. When bid-ask spreads are considered, we compute

excess returns for long positions as rxk
(t+1) = f k,b

t − sk,a
(t+1) and for short positions as

rxk
(t+1) = − f k,a

t + sk,b
(t+1). Returns net of bid-ask spreads for portfolio 1 (containing
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funding currencies) are adjusted for short position transaction costs; the other four

portfolios are adjusted for long position transaction costs. Notice that the specifi-

cation of bid-ask spread we consider is likely to be quite conservative as it assumes

100% turnover each month in every currency. Moreover we underly that Reuters

bid-ask spreads have been found to be on average two times bigger than the size of

inter-dealer spreads (Lyons (2001)). Asset pricing test results are reported in table 9.

We find a significant λskew of −0.053% per month.

[Table 9 about here]

2.7 Power Laws and Carry Trade

The skewness factor we introduced and investigated in the previous paragraphs can

in principle suffer of two main drawbacks. Firstly, it is computed using only within-a-

month returns and therefore can be noisy. Secondly, the interpretation of the skewness

of a random variable is not unique even in case of unimodal distributions: for instance,

the negative skewness can result both from the left tail being longer and the left tail

being fatter, but we cannot discriminate between the two options if we do not know a

priori the shape of the entire distribution. If, then, one of the two tails is longer and

the other is fatter, the skewness sign is unpredictable, it might even turn out to be

zero though the distribution is not symmetric. In this case no precise inference can

be done. Finally no conclusions are possible in case of bi-modal distributions.

With these consideration in mind, in this section we take advantage of other instru-

ments borrowed from Extreme Value Theory (EVT). We want indeed to investigate

the events in the tails of exchange rate returns and their role in determining the asym-

metry in daily exchange rate returns. The advantage is that Extreme Value Theory

(EVT) does not require the knowledge of the exact distributional form.

Several papers have shown that distributions of many variables of interest in finance

(in particular returns) exhibit deviations from Gaussianity, heavy tails and asymme-
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try (Gabaix (2009), Embrechts et al. (1997), Huisman et al. (2003), . . . ). In particular

for the modeling of the tails of a return distribution people usually adopt power tail

models, that is  Pr(r > x)∼ Aup x−αup x→ ∞

Pr(r <−y)∼ Adown y−αdown y→−∞

(45)

where r stands for the returns, Aup,Adown > 0 and αup,αdown > 0 are called the tail in-

dex (or the tail exponent) for the right and left tail of the distribution of r respectively.

The literature aimed at estimating the tail index for different financial series is huge

and we are not going to resume it here, (we refer to Gabaix (2003), Gabaix (2009) and

Ibragimov et al. (2013) works and their references), but on average researchers find

that financial returns have a tail index α ∈ (2,5). Tail indexes are usually estimated

by means of EVT techniques, and, indeed, this is the approach we are going to adopt

here as well. Appendix A contains information and references on the theory and on

the estimation methodology we employ.

2.8 Tail Index Risk Factor

As a first caveat we point out that extreme returns are governed both by extreme

innovations and by their dependence structure if they are not i.i.d. Moreover the

asymptotic properties of the non-parametric estimators of the tail index are not clearly

established (standard errors and estimates themselves can be biased), or better some

alternative methodologies have been proposed but at the expense of introducing other

parameters. Therefore the most common approach (see McNeil and Frey (2000))

consists in filtering univariate return series in order to get rid of autocorrelation and

heteroskedasticity. In the following analysis we will consider residuals from fitting an

AR(2)-GJR-GARCH(1,1) for each daily exchange return series.

In this section we want to assess whether daily exchange rate return distributions
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differ in their upper an lower tails fatness, if a cross-sectional pattern is identifiable

across different currencies and if it is relevant. In other words we want to investigate

whether deep-into-the-tail events matter for risk premia of currency excess returns (as

other authors argued, see Barro (2006), Gabaix (2012), . . . ) and whether connections

with previous results we found with SKEWHML
M exist.

Given currency j, for T being the last day of each month, we estimate the tail index

both for the up tail and the down tail on the previous 2000 daily exchange rate re-

turns. As we need to have at least 2000 days of continuos daily exchange rate returns,

we are able to have a sufficiently large number of currencies only from January 1999.

Therefore in the following we will restrict the sample to January 1999-March 2011.

From a preliminary cross-sectional analysis we notice that, as expected, the upside

α of high interest rate currencies is on average lower than the downside α; the vice-

versa hold for low interest rate currencies. Figure 15a, 13b, 13c and 13d plot the time

series of upside and downside tail index for a few currencies. In addition to this we

notice that αUP of high interest rate currencies are in general lower than those of low

interest rate currencies, that is the up-tail of high interest rate currencies are fatter

or, as expected, the probability of depreciation of the foreign currency with respect

to the USD is higher for high interest rate currencies. The time series of upside α

for the Australian Dollar, the New Zealand Dollar, the Swiss Franc and the Japanese

Yen are plotted in figure 15e. On average the Australian Dollar and the New Zealand

Dollar exchange rates, being high interest rate currencies, are characterized by lower

tail index for the up tail.

With these considerations in mind, we use the time series of estimated up-tail beta

for each currency and for each end of month, to dynamically sort monthly carry trade

excess returns and we form five quantile equally weighted portfolios. Portfolio 1 con-

tains currencies having low αUP, that is on average high interest rate countries, while

portfolio 5 contains currencies whose daily exchange rate return distributions have

thinner up-tails. We do not claim that sorting currencies according to the decreasing
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forward discount is one-to-one equivalent (but in reverse order) to sorting currencies

according to αUP, yet a relevant relationship exists: the equally weighted forward

discount of the five portfolios sorted according to αUP is decreasing: 2.38% on an

annualized monthly basis for portfolio 1, 1.77% for portfolio 2, 1.28% for portfolio 3,

1.24% for portfolio 4 and 0.83% for portfolio 5.

We then consider the fifth-minus-one portfolio and we call it “Tail-risk factor”. Its

time series is plotted in figure 15f. Its correlation with the SKEWHML
M is 23.10% on the

sample period January 1999-March 2011, and of 26.54% when the crisis is excluded

i.e. till July 2007. Though this correlation is not extremely high, yet it is relevant.

Therefore, also thanks to the cross sectional properties of the αUP series, we conjecture

that the tail factor tracks the risk of extreme exchange rate movements highly adverse

to a carry trade investors. We check our hypothesis with a standard cross sectional as-

set pricing test on the usual five carry trade portfolios sorted according to the forward

discount. The linear asset pricing model is estimated once again via GMM, with mo-

ments equations given by eq. (43) and ht =DOL, TAIL factor. Results are presented

in table 10. The market price of risk for the tail factor is statistically significant and

equal to −1.7 basis points on a monthly horizon. Not surprisingly the tail factor play

the role of an hedge: during bad times for a carry trade investor the tail factor is

high and positive, as currencies that have high upside betas (on average low interest

rate currencies) appreciates and those having low upside betas depreciates. Also the

factor loadings behave as expected: low interest rate currencies (portfolio1) load pos-

itively on the tail factor, therefore play the role of an hedge against extreme adverse

currency movements, while high interest rate currencies (portfolio 5) are riskier and

indeed load negatively on the tail factor. Notice that the market price of risk is much

lower than the ∼−6 basis points of SKEWHML
M over the same sample period, as the

tail factor focus on adverse movements really deep-into-the tails. To check whether

our last results are driven by the financial crisis, we perform the asset pricing test on
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a sample ending in July 2007. Clearly from table 11 we deduce that the market price

of risk is significant and of magnitude similar to the one of table 10.

Finally, we repeat the same analysis replacing the αUP with αDOWN, but all results

break down. Carry traders care more at deep-into-the-tails depreciation of high in-

terest rate currencies, rather than the appreciation of low interest rate currencies.

2.9 Conclusion

This article investigates the role of extreme exchange rates movements on the prof-

itability of foreign currencies investment strategies. In particular we try to reconcile

two strands of the literature, one seeking risk factors priced in the cross-section of

currency excess returns portfolios sorted according to forward discount, and the other

dealing with downside risk and exchange rate returns skewness/asymmetry.

The most recent results belonging to the first group of papers are those of Menkhoff,

Sarno, Schmeling and Schrimpf (2012), who assessed the explanatory power of volatil-

ity in the cross section of currencies, with the introduction of a the Global FX volatility

factor. This bright achievement stems from a well documented time-series empirical

evidence (e.g. see Bhansali (2007)): carry trade strategies perform well when “mar-

ket” volatility is low, vice-versa experience high losses in periods of uncertainty. We

try to combine these results with empirical evidences on daily exchange rate returns

skewness distribution (see Brunnermeier Nagel and Pedersen (2008)) by building a

skewness based risk factor tracking downside risk in exchange rate returns, i.e. the

asymmetries in daily exchange return distribution, not captured by volatility. We

find that SKEWHML
M variable is one of the systematic risk factor priced in the cross

section of currency excess returns. More in details, low interest rate currency returns

positively co-move with the skewness factor, providing an hedge to this source of risk;

the opposite hold for high interest rate currencies. This means that carry trade prof-

itability is also driven by the exposure to SKEWHML
M , interpreted as a time-varying
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risk of downside. The results survive several robustness tests.

Finally we apply extreme value theory (EVT) to exploit information in the tails of

return series. We construct a factor, which turns out to be related to the skewness

proxy, tracking downside risk of deep-into-the-tail observations and we show that it

is priced in the cross section of carry trade excess returns. We therefore confirm that

asymmetry of exchange rate return distribution (we measured either with SKEWHML
M

or with the Tail factor) is one of the sources of carry trade time-varying risk premium,

though to a lesser extent than volatility.
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Figure 9: Risk Factors: time-series plot of DOL, Global FX volatility innovations
and of SKEWHML

M , sample period January 1991-March 2011.
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Figure 11: Time series of 1-month daily exchange rate return skewness. 13d
deals with Japanese Yen (funding currency) and Australian dollar (investment cur-
rency), 13f with Swiss Franc (funding currency) and New Zealand dollar (investment
currency).
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Figure 13: Time-series related to the Tail Risk Factor. Plots (a), (b), (c), (d),
(e) reports up-tail and down-tail αs for a selected group of currencies. (f) depicts the
time-series of the tail risk factor.
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Table 1: Descriptive Statistics: for each portfolio j, sorted monthly on the for-
ward discount at month t−1, the DOL and the carry portfolio Panel I of this table
reports annualized mean returns and standard deviations (both in percentage points),
skewness, kurtosis and Sharpe Ratios (SR) of monthly currency portfolio log-returns.
Panel II reports annualized mean returns and standard deviations (both in percentage
points), skewness, kurtosis of the change in spot exchange rate ∆s j, j = 1, . . .5. Panel
III shows the average switching frequency of currencies in each portfolio. Statistical
significance has to be interpreted as ∗p < 0.05, ∗∗p < 0.01. The sample period starts
in January 1991 and ends in March 2011 (243 monthly observations in Panel I,
5281 daily observations in Panel II). Point of view of a US investor.

Portfolio 1 2 3 4 5 Average
High
minus
Low

Panel I: log-excess returns

Mean -2.77 0.45 3.52 2.72 5.67 3.17 8.44

Std.dev. 6.54∗∗ 6.27∗∗ 7.53∗∗ 7.91∗∗ 9.71∗∗ 6.54∗∗ 8.71∗∗

(0.40) (0.47) (0.62) (0.83) (0.97) (0.53) (0.72)

Skew -0.11 -0.11 -0.43 -1.00∗∗ -0.76∗ -0.53 -0.70∗∗

( 0.23) (0.25) (0.27) (0.31) (0.35) ( 0.28) (0.19)

Kurt 3.93∗∗ 4.29∗∗ 4.93∗∗ 6.69∗ 6.12∗ 4.75∗ 4.32∗∗

(1.00) (1.38) (1.70) (2.65) (2.37) (1.85) (1.44)

SR -0.42 0.07 0.46 0.34 0.58∗∗ 0.27 0.97∗∗

(0.26) (0.24) (0.26) (0.25) (0.28) (0.26) (0.28)

Panel II: Spot change ∆s j

Mean -0.75 -0.76 -1.46 1.394 2.94 3.69 0.27

Std.dev. 5.83∗∗ 5.95∗∗ 7.13∗∗ 7.26∗∗ 8.27∗∗ 8.11∗∗ 5.71
(0.15) (0.16) (0.22) (0.26) (0.34) (0.33) (0.14)

Skew -0.46∗∗ -0.52∗ -0.06 1.06 0.66∗∗ 0.76∗∗ 0.07
(0.15) (0.19) (0.20) (0.65) (0.23) (0.18) (0.15)

Kurt 7.79∗∗ 9.01∗∗ 9.43 ∗ 18.56 11.59∗∗ 11.04∗∗ 6.51∗∗

(1.24) (2.16) (2.18) (11.23) (2.87) (2.72) (1.15)

Panel III: Frequency

Av. Switches (%) 22.88 35.17 37.91 40.03 35.06 34.21
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Table 2: Cross-sectional test: DOL and SKEWHML
M . Panel I of this table reports

cross-sectional pricing results for the factor model with the dollar risk factor (DOL)
and the skewness factor mimicking portfolio (SKEWHML

M ) on five carry trade
portfolios. We estimate factor price of risk by means of two stage GMM. Standard
errors (s.e.) of coefficient estimates are obtained according to Newey and West (1987).
Panel II reports results coming from the other moment conditions, counterpart of
time-series regressions of excess returns on a constant, the DOL, and the SKEWHML

M
factor. HAC standard errors (NeweyWest) are reported in parentheses. Statistical
significance has to be interpreted as ∗p < 0.05, ∗∗p < 0.01. The sample period is
January 1991 to March 2011, 243 observations. Returns are monthly.

PANEL I

DOL SKEWHML
M

λ 0.300 −0.085∗∗

s.e. (0.154) (0.020)

PANEL II

Portfolio α DOL SKEWHML

1 -0.182∗∗ 0.930∗∗ 6.017∗∗

(0.050) (0.038) (0.387)

2 0.050 0.941∗∗ 4.743∗∗

(0.042) (0.028) (0.294)

3 0.146∗ 1.064∗∗ 0.289
(0.064) (0.046) (0.479)

4 -0.058 1.010∗∗ -4.288∗∗

(0.063) (0.050) (0.446)

5 0.070 1.054∗∗ -7.842∗∗

(0.097) (0.074) (0.707)
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Table 3: Cross-sectional test: DOL, VOL and SKEWHML
M . Panel I of this table

reports cross-sectional pricing results for the factor model with the dollar risk fac-
tor (DOL) and the skewness factor mimicking portfolio (SKEWHML

M ) and the
global FX volatility innovations (VOL) on five carry trade portfolios. We estimate
factor price of risk by means of two stage GMM. Standard errors (s.e.) of coefficient
estimates are obtained according to Newey and West (1987). Panel II reports results
for the other moment conditions, counterpart of time-series regressions of excess re-
turns on a constant, the DOL, the SKEWHML

M factor and VOL. HAC standard errors
(NeweyWest) are reported in parentheses. Statistical significance has to be inter-
preted as ∗p < 0.05, ∗∗p < 0.01. The sample period is January 1991 to March
2011, 243 observations. Returns are monthly.

PANEL I

DOL SKEWHML
M VOL

λ 0.214 0.104 -0.216
s.e. (0.143) (0.079) (0.117)

PANEL II

Portfolio α DOL SKEWHML VOL

1 -0.366∗∗ 0.941∗∗ 5.809∗∗ 4.576∗∗

(0.052) (0.037) (0.390) (0.433)

2 -0.094∗ 0.929∗∗ 4.959∗∗ 2.077∗∗

(0.042) (0.027) (0.310) (0.326)

3 0.137∗ 1.076∗∗ 0.069 1.066
(0.061) (0.049) (0.474) (0.915)

4 0.072 1.012∗∗ -4.320∗∗ -2.536 ∗∗

(0.060) (0.045) (0.464) (0.864)

5 0.309∗∗ 1.043∗∗ -7.635∗∗ -5.713 ∗∗

(0.092) (0.070) (0.717) (1.458)
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Table 4: Post Euro Era. Panel I of this table reports cross-sectional pricing results
for the factor model with the dollar risk factor (DOL) and the skewness factor
mimicking portfolio (SKEWHML

M ) and the global FX volatility innovations (VOL)
on five carry trade portfolios. We estimate factor price of risk by means of two
stage GMM. Standard errors (s.e.) of coefficient estimates are obtained according to
Newey and West (1987). Panel II reports results for the other moment conditions,
counterpart of time-series regressions of excess returns on a constant

”
the DOL, the

SKEWHML
M factor and VOL. HAC standard errors (NeweyWest) are reported in paren-

theses. Statistical significance has to be interpreted as ∗p < 0.05, ∗∗p < 0.01. The
sample period is January 1999 to March 2011, 147 observations. Returns are
monthly.

PANEL I

DOL SKEWHML
M VOL

λ 0.312 -0.060∗∗∗ -0.124∗∗

s.e. (0.201) (0.015) (0.045)

PANEL II

Portfolio α DOL SKEWHML VOL

1 -0.249∗∗∗ 0.896∗∗∗ 5.683∗∗∗ 1.174∗

(0.0738) (0.0451) (0.680) (0.669)

2 0.0725 0.936∗∗∗ 4.978∗∗∗ -1.242∗∗∗

(0.0517) (0.0370) (0.535) (0.556)

3 0.129∗∗ 1.162∗∗∗ 0.774 0.640
(0.0573) (0.0348) (0.565) (0.864)

4 -0.184∗∗∗ 1.069∗∗∗ -3.789∗∗∗ -0.499
(0.0542) (0.0433) (0.589) (0.619)

5 0.268∗∗∗ 0.935∗∗∗ -8.467∗∗∗ -0.177
(0.0853) (0.0540) (0.794) (0.992)
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Table 5: Pre Euro Era. Panel I of this table reports cross-sectional pricing results
for the factor model with the dollar risk factor (DOL) and the skewness factor
mimicking portfolio (SKEWHML

M ) and the global FX volatility innovations (VOL)
on five carry trade portfolios. We estimate factor price of risk by means of two
stage GMM. Standard errors (s.e.) of coefficient estimates are obtained according to
Newey and West (1987). Panel II reports results for the other moment conditions,
counterpart of time-series regressions of excess returns on a constant

”
the DOL, the

SKEWHML
M factor and VOL. HAC standard errors (NeweyWest) are reported in paren-

theses. Statistical significance has to be interpreted as ∗p < 0.05, ∗∗p < 0.01. The
sample period is January 1991 to December 1998, 96 observations. Returns are
monthly.

PANEL I

DOL SKEWHML
M VOL

λ -0.066 -0.076∗∗ 0.055
s.e. (0.207) (0.035) (0.030)

PANEL II

Portfolio α DOL SKEWHML VOL

1 -0.199∗∗ 1.039∗∗ 6.241∗∗ 5.069∗∗

(0.064) (0.045) (0.396) (0.614)

2 -0.065 0.909∗∗ 4.859∗∗ 2.992∗∗

(0.072) (0.043) (0.358) (0.545)

3 0.155 0.907∗∗ -1.021 1.458
(0.128) (0.096) (0.575) (1.339)

4 0.228∗ 0.905∗∗ -5.196∗∗ -2.147
(0.090) (0.075) (0.604) (1.558)

5 -0.072 1.237∗∗ -6.169∗∗ -7.948∗∗

( 0.153) (0.134) (0.907) (2.533)
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Table 6: Correlation between factors and liquidity/illiquidity proxies. Cor-
relation coefficients of ∆σFX , TED spread, innovations in GLOBAL ba and Pastor-
Stambaugh liquidity measure (Panel I) and SKEWHML

M , TED spread, innovations in
GLOBAL ba and Pastor-Stambaugh liquidity measure (Panel II). The sample period
is January 1991-March 2011 (243 monthly observations).

Panel I

∆σFX BID-ASK TED PS

∆σFX 1
BID-ASK 0.1623 1

TED 0.3266 0.0783 1
PS -0.2214 -0.0781 -0.2332 1

Panel II

SKEWHML
M BID-ASK TED PS

SKEWHML
M 1

BID-ASK -0.0169 1
TED 0.2446 0.0783 1
PS -0.1314 -0.0781 -0.2332 1
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Table 7: Robustness I: developed countries. Panel I of this table reports cross-
sectional pricing results for the factor model with the dollar risk factor (DOL) and the
skewness factor mimicking portfolio (SKEWHML

M ) on five carry trade portfolios,
when only developed countries are considered. We estimate factor price of risk by
means of two stage GMM. Standard errors (s.e.) of coefficient estimates are obtained
according to Newey and West (1987). Panel II reports results for the other moment
conditions, counterpart of time-series regressions of excess returns on a constant, the
DOL, and the SKEWHML

M factor. HAC standard errors (NeweyWest) are reported in
parentheses. Statistical significance has to be interpreted as ∗p < 0.05, ∗∗p < 0.01.
The sample period is January 1991-March 2011 (243 monthly observations).

PANEL I

DOL SKEWHML
M

λ 0.169 −0.037∗

s.e. (0.151) (0.015)

PANEL II

Portfolio α DOL SKEWHML

1 -0.000 1.122∗∗ 7.768∗∗

(0.114) (0.088) (0.873)

2 -0.053 1.160∗∗ 5.940∗∗

(0.088) (0.093) (0.854)

3 -0.011 1.247∗∗ 0.814
(0.105) (0.057) (1.016)

4 0.000 1.151∗∗ -1.750
(0.115) (0.101) (1.084)

5 0.005 1.424∗∗ -3.398∗∗

(0.113) (0.086) (1.169)
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Table 8: Robustness II: Fama-Macbeth regression. Panel I reports cross-
sectional pricing results for the factor model with the dollar risk factor (DOL) and the
skewness factor mimicking portfolio (SKEWHML

M ) on five carry trade portfo-
lios, when the prices of risk are estimated by means of Fama and Macbeth (1973)
procedure, and factor loadings estimated on a rolling basis (plotted on the figure
below). Statistical significance has to be interpreted as ∗p < 0.05, ∗∗p < 0.01. The
sample period is January 1991 to March 2011, 243 observations. Returns are
monthly.

PANEL I

DOL SKEWHML
M

λ 0.131 −0.049∗∗

s.e. (0.140) (0.010)

-1
5
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0

-5
0

5
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mydate

beta_1 beta_2
beta_3 beta_4
beta_5

91



Table 9: Robustness III: bid-ask spread. Panel I of this table reports cross-
sectional pricing results for the factor model with the dollar risk factor (DOL) and the
skewness factor mimicking portfolio (SKEWHML

M ) on five carry trade portfolios,
when returns are computed net of bid-ask spreads. We estimate factor price of
risk by means of two stage GMM. Standard errors (s.e.) of coefficient estimates
are obtained according to Newey and West (1987). Panel II reports results for the
other moment conditions, counterpart of time-series regressions of excess returns on
a constant, the DOL, and the SKEWHML

M factor. HAC standard errors (NeweyWest)
are reported in parentheses. Statistical significance has to be interpreted as ∗p < 0.05,
∗∗p < 0.01. The sample period is January 1991 to March 2011, 243 observations.
Returns are monthly.

PANEL I

DOL SKEWHML
M

λ 0.252 −0.053∗∗

s.e. (0.120) (0.019)

PANEL II

Portfolio α DOL SKEWHML

1 -0.012 1.206∗∗ 8.614∗∗

(0.077) (0.075) (0.813)

2 0.043 1.486∗∗ 8.641∗∗

(0.033) (0.026) (0.219)

3 0.136∗ 1.627∗∗ 4.410∗∗

(0.065) (0.055) (0.500)

4 -0.106 1.516∗∗ -0.504
(0.067) (0.073) (0.527)

5 -0.085 1.577∗∗ -3.932∗∗

(0.098) (0.123) (0.769)

92



Table 10: Cross-sectional test: Tail Risk Factor (I). Panel I of this table reports
cross-sectional pricing results for the factor model with the dollar risk factor (DOL)
and the tail factor on five carry trade portfolios. We estimate factor price of risk by
means of two stage GMM. Standard errors (s.e.) of coefficient estimates are obtained
according to Newey and West (1987). Panel II reports results for the other moment
conditions, counterpart of time-series regressions of excess returns on a constant,
the DOL, and the tail factor. HAC standard errors (NeweyWest) are reported in
parentheses. Statistical significance has to be interpreted as ∗p < 0.10, ∗∗p < 0.05,
∗∗∗p < 0.01. The sample period is January 1999 to March 2011, 145 observations.
Returns are monthly.

PANEL I

DOL TAIL

λ 0.371∗ −0.017∗∗

s.e. (0.193) (0.006)

PANEL II

Portfolio α DOL SKEWHML

1 -0.427∗∗∗ 0.819∗∗∗ 10.02
(0.110) (0.0612) (8.311)

2 -0.104 0.913∗∗∗ 11.68∗∗∗

(0.0663) (0.0335) (3.666)

3 0.108∗ 1.142∗∗∗ 9.170∗∗

(0.0553) (0.0305) (4.623)

4 -0.0579 1.116∗∗∗ -0.739
(0.0735) (0.0604) (4.617)

5 0.543∗∗∗ 1.018∗∗∗ -31.55∗∗∗

(0.112) (0.0655) (7.581)
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Table 11: II. Panel I of this table reports cross-sectional pricing results for the factor
model with the dollar risk factor (DOL) and the tail factor on five carry trade
portfolios. We estimate factor price of risk by means of two stage GMM. Standard
errors (s.e.) of coefficient estimates are obtained according to Newey and West (1987).
Panel II reports results for the other moment conditions, counterpart of time-series
regressions of excess returns on a constant, the DOL, and the tail factor. HAC
standard errors (NeweyWest) are reported in parentheses. Statistical significance has
to be interpreted as ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. The sample period is January
1999 to July 2007, financial crisis excluded, 103 observations. Returns are
monthly.

PANEL I

DOL TAIL

λ 0.306 −0.022∗∗

s.e. (0.181) (0.013)

PANEL II

Portfolio α DOL SKEWHML

1 -0.622∗∗∗ 1.022∗∗∗ 3.479
(0.127) (0.133) (10.81)

2 -0.112 0.800∗∗∗ 13.40∗∗∗

(0.0792) (0.0683) (4.429)

3 0.129∗ 1.075∗∗∗ 6.441
(0.0586) (0.0592) (5.344)

4 0.0484 0.891∗∗∗ 7.782∗

(0.0673) (0.0638) (4.333)

5 0.625∗∗∗ 1.209∗∗∗ -31.84∗∗∗

(0.134) (0.124) (9.470)
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Appendices

A Extreme Value Theory

EVT provides a framework to study the behavior of the tails of the distributions

without knowing them completely. We know that, according to the Central Limit

Theorem, the limiting distribution of sample averages is a Normal; analogously the

limit laws of ordered statistics are described by a class of EVT distributions.

Let x1,x2, . . .xN be a sequence of stationary i.i.d. random variables and consider the

maximum order statistics Mn = max(x1,x2, . . .xn) of the first n < N random variables

ordered as x1 ≤ x2 ≤ ·· · ≤ xn. EVT studies the probability of Mn being lower than x,

that is Pr(Mn ≤ x) = Pr(X1 ≤ x,X2 ≤ x, ...,Xn ≤ x) and provide limiting results. Indeed

under certain general conditions it can be proved that (Fisher-Tippet theorem, see

Gnedenko (1943)) independently from the original distribution of the observed data

Pr(an(Mn−bn))≤ x) −→
n→∞

G(x), (46)

with an and bn normalizing constant and G(x) the Generalized Extreme Value distri-

bution (GVE), given by

G(x) =


exp
(
−
(

1 + γ

(
(x−µ)

σ

))−1/γ
)
, γ 6= 0

exp
(
−exp

(
− (x−µ)

σ

))
, γ = 0,

(47)

with µ the location, σ the scale and γ the shape parameter (related to the tail index

α). This class of distributions is composed of the so-called max-stable distributions

and can be divided into three main subgroups, representing three possibilities for the

decay of the density function in the tail:

1. Gumbel type tails: exponential tail decline, all finite moments exist (examples:

normal, log-normal, and gamma distributions), γ = 0

Λ(x) = exp(−exp(−x)) , x ∈ R (48)
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2. Frechet type tails: power tail decline (less quick than previous sub-group), fat

tail distributions, several finite moments might not exist (examples: Stable,

Paretian, Student’s t, ARCH type processes), α = 1
γ
, γ > 0

Φα(x) =

 0 x≤ 0, α > 0

exp(−x−α) x > 0, α > 0,
(49)

3. Weibull type tails: thin-tailed distributions with a finite upper endpoint, α =−1
γ
,

γ < 0

Ψα(x) =

 exp(−(−x−α)) x < 0, α > 0

0 x≥ 0, α > 0.
(50)

In other words, Φα(x) nests the limit of competing fat-tailed density functions, dis-

tinguished by different values for the tail index α, that thus characterizes the limit law.

In addition to the previous results, always within the framework of EVT, Beirlant

et al. (1996) study statistical properties for events that exceed a certain threshold u,

that is once again events in the tails. Given a continuous distribution function FX(x)

and a threshold u smaller than the right end-point of X , the distribution of X above

the threshold can be proved to converge to a generalized Pareto distribution (GDP)

(described by one parameter γ), that is

Fu
X (x) = Pr(X ≤ z |X > u)∼ 1− (1 + γ x)−

1
γ =


1− exp(−x) x≥ 0 Gumbel type

1− x−α, x < 1 Frechet type

1− (−x)α, x < 1 Weibull type.

(51)

Overall EVT describes the behavior of large observations, independently from the

distribution of the fluctuations of the system and it provides also the functional form

for the description of the tails.
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Extreme events of returns (and many other processes) have been shown to follow

empirically a Pareto or a power law tail (see Gabaix (2003)). Thanks to the previous

results of EVT, i.e. that the limit of large events for a whole class of distributions fol-

lows a Pareto, we are thus equipped with theory supporting the empirical evidences.

More formally a process X is said to have a power law tail above the threshold u if

(1−Fu
X (x)) = Pr(X ≥ x)∼ x−α, for x > u (52)

where α > 0 is the tail index, i.e. the only parameter that determine the actual shape

of the tail (clearly there is an obvious inverse relation between α and the size of a fat

tail: the larger α the less fat the tail is). Notice that α represents also the number of

existing moments of the distribution: only moments of order lower than α do indeed

converge.

The literature introduced several parametric and nonparametric estimators of the

tail index α. Among those proposed for the Frechet type tail, in this paper we con-

sider the one introduced by Hill (1975). This the most efficient estimator, moreover

it is asymptotically unbiased:

α̂ =

(
1
k

k

∑
i=1

[
log
(x(n+1−i)

u

)])−1

, (53)

where k is the number of observations above the threshold u, n is the total sample size

and x(i) denotes the ordered statistics, i.e. x(1) ≤ x(2) ≤ ·· · ≤ x(n). Of course the choice

of the threshold u is crucial, as too many observations can bias the estimate, while

too few can enlarge its variance. Among the several method introduced for jointly

estimating α and u we adopt the one of Clauset et al. (2009). We refer to their article

for details.
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3 Country-Specific Characteristics, Equity Capi-

tal Flows and Carry Trade

Sofia Cazzaniga

University of Lugano and Swiss Finance Institute

abstract

We introduce a measure of country specific co-dependence between carry trade excess

returns and the equity market of the target country in bad states of the local economy.

By means of this measure, we call “downside co-dependence”, we asses that, besides

standard risk factors for the currency market, there are country specific characteristics

that affect the performance of currency strategies. Sorting currencies according to the

country specific downside co-depedence reveals a monotonic pattern in expected carry

trade excess returns, we show to be the result of capital flows of international equity

investors that react heterogeneously to adverse local market conditions. We therefore

introduce a variable tracking these capital flows and we document its explanatory

power for the time series of bilateral carry trade returns. Finally, by means of extreme

value techniques, we rule out the hypothesis that extreme tail dependence between

equity and carry trade returns drive our results.

*The author acknowledges the financial support of the Swiss National Science Foundation

(SNSF), Berne (CH).

Special thanks go to Prof. Francesco Franzoni, Prof. Xavier Gabaix for their helpful advice

and precious help.
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3.1 Introduction

The assessment of factors driving the profitability of currency strategies considerably ac-

celerated in the last years. Starting from Lustig and Verdelhan (2007), who were the first

to study the cross section of currency portfolio sorted by interest rates, the literature has

been growing very fast. Indeed in order to explain carry trade returns and exchange rate

returns several risk factors have been proposed and investigated, see for instance Lustig,

Roussanov and Verdelhan (2011) (PCA analysis and HMLFX factor), Menkhoff, Sarno,

Schmeling and Schrimpf (2012) (global volatility factor), Rafferty (2011) (skewness factor),

Mueller, Stathopoulos and Vedolin (2012) (correlation risk factor), Vedelhan (2012) (dollar

factor). With the notable exception of the global imbalance risk factor of Della Corte, Rid-

diough and Sarno (2013)14, most of the previous factors are derived from currency portfolios

sorted according to certain characteristics; they are priced only in the currency market and

are not suited for an exhaustive interpretation in terms of fundamentals. As a consequence

some researchers have disagreed with the risk-based explanation of carry trade returns. For

instance Burnside (2011) strongly criticizes Lustig and Verdelhan (2007) paper and Burn-

side (2012) states that the traditional risk factors do not work, as carry trade betas are too

small for rationalizing the high returns. Yet very recently Dobrynskaya (2012) and Lettau,

Maggiori and Weber (2013) overcome this issue thanks to the introduction of a downside

market risk factor. Lettau, Maggiori and Weber (2013), in a general framework they call

“downside risk CAPM” model, give a unified risk based explanation for currency, equity,

commodity and sovereign bonds.

The main goal of all the papers previously mentioned is the successful search for factors

that track global shocks cross-sectionally priced; the role of local characteristics is not in-

vestigated. Each country though has a peculiar economic system and can be positively or

negatively affected by beliefs or by the sentiment of a certain group of investors. Therefore

14Della Corte, Riddiough and Sarno (2013) risk factor, not only has explanatory power superior

to the other factors available in the literature in explaining the variation of currency excess returns,

but it also has a clear economic interpretation, as it captures the exposure to countries’ external

imbalances.
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in this paper we try to fill this gap of the literature, that is we scrutinize whether carry

trade investors should better consider certain characteristics, specific of certain countries or

of certain groups of countries, besides global factors.

Empirical microstructure literature in the forex market investigated the role of foreign

exchange order flow (the difference between buy and sell orders) on exchange rate returns.

Evans and Lyons (2002) and Lyons (2001) provide evidence that exchange rate movements

are connected to investors behavior that reveals in order flow. They indeed document a

high correlation between exchange rates and electronic trading order flow. In addition to

this they show that besides being impacted by public information (macro news) even in

case of no transactions, exchange rates are influenced by investors order flow and the re-

sulting effect is persistent. Della Corte, Rime and Tsiakas (2013) go beyond these results

and show that the predictive ability of customer order flow (mainly asset managers and

hedge funds) on exchange rate returns can be exploited for constructing profitable currency

trading strategies. Moreover they show that order flow aggregates efficiently the macroeco-

nomic information that is relevant for the understanding of exchange rates.

Among all different players that are sources of currency order flow, here we are specifically

interested in international equity investors. As in general they are highly exposed to ex-

change rate risk, they care about both the volatility of the exchange rate and the correlation

structure of exchange rates and foreign equity returns. Therefore in response to good or bad

changes in their investment opportunity set they increase or decrease their foreign invest-

ments. They thus generate capital flows that theoretically can impact carry trade returns.

In other words equity portfolio flows can, at least partly, determine the supply and demand

of foreign exchange balances in the short run. We expect this effect to get stronger and

stronger through time because of the huge increase of international capital mobility during

the last decades.

In the following we measure the effect of capital flows, disentangled from the impact of

known sources of risk, induced by international equity investors on the cross section of

currency excess returns. We will not rely on proprietary data of currency flows informa-

tion. Therefore our proxy for capital flows will be given by returns themselves, given that
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these two quantities are tightly related. In pursuing our investigation we can rely on the

support of previous literature dealing with price transmission channels between equity and

currency markets, see for instance Hau and Rey (2006) and Francis, Hasan and Hunter

(2006). Francis, Hasan and Hunter (2006) are the first to study dynamic relationships be-

tween international equity and currency markets, while previous research simply focused

on bivariate interequity/intercurrency relationships. In particular, by means of a trivari-

ate asymmetric GARCH model, they document that there exist significant relationships

between equity and currency markets both in the expected returns and in the volatilities.

They attribute these connections to spillovers of information conveyed by the mechanism

of currency order flow (defined as the net purchase of foreign currency). In particular they

show that there are asymmetric volatility spillovers from the equity market to the currency

market when bad news to the equity market occur: if investors’ appetite for risk changes

with bad news in one equity market, portfolio rebalance intensity increases across markets,

currency order flow increases and in turn exchange rate moves.

This paper is also related to the literature dealing with downside aversion. It is in-

deed known that investors are much more averse to losses than attracted by gains (Roy

(1952)). This empirical evidence have been theoretically explained in several different ways:

rational disappointment aversion in the utility function -Gul (1991), Routledge and Zin

(2010)-, utility function with behavioral loss aversion -Barberis, Huang and Santos (2001)-,

funding liquidity constraints and liquidity spirals -Brunnermeier and Pedersen (2009)-, fund

flows, short-sale constraints -Chen, Hong and Stein (2001). And of course asset pricing mod-

els incorporating these evidences have been introduced and tested (see, for instance, Ang,

Chen and Xing (2006), Lettau, Maggiori and Weber (2013), Dobrynskaya (2012)).

In agreement with investors putting more weight on bad outcomes (low returns states), we

document that capital flows of international equity investors impact exchange rates in states

of the world that are bad for the local equity markets.

On a daily rolling basis we compute for each country a measure of downside correlation

101



between the local equity market in local currency and the carry trade returns of an investor

shorting USD and going long the currency of exactly that country. We then sort currencies

according to the “previous day country-specific downside beta” and we form portfolios. We

document that statistically significant excess returns are left on top of standard risk fac-

tors for the currency market, i.e. carry trade and dollar risk. Moreover these alphas turn

out to have a monotone decreasing pattern: negative downside beta currencies returns a

positive alpha, while positive and high downside beta currencies returns a negative alpha.

A positive downside beta means that in bad states for the foreign equity markets, the for-

eign currency depreciates. We show that these countries are those whose economy strongly

relies on the export of primary commodities. As Chaban (2009) points out, a reduction

in commodity prices penalizes the equity market of commodity exporting countries and

trigger outflows of capital of international equity investors, resulting in foreign currency

depreciation. This mechanism leaves carry trade investors with a negative expected excess

return. The explanation is different, but still based on capital flows, for currencies hav-

ing a negative downside beta. In this case if the local market perform badly, its currency

strengthens and mitigates the losses of international equity investors long in that equity

market. Currency appreciation in turn yields carry trade investors with a positive alpha.

The negative beta is a consequence of the portfolio rebalancing activity of international

equity investors documented by Hau and Rey (2006). These investors are in general highly

exposed to exchange rate risk and, if the performance of the foreign equity market increases

substantially, they partly repatriate their investment in order to lower their exposure. The

selling order depreciates the foreign currency and generates a negative correlation between

local equity and exchange rate returns (country specific counter-cyclicality of the exchange

rate).

To sum up: we show that sorting individual currencies carry trade returns according to

their past downside beta with their respective local equity markets, reveals important infor-

mation on the capital flows of international equity investors. We collect this information in

a variable we call “Flow Currency Variable” and we document that it has a discrete power

in explaining the time series of excess returns of individual currencies.
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Finally our paper relates to the literature dealing with the role of extreme observations

in return series and with extreme value theory applications to finance. The recent financial

crisis highlighted the importance of asymmetry in return distribution and of rare events

in asset pricing and portfolio choice. Models relying on standard correlation for measuring

co-movement among assets can indeed understate the true risk. Indeed correlation measures

the average deviations from the mean and gives the same weight to extreme realizations

as to the other observations in the sample. Correlation is therefore not a good measure of

dependency if extreme realizations are important. Extreme value theory, instead, provides

several parametric and non-parametric tools for modeling joint-tail return distributions be-

tween return series and it is shaped exactly to deal with extreme events. In particular we

use the χ measure adopted by Poon, Rockinger and Tawn (2004) for measuring the tail de-

pendence between returns on the foreign equity market and on the foreign exchange trading

strategy.

This analysis is aimed at verifying whether our results previously obtained with downside

beta sorted portfolios are driven by dependence between extreme observations in lower tails

of the series. In other words we want to test if they are driven by crashes of the equity

markets, or if they are indeed truly reflecting the aversion of foreign international investors

to bad states of the local markets (that is downside aversion). Downside aversion differs

from aversion to crashes. “Downside betas” tracks the covariance of asset’s return with the

market in bad states, i.e. states of poor performance; “crash betas” pertains to extremal

negative observations, i.e. those deep-into-the-tails, that happen with very low probability.

We do not claim χ to be an exhaustive measure of dependence during crashes, but as it is

designed to measure the“correlation between two series in the tails”, it can in principle track

different information from those summarized by the downside beta. Therefore in analogy

to the previous analysis we employ χ for sorting currencies into portfolios, but this time no

significant alpha is left on the table. We therefore rule out the crash story.

The paper is organized as follows: in section 3.2 we describe the data we use and in section

3.3 we illustrate the methodology we adopt. In section 3.4 we sort portfolios according
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to the country specific measure of downside co-movement, we analyze the implications of

the empirical results and we introduce a flow tracking variable. We turn our attention to

measures of tail dependence and report the results we get in section 3.8. Robustness tests

can be found in section 3.10 and finally in section 3.11 we conclude.

3.2 Data

We obtain data for several countries from Datastream. Following Lustig, Roussanov and

Verdelhan (2011), we delete observations of daily spot and forward exchange rates that

reveals violations of the covered interest rate parity.

As far as the country equity indexes we rely on the Datastream Global Equity Indexes,

that are constructed with a representative sample of stocks covering at least 75 - 80% of

total market capitalization of each country. The indexes are in local currency and include

dividends distributions (total return index). For the U.S., we use the value-weighted return

series from the Center for Research on Security Prices.

After matching the sample of currencies with that of equities we are left with 42 countries,

covering the sample period from January 1985 to December 2011: Australia, Austria, Bel-

gium, Brazil, Bulgaria, Canada, Chile, Cyprus, Czech republic, Denmark, Finland, France,

Germany, Greece, Hong Kong, Hungary, India, Indonesia, Ireland, Israel, Italy, Japan,

Malaysia, Mexico, Netherlands, New Zealand, Norway, Philippines, Poland, Portugal, Rus-

sia, Singapore, Slovakia, Slovenia, South Africa, Spain, Sweden, Switzerland, Taiwan, Thai-

land, Turkey and United Kingdom.

Spot (St) and Forward (Ft) exchange rates are measured in number of foreign currency per

USD, that is an increase in St denotes an appreciation of the US $. As it is standard in the

literature, we deal with log-variables: s j,t = log(S j,t) and f k
j,t = log(Fk

j,t), with k denoting the

maturity of the forward contract, and j the currency.

We compute daily carry trade excess returns on currency j (the excess returns obtained

shorting USD and investing in the foreign currency) as:

rCT
j,(t+1) = (i∗j,t − it)− (s j,(t+1)− s j,t), (54)
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where i∗j,t is the one-day foreign interest rate in country j and it the one-day US interest

rate. As it will be clear in the next paragraphs, we want to study the effect of equity capital

flows on exchange rates and excess carry trade returns. These capital flows are known to

occur in the very short-run, therefore we will focus on daily horizon.

3.3 Methodology

In this section we illustrate our methodological approach.

We consider a carry trade speculator, concerned not only with global systematic risk, but

also with the characteristics of individual countries and/or the characteristics of groups of

countries that share economic and financial commonalities. We take the point of view of a

US-based speculator who goes short low interest rate and long high interest rate currencies.

We conjecture he wants to use some additional criterion beyond the forward discount, to

better pick investment and funding currencies, thus improving his investment choices. For

instance some exchange rates might be affected by local properties, predictable to a cer-

tain extent, or might be affected by the trading activity of other investors even if active

in other asset classes. It is indeed the case that interactions between foreign equity, bond,

commodity and currency markets are in general complex and the dynamics we observe are

the results of several different effects that can amplify or offset each other. We therefore

believe that in order to explain the dynamics of carry trade excess returns, the DOL and the

HMLFX factors, tracking different types of risk globally priced (Vedelhan (2012)), cannot

be the end of the story. It is reasonable to conjecture that equity capital flows of un-hedged

foreign equity investments can affect carry trade profitability because of spillovers of coun-

try specific equity shocks of certain countries, that play specific roles on the global scale.

In order to address these issues we assume that daily excess returns of local equity markets

in local currencies are good proxy for country specific information. Dobrynskaya (2012)

and Lettau, Maggiori and Weber (2013) show that the carry trade is more correlated with

the global market during market downturns than upturns. In other terms they show that

downside market risk is priced in the cross section of carry trade returns, while market risk

is not. In analogy to these analysis, we test whether bad states of the local economy are
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informative; therefore we focus on country specific measures of downside co-movement. No-

tice that, though, differently from Lettau, Maggiori and Weber (2013), we do not search for

global risk factors cross-sectionally priced; our analysis is aimed at studying the explanatory

power of downside characteristics, i.e. of country specific characteristics in bad states of the

local economy.

We perform the analysis in the following way: for every day t and for each currency j

in our sample we compute the downside beta and the upside beta of daily carry trade

excess returns on daily foreign equity (in foreign currency units) excess returns over the

previous year (thus approximately over the previous 250 days). That is, for each currency

j we perform the regression

rCT
j,t = α j + β j rEQ

j,t + δi D j,t rEQ
j,t + ε j,t , (55)

where rCT
j,t is the excess carry trade return on currency j, (i.e. that is short the USD and

long the foreign currency j), rEQ
j,t is the excess return on the equity of country j in local

currency units and D j,t is a dummy variable defined as

D j,t =

 0, if rEQ
j,t < 0

1, if rEQ
j,t > 0

. (56)

In this setting β j is the downside beta, while β j + δ j is the upside beta.

They represent, respectively, the sensitivity of a carry trade strategy shorting USD and

long in currency j, to the excess returns of the stock market of the corresponding country

j in bad (negative return) and good states (positive returns). For completeness purposes

we compute the rolling OLS beta coefficients, that is without differentiating between good

and bad states.

3.4 Downside-beta Portfolios

Given the time series of beta for each country, we sort currencies according to their downside

beta of the previous day and we form five equally weighted portfolios.

In figure 1 we plot the rolling estimates of downside, upside and OLS beta for some major
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currencies in our sample. In the column on the left, labeled (a) we find some of the countries

which end up in portfolio 1 most of the times, while in the right column labeled (b) we find

some of the countries ending up in portfolio 5. Clearly upside and downside betas, as

expected, move in opposite directions, with standard beta lying most of the times in the

middle. We notice that the absolute value of the downside betas is in general larger that the

absolute value of the OLS beta. This means that in local market downturns the sensitivity

of currency investments to the local equity market increases.

We now analyze the currency portfolios Pi, i = 1 . . .5. Summary statistics is reported in table

12. They do not look like forward discount sorted portfolios, as in that case we would expect

monotonically increasing alphas and almost monotonically decreasing skewness (Lustig,

Roussanov and Verdelhan (2011)). In addition to this we notice that only the skewness of

P5 is negative and significant, being constituted by currencies of countries whose interest

rate is high. Interestingly, kurtosis has an increasing pattern. Therefore sorting currencies

according to their past country specific downside beta, seems to be connected to the fourth

moment of the distribution of excess returns. This is a totally different property from those

of forward discount sorted currencies as no kurtosis is recognizable across portfolios (Lustig,

Roussanov and Verdelhan (2011)).

3.5 Downside Country Specific Expected Returns

In this paragraph we want to check if country specific downside equity betas enlighten rel-

evant information for the cross section of currency excess returns. To this aim we regress

portfolio excess returns on the two standard risk factors for the currency market, the DOL

and the HMLFX factors (Lustig, Roussanov and Verdelhan (2011)) and we analyze the sig-

nificance of the loadings and of the alphas of the regressions. Results are reported in table

13. Table 14 reports the same regressions including lagged returns and factors.

All the portfolios load similarly on the DOL factor, having a coefficient close to unity, that

is the high downside beta portfolio minus the low downside beta portfolio, i.e. P5−P1 is

uncorrelated with dollar risk. Low downside-beta portfolios (P1 and P2), those having neg-

ative downside-betas, load negatively on the carry trade factor HMLFX . They are indeed
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constituted by low interest rate countries whose exchange rate appreciates if their economy

performs badly. In other terms, portfolio 1 is constituted by currencies that are counter-

cyclical with the local economy of the country they belong to. Instead high downside-beta

portfolios (P5 and P4), have positive downside-beta and load positively on the carry factor.

Thus differently from the previous case, portfolio 5 is constituted by pro-cyclical currencies,

i.e. currencies that depreciate in bad states of the local economy and that at the same time

belongs to countries having high interest rates. We conclude that, even if sorting currencies

on the basis of past day downside-beta does not correspond to sorting currencies on the

basis of past interest rate differential, monotone exposure to the carry factor is similarly

revealed.

As far as the alphas, they are statistically significant and almost monotonically decreas-

ing. This suggests that sorting currencies on the basis of their sensitivity to bad states of the

local equity market reveals valuable information. Let us start with portfolio 1. The alpha

on this portfolio is positive and statistically significant and equal to 1.77% on an annual

basis. Yet countries in this portfolio have low interest rates and therefore their raw returns

are not that high and desirable. The inspection of the composition of portfolio 1 reveals

that most of the times it is constituted by the Swiss Franc, the Netherlands Guilder, the

British Pound and the Denmark Krone. Currencies in portfolio 2 are the Japanese Yen, the

French Franc, the Hong Kong Dollar, and the expected alpha on this portfolio is smaller

in absolute value than that on portfolio 1. We point out that, as carry trade investors go

short low interest rate currencies, they rather choose currencies belonging to portfolio 2, as

those of portfolio 1 can cause a sure expected loss.

We now consider portfolios 4 and 5 which most of the times contains the Australian Dol-

lar, the South African Rand, the Canadian Dollar, the New Zealand Dollar, the Turkish

Lira, the Mexican Peso, . . . , that is mainly commodity currencies15. We notice that these

15From now on by commodity currencies we will denote those belonging to countries that are

exporters of primary commodities (coal, crude oil, gold, wool, natural gas, pulp, lumber, meat, diary

products).
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portfolios load positively on the carry factor, i.e. they are high interest rate currencies.

Portfolios 4 and 5 have very different expected excess returns: portfolio 5 returns an annual

statistically significant negative alpha of −2.69%, while the alpha of portfolio 4 is lower in

absolute value and in addition insignificant. Thus a carry trade investor would rather pick

target currencies among those belonging to portfolio 4. A strategy going long portfolio 5

and short portfolio 1 returns an annually negative expected return of −4.47%, after con-

trolling for the dollar and the carry factor.

Why sorting currencies according to their own country specific downside characteristic re-

veals a monotone decreasing pattern in expected excess returns? The explanation can be

found in international capital flows of money.

A carry trade strategy shorting USD and investing in currencies belonging to portfolio 1

(for instance the Swiss Franc) is negatively correlated with the excess returns of the local

equity market, measured in local currency. This means that whenever the Swiss equity

market perform well, carry trade on that market performs badly, that is the Swiss Franc

depreciates; namely the strength of the country is not associated with that of the currency.

This empirical evidence has been extensively investigated by Hau and Rey (2006) for a

selected group of countries (that indeed coincides with those ending up in portfolios 1 and

2). Moreover in an incomplete foreign exchange trading setting, they develop a theoretical

model explaining these results in terms of portfolio rebalancing dynamics. More in details,

US-based equity investors investing internationally hold foreign market risk and exchange

risk at the same time16. Therefore a positive shock to the foreign equity market overexposes

their portfolio to exchange rate risk and thus triggers withdrawals. These capital outflows

from the foreign country determines excess supply of foreign currency, in other words foreign

currency depreciation and bad carry trade performance.

The correlation between local equity excess returns and excess carry trade returns gets

more negative (bigger in absolute value) in bad states of the foreign equity market: nega-

16It is known that they do not usually hedge their foreign positions, see Levich, Hayt and Ripston

(1999)
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tive shocks to the foreign equity will be alleviated by appreciation of the foreign currency

and no outflows of money will be triggered. Therefore, after controlling for standard risk

factors for the currency markets, that take into consideration other types of dynamics driv-

ing carry trade performance, thanks to the negative correlation we are left with a positive

expected excess return.

We now turn our attention to currencies in portfolio 5, that is those having high and

positive downside betas. A positive beta stands for foreign currency appreciation in good

states for the foreign equity markets. Hau and Rey (2006) portfolio rebalancing arguments

do not apply in this case. This is consistent with Chaban (2009), who documents that the

“portfolio-rebalancing story is not supported for commodity-producing countries”; in other

words in this case the strength of the local equity market is associated with the strength of

the currency. The motivation given by Chaban (2009) is based on role that commodity prices

play in these economies, and he finds theoretical support in Pavlova and Rigobon (2007).

A positive shock in commodity prices boosts equity returns up and induce appreciation of

commodity currencies. This is a consequence of the transfer of wealth from commodity

importing to commodity exporting countries (Engel (2005)). On the other hand negative

shocks to commodity prices negatively affect commodity exporting equity market. Thus

international investors drastically lower their return expectations on these foreign markets.

As a consequence a negative shock to local equity triggers portfolio outflows of money, ex-

cess supply of foreign currency, i.e. foreign currency depreciation. This is the reason why,

after controlling for other mechanisms taking place in the FX market (DOL and HMLFX),

the expected excess return on portfolio 5 is −2.69% on an annual basis. Alpha, instead, is

not statistically significant for high interest rate countries whose economy is not strongly

dependent on exports of raw commodities (i.e. portfolio 4).

3.6 Country-Specific Downside versus Global Downside

It is natural to investigate the pattern of the expected excess returns when portfolio sorting

is done according to other measures of correlation with stock markets. To address this
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issue in table 15 we report the expected excess returns (that is controlled for DOL and

HML) of currency portfolios sorted according to upside and OLS beta measure with local

equity markets, respectively in the first and second row. Some of the OLS betas sorted

portfolios have statistically significant alphas, yet the pattern is not clearly monotone and

the statistical significance holds only for two out of five portfolios, differently from the case

of downside beta sorted portfolios in table 13. Though upside and OLS betas share a high

degree of co-movement with downside betas, their cross-sectional spread is not informative

enough.

The last three rows of table 15 refer to the sorting done exploiting OLS betas computed

on the aggregate equity market, once again on a rolling basis. Global downside beta is

computed in analogy with eq.(55) and (56), but this time it measures the sensitivity to

the aggregate equity market (as in Lettau, Maggiori and Weber (2013), we use the value-

weighted CRSP US equity market log excess return). In these two cases no interesting

statistically significant patterns are identifiable. This is once again a result not surprising.

Lettau, Maggiori and Weber (2013) shows that CAPM model does not explain the cross

section of currencies excess returns, as the factor loadings turn out out be too low, while

the downside risk CAPM does. Furthermore they state that the downside risk CAPM on

currencies “capture the information contained in the principal component that is relevant

for the cross-section”, [...] that is “it summarizes the two principal components” (Lettau,

Maggiori and Weber (2013)), which are indeed the DOL and the HML factor as shown by

Lustig, Roussanov and Verdelhan (2011). Therefore an analysis aimed at tracking downside

global market risk cannot succeed in capturing significant information besides that contained

in the two principal components.

We conclude that, even if equity shocks are in general correlated internationally, country

specific downside betas highlight different properties from those tracked by global downside

risk.
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3.7 Flow Tracking Variable

In the previous paragraph we showed that sorting currencies according to country specific

downside beta reveals the impact of capital flows of international equity investors on foreign

exchange excess returns.

In this paragraph we construct a variable that summarizes the information of capital flows

and we check whether it accounts for a share of individual foreign excess returns time-series.

We take the high minus low portfolio (that is P5−P1 in table 13). By construction we know

that it is uncorrelated with the dollar factor, but it turns out to be highly correlated with

the carry factor (the correlation is 51.24%). We therefore take the orthogonal component

of (P5−P1) with respect to HMLFX and we denote it as “Flow variable”17. The annualized

mean of the flow factor is −4.61%.

The flow variable represents the loss that a carry trade investor faces when he invests in

high interest rate countries, whose economy strongly depends on exports of raw materials,

and shorts low interest rate countries for which the portfolio rebalancing argument of Hau

and Rey (2006) holds and has visible effects on the exchange rate.

Negative values of the factor stand for money outflows from foreign countries with high

interest rates (therefore depreciation of the foreign exchange rate) and for money inflows

in countries with low interest rates (therefore appreciation of the foreign exchange rate).

These are both obviously unattractive events for a carry trade investor.

We now test the explanatory power of the flow variable for the time series of daily FX excess

returns. We run country-level regression of daily CT excess returns of each currency in our

sample on the DOL, the HMLFX and on the Flow variable.

Results are reported in table 16 for developed countries, in table 17 for countries whose

currency converged to the euro and in table 18 and 19 for emerging/developing countries.

Notice that for each currency on the left-hand-side of each regression, we excluded that cur-

rency from every portfolio which is used as a regressor on the right-hand-side. As expected

high interest rate currencies like Australia, Canada and new Zealand load positively on the

17In order to assess the contribution of the flow variable, we regress it on HMLFX and we keep the

residuals of the regression, which by construction are uncorrelated with the regressors.
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Flow factor, while low interest rate currencies load negatively. In addition to this we notice

that the Flow variable improve the fitting of excess carry trade returns, as the R2 of the

regression increases with respect to the specification with only the DOL and the HMLFX

factor. Of course, as Vedelhan (2012) underlines, high R2 do not imply that we can easily

forecast bilateral exchange rates, as regressions are done with contemporaneous variables

at time t (except for the forward discount known at time (t−1)). But, as the R2 are very

far from zero, we can at least explain a substantial fraction of the pattern of daily excess

returns and with the flow dynamics increase this fraction a little more.

3.8 Tail Dependence

Measures of dependence between financial time series based on standard correlation take

into account small movements around the mean and discard large swings. As a conse-

quence they cannot describe the dependence between extreme events. In recent years the

investigation of the tails of the return distribution, have become a major issue in financial

risk management, as asset returns are characterized by heavy tails (Gabaix, Parameswaran,

Plerou and Stanley (2003)). In other words, extraordinary downside losses are more likely

to happen than those expected under Gaussian framework. Tail properties are important

not only when dealing with financial series in isolation (univariate framework), but also

when studying co-movement between financial variables (multivariate framework). This is

the reason why, after being initially introduced by Sibuya (1960), the concept of tail depen-

dence, and of correlation in the tails, has been widely investigated and different measures,

both parametric and non-parametric have been introduced.

The coefficient of tail dependence between two assets is defined as the probability that

one of the two assets undergoes a large loss (or gain) assuming that the other asset also

undergoes a large loss (or gain). The downside country specific betas βD
j,t we used in the

previous sections measure the sensitivity of daily foreign exchange excess returns to bad

states of the country equity market, so it is not designed to specifically model deep-into-

the tails observations. It might be the case that our previous results are driven by very
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extreme observations happening with very low probability, i.e. observations identifiable as

crashes. In this case our flow story explanation could be still valid, but capital flows would

be triggered by extreme markets/commodities movements. That is shocks that occur dur-

ing normal market conditions and that negatively affect stock/commodity markets would

not be a major concern for international equity investors. They therefore would not move

instantly their capital and no impact of flows on exchange rates would be detectable.

In the following we present the basics of two measures developed in the context of mul-

tivariate extreme value theory (see Poon, Rockinger and Tawn (2004)) and designed to

quantify extremal association of two variables in the tails. We use them to study tail de-

pendence between CT and local equity excess returns.

Given two marginal series (X ,Y )18 we want to quantify their multivariate dependence in

the tails. For the upper tail we can simply look at the following conditional probability

Pr(q) = Pr
(
Y > F−1

Y (q)
∣∣X > F−1

X (q)
)

(57)

where Fx and Fy are the respective marginal distribution functions for X and Y . Pr(q)

represents the probability that the variable X is above the q−th percentile of its distribution,

conditional on the variable Y being above its q−th percentile 19.

The computation of Pr(q) can be performed easier if we remove the influence of the marginal

aspects by transforming the raw data to two new variables (S,T ), by means of the Frechet

transformation, that is:

S =−1/ logFx(X) T =−1/ logFy(Y ). (58)

It can be proved that S and T have now the same marginal distribution

F(s) = Pr(S≤ s) = Pr(T ≤ s) = e−1/s, s > 0, (59)

18In our case X will be the excess return on the foreign equity market in its currency units and Y

will be the FX excess return of a strategy going long the foreign currency and short the US $.
19Similarly we can study the conditional probability for the lower tail. This is indeed the case we

are interested in as we are concerned with bad states of the equity market negatively impacting carry

trade performance. Yet we present the theory for the upper tail, standard practice in the literature.
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but they keep the same dependence structure of the one between X and Y . Besides studying

Pr(q) for finite values of q, we can study its asymptotic behavior, i.e. deep into the tails.

More precisely, S and T are said to be asymptotically independent if Pr(q) has a limit equal to

zero as q→ 1; if not they are said to be asymptotically dependent. Asymptotic dependence

means that, as one of the two variable moves deeper into the tail, extreme events for the

other are expected with positive probability, i.e. the dependence between the two variables

persists in the limit.

Given this preliminary setting, we can now introduce χ and χ, defined in Ledford and Tawn

(1996), Coles, Heffernan and Tawn (1999), Poon, Rockinger and Tawn (2004), that measure

tail dependence respectively in the asymptotic and in the finite case:

χ = lim
q→1

Pr(q) = lim
s→∞

Pr(T > s |S > s), χ ∈ [0,1] (60)

χ = lim
s→∞

2logPr(S > s)
Pr(T > s,S > s)

−1, χ ∈ (−1,1]. (61)

Notice that S and T are asymptotically dependent if χ > 0.

χ can be interpreted as a sort of “correlation applied to points in the tail area”.

It can be proved that if χ = 1 the two variables are asymptotically dependent. Hence we

proceed as follow: we firstly compute χ and we test if it is different from 1. If we cannot

reject χ = 1, we deduce that S and T are asymptotically dependent and we estimate χ. If

instead χ is significantly different form 1, we deduce the two variables are asymptotically

independent and we use χ as measure of tail dependence at finite values.

Poon, Rockinger and Tawn (2004) give also the recipe for computing χ and χ by exploiting

the Hill estimator. Here we simply state results, we refer to Poon, Rockinger and Tawn

(2004) and Ledford and Tawn (1996) for details and proofs (a brief description of the Hill

estimator and of the used estimation methodology used is given in appendix B).

Under weak conditions the joint cumulative distribution of S and T in the tails behaves as

Pr(S > s,T > s)∼ L(s)s−1/η, for s→ ∞, (62)

where L(s) is a slowly varying function and η ∈ (0,1]. η can be shown to be the tail index

of a new variable Z = min(S,T ):

Pr(S > s,T > s) = Pr(min(S,T ) > z) = Pr(Z > z) = L(z)z−1/η, z > u, (63)
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with u a sufficiently high threshold. Thus its estimated value η̂ can be obtained via the Hill

estimator. Finally, χ, χ and their standard errors can be computed as

χ̂ = 2η̂−1 Std.Dev.(χ̂) =

√(
χ̂ + 1

)2

k
, (64)

χ̂ =
k
N

u Std.Dev.(χ̂) =

√
(u2)k(N− k)

N3 , (65)

with k the number of observations z that exceed the threshold û, and N the total number

of observations of the z variable.

3.9 Estimation of left tail dependence measures χ and χ

Extreme value theory techniques that we are going to use here rely on the assumption of in-

dependent data. When non-filtered data are used the behavior of extremes might be driven

both by extreme innovation and by the dependence structure (like for instance volatility clus-

tering). In order to avoid any issue of this kind we fit each series in our dataset (both carry

trade and equity excess returns) with a univariate AR(2)-GJR-GARCH(1,1) and we keep

the residuals. The filtered returns are tested for autocorrelation and heteroscedasticity using

respectively Ljung-Box test and Engle test and we verify that the null of no-autcorrelation

and of no-arch effect cannot be rejected.

In order to compute tail dependence we need to have a large number of observations, as

extreme events are rare. Therefore the choice of daily data is crucial. χ and χ, measuring

tail dependence between carry trade excess returns over currency i and excess returns over

the equity market of the corresponding country, are computed with a rolling window of 2000

daily observations (8 years). The windows move forward of a day at every step.

We firstly estimate χ for every pair of excess CT returns-excess equity returns and in figure

3 we plot their time series for a bunch of countries: corresponding to those that appear in

figure 1. Countries in the left column have on average lower and most of the times negative

χ with respect to countries on the right. Yet estimated χs oscillate and switch signs more

often than the down beta, therefore we expect to find different results when sorting curren-

cies into portfolios according to χ from those obtained with down beta.

116



We then test the null hypothesis χ = 1 to asses asymptotic dependence and for all the

countries we reject it at 95% confidence level. We deduce that carry trade returns and

local excess equity returns are asymptotically independent (in the extremes). This result,

however, does not automatically answer our research question: is the pattern in excess CT

return portfolios sorted according to downside country specific betas driven by extreme ob-

servations, identifiable as crashes? It might be indeed the case that asymptotic dependence

is too strict for identifying correlation during crashes, as it is defined in the limit. Different

degrees of dependence are attainable at finite levels and we can measured them with χ.

We now repeat the same analysis of table 13, adopting χ instead of downside downside

beta, that is each day we sort currencies according to χ of the previous day and we form five

20%−quantile portfolios. We finally regress the excess returns on the standard risk factors

DOL and HMLFX . Results are reported in table 20 panel (a), while panel (b) contains

regression results in case of portfolio sorted according to previous day down beta over the

same sample of the series of panel (a). As we can see from panel (a), sorting currencies

according to the previous day χ does not evidence any statistically significant α, differently

from downside beta sorted portfolios of panel (b). We therefore deduce that dependences in

the extremes do not play any role, that is international equity investors move their capital

from one country to another according to “normal” movements in the local equity markets.

We thus rule out the “crashes-explanation” for results of table 13. We conclude that the

flow tracking variable is a measure of capital flows movements induced by equity investors

in response to positive and negative shocks in local equity markets.

3.10 Robustness

In this section we test the robustness of our results to different issues.

We start with considering monthly rather than daily returns, that is each month we sort

monthly currency excess returns according to their past downside country specific beta,

computed using the previous 250 days. In other words, if T denotes the T -th months of

the sample and if t∗ represent the last day in that month, we compute the downside beta

used for sorting excess returns realizing at the end of month T on the sample of 250 days
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[t∗−250, t∗−1]. Analysis are reported in table 21 and are coherent with those of the daily

analysis.

We then consider different estimates of downside beta, that is using different cut-off levels.

We report results in tables 22 and 23 respectively for cut-off given by µ j,t and µ j,t−0.5σ j,t ,

that is choosing dummy variables

D j,t =

 0, if rEQ
j,t < µ j,t

1, if rEQ
j,t > µ j,t

(66)

and

D j,t =

 0, if rEQ
j,t < µ j,t −0.5σ j,t

1, if rEQ
j,t > µ j,t −0.5σ j,t

(67)

where µ j,t is the mean return of the equity market of country j and σ j,t the standard

deviation. They are dependent on t as they are computed on the same rolling sample over

which the regression is performed. Results in both cases are in agreement with results of

table 13, though the statistical significance gets weaker. This is not surprising, as according

to results of section 3.8 extreme events do not play any important role.

3.11 Conclusion

In this paper, we study downside country-specific characteristics of currencies and we assess

their impact on currency excess returns. By means of portfolio sorting approach we identify

countries whose excess carry trade returns depend differently and with different strength

from the performance of their respective local equity market. We find that the expected

excess return decrease monotonically with the level of co-dependence. We attribute our

findings to capital movements of international equity investors who react to local equity

market conditions. Equity investors move their capital because of portfolio rebalancing

issues or in order to unwind positions in markets they consider risky. We sum up capital

flows of investors in a factor we call Flow Tracking Variable. We show that it has a significant

explanatory power for the time series of bilateral carry trade excess returns on top of

standard risk factors for the currency market. The results are robust to different frequencies
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(though the effect is in any case short-lived) and to different methods of estimation of the

downside co-movement. Not only our results are in agreement with previous papers that

investigates the links between currency and stock market, but also they enrich this literature

that is, to our knowledge, very little.

Extreme value theory techniques are finally employed in order to recognize whether the

results we found are due to aversion to downside or crash events. No evidence of local

equity crashes playing a role for carry trade excess returns is found in the data.

Overall our results underly the importance of downside measure of co-movement between

excess return on carry trade and those on equity. Indeed a carry trade investor should not

only take into consideration standard risk factor tracking dollar and carry trade risk, but

also capital flows of international equity investors whose reaction is stronger and relevant in

bad rather than good times. Tracking the dependence measure of carry trade from equity

excess returns can be very useful as it might be exploited for real-time portfolio selection,

Sharpe ratio targeting, and many other applications.
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Figure 14: OLS beta, upside-beta and down-side beta of daily carry trade excess
return on daily equity excess returns, computed using the previous year of daily data
(approximately 250 observations)
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Figure 15: Daily rolling χ of daily carry trade excess return and daily equity ex-
cess returns, computed using the previous 8 years of daily data (approximately 2000
observations)
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Table 12: Summary Statistics: summary statistics for excess returns of currency

portfolio sorted on downside beta with country specific equity. Standard errors in

parenthesis are computed via delta method and GMM and are corrected for het-

eroskedasticity and autocorrelation with Newey and West (1987). Statistical signif-

icance has to be interpreted as * p < 0.10, ** p < 0.05, *** p < 0.01. The sample

period starts on January 2 1986 and ends on December 30 2011, excess returns are

daily, annualized and in percentage points. Total number of observations 6558.

Mean Std. dev. Skew Kurt

P1 3.158* 8.632*** 0.025 5.323****

(1.758) (0.151) (0.081) (0.455)

P2 2.850* 7.211*** -0.116 5.848****

(1.488) (0.142) (0.088) (0.578)

P3 1.262 6.052*** 0.011 9.411****

(1.247) (0.176) (0.179) (1.840)

P4 3.293** 7.484*** -0.177 15.285****

(1.486) (0.312) (0.362) (4.541)

P5 5.173*** 10.188*** -0.604*** 13.037****

(2.076) (0.440) (0.271) (3.611)
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Table 13: Downside beta sorted portfolios (I): this table reports time series

regression on the dollar risk factor (DOL) and the carry trade risk factor HMLFX .

Test assets are daily excess returns on five portfolios sorted according to the previous

day downside-beta. HAC standard errors (s.e.) are reported in parentheses and are

obtained by the Newey and West (1987) procedure. Statistical significance has to be

interpreted as * p < 0.10, ** p < 0.05, *** p < 0.01. The sample period starts on

January 2 1986 and ends on December 30 2011. Excess returns are daily, annualized

and in percentage points. Total number of observations 6558.

P1 P2 P3 P4 P5 P5-P1

DOL 1.260*** 1.058*** 0.850*** 0.982*** 1.177*** -0.0832

(0.0348) (0.0200) (0.0187) (0.0320) (0.0310) (0.0612)

HMLFX -0.248*** -0.156*** -0.00729 0.0837*** 0.426*** 0.674***

(0.0185) (0.0140) (0.0115) (0.0181) (0.0344) (0.0496)

α 1.769* 1.170* -1.271** -0.552 -2.694** -4.463**

(0.948) (0.692) (0.601) (0.895) (1.334) (2.053)

N 6558 6558 6558 6558 6558 6558
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Table 14: (II): this table reports time series regression on the dollar risk factor (DOL)

and the carry trade risk factor HMLFX and their lagged variables. Refer to previous

table for interpretation.

P1 P2 P3 P4 P5 P5-P1

DOL 1.262*** 1.057*** 0.850*** 0.983*** 1.179*** -0.0830

(0.0346) (0.0201) (0.0189) (0.0323) (0.0310) (0.0612)

Lagged DOL -0.0763** -0.00999 -0.0193 -0.0127 0.0132 0.00230

(0.0309) (0.0255) (0.0181) (0.0274) (0.0403) (0.0223)

HML -0.247*** -0.157*** -0.00736 0.0844*** 0.428*** 0.674***

(0.0184) (0.0139) (0.0114) (0.0180) (0.0343) (0.0493)

Lagged HML 0.0157* 0.00292 -0.00158 -0.0130 -0.0105 -0.0453*

(0.00868) (0.00903) (0.00777) (0.0117) (0.0167) (0.0235)

Lagged Return 0.0357* 0.0185 0.0204* 0.00472 -0.0371 0.0552**

(0.0205) (0.0156) (0.0117) (0.0173) (0.0262) (0.0239)

α 1.719* 1.122 -1.265** -0.396 -2.533* -4.133**

(0.921) (0.703) (0.607) (0.889) (1.331) (1.967)

N 6557 6557 6557 6557 6557 6557
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Table 15: AlphaDOL,HMLFX : this table reports the alpha of the time series regression

on the dollar risk factor (DOL) and the carry trade risk factor HMLFX of portfolios of

currencies sorted according to different measures of lagged realized betas. β denotes

the OLS beta with the local equity market in local currency. The prefix “global”

stands for OLS, downside and upside betas computed using the aggregate equity

market. HAC standard errors (s.e.) are reported in parentheses and are obtained by

the Newey and West (1987) procedure. Statistical significance has to be interpreted

as * p < 0.10, ** p < 0.05, *** p < 0.01. The sample period start on January 2 1986

and ends on December 30 2011, excess returns are daily, annualized and in percentage

points. Total number of observations 6558.

P1 P2 P3 P4 P5

upside β 2.160** -0.690 -0.201 -1.046 -2.115*

(0.911) (0.806) (0.689) (0.938) (1.140)

β 2.585*** 0.676 -0.850 -2.239** -2.015

(0.940) (0.870) (0.632) (0.944) (1.321)

global β -0.107 0.292 0.222 -0.0467 -1.109

(1.058) (0.763) (0.750) (0.997) (1.381)

global down β -0.806 1.586** -1.335** -1.042 1.136

(1.047) (0.790) (0.675) (1.020) (1.308)

global up β 0.215 0.900 0.283 -0.215 -2.279*

(0.990) (0.780) (0.763) (0.893) (1.265)
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Table 20: χ sorted portfolios: this table reports the alpha of the time series re-

gression on the dollar risk factor (DOL) and the carry trade risk factor HMLFX of

portfolios of currencies sorted according to lagged multivariate tail dependence χ in

panel (a), lagged downside countryspecific beta (b). HAC standard errors (s.e.) are

reported in parentheses and are obtained by the Newey and West (1987) procedure.

Statistical significance has to be interpreted as * p < 0.10, ** p < 0.05, *** p < 0.01.

The sample period start on November 27 1992 and ends on December 30 2011, excess

returns are daily, annualized and in percentage points. Total number of observations

4810.

P1 P2 P3 P4 P5

(a) Tail Dependendence χ

DOL 1.236∗∗∗ 1.013∗∗∗ 1.022∗∗∗ 1.083∗∗∗ 1.122∗∗∗

(0.0197) (0.0207) (0.0208) (0.0211) (0.0253)

HML FX -0.155∗∗∗ -0.0495∗∗ -0.0486∗∗ 0.00361 0.0668∗∗∗

(0.0168) (0.0199) (0.0198) (0.0135) (0.0224)

α -0.504 1.327 0.228 -1.173 -1.338

(0.826) (0.943) (0.990) (0.933) (1.136)

(b) Downside Beta

DOL 1.135∗∗∗ 1.009∗∗∗ 0.914∗∗∗ 1.086∗∗∗ 1.277∗∗∗

(0.0373) (0.0214) (0.0188) (0.0342) (0.0354)

HMLFX -0.291∗∗∗ -0.170∗∗∗ -0.0264∗∗ 0.113∗∗∗ 0.507∗∗∗

(0.0168) (0.0135) (0.0130) (0.0183) (0.0354)

α 3.208∗∗∗ 1.490∗ -0.995 -1.168 -4.365∗∗∗

(1.067) (0.802) (0.722) (1.019) (1.574)

N 4810 4810 4810 4810 4810
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Table 21: Robustness I: this table reports time series regression on the dollar risk

factor (DOL) and the carry trade risk factor HMLFX . The test assets are monthly

excess returns on five currency excess returns portfolios sorted according to the pre-

vious day downside-beta. HAC standard errors (s.e.) are reported in parentheses and

are obtained by the Newey and West (1987) procedure. Statistical significance has

to be interpreted as * p < 0.10, ** p < 0.05, *** p < 0.01. The sample period is 2

January 1986 to 30 December 2011, excess returns are monthly. Total number of

observations 311.

P1 P2 P3 P4 P5

DOL 1.201∗∗∗ 1.005∗∗∗ 0.870∗∗∗ 0.969∗∗∗ 1.200∗∗∗

(0.0970) (0.0427) (0.0514) (0.0788) (0.0748)

HML -0.242∗∗∗ -0.168∗∗∗ -0.0246 0.0290 0.470∗∗∗

(0.0530) (0.0377) (0.0288) (0.0440) (0.0714)

α 0.00247∗∗ 0.00153∗ -0.000761 -0.000374 -0.00376∗∗

(0.00125) (0.000793) (0.000646) (0.00110) (0.00163)

N 311 311 311 311 311
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Table 22: Robustness II: this table reports time series regression on the dollar risk

factor (DOL) and the carry trade risk factor HMLFX . The test assets are daily excess

returns on five currency excess returns portfolios sorted according to the previous day

downside-beta with cut-off given by the mean equity excess return. HAC standard

errors (s.e.) are reported in parentheses and are obtained by the Newey and West

(1987)procedure. Statistical significance has to be interpreted as * p < 0.10, ** p <

0.05, *** p < 0.01. The sample period is 2 January 1986 to 30 December 2011, excess

returns are daily, annualized and in percentage points. Total number of observations

6558.

P1 P2 P3 P4 P5

DOL 1.259∗∗∗ 1.064∗∗∗ 0.848∗∗∗ 0.983∗∗∗ 1.175∗∗∗

(0.0347) (0.0199) (0.0181) (0.0322) (0.0310)

HMLFX -0.248∗∗∗ -0.157∗∗∗ -0.00657 0.0846∗∗∗ 0.425∗∗∗

(0.0185) (0.0140) (0.0114) (0.0174) (0.0351)

α 1.686∗ 1.290∗ -1.210∗∗ -0.496 -2.831∗∗

(0.945) (0.693) (0.596) (0.875) (1.355)

N 6558 6558 6558 6558 6558
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Table 23: Robustness III: this table reports time series regression on the dollar risk

factor (DOL) and the carry trade risk factor HMLFX . The test assets are daily excess

returns on five currency excess returns portfolios sorted according to the previous day

downside-beta with cut-off given by the mean minus half standard deviation

equity excess return. HAC standard errors (s.e.) are reported in parentheses and are

obtained by the Newey and West (1987)procedure. Statistical significance has to be

interpreted as * p < 0.10, ** p < 0.05, *** p < 0.01. The sample period is 2 January

1986 to 30 December 2011, excess returns are daily, annualized and in percentage

points. Total number of observations 6558.

P1 P2 P3 P4 P5

HML -0.252∗∗∗ -0.145∗∗∗ -0.0262∗∗∗ 0.111∗∗∗ 0.417∗∗∗

(0.0185) (0.0186) (0.00982) (0.0188) (0.0362)

DOL 1.255∗∗∗ 1.097∗∗∗ 0.827∗∗∗ 0.993∗∗∗ 1.163∗∗∗

(0.0348) (0.0215) (0.0194) (0.0314) (0.0323)

α 1.846∗ 0.630 -0.566 -1.284 -2.241

(0.955) (0.783) (0.631) (0.915) (1.381)

N 6558 6558 6558 6558 6558
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Appendices

B Tail Index and Hill Estimator

Extreme Value Theory (EVT) deals with extreme events and provide theoretical results on

the probability distribution in tail regions. The theory provides the limit distribution for

the maximum values of a random variable, that is the Generalized Extreme Value Distribu-

tions (GEV), and the limit distribution for the tail region, that is the Generalized Pareto

Distributions (GPD).

Given a stationary sequence of i.i.d. variables x1,x2, . . .xn, with a common cumulative dis-

tribution FX , consider the maximum order statistics, defined as

Mn = max(x1,x2, . . . ,xn). (68)

It can be proved (Fisher-Tippett theorem, see Gnedenko (1943)) that, independently from

the distribution of X , Mn−an
bn

, with an and bn normalizing constants converges asymptotically

in distribution to a GEV G(x), i.e.

Mn−an

bn

d−→ G(x) = exp

(
−
(

1 + γ
(x−µ)

σ

)−1/γ
)
, (69)

or in other words Pr
(

Mn−an
bn

)
n→∞−→ G(x), where µ, σ and γ are respectively the location, scale

and shape parameters. When γ > 0 the distribution is said to be of Frechet type, has

heavy tails, and the number of existing moments of the random variable is equal to the

integer value of α = 1
γ

(examples: Student-t, Pareto distribution). If γ = 0, the distribution

belongs to the Gumbel type, has thin tails and an infinite number of moments exist (normal

distribution), while if γ < 0, the distribution has a finite upper limit and has no longer tail

(example uniform distribution), and it belongs to the Weibull type, with α =−1
γ
.

In addition to this Beirlant, Vynckier and Teugels (1996) give an important results for

events that exceed a certain threshold u, that is events in the tails. Given a continuous

distribution function FX(x) and a threshold u smaller than the right end-point of X , the
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distribution of X about the threshold converges to a generalized Pareto distribution (GDP)

(with only one parameter), that is

Fu
X (x) = Pr(X ≤ z |X > u)∼ 1− (1 + γ x)−

1
γ . (70)

It collapse to Fu
X (x) = 1−x−α (x≥ 1) for the Frechet type limit, Fu

X (x) = 1−(−xα) (0≥ x≥ 1)

fot the Weibull and Fu
X (x) = 1− exp(−x) (x≥ 0) for the Gumbel.

Therefore, given the previous two results, EVT can describe the behavior of large obser-

vations, independently from the distribution of the fluctuations of the overall system, and

provides also the functional form for the description of the tails.

Extreme events of return series and many other processes have been empirically shown

to be governed by Pareto or power law (see Gabaix, Parameswaran, Plerou and Stanley

(2003)). EVT provides theoretical roots to these evidences, as Pareto distributions are the

limit of large events for a whole class of probability distribution, as just shown.

Most commonly in the literature a process X is said to have a power law tail if

Pr(X ≥ x)∼ x−α, for x 6= u (71)

where α = 1/γ is called the “tail index”.

In the paper we estimate α by means of a non-parametric estimator introduced by Hill

(1975). This estimator is asymptotically unbiased and it is the most efficient among all the

others proposed:

α̂ =

(
1
k

k

∑
i=1

[
log
(

X(n+1−i)

u

)])−1

, (72)

where k is the number of observations above the threshold u, n is the total sample size and

X(i) denotes the ordered statistics, i.e. X(1) ≤ X(2) ≤ ·· · ≤ X(n). Of course the choice of the

threshold u is crucial, as too many observations can bias the estimate, while too few can

enlarge its variance. Among the several method introduced for jointly estimating α and

u we adopt the one of Clauset, Shalizi and Newman (2009). We refer to their article for

details.
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