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Abstract

We propose Kriging-based self-adaptive controllers to manage the allocation of re-
sources to computing systems that need to provide guarantees on their quality of ser-
vice at runtime while minimizing running costs.

Service providers need to adjust the configurations of their systems and the re-
sources allocated to them to maintain an acceptable level of service at runtime despite
fluctuations in the workload, dynamisms of the environment, and other unexpected
events. If unsuitably configured, systems may misbehave, saturate, and violate the ser-
vice level agreement that are stipulated with end-users, leading to penalties, financial
losses and damage to service providers’ reputation.

Static system configurations are limited by the strong assumptions on the runtime
system behavior and working conditions, and in general lead to either system over-
provisioning (i.e., too expensive), or under-provisioning (i.e., too many violations).
Fixed adaptation strategies that are commonly based on thresholds and rules, can deal
well with simple systems and expected workload fluctuations, but are limited because
they require experts for their setup, do not generally adapt, and do not scale well with
system complexity. Self-adaptive controllers based on models can deal with predicted
and unpredicted working conditions and can adapt. Among them, controllers based on
white-box models require the knowledge of systems internal to work properly, but that
may be too difficult or even impossible to gather, thus resulting in a limited applicability
or in poor accuracy of the models. On the contrary, controllers based on black-box
models that are built from monitoring data of running systems are applicable to a
wider set of systems.

Among the alternative black-box models, we choose to adopt Kriging models as
core elements for model-based self-adaptive controllers. Our choice is motivated by
several reasons: (i) Kriging models are accurate in capturing the behavior of running
systems; (ii) they are robust against noise and inaccuracy of monitoring data, make
predictions in a timely fashion, and can be retrained on-line with negligible overhead;
(iii) they are based on a solid theory that extends traditional regression with statisti-
cal scaffoldings and that enables them to pair confidence measures with predictions;
(iv) they can be used to design effective and efficient proactive controllers that account
for uncertainty while planning their control actions.
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We apply Kriging-based controllers in the domain of Clouds, in particular, at the
infrastructure level. Clouds offer the technical means to dynamically allocate and de-
allocate virtual machines thus enabling system elasticity that controllers leverage to
maintain acceptable system performances while minimizing costs (i.e., the amount of
running virtual machines).

Through an experimental validation, we show that Kriging models are accurate,
fast and flexible enough to be used inside model-based self-adaptive controllers for
the Cloud. The accuracy of Kriging models is comparable to the one of other complex
models, but Kriging models are faster to train, easier to manage, and more scalable
with system complexity. We compare our proactive controllers based on Kriging models
against state-of-the-art solutions and we conclude that our controllers are efficient,
effective and more generally applicable than the other considered solutions.



Contents

%

List of Figures

g

ables

E

1.1

Research Questions| . . . . . . . . v o i i i i i i e

1.2

ientifi Dtributionsl . . . . . .. e

N

Background|

2.1

Cloud Computing] . . . . . . . . . ittt

R.2

Autonomic computing and self-adaptive controllers| . . . . ... ... ...

2.3

Autonomic and self-adaptive controllers for the Cloud| . ..........

D4

Krigingmodels|. . . . ... ... .. . . . . e

13__Related Work|

B1

Controllers for elastic applications in Clouds| . ... .............

B2

Surrogate models for predicting performance|. . . . . ... ... ......

B3

Control solutions based on Kriging models|. . . . ... ............

|4 Kriging-based Self-Adaptive Controllers for the Cloud|

a1

Model-based self-adaptive control| . . . . ... ... ... ... ......

2

Why Krigingmodels?|. . . . . ... ... .. ... . ... oL

43

Kriging models for performance prediction| . . ................

G4

Kriging models for robust control| . . ... .. ... ... ... .. ...,

@5

Self-adaptiveness by model adaptation| . . . ... ...............

46

Suitability of Krigingmodels| . . ... ......................

@7

Model predictive control with Kriging|. . . . ... ... ... ... ......

@8

Controller architecture and prototype implementation| . ..........

vii

vi

ix

xi

11
11
14
17
19

27
27
46
49

51

53



Viii Contents

69
[5.1 Experimental settings|. . . . . . ... ... ... 69
[5.2 Kriging models for prediction|. . . . .. ...... ... ... .. 72
[5.3 Kriging models forcontrol|. . . . ... ... .. o o o o 83
[5.4 Evaluation of Kriging-based Self-adaptive Controllers| . . . . ... ... .. 115

|6 _Conclusions| 127

1 ntributions] . . . ... ... e 128

[6.2 Timitationsl . . ... ... ... 130
6.3 OpenResearch|. .. ... ... .. ... .. . . . .. .. . . ... 130
135

139
147



Figures

[2.1 Overview of Cloud computing| . ... ... ... ... ............. 12
2.2 Autonomicelement|. . .. ... ... ... ... e 15
[2.3 Block diagrams of centralized controller architectures [I83]]| . . ... ... 16
[2.4 Block diagrams of distributed controller architectures [83]| .. ... ... 16
[2.5 Block diagrams of common self-adaptive controllers|. . . . ... ...... 17
[2.6 Reference architecture for autonomic controllers in the Cloud|. . . . . . . 19
[2.7 Example of regression with Gaussian Processes [88] . ........... 20
[2.8 Error correlation in Kriging models [45]| . . . . ................ 22
[2.9 Bayesian inference with Gaussian processes [90].| . . ... ......... 24
3.1 ControllersfortheCloud| .. ......... ... .. ... ....... 45
{4.1 A Kriging model for predicting performance [31]]| . ............. 57
[4.2 Kriging model and confidence interval . . . ... ... ... ... . .... 58
[4.3 Runtime evolution of Krigingmodels| . . . . ... ............... 63
4.4 Conceptual architecture of Kriging-based self-adaptive controllers| . . . . 67
[5.1 Logical architecture of a Reservoirsite] . . . ... ... ............ 70
[5.2 Logical architecture of the Sun grid engine| . ... .............. 71
[5.3 Logical architecture of the Doodle Web service . . ... ........... 71
[5.4 Logical architecture of DoReMap|. . . . . ... ... ... ... ..... 72
[5.5 Different projections of the Kriging model for the Sun grid engine case |
.......................................... 74
[5.6 Different projections of the Multidimensional linear regression model |
[ for the Sun grid engine case study|. . . . ... .. ............... 74
[5.7 Different projections of the Regression tree model for the Sun grid en- |
| INE CASE STUAY|. « « v v v v o e e e e e e e e e e e e e e e 74
[5.8 Different projections of the Multivariate adaptive regression splines for |
| the Sun grid engine casestudy| . . . . . . . ... ... .. ... 77
[5.9 Different projections of the Analytical model for the Sun grid engine |
| CASE STUAY|. « v v v e et e e e e e e e e e e e e e e e e e 77




Figures

[5.10 Different projections of the Combined model for the Sun grid engine |

CASE STUAY|. « -« « ¢ v v e e e e e e e e e 77
[5.11 Comparison of models cross validation error| . ................ 79
[5.12 Actual vs predicted output plots for comparing alternative models| . . . . 81
[5.13 Dataset 1 for the evaluation of Kriging model robustness.| . ... ... .. 86
[5.14 Dataset 2 for the evaluation of Kriging model robustness.| . ... ... .. 87
|5.15 Kriging model predictions and prediction error on Dataset 1|. . . .. ... 89
|5.16 Kriging model predictions and prediction error on Dataset 2f. . . . . . .. 90
[5.17 Data sets for evaluating the improvement of Kriging models over time.| . 99
[5.18 Adaptation of Kriging models: Heterogenous workload and fast actuators.[100
[5.19 Adaptation of Kriging models: Periodic workload and fast actuators.| . . 102
[5.20 Adaptation of Kriging models: Periodic workload and slow actuators.|. . 104
[5.21 Comparing models improvement] . ....................... 106
[5.22 Comparing models improvement| . ....................... 108
[5.23 Comparing models improvement| . ....................... 109
[5.24 Dataset for evaluating Kriging models adaptation to emerging behaviors| 111
[5.25 Adaptation of Kriging models|. . . . . ... ................... 112
[5.26 Adaptation of Krigingmodels|. . . . . ... ................... 114
[5.27 Best models for Experiment 1{. . . ... ... .................. 121
[5.28 Best models for Experiment 2{. . . . . . .. ... ... 123
[5.29 Best models for Experiment 3|. . . . . .. ... ... ... ... 124
IA.1 Correlation of sig and absolute error]. . . .. .. ... ... ......... 136
IA.2  Comparison of Kriging and combined models|. . . ... ... ........ 137
[B.1 Combined model predictions and prediction error on Dataset 1|. . . . . . 140
[B.2 Regression tree predictions and prediction error on Dataset 1| . . . . . .. 141
[B.3 MARS predictions and prediction error on Dataset 1| . ... ........ 142
B.4 Combined model predictions and prediction error on Dataset 2|. . . . . . 143
[B.5 Regression tree predictions and prediction error on Dataset 2[ . . . . . .. 144

[B.6 MARS predictions and prediction error on Dataset 2[ . ... ........ 145




Tables

[5.1 Comparison of models prediction ability] . . . . ... ............. 78
[5.2 Robustness of Krigingmodels.| . ......................... 85
[5.3 Robustness of Kriging models: Break down of the first dataset.| . . . . . . 88
|5.4 Comparing model robustness|. . . . ... .. ... ... ... .. ... ..., 91
[5.5 Promptness of Kriging models for the Sun grid engine case study|. . . . . 94
[5.6 Comparison of model promptness for the Sun grid engine case study| . . 95
[5.7 Performances of controllers in the first experiment|. . . . . . ... ... .. 119
[5.8 Performance of controllers in the second experiment| . ........... 120
[5.9 Performance of controllers in the third experiment{. . . . .......... 125
IA.1 Comparing Kriging and Combined models|. . . . ... ... . ... ... .. 138
B.1 Kriging model accuracy| . ... ... ... ... ... .. .. 139
[B.2 Kriging models training time| . . . .. ... ... ... .. ... . ..., 141

Xi



Xii

Tables




Chapter 1

Introduction

In this thesis, we explore the use of model-based self-adaptive controllers for dynamic
resources allocation: Controllers change the allocation of resources to running systems
to avoid violations of service level agreements and to minimize the amount of resources
used by the controlled systems. In particular, we propose to use Kriging models as core
components for engineering such self-adaptive controllers.

Business organizations and enterprises may provide functionalities to customers by
means of Web services, playing in this way the role of service providers. Customers,
also referred as final users, are willing to pay for using these Web services but require
guarantees on services behavior. For this reason, service providers and final users
stipulate contracts, called Service Level Agreements (SLAs) that define what are the
expected service behavior and expected service usage. SLAs are commonly expressed
in terms of Quality of Service (QoS), i.e., measurable levels of quality attributes, such
as availability, reliability, and performance that may be specified over a finite temporal
horizon. For example, an SLA may require that a service is always available during
working days, that no more than five consecutive service requests fail within two min-
utes, or that the service will respond to client requests at least 99.5% of the times in
each calendar month with an average response time of five seconds [[91]. If the service
provider fails to adhere to such contract (i.e., violates the SLA) then clients can claim
penalties that result in missed revenues, additional costs, and decreased reputation for
the service provider.

Commonly, designers configure enterprise systems so that they can provide the re-
quired levels of service. For example, with capacity planning designers decide upon the
allocation of resources to systems to provide predictable levels of performances [2]].
Capacity planning relies on principles such as resource partitioning and static resources
allocation that aim to ensure performance isolation and predictable behavior of ap-
plications. It consists of identifying cost-effective system configurations to cope with
predefined workload scenarios that are expected to occur at runtime. Designers choose
the optimal system configuration according to some high level organization policy. For



example, a company may want to completely avoid SLA violations, while another one
may tolerate some amount of violations. In the former case, designers provision the
system to cope with the worst scenario that they expect, otherwise, they provision the
system to cope only with a fraction of it.

Following these principles, designers tend to provision applications with new re-
sources to attain acceptable guarantees on the QoS of services, that is, designers over-
provision the systems. In this configuration, the costs of ownership for the organization,
which include for example costs for cooling, for electric supply, and for maintenance,
increase. At the same time, resources are under-utilized for most of the time. As re-
ported by several surveys, the average load of servers that are managed according to
this model is between 5% and 15% [81}; [87]].

Besides cost-inefficiency, if design-time assumptions, like the workload distribution,
the magnitude of its peaks, or its time-of-the-day dynamics, do not hold, static system
configurations may become inefficient, systems may saturate, and services may stop
behaving as prescribed by their SLAs. To reduce at the same time the risk of violating
SLAs and the average costs of running the enterprise systems, providers can resort to
dynamic resource provisioning.

Nowadays, with the advent of virtualization service providers can outsource the
management of basic infrastructure resources to Cloud providers, and can cut infras-
tructure costs by allocating and deallocating resources to their applications on the
fly. More interestingly, service providers can implement dynamic adaptation strategies
that automatically react to important changes in the working conditions and modify
the system accordingly to avoid violations of SLA. Clouds offer the technical means to
dynamically scale applications in order to support a variable number of clients during
runtime. They can provision new servers within minutes and remove underutilized
servers in seconds.

Problem statement

Unfortunately, Cloud providers do not yet solve the problem of finding the most suit-
able configuration that systems should implement to avoid SLA violations. This prob-
lem presents some non-trivial challenges: Uncontrolled changes inside the Cloud in-
frastructure, unexpected fluctuations and sudden spikes in the service demands, va-
riety and complexity of the virtualized applications, and heterogeneity of resources
inside the Cloud.

Uncontrolled changes in working conditions of the Cloud may affect the availability
of physical resources and the end-to-end QoS of applications that they run. For exam-
ple, events like the deployment of new VMs or the failure of some physical machines
may have an impact on the virtualized applications. These difficulties depend on the
impossibility of directly monitoring these events from the outside of the Cloud.

Clouds are mainly used to run applications that are usually exposed to a large audi-
ence and have variable workload. Workload can change in terms of both intensity and



request mix, and this may require different amounts and distribution of resources to
application components. For example, the workload may naturally fluctuate consider-
ably as its natural request distribution, but it may suddenly increase over a very short
time if the service is under a flash-crowd, for example due to a slash-dot effect. These
fluctuations may exhaust the available resources and result in service misbehavior and,
possibly, in SLA violations.

The kind of systems deployed in Clouds ranges from multi-tier applications, to
Web service compositions, content delivery networks, data processing systems, grid
middleware and other customized systems [7]]. Applications may have complex soft-
ware architectures and it is not always clear what are the relationships between system
configurations, parameter settings, resource allocations, incoming workload, and the
end-to-end application behavior. In the same way; it is not clear what are the effects of
acting on any of these concerns at rutime.

Cloud middlewares abstract heterogenous physical resources into virtual machines
that from the final user point of view seem to be homogeneous. However, because
of this inner heterogeneity different instances of the same virtual machine may show
different behavior when run in the same Cloud. This implies that the applications
running different virtual machines under a predefined load may provide different end-
to-end QoS depending on the actual mapping of virtual machines to physical servers
that is not under control of the service provider.

Controllers for dynamic resource provisioning

Service providers resort to controllers that continuously monitor the behavior of con-
trolled systems and adapt the configuration of controlled systems to provide a consis-
tent level of service.

To be effective, these controllers should fulfill the strong requirements that derive
from the non trivial challenges that we identified. For example, controllers should per-
ceive unexpected and important changes in the application behavior, and plan actions
to reduce the effects of these changes on the application QoS. They should predict ex-
pected fluctuations of requests to proactively allocate the right amount of resources,
and they should understand if sudden peaks that demand for a quick increase of al-
located resources are harming the system. Controllers should also capture the global
behavior of applications no matter their internal complexity or number of software
tiers. They should learn from the actual perceived situation, update their control strat-
egy, and consequently adapt to the working context.

Different solutions are currently available. Controllers that adopt fixed strategies,
such as rule-based controllers, may be good if there are no unexpected changes, emer-
gent behaviors and the virtual machines behave consistently during the system lifetime.
They become less effective when the actual working conditions or system behavior dif-
fer too much from design time expectations.



Controllers that are derived from control theory are fast, robust, have tunable pa-
rameters and are grounded on a solid mathematical background [66]]. They are ap-
pealing but difficult to apply because the system identification process at their core
is generally too expensive. Furthermore, they require strong assumptions about the
linearity of the system behavior to prove properties like system stability and absence
of oscillations.

Controllers that exploit machine learning techniques, such as reinforcement learn-
ing, are general and do not require any a-priori knowledge. They are proven to pro-
duce optimal control policies that are able to deal with unexpected cases and emergent
behaviors, but unfortunately they come at the very high costs of exploration.

Model-based controllers exploit models of the system to support their analysis and
planning activities. Some controllers use white-box models, like queuing network,
while other use black-box and surrogate models.

Controllers based on white-box models are limited by the availability of knowledge
about the system internals needed to build accurate models, and by the time required
to obtain reliable prediction out of them. In the domain of Clouds for example, there
is no visibility inside the system and the parameters of models are difficult to estimate
correctly, therefore models can provide only approximate descriptions.

Controllers based on black-box and surrogate models build models of the system
behavior by combining input/output data using regression techniques. They are gener-
ally applicable because require no knowledge about system internals, and usually can
work with data passively collected from the running systems. Furthermore, black-box
models can be adapted or re-trained, thus enabling the implementation of model-based
controllers that self-adapt.

In this thesis, we target self-adaptive model-based controllers that exploit black-box
and surrogate models to dynamically control the allocation of resources to applications
running in Clouds. Despite its application to this specific domain, our solution does not
rely on any peculiarity of Clouds, has a general nature, and therefore it can be applied
easily in other contexts.

There are a lot of possible models that can be used, but a trade off between accu-
racy of representation, costs to manage the model, and time to obtain results out of it
is evident: Very accurate models need a lot of data and a lot of time to process them,
while simplistic linear models are very fast to train but provide poor predictions. For
example, neural networks have the potential to be very effective, but are difficult to
setup, have high training costs, and are difficult to interpret once ready. Bayesian trees
instead are simpler to build and to interpret but require a lengthy training procedure.
Simpler models, like traditional linear regression models, work in less time but at the
cost of very rough approximations. Ideally, a model should provide good levels of ac-
curacy, with acceptable speed, and at reasonable costs in a way to support controller’s
activities without harming its reactiveness.



In this thesis, we propose to use Kriging models as core element of self-adaptive
model-based controllers to implement an effective solution that can suitably balance
the trade off between accuracy, cost and time of on-line control of complex systems.
Kriging models, also called Gaussian process regressors, approximate target functions
by means of a spatial correlation between training samples. They extend traditional
linear regression with a statistical framework that allows them to predict the value of
the target function in un-sampled locations together with a confidence measure.

We choose Kriging models because they are easy to set up, do not require any prior
knowledge on system internals, but can accommodate it when available, and because
we can use their statistical scaffoldings to implement robust controllers. Compared to
other black-box models, they are either more accurate, faster to train and to query, and
less expensive to manage.

Kriging-based controllers

We design self-adaptive Kriging-based controllers that exploit Kriging models in differ-
ent ways: They analyze monitoring data to identify risky situations that may lead to
SLA violations or inefficient use of resources, and they predict the system behavior in
different workload scenarios and alternative system configurations. For each service
level objective, controllers build a Kriging model that represents the objective metric,
for instance the response time or the system throughput, as a function of system con-
figuration, for instance the number and types of virtual machines, and a representation
of the workload intensity and mix [[103]].

Kriging models pair predictions with confidence measures, and we leverage this
feature to implement robust control policies that weigh the importance of model pre-
dictions using their confidence measure, and take informed decisions about the best
control strategy to implement. When the confidence of predictions is too low, con-
trollers discard them and may resort to alternative strategies or heuristics. For exam-
ple, controllers can query other models or take the system to the closest, yet known,
system configuration.

Initially, we train Kriging models with data collected by measuring the system be-
havior at staging time, and then in production we let controllers continuously update
them. By means of model adaptation, controllers adapt themselves to the changing
system behavior. As controllers collect more samples, the accuracy of models improve,
while their uncertainty decreases, and the time to build the model increases. To avoid
the collection of unmanageable sets of samples, many of which do not provide addi-
tional information to the model, the controller filters out old samples belonging to the
same configuration.



In this thesis, we make the following major contributions:

1) The identification of Kriging models as suitable core components of self-adaptive
model-based controllers for dynamic resource management.

2) The design of controllers that exploit Kriging models and implement efficient, ef-
fective, and robust model predictive control. The idea behind these controllers is
to not only to use Kriging models to predict the immediate system behavior given
the actual monitoring data and trigger system re-adaptation, but also to simulate
the effects of control actions potentially implementable on the system state while
planning the most suitable control strategy.

The proposed approach aims to be general. However, in this thesis, we refer to the
domain of applications running in Cloud infrastructure under the Infrastructure as a
Service (TaaS) paradigm [[109]]. We choose this domain because it is significative in the
context of software services, is representative of the problem of SLA protection, and
encompasses all the complexities that stem from self-adaptive model-based control of
complex systems. Cloud IaaS$ is also increasingly attracting interest from both industry
and academia [[34]; 25} [41]].

During the evaluation, we consider only feasible SLAs that pertain to performance
and costs. This choice is motivated by the fact that Clouds come with the mirage that
systems can scale endlessly, but in practice, either service providers have limited budget
or Cloud infrastructures have finite resources. This results in finite size system configu-
rations that can sustain only limited workloads under specific SLA conditions. In other
words, during the evaluation, we consider only workloads that can be sustained by at
least one of the possible resource allocations. In the SLA, we consider performance
and costs qualities because they are perceived by service providers and final users as
the most important: Costs are primary concerns of commercial companies, in a sense
they are also the main driver of the entire Cloud movement. Performance are what
greatly impacts on the quality of service as it is experienced by the final users [|63]].

In the evaluation, we made two more working assumptions. First, we assume
that controlled applications can correctly scale without any direct interaction with the
controllers. The thesis focuses on the control of elastic applications, but not on their
design. In practice, controllers interact with the Cloud platforms to start or stop the
virtual machines, therefore we assume that virtual machines are able to automatically
join (or leave) the running applications without causing any hard failure. Second,
we assume that virtual machines start and stop in near-real time, and consistently
across the deployments: It may take up to minutes to have a new instance ready, but
there are no strong deviations from this behavior between different deployments. With
this assumption, we clarify that controllers can act on the applications as fast as their
actuators: If the actuator takes too much time to perform the control actions compared
to the application dynamics then the effects of control appear too late, the controller
account for long-term predictors, or the SLA is quite tolerant.
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1.1 Research Questions

In this thesis, we tackle the problem of design efficient and effective self-adaptive con-
trollers that guarantee consistent QoS while efficiently use the resources leased from
Cloud infrastructures. We formalize our main research hypothesis as follows:

Research Hypothesis: Kriging models can be used as the core element of
efficient and effective self-adaptive model-based controllers.

In other terms, the thesis proposes the use of Kriging models to build efficient
controllers for the Cloud, and investigates the effectiveness of Kriging models in the
design and engineering of model-based controllers for the Cloud.

For validating our main research hypothesis, we divide it in two parts: First, we
investigate how accurately Kriging models can capture the behavior of elastic appli-
cations running in the Cloud. Second, we determine to what extend Kriging models
can be used to build efficient and effective autonomic controllers. Following these
observations, we refine the main research hypothesis in four research questions.

In the first part, we investigate the accuracy of Kriging models to capture the be-
havior of elastic applications in relation to the complexity of elastic applications and
the availability of data describing their behavior. We address this issue by means of the
first research question:

RQ-1: How accurately do Kriging models capture the behavior of elastic applications
run by Cloud infrastructure?

Proving that Kriging models accurately describe elastic applications is a necessary but
not sufficient condition to prove that they can be used inside self-adaptive controllers.
In fact, the model accuracy is fundamental for model-based control, as controllers
leverage models to predict the potential effects of their control strategies during plan-
ning, and inaccurate predictions may lead to ineffective, or even damaging, control
strategies. However, beside accuracy controllers require that models have additional
properties: They should be easy to set up, to build, and to maintain; they should
be robust when data are noisy; and, they should be flexible and adapt to changes of
application behavior.

In the second part, we address the issue of the suitability of Kriging models to build
autonomic controllers, by investigating the next research questions:

RQ-2: Are Kriging models robust with respect to monitoring data noise and precision?

RQ-3: Are Kriging models fast enough to fit the self-adaptive control loop?

RQ-4: Can Kriging models adapt to the behavior of running applications by using the
data passively monitored from them?
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Research question RQ-2 aims to assure that the accuracy of Kriging models remains
sufficiently high to support effective analysis and provide good predictors of applica-
tions behavior even when used in real, noisy environments. Research question RQ-3
aims to verify that the predictions are readily available to controllers just when they
need them, and that models can be retrained on-line without causing any delay in
the control loop. Research question RQ-4 aims to prove that Kriging models have the
necessary flexibility to support controllers self-adaptation.

By answering all these research questions, we can prove that Kriging models are
indeed suitable core elements to build efficient model-based self-adaptive controllers.

1.2 Scientific Contributions

This thesis advances the state of the art of self-adaptive model-based controllers and
controllers for the Cloud by making the following major scientific contributions:

Suitability of Kriging models for control The first contribution is the suitability of
Kriging models in the context of model-based self-adaptive controllers. We show
that Kriging models are accurate, robust in real situations, timely in predicting
the behavior of applications, and can be trained on-line to implement controllers
self-adaptation.

Kriging-based self-adaptive controllers The second contribution is the design of ef-
ficient and effective controllers that we apply in the context of Cloud computing.
Our controllers leverage Kriging models to implement robust control policies
that account for model inaccuracies by identifying them upfront and by reme-
dying with alternative modeling choices. Controllers use Kriging models also
to simulate the evolution of system state in the future and provide even more
accurate predictions.

1.3 Structure of the Dissertation

The rest of this dissertation is organized as follows:

Chapter 2] presents the background concepts of the work. It describes main concepts
belonging to Cloud computing, Autonomic computing and self-adaptive systems
applied in Clouds, and Kriging modeling.

Chapter 3] discusses state-of-the-art solutions that employ controllers for the Cloud,
use surrogate models for performance predictions, and other control solutions
that exploits Kriging models.

Chapter [4] describes the solution that we propose in this thesis, i.e., Kriging-based
self-adaptive controllers, and its application in the context of Cloud computing.



9 1.3 Structure of the Dissertation

It motivates the use of self-adaptive model-based controllers, discusses the ra-
tionales behind the choice of Kriging models, and presents details on the design
and implementation of these controllers.

Chapter 5| describes the evaluation process to validate our solution. The chapter
shows the suitability of Kriging models for modeling applications in the Cloud
and the performance of Kriging-based controllers. It critically discusses these
results and compares them against related approaches.

Chapter 6] concludes the work. It summarizes our methodology, lists the achieved
scientific contributions, discusses the limitations of our solution, and illustrates
the future research that can spring off our work.

Appendices contain additional material and further details about the solution and the
evaluation.
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1.3 Structure of the Dissertation




Chapter 2

Background

This chapter introduces the basic concepts over which the thesis develops: Cloud com-
puting, Autonomic computing, self-adaptive controllers for the Cloud, and Kriging
models.

2.1 Cloud Computing

Clouds provide resources, like computing power, storage space, networking, applica-
tions and data as part of large data centers, and offer them on demand as services [[8]].
Customers access them remotely through the Internet under a pay-as-you-go billing
model, and they are charged proportionally to the amount of resources that they con-
sume.

From an historical viewpoint, Cloud computing represents the last step of a trend
started several years ago with distributed systems, Grids, and Utility computing [[7].
This trend moved towards the delivery of services, mainly through the Internet, in a
way that resembles the delivery of traditional services by utility companies, such as
the one for water and electric power supplies. In this case customers are charged
on the amount of resources used and do not participate to infrastructure setup or
management.

Taking a different viewpoint, one can see Clouds also as an evolution of traditional
Web hosting services. Nowadays, business organizations and enterprises outsource
their infrastructures, platforms and applications to Cloud providers to reduce the costs
of owning, managing and running IT infrastructures. Furthermore with Clouds, orga-
nizations can exploit a set of resources that is unconstrained from their specific com-
puting infrastructures.

Clouds are characterized by several aspects: i) The ubiquitous access to resources
and electronic services: Everything is on-line and available from everywhere. ii) The
opaque management of data and physical resources: Consumers are not able, by
design, to locate and directly access the physical systems running their applications.

11



12 2.1 Cloud Computing

iii) The on-demand, self-service nature of service provisioning: Consumers can request
more or less services, whenever they need, and receive them almost with no waiting
time. iv) The usage-based economic model, commonly implemented as pay-as-you-go:
Customers pay only for what they actually consume.

Clouds are organized with a strong separation of concerns. Subjects that provide
the applications logic, and subjects that are in charge of carrying out the IT manage-
ment are agnostic of one other. In this way, service providers can focus on its pri-
mary businesses, while Cloud providers takes care of the other duties. For example, if
providers want to focus on application development, Clouds can take care of system
infrastructure and runtime environments. If providers want to focus on both applica-
tions and platform, then Clouds can take care of just resource provisioning. Moreover,
Cloud infrastructures allow customers to adjust at runtime their service demand: For
example, customers can change the amount of resources allocated to their systems,
can deploy new systems and can un-deploy them later on.

Many of distinguishing features offered by Cloud providers are implemented with
state-of-the-art technologies and methods that derive from Service Oriented comput-
ing [180]], Grid computing [[12]], and system level virtualization [9]]. Service Oriented
computing has the biggest impact on the management processes relates to the Cloud,
while virtualization has the biggest impact resource-wise [58]]. As a matter of fact, vir-
tualization is the game changing technology that provides isolated execution environ-
ments, generally in the form of virtual machines (VM), and the tools for their dynamic
allocation, deallocation and management, e.g., checkpoint, replication, cloning, and
migration.

Service Providers

5" 8 8

.
Service

Invoke Services Service Service

software

@@ @&) Cloud

Providers
Final Users

Figure 2.1. Overview of Cloud computing

Generally, a Cloud is composed of three layers: The infrastructure is the lowest layer
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and delivers basic storage, networking and computational capabilities. The platform
is the middle layer. It builds on top of the infrastructure and provides services in an
integrated development or runtime environments. Finally, the application is the top
layer and offers to final users complete, desktop-like applications as services [|64]].
Figure exemplifies the internal organization of a generic Cloud: Final users
access the electronic services as before. Cloud providers manages the “internals” of
the Cloud at the different levels. Service providers interact with the Cloud by either
managing virtual machines (left), deploying entire applications in predefined environ-
ments (center), or composing third party electronic services (right). In these settings,
service providers act as final users of Clouds. They buy resources and other services
from the Cloud, and use them to provide added value services to their own final users.
Cloud computing defined the three service delivery paradigms:

Software as a Service (SaaS) where clients access complete software systems remotely
and use them as they were on local machines. In this paradigm clients have no
control over the application nor the infrastructure. Everything is controlled by
Cloud providers.

Platform as a Service (PaaS) where clients provide the application logic and have
the control over its configuration. In this paradigm, Clouds retain the con-
trol over the system infrastructure and the middleware components upon which
client applications are built. Usually, Clouds provide “sand boxed” environments
and clients logic cannot implement critical system level calls.

Infrastructure as a Service (IaaS) where clients provide the whole software that im-
plements the services and Clouds control the system level resources. In this
paradigm clients temporarily acquire remote and isolated virtual servers over
which they have full control.

This thesis develops its contributions in the context of Cloud IaaS. We target plat-
forms that offer infrastructure level resources as services, and run virtual machines
on behalf of service providers. Service providers control the lifecycle of virtual ma-
chines, while Clouds implement management actions like virtual machines placement
and physical resources allocation. In essence, IaaS enables service providers to add or
remove virtual servers on the fly, and dynamically scale their systems. Service provides
use this feature to implement elastic applications that can be adapted to dynamically
changing working conditions.

Commercial Iaa$S platforms, like Amazon Ec2[!} RightScale} Scalf’} and many oth-
ers, come with basic tools to automate the scaling of customer applications. These tools
share the same threshold-based basic pattern: Service providers select a subset of the

http://aws.amazon.com/ec2/
2http://www.rightscale.com/
Shttp://scalr.net/
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application variables monitored by the Cloud platform, specify a set of conditions over
their values, and specify how to react when those conditions are met. For example,
service provider can monitor the average CPU usage of virtual machines, set a thresh-
old on its value, add a new virtual machine whenever the average CPU usage passes
the threshold. In this systems, Cloud providers take care of monitoring the system
variables, checking all the conditions, and triggering the specified control actions.

Service providers manually specify these rules and have no tools other than their
personal experience to check the suitability of their choice. Also commercial platforms
have no tools to support the discovery, update and management of the rules: If the
system behave differently from the service providers expectations service providers
have to disable, modify and re-enable all the rules.

Static threshold- and rule- based strategies are intuitive and easy to understand,
and they may be the right choice for cases when service providers can make strong
assumptions on their systems or applications have simple software architectures. How-
ever, as the situation becomes more complex, for example, in case of highly dynamic
workload, more complex software architectures and unexpected events, fixed control
strategies may not be cost-effective.

These situations require solutions that react to known, predictable and recurrent
events, that predict the behavior of complex applications, and that proactively react to
unexpected or potential risky situations. An ideal solution should be able to learn from
its past experience and update its control strategy in spite of that, possibly with little
or non human intervention, as fostered by the autonomic computing community.

2.2 Autonomic computing and self-adaptive controllers

Autonomic computing is about the idea of systems that can automatically and au-
tonomously manage themselves according to high level objectives defined by system
administrators [|38].

The central element in the implementation of autonomic computing is the auto-
nomic element, also called autonomic controller. Autonomic elements work in a closed
loop with the systems they control: They sense the environment and the main vari-
ables of the controlled system, and then apply control actions to modify it. In between
sensing and acting, controllers implement activities that logically form a looﬂ usually
called the MAPE-K loop [40]. In the MAPE-K loop, controllers monitor data (M), an-
alyze (A) them to plan (P) a suitable control strategy, and execute (E) the strategy by
implementing the control actions on the system. In all of these activities, autonomic
controllers rely on some knowledge (K) about the controlled systems and environ-
ment [[53]].

4The activities of autonomic controllers are not necessary executed in sequence, even if this is the most
common pattern.
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This thesis focuses mainly on the two central activities of the loop, i.e., analysis
and planning, and the knowledge component.

Analyze Pian

Sensors
sloyenyoy

Monitor Execute
Knowledge

Figure 2.2. Autonomic element

The high level objectives that controllers try to achieve may concern several as-
pects, called self-* properties, that include: optimization, configuration, fault tolerance
and security. Self-optimizing systems aim to maximize some utility function of the
system; self-configuring systems adapt the software architecture to dynamic environ-
ments; self-healing systems recover from failures; and, self-protecting systems deal
with security attacks.

Simple self-* systems usually deal with only one property, while more advanced
solutions deal with many properties at the same time. This thesis is centered around
the design of controllers that provide the system mainly with self-optimizing and self-
configuring abilities.

Common controllers architectures

Controllers come in different flavors and with several architectures as discussed by
Brun et al. [[15]] and Patikirokorala et al. [83]]. Authors group controllers in centralized
and distributed depending on their architectures.

Centralized controllers are the most common solutions and refer to centralized
single-controllers and centralized multi-controllers.

Figure exemplifies some centralized controllers as block diagrams: I) Feedback
controllers. They use output of the system to compute an error metric and plan a con-
trol strategy that reduces it. II) Feed forward controllers. They receive the same input
signals of the controlled system and compute the control strategy on them. III) Feed-
back and feedforward controllers. They combine the former two controllers in a single
solution. IV) Model predictive controllers. They employ a model of the system in con-
junction with an optimization procedure to define the control strategy: At each control
interval, controllers simulate the system using the model and plan the best strategy
over a receding horizon. V) Cascading controllers. They chain two multiple controllers
such that outer controller controls the inner controller, and the inner controllers act
on the system. VI) Multi controllers with switching. They run several controllers in
parallel and use them in mutual exclusion to control the system.

Distributed controllers are the alternative to centralized controllers and their con-
trol logic is deployed over multiple controllers. We report the most common archi-
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Figure 2.3. Block diagrams of centralized controller architectures [83]

tectures of distributed controllers in Figure [2.4} I) Hierarchical controllers. They are
organized hierarchically, and controllers in upper-level act on controllers in the lower-
levels, and eventually on the target system. II) Fully distributed controllers. They are
composed of independent local controllers that communicate over a shared communi-
cation substrate. Controllers collaborate to fulfill the control goals.

Level 2
Controller o
Communication
Level 1
Controller

Level 0 Level 0 Coni1roller Contzroller
Controller Controller
I I I Subsi'stem Subsystem Subsistem
Subsystem Subsystem Subsystem
1 2 n

Target System

Target System

Hierarchical controller Fully distributed controller

Figure 2.4. Block diagrams of distributed controller architectures [83]

Controllers presented so far assume that the system behavior is stable and that
all the system identification activities are done before going live. This is not always
possible because the controlled systems and the environment may show transient and
emerging behaviors, or because an extensive model identification is too expensive.
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Self-adaptive controllers instead are able to adapt as the system behavior changes.

Controllers adaptivity is a concept taken from advanced control theory where it is
usually implemented in the form of automatic tuning of controller parameters or track-
ing of hidden variables [116]]. In the context of autonomic computing, self-adaptivity
has a broader meaning than parameter estimation and variable tracking, and encom-
passes also updates on control strategies and structural changes of controllers internal
architecture [[15].

In Figure we illustrate the block diagrams of generic self-adaptive and self-
tuning controllers. Self-tuning controllers employ an estimator component that tracks
the hidden variables and provides the controller with their values. Self-adaptive con-
trollers employ a reconfiguration layer that acts on the control layer to adapt it. For
example, Magee and Kramer propose a three-layered control approach where an high
level goal management layer controls the underlying levels for change management
and software components [[53]].

Goal
Parameters management
m Specification I
Change

management

Set point
Control
error

Control System
input

controller

I

Target
“ System n
Self-tuning controller Three-later self-adaptive controller

Figure 2.5. Block diagrams of common self-adaptive controllers

In this thesis we focus on centralized controllers, in particular on model based self-
adaptive centralized controllers, to tackle the problem of dynamically control elastic
applications in the Cloud: The control strategy is derived from models that describe
the system behaviors that are adapted at runtime. We choose the centralized approach
over the distribute one, because it is conceptually simpler and easier to manage, and
we choose a model based controller because is more flexible and generally applicable
than standard feedback and feedforward solutions.

2.3 Autonomic and self-adaptive controllers for the Cloud

Autonomic and self-adaptive controllers are designed to deal with complex systems,
highly dynamic environments, uncertainty and emerging behaviors. Additionally, they
can learn from past experience [[49]]. These characteristics make them a sensible choice
for managing elastic applications running in Clouds. In fact, Clouds are very dynamic
environments that provide high degree of automation to carry out all the management
tasks, and host complex applications that may be composed of several interdependent
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software components, and may face highly variable workloads.

In Cloud settings, state-of-the-art approaches that are based on autonomic com-
puting principles can be classified as: (i) approaches used inside the Cloud to perform
activities on its internals, such as controlling resources allocation between the hard-
ware and virtualized layers, (ii) approaches used outside the Cloud to perform activ-
ities that target user applications and leverage Cloud features , and (iii) approaches
that combine the previous two.

Inside the Cloud, controllers are applied mainly for optimization goals: For ex-
ample, they are used to optimize the placement of virtual machine to minimize the
number of active physical servers (server consolidation)[[16]. Or they are used to ad-
just the CPU frequency of physical servers to improve their power efficiency while
maintain VM-related metrics to specified levels[|48}; 92].

Outside the Cloud, controllers are commonly used to manage final users applica-
tions: For example, they are used to control the horizontal and vertical scale of elastic
applications, or to dynamically migrate VMs between physical machine, data centers,
or federated Clouds to maintain acceptable levels of dependability.

The focus of the thesis is on the use of autonomic approaches outside the Cloud,
that is, exogenous controllers [[115]]. We make this decision bearing in mind generality
and separation of concerns: By developing controllers that run outside the Clouds
we can reuse the same controller across different Cloud infrastructures as long as the
controlled application remains the same. Furthermore, by running controllers on the
side of service providers, we leave full control to service providers on the controllers if
they want to remove, change, or update them. This is different for example from the
approach offered by Amazon and other Cloud providers that allow service providers to
specify rules, but fully control their execution.

We design controllers that operate on behalf of service providers and manage their
elastic applications at runtime: Controllers bind public interfaces exposed by Clouds,
monitor applications behavior and billing status, and take informed decisions that
trade off running costs and quality of service before acting upon the virtualized in-
frastructure. In particular, controllers take decisions about what type and how many
instances of virtual machines have to be replicated or removed, and when to implement
the control actions.

In this thesis, we follow the reference architecture for self-adaptive controllers and
we adapt it to fit the Cloud domain. Figure [2.6] shows the resulting situation: The
controlled system is a virtualized application that runs inside the Cloud. The Cloud
is operated by an IaaS Cloud provider. The environment embeds both the controlled
system and the Cloud. Final user perturb the application by means of the service
invocations. The controller lies outside the Cloud, monitors the invocations by the
final users and the service behavior, and invokes operations at the infrastructure level
on the Cloud.
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Figure 2.6. Reference architecture for autonomic controllers in the context of elastic
applications and Cloud laaS

2.4 Kriging models

This thesis proposes Kriging models as the basis to build self-adaptive model based
controllers. This section introduces Kriging modeling, focusing on the aspects of in-
terest in this thesis. The interested reader can find a comprehensive presentation of
Kriging models in [90; [107].

Kriging models were defined in the context of mathematical geology by the French
mathematician Georges Matheron [[72]]. They are named after Daniel G. Krige, the
South-African mining engineer who firstly proposed them in the 1950s [54]. Origi-
nally, Kriging models were proposed to approximate the underground concentration of
valuable minerals by interpolating samples taken at different locations, and gradually
they have been used in other contexts. Starting from the seventies, Kriging models
have been used to develop approximationsﬂ of deterministic and expensive simulation
for designing optimization functions in domains such as geo-statistics, meteorology,
avionics and circuit design [[94]. Recently, Kriging models have been used in Machine
Learning, where they are known as Gaussian processes [[90]].

Kriging models are a family of black box models that approximate non linear multi-
modal functions. They are build starting from a training data set and capture the rela-

°In relation of this application as approximations of simulations Kriging models are also referred to as
surrogate models or meta-models.
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Figure 2.7. Example of regression with Gaussian Processes [88]

tions among input and output data, a process commonly known as supervised learning.

Once trained, they predict output values at input locations that were not present
in the training set and that we denote by x,. Kriging models are suitable for regression
problems when inputs and outputs refer to continuous dimensions, but can also be
used for classification problems that involve non-continuous features [23]]. Figure
shows how Kriging models works over a simple example taken from [88]: The left
panel reports the training points (as black dots) that we use to train a Kriging model to
predict the output function (y). The panel highlights two unknown points (x; and x,)
that we want to predict with the model. The central panel shows the Kriging model
that results from the training data (as solid gray line). For x; and x,, the panel shows
also the confidence interval that is associate with the predictions as error bars centered
in x; and x5. The right panel shows the complete Kriging model. In this panel, we
plot the model predictions and the corresponding confidence area for the whole input
space.

Kriging models have many interesting properties: (i) They are global, i.e., they
span over the whole input space, differently form classic regression models that are
commonly preferred for local predictions. (ii) Whenever it is assumed that data are
noise free, like in the context of deterministic computer simulations, Kriging models
produce the exact interpolation of data. Otherwise, they implement a form of data
smoothing. (iii) Kriging models can provide a measure of the uncertainty of their
own predictions; this measure accounts for both the availability of training samples,
their distribution over the input space, and their level of noise. (iv) Kriging models
in general do not need a very large amount of training samples to provide acceptable
predictions, thus are relatively fast to train.

Kriging are a valuable alternative to other black-box models, either classic regres-
sion methods that are based on first- or second-order polynomials, and non-parametric
models, such as smoothing splines and radial basis functions [[107]. Differently from
classic models like artificial neural networks (ANNs) or traditional linear regressors
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that require extensive configurations in terms of layers, neurons and model degrees to
match systems complexity, Kriging models are easier to use because they automatically
search for the relationships among measured data in the scope of a fixed, but very
expressive, internal structure.

Both ANNs and Kriging models can be used as black-box models to predict not
yet experienced values, but only Kriging models can be inspected and interpreted to
better understand the properties of the predicted values: By inspecting the model
after the training, we can derive conclusions about the relative influence of each input
dimension on the modeled output, and this can be used, for example, to filter out
not-informative input features, thus reducing the complexity of the model itself [[90].

As any other approach based on data, Kriging models depend on the availability
and the quality of training data to make accurate prediction. However, Kriging mod-
els can leverage an uncertainty measure to identify regions in the input space where
training data are scarce compared to the complexity of the unknown function. We can
use this measure to account for the reliability and risks of using the values predicted
by the models.

The remaining sections give an intuition on how Kriging models work along with
the two main point of view: Kriging models as extensions of traditional linear regres-
sion, and Kriging models according to the Bayesian theory.

Internals of Kriging models

Given a training set consisting of input vectors (x) and corresponding observations
(yi), the aim of supervised learning is to infer a model of the (unknown) function (f)
that has generated the data. The model of the unknown function is generally given by
a linear combination of parameters and functions to be estimated.

y = f®+te 2.1)

where € is the error term. Observations are assumed independent and identically dis-
tributed (i.i.d) and the error is assumed Gaussian with zero mean and given standard
deviation 03.

Two main viewpoints describe how Kriging models work: According to the first,
Kriging models extend traditional interpolation methods with a statistical framework
based on stochastic processes E], typically Gaussian processes [23]]. According to the
second viewpoint, Kriging models can be framed in the Bayesian theory in terms of

prior and posterior distributions, likelihoods and observations.

6Stochastic processes generalize stochastic distributions to functions: A distribution describes a ran-
dom variable, while a process describes a random function.
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Kriging model as extensions of linear regression

As summarized by Jones et al. [45], Kriging modeling can be interpreted as an ex-
tension of classic regression with stochastic processes. In fact, they share a common
mathematical framework that includes regressors and errors, but they put different
emphasis on the two aspects: Classic regression focuses on the regressors and their co-
efficients, and makes simplistic assumptions about the errors and their independence.
Kriging modeling instead focuses on the correlation structure of the errors, and makes
simplistic assumptions about the regressors. In other words, classic regression is about
estimating regression coefficients that together with the assumed functional form fully
describe what the function is about, while Kriging modeling is about estimating corre-
lation parameters that describe how the function typically behaves, thus describing how
much the function tends to change while moving along different input dimensions.

Kriging models correlate training samples by assuming that the target function is
continuous and that there is a spatial correlation between observations: Samples that
are close to each other in the input space have similar output values. Kriging models
capture this correlation by exploiting the error terms: € is modeled as a stochastic
process and it depends on the observation, therefore it can be re-written as e(x').
From the assumption of continuity of the unknown function and the general trend, it
follows that e(x), which is computed as their difference, must be continuous too. And
for any two points close together (x' and x/) the corresponding errors terms (e(x') and
e(x/)) should be also close.

Figure captures this intuition over a simplified example that we take from [45]]:
The thick line represents the unknown function, and the black dots represent the col-
lected observations. Let’s assume that there is no additive noise in the data and that
the empirical mean () is the global trend, which is represented as a thin line in the
diagram. According to the theory, given an Xx;, the error term e(x;) is computed as the
distance between the model, which is i, and the actual value of the function y;. From
the figure, we can intuitively see that error terms e(x*) and e(x!) that corresponds to
the unknown location x* and the nearby location x' have similar values.

=== Unknown function

—— Global trend

x*: xi

Figure 2.8. Error correlation in Kriging models [45]

Kriging models capture the correlation of samples in a correlation matrix that we
denote by K. Given K, Kriging models predict the value of the target function in the
unknown coordinates x* as the most consistent value with respect to the estimated
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typical behavior of the function that is summarized by best linear unbiased predictor:

JE)=px)+k" K (y— p(x)1) (2.2)

The first term of the predictor is the evaluation of the mean at the untrained input
and the second term is the adjustment that is based on the correlation among the
errors. It must be noted that, if there is no correlation (k = 0) the predictor reduces to
the mean (1), while at a sampled points (k=K;) the predictor interpolate the data. In
between these extremes, y is based on a smooth interpolation of the data

The estimation of accuracy of the prediction is affected by the correlation of the
error terms and it can be measured as the mean squared error (MSE) with the following
formula:

(1 — 1TK'k)?

17K 11

s’ (x)=0?[1 — K'K 'k + ] (2.3)
The term kT K~k represents the reduction in prediction error due to the fact that x*
is correlated with the training points, i.e., no correlation implies no adjustment. The
term (1 — 17K~ 'k)?/1TK ™1 reflects the uncertainty that stems from not knowing the
function exactly.

Kriging model according to the Bayesian view

Kriging models can be interpreted also according to the Bayesian theory. This is the
viewpoint of the Machine Learning community, and is summarized by Rasmussen et
al. [90].

The inference process starts with a prior distribution over a set of possible func-
tions that may represent the unknown function. In this particular case, the prior is a
Gaussian process and samples drawn from the unknown function are assumed to be
normally distributed. Their covariance is assumed to be depend on samples spatial
location, i.e., the distance between them. The prior is combined with a set of observa-
tions, i.e., the training points, to obtain the posterior distribution that is used to make
the predictions. This combination is governed by the Bayes rule:

likelihood X prior

posterior = marginal likelihood

The prior encapsulates all the knowledge that is available at the beginning, i.e. before
collecting any data. In our context, the prior encapsulates the expectations over the
kind of functions to be observed: Smooth functions with stationary variance. The in-
formation from the training set are used to derive the likelihood and the marginal like-
lihood (or evidence). Finally, the resulting posterior, which is also a Gaussian process,
describes the expected behavior of the function as was derived from the observations.

Figure gives the intuition of the inference process with the Bayesian model in
a simple example. We take the example from [[90]. The left panel shows some of
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the distributions (as solid lines) that are drawn from the Gaussian process used as
prior. The same panel highlights also the confidence interval of the Gaussian process
as gray area. The right panel instead shows how this evolves after the observation
of two samples. The panel shows some distributions (as dotted lines) that are drawn
from the resulting posterior and the confidence interval. In particular, and as the
intuition suggests, the confidence interval adapts to the data: It is reduced close to the
observations while is not changed away form them.

X 0
-1
-2
0 05 1 0 05 1
input, x input, x
a), prior b), posterior
y P , P

Figure 2.9. Bayesian inference with Gaussian processes [90].

Informally, the net result of this inference process is that some of the potential dis-
tributions that could be drawn from the prior are filtered out with the observations:
Distributions that behave according to the original prior and the data are retained
while the others, which do not interpolate the observations, are removed. Once the
posterior is available, its mean function computes the predictions and its variance (at
the prediction locations) computes their uncertainty. The figure shows the mean func-
tion of the posterior as solid bold line.

This theory involves the computation of several integrals and other complex math-
ematical operations, but by focusing on stochastic processes that are Gaussian, it turns
out that these computations become relatively easy as the model can be treated ana-
lytically. We can write the general model (see in terms of the parameters w and
make inference on them/’}

fE)=x"w 2.4

In this formulation, the problem is to find the value for the parameters using the

Bayes rule, i.e., find the posterior distribution of the parameters given the prior and

the observations
D(WX.y) = p(yIX,w)p(w)
’ p(ylX)

7 An equivalent derivation in the function space can be performed as well.

(2.5)
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In absence of evidence, the common prior (p(w)) is the zero mean Gaussian with
covariance matrix %.,. This choice is not a huge limitation because the resulting poste-
rior will have a mean that is different from zero because that depends on the training
data. Of course, whenever some a-priori knowledge is available, it can be plugged in
the model by defining a suitable prior.

Thanks to the independence assumption of the observations, we can factor the
likelihood over the training points to obtain

paIXw) =] [pilx.w) = ... = #(X"w,0?1) (2.6)
i=1

which is Gaussian. Finally, the marginal likelihood is independent of the parameters
and is given by
p(ylX) = f p(ylX,w)p(w)dw 2.7)

It can be shown that the posterior is Gaussian and is given by

p(wlX,y) ~ N(W,A1), where (2.8)
A = o’Xx"+371, and
w = GE_ZA_1Xy
The model computes the prediction for a given input by averaging over all the
possible parameter values weighted by their posterior probability. The prediction and

its uncertainty are given again by the mean and variance of a Gaussian distribution
that correlates test input with the observed values in a well defined form.

p(y:lx., X, y) fp(y*lx*,W)p(WIX, y)dw

-
JV(—ZX*TA_1Xy, x,TA7'x,) (2.9
o

€

Sample correlation is the central point of Kriging modeling

In their more general formulation, Kriging models contains two terms: The first is
called global trend and is meant to capture model-wise variations; the second instead
accounts for local modifications and it is implemented by means of Gaussian processes.

Universal Kriging models put no constraints on the global trend, Ordinary Kriging
models assume a constant but unknown global trend, while Simple Kriging models as-
sume a known constant trend that, by convention, is equal to zero. These models allow
for different levels of expressivity, but in any case, the most important part remains the
correlation function.
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The correlation depends on a point-wise distance metric, it must be maximal when
the distance between the corresponding points is small and almost zero when that
distance is great. Its common form is given by

Corr[x;,x;] = exp[—dist(x;, x;)] (2.10)

In particular, Kriging modeling defines such a distance metrics as:
d _ 4
dist(x;, x;) =ZGh|x;1 —x;l|p’1 (2.11)
h=1

but alternative formulations are also possible [90].

The behavior of this distance metric is governed by two hyper-parameters for each
of the H input dimensions: p; determines the smoothness of the function, while 6,
determines its activity, i.e., the amount of variation of the function per unit variation
in the input. Thanks to the hyper-parameters, different weights can be associated
with different input dimensions, thus modeling their relative importance. This is very
different from standard Euclidean distance metrics that treats all the input dimensions
at the same way.

The value of the hyper-parameters must be set before we can actually compute
the predictive mean and variance, and in practice, this is done by elaborating the
training data. As Kriging models aim to capture the typical behavior of the unknown
function as expressed by the training data, the value of hyper-parameters is obtained
via maximizing the likelihood (MLE) of the sample within the average value of the
function and the variance of the erroifl

To carry out the optimization, a total of 2|H| 4 2 parameters must be estimated:
two hyper-parameters for each input dimension, plus the mean and variance of the
underlying stochastic process. For example, compared to a quadratic model that needs
a total of (|H| + 2)(|H| + 1)/2 parameters, the set of parameters for Kriging models is
smaller and the optimization may converge faster.

For the sake of presentation, in this section we assumed noise-free data. In prac-
tice, as we use Kriging models to describe real systems, we cannot make such an
assumption. In the remaining of the thesis, we follow the approach presented by
Forrester [27], and we add a “noise term” (thus more unknown parameters to be es-
timated) to the diagonal of the correlation matrix. Assuming a Gaussian noise, all
the previous conclusions derived from Kriging models remain valid. The net effect of
adding the noise term is that the final model implements a form of data smoothing and
it may not perfectly interpolate the data. This modification is sensible as more noise
implies more smoothing of the data and more uncertainty of the predictions.

8Even if the goal of the optimization is to maximize the likelihood, usually the actual optimization
problem (for numerical reasons) is formulated as minimization of the negative log-likelihood.



Chapter 3

Related Work

This chapter presents the most relevant work in the following areas: Control of Cloud
based applications, performance modeling by means of black box and surrogate mod-
els and control based on Kriging models and Gaussian processes. It is organized as
follows: Section presents work about automatic scaling of elastic application in
Clouds IaaS; Section presents work about the use of surrogate models for perfor-
mance prediction in the context of performance engineering; Section [3.3|presents work
on Kriging models and Gaussian processes used in the context of automatic control.

3.1 Controllers for elastic applications in Clouds

Controllers for elastic application in the Clouds belong to a research area known as
dynamic system management (DSM) that deals in general with the study and de-
sign of controllers. A broad view on DSM is out of the scope of the thesis, so we
give here only a very short summary of the various proposals that DSM accounts
for: Hardware resources allocation, adjustment and scheduling for performance guar-
antees [52; [73} [79; 165; [119]; green computing, power management and dynamic
CPU frequency scaling for reducing resource consumption and impacts on the en-
vironment [55; 56]]; system scaling and component replication to align system ca-
pacity and workload demand [76}; 26} 33} [84]]; components and VM migration, re-
deployment and rescheduling to better consolidate servers [[50; [105; [106]]; dynamic
access control, load balancing and other dynamic dispatching techniques, service com-
position adaptation and rebinding, to provide consistent, stable and suitable QoS to
clients [[10} [17; 35 99} 55 [75]; [74] .

In our context, controllers aim to identify suitable allocations of resources at run-
time, based on some knowledge encapsulated in the controllers in the form of rules or
models. The problem of building efficient self-adaptive controllers has been the tar-
get of several research projects, which resulted in many approaches that differ for the
models used to capture the knowledge of the system and for the strategies to identify

27
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suitable configurations while reacting to changes of workload conditions. The models
of system behavior that are used in those controllers span from simple rules to complex
analytic or surrogate models.

Some approaches require models to be defined and tuned at design time while
others define and tune models at runtime. This choice depends on the nature of the
models, the complexity of the system and the reliability requirements of the controllers:
Rules and analytic models, like queuing networks, must be defined and tuned at design
time and hardly adapt to unpredictable configurations; surrogate models, like Kriging
models, may be defined and tuned at runtime and can adapt to emerging scenarios. In
practice, defining proper analytic models for complex systems may require a consid-
erable effort, but their reliability can be assured analytically or experimentally before
deployment. Surrogate models, instead, can be tuned dynamically according to the
system behavior either during testing or at runtime, sometimes even independently
from the complexity of the modeled system. Their reliability however can be assured
only on the basis of some hypothesis on the behavior of the system that may not be
statically verifiable.

We classify related work about automatic controllers for the Cloud according to two
main dimensions: Assurance, which refers to degree of predictability of the runtime
behavior, and thus the level of reliability of the system, and flexibility, which refers to
the capability of controllers to cope with changing and evolving configurations, and
thus to the level of adaptability of the system.

We estimated the assurance level of the different approaches considering the for-
mality of the control model, the hypothesis on the system behavior and the correspon-
dence between the system and the model. Formality of the control model accounts for
the amount of formal guarantees that each approach gives on the model or control.
As an example, in traditional control theory, under proper assumptions, the controlled
system can be guaranteed to converge to an equilibrium point within a given range of
oscillations. Hypotheses on the system behavior accounts for the set of assumptions
that need to be valid for the approach to correctly model the system, and thus to work
suitably. For example, control theory assumes system linearity, while Kriging models
assume a certain degree of smoothness of the modeled system. Finally, correspondence
between the system and the model accounts for the (timely) coherence between the
current state of the system and its runtime models, similarly to model accuracy.

We estimated the flexibility of the different controllers by considering the amount
of configurations that they can be encompassed and the possibility to extend the set of
considered system configurations at runtime. For example, some approaches assume
that the system never changes because they cannot be adapted, others instead have
limited adaptations capabilities, such as the tuning of some parameters, while the
remaining can be updated to greater extent.

Similarities in these approaches suggested the creation of three groups that we
discuss separately thereafter: Static approaches, dynamic approaches and hybrid ap-
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proaches.

Static approaches

Static approaches are based on models of the controlled system that are defined and
verified at design time and not modified, updated or tuned in production after system
deployment. We refer to these models as static models to stress the design nature of
their construction and analysis. These models privilege design time assurance over
runtime flexibility: The models of the system identified at design time are not changed
during runtime activities to preserve the validity of the proofs used to identify system
viability zones that are defined as states in which the system operation is not compro-
mised [[I00], along with the main properties of the system behavior. Being defined
at design time and not updated at runtime, static approaches rely heavily on the cor-
rectness and completeness of the knowledge encoded in their models. This implies an
extensive degree of experience and understanding of the system behavior, and gen-
erally high costs in terms of model identification and/or synthesis. Moreover, formal
approaches, in particular classic control theory, are generally applicable under strong
assumptions in terms of linearity, monotonicity, and reliability of the controlled sys-
tem, thus significantly reducing the system viability zones. Under these assumptions,
feedback-loop approaches can be proven robust to a certain degree of error in the
estimation of the model parameters, hence they can provide effective control actions
(for example, maintaining a performance metric within a certain range) even without
self-tuning at runtime. However, both errors in parameter estimation and wrong as-
sumptions on system behavior properties can reduce the efficiency of the control in
terms of possible SLO violations or resource assignment.

The most popular static approaches are based on either analytical models or rules
and thresholds, while only some of them are based based on black-box and surrogate
models defined and tuned before deployment.

Approaches based on Control Theory Cloud controllers based on control theory
adapt classic control theory techniques in the context of computing systems aiming
to design adaptive, robust, and stable systems [|66]]. Here we provide only basic in-
formation about classic control theory, and we suggest Hellerstein et al. for additional
details on control theory approaches to manage computing systems [37].

Some approaches adapt standard control techniques, such as proportional, integral
and derivative techniques, to synthesize self-adaptive controllers. These controllers use
simple models and provide formal guarantees about the behavior of the system, but
rely on very strong assumptions that are seldom verified in highly varying environ-
ments. Other approaches try to extend the scope of applicability of controllers based
on classic control theory, by proposing complex parametric models where part of the
parameters are unknown at design time. These approaches can still provide a limited
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set of formal guarantees depending on the assumption of proper on-line estimation
methods.

An interesting example is the control theoretic solution that Maggio et al. propose
to deal with self-optimization problems [67]]. This solution is developed in the context
of a common framework for monitoring system performances and adjust the allocation
of resources to applications in order to guarantee a predefined service level. Maggio
et al. [|66] start with a simple (stateless and linear) model of the system that assumes
a monotonic relation between allocated resources and application target performance.
Then, they synthesize a Deadbeat controller, which is a common choice in the context
of standard control theory, to track the target performance signal. They study the
transient behavior of this controller by setting different parameters to estimate the
approximation of the input signal and to decide if the controller can effectively regulate
the system despite its variations. When they cannot determine the suitability of the
current model, they further refine the model by introducing more complex techniques
and see if the new models are conclusive.

Maggio et al. improve the basic deadbeat controller by adding an identification
block that supports the online estimations of the unknown system parameters [68]].
They extend the controller by means of a Kalman filter and a Recursive Least Square
algorithm. They observe that adopting more complex solutions, i.e., solutions that
use more parameters to describe the relationship between the controlled and target
variable, increases the difficulty to prove suitable control properties.

Other theoretical control solutions leverage multiple models. A good example of
such controllers is the approach of Patikirikorala et al. who propose a particular in-
stantiation of Multi-Model Switching and Tuning (MMST) adaptive control [82]. In a
nutshell, they define several (fixed) linear models that describe the system behavior
in different working conditions, and synthesize different single-model controllers fol-
lowing the classic control theory. The overall controller monitors the system variables,
computes an error metric for each of the models, and enable only the single-model
controller that correspond to the minimum predicted error.

Threshold and rule-based Threshold-based policies are popular in current industrial
applications, as they are simple and intuitive to understand. They are applied by defin-
ing lower and upper limits on target metrics. Behaviors outside the ranges trigger
reconfiguration actions. Threshold-based controllers are used in many companies such
as AmazorEl, RightScaleE] and Scahﬁ In many controllers currently used in industrial
applications, upper and lower bounds are defined by the customers referring to low
level metrics, such as CPU usage. Customers define also the corresponding reconfigu-
ration actions. Dutreilh et al. [[24]] experiment with static threshold-based policies that

"http://aws.amazon.com/autoscaling/
2http://www.rightscale.com/
Shttp://scalr.net/
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rely on high level metrics, such as response time. They define control policies based
on upper and lower thresholds, on fixed amounts of virtual machines to be either al-
located or deallocated, and on pairs of “inertia” durations that support scaling up and
scaling down periods. For instance, if the response time exceeds the upper bound, the
controller allocates virtual machines, and inhibits itself for the corresponding inertia
interval. If the response time drops below the lower bound, the controller deallocates
virtual machines, and again inhibits itself for an inertia interval.

Rule based approaches extend threshold solutions by considering different types of
events, and allowing rules to trigger other rules following the common ECA (event,
condition, action) paradigm. An interesting rule based approach is Claudia, a rule-
based controller for virtualized services proposed by Rodero-Merino et al. [93]. Clau-
dia is more general than most rule based approaches, since it considers service life-
cycle events and user defined variables, called Key performance indicators (KPIs), as
well as business level metrics that holistically describe the status of a complete vir-
tualized service and eventually triggers rules that reconfigure the system. Claudia
combines three different types of rules, all defined by Cloud users: Scaling rules that
resemble traditional threshold based approaches and change the number of allocated
virtual machines, reconfiguration rules that act at deployment time and choose the size
and type of virtual machine to be deployed, and business rules that constrain the auto-
matic scaling behavior with respect to running costs by limiting for instance the total
number of running virtual machines. Business rules consider also Cloud federation
concerns, for instance by migrating virtual machines from one Cloud provider to an-
other. Claudia monitors the virtual service execution and periodically tries to fire user
defined rules that eventually trigger control actions.

Approaches based on Analytic Models Controllers based on analytic models use util-
ity functions that combine system performance metrics and business considerations,
like revenue and resource usage cost, to find desirable system configurations. They
compute system performance metrics (typically the response time) through either dif-
ferent queuing models or analytical representation of queuing models. Analytical ap-
proaches differ each other mainly in terms of the chosen formalism, the complexity
and accuracy of the models, and the policy adopted to solve the optimization problem.

Benanni and Menascé combine queueing models and combinatorial search to dy-
namically allocate resources to application environments [[76]]. They associate a local
controller to each application environment and use queueing network models (open
models for transactional systems, closed model for batch processing system) to predict
the performance metrics of the application environment. Each local controller com-
putes a utility measure by combining performance metrics, service level agreements
and penalty functions, and sends the computed utility to a global controller that uses
a combinational search to identify the final resources allocation of the entire data cen-
ter, i.e., of all the application environments. While exploring the configuration space,



32 3.1 Controllers for elastic applications in Clouds

the global controller interacts with the local controllers by suggesting potential new
resource allocations, and the local controllers respond with updated values of local
utilities. The queueing networks and their parameters are defined at design time.

Huber et al. introduce an architecture level descriptive model in the context of the
Palladio framework, from which they derive performance models that are used by self-
adaptive controllers to predict the system behavior [[11};[39]]. When the input workload
changes, the control algorithm adds resources (virtual machines) to the system in or-
der to eliminate all actual and predicted service level agreement violations, then the
controller removes the resources that are underutilized. Huber et al. assume the avail-
ability of the architecture level models and estimate the parameters of the model at
design time, for example, resource usages, routing/calling probabilities, service times,
and possible usage scenarios and user classes. Once the model is in place, an automatic
procedure transforms it into a predictive performance model, i.e., a queuing network,
that is used on-demand by the control algorithm.

Bi et al. [[13]] use an mixed queueing model to simulate multi-tier applications and
define a non-linear optimization problem over it to dynamically decide on the system at
per-tier. The mixed model combines an M/M/c queuing model, for the front-end, with
several M/M/1 queueing models for the per-layer virtual machines. The optimizer uses
the model to calculate the number of resources to provision at the each tier according
to the target end-to-end response time for the tier that is assumed to be agreed with
customers.

Dejun et al. [44] address Web applications modeled as acyclic compositions of
services using a what-if-analysis and negotiation among the composed services. Each
service estimates its own performance variation in the case of changes of the allocated
resource or workload, and pass the estimate up through the invocation tree to produce
local decisions that are incrementally aggregated all the way up to a root controller.
Dejun et al. model the performance of each single service as a M/M/n/PS queue,
and consider performance variations for configuration changes of a single VM (41
or -1 machine per service). The controller adjust the predictions by estimating the
service time for the queuing networks at runtime using a feedback control loop: A
threshold on the prediction error of the system performance triggers a new estimation
of the service time by using the latest measured response time. Dejun et al. show the
effectiveness of the proposed controller for different types of compositions, and claim
that a service level agreement for the front-end service allows for finer control of the
composed services than service level agreement thresholds on each component.

Approaches based on black box and surrogate models The use of analytic modes
is limited by the need of accurately defining a model structure and computing many
parameters. Black box and surrogate models address this problem by generating the
models from data gathered during system executions, and thus obtaining models that
correspond to the system by construction. We will see in the next section that black
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box and surrogate models can be derived and adjusted at runtime, thus increasing the
flexibility and adaptability of the controllers. Here we survey the main models that
are proposed to be tuned before the systems deployment, typically at testing time and
during model training.

Vasic et al. use a workload signature based on Hardware Performance Counters to
cluster workloads, and associate the identified clusters to previously measured appro-
priate resource allocations [[108]]. A proxy collects and computes workload signatures
both in the training and control phase, by replicating a fraction of the entire application
workload that is directed to a profiler for sampling and measurement. At runtime, a
profiler computes the incoming workload signature, a classifier associates it to a class,
and the controller applies the recorded resource allocation in a single control action.
The controller uses a metric of the certainty of the association of the workload to a
cluster as an indication of the need to trigger a new training of the classifier. The
approach also measures the interference of other applications running in the same in-
frastructure, where interference is defined as the ratio of the performance achieved
in production w.r.t. the performance for the same workload signature and resource
assignment measured at training time. In a nutshell, the system works as a cache for
previously observed combinations of workload signatures and resource allocations. In
case of a cache miss, the default policy is to bring the controlled system to its maximum
resource allocation to prevent service level objective breaches. The limits of the valid-
ity and assurance of the control derive mainly from the choice and appropriateness of
the metrics used to compute the signature and cluster the workloads. In their exper-
iments, the authors report that the clustering typically results in only few workload
classes while applications can normally have very large workload and configuration
spaces.

Trushkowsky at al. address the on-line reconfiguration of storage systems in re-
sponse to workload changes under stringent performance requirements [[104]. The
controller manages SCADS, a key-value store that offers eventual consistency and an
easy partitioning of the key-value stores, hence natively supports replication and elas-
ticity [[6]]. Two specific issues make the problem hard: 1) to scale a data-intensive
system, data items must be moved or copied across instances, impacting negatively
on service performance, and 2) high percentiles of response time have much higher
variance (and therefore are much harder to control) than the center of the distribution
(average response time). The latter issue can cause oscillations in classical closed-loop
control. Trushkowsky at al. tackle these issues by introducing a model predictive con-
trol: The controller refers to a model of the system and its current state to compute
the optimal sequence of control actions, executes the first action of the sequence, and
then recomputes the optimal sequence of control actions to chose the next actions.
The system performance model coupled with workload statistics can predict whether
a server is likely to meet its service level objectives. In the case of predicted violations,
the controller either spawns new server instances or activates “hot” standby ones, and
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copies or migrate data bins using a copy-duration model for planning. Trushkowsky
at al. builds the server performance models using statistical machine learning (SML)
on data obtained through off-line controlled experimental runs with steady state work-
loads. They claim that simple changes in workload will not affect the accuracy of these
models, that however can degrade over time if the application or the underlying data
change consistently, for instance when an individual request returns more data than
during training. In this case, the off-line models would have to be rebuilt in produc-
tion. The approach uses a linear classification model with logistic regression to predict
whether a given workload mix (get and put operations) and intensity are likely to cause
service level objective violations. The copy-duration model is obtained off-line through
the linear regression of samples gathered by running copy operations on servers under
different workload rates.

Sharma et al. [[95] present Kingfisher, a cost-aware system to scale elastic applica-
tions. Kingfisher relies on several models that capture capacity, costs and reaction time
concerns, and a linear optimization to solve the cost- transition-time- aware control
problems. Pricing models, elasticity mechanism models (migration, replication, etc.
on the different platforms) and server capacity (for different resource allocations) are
all obtained empirically at design time. The controller uses the models at runtime to
solve the integer linear program that accounts for both infrastructure and transition
costs and derives appropriate control actions. Kingfisher assumes that applications
have a multi-tier software architecture where each tier has its own quality of service
requirements that must be met by provisioning sufficient capacity. Moreover, King-
fisher assumes the availability of a perfect forecaster that is defined as forecaster that
knows the workload in advance, as well as the perfect estimation of the per-tier peak-
workloads. To solve the integer linear program in reasonable time and for not trivial
applications, Kingfisher employs a greedy heuristic with a bounded worst case.

Approaches based on heterogenous models Some approaches try to address the
limitations of the different techniques by suitably combining heterogeneous static tech-
niques.

Lim et al. [|62]] combine a cloud controller that manages the compute infrastructure
with an application controller that manages the resource assignments for each applica-
tion to satisfy a given performance goal. They propose to design application controllers
based on classical integral controls that add and remove virtual machines based on av-
erage virtual machine CPU utilization. Integral control can be proved stable for a
continuous control signal. Unfortunately the interface between the cloud and applica-
tion controller consists of a coarse grained actuator, since one cannot add a fraction
of a virtual machine, thus causing possible oscillations of the controlled system. To
mitigate this effect, Lim et al. use a proportional thresholding technique, where higher
and lower thresholds become smaller as system size increases, rather than a fixed tar-
get value for CPU utilization. They also use linear regression to model the relationship
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between the CPU utilization and the cluster size.

Jung et al. [46]] focus on controllers that take into account the costs of system adap-
tation actions considering both the applications (for example the horizontal scaling)
and the infrastructure (for example the live migration of virtual machines and virtual
machine CPU allocation) concerns. Thus, they differ from most cloud providers that
maintain a separation of concerns, hiding infrastructural control decisions from cloud
clients. The controller relies on an estimator that uses 1) automatic off-line experi-
mentation to build a cost table quantifying performance degradation for each type of
control action and workload, 2) layered queue networks to predict the performance of
each system configuration given a workload (model parameters are estimated offline),
and 3) an ARMA filter to estimate the duration for which the current workload will re-
main stable (i.e., within a band B). The estimate of the duration of the stability of the
workload is used to decide whether expensive (long term) control actions are worth or
not. The controller searches through the graph of all possible control actions to find the
sequence of control actions that maximizes a utility function that takes into account
benefits and penalties expressed in terms of the application service level objectives, as
well as the relative impact of all the control actions.

Summary considerations on static approaches Approaches based on control theory
provide high guarantees in terms of assurance: Stability and dynamic properties of
the controller and controlled system can be proved in rigorous mathematical terms.
Accurate system identification further increases the control reliability. In particular,
classic single-model approaches require simpler proofs and provide a clear separation
between system regions where the control offers formal guarantees (viability regions)
and where not. While, multi-model approaches are more flexible and are meant to
cover wider viability regions. In Multi model switching and tunining, each controller
behaves as in the single-model case, but no formal guarantees are usually offered at
the level of overall control logic that switches them on and off. Moreover, the high
assurance level of classic controllers is based on strict assumptions of the behavior of
the controlled system that may not be always demonstrated in practice.

Rule and threshold based approaches can be verified, at least to some extent, for-
mally. Verifying threshold based controllers is generally simpler than verifying rule
based controllers, because threshold based controllers presents a less complex set of
constraints, while full-fledged rule-based systems may have several conflicting and in-
terdependent rules. Rules are commonly set manually under the assumption that they
are able to capture main phenomena and characteristics of the system. They remain
stable during the runtime and rely on the assumption that the system evolves only
as predicted. Their event and condition clauses clearly identify the system viability
zones that, however, remain fixed and may not are able to capture unplanned systems
evolution.

The approaches based on different queuing networks are based on the assumption
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that the chosen model provides a sufficiently accurate representation of the considered
system and that the system is inherently stable, that is, it does not present emerging or
unpredicted behaviors. They also make several assumptions on the system behavior, its
relevant components, and the statistical properties of the workload. Moreover, all the
models require a set of parameters that are estimated at design time with no provision
for adjustment at runtime. Simple models require to estimate few parameters, hence
they are easier to configure, but may not be very accurate. On the other side, struc-
turally complex models can be more accurate with respect to the system structure, but
require to estimate more parameters, and thus demand extra time, and effort. More-
over, they do not always result in higher accuracy, because of the simplifying assump-
tions that enable analytically solutions. Richer models (for instance, layered versus
plain queuing networks, or mix-aware versus mixed oblivious solutions) typically offer
more flexibility, that is more possibilities of closer adaptation to the system, at the cost
of higher complexity. In principle, they should be able to provide better assurance (at
least in terms of a closer resembling representation of the modeled system). In practice
the high number of parameters that need to be correctly estimated might attenuate the
expected improvement.

Black-box surrogate models provide an assurance level lower than analytic models,
because the quality of these approaches totally depends on properties that are difficult
to formalize and measure at design time. For example, the quality of such models de-
pends largely on the amount and quality of the data collected from the system runs,
their distribution in the input/output features space, the training/fitting procedures
adopted. Being dependent only on data collected at design time, these models may not
reflect accurately the real production environments that may be different from testing
environments. Designers must assume that the drift between testing and staging envi-
ronment is negligible. Moreover, they assume that the system behavior remains stable
at runtime. In a sense, these approaches leverages black-box surrogate model because
of they capability to learn relations between system variables that are unknown or
too complex to estimate precisely; however, they do not leverage this inner capability
outside the design time activity, thus limiting the flexibility of the controllers.

Finally, approaches that combine heterogeneous models increase the flexibility with
respect to the single static approaches, at the price of reducing the provided assurance
level.

Dynamic approaches

Dynamic approaches rely on models built from monitoring data that can be automat-
ically updated at runtime, or alternatively, use rules that are both discovered and ad-
justed while the system is running. We use the term dynamic approaches to indicate
approaches based on models of the controlled system that are tuned at runtime, after
system deployment. We refer to these models as dynamic models to stress the runtime
nature of their construction.
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These approaches privilege runtime flexibility over assurance. They produce an
accurate representation of the modeled system by characterizing the system behavior
through metrics collected from the actual system execution. Typically, they build an
initial version of the model at staging-time from a set of training samples, and then
update the model continuously at runtime while the system is running. Thus, they
can adapt to situations that arise only at runtime resulting in high flexibility. How-
ever, they provide little support for analysis and formal assurance, and rely mostly on
assumptions about the system behavior that may not be always easy to check stati-
cally and enforce dynamically. Thus they provide a lower assurance level than analytic
approaches.

Different classes of dynamic approaches are characterized by the type of surro-
gate model they adopt, ranging from several forms of regression (for example, linear,
quadratic, LOESS and Kriging) to machine learning techniques (for example, neural
networks and reinforcement learning). Different model types imply different query
and update strategies, to account for instance for the possibility of incrementally up-
dating a model or the time and computational complexity of a complete re-training.

Dynamic approaches typically model either a single or a combination of system
performance metrics as a function of some endogenous system properties that rep-
resent the system configuration in terms of both system characteristics, for example,
number of allocated VM instances, CPU cores or threads, and exogenous factors, such
as for instance the workload applied to the system or the influence of other services co-
located in the same infrastructure. The approaches surveyed in this section often differ
in terms of the considered metrics and the characterization of the workload features
(for instance, workload intensity or service mix), but share some important features.
They are highly flexible, and adapt easily to the measured system behavior, because
of the ability to learn from and adapt to emerging behaviors, and this is extremely
important for instance when the configuration or workload space is too vast for ex-
tensive exploration at staging time. They impose few requirements on the experience
and knowledge of the modeled system functioning and behavior, because the samples
required for training the models come from externally measurable system features.

The adaptive nature of dynamic approaches is both their main feature and their
Achille’s heal: The ability of constantly change and adapt makes them particularly well
suited to highly dynamic systems and, at the same time, makes it hard to assure the
quality of the resulting system, and to estimate the correct partition of model training
effort between staging time (bootstraping) and on-line learning.

In the following, we present the main approaches of this category distinguishing
between approaches based on surrogate models and approaches based on machine
learning.

Approaches based on surrogate models Surrogate models are build from sample
executions of the modeled system, and describe the behavior of a system in terms of
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relations between input and output features that can be continuously updated with
monitoring data. They are commonly used to describe either the steady-state behavior
or the mid-to-long time horizon behavior projections. Self-adaptive controllers use
surrogate models to predict the near future, given both the current and the estimated
values of the input features. Some controllers use surrogate models also to support
optimization procedures that explore the system configuration space to find the most
suitable system configurations. Less commonly, surrogate models are used to simulate
and track the evolution of the system state under possible control actions, to plan for
the most suitable ones. Such control strategy aims to maximize the control utility over
a receding time horizon.

Bodik et al. [[14] use statistical machine learning, and in particular smoothing
splines and local regression (LOESS), to build performance models of the controlled
system. Bodik et al.’s models represent response time as a function of workload inten-
sity and system configuration. The controllers increase the robustness and the adap-
tivity to changes, by means of model management techniques (i.e., online training and
change point detection) that update the model, track its quality and eventually rebuild
it from scratch. The models are trained with data obtained online from the production
environment. The controllers are conservative: They start from the maximum allowed
allocation of resources, and decrease the allocation, while incrementally learning op-
timal configurations, to minimize service disruptions in exploration mode. Building
models entirely from online samples simplifies the training phase, but may result in
slow convergence of the models to new and possibly temporary system behaviors.

Approaches based on machine learning Machine learning techniques are commonly
divided in model-based and model-free techniques, depending on the use of models.
Both classes of techniques are exploited to build self adaptive controllers. The most
popular control solutions that refer to model based techniques use artificial neural
networks (ANN), while popular model-free techniques use reinforcement learning (RL)
and clustering applied to the discovery of control rules. In model based solutions, the
accuracy of the results depend on crucial choices such as the model structure and the
training data, thus no a priori guarantees can be enforced. In model-free solutions, the
level of assurance depends on the learning rate, the instability/evolution pace of the
controlled system and the size of the action-configuration space, which is proportional
to the amount of possible control actions.

Artificial neural networks use training samples to build a model of system dynamics
that can predict the system reaction to different inputs. The structure of the network
and the quality of the training data are critical to the performance [68] and must
decided by the designers off-line. After the initial supervised training that sets all
the internal parameters, artificial neural networks can be updated on-line by a back-
propagation procedure based on punishment-reward concepts. Maggio et al. [67] im-
plement a neural network to control the amount of resources allocated to process at
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the OS level that guarantees a given service level. Although the context is different
from Cloud computing (where artificial neural network based controllers have not
been used yet) the basic concepts of modeling and dynamically allocate resources are
similar. Islam and coauthors [[42] train a neural network with samples of CPU usage
taken from running virtual machines under predefined workloads, and use the neural
network to predict the level of CPU usage at runtime in face of unknown workloads.

Controllers based on reinforcement learning learn directly optimal control policies,
that is, the best set of actions to apply whenever the system enter a state, and thus
do not require a model of the system. At runtime, reinforcement learning-based con-
trollers adopt a trial-and-error learning strategy and apply (at least at the beginning)
random actions. Effects on the system, and controllers utility function, resort either in
action reward (if the actions increased the utility) or punishment (if the actions dam-
ages the system, thus lowering the utility). Reinforcement learning solutions suffer
from poor scalability in the action-state space and from long convergence rates. To al-
leviate these limitations, Li and Venugopal [[60]] propose a distributed implementation
of reinforcement learning based self-adaptive controllers. In this solution, each pro-
cessing node, i.e, a virtual machine, is an independent entity and incorporates a local
controller that runs a Q-Learning algorithm. Local updates to the model are pushed to
the other controllers via a distributed hash table, so that collaborating controllers can
learn the state-action-reward model quickly. At run time, each controller takes scaling
decisions based on the shared model and aims to maximize the reward function while
model updates are continuously published.

Xu et al. [[T18] propose a dynamic approach based on fuzzy rules. The controller
applies fuzzy modeling to learn the relationship between workload and resource de-
mand, and uses clustering to update the rules at runtime. The controller is organized
in two levels: At the lower level, local controllers are associated to physical resources
and decide about the resource needs of the virtual applications deployed on the node;
at the higher level, a global controller receives all the resource needs from the local
controllers, and solves the resulting global optimization problem to decide the final re-
source allocation. Local controllers estimate the needs of resources at regular intervals
for each virtualized application by means of fuzzy inferences: Each controller receives
workload data, fuzzifies them, triggers the fuzzy rules, and finally produces the output
crispy. At the same time, controllers analyze the monitoring data to derive new fuzzy
rules, adapt existing ones, and remove not optimal rules from the knowledge base.
Fuzzy rules are obtained by filtering and clustering raw monitoring data as they reach
the controller: Data are filtered if they refer to mappings that lead to service level
agreement violations, and then are clustered based on the density of surrounding data
points. Eventually, a single rule is associated with each cluster. The controller defines
an initial set of clusters, thus a set of fuzzy rules, offline using data from staging ex-
periments, and updates the fuzzy rules at runtime, by adapting the size and number of
clusters.
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Summary considerations on dynamic approaches The assurance of surrogate-based
self-adaptive controllers relates to (1) the ability of the models to accurately repre-
sent system behavior also in the presence of noisy and missing data, that is, when the
quality of data interpolation and regression decreases, (2) the speed of convergence
of the learning process, and (3) the accuracy of the quantification of the uncertainty
of the model predictions. For example, models that are updated online and frequently,
that do not need a large training set, and that can provide an accurate measure of
confidence for their predictions, provide higher assurance than models that are up-
dated infrequently and cannot provide any confidence interval for their predictions.
Controllers that continuously monitor the quality (accuracy, prediction error, etc.) of
the models, and account for completely rebuilding of the models whenever necessary
can adapt faster to emerging system behaviors than controllers that merely update the
models with new data.

Control solutions based on machine learning techniques are in principle the most
flexible solutions, since they can learn any kind of relations by either directly modeling
the system or capturing the optimal control policy. However, this flexibility come at the
cost of the difficulty of proving stability, convergence or any other properties important
for control purposes. In particular, artificial neural network and reinforcement learning
solutions do not provide any automatic means to evaluate the goodness of their fit nor
their predictions, and designers have to either believe in them or not, and employ some
external mechanism to track their error to retrain them whenever it is possible.

Both surrogate-based and machine learning solutions can be useful where the com-
plexity of the controlled system makes it infeasible the construction of any satisfactory
analytical solution or white box model, or when designers have no a-priori information
about the behavior of the controlled system.

Hybrid approaches

Hybrid approaches combine design time and runtime techniques and aim to conjugate
the flexibility of models used at runtime with the assurance gained with models used at
design time. Static and dynamic approaches can be combined in many different ways,
resulting in different blends of assurance and flexibility. We distinguish two classes
of hybrid approaches depending on the adopted merging strategy: (1) approaches
that augment static solutions with learning and (self-)adapting capabilities, and (2)
approaches that complement dynamic solutions with static models to modulate the
effects of learning on the control behavior.

Approaches that augment static technique with learning capabilities aim to increase
the level of flexibility while maintaining a high assurance level. Approaches that com-
bine dynamic solution with static model aim to improve assurance while limiting the
loss along the flexibility dimension.
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Static approaches augmented with learning capabilities Static approaches augmented
with learning and self-adapting capabilities increase the flexibility of the underlying
static technique while maintaining high assurance level. They try to augment the size
of viability zones by allowing the control solutions to deal with unseen and emerging
behaviors that may differ from the design time assumptions. Augmented static solu-
tions either relying on static models with online parameters tuning, or on static models
that are rebuilt while the system is running.

Approaches that augment static models with online parameter tuning are based on
a core static model whose parameters are updated at runtime using monitoring data.
The update and learning processes proceed in parallel with the controller activities.
Woodside, Zheng and Litoiu [117] propose a model-based feed-forward solution cen-
tered around a layered queueing network model of the system whose parameters are
recomputed online. The controller uses the model to predict the system performance
depending on the monitored workload, and to optimize the system configuration, in
terms of server configurations and resources allocation. The controller adapts the pa-
rameters at runtime by means of an Extended Kalman Filter: The filter keeps updating
the parameters until the residual error is below a threshold, and in this way the con-
troller relies always on an accurate model of the system. The tracking filter greatly
improves the robustness of the control algorithm in the presence of parameter drift.
Moreover, extended Kalman filters have proven optimal properties when the relations
between variables are linear, and are expected to have near-optimal properties if non-
linearities are involved depending on the local properties around the operating point.

Urgaonkar et al. [[106] propose a dynamic capacity provisioning model for multi-
tier Internet applications that uses queuing networks to determine the provisioning
of resources for each tier of the application. Differently from the previous work, Ur-
gaonkar et al. use online monitoring data to estimate the session arrival rate, the
session duration and other parameters that are fed to the queuing network for the
predictions. The proposed controller combines predictive and reactive methods to
determine when to provision resources, to cater for respectively long-term / cyclic
and short-term / unpredicted variations in the application workload. The controller
computes long-term provisioning with the queuing network model where each tier is
modeled as G/G/1 queue, and tiers are linked with replication factors to describe how
the workload demand is distributed inside the controlled system. The controller deals
with short-term variations of the load by means of a sentry component that implements
admission control policies.

Singh et al. [98] use a queueing network to model the system as well, but they
rely on mix-aware provisioning techniques to handle non-stationarity in workload mix
and volumes. The controller employes k-means clustering to automatically classify the
workload mix and uses the queuing model to predict the server capacity and support
configuration optimization. The “workload class” is the parameter estimated online
by the controller that keeps the model up to date. The initial clustering is computed
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off-line following an iterative and empirical process. On-line clusters are adjusted
(split/merge) whenever the error of the estimated cluster predicted mean service time
is greater than a given threshold with respect to the mean service time monitored by
the mix-determiner. Maximum number and size of clusters are specified beforehand.
Similar to the other approaches in this group, Singh et al. assume that the system
can be modeled as a pipeline of independent tiers, for which per-tier service level
agreement can be defined, and per-tier demands can be derived from the incoming
one. The clustering allows to determine precisely the different types of requests in the
workload improving the accuracy of results form the queuing model.

Approaches that rebuild the model at runtime use a control model that is modified
or completely rebuilt at system runtime, either periodically at a fixed time interval or
whenever some indicative metric (for instance, a prediction error) crosses an accept-
able threshold value.

Jung et al. [47] propose a rule based approach, where rules are automatically gen-
erated by means of a machine learning process. The controller uses the rules as in static
approaches: It monitors system variables, for example, the workload, and triggers the
control rules when necessary, for instance when there is a match with the workload
intensity, to change the system configuration. The controlled systems are modeled by
means of layered queuing network models whose parameters are estimated offline, at
design time. The controller then uses the layered queuing network models in a two
step discovery process that is carried out at runtime in parallel with the control loop:
The controller (i) randomly chooses a set of input workloads, searches for the cor-
responding optimal system configurations, and encodes the results as rules, and (ii)
interpolates all the data via a Bayesian classification algorithm that derives a decision
tree saved as policy. The decision tree covers the whole configuration space — thus
not only the rules obtained in step (i) — and the learning algorithm can be config-
ured to prune or merge, similar subtrees and configurations to simplify the rule set.
The process produces a new decision tree with a finite number of leaves, i.e., system
configurations, with a high degree of predictability and verifiability because the new
tree encodes all the possible system configurations a priori enabling further decision
to be taken at business level. The optimization procedure is based on a heuristic gra-
dient search and considers both the system configuration, i.e. the number of replicas
for each virtual machine, and their placement on a set of physical nodes. It assumes
that the system utility monotonically decreases as resources are deallocated. The qual-
ity of the control, measured in terms of utility, depends on three critical factors: The
model accuracy, the number of workloads considered during the optimization, and the
“compactness” of the decision-tree, as more compact trees are less accurate.

Quiroz et al. [[89] propose a decentralized online clustering approach to detect pat-
terns and trends in resource demands for jobs in Grid systems, and use this information
to optimize the provisioning of virtual resources. The control is fully decentralized: In
each control window, the clustering algorithm analyzes the incoming jobs and pro-
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duces a number of target virtual machine classes. The number of virtual machines that
must be provisioned is proportional to the volume of the incoming job for each class.
Jobs are either assigned to the available virtual machines as they arrive or wait for the
right virtual machine to start. Eventually, each local controller triggers the creation of
new virtual machines to process the waiting jobs. Controllers rely on a model to es-
timate application service time based on Quadratic Response Surface Model (QRSM).
The QRSM is fitted using long-term application performance monitoring data, and it
is used at runtime to provide feedback about the quality of the clustering, i.e., the
appropriateness of requested resources for the incoming jobs and their ability to meet
QoS constraints. Given the actual resources, the QRS model is used to predict the
response time for the estimated workload. This prediction is compared against the
quality of service requirement and the controller uses the model to adjust the class
attributes computed by the clustering. The controller then uses the quality measures
obtained from the QRSM as an oracle to re-trigger the evaluation of the clusters with
the decentralized online clustering algorithm.

Dynamic Approaches with Static Fall-back The lack of assurance of purely dynamic
models derives from the dynamic nature of the data used to build and tune the mod-
els, that cannot be statically verified by definition. It is difficult to provide assurance
proofs of controller behavior for approaches based mainly on runtime measurements,
that heavily depend on the availability and quality of the data collected at runtime.
Dynamic approaches with static fall-back aim to improve the accuracy of these models
by complementing the dynamic model with analytic approaches that might provide a
reasonable alternative in the presence of low quality of the prediction based on the
runtime model.

Malkowski et al. [[70] propose a multi-model controller that combines the horizon-
tal scale controller originally developed by Lim et al. [[61]] as the static approach with
an empirical model obtained from runtime monitoring data. The empirical model uses
a throughput vector space (i.e., a list of throughput values, one for each application
interaction-type) to represent the combination of configuration, workload, and perfor-
mances achieved by the system in a 30-seconds time frame. The empirical model is
used to find the smallest (cheapest) system configuration that satisfies the service level
objectives, and is located within a threshold value in terms of Euclidean distance in the
throughput vector space with respect to the predicted workload. In other terms, it se-
lects the smallest configuration among the set of visited configurations that were able to
withstand a predicted workload intensity (or a comparably “close” intensity) without
violating service level objectives. The controller switches to the static approach when
the empirical model cannot find a visited configuration within the distance threshold.

Tesauro et al. [[101]] employ both static and dynamic techniques in an approach
that combines the strengths of reinforcement learning, artificial neural networks and
queuing networks. A static technique is used when the reinforcement learning is in
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learning mode; in this period, the controller resorts to the queuing networks to control
the system and collect training data at runtime. To speed up the learning, the data
are used to train a non-linear function approximation, in this case an artificial neural
network, of the Q-function that is used to obtain the learning rewards. Tesauro and
co-authors represent the Q-function using neural networks instead of traditional look
up tables to encode the state-action rewards. Artificial neural networks interpolate the
collected samples and reduce the need of large training set, improving the controller
scalability. By combining reinforcement learning and queuing networks, controllers
can avoid poor performance during the training activities, because all the data are col-
lected using the queuing network policy that provides an acceptable quality level of the
control with respect to the random control actions of the reinforcement learning explo-
ration. At the same time, controllers can improve their accuracy because steady-state
queuing models are unable to take dynamical effects into account while the reinforce-
ment learning can take into account dynamic effects such as transients and switching
delays. Once the reinforcement learning is ready, the controller releases the queuing
network and adopts it. In this period, parameters of the queue network are contin-
uously updated based on measurements of system behavior, and when necessary, the
controller can switch back to it and start the learning process again.

Summary considerations on hybrid approaches Approaches that augment static tech-
nique with learning capabilities share the adoption of an analytic system representa-
tion (either queuing networks or layered queuing networks) whose structure remains
unchanged. They achieve a limited degree of adaptability by estimating one or more
parameters online. This caters for situations in which there is a need for minor adjust-
ments with respect to design time expectations on system behavior, but the limits im-
posed by the initial queuing network model prevent the control from adapting to any
possible emergent behavior related for instance to non-modeled system bottlenecks.
More flexible are approaches that rebuild the model at runtime by combining some
static model, either a linear queuing network or a response surface model, with a learn-
ing/discovery mechanism that changes the control logic, rule- or clustering-based, re-
spectively. The static model is derived from design time knowledge or long-term appli-
cation historical data, and provides the fixed reference for the derivation/optimization
and evaluation of the runtime-generated control logic. In a sense, the static model de-
fines fixed boundaries for the controller behavior that make it predictable (i.e., within
the boundaries), while the runtime adaptation aims at optimizing the control with
respect to the measured system behavior.

Approaches that combine dynamic solution with static models achieve high flexi-
bility by using empirically obtained data to model emerging (and possibly unexpected)
behaviors such as cross-layer data-interdependencies. High flexibility aims at a more
precise representation of the system behavior geared towards the realization of more
efficient (i.e., in terms of resource usage, service level objective violations) controllers.
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To compensate for the dynamic nature of black box models, and their dependency on
possibly high varying runtime monitoring data, analytic approaches (typically queuing
networks) are used as a safety net to constrain the controller actions. In a sense, an-
alytic models provide the base controller behavior upon which dynamic solutions can
improve.

Summary considerations

We summarize the distribution of the presented approaches in the diagram of Fig-
ure Approaches are identified by the name of the first author and the citation
number, and the diagram shows them over the flexibility/assurance space. Over the
horizontal axis we identify the three main groups, static, dynamic and hybrid. The
(red) grid partitions the space according to the level of flexibility in the horizontal di-
rection, and the modeling choice adopted (or rules) over the vertical direction. Our
work is highlighted by means of tick black lines, and the work presented in this thesis
is highlighted by means of a shaded area.
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Kriging based controllers compared to the other approaches are flexible, trained
by full rebuilt of the model and provided limited assurance when used alone [103].
To improve the assurance level of the Kriging based controllers with couple Kriging
models with analytical models, and this results in the final positioning of our work in
the diagram. We present more details on the combination of Kriging and analytical
models in the next chapter.

3.2 Surrogate models for predicting performance

In this section, we focus on work that proposes to use black box and surrogate models
to study the behavior of software systems and support the usual activities belonging
to Performance Engineering (PE). This work is in contrast with the more traditional
approaches that exploit white box models, such as queueing networks, Petri nets, and
other architectural models. In particular, here we consider only those models that
describe the average system behavior at steady state, i.e. time invariant models.

Surrogate models are known is several communities, such as Engineering, Aviation,
Statistics and Physics. For instance, Gramacy, Lee and Macready propose gaussian
process trees in the simulation of fluid dynamics to design NASA reentry vehicles [|35]],
while Mariani et al. use artificial neural networks to optimize the design of multi-
processor systems-on-chip [71]]. The survey of Wang and Shan provides an excellent
overview of the different uses of surrogate models in engineering [110]. However,
their use in the fields of Computer Science is still limited: They are mainly used in
computer simulators and machine learning problems. Only in few cases the authors
recognize their modeling power and use surrogate models outside their traditional
applications.

All the considered work shares the basic motivations for using black box in the
context of performance prediction: Software systems are too complex to be accurately
described with white-box models, and the necessary knowledge to build them may not
be easily accessible. Using data taken from running the system under study may lead to
more precise and accurate models than the one obtained assuming predefined system
behaviors, and, surrogate models are powerful tools that can capture the multi-variate
nature of the relationships between the system configurations and resource allocations,
with the system responses that typically real systems show.

In the context of performance prediction, surrogate models are typically used to
support two main activities: design space exploration, on one side, and change-point
identification, on the other side.

Design space exploration

During the design activities, developers must understand the behavior of the system
under development in several situations: Systems usually come with a series of config-
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uration options and parameters that have to be set before the release, and that impact
on the final behavior of the system. For example, different configurations may be suit-
able only for a subset of possible execution contexts, and may require specific re-tuning
in order for the system to fulfill user requirements.

In this context, developers use surrogate models to capture the behaviors of interest
of the system and to support an exploration of the space of alternative system configu-
rations. For example, developers can study how the performance metrics change along
with the changing configurations by visualizing the response surfaces. This can yield
insights into the effects on performance indexes of the different configurations under
various operating conditions, and can be used by designers to evaluate design deci-
sions and cost tradeoffs. Moreover, surrogate models enable automated exploration of
the configuration space aiming to find optimal configurations for a given set of user re-
quirements and some available information about the target environment or the usage
scenarios. They can be coupled with Genetic Algorithm (GA), simulated annealing, or
gradient search methods in model-assisted optimization methods [[71]].

In the domain of software system performance prediction, notable work was done
by Happe et al. [36; (111} [114] that use multi adaptive regression splines (MARS)
to model the behavior of message oriented middleware. In their work, Happe and
co-authors use MARS to correlate how the system performances change while chang-
ing configurations such as the average message size, the message arrival rate, the
number of allocated threads, and the amount of physical resources allocated to par-
ticipating nodes. The same authors also compare the abilities of regression splines,
Kriging models and other surrogate models in predicting performance of software sys-
tems [[113]]. Regression splines and Kriging models provide comparably accurate pre-
dictions in most of the cases.

Westermann and coauthors investigate also the use of surrogate models, in partic-
ular regression splines and Kriging models, in automated Goal-oriented performance
test [112]]. The idea is to leverage surrogate models to automated performance tests
of software systems, in line with the traditional use of surrogate models for design
optimization.

Zhang et al. [120] compare how Bayesian networks and artificial neural networks
perform in modeling the response time of Web services with respect to resources allo-
cation. They confirm the general intuition that ANN have more expressive power than
bayesian networks, but are far more difficult to manage; in contrast, BN are fairly long
to build.

On the same line, Correa and Cerqueira [[19] compare several models commonly
used in statistical machine learning. They compare decision trees, several implemen-
tations of Bayesian networks, and support vector machines with radial kernel in the
study of Map-Reduce systems. Correa and Cerqueira conclude that accuracy of SVMs
over-performs the one of other models, at a cost of training time that is three order of
magnitude longer.
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Ganapathi et al. [32] model the multivariate relationships between the query fea-
tures available before runtime with the actual performance features measured using
the Kernel Canonical Correlation Analysis, a kernel function technique taken form the
machine learning community. This work is notable because the proposed model deals
with multiple outputs at the same time.

Similarly to the above mentioned work, we use Kriging models to capture the re-
lations between system performances, resource allocations and system configuration.
Compared with the models proposed so far, Kriging models balance better the trade-
off between accuracy and training time, as they are faster to train than SVM and BN,
they are easier to manage than ANN, and they reduce the risk of over-fitting that may
appear in models with predefined structure as full quadratic models.

The work summarized here focuses on the accuracy of the predictions more than
the effort in setting up the models. The different approaches can tolerate long training
time, as they are not explicitly used in the context of on-line control of the software
systems that they model. In theory, many of the proposed approaches can be used
in the context of model based control of elastic application over Cloud IaaS, either
as global models or in conjunction with other models. However, the actual instance
of surrogate models that can be used depends on the requirements of each case and
application, especially the frequency of the controller.

This thesis is the first that proposes the use Kriging models for performance predic-
tion of software systems. In fact, in most of the related literature, Kriging models are
used to model expensive computer simulations of physical systems, such as aircrafts or
microchips, more than software systems themselves, as discussed in Section

At the time of writing, the only work that we are aware of and that propose to
use Gaussian processes is the work by Aboulnaga et al. who use Gaussian processes
to predict query response times as a function of query mixes, database configuration
parameters, and allocated resources, with the aim to support query schedulers in run-
ning queries [[1; [96] Notable is the combination of multiple Gaussian process models
to obtain the sought predictions: A high level Gaussian process model maps query log-
ical characteristics to query response time, while a low level Gaussian process model
maps database configuration and resource allocations to the hyper-parameters of the
high-level model.

Change point identification

Other than exploring the configuration space of software systems, surrogate models
can be used to identify interesting operational points such as optima, crossover points,
or the bounds of the effective operating range for a particular design configuration.
For example, Shivam et al. [[97] use a polynomial models in planning stress-test
experiments to find peak rates and saturation points of file servers. They combine a
binary search algorithm with the polynomial model to identify the maximum input
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rates that the system can sustain without violate constrains on response time for a
given configuration.

Similarly, Osogami and Kato [78] use full quadratic functions to model the re-
sponse time of multi-tier Web systems and drive the performance tests

In these approaches, models guide the design space exploration towards the opti-
mal (or interesting) system configuration: The model interpolates the data collected
so far and suggests the next test cases.

Differently, Leitner et al. [[57] use artificial neural networks in the context of Web
service compositions to predict if the instances of the service composition that are
been currently executes would respect their SLA, given the monitored data. The ANN
is invoke repeatedly as the execution proceeds and more data are collected: At every
check-point identified by the developers, the ANN predicts if the final QoS of the entire
composition for the running instance will comply with its SLA.

Kriging are well suited for implementing model based optimizations of systems by
leveraging the uncertainty measures associated with predictions as show by Jones et
al. [45] and Forrester [27]. In theory, we can leverage Kriging models also to plan the
optimization of the design of the experiments while studying the behavior software
systems, thus reducing the time to build an initial model of the system to control. This
is interesting, but out of scope of the thesis, and we do not consider it any longer in
this document.

3.3 Control solutions based on Kriging models

This thesis proposes Kriging models to describe the steady state system behavior of
software systems and use them in a model based self-adaptive controller. This is the
first work proposing such a control based solution. Outside the context of Computer
Science, in particular in the context of theoretic control of physical systems, other
authors proposed to use Gaussian processes. Differently from our proposal, they aim
to capture the dynamics of the system instead of its steady state behavior, and use
these models to reason on the transitory aspects of the systems. These authors rely on
the continuity and predictability proper of physical systems to develop their work, and
whenever necessary, they resort to first principle models to define the controllers.
Kocijan et al. [51] proposed to use Gaussian process to model system dynamics
and to use the model in the context of predictive model based control: The controller
uses the model of the system evolution to plan for the optimal control strategy via a
limited lookahead strategy as in the case of optimal strategy planning. The model is
trained once off line by stressing the system along some predefined “trajectories”.
This work was later improved by Petelin et al. [[88] who provide the controller
with a self-adaptation loop for the model: At each iteration the controller updates
the model (without the hyper-parameter optimization) with a subset of the new data
that is chosen to maximize its information gain, as in the traditional EGO algorithm
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proposed by Jones et al. [45]]. In particular they code the control signal to apply in the
system as the one that minimizes the model variance as estimated by the model.

Nguyen-Tuong et al. [77] presented an approach to combine multiple “local” Gaus-
sian process models in the context of learning the dynamics of a moving a robot arm;
the authors identify the challenge of having too many training data when modeling
such a complex system, and solve it by clustering the data along the locality dimension
and creating a set of local models.

Notable work is done by Deisenroth and co-authors that apply Gaussian process in
the context of robotics to learn the behavior of physical systems and control them [21]].
In particular, Deisenroth et al. combine Gaussian processes and Reinforcement Learn-
ing techniques [22]]. The intuition is that Gaussian processes can be used to learn a
probabilistic model of the system behavior and optimize the Reinforcement Learning
exploration of the state-action, thus reducing its limitations and costs [23]]. In a later
work, they improved the original proposal with Gaussian proces based smoothing and
filtering, showing that hidden variables in the systems can be easily capture by a Gaus-
sian process filter. In this setting, the Gaussian process filter outperforms traditional
Kalman based filters [|20].

The work summarized in this section represents a good basis for promising future
research and motivates more research in modeling the dynamics of adaptable software
systems. Models of the systems dynamic are more accurate than steady state models,
especially at short time intervals, and, in a sense, suit better traditional approaches to
control, like the ones proposed in classic control theory. Controllers can exploit mod-
els of system dynamics also to plan control strategies that account for the transitory
periods between the application of several control actions, which may have long du-
rations, as in the case of Cloud based elastic systemsﬂ However, modeling the system
dynamics introduces non trivial challenges related to models training, model update
and management of time dimension that still remain open [|88]]. For example, design-
ers need to discover and capture the elasticity of the systems, therefore they need to
carefully plan staging time experiments that stress the systems in multiple ways [[43]].
Moreover, designers cannot assume anymore the continuity of systems dimensions and
states, and they cannot resort to first principle models during the design of controllers.

“In our context, workload may change in the order of seconds, but the implementation of the control
actions (i.e., add and remove VMs) may take up to five minutes [59]]



Chapter 4

Kriging-based Self-Adaptive
Controllers for the Cloud

In this thesis, we take the point of view of the service providers that stipulate SLA
contracts with final users that impose commitments on the behavior of providers ap-
plications in terms of QoS. Service providers need to maintain an acceptable level
of services to avoid violations of SLA by dynamically provisioning their systems with
enough resources despite fluctuations in the workload, instability of Clouds platforms,
and the complexity of elastic applications.

We present a novel solution to the problem that is centered around model based
self-adaptive controllers that plan fast and safe control decisions on-the-fly: Models
capture the relations between important qualities of the systems as a function of the
system configurations, environmental conditions and other relevant metrics. Con-
trollers leverage the models to identify risky situations and plan suitable control ac-
tions to maintain the QoS of the controlled systems to acceptable levels while using
the smallest possible amount of resources to run them.

We target model-based self-adaptive controllers because they can deal with com-
plex systems, recurrent working conditions and unexpected situations, ever changing
environment and system evolution, that are non-trivial challenges pertaining to dy-
namic resource provisioning.

The ability of controllers to maintain the expected QoS depends on the adopted
modeling choice: the accuracy and robustness of the model limits the effectiveness of
controllers; the time to query the model limits the control frequency; and the time to
update the model limits self-adaptiveness and flexibility. The novelty of our solution is
the use of Kriging models as core elements of these controllers to implement effective,
efficient and robust control policies.

Kriging models are statistical, multidimensional models that can accurately capture
the behavior of systems, provide timely predictions paired to confidence measures,
and that can be retrained on-line to implement self-adaptiveness by means of model
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adaptation. We sample running systems and we let Kriging models learn the relations
between their behaviors with the allocation of resources and environmental conditions.
Kriging models balance the trade off between model accuracy, query time, and update
time that is central to efficient and effective model-based self-adaptive controllers, and
provide a measure of uncertainty on their predictions that enables the definition of
robust control policies. For these reasons, we believe that Kriging models are the most
suitable choice.

In this chapter, we discuss the main reasons that lead us to formulate this hypothe-
sis and we present details on the proposed solution. In the next chapter we will report
the experimental results that prove the validity of the hypothesis.

During the validation, we consider one instantiation of the dynamic resources al-
location problem in the context of Cloud computing. In detail, we consider elastic
applications that run on IaaS Cloud platforms that enable service providers to allocate
or deallocate resources at the granularity of virtual machines.

4.1 Model-based self-adaptive control

In general, model-based controllers use abstract representations of systems, their be-
haviors, or both, via models to plan for suitable control policies. For example, a con-
troller may use a model of the software architecture to reason on the deployment of
components on processing nodes, a queueing model to reason about the allocation of
resources to software components to guarantee a predefined response time, or it can
use them together.

Models relate control objectives to controlled and uncontrolled variables, and dis-
turbances. For example, a model that describes the end-to-end performance of virtu-
alized systems as a function of the system configuration and workload can relate the
average system response time (the control objective) to the amount and type of virtual
machines allocated to the system (the controlled variable), the amount of requests
waiting to be served (uncontrolled variable), and the intensity and mix of requests of
incoming workload (the disturbance).

Controllers can react when control objectives are not fulfilled, for example after
the occurrence of an SLA violation, to take the system back to a good state, or can pro-
act and maintain the control objectives fulfilled, that is, avoid the occurrence of SLA
violations. In this thesis, we pursue the importance of proactive control and we design
controllers that use models to achieve pro-activeness by means of two main activities:
early warnings and configuration planning.

Models yield predictions to generate warnings about risky situations that may lead
to SLA violations, and eventually, may trigger controller actions to achieve control
objectives. For example, a model can estimate if the current allocation of resources
to a server is enough to sustain the monitored workload, and the controller may plan
changes of the allocated resources if the estimation to prevent an estimated violation.
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If a prediction of the workload is available, it can be combined with the model to obtain
long term warnings.

Timely availability and accuracy of the predictions are of paramount importance to
achieve effective control. Inaccurate predictions may cause the controller to intervene
when not necessary, and may cause oscillating behaviors, waste of resources, or even
worse, they may cause the controller not to intervene at all, thus leading to violations
of SLAs. If predictions are not promptly ready when needed, the controller may have a
drifted representation of the system status, and it may be late in implementing control
actions, thus decreasing their effectiveness.

Once the warnings trigger, controllers leverage models to plan a suitable control
strategy. Controllers use models to simulate the expected behavior of the system in case
one or more control actions are implemented: They simulate changes of the system
configuration and check if the resulting behavior would comply with the SLA. For ex-
ample, a model can simulate the system response time with a variable allocation of
computational resources to the system, under a constant workload, and the controller
can chose the resources allocation that maintains the predefined response time while
minimizing the amount of resources used. As before, configuration planning demands
strong requirements on model accuracy and the time required to obtain predictions.

4.2 Why Kriging models?

The problem of autonomic control for dynamic resource allocation presents some non-
trivial challenges that pose stringent requirements on the models that controllers ex-
ploit. For example, natural fluctuations in the workload, sudden spikes in the service
demands, and variety and complexity of the controlled applications, demand for mod-
els that should be accurate enough to capture the behavior the controlled systems
under various workload regimes, fast enough in providing predictions thus avoiding to
impair controllers reactiveness, generic to model heterogenous systems, and scalable
with system complexity.

Clouds introduce additional challenges that demand for new requirements to be
met by the models. For example, Clouds are shared among several users and their con-
current activities may result in uncontrolled changes inside Clouds infrastructure, like
the deployment of new virtual systems or the shutdown of physical nodes, that may
impact on the external behavior of the running systems. Clouds use heterogeneous
physical resources to run virtual machines, and this may result in a slightly different
behavior if instances of the same virtual machine are run by different physical servers.
Clouds are opaque by design, that is, final users have no information about their archi-
tecture, nor internal state. These challenges demand for robust models that adapt to
transient or unexpected behaviors of the controlled systems, tolerate inaccurate, noisy
or imprecise data about controlled systems, do not rely on extensive knowledge about
Cloud internals, and deal with the uncertainty associated with any opaque system.
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Designers of autonomic controllers pose other requirements on the models: In prin-
ciple, models should derive from a solid theory, and their capabilities should have been
proven before. They should be easy to setup and configure during the development of
the autonomic controllers, and their interpretation should be intuitive during testing
and validation activities.

In the previous chapter, we saw that approaches and relative models proposed so
far in this context have strong limitations that may result in inapplicable, inefficient or
ineffective controllers. Instead, we propose an approach based on Kriging models that
have capabilities to tackle those challenges more suitably. Kriging models enable us to
design self-adaptive controllers that improve on the state-of-the-art solutions proposed
so far. In this section, we introduce and discuss the reasons that make Kriging models
such a sensible choice for the problem of model-based self-adaptive control in the
Clouds. In the next chapter (Chapter [5)), we present the experimental results that
support our hypothesis

Kriging models are global, i.e., they span over the whole input space, and multi-
modal, i.e., they may be non-monotonic, therefore they can capture in one solution the
behavior of systems across different workload regimes. This is different from classic
regression models that are commonly preferred for local predictions.

Kriging models belong to the family of black-box models, that is, they model a
system only based on its external behavior. For this reason, they are more suitable than
white-box models to capture the behavior of systems running, especially in Clouds,
where the knowledge about system internals is generally not available and accurate
white-box models are difficult to set up and maintain. Even if Kriging models do not
require additional knowledge about the system, they can accommodate any additional
knowledge about the system behavior whenever is available, and increase their quality.
Moreover, being based purely on data, Kriging models are generic, therefor they can
model the various systems running in Clouds with small or no effort. In practice, the
complexity of Kriging models and the effort to manage them depend on the amount
of samples used for the model fitting more than on the complexity of the modeled
systems. Thus, Kriging models scale well while adding dependent variables, but suffer
when the amount of samples increases.

This results in a critical trade-off where we need to balance the accuracy of the
model, which increases as the training set increases, and the time for querying it,
which increases with the size of the training set.

Like other black-box models, the accuracy of Kriging models depends on the choice
of the independent variables, i.e., the model features, and the training samples. In this
work, we assume that the most important independent variables have already been
identified and we build models using them. However, as explained in the related liter-
ature, one can use Kriging models also to perform a sensitivity analysis on the available
systems’ metrics to decide on the best features to use in each model. This is possi-
ble thanks to the intuitive interpretation of Kriging models that is based on the value
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of their hyper-parameters. In fact, the hyper-parameters associate different weights
to the input dimensions, and in this way, the model captures the relative importance
of each input feature. This behavior is very different form any strategy based on the
standard Euclidean distance that treats all the input dimensions at the same way.

We empirically discovered that the amount of data needed to build a Kriging model
with an accuracy sufficient for controlling elastic applications is relatively small, and
this results in an easy-to-manage model that can be retrained on-line [31]]. Simi-
larly, we empirically discovered that Kriging models provide predictions in millisec-
onds, thus they are suitable to be used on-line within the control loop of autonomic
controllers [[103]].

Kriging models compute the values of the predictions by weighting the values of the
training samples modulo their mutual distance: If the training data cover the sampling
space sufficiently, the quality of the model will be high. The accuracy of the model
depends also on how noisy the training data are: For simulated systems, where there
is no noise in the data, Kriging models provide a perfect interpolation; for real systems,
where the monitoring data can be in general very noisy, Kriging models can balance
data interpolation and regression, thus reducing the over-fitting of the model.

Kriging models are supported by a solid theory based on statistics. Their interpo-
lation capabilities have been proven effective in many domains, such as geo-statistic,
surrogate modeling, avionics and microchip design, where multidimensional and mul-
tivariate models are common. This enables Kriging models, and the controllers em-
ploying them, to leverage concepts, results and techniques from the statistical domain.
Thanks to this, Kriging models can provide a measure of uncertainty that is associated
with predictions and that can be used to define a confidence interval around them.
The confidence is computed in a well defined way, and depends on the amount and
the quality of the data around the prediction point and the complexity of the unknown
function. We can interpret this measure in different ways: Either there are not enough
samples to build a reliable model nearby the prediction point, or the system behavior
close to the prediction point is more dynamic than the remaining parts of the model.
Additionally, Kriging models do not degenerate, that is, they pair predictions that are
distant from the training data with the maximum level of uncertainty. Thanks to these
properties we can design robust and consistent control strategies that account for the
uncertainty in the data and do not show unexpected, counter-intuitive reactions when
applied in (yet) unknown working conditions.

Kriging models are non-parametric, that is, they do not require a predefined struc-
ture to be specified beforehandf_-] The internal structure of Kriging models is inferred
directly from the data provided during the training and later either adjusted or recre-
ated during the model updates. Therefore, Kriging models are easier to setup than
traditional regressors or artificial neural networks that at the contrary require the def-

INote that non-parametric models are not parameter-free models, for example, Kriging models have
hyper-parameters.
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inition of a predefined model structure. Moreover, the monitored data used to build
them is easily recoverable from the running systems, either through active monitoring
or analysis of application logs, and this make Kriging models even more easy to build.

4.3 Kriging models for performance prediction

We use Kriging models to approximate the steady-state relations between the indexes
of the performance of the system, which are the dependent variables, as function of
both the system configuration, input workload, and other system metrics, which are
the independent variables.

The choice of adopting a model that describes the steady behavior of the system
is in line with related work both on Cloud computing and traditional performance
engineering. However, it differs from the classic control theory that prefers models
of system dynamics rather than of the steady state. We motivate our choice with two
reasons: First, by employing steady state models the quality of the control in many
cases is sufficient for the problem at hand. Second, considering the complexity of
elastic applications in the Cloud, it is difficult to obtain an accurate, yet manageable,
model that captures the systems dynamics right as first principles models would do.
In this sense, steady state models are simpler and, at this stage, pay off better than
complex models of the system dynamics.

A Kriging model can predict a single dependent variable that depends on many in-
dependent variables. In this work, we are interested in capturing performance indexes,
such as average system response time and throughput, therefore we define a different
Kriging model for each of them to predict their value simultaneously. In doing so,
we consider performance indexes as not correlated and we use the same independent
variables for each Kriging model. Models that can predict multiple outputs, like the
one proposed by Ganapathi et al. [[32]], can be more accurate than ours, but are also
more complex to manage, therefore their applicability to our domain is still a subject
of discussion.

We translate controlled variables, non-controlled variables, and disturbance into
several input features of the models: To account for the system configuration, we
define an input feature, denoted as #VM,, for each type of VM. To account for the
workload, we define an input feature, denoted as RC,, for each type of new user
request received. Similarly, to account for the requests currently inside the system, we
define an additional input feature, denoted as QL,, for each type of user request.

This situation is summarized by the following set of expressions that are related to
a generic system with n types of VMs, and m types of user requests, where we want to
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predict the average response time and throughput for the different types of requests:

resources allocation envirox}{n cond other Eetrics
avgRT,_y n = f{(#VM,,...,#VM,, RCy,...,RC,, QLy,...,QL.) (4.1)
avgTxi—1.,m = g(#VMy,...,#VM,, RCi,...,RC,, QL,,...,QL, ) (4.2)
system conf input workloads  queued requests

where f; and g; are Kriging models.

Each application and SLO metric has a different model consisting of a different set
of features. For example, Figure shows a Kriging model of the average response
(AvgRT) time of a two-tier Web service that can scale its application server tier (#AS),
therefore:

AvgRT = f(#AS,RC)

This model captures how AvgRT changes as the workload RC (measured in req/sec)
and #AS change. Figure shows the model as a three dimensional surface on the
left, and in a top view on the right side. In the figure, different colors represent the
different values of the output features.
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Figure 4.1. A Kriging model for predicting performance [31]

Figure shows a Kriging model for another virtualized system (see [[103] for
more details). The plots in this figure refer to the average response time of one type
of requests (AvgRT) and the corresponding variance in log-scale (sig). The average
response time is computed with respect to the requests that reach the system in the
same monitoring interval. This means that in each monitoring interval, given the
amount of requests per type received, and the current state of the system captured
by means of the queue length, the models predict the average response time of these
particular requests. AvgRT is modeled as a function of the three types of VMs that
comprise the system, and the number of concurrent clients invoking it. The number
of concurrent clients is an approximation of the request rate because the generation
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logic of requests remains fixed during each run, i.e., the amount of requests generated
is proportional to the number of concurrent clients, and the request mix is constantE]
Therefore, the model has four input dimensions. Figure shows a projection of the
original space along the three dimensions of the system configuration.
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Figure 4.2. A Kriging model showing the average response time of a system (upper
plot) and the confidence of its prediction (lower plot) as function of the concurrent
number of clients. The plot shows the model of the system behavior for just one of

the possible system configurations.

Plots in Figure give an intuition of how the output variable and its confidence
interval change over the input features space, according to both the value and distri-
bution of training samples. The left side of the plot is obtained from multiple training
samples and shows the system under “light” load, the middle of the plot is obtained
with fewer samples and shows the system under sustained load, while the right side of
the plot is obtained with sparse samples and shows the system under heavy load. In
the first case, the predicted response time is in the order of millisecond and its vari-
ance is relatively low; in the second case, the predicted response time increases but
the variance is still low; and in the last case, which corresponds to the shaded area,
the predicted response suddenly drops as the load increases. This last case is counter-
intuitive because the response time of the system should increase, therefore the model
in this region is inaccurate. This situation can be explained considering the training
data that include just one sample in this region, and the interpolating nature of Kriging
models that adapt to the model trend away from the training dataﬂ In the shaded

2The behavior of the final users is modeled by means of a Markov chain that includes the invocation

of all the possible operations.
3Kriging models behave differently from other models, such as regression trees, that implement data

extrapolation instead.
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region, the inaccuracy of the model would lead to ineffective control if not properly
considered.

Fortunately, Kriging models have a clear mean to identify these situations and ac-
count for the uncertainty of its predictions. In fact, by inspecting the lower plot, we can
clearly see how the value of sig increases of almost two orders of magnitude. By tak-
ing this into account, one expects that predictions from the model may be inaccurate,
can take corrective actions and implement a more robust form of control.

For modeling system performance using Kriging models, we have to assume that
the correlation among the input features is isomorphic, that is, the correlation depends
only on the distance between the observations and not on their absolute value or loca-
tion. Despite the fact that did not formally verified this assumption, the results of the
empirical validation suggest that, at least in the investigated case studies, it holds.

4.4 Kriging models for robust control

When the controller identifies a risky situation that may lead to SLA violations, or an
over allocation of resources, it computes a set of control actions given the currently
monitored variables leveraging Kriging models. The planning process is performed in
two step: 1) Find a suitable system configuration, i.e., target configuration; and, 2) de-
rive the sequence of control actions that lead the system from the current configuration
to the target one.

During the planning, the controller reasons in terms of system configurations. This
reduces the space of possibilities compared to cases like the one based on reinforce-
ment learning in which controllers consider basic control actions and their combina-
tions to modify the controlled system. This also avoids complications due to contrasting
effects of different control actions, such as adding and removing similar VMs. More-
over, considering system configurations as first-class citizens allows to deal with all
the system bottlenecks simultaneously without going through the process of stepping
between shifting bottlenecks one at a time [69].

The planning is governed by control policies that aim to find system configurations
that are valid, i.e., respect any architectural or business constraints posed on the sys-
tem, and that avoid or recover from SLA violations. When the controller finds more
than one configuration, it chooses one according to a configurable second level pol-
icy. Control policies differs in how they search the configuration space to find valid
configurations, how they choose the target configuration, and when they apply it.

In this work, we define a “lazy” control policy that acts on the system only whenever
a violation is about to happen, that is, it is predicted to happen. The intuition behind
this choice, even if not formally stated, is that each control intervention has a cost, and
the lazy policy aims to minimize this cost as much as possible. To do so, the controller
leverages early warnings at every control cycle and acts whenever the model predicts
a violation of SLAs given the actual monitored variables. If no warnings are raised,
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the controller inspects the model to identify unnecessary VMs and eventually remove
them.

Assuming a risky situation is identified, to derive the target configuration, the con-
troller enumerates all the possible system configurations and filters them if there are
structural or business constraints[f| An example of constraint is a limit on the number
of VMs. In this case, one could have a maximum number of allocated VMs below a
threshold to limit the costs of running the system. Enumerating all the feasible config-
urations is possible because the space of system configuration includes few dimensions
and their combination results in a tractable space. Then, the controller removes from
the set of possible configurations the ones that the model predicts will lead to SLA
violations. To implement this check the controller queries the Kriging models using
as input the currently monitored values and the values corresponding to the chosen
configuration and compares the prediction with the QoS constraints. The controller
orders the remaining configurations by their costs. And it chooses the system configu-
ration that has minimum costs. In case of equally expensive configurations, we use as
second-level policy to pick the first configuration found.

Alternative control policies can be defined by implementing the planning steps
differently from what we explained. Here we give only a few examples and we left the
investigation of the best possible combinations of planning activities to future work.

Instead of relying on monitoring data at the beginning of a control period, one can
use predicted values, e.g. of the workload, and then inspects the possible evolutions
of the system similarly to what we did. Taking into account historical time series and
periodic behavior has the advantages of being more proactive by enabling long-term
predictions. However, using predictions instead of monitored values could be error
prone. In fact, if these predictions are not very accurate their combination with the
models may lead to wrong results. Moreover, in general, the longer is the prediction
horizon the greater may be this inaccuracy. And this limits the extent of controller
proactiveness.

Instead of enumerating all the possible system configurations and process them one
at a time to filter the result set, one can devise smarter explorations of the system con-
figuration space or reduce the amount of configuration considered according to some
heuristic. For example, one can follow a gradient based search, use Genetic Algorithm,
or other techniques. However, in our scenarios, the amount of potential system config-
urations is limited and complex techniques for exploration may not improve the speed
of the controller.

Instead of focusing only on costs to rank valid configurations and then promote
the first configuration found as target configuration as we did, one can devise other
strategies both to rank potential system configurations and to chose among equivalent
configurations. For example, one may prefer to have an equal allocation of VMs along
the different components running the system, while another may prefer to have a

“Even if theoretically possible, we do not assume any filter on system configurations in our case studies.
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configuration that is able to scale-up better along one dimension, i.e., VM type, more
than the others.

As another heuristic, a controller may privilege configurations that have already
been adopted in the past over configurations that are totally unknown, even if the
latter may be more promising from a QoS-wise point of view. The ability of Kriging to
provide confidence intervals on predictions is a requisite towards the implementation
of more robust control policies that tolerate and account for uncertainties in the control
loop.

We make our implementation of the lazy control policy robust by leveraging this
feature of Kriging models every time the controller inspects them: Whenever con-
trollers query the models, they combine the value of the prediction and its expected
variance in a ratio, and check if the resulting value is below an accuracy threshold. If it
is, then the controller considers the prediction reliable and proceeds as explained be-
fore, otherwise the controller reject the prediction. Intuitively, the ratio captures how
much the controller trusts the Kriging models: the smaller the threshold value, the
more conservative is the controller, i.e., the less trust in average is put on the Kriging
models. In our implementation of the robust control policy, the controller resorts to
a second model for obtaining the prediction on the system behavior every time this
accuracy check fails. In particular, we implement the second model as an analytical
model that assumes a linear correlation between the response time and the length of
the queue. And we empirically found that a value of the accuracy threshold equals to
0.4 gives already enough accurate results. This strategy works because the prediction
error and the confidence measure are correlated, meaning that when the confidence is
low the model actually tends to make wrong predictions. More details can be found in
Appendix Al

The space of alternative implementations is open and one can implement different
strategies both to compare the predicted values and variance, and to react whenever
the reliability of the prediction is not satisfactory. For example, when designers cannot
resort to the second model, controllers can look for system configurations that have
better accuracy even if they are not optimal in the costs/QoS dimensions, or choose
configurations that are very capable, thus reducing the risk of under-provisioning the
system.

One can define exploratory control policies that privilege control actions taking
the system to those regions with higher uncertainty and collect new monitoring data.
Finally, one can also implement strategies that use both the predicted values without
checking the reliability of predictions: For example, one can follow a conservative
strategy and consider only the pessimistic values of the predictions by penalizing the
predicted value proportionally to its uncertainty, and then use the penalized prediction
to drive the control policy.

As just stated, in this work we adopt a solution based on multiple models that we
use according to the following strategy: If the value of the variance (denoted as sig)
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that Kriging models give along the prediction is below a configurable threshold, then
we use the value predicted by the models, otherwise we resort to the second model.

We work under the assumption that the analytical model has a lower average accu-
racy than the Kriging model but that it performs better where Kriging have no training
data yet. This solution is conceptually similar to the one proposed by Malkowski and
coauthors [[70]. Both solutions have the potential advantage to provide a minimum
level of prediction accuracy by choosing the model with the expected lower prediction
€error.

Moreover, it is interesting to note that such combination leads to an overall im-
provement of the controller. In fact, the analytical model may lead the system in
operating regions that are not yet discovered. This in turn may result in the collec-
tion of new monitoring data and an increase of the accuracy of Kriging models. With
more accurate models, the controller resorts less frequently to the analytical model
and improves the overall effectiveness of the control policy

Once the controller finds the target configuration it must decide which control
actions must be implemented. To derive these control actions, the controller compares
the current and target configurations, and for each type of VM, it computes how many
VMs it must add or remove. At the end, all the control actions are then applied in one
solution.

4.5 Self-adaptiveness by model adaptation

Self-adaptive controllers change their control strategy at runtime, possibly without hu-
man intervention. Model-based controllers plan control strategies according to the
models that they use to describe the systems. Modifications to these models lead to
changes in their planning. Therefore, we can adapt self-adaptive controllers by modi-
fying the underlying models.

We follow this approach to self-adaptation and adapt the Kriging models by re-
training them on-line as new monitoring data are collected. The controller uses a
configurable sampling selection policy to decide which monitoring data are retained,
and how to pre-process them before updating the model. For example, we adopt the
simple approach of averaging the last five samples for a given combination of inputs
at every control cycle and use the resulting value as training sample. In this way, the
model is retrained with the latest collected data and we do not accumulate a large
amount of samples.

Other strategies can be implemented as well, for example, one may use the variance
and the count of samples for input combinations to match the (local) complexity of the
system behavior with the density of data around that point. This is similar to the
approach proposed by Ankenman, Nelson and Staum [4]. Alternatively, one can track

®The analytical model can be updated too with new monitoring data, for example using Kalman filters
to track system service times as described by Zheng et al. [116]]
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the prediction error and retrain the model only if its value is above a given threshold.
This approach is commonly found in related work and it has the advantage to avoid
frequent retraining of the model, if the threshold is set to the right value.

Building Kriging models implies two step: Dataset update and hyper-parameter
optimization. When we retrain the models, we always perform both steps. However,
when the system behavior is stable, the second step may be avoided during model
adaptation assuming that the current hyper-parameters are good enough. This is for
example the line followed by Sheikh et al. [96]]. The strategy to update only the
training dataset requires less effort and is faster than the strategy we propose, however
it makes also stronger assumptions about the quality of the initial hyper-parameter
optimization and about the stability of system behavior. These assumptions may be
violated in our application domain, i.e., Cloud based applications, thus it may lead to
inaccurate models and non-effective controllers. Moreover, accumulating new samples
without removing old ones may fail to capture evolutions of behavior that are hidden
by the data describing past behaviors, and reduce the speed of the controller.

In fact, the time of retraining Kriging models is cubic in the size of training set.
Thus keeping the size of training data set small is important. Fortunately, two facts
reduce the importance of this problem: First, the actual amount of data needed to
build accurate enough models for our application domain is not prohibitive; second,
one can adopt a range of optimizations that reduce the time to build the model. For
example, one may pre-process the training data by performing data-binning before
building the model.

Figure gives an intuition on how Kriging models evolve during system runtime.
The figure shows three consecutive snapshots of a model built in one of our case stud-
ies: The model at the left is trained with six samples, the one in the middle with twelve
samples, and the one at the right with thirty samples.

6 samples 12 samples 32 samples

- © R (0]
E 1500 KN £ A \ E 1500

Avg resp. ti
Avg resp. ti

Figure 4.3. Runtime evolution of Kriging models

Intuitively, one can see that the controller will act differently in these cases by
checking that for the same workload and the system configuration, the output of the
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model changes. For example, assume that the maximum average response time, as
specified in the SLA, is two seconds. For the maximum input workload in the figure
(160 req/per), the model on the left predicts an average response time of 1600 mil-
liseconds and the controller will not change the current system configuration. For the
same inputs, the model on the right predicts 2500 milliseconds, and the controller will
trigger the allocation of additional VMs. Therefore, by dynamically adapting the model
the controller does indeed update its strategy.

4.6 Suitability of Kriging models

During design time, we collect an initial set of training data, and we train Kriging
models with samples obtained by averaging the value of monitoring data over long
intervals to approximate the system steady-state behavior. At runtime, the controller
collects the “instantaneous” data, uses the sample selection policy to filter and combine
them, and eventually, retrains the models.

It must be noted that the controller uses the models at runtime to predict the system
performance given as inputs the instantaneous values of the KPIs and not their average.
Therefore, predictions of Kriging models will be accurate as long we can assume that
the system is in a steady state that mean that (i) the system is under light or moderate
load, i.e., its utilization is below the saturation point; (ii) the workload changes slowly
enough to let the controller react and avoid, even temporary, system saturation; and,
(iii) that the effects of control actions are immediately evident on the system behavior.

When all these conditions are met, steady state models, such as the Kriging mod-
els for performance prediction presented in Section can be safely used both from
early warnings and planning with simple control policies, like the one presented in
Section Unfortunately, in the context of Cloud based applications these assump-
tions are not always valid. In fact, the incoming workload may change quickly, the
deployment and removal of VMs may take up to several minutes, and in general the
current state of the system may impact on its behavior.

When these assumptions are not met, there are several consequences that depend
on the actual working conditions: For example, the effects of the load and the speed of
variation of the incoming workloads are inversely proportional to the scale of the sys-
tem, so in less capable configurations the effects are noticeable, while in very capable
configurations are negligible. Similarly, the faster the execution of control actions the
more the predictions on system behavior are accurate, with increased accuracy for big
configurations.

Given these considerations, some authors propose “palliative” solutions that consist
of avoiding very small system configurations or using hot replicas ready to be plugged in
the system. In both cases, the operational costs of the system increase as a consequence
of running more machines than needed.

To soften the set of working assumptions of our controllers while avoiding these
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palliative solutions, we improve our initial strategy as described in the next section.

4.7 Model predictive control with Kriging

We improve the initial solution based on Kriging models by explicitly considering the
system state and the delayed effects of control actions, and by simulating the expected
evolution of the system in the next future, i.e., after the applications of control actions,
in accordance to model predictive control.

In this work we focus on performance, therefore we represent the system state
as the amount of requests queued in the system and waiting to be processed, as this
measure concisely summarizes the past history of the system. We add a new input
feature to the Kriging model for each type of user request whose value corresponds to
the length of the corresponding waiting queue. It must be noted that these queues are
an abstraction over the system implementation that may have no separated queues. By
explicitly considering the system state, the accuracy of the models increases, especially
when the system has heavy load and the length of waiting queues impacts more on
performances. Moreover, Kriging models scale well with the number of dimensions,
and additional input features do not increase the effort for managing the models with
respect to the initial configuration.

The final performance of the controller depends not only on the accuracy of the
models, but also on their ability to capture (or simulate) the evolution of the system
state. This is important when the controller has to account for any transitory effect,
for example between configuration switching, and compensate for the inaccuracy of
invalid modeling assumptions.

The controller needs to known the amount of time for a control action to impact the
system behavior to properly simulate the system evolution in the future. For example,
before implementing a scale up action, the controller needs to understand what will be
the system state at the time the new VMs will start to elaborate queued requests; on the
other hand, before scaling down, the controller needs to understand if the previously
queued requests will be elaborated, thus if it is “safe” to remove VMs. We empirically
measured the average time needed to change system configuration, i.e., to start one or
more VMs and wait for them to start processing requests and to remove one or many
VMs, and we input this value in the control policy. In practice, different configurations
may be reached after different times, and the controller should consider this difference
while planning; however, in this work, we assume a constant time to move between
any system configuration leaving further investigations for future work.

The control policy assumes a known duration of control actions and the stability of
the workload inside each control cycle, and predicts the state that the system would
reach by considering the control actions already triggered and the control actions it
can potentially start. The model predictive control policy works in two steps: First,
it simulates the changes to the system state, i.e., how the waiting queues evolve, due



66 4.7 Model predictive control with Kriging

to the already triggered control actions and assuming a stable workload; second, from
this predicted state, it proceeds as we described in Section 4.4 with the simulation the
effects of potential changes of configurations. We compute incrementally the state that
the system would reach due to the running control actions over the delay we expect
to implement any control action under planning. We start form the monitored state at
the beginning of the control interval, and we compute the future instants when control
actions will take effects, i.e., when the system will actually change its configuration.
As many actions may be scheduled for execution, this results in a set of intervals be-
tween consecutive configurations. Then, we use Kriging models to understand how
many requests would be processed between any of these configurations and combine
these values with the amount of incoming requests that we will expect over the same
intervals, for example, the average value of incoming requests over the last ten control
intervals.

To simulate how a queue evolves, we input the current configuration into the Krig-
ing models and we fix the incoming workload to a single request. In this situation, by
simulating different queue lengths, the model predicts the average time to complete
that single request in each of the cases. Given a fixed time horizon, for example the
time to reach the next system configuration, we can approximate the number of re-
quests that can be processed by searching the maximum value of queue length such
that the predicted response of incoming requests is smaller than the considered hori-
zon. Once we obtained this approximation, we can compute how the value of the
queue length evolves due to that system configuration. This procedure is repeated iter-
atively for all the system configurations that were scheduled before the current control
period, and at each iteration the variation of the queue length is accumulated.

At the end of this procedure, we know if the queues increase, decrease or stay
stable, and also by how much they are supposed to change, between now and the time
any of the new control actions will take effect. By taking into account the system state
and its evolution we can plan more suitable control actions that compensate for the
transitory effects on the system behavior due to delays of control actions and unmet
working assumptions.

In case of scaling up, this procedure results in the smallest configuration that is able
to sustain the incoming workload and the load due to the already queued requests. In
case of scaling down, the procedure needs some minor adjustments to avoid resource
thrashing, i.e., removing VMs right after they start and starting new VMs right after
they stop. We want to avoid scaling down actions if a scaling up is taking place. This is
needed because scaling up actions taken in the past account for the effect of “future”
incoming requests that may have been supposed to queue up, and it is a consequence
of letting the controller apply control actions much faster than the physical system
reaction time. We adopt such more complex strategy in order not to hamper the proac-
tiveness of controllers, in fact, the alternative solution would be to pause the controller
in between the applications of control actions, that is in the order of minutes in our
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application domain.

If we were to remove VMs that were just started, it may happen that the requests
queued at the time those VMs were started would still be in the system without the
necessary resources to run. In summary, by removing such VMs one will invalidate
the predictions made in the past control intervals where the corresponding control
actions were issued, reducing the effectiveness of control. Moreover, if the scaling
down is too aggressive it may happen that the queues fill up too quickly before any
other control action will complete due to the approximations done to account for the
incoming workload.

Consequently, whenever a planned configuration tries to scale down the system,
before implementing such modification, we run two checks: First we compute the
smallest configuration that would tackle the expected incoming load without consid-
ering any state evolution, we compare it with the one obtained via the control policy
just presented, and we take the most capable one. Then we check if the chosen con-
figuration is able to consume the actually monitored workload. If this is the case, then
we found the target configuration, otherwise we choose a slightly bigger configuration
and we repeat the process.

4.8 Controller architecture and prototype implementation

To implement the Kriging-based self-adaptive controllers we instantiate the generic
architecture of model-based self-adaptive controllers introduced in Chapter [2] and we
refine it by adding the software components for building Kriging models and auto-
matically adapt them at runtime. Figure [4.4] shows the conceptual architecture of our

prototype.
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Figure 4.4. Conceptual architecture of Kriging-based self-adaptive controllers

The controller executes two concurrent loops: the control loop and the training
loop. The control loop involves several components: It starts with sensors that collect
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monitoring data from the application; these data are forwarded to the decision maker
that implements both early warnings and configuration planning. It interacts with the
Kriging models to perform both of them. Once the target configuration is ready, the
decision maker invokes the executor that computes the basic control actions to apply.
The executor then sends the sequence of control actions to the actuator that in turn
forwards them to the Cloud infrastructure. The training loop implements model self-
adaptiveness and involves the sensors to gather monitoring data, the model builder that
elaborates them to prepare the training set, and that trains the Kriging models.

The workload predictor and the SLO monitor are optional components that can be
executed to improve the effectiveness of the control loop by providing mid- and long-
term predictions about incoming workloads and to feed back into the controller the
amount of SLA already violated.

We implement this conceptual architecture in a prototype written in Java. The
implementation follows a plug-in architectural style such that controller’s components
can be easily replaced. At the moment, we have implemented plug-ins that use the
Octave engineﬁ for building the Kriging models, plug-ins for sensors and actuators to
bind to several Cloud infrastructures, such as Reservoir ['} Eucalyptus | and Amazon
EC2 ﬂ and plug-ins that implements different control policies, such as our lazy control
policy, our model predictive control policy, as well as simple rule-based control policies.
We also implemented a flexible monitoring framework, based on JMS Pub/Sub and its
implementation provided by Apache ActiveMQ m, for easily collecting and distributing
monitoring data.

We use this prototype to carry out the empirical validation of Kriging-based self-
adaptive controllers, as we describe in the following chapter.

Shttp://www.gnu.org/s/octave/
7http:/ /www.reservoir-fp7.eu/
Shttp:/ /www.eucalyptus.com/
°http://aws.amazon.com/
Ohttp://activemq.apache.org/



Chapter 5

Evaluation

In this chapter, we evaluate the contributions made by this thesis in three steps: We
begin by evaluating the predictive abilities of Kriging models in the context of elastic
applications; we proceed by evaluating the suitability of Kriging models as core ele-
ments of autonomic controllers; finally, we conclude by evaluating the performances
of Kriging-based self-adaptive controllers for the Cloud.

The evaluation process is based on a set of experiments that we designed to answer
the research questions introduced in Chapter 1| For each research question, we de-
scribe the experiments that we designed, and we discuss the results that we obtained.
We report additional details about experiments in Appendix [B|

5.1 Experimental settings

In this section, we briefly describe the testbed infrastructure and the case studies that
we used to conduct the evaluation process.

We chose the Reservoir Cloud as middleware for IaaS. This choice is motivated
by our need of experimenting with real systems, the availability of a private physical
infrastructure to our disposal, and the past experience that we gained by working in
the Reservoir EU projectE[, a leading research initiative on infrastructure virtualization
and Cloud computing that involved several industrial partners.

The Reservoir Cloud has a layered software architecture that accounts for: A cen-
tral point of control, called Virtual Environment Execution Manager (VEE Manager),
manages a set of hardware resources, called Virtual Environment Execution Hosts (VEE
Hosts), that in turns, run the virtual machines, called Virtual Execution Environments
(VEEs). VEEs that belongs to the same Cloud user collaborate to implement complex
applications or services. A component called Service Manager controls the lifecycle
of services, and exposes to the outside world the APIs for monitoring and control the

thttp: //www.reservoir-fp7.eu/

69
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virtualized infrastructure. Our controllers connects to these interfaces to receive mon-
itoring data, and to implement their control strategies.

A Service manager, a VEE Manager and a set of co-located VEE Hosts comprise
a Reservoir site, as Figure shows. In principle, Reservoir sites can join to form
federated Clouds, but in the rest of the evaluation we use a single site configuration.

Control Monitoring

0 0

4 | | )
Service Manager

( VEE Manager )
[VEE Host) [ VEE Host ) [ VEE Host )
\ Y,

Reservoir SITE

Figure 5.1. Logical architecture of a Reservoir site

We deploy the service manager and the VEE Manager on a 2-vCPU Debian Lenny
virtual machine that we run on a dual-core CPUs Dell desktop. We deploy a single
VEE Host in a 24-core physical server. The available resources on which VMs can be
allocated limits the size of the system configuration space, therefore, in our experi-
ments we can run virtualized systems that use at most twenty-two cores. We leave the
remaining two cores of the server free for background OS tasks.

Case studies

During the evaluation, we use different systems as case study. We choose these systems
because they are representative of the systems that typically run in Cloud infrastruc-
tures.

In particular, these systems are: the Sun grid engine,SGE in brief, a batch job
processing system typically used for scientific computations; the Doodle Web service
and the Rice University Bidding Systems (RUBIiS), traditional n-tiers Web applications;
and, the DoReMap system a composition of RESTful Web services.

Each of them has different requirements and SLOs, workloads and scalability needs
that we briefly describe in the remaining of this section.

Sun grid engine The Sun grid engine is a job batch processing system with a master-
slave architecture. Clients submit jobs to the master node that in turns dispatches them
to executor nodes. Each executor node can executes one job at time and notifies the
master node at completion. Executor nodes can be dynamically added and removed,
thus they form an elastic execution layer. We configure the master node to have a single
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queue of jobs, and we run it on a 2-vCPU virtual machine. Executors instead run in
virtual machines with a single vCPU. The SLA for the SGE contains a single service level
objective that defines a threshold of two minutes on the average jobs completion time.
We measure the SLO over a five-second sliding window. The average job completion
time is between five and six seconds. Figure reports the logical architecture of the
Sun grid engine.

(r public interface

Master Node Executor Nodes

job queue

@ SGE Master

E SGE Executor

Figure 5.2. Logical architecture of the Sun grid engine

Web application We consider the Doodle Web service E] as an example of common
n-tier web application. The Doodle Web service is a 2-tier implementation of a voting
polling service. A load balancer forwards incoming requests to the inner tiers of the
system that process them. Eventually, servers issue requests to a database tier. Ap-
plication servers form the elastic tiers of these applications. We configure the Doodle
Web service to use a 2-vCPU virtual machine to run a central database and 1-vCPU
virtual machines to run application servers. The SLAs of the application defines a max-
imum threshold of one second on the average response time for each type of request.
Figure reports the logical architecture of the Doodle Web service.

public interface Doodle Application Servers Doodle Database

>y REST Engine

S
@ Database °
Loadbalancer

Figure 5.3. Logical architecture of the Doodle Web service

DoReMap DoReMap is a RESTful Web service composition originally presented by
Pautasso [|85]]. It contains a loadbalancer component that distributes the incoming re-
quests to a battery of JOpera composition engines [[86]]. Engines compose two atomic

2This is a clone of a real Web service available at http://www.doodle.com/
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RESTful Web services: The Doodle Web service and a search engine, called Restau-
rantSearch, that is inspired to Yahoo!Locaﬂ The final service composition offers con-
text aware voting polls. We use a 4-vCPU virtual machine to run the loadbalancer and
other infrastructural components for monitoring, a 2-vCPU virtual machine to run the
database of the Doodle Web service and JOpera engines, and 1-vCPU virtual machines
to run the other components. All components but the loadbalancer and the database
of the Doodle Web service can be scaled dynamically. The SLA of DoReMap defines
thresholds on the maximum average response time for the different operations at the
composition level. Figure reports the logical architecture of the DoReMap system.

public interface JOpera Servers Doodle Application Servers Doodle Database
X
JE
] Jopera Engine Loadbalancer N
o, REST Engine I
8 Database

RestaurantSearch Servers

Figure 5.4. Logical architecture of DoReMap

In the remaining of the chapter, we present extensive results for the Sun grid engine
case study, while we report results for the other case studies in Appendix[B|

5.2 Kriging models for prediction

To our knowledge, this is the first time that Kriging models are used to describe soft-
ware systems running in the Cloud. Therefore, we need to evaluate the ability of
Kriging models to correlate monitoring data and accurately capture the behavior of
such systems, hence, addressing our first research question:

RQ-1: Are Kriging models able to capture the behavior of elastic applica-
tions run by Cloud infrastructure accurately enough?

We adopt the following procedure to conduct the evaluation: We sample the system
behavior through a batch of controlled experiments; we partition these samples into
one training and one validation sets; we build a Kriging model using the data from the

3http://local.yahoo.com/
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training set and predict the validation set with the model; we compute the prediction
error by comparing the real and predicted values.

To stress the system, we generate synthetic workloads drawn from Poisson distri-
butions with constant mean and fixed request mix. We discard monitoring data at the
beginning and at the end of each run to avoid the undesired effects of components
start-up and shutdown and we obtain the final samples by averaging the output of the
run.

Accuracy of Kriging models for the Cloud

We evaluate the overall accuracy of Kriging models by computing widely used error
metrics: the mean absolute error (MAE), the root mean square error (RMSE) and
the mean absolute percentage error (MAPE). Having a validation set V of n samples,
V = {(x;,¥:)li =1,...,n}, where x denotes an input vector and y denotes the corre-
sponding scalar output (i.e., the dependent variable), and defined y; the model pre-
diction corresponding to input x;, the error metrics are computed according to the
following formulas:

1 n
MAE = —> |y~ Ji (5.1)
i=1
1 n
RMSE = /= (y;— 7.2 (5.2)
nlzzl 1 1
100 <y y; — ¥,
MAPE = —Z|u| (5.3)
n i3 Yi

We present here the results for the Sun grid engine case study, and we report in
Appendix [B| results for the other case studies.

We run the batch of experiments and we collect 636 training samples and 91 vali-
dation samples, therefore n = 91. We build a Kriging model for the average response
time as function of the number of executor nodes, incoming requests, and queued jobs
using the 636 samples. For reference, we plot this Kriging model in Figure 5.5|for three
(out of twenty-two) system configurations, with 5, 10, and 15 running executor nodes.
The plots show the average response system time on the z-axis, the number of queued
jobs on the x-axis, and the number of incoming requests on the y-axis. We predict the
91 validation samples with the Kriging model to obtain a MAE of 5742.56 millisecs, a
RMSE of 9395.30 millisecs and a MAPE of 15.42%.

We consider Kriging models accurate enough if the MAPE error is below 20%. To
put the accuracy metrics in the context of the case study we compare error values
against the SLO on average response time, which is equal to 120 seconds. In SGE
case study, the value of MAPE is below the accuracy threshold, and both the values of
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MAE and RMSE are relatively small compared to the threshold on the average response
time of 120 seconds, meaning that the impact of the prediction error on the quality of
the control should be tolerable. We must note that these samples are obtained from
running systems and are inherently noisy, and this justifies the fact that prediction
errors cannot be eliminated completely.

Limited to the SGE, these results are promising and show that Kriging models can
capture the behavior of the considered application reasonably well. As reported in the
appendix, we obtain similar results also for the other case studies that we considered.
In light of this, we can use Kriging models to capture the steady state behavior of
systems deployed over Cloud infrastructure.

Comparison with other models

To have a more comprehensive view about the predictive abilities of Kriging models,
and also to support our claims on the advantages derived from using them with respect
to other solutions, we compare Kriging models with other models.

We select the alternative models among the ones that can be found in literature,
and for which we could find an available implementation. In this way, we can reduce
the bias of the results as well the effort of conducting the evaluation. We consider the
following black-box models for the comparison: multidimensional regression models,
M5 regression trees, and multivariate adaptive regression splines.

In the comparison, we consider also an analytical model, as instance of white-box
models, and a combined model that we obtained by mixing together the Kriging model
and the analytical model as we explained in the previous chapter.

Multidimensional linear regression Multidimensional linear regression models take
the form of y = X * b 4 ¢ and are trained via least square error minimization. For the
evaluation, we use the implementation provided by the statistics packageﬁ] of Octave.
Figure [5.6] shows the plots of multidimensional linear regression models for SGE con-
figured with 5, 10, and 15 executors. As before, we plot on the z-axis the predicted
average system response time, on the x-axis the number of queued jobs, and on the
y-axis the number of incoming requests.

M5 Regression trees M5 Regression trees in the continuous case correspond to the
widely known classification trees in the discrete case. They divide the multidimen-
sional input space into a set of planes that correspond to the leaves of the tree. Regres-
sion trees are trained in a two step process that discovers an initial node and recursively
grows to maximize each branch via standard deviation reduction, and then minimizes
the tree by pruning each leaf that minimizes the estimate of the expected error. For

4http://octave.sourceforge.net/statistics/index.html
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the evaluation, we use the implementation of M5 regression trees provided by Jekab-
son [29]]. We plot in Figure the model for the selected configurations of the SGE
application.

Multivariate adaptive regression splines Multivariate adaptive regression splines are
a combination of basis functions that are placed over the space of the input features in
special points called knots. They are trained via a two-phase procedure: The forward
selection iteratively adds basis functions that give the largest reduction of the training
error, and the backward deletion simplifies the model by deleting the least important
basis function at each time. In the evaluation, we use the implementation of multivari-
ate adaptive regression spline provided by Jekabson [30]]. Figure shows the model
for the selected configurations of the SGE application.

Analytical model The analytical model simulates the behavior of an ideal multi-
server single queue. We implement the model and manually set the service time pa-
rameter as the empirical mean value of the job execution time. It must be noted that
we were able to implement this model because the Sun grid engine has a software
architecture that can be easily translate into a multi-server single queue model, and
because we are considering only one type of job. Figure [5.9] shows the model for the
selected configurations of the SGE application.

Combined model The combined model mixes Kriging and analytical model using a
threshold on the value of sig as a switch between the models: When the confidence of
predictions is too low, the combined model resort to the analytical model, otherwise it
behaves like a normal Kriging model. We set the value of the accuracy threshold equal
to 0.4. More details can be found in the previous chapter where we firstly introduce
combined models. Figure shows the model that we obtained using the selected
training set.

These models implement different interpolation and regression techniques and they
result in different response surfaces, as the previous figures highlight. In particular,
multiple linear regression models result in a multidimensional plane, M5 regression
trees partition the whole space in linear subspaces, multivariate adaptive splines and
Kriging models interpolate the data smoothly. The analytical model results in several
planes with “jagged” boundaries that smooth away from on side of the model to the
other. This shape results from the particular definition that we choose for the depen-
dent variable, i.e., the average response time: Under light loads, with empty queue,
and especially for configurations that use several executors, the shape of the response
is like a step function. This derives from the parallelism of the system: More execu-
tors complete jobs at the same time at the average time of the system is close to its
minimum response time.
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Under heavy load, this effect is smoothed out because more jobs stay in the queue, and
the job waiting time takes over the processing time. Finally, in the combined model we
can notice smooth areas that correspond to the use of Kriging model, and more linear
sections where the analytical model is used.

To evaluate the accuracy of the models we compute prediction errors by following
the same setup of the previous experiment: We train (when necessary) a model with
the original training set, we predict the validation set, and then, we compute the MAE,
the RMSE, and the MAPE. We compare the value of error metrics across models to
draw conclusions about the accuracy of Kriging with respect to the other models. We
summarize the results on the overall accuracy of the models in Table In the ta-
ble, the first column identifies the considered model, the second, third and the fourth
columns report the values for the MAE, RMSE, and MAPE. To ease the comparison, we
report here also the results that we obtained with the Kriging models.

Table 5.1. Comparison of models prediction ability

Model MAE RMSE MAPE
(msec) (msec) (%)
Kriging model 5742.56 9395.30 | 15.42
Multidimensional linear regression 11043.50 | 15194.46 | 43.91
M5 Regression trees 8269.63 | 14215.82 | 13.98
Multivariate adaptive regression splines | 2822.78 | 4113.11 9.52
Analytical model 5166.68 7312.49 | 13.13
Combined model 4125.63 6165.03 | 10.95

We can make the following observations limited to this experiment: If we con-
sider the MAPE alone, all the models but the multidimensional linear regression model
show acceptable accuracy. However, when we consider also the other error metrics
we can se that multidimensional linear regression and regression trees show relatively
poor accuracy compared to Kriging models, while the remaining models show better
performance.

Multivariate adaptive regression splines are the best model in the group. They show
very good accuracy in this experiment because we smoothed training and validation
data to model the steady state behavior of the system, and splines capture trends in
the data very well. However, in the next sections we will show their limitations when
we model systems on-line and in realistic settings. This strengthens our choice of using
Kriging models. Combined models in particular outperform both Kriging models and
analytical models that comprise them, suggesting that model combination based on
sig is an option worth consider.

These results highlight some interesting trends, thus are a good starting point for
further evaluations. They are not general because we derive them using a single par-
tition of the available data into training and validation sets, and this may cause, espe-
cially for non-parametric models both false positive and false negative results. For this
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reason, we compare the models also using a different process (and a different metric).

In particular, for the comparison we run K-fold cross validations and then we com-
pare the prediction errors of each model [28]. K-fold cross validation is a widely
adopted technique to evaluate the quality of models, and it is generally used whenever
only a single dataset is available. For example, it is used when the cost of collecting
two separate sets of data for training and validation is prohibitive.

The technique starts by randomly partitioning the initial data set in K subsets,
where K is a design parameter and it can vary between 1 to n, the size of the sample
set. Once the subsets are ready, it proceeds by repeating the following activities for
all the subsets: (i) Remove from the original dataset the chosen subset; (ii) train the
model with the remaining data; and, (iii) predict the left out subset.

At the end of the process, we collect all the n predictions and compute the cross
validation error (CVE) using the following formula:

_15 N2
CVE = - ;(}’i - i) (5.4)

where, y; is the real data and y; is the corresponding prediction. CVE is quadratic
and in this example is expressed in millisecond, thus its absolute value may be of high
magnitude. Nevertheless, for the sake of the comparison, smaller values identify more
accurate models.

We run the cross validations increasing the value of K at each iteration. Figure[5.1]]
summarizes the results as bar plots: Each bar corresponds to a different model and bars
are grouped according to the value of K.
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Figure 5.11. Comparison of models cross validation error

From the data in the bar plots we can make the following observations: Analytic
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and multiple linear regression models behave constantly worse than the other models.
From the previous evaluation step, we expect this result for the multiple linear regres-
sion models, but not for the analytical model that performs worse than the expected.
This can be explained considering the fact that the analytical model is mostly linear
while the system may not be in some part of the input space, and this results in poor
predictions. In the previous experiment, the validation data were distributed mainly
over the main diagonal and this hid the “true” accuracy of the model.

The other models improve with increasing value of K as we use more data for
training, and stabilize after a while to comparable values. Differences are in how fast
they reach a stable value and the absolute value that they reach at the end: Between
K =2 and K = 5, Kriging models and combined models have a strong improvement
while M5 regression trees have only a small improvement. Multivariate adaptive re-
gression splines improve as more training data are used as well, but they do not show a
monotonic reduction of the error that instead oscillates. We verified that this particular
behavior is consistent across different runs and datasets.

With these results we can refine our previous conclusions: Simplistic linear regres-
sion models and simple analytical models may be not suitable to entirely capture the
behavior of elastic applications in the Cloud. On the contrary, the other models are
more suitable for this purpose. And, if they are provided with enough training data,
behave comparably good to each other. Finally, we confirm the ability of the combined
model to gain accuracy by suitably switching between Kriging and analytical models.

To have a different perspective on the accuracy of the models, we plot actual and
predicted values against each other in a dispersion graph. These plots highlight how
closely the actual dataset and predicted datasets agree, and we use them to qualita-
tively investigate the results on model accuracy just obtained.

Figure shows the plots for the various models for the same value of K (i.e.,
K = 20). As reference for the interpretation, we plot the ideal predictor, i.e., the y = x
function, as thick solid line. Furthermore, to have an intuition on how globally each
model behave, we also plot three bands that correspond to 10%, 20% and 30% of the
value of the ideal predictor. The lines that define these bands are identified by means
of different line patterns.

Thanks to these plots, we can qualitatively asses the behavior of each model by
investigating the distribution of the prediction points with respect to the ideal predic-
tor: Data close to the ideal predictor indicate accurate predictions, while data points
distant from it highlight poor predictions.

From the plots in Figure and limited to this run of experiment, we can make
the following observations: i) Kriging models have reasonably good performance:
around 96% of the predicted points lie within the 20% band. They show worse per-
formances for very small and very large values of the output variable: For small values
Kriging models are conservative and for large values are optimistic. This may happen
because for small values of the output the model is not able to filter out the noise,
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while for large values of the output the model has not enough data points, therefore is
not able to correctly extrapolate information. ii) M5 regression trees show smaller ac-
curacy than Kriging models: around 89% of the points predicted by the regression tree
lie within the 20% band. From Figure we see that regression tree shows slightly
more dispersed predictions than Kriging models, thus a bigger amount of wrong pre-
dictions; however, these wrong predictions impact less on the cross validation errors
than the ones of Kriging models because in the case of M5 Trees they cluster around the
origin. iii) Multivariate adaptive regression splines are very accurate: around 97% of
the predicted points lie within the 20% band, and almost no points lie outside the 30%.
This strengthens our previous idea that splines can accurately capture the behavior of
this application. With respect to Kriging models we see that splines can better smooth
the noise for small values of the output, and can extrapolate better than Kriging mod-
els for large values of the output. iv) Multidimensional linear regression models are
inaccurate as most of the time data points are distant from the ideal predictor: only
around 15% of the predicted points lie within the 20% band. This explains the bad
performance of this models according to the cross validation error. v) Analytic models
are inaccurate as well, even if in a different way: around 77% of the predicted points
lie within the 20% band, and all the data points are above the ideal predictor meaning
that the model is very conservative. This trend is more evident for larger values of
the output than smaller values, and this explains the high value of the cross validation
error. vi) Combined models instead show the benefits in terms of accuracy of using
Kriging models with analytical model: around 95% of the predicted points lie within
the 20% band, and few points, especially for large values of the output, lie outside
the 30% band. In fact, this combination can mitigate the optimistic and pessimistic
behavior of the component models, and is more accurate than each single component
model.

Summary of the results

From this initial the evaluation we can say that Kriging models (i) predict the behav-
ior, i.e., the performances, of Cloud based applications with acceptable accuracy that is
comparable with the one obtained using alternative surrogate models, such as regres-
sion trees and multivariate adaptive regression splines; (ii) outperform simple linear
regressions and simple analytical models; and, (iii) can leverage sig, i.e., the mea-
sure of the uncertainty of their predictions, to accept or reject the predictions before
observing of the actual predicted value. We implement combined models using the
value of sig as switch, and we show their improved performances with respect to its
component models.

We must note that the validity of these conclusions may be threatened by the fact
that we performed the investigation only by considering the Sun grid engine case study
and a limited amount of training data points. For more complex cases, we expect that
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the scalability of Kriging models and the possibility of using the sig to ponder the
quality of predictions will be more beneficial.

5.3 Kriging models for control

Proving that Kriging models can capture the behavior of Cloud based applications in
an off-line setting is a necessary but not sufficient condition to prove that the same
models are also suitable in the context of autonomic controllers, where decisions may
have to be made on-line, under uncertainty, and with noisy data. Therefore, we need
to prove that Kriging models tolerate: noisy data, provide timely predictions that do
not hindrance the reactiveness of the controller, and can be easy adapted to emerging
application behaviors if they appear. We devote the next sections to prove these three
major points, thus proving that Kriging models can be used as core elements of self-
adaptive autonomic controllers.

Robustness of Kriging models

When Kriging models are used to model real running systems, they elaborate data col-
lected by the available monitoring system that may be imprecise or that may introduce
noise in the data. This situation is different from before where we preprocessed the
data that we collected during controlled experiments at staging time.

In these new settings, we need to prove that Kriging models remain sufficiently
accurate to support effective analysis, that is, they still provide good predictions of
applications behavior. In this way, we can answer our next research question:

RQ-2: Are Kriging models robust with respect to monitoring data noise
and precision?

We adopt the following procedure to evaluate the robustness of the Kriging models
in real life settings: We deploy our target application in a Cloud infrastructure, and
we apply synthetic workloads to it. Meanwhile, we collect monitoring data about the
controlled and uncontrolled system variables. For example, in the case of the Sun
grid engine, we collet in each monitoring period the incoming workload in requests
per period, the length of queues in number of jobs inside the system per period, the
system configuration in number of running executor nodes, and the average response
time of the requests in a period. During the experiment, we simulate an hypothetical
controller by changing the system configuration using the Cloud infrastructure API.

In this way, at the end of a run we collect a trace of real monitoring signals ob-
tained via a realistic workload and working conditions. Then, we can replay the trace
against the models to test the accuracy of their predictions in front of noisy and possi-
bly imprecise data.
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In practice, we use the models to predict the system behavior using the monitored
data used as input, and we compare the predicted output against the monitored output.
We train the models using the same training dataset of the previous evaluation steps,
and as we did before, we measure the accuracy of models by computing the mean
absolute error (Eq. [5.I)), the root mean square error (Eq. and the mean absolute
percentage error (Eq.[5.3).

We generate different workloads and we adopt different settings of the Cloud in-
frastructure to explore the robustness of the models in different working conditions.
The various combinations of these factors result in varying levels of noise and precision
of the monitored data.

For example, we change workload intensity and variability to stress the application,
and we use both slow and fast actuators to change the system configuration. In partic-
ular, slow actuators are the real actuators provided by the Cloud infrastructure. We call
them slow actuator because they deploy and boot from scratch a new virtual machine
every time that we invoke them. On the contrary, fast actuators reuse running virtual
machines in a hot-replica fashion, thus saving time. Both the configurations represent
valid and realistic settings: Slow actuator are the common case for IaaS infrastructure,
while fast actuators can be found in hybrid or private Clouds.

We must note that, in any configuration, the actuators and the monitoring system
are far from being ideal. In fact, while the Cloud infrastructure is changing the system
configuration, the monitored values differ from the real ones because the monitoring
system considers a new VM to be in running state as soon as the Cloud infrastructure
allocates all the required physical resources to the VM, even if, at the application level,
it is not yet processing any user request. The slower the actuator the bigger is the time
needed to implement the system configuration, and the more will be the inaccuracy in
the monitoring data.

We use Apache JMete to generate the workload for the Sun grid engine starting
from predefined workload trace files, and a simple rule based controller to change the
system configuration. To simulate realistic constraints in the resources that we can
allocate, we force the system to use at maximum eighteen executor nodes.

Figure[5.13|shows the traces collected during the first experiment where we use the
rule based controllers paired with fast actuators, while Figure shows the traces
collected during the second experiment where we use the same controller but with
slow actuators. We collect new monitoring data every five seconds, which is the fre-
quency of our monitoring system. In both figures, the first three plots refer to moni-
tored input variables: The system configuration (first plot) expressed in terms of the
number of running executor nodes, the length of queue (second plot) expressed in
terms of requests inside the system, and the request count (third plot) expressed in
terms of new requests received by the system in each monitoring interval. The plots
at the bottom instead refer to the monitored output variable, i.e., the average system

Shttp://jmeter.apache.org/
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response time, that it is the signal we need to predict using the models.

We obtained the first data set with fast actuators and by running three different
workloads in a row: The first workload (W1) starts at the beginning of the experiment
and lasts around third minutes. It generates two waves of requests of different am-
plitude. The second workload (W2) starts right after (around sample number 2000),
and lasts for one hour and half. It is a step function with different slopes for the in-
creasing and decreasing sections. After this, the last workload (W3) starts and lasts
around two hours, till the end of the run. It generates small steps of different intensity.
We obtained the second data set with slow actuators and by running three times an
oscillating workload.

Table summarizes the results about the accuracy of Kriging models using the
first and second data sets. Each row of the table refer to a data set, and the columns
show the aggregated error metrics that we computed over each run.

Table 5.2. Robustness of Kriging models.

MAE RMSE MAPE
(msec) (msec) (%)
1) Fast actuators and heterogeneous workloads | 18712.58 | 44990.96 | 29.96

2) Slow actuators and oscillating workloads 15918.71 | 22427.25 | 47.08

Data set

Compared to the results obtained in the previous experiment, we notice a general
degradation of the accuracy of Kriging models. In general, we expected to see such
outcome because the data monitored from the running systems are inherently more
noisy, and because by dynamically changing the configuration we introduce some im-
precisions in the data as we explained before.

To understand the implications of the realistic settings on the accuracy of Kriging
models, and to better interpret the results of Table we analyze the results of the
experiment separately.

In the first experiment, we use fast actuators that we assume introduce very little
imprecision in the data, therefore we expect a low impact on model accuracy. This
however is in contrast with the data reported in the table for the first experiment. To
explain the reasons of these results, we need to break down the experiment into each
workload specific segment, and then, analyze them separately.

Table shows the break down of the results: The first row refers to the er-
ror metrics computed over the entire experiment and is reported to contextualize the
other figures. The following three rows show the errors computed over the different
workloads that comprise the data set. It must be noted that each of the segments has
different duration, thus aggregate values of the first line do not correspond to the mean
value of the other figures.

According to the values in Table for workloads W1 and W3, Kriging models show
reasonably good performances in terms of MAE and RMSE. For these two cases, Krig-
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Figure 5.13. Dataset 1 for the evaluation of Kriging model robustness.
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Table 5.3. Robustness of Kriging models: Break down of the first dataset.

Workload Type (anSAe]i) (RHJI/SIZ]:E) MI;]PE
All | 18712.58 | 44990.96 | 29.96
w1 5142.28 | 7035.68 | 14.19
W2 41315.93 [ 72554.12 | 27.31
W3 4756.58 | 5528.42 | 35.59

ing models show the improvement over the case of slow actuators that we expected.
If we look at MAE and RMSE, the model performs better with workload W3 than with
workload W1. This happens because workload W1 has fast variations that trigger several
changes of the system configuration, and this results in a degraded quality of monitor-
ing data. Differently from this, workload W3 has smaller intensity and fewer variations,
thus resulting in more stable system configurations, less noisy monitoring data, and
more accurate predictions. However, the small intensity of the load leads to a bigger
value for the MAPE of W3 than W1.

On the contrary, for workload W2 we notice worse results. Workload W2 generates
a load that overcomes the maximal capacity of the system, i.e., the capacity of the
system when all the available resources are allocated to it. We can see this in Figure
between samples 4500 and 6500. In this interval, we can see that the queue of waiting
jobs (as well as the average response time of the system) increases over time, meaning
that the system capacity is not enough to process all the jobs that arrive.

This is an unusual situation, and at training time we did not experience. As con-
sequence, we did not collect any data about the behavior of the system during the
staging time, and the Kriging models that are suited more for data interpolation than
extrapolation, fail to capture the correct system behavior in this particular context.

We plot in Figure the predictions of the Kriging models (dashed line) against
the monitored output (continuous line) for the first validation set. By looking at the
plot we can intuitively see how the Kriging models behaves in the different cases. For
reference, we report also the evolution of the prediction error at the bottom of the
figure. Both at the beginning (workload W1) and at the end (workload W3) of the run,
we see that the signal predicted by the Kriging model is very close to the actual one.
In the middle (workload W2), we notice that the predicted signal is close to the actual
one at the beginning of W2, then suddenly it diverges while remaining constant for a
while; finally, it recovers to the actual signal again.

We can explain the interval in which the predictions remain constant by considering
the default choice of adopting a constant trend, usually zero or the empirical mean of
the data, inside the Kriging model. We know that away from the training region Kriging
models exploit this trend to make the predictions in absence of any other evidence. So
by providing a constant trend we obtain constant predictions. We could also force
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Figure 5.15. Kriging model predictions and prediction error on Dataset 1

other trends, but this assumes some a-priori knowledge on the behavior of the system
that in general may be not available, indeed we avoid this option.

In summary, if we consider only the workloads W1 and W3, we can conclude that
Kriging models are robust enough to be used even for deployed systems and not only
exact computer simulations.

This is valid provided that monitoring signals lies within the boundaries defined by
the training samples. Regarding, workload W2 we can say that if we collect more data
at staging time we may increase the final quality of the Kriging models. Later in the
document, we will show the improvement of Kriging models accuracy when we retrain
the models on-line with the monitoring data collected form the running system.

It must be noted that suitably training a surrogate model is a common challenge.
In fact, blindly relying on their predictions may be problematic, especially in case we
did not explore sufficiently the input/output space during training. In our favor, we
can remark that Kriging models are able to estimate the quality of their predictions
in relation to the training data set, using the sig value. This allows more informed
decisions about the need of more sampling data, and enables strategies that account
for uncertainty in the model. For example, we use sig to switch from Kriging to an
analytical model whenever the prediction accuracy is not satisfactory.

In the second experiment, we use slow actuators that we assume introduce impre-
cision in the data, therefore we expect a big impact on model accuracy than before.
This is in line with the data reported in Table

To have an intuition of the effects resulting from using slow actuators with plot
the average response time, the prediction that we obtained by Kriging model, and the
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corresponding prediction error in Figure From the plot is evident that the model
underestimates the value of the response time during scale up, while overestimates it
during scale down. In particular, we see that the model shows a bigger error during
scale up actions than during scale down. We can explain this by considering the specific
implementation of the actuators used during the experiments: Slow actuators start
several virtual machine instances in parallel while scaling up, but stop one virtual
machine at each time while scaling down. This behavior was implemented by design
to enable fast scaling-up as reactions to peeks in the load. The asymmetry of this
behavior impacts differently on the quality of the predictions during scaling up and
scaling down.
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Figure 5.16. Kriging model predictions and prediction error on Dataset 2

Comparison with other models

To better contextualize the results obtained with Kriging models we repeat both the
experiments with the other models, and we compare their error metrics.

Table summarizes the obtained results: Rows correspond to models under in-
vestigation; for each model we report MAE, RMSE, and MAPE errors. Columns instead
refer to the dataset used for the evaluation. In particular, we break down the first val-
idation set and we report both the aggregated and the workload specific results. We
round the values to seconds to simplify the reading. Finally, to ease the comparison,
we report in the table also the results obtained with Kriging models.

By comparing the accuracy measures of the models in the first dataset (Dataset 1)
we can see that Kriging models and combined models always outperform all other
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Table 5.4. Comparing model robustness

Dataset 1
Model Al | Wi | W3 | W3 Dataset 2
MAE (sec) 18.71 | 5.14 41.32 4.76 15.92
Kriging model RMSE (sec) | 44.99 7.04 72.56 5.53 22.43

MAPE (%) | 29.96 | 14.19 | 27.31 | 35.59 47.08

MAE (sec) 36.77 | 17.12 | 69.50 | 16.56 23.39
MS5 Regression trees RMSE (sec) | 65.64 | 22.45 | 101.73 | 24.87 31.32
MAPE (%) | 44.47 | 31.20 | 52.35 | 41.56 51.03

Multivariate adaptive MAE (sec) 36.73 8.18 85.00 6.83 20.12
regression RMSE (sec) | 85.47 | 11.20 | 137.86 | 10.61 25.40
splines MAPE (%) | 67.64 | 29.76 | 62.89 | 79.94 56.36

MAE (sec) 50.17 | 29.48 | 102.40 | 15.50 48.01
Multiple linear regression | RMSE (sec) | 91.83 | 37.14 | 145.95 | 18.26 56.44
MAPE (%) | 59.77 | 52.63 | 77.83 | 47.76 107.72

MAE (sec) 491 5.32 5.0 4.76 16.05
Combined model RMSE (sec) | 5.75 6.55 5.77 5.53 22.31
MAPE (%) 23.55 | 14.58 10.34 | 35.59 47.62

MAE (sec) 15.80 | 16.46 11.87 18.61 13.02
Analytical model RMSE (sec) | 19.13 | 21.24 | 15.43 | 21.05 16.92
MAPE (%) | 51.19 | 38.82 | 28.17 | 71.43 54.02

models, both in the aggregated and in the per-workload cases. This confirms our
previous findings about the use of Kriging and analytical models together, and further
highlights the benefits of such combination. The biggest improvement derives from the
extensive use of the analytic model during workload W2, where we have a reduction of
all the error metrics. Furthermore, in this experiments we do not let Kriging models to
learn the behavior of the system by collecting additional monitoring data. In the next
section, we will see that by updating the Kriging models this difference vanishes, as
Kriging models reach similar accuracy to combined models.

We obtain further improvements in workload W1, while there are no improvements
for workload (W3). This happens because all the predictions are obtained from the
Kriging model that is already accurate enough.

By comparing the accuracy measures of the models in the second dataset we see
that all the surrogate models but the multiple linear regression perform comparably
good. In particular, Kriging models have the smallest MAE and MAPE, while the com-
bined models have the smallest RMSE. We note that in this dataset analytical models
perform better than the surrogate models according to MAE and RMSE. This can be
explained by considering that the experiment puts the system in a region where inputs
and output are linearly correlated.

If we limit our attention to workloads W1 and W3, and compare the results obtained
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against the ones of the second experiments, we notice the degradation of the accuracy
for all the models. This confirms that the use of slow actuators to change the system
configuration introduces more noise in the monitoring data, and that decreases the
quality of the data used by the models, and the accuracy of their predictions. Kriging
and combined models behave consistently better than the other surrogate models, and
in particular they behave similarly. This happens because, the oscillating workload
of the second experiment takes the system always within known working conditions,
therefore the combined models reduce more or less to “pure” Kriging models, and lose
the relative gains that derive from the use of analytical model where predictions of
Kriging models are poor.

In summary, considering the results presented so far, we can conclude that com-
bined models are the best choice if one faces working conditions that were not consid-
ered during the training activity, with Kriging models coming after them.

The comparison of “pure” surrogate models highlights the profound differences
between models for extrapolation, i.e., the regression trees, and models for interpola-
tion, i.e., Kriging models and adaptive splines, and also the differences between the
two interpolating models.

If we focus only on the results obtained by the models in known working condi-
tions, we can draw some conclusions about their relative robustness, i.e., their ability
of tolerating noisy and inaccurate data: Kriging models, combined models and regres-
sion trees tolerate the noise better than splines. Therefore, Kriging models, combined
models and regression tress are more suitable to be used for modeling running systems
on-line while regression splines should be the preferred choice for modeling system off-
line. Of course, this conclusion assumes that an analytical model is available, otherwise
the combined model cannot be implemented.

We continue our evaluation to investigate the behavior of the models with respect
to the other two main requirements that are important in the context of self-adaptive
autonomic controllers: promptness of the models and adaptation abilities.

Promptness of Kriging models

Model-based controllers may inspect models more than a hundred times during a sin-
gle control cycle. For example, they may use models for the analysis of monitored
data and for planning the next system configuration to implement. This requires that
models, in addition to be accurate, provide their predictions in timely fashion. In this
way, controllers may have enough time to perform their activities without being stuck
waiting for predicted values from the models.

Self-adaptive model-based controllers have also the possibility to retrain their mod-
els at runtime by elaborating new monitoring data. In this way, controllers can adapt
their models as the system evolves, improving the accuracy of their predictions. This
requires that models are easy to adapt and fast to train, update or adapt. If mod-
els are fast enough, controllers can always have the most updated representation of
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the system behavior without waiting a long training time that may harm controller’s
responsiveness.

Therefore, we need to prove on one side that Kriging models can make timely
predictions, and on the other side that they can be trained at runtime with no (or
small) impact on the control frequency. In this way, we can answer the third research
question:

RQ-3: Are Kriging models fast enough to fit the self-adaptive control loop?

We adopt the following procedure to evaluate the time for training and querying
Kriging models: We run K-Fold cross validation for various values of K and for each
of the folds we measure the average time for training Kriging model, the average time
for querying the model, and the cross validation error. After we elaborate all the folds
for the same value of K, we compute the average values across them. By varying the
value of K we can create training sets of different sizes and study how this impacts
on training and querying time. We consider also the accuracy measure, i.e., CVE, to
understand if the accuracy of the models improves as we use more data to train them.

To make predictions, Kriging models correlate the points to be predicted with all
the data used during the training. This process has a theoretical complexity of O(n?),
where n is the number of samples used for the training. We are interested in evaluating
how the query time evolves as the number of samples (n) changes, and specifically, if
it can harm controller reactiveness. This is important to study because in practice
autonomic controllers collect new monitoring data and they may drop old monitored
values, thus constantly change the size of their dataset.

The theoretical complexity of the training is dominated by the complexity of a
matrix inversion operation that is O(n®), where n is the size of the training set. Again,
we change the size of the training set to study the evolution of the training time.

We repeat these experiments using two different datasets: In the first experiment
we used the original training dataset of 636 samples that we obtained by preprocessing
the data collected at staging time. In the second experiment we build a bigger dataset
that contains data collected while monitoring the running system; in particular, we do
not perform any preprocessing nor smoothing of these data before using them to train
the Kriging model.

Table summarizes the results for the Sun grid engine case study that we ob-
tained using a single-vCPU virtual machine running Ubuntu 10.10 and Octave 3.2.4 on
a dual-core Mac Book Pro. The first column of the table identifies the dataset used for
the evaluation, the second reports the size of the training set, and the other columns re-
port respectively, the average training time (T time), the average query time per single
query (Q time), and the cross validation error (CVE).

From the results presented in the table we can conclude that the query time of the
Kriging models, in the order of few milliseconds, is compatible with the control period
of controllers used in Cloud computing that is in the order of seconds. According to
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Table 5.5. Promptness of Kriging models for the Sun grid engine case study

Dataset | Sample size Ttme | Q time CVE
(msec) | (msec) | (sec?)

364 61.36 0.09 96.66

Dataset 1 582 82.30 0.22 50.32
655 93.42 0.28 46.69

1553 452.25 2.62 8.68

2485 1507.66 6.45 8.02

Dataset 2 2796 2027.51 7.93 7.87
3044 2577.10 9.41 7.71

3100 2703.49 9.84 7.64

these data, Kriging models are suitable for an on-line usage to support both analysis
and planning of autonomic controllers. Regarding the training time, we can see that
it grows as the size of the training set increases, as expected. For this reason, we
cannot say in general that Kriging models can be always retrained on line. In fact, if
a controller keeps all the monitoring data, eventually the training time of the model
will harm its responsiveness. Conversely, the average accuracy of the model increases
as we use more and more training samples.

In reality, saving all the monitoring data in not needed, nor suggested, for two
reasons: If we keep all the monitoring data in the model we are giving the same
importance to old and new data. In the context of dynamic environments, this may
not be the best approach because it may fail to identify new behaviors, as they are
hidden, or at least smoothed out, by other historical data. Furthermore, not all the
data have the same importance. In fact, a new monitoring sample does not always
add new information to the model, and accumulating data for very similar working
conditions may not give any advantage over a certain limit.

In summary, we can say that Kriging models can be retrained on-line, if we can
assume the presence of an higher level management of the training data that filters
out, or somehow pre-elaborates, the monitoring data.

We must also note that there is not always a strong need to retrain Kriging models
at every control cycle. In fact, unless the system evolves faster than the control period
we can tolerate less frequent updates of the model. Last but not least, we must say
that these experiments consider only the (theoretical) worst case scenarios. In fact, we
train Kriging models from scratch at every run, meaning that we perform the matrix
inversion and the hyper-parameters optimization all the times. If we assume than
the system is evolving slower than the retraining cycle, we can avoid to (re)optimize
the hyper-parameters and the full matrix inversion, thus achieving a complexity of
O(n) [90].



95 5.3 Kriging models for control

Comparison with the other models

We repeat the same evaluation for the other models and we compare their results with
the ones obtained with Kriging models. In this evaluation, we do not consider multiple
linear regression models nor analytical models.

Table [5.6] summarizes the results that we obtained for the two datasets considered.
For reference we report also the measures obtained with Kriging models.

The first column reports the size of the training samples, while the other columns
report the average training time (T time), the average query time per single query (Q
Time), and the cross validation error (CVE) for each of the models. In the table header,
we abbreviate names of the models: M5RT stands for M5 Regression trees and MARS
stands for multivariate adaptive regression splines.

Table 5.6. Comparison of model promptness for the Sun grid engine case study

Kriging MS5RT
Samples | Ttime | Qtime | CVE T time | Q time | CVE
(msec) | (msec) | (sec?) | (msec) | (msec) | (sec?)

364 61.36 0.09 96.66 | 530.48 0.31 72.36
582 82.30 0.22 50.32 | 755.90 0.31 63.95
655 93.42 0.281 | 46.69 | 875.84 0.34 61.95

1553 452.25 2.62 8.68 | 1916.96 0.51 6.90
2485 1507.66 6.45 8.02 | 2358.45 0.56 6.30
2796 2027.51 7.93 7.87 | 2655.19 0.58 5.94
3044 2577.10 9.41 7.71 | 2740.89 0.63 5.96
3100 2703.49 9.84 7.64 | 2697.09 0.98 5.89

MARS Combined
Samples T time Q time | CVE T time | Q time CVE
(msec) (msec) | (sec®) | (msec) | (msec) | (sec?)

364 8098.66 0.47 13.78 | 117.53 0.31 209.83
582 11438.00 0.61 39.90 | 135.82 0.64 49.56
655 12717.91 0.63 19.27 | 145.89 1.08 44.57

1553 6149.44 0.23 10.56 | 506.03 2.66 8.86
2485 7134.90 0.24 15.26 | 1515.96 6.51 8.18
2796 7474.14 0.25 15.23 | 2075.40 8.09 7.90
3044 8322.42 0.37 14.12 | 2638.69 | 10.20 7.73
3100 8821.75 1.69 13.78 | 2789.90 | 19.09 7.63

The table highlights important differences in the promptness of models as the
amount and quality of training samples vary.

If we focus on query time, we see that all the models have the ability to make
predictions within few milliseconds suggesting that all can be used on-line to support
the analysis and planning activities of the controllers.
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We note that regression trees and splines have an almost constant query time while
the one of Kriging and combined models degrades as we use more samples for training.
This can be explained by considering that both trees and splines, once trained, need a
constant time to use their internal elements, i.e., rules in the tree and basis functions in
splines. Spline however are not consistent across datasets, remarking again they sensi-
tivity to the quality of training set. Differently, Kriging models consider all the training
samples and the query time increases with the size of the training set. However, they
are more consistent across datasets.

If we focus on training time, we see that all the models become slower if more
samples are used for training, but the time spent by each model in training activities is
different. In particular, Kriging models, combined models and regression trees remain
in the order of seconds, while splines that reach almost ten seconds.

If we focus on CVE, we notice that all the models but the splines show a monotonic
improvement of the quality as we use more samples for the training. For splines there-
fore it is not always justified the use of more data. As there are no means to predict if
new data will improve the quality of splines, this makes splines difficult to rely upon
in an on-line self-updating setting.

Given these results we can conclude that Kriging models and combined models
can be retrained on-line with negligible impact on controllers reactiveness even if they
belong to the “critical path” of the controller, i.e., if the controller retrains them inside
the control loop. Instead, for the other models we cannot say the same.

Adaptability of Kriging models

We showed that Kriging models are robust with respect to monitoring data and are fast
enough to be used on-line and adapted at runtime. The missing piece to prove that we
can suitably use them as core components of model-based self-adaptive controllers is
to show that Kriging models can adapt to the changing system behavior. In this way,
we can answer the fourth research question:

RQ-4: Can Kriging models adapt to the behavior of running applications
by using the data passively monitored from them?

The need of adaptation in model-based self-adaptive controllers that employ sur-
rogate and black-box models derives from two different roots: on one side, their initial
training set may be not optimal, and on the other side, controlled systems may change
at runtime. Therefore, it is important to understand how Kriging models perform in
both situations and evaluate, on one side, how they improve over time with respect to
an initial training set, and on the other side, how they can track changes in the external
behaviors of the controlled systems.
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Improvement of Kriging models accuracy over time

We adopt the following procedure to evaluate how Kriging models improve over time:
We simulate the behavior of real systems using the traces that we collected during
system runs. And we mimic the knowledge management process that self-adaptive
controllers implement, by periodically retraining the Kriging models with monitored
data. After each retraining we predict the behavior of the system, and we compute
the mean absolute error and root square mean error. At the end of the run, we collect
all these metrics and we study how they evolved over time: If they decrease, we can
say that Kriging models are effectively improving. To have a global picture, along with
the error metrics we monitor how the size of the training set and the corresponding
training time evolve.

We evaluate the adaptability of Kriging models by computing the error metrics
along two different validation sets that for reference we call future validation set and
total validation set. The future validation set contains the data that appear, in time, af-
ter a model retraining, and it is meant to evaluate how Kriging models perform against
non periodic (or repetitive) working conditions. This validation set mimics the behav-
ior of a controller that learns the models as it goes. The total dataset, instead, contains
all the data from the original trace and it is meant to evaluate how Kriging models
perform whenever the same, or similar, working conditions appear. This validation
set gives an intuition about the quality of the model if we considered the additional
monitored data at the beginning; in a sense, it shows how the situation would be if we
collected more data at staging time.

We repeat the same process under different experimental settings. For example, we
change the frequency of model retraining (retrain period), the amount of data that are
retained for each input configuration (retain count), and the aggregation strategy to
preprocess them. We evaluate the results obtained with the following configurations:

* No learning This is the baseline for the comparison and we do not adapt Kriging
models at all.

* Raw (retain count - retrain count) In this configuration we keep only a number
of samples for each input vector that is equal to the retain count parameter, by
replacing old samples with new ones, and we retrain the model at the frequency
specified by the retrain period. For example, we run experiments using the Raw
(2-10) configuration that keeps only the last two samples for each input vector
and retrains the model once every ten cycles. We experiment also with the Raw
(5-10), Raw (2-50) and Raw (5-50) configurations to evaluate the effects of
keeping a different amount of samples and to retrain the models at different
frequencies.

* Aggregated (retain count - retrain count) This strategy is similar to the previ-
ous one. However, we preprocess the monitoring data by computing the average
configuration that the system reached while implementing control actions. We
chose this particular aggregation because we sample data at the beginning of
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monitoring cycles, that is, when incoming requests are received, but the system
may change its configuration during their processing, thus altering their theo-
retical average response time. We used the following configurations during the
experiments: Aggregated (2-10), Aggregated (5-10), Aggregated (2-50)
and Aggregated (5-50).

We also repeat the experiment under different working conditions by changing
the synthetic workloads and the implementation of Cloud actuators used during the
collection of system traces. Figure shows the three datasets that we use for this
evaluation. As before, we deploy the Sun grid engine application in the Reservoir Cloud
infrastructure and we collect traces from the monitoring system. The figure shows
for each data set the evolution of the system configuration along with the synthetic
workload that lead to it. We omit for brevity the signals of the other metrics of interest
(queue length and average response time). The first and the last dataset are the same
that we used in section to evaluate the robustness of models, while the second
dataset is new.

The first dataset applies to the system an heterogeneous workload, and we chose it
to evaluate the ability of the model to adapt to possibly unknown conditions. The sec-
ond dataset applies to the system a periodic workload, and we chose it to evaluate the
ability of the model to improve in time whenever the application is subject to known
working conditions. The third dataset applies to the system a different periodic work-
load, however this time with use slow actuators to change the system configuration;
we chose this dataset to understand the impact of low quality data on the adaptation
ability of the models.

For brevity, we report only a subset of the results. In particular, we omit the runs
with retain count of two samples and with retraining period of fifty monitoring cycles.

We presents first the results about Kriging models adaptability in each dataset, and
then we summarize the conclusions

Figure shows the results for the first dataset. The first two plots report the
evolution of the size of the training set and the corresponding training time, while the
other two show the evolution of the mean absolute error computed over both the total
and future validation sets. We do not report the evolution of the root mean square
error because it follows a similar evolution to the mean absolute error.

We observe that the size of the training set grows similarly both from the raw
and aggregated configurations, while (of course) it remains constant for the no-learn
configuration. Accordingly the training time for the raw and aggregate configurations
increases while it remains stable for the no-learn configuration. The size of the model
increases almost linearly in the first half of the experiment as a consequence of mon-
itoring unknown working conditions. Starting from the middle of the experiment we
notice that this trend changes, as the model experiences known working conditions.
The training time follows a similar curve, and we note small oscillations between the
raw and aggregated configurations that are due to the different values of the training
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Figure 5.17. Data sets for evaluating the improvement of Kriging models over time.
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samples. The important point is that even in the worst case the model can be retrained
in at most two seconds.

By looking at the Total MAE we see that it is constant for the no-learn configuration
while it decreases in the other configurations. We notice that at the very beginning of
the experiment there is a degradation in the quality of the adaptable models with re-
spect to the baseline, after which the errors decrease, and reach a stable value. This
is a transitory effect of quick and intense changes in the system configuration that
passes from one to eighteen executors in a short time and introduces noise in the mon-
itored signals that are absorbed to some extent inside the model. Furthermore, such
big changes tend to temporarily destabilize the normal behavior of the system causing
bigger prediction errors than usual. After this transitory phase ceases, we see an al-
most monotonic decrease of the error. In particular we notice two facts: First, there
is a big drop in the error, and second, the error stabilizes around its final value. The
big drop is a consequence of the working conditions that stress the system over its
limits (see the discussion in Section about the model robustness against workload
W2): First we took the system in extreme conditions where we have no training data,
and consequently the prediction error is considerable. Then, as soon as we receive the
corresponding monitoring data, the model learns the unknown behavior and quickly
improves. The stability period after that confirms that the model learned and remem-
bers the behavior of the system. We remark that the model error cannot be completely
eliminated due the presence of measurement and system noise.

If we look at the MAE computed over the future validation set we can see some
similarity with the previous case: We see the increase in the error at the beginning,
then the drop and the stability. There are also differences. First of all the no-learn
configuration does not have any constant behavior. This is due to the relative nature
of this validation set: At the beginning of the experiment, the error is averaged over
the whole experiment and tends to be more stable, while at the end this is not true
anymore because we can consider less samples for computing the error. Noticeably, we
have a drop in the model error also for the no-learn. Again, this is a consequence of
the relative nature of the error: Before the drop, the model shows a considerable error
due to its non optimal training, while after the experiment passes workload W2, there
are no more unknown (and extreme) working conditions, causing the error drop. For
similar reasons, we see that error increases at the end of the run as the effect of having
few samples to compute the average value of the error. In any case, we see that the
learning configurations improve over the baseline configuration, and models do not
have a noticeable error increase at the end of the run.

Figure shows the results that we obtained using the second dataset.

We see that the model behaves similarly as before also if we use a periodic behav-
ior. In particular, the size of the training set for the adapted models increases over
the experiment, but it remains smaller than the previous dataset. Consequently, the
training time increases up to its maximum value, that for this experiment is around
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one second and half. We explain this growth of the training set by considering two
points: First, the periodicity of the working conditions does not assure that monitored
signals result in precisely the same values at each repetition because the monitoring
system, the workload generators, the platform and the applications are real, not ideal.
Second, we use a retain count equal to five and the strategy that updates the model in
this experiment keeps all the data.

The Total MAE shows that when adapted the model does improve over time. At the
first iteration of the workload we see an increase of the error, that is quickly followed
by a decrease before becoming stable. The increase of the error is again a consequence
of the sudden change of the system configuration, and its decrease is due to the model
adaptation. Once this behavior is learnt, the error stabilizes. In the other iterations,
we can see a similar behavior even if it is reduced in intensity. In the last repetition,
the system experiences some transitory effects that we imputed to the Cloud platform
and that change its behavior. We can see that the model learns the new behavior. As
a consequence, the Total MAE increases, as we try to predict the "old" behavior with a
model trained with the new one.

The Future MAE shows better this situation. We can see from its plot the periodic
behavior of the working conditions, and we can also see the effect of computing the rel-
ative error by looking at the increasing intensity of the steps between iterations of the
no-learn configuration. For the other configurations, we see that the error decreases
sharply at the beginning and then it stabilizes. In particular, if we look at the end of
the experiment, we see that the error increases a bit, and then sharply drops. If we
compare this with the no-learn configuration, that is trained on the “old” behavior, we
can have an intuition on how the system is changing and how the model is adapting
to 1t.

Figure shows the results that we obtained using the third dataset. Slow actu-
ators introduce inaccuracies in the monitoring signals that degrade the performances
of the models, and this impacts also the adaptability of the models that show a more
oscillating behavior than before. However, in general the models that we adapt im-
prove over time also with slow actuators, even if the MAE computed over the Future
validation set show that there are less improvements over the no-learn configuration.
Partially, this can be justified also considering that the duration of the experiment is
shorter (almost half) than the duration of the previous experiments.

In summary, with these results we can conclude that for Kriging models improve
over time while remaining manageable, with respect to training time and size of train-
ing set, for an on-line use. Furthermore, limited to the presented results, we can see
that both the Raw and the Aggregated configurations improve over the No Learn con-
figuration. In particular, the Raw configuration appears to be better than the aggregated
one.
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Figure 5.20. Adaptation of Kriging models: Periodic workload and slow actuators.
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Comparison with the other models

We compare the results obtained with Kriging models against the ones obtained with
regression trees, splines and combined models. We repeat the experiments using the
three datasets presented before, and we use the same configurations for all the models:
no adaptation (No Learn), adapt using monitoring samples (Raw), and average the
system configurations over the monitoring sample (Aggregated config). For brevity,
in the following we show only the configurations that retain at most five samples for
each input tuple and that retrain the model once every ten monitoring cycles. For the
sake of comparison, we report also the results obtained with Kriging models .

We must note that all the models start with the same initial training set, and they
will accumulate the same input data over the experiment. For this reason, we do not
show the evolution of the size of the training set because it is the same as the previous
evaluation.

We present first the results about Kriging models adaptability in each dataset, and
then we summarize the conclusions

Figure shows the results for the first dataset. The first plot reports the evolu-
tion of the training time for the different models, while the other two show the evo-
lution of the mean absolute error computed over both the total and future validation
sets. We do not report the evolution of the root mean square error because it follows a
similar evolution of the mean absolute error.

We observe that regression splines have an oscillating training time that could pre-
vent their effective adaptation on-line. In fact, the training time ranges between fifteen
to one hundred seconds and it has no clear correlation with the amount of data used
to train the model. In any configuration, splines have the biggest training time of all
the considered models. Regression trees come after with a training time that grows
up to almost ten seconds in the largest configuration. Their adaptation on line may be
critical only for applications that demand fast retraining cycles. Finally, we see Com-
bined model and Kriging models that are the fastest. These models have the same
behavior because the combined model does not retrain its analytical model, and the
only retraining effort is due the Kriging model.

By looking at the Total MAE we can make the following observations: Without any
retraining combined models show the smallest error, then come regression trees and
Kriging and finally spline, as we showed in Section If we consider the adapted
configurations of the models, we see that there is a general improvement followed by
a stable situation. This is similar of what we observed with Kriging and show that all
the models can learn the system behavior if enough data (and time) are provided. In
this example, we see that combined models outperform the other models, followed by
regression trees, and finally by Kriging and splines. The differences between the be-
havior of each model appear during the transitory period, i.e., while they are learning:
Kriging and combined models show a smooth and, more or less, constant improvement
as data are added, and the error in both configurations is always below their baseline
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Figure 5.21. Comparing models improvement: Heterogenous workload and fast actuators.
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case. Regression trees and spline show a different behavior that oscillates and some-
times that takes the error above their baseline cases. This can be critical because these
models do not always improve while we add training samples, and a controller cannot
really estimate (with no effort) the quality of the models while the system is running.
In a sense, we cannot say for sure that the model is learning the behavior of the system
by looking just at the error metrics obtained in the past. Furthermore, we have no
direct mean to say whenever the data we have collected are enough and we can safely
stop collecting data, as we can do with Kriging models.

By looking at the Future MAE we can make several observations. With no retrain-
ing, all the models but the regression trees show the characteristic behavior that we
saw with Kriging models, that is, they grow, then drop and finally stabilize. Regres-
sion trees instead show an almost constant error over the experiment. Considering the
relative nature of the Future data set this means that they make a very small error in
predicting the behavior of the system under workloads W1 and W2 while they make big-
ger errors in workload W3. We explain this by considering the ability of regression trees
to extrapolate data: During the first and second workloads, the model is able to cap-
ture the general trend system behavior and the model errors are compensated by the
extreme conditions of the system. During the last workloads, where the working con-
ditions are stable, the prediction errors cannot be compensated anymore; and this is a
consequence of their inability to interpolate the data. If we consider models that adapt
we see again that in general there is an improvement over time with strong oscillatory
behaviors for splines and trees. Also according to this metric, combined models are the
best options, followed by Kriging models, regression trees and eventually splines.

Figure shows the results for the second dataset. As in the previous run, we see
that the training time for regression splines is much higher that the others (circa 150
sec), and it strongly oscillates along the run. For the other models instead, the training
time remains under ten seconds also in the worst case, with few or no oscillations.

Regarding the Total MAE, we see that adapted regression trees have the biggest
error until the fully learn the system behavior (circa at sample number 2500). After
that point, they outperform the other models, that in order are: Kriging and combined
models first, and regression splines then. Moreover, we can see a constant improve-
ment of the model over time. Compared to regression trees, the other models start
with a smaller error at the beginning, but they follow a similar evolution, with a drop
in the error value followed by a relatively stable behavior. It must be noted that in
this example Kriging and combined models behave the same. This means that for the
working conditions experienced by the system the Kriging model was already accurate
enough, avoiding the use of the analytic model at all. The plot about Future MAE
shows a similar behavior.

Figure shows the results for the third dataset. With slow actuators, as we

expected, we see a general degradation of the accuracy measures for all the models.
Kriging and combined models perform comparably good to regression trees, while
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splines generally perform worse than them.

In summary, these experiments confirm our previous intuitions: Regarding the ac-
curacy measures, all the models behave more or less similarly along the run, that is,
they improve as more data are collected and stabilize after a while. However, we see
differences in the timing behavior and the evolution of the error along the experiment.

Multivariate adaptive regression splines do not scale well as more data are col-
lected, while regression trees and combined models can be retrained within few sec-
onds even with the largest training set. In particular, if the data collected are too
“close” to each other in a spatial sense, splines models show the worst timing. We can
see this by comparing the training time for the first and second run. Monitoring data
are more sparse in the first run than in the second, while training time is smaller in the
first run than in the second.

Regarding the evolution of the error, we can see that in the first run the combined
model outperforms the other models. This happens because the analytic part of the
combined model works at its best when monitoring data are missing. After enough
data are collected the other models recover. From the same run, we can see also that
the regression tree has a counter intuitive behavior: Both for the future and for the
total validation set, it starts with a decreasing error, as we expect, but suddenly it
grows to drop again later. This might happen because the new monitoring data led the
model to create additional rules that are not pruned during the model optimization,
leaving the model in an over-fitted configuration. Later as more data are available, the
training procedure can prune these rules and it recovers. The second and third runs
show that for all the models, once they learn the system behavior, they are able to
maintain it also in presence of less accurate data.

Tracking system behavior

We adopt the following procedure to investigate how Kriging models can adapt to
emerging system behaviors: We simulate the behavior of real systems using the traces
that we collected during system runs. For this experiment, however, we change the
system service time while it is running. We mimic the knowledge management process
by periodically retraining the Kriging models. After each retraining, we use the models
to predict the system behavior and we compute the mean absolute error and root
square mean error over the total and future validation sets. At the end of the run, we
collect the error metrics and we study how they evolved over time. To have a global
picture, along with the error metrics we monitor how the size of the training set and
the corresponding training time evolve.

We repeat the experiment under the different configurations that we used in the
previous evaluation step.

We use a single dataset to run the experiment that Figure reports. We ob-
tain this dataset with the Sun grid engine application deployed in the Reservoir Cloud
infrastructure. To simulate the system evolution we changed the service time of the
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submitted jobs by injecting an artificial delay that alters the original average service
time of the jobs.

We use a simple rule based controller to change the system configuration at run-
time. This controller uses a scale-up and a scale-down thresholds on the length of
the queue to change the configuration. From the figure, we can see that this causes
the controller to use more machines after we change the system behavior, as queues
become longer after the system change.

Dataset 4
- System confiéuration
=
=
g
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} } } } } Incoming requeLt count }
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&
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Figure 5.24. Dataset for evaluating Kriging models adaptation to emerging behaviors

For brevity, we report the only a subset of the results. In particular, we omit the
runs with retain count of two samples and with retraining period of fifty monitoring
cycles.

Figure summarizes the results of the experiment. The first two plots report
the evolution of the size of the training set and the corresponding training time, while
the other two show the evolution of the mean absolute error computed over both the
total and future validation sets. We do not report the evolution of the root mean square
error because it follows a similar evolution of the mean absolute error.

Also in this experiment we see that same evolution of the models regarding the size
of the training set and the training time. Again, these two figures of the model remain
under acceptable conditions.

The Total MAE shows at the beginning the usual pattern: It increases for a short
time, then it decreases and finally it stabilizes. When the experiment reaches the point
where we change the system behavior we see again the same pattern.

The Future MAE evolves in a similar way. For the adapted models, it starts with a
value, then it increases as we move close to the change point as effect of the relative
importance of the new behavior against the old one, while we still use the old model.
After we pass the change point, the error drops because the model learns the new
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behavior, but it oscillates. For the no-learn configuration instead, the error oscillates
but remains high.

Compared to the previous experiments, i.e., without system evolution, we can see
mainly a difference on the absolute value of the errors that are bigger now than before.
This happens for mainly two reasons: First, we retrain the models by replacing old
training samples with the new, but this does not remove all the old samples. In a sense,
there is no hard switch to turn off the old model and start the new one. Second, we
compute the error over the whole experiment, and as the model evolves, we predict
both the old and new behaviors with that model: At the beginning we are good in
predicting the first part, i.e., the original behavior, but not the second; at the end, is
the opposite. This is especially visible in the Total MAE. No matter the absolute value
of the errors, we see that it decreases, meaning that the model is improving.

Comparisons with the other models

To complete the evaluation we compare the results obtained with the Kriging models
against the ones of the other models.

We must note that all the models start with the same initial training set, and they
will accumulate the same input data over the experiment. For this reason, we do not
show the evolution of the size of training set because it is the same as the previous
evaluation.

Training times show the same results as before: Kriging models, combined model
and regression trees scale well with the size of training set, while multivariate adaptive
regression splines does not. In this particular run, in the worst case the training time
of regression splines reached two hundred and fifty seconds confirming that they are
unsuitable for on-line learning.

We see that all the models over the future and total validation set have similar
behavior. In particular, regression trees show the smallest errors in the experiment.
Regarding the Total MAE, the combined model perform comparably to regression trees
in the first part of the run, while they follow behind in the second part. Splines show
a similar behavior. This result highlights on one side, the similarities of splines and
Kriging models that show bigger error after a change in the system behavior, and on
the other side, the differences with regression trees that can learn a bit faster than the
others.

Summary of the results

From this part of the evaluation we can draw the following conclusions:
i) Kriging models are robust: They maintain an acceptable accuracy also when we
use them to predict real monitored signals that may be noisy. This is true also if we
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Figure 5.26. Adaptation of other models with emerging system behavior
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use slow actuators with variable actuation times that introduce further inaccuracy
in the data.

ii) Kriging models can leverage sig and seamlessly switch to other models when
predictions are supposed to be not accurate. Combined models are a working
implementation of this method, and we show that they usually outperform the
other models.

iii) Kriging are timely: They can be queried in milliseconds and retrained in less than
a couple of seconds, therefore they can be used and adapted on-line.

iv) Kriging models, when retrained on-line, improve their accuracy if the underlying
system behavior does not change, and adapt to it otherwise. In case of heteroge-
neous workloads, they show a continuous improvement without oscillations.

v) Compared to the other models, Kriging have comparable accuracy, but demand
different effort for making the predictions and during the training. Furthermore,
their adaptation behavior is different from the one of the other models. In par-
ticular, Kriging models scale better than both regression trees and multivariate
adaptive regression splines, while are comparable to the combined model.

In conclusion, Kriging models and combined model that derive form them are suit-
able to be used as core components of self-adaptive controllers. This is especially true
in case the controllers need frequent adaptations, fast reactions and informed decision
about the quality of model predictions.

It must be noted that the validity of these results may be threatened by the fact
that we performed a deep investigation only by considering the Sun grid engine case
study, while we performed only limited investigations with other case studies.

5.4 Evaluation of Kriging-based Self-adaptive Controllers

With the previous validation efforts we show that Kriging models can be employed
as core components of self-adaptive model-based controllers for elastic applications
running in the Cloud. That is, they fulfill the requirements about accuracy, adaptation
and timing for on-line usage.

In this section, we show the performance of controllers based on Kriging models,
and finally address the main research hypothesis of this thesis:

Research Hypothesis: Kriging models can be used as the core element of
efficient and effective autonomic controllers.

We adopt the following procedure to evaluate Kriging based controllers: We deploy
a case study application on the Cloud infrastructure, we run our prototype Kriging
based controllers to control it, and we generate a synthetic workload. The controller
monitors the application KPIs, plans the control actions, and implements them on the
platform. During the experiment we monitor application performances to check for
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SLA violations and we monitor the Cloud infrastructure to measure the amount of
resources allocated to the application.

To evaluate the generality of the controllers we repeat the same experiment under
different settings. In particular we change the controller settings, the Cloud infrastruc-
ture settings, and the synthetic workloads. Finally, to contextualize the performances
of Kriging based controllers, we compare them against other controllers inspired by the
state-of-the-art of Cloud computing. We force pure Kriging based controllers to ignore
their sig values, thus we reduced Kriging models to common black-box models. In
this way, we can implement a fair comparison. On the other hand, we keep the sig
value inside combined models as we have no alternative means to implement model
switching.

To compare controllers we combine three metrics that measure their performances:

VM The average consumption of resources measures how many running virtual ma-
chines are used, in average, during the run of an experiment. VM therefore
accounts for the cost of running system under a given controller. Smaller values
of VM indicates more efficient controllers.

Pwdp The percentage of recorded violations measures how many violations are moni-
tored during the run with respect to all the monitored values. Its value is com-
puted according to the following formula:

n

1
Puwap = —[n = Z(HSLA)] (5.5)

i=1

where Ig; 4 is the Borel set defined by the SLA, i.e., a function that equals to 1
if the value of the output (y;) is within the threshold defined by the SLA (yg;4)
and to O if the SLA is violated. This metric measure the efficacy of controllers in
an absolute sense, and ideally its value should be equal to 0.

e,qp Average intensity of violations measures the average distance of the output signal
(y;) that exceeds the threshold defined by the SLA (yg;4). Its values is computed
according to the following formula:

1 n
ewdp = ~ [ Tsral¥i = Ysiall (5.6)
i=1

where I_g;4 equals to 1 if y; violates the SLA and O otherwise. This metric
measure how (in)effective is a controller, and its ideal value should be equal
to 0.

We borrow p,,4, and e,q, from standard control theory where they are used to
measure how well controllers track reference signals (see for example the work by
Maggio and coauthors [|66]]), and we adapt their formulation to our specific case.
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We combine these three metrics in an aggregate cost metric named Total Cost,
identified as TC, and computed according to the following formula:

TC = CW-V_M+ c-sra* (Pwdp * €wdp) 5.7)

where the first part of the equation accounts for the costs due to the resources usage

by means of the parameter cy7;, and the second part accounts for costs that are due

to SLA violations by means of the parameter c_g;,. In our evaluation, we investigate
how the total cost of run varies as we change cy; and c_g;4. Once we fix these the
costs parameters, TC enables us to compare directly the performances of controllers:

Controllers with smaller values of the metric are better.

In our evaluation, we compare Kriging based controllers against the following so-
lutions:

i) Statically configured systems. These no-op controllers form the baseline for the
comparison. For each experiment, we empirically find two boundary configura-
tions: The smallest configuration that leads to no SLA violations and the largest
configuration that causes at least one violation of the SLA.

ii) Rule-based controllers. These controllers are commonly found in the domain of
Cloud computing. For example, in the experiment with the Sun grid engine,
we configure the rule based controller according to the guidelines provided by
our industrial partners (Sun at that time) in the context of the Reservoir EU
Project [93}; [102].

iii) Alternative model-based controllers. We design our prototype adopting a plug-in
style and we leverage this to implement several controllers just by plugging-in
different models. This will leave the original control logic intact and leads us
directly compare the effects of different modeling options. In the evaluation with
the SGE we run model based controllers with: Analytical models, regression tree
and combined models.

For each controller, when applicable, we evaluate both the reactive and the proac-
tive control strategy, as well as, the different adaptation strategies introduced in the
previous section, i.e., Raw and Aggregated config. We also must notice that during
the experiment we set the retain parameter of all the models equals to 2. In this way,
we do not overwhelm these models that do not scale well in the size of the training
sample. This however comes at the cost of reducing the overall quality of the models.

We run controllers to manage the Sun grid engine application under a variegated
set of working conditions:

Exp1 Slow varying workloads and fast actuators. We stress the application with a
slowly varying workload and we let the platform implement fast changes in the sys-
tem configuration. This run is the closest one to the idealized situation that we can
implement. In this case, the load is not extreme and the inaccuracy introduced by the
actuators is the smallest possible in our testbed.
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Exp2 Fast varying workloads and fast actuators. We stress the application with a
more intense workload that we generated by compressing the previous workload in
half of the time. The application now is stressed with faster variations of the workload.
This configuration may be commonly found in private or hybrid Cloud infrastructures
that runs applications with a changing number of clients and hot replicas of virtual
machines. Lately, similar configurations can be found also in public Clouds. For exam-
ple, Amazon offers Elastic Block StoresE] that maintain virtual machine in a stop state
without releasing their physical resources, thus avoiding the time spent in deploying
the virtual machines.

Exp3 Fast varying workloads and slow actuators. In this experiment, we maintain
the previous workload, but we use slow actuators. This case is more close to public
Clouds, such as Amazon, where virtual machines are cloned, deployed and restarted
from scratch every time. These settings are critical from a controller designers point of
view, because the actuation time may change between different deployments, making
the planning activities even more challenging.

The intent of this process is to show how controllers’ performance degrade from
idealized settings to real ones.

We present results case by case, and we conclude with a summary of all the runs.
For each experiment, we discuss results obtained with Kriging models and we compare
them against the ones obtained with other controllers.

Table reports the results from the first experiment and is organized as follows:
The first four columns identify the controllers according to their configurable param-
eters, i.e., the model used for planning and analysis if any, the style of control that is
either reactive or proactive, the model adaptation if implemented, and the aggrega-
tion of monitoring data about the system configuration if implemented. The next three
columns report the monitored metrics about resources usage and SLA violations. The
last three columns report the aggregate cost metric for different value assignments of
the cost weights: !/, identifies the case where the average cost of violating the SLA is
half of the cost of running a VM, = identifies the case where the values of the two are
equal, while 2 identifies the case where SLA violations cost is double the VM cost.

We see from these results that all the model based controllers but the one based
on the analytic model causes SLA violations when they adopt the reactive style. This
happens because reactive controllers assume perfect actuators that result in immediate
effects on the system, but this assumption is not met even using fast actuators. In this
sense, fast actuators are not fast enough to implement effective reactive control. Model
(in)accuracy makes this situation worse by increasing the values taken by p,,4, and
ewdp- We can see this for example by comparing the performance of controllers based
on combined models against the one that use Kriging and regression trees.

Shttp://aws.amazon.com/ebs/
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Table 5.7. Performances of controllers in the first experiment

Controller Experiment Total Cost
model | style | adapt | aggr | VM | Pwdp | €ydp i, | = | 2
no fixed no no | 5.00 | 0.26 | 14.68 | 6.91 8.82 | 12.63
no fixed no no 6.00 | 0.00 | 0.00 6.00 6.00 6.00
| no | ruless [ no | no [436]0.00] 000 [ 436 | 436 | 4.36 |

analytic reactive no no | 3.25 | 0.00 | 0.00 | 3.25 | 3.25 | 3.25
analytic | proactive no no | 3.60 | 0.00 | 0.00 3.60 3.60 3.60

combined | reactive no no 3.07 | 0.33 | 2.23 3.44 3.81 4.54
combined | reactive yes no | 319|034 | 787 | 4.53 5.87 8.54
combined | reactive yes yes | 3.13 | 0.57 | 14.10 | 7.15 | 11.17 | 19.20
combined | proactive no no | 3.69 | 0.00 | 0.00 3.69 3.69 3.69
combined | proactive yes no | 447 | 0.00 | 0.00 | 447 | 447 | 4.47
combined | proactive yes yes | 3.38 | 0.00 | 0.00 3.38 3.38 3.38

kriging reactive no no | 4.27 | 0.69 | 26.40 | 13.38 | 22.49 | 40.70
kriging reactive yes no | 3.17 | 029 | 7.57 | 4.27 5.37 7.56
kriging reactive yes yes | 3.12 | 0.60 | 54.75 | 19.55 | 35.97 | 68.82
kriging proactive no no 3.67 | 0.00 | 0.00 3.67 3.67 3.67
kriging proactive yes no 3.83 | 0.00 | 0.00 3.83 3.83 3.83
kriging proactive yes yes | 5.05 | 0.00 | 0.00 5.05 5.05 5.05

mb5rt reactive no no 3.18 | 0.15 | 3.30 3.43 3.68 4.17
mb5rt reactive yes no | 3.15 | 0.27 | 10.50 | 4.57 5.98 8.82
mb5rt reactive yes yes | 3.13 | 0.54 | 45.75 | 15.48 | 27.84 | 52.54
mb5rt proactive no no 4.56 | 0.00 | 0.00 4.56 4.56 4.56
mb5rt proactive yes no | 3.49 | 0.00 | 0.00 3.49 3.49 3.49
mbrt proactive yes yes | 3.93 | 0.00 | 0.00 3.93 3.93 3.93

The reactive controller based on the analytic model instead does not cause any vi-
olation because it uses an over conservative model that returns pessimistic predictions
about the system response time. In fact, with a conservative model the controller is
more sensible to variations that may lead to violations of SLA and reacts sooner than
the other controllers, reducing the negative effects of the actuators.

Proactive controllers instead account for this “non-ideality" of the actuators, there-
fore they are able to avoid more violations of SLA. Also the rule base controller avoids
SLA violations.

We notice small differences in the average usage of resources: Almost all the con-
trollers used less than five virtual machines in average, with the majority of them
oscillating between three and four. If we compare this result against statically config-
ured systems we can see that the smallest fixed configuration that for this workload is
able to avoid violation is also the largest one with a size of six virtual machines. This
gives an intuition on the advantages of using dynamically adjusted systems over static
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ones.

If we compare controllers along their adaptation strategies we notice that adapting
the model to the system behavior does not always result in an improvement of the
controllers performance. This could be caused by the fact that we retain only two sam-
ples for configuration and also because these controllers implements generally more
control actions that the one we used to collect the validation traces in the previous
experimental validation. In particular, we notice that Kriging (and combined) models
are sensitive to inaccuracies introduced by averaging the system configurations over
the training period. For reference, we plot in Figure[5.27|the result of some of the runs
that are reported in the table.

Table reports the results from the second experiment.

Table 5.8. Performance of controllers in the second experiment

Controller Experiment Total Cost
model | style | adapt | aggr VM | Pwdp | €ywdp 1, | = | 2
no fixed no no 10.00 | 0.23 | 8.55 | 1098 | 11.97 | 13.93
no fixed no no | 11.00 | 0.00 | 0.00 | 11.00 | 11.00 | 11.00
| no | rules | no | no [ 724 [0.00] 0.00 | 7.24 | 7.24 | 7.24 |

analytic reactive no no 6.71 | 0.02 | 0.05 | 6.71 | 6.71 | 6.71
analytic | proactive no no 7.67 | 0.00 | 0.00 7.67 7.67 7.67

combined | reactive no no 7.02 | 0.28 | 6.25 7.89 8.77 | 10.52
combined | reactive yes no 6.40 | 0.40 | 15.64 | 9.53 | 12.66 | 18.91
combined | reactive yes yes 6.62 | 0.53 | 24.64 | 13.15 | 19.68 | 32.74
combined | proactive no no 8.16 | 0.00 | 0.00 8.16 8.16 8.16
combined | proactive yes no 7.87 | 0.00 | 0.00 7.87 7.87 7.87
combined | proactive yes yes 7.93 | 0.00 | 0.00 7.93 7.93 7.93

kriging reactive no no 6.82 | 0.28 | 6.13 7.68 8.54 | 10.25
kriging reactive yes no 7.27 | 0.51 | 39.19 | 17.26 | 27.26 | 47.24
kriging reactive yes yes 6.84 | 0.59 | 30.19 | 15.75 | 24.65 | 42.46
kriging proactive no no 8.14 | 0.11 | 3.06 8.31 8.48 8.81
kriging proactive yes no 7.53 | 0.00 | 0.00 7.53 7.53 7.53
kriging proactive yes yes 7.68 | 0.00 | 0.00 7.68 7.68 7.68

mb5rt reactive no no 6.52 | 0.39 | 1295 | 9.05 | 11.57 | 16.62
mbrt reactive yes no 6.79 | 0.39 | 11.17 | 8.97 | 11.15 | 15.50
mb5rt reactive yes yes 6.82 | 0.63 | 50.30 | 22.66 | 38.51 | 70.20
mbrt proactive no no 6.80 | 0.26 | 9.20 8.00 9.19 | 11.58
mb5rt proactive yes no 6.76 | 0.24 | 9.28 7.87 | 8.99 | 11.21
mb5rt proactive yes yes 7.63 | 0.03 | 0.10 7.63 7.63 7.64

In this experiment, we stressed the system with a workload that is more challenging
than the one we used before, and we notice lower performances for all the controllers.
As a consequence, their total cost increased. Looking at resource consumption, we see
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that controllers almost double the virtual machines used during the run, but compared
to the minimal system configuration that avoid violations, autonomic controllers result
in stronger resource savings.

Looking at the violations metrics, we see again the general trends that we dis-
covered in the previous run: Reactive controllers perform worse that proactive, and
learning the system behavior from data is not always beneficial to the quality of con-
trollers. We observe that also the reactive controller based on the analytical model fails
to avoid SLA violations, thus its pessimistic attitude is not always able to trigger timely
system reconfigurations anymore.

We also observe that several proactive controllers causes SLA violations: For exam-
ple, all the controllers based on regression trees causes violations, with a difference
between controllers that adapt using aggregated information and the others. And we
notice violations also for the proactive controller based on Kriging model that does not
implement adaptation. The rule based controller instead is able to sustain the work-
load with no violations, as does the proactive controllers based on combined models.
For reference, we plot in Figure the result of a subset of the runs that are reported
in the table.

Table reports the results from the third experiment. This experiment is more
challenging from a controllers’ point of view because we use slow actuators to change
the system configurations, while we maintained the fast varying workload. This en-
ables us to direct compare the results between these last two experiments.

We notice that some controllers use more resources than before, partially reduc-
ing the advantages with respect to statically configured systems. We see again how
proactive controllers outperform their reactive counterparts.

Compared against the previous experiment, we see a general degradation of the
performances for all the controllers except rare cases. In particular, collected data show
that controllers based on regression trees have a small improvement; nevertheless they
show consistent violations of the SLA. Noticeably, also the rule based controller and the
proactive controller based on the combined model fail to completely avoid violations.
In detail, the model based controller performs slightly better than the one based on
rules, but it is also self-adaptable, easier to configure, and scales well to complex sys-
tems. For reference, we plot in Figure the result of a subset of the runs that are
reported in the table.

Summary of the results

From this last evaluation we can draw the following conclusions:

i) Reactive style of control, unless coupled with conservative models, is not so ef-
ficient nor effective. This results from the assumption of a perfect system being
violated in reality, even if case of fast actuators.

ii) Proactive style of control, which does not rely on the perfect system assumption,
shows better performance and effectively avoids SLA violations or reduces their
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Table 5.9. Performance of controllers in the third experiment

Controller Experiment Total Cost
model | style | adapt | aggr VM | Pwdp | €ywdp 1, | = | 2
no fixed no no 10.00 | 0.23 | 8.55 | 1098 | 11.97 | 13.93
no fixed no no 11.00 | 0.00 | 0.00 | 11.00 | 11.00 | 11.00
| no | rules | no | no | 817 [0.09] 1.16 | 8.22 | 827 | 8.38 |

analytic reactive no no 6.76 | 0.26 | 3.52 7.22 | 7.68 | 859
analytic | proactive no no 7.71 | 0.15 | 2.79 7.92 8.13 8.55

combined | reactive no no 8.48 | 0.12 | 2.07 8.60 8.73 8.98
combined | reactive yes no 7.35 | 0.50 | 5.58 8.74 | 10.14 | 12.93
combined | reactive yes yes 8.81 | 0.08 | 0.65 8.84 | 8.86 8.91
combined | proactive no no 8.56 | 0.12 | 2.09 8.69 8.81 9.06
combined | proactive yes no 9.63 | 0.00 | 0.00 9.63 9.63 9.63
combined | proactive yes yes 7.96 | 0.02 | 0.02 7.96 7.96 7.96

kriging reactive no no 7.60 | 0.53 | 22.36 | 13.53 | 19.45 | 31.30
kriging reactive yes no 8.09 | 0.44 | 32.99 | 15.35 | 22.61 | 37.12
kriging reactive yes yes 8.22 | 0.45 | 35.25 | 16.15 | 24.08 | 39.95
kriging proactive no no 8.70 | 0.16 | 4.71 9.08 9.45 | 10.21
kriging proactive yes no 8.84 | 0.12 | 1.03 8.90 8.96 9.09
kriging proactive yes yes 7.99 | 0.08 | 0.45 8.01 8.03 8.06

mb5rt reactive no no 7.20 | 0.76 | 20.95 | 15.16 | 23.12 | 39.04
mbSrt reactive yes no 9.98 | 0.44 | 13.24 | 12.89 | 15.81 | 21.63
mb5rt reactive yes yes | 13.49 | 0.48 | 34.44 | 21.76 | 30.02 | 46.55
mb5rt proactive no no 7.80 | 0.29 | 8.35 9.01 | 10.22 | 12.64
mb5rt proactive yes no 8.45 | 0.20 | 4.45 8.89 9.34 | 10.23
mbSrt proactive yes yes 8.22 | 0.04 | 0.11 8.22 8.22 8.23

occurrence to a minimum.

iii) In the explored configurations, controllers that adapts the models do not always
improve over the configurations with no adaptation. Furthermore, their improve-
ment depends on the type of model, the quantity of retained data, and their qual-
ity.

iv) If we do not resort to sig to evaluate the quality of predictions, Kriging based con-
trollers perform comparably to the other controllers. However, if we do use sig,
like we did inside the combined model, the quality of control increases notably.

In summary, we built self-adaptive model-based controllers that use Kriging mod-

els, and their derivates like the combine model, and we showed how they control a

real application to avoid violations of the SLA under different workloads regimes and

infrastructure settings. In particular, we showed that Kriging and combined models are
suitable core components of self-adaptive controllers. We compared several controllers
across different experiments and we showed the limitation of each design decision



126 5.4 Evaluation of Kriging-based Self-adaptive Controllers

in increasingly realistic (and challenging) experimental settings. Compared to all the
other controllers, we see that self-adaptive, proactive controllers based on combined

models perform better.



Chapter 6

Conclusions

This thesis investigated the use of self-adaptive controllers based on surrogate models
for dynamic resource provisioning. These controllers are suitable to manage on-line
the allocation of resources to systems that have to maintain a specified level of service
in the face of changing working conditions while minimizing their running costs. An
important class of such systems are elastic applications running in Cloud infrastruc-
tures under the IaaS paradigm. In this context, controllers can add or remove virtual
machines to scale the applications in the face of changing workloads to maintain appli-
cations behavior within the constraints specified by means of service level agreements.

Model based self-adaptive controllers are the alternative of commonly adopted ap-
proaches based on rules that may be difficult to set up, do not scale well with the
system complexity, and may not be very effective in the presence of emerging behav-
iors or unexpected working conditions. We adopted black-box models, also known as
surrogate models, as central element of the controllers, because black-box models are
based on data collected from the running systems, do not require an extensive knowl-
edge of system internals, and are more generally applicable than white-box models.

This thesis proposed to exploit Kriging models as core components of self-adaptive
controllers. Kriging models belong to a particular family of surrogate models that were
originally proposed in the domain of geo-statistics and that lately were adopted in the
domains of computer-based simulation and machine learning. We chose Kriging mod-
els because they are as accurate as, easier to configure, and faster to train than other
surrogate models studied so far in the same context. Furthermore, Kriging models
scale well with respect to application complexity, and natively offer a measure of con-
fidence that is associated to any prediction they make, thus enabling a more informed
control strategy when used inside self-adaptive controllers.

We demonstrated the feasibility, efficiency and efficacy of self-adaptive controllers
based on Kriging models in the context of Cloud computing. We implemented, adapted
and ran different elastic applications and we collected a set of monitoring data that we
used to initially train Kriging models. We showed the ability of Kriging models (i) to
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accurately capture the behavior of these elastic systems, i.e., their performance; (ii) to
provide reasonably good predictions also with noise and inaccuracies in the data that
may be introduced by real actuators and monitoring systems; (iii) to generate predic-
tions in a timely manner; (iv) to be retrained within seconds also with big training
sets; (v) to improve over time if the system behavior is stable, and to adapt to it oth-
erwise. We compared Kriging models with alternative surrogate and analytic models,
and we discussed relative advantages and limitations. To overcome them, we designed
a model switching technique to combine Kriging and other models, in particular an-
alytical models, and we obtained a combined model that outperforms all the other
models.

We designed and implemented a generic controller for Cloud computing that lever-
ages the plugin architectural style and can be extended to implement several kinds of
controller ranging from traditional rule-based controllers to self-adaptive model-based
controllers. We implemented plugins inspired by state of the art controllers, and we
compared the effectiveness of the resulting instances by running them to control the
allocation of resources of a case study application under different working conditions.
We showed that proactive controllers based on Kriging models augmented with analyt-
ical models and that implement our model switching technique over perform the other
considered controllers.

6.1 Contributions

The major contribution of this thesis is the identification of Kriging models as suitable
core components for self-adaptive model-based controllers for dynamic resource allo-
cation. Although Kriging models are well known in other domains this is the first time
that they are used as core element of self-adaptive controllers; furthermore, we are the
first to use Kriging models to capture the performances of real (and elastic) systems.
The next major contributions are the model switching technique to combine Kriging
and other models, and the proactive controller based on the accuracy measure (i.e.,
sig) provided by the Kriging models.

This thesis makes several other contributions that we summarize in the following:

Model comparison for Cloud computing To contextualize the performance on Krig-
ing models that are accuracy, robustness, query and training time, we compared
Kriging models with several surrogate models and analytical models. Our analy-
sis of the results of such comparison identified common behaviors across surro-
gate models, and highlighted interesting differences that may help designers in
the choice of the right modeling tool.

Generic controller architecture We designed and implemented a generic controller
that can be used to implement advanced self-adaptive controllers both in the
context of Cloud IaaS and outside of it. Different aspects of the implementation



129 6.1 Contributions

are easily configurable: For example, one can change (i) the adaptation strategy
to retrain models at runtime, (ii) the model that the controller queries during
the analysis of monitoring data and during the planning of control actions, and
(iii) the basic strategy to chose the system target configuration.

Adaptation strategies We designed and implemented three adaptation strategies: No
Learn, Raw, and Aggregated config. We empirically compared them across
different workloads, controllers, and Cloud infrastructures. The results of this
comparison may help designers in choosing the right option while developing
their self-adaptive controllers.

Controllers We implemented several plugins to customize the generic controller archi-
tecture, and we obtained several controller instances. For example, we provided
implementation of models such as Kriging models, combined models, regres-
sion tree models, multi adaptive regression spline models, analytical models,
and multiple linear regression models. We also provided implementation of con-
figurable rule based controllers (limited to the considered case studies), and
controllers that implement statically configured systems.

Comparison of controllers for Cloud IaaS We compared the performance of the dif-
ferent controller instances under different working conditions. The results of this
comparison may be beneficial for designers in choosing the right controller and
in configure it during the design of self-adaptive controllers for the Cloud.

Benchmark applications To empirically validate our work, we modified legacy appli-
cations to became elastic, and we designed new elastic applications from scratch.
These applications are able to automatically configure themselves, and come
packaged in single, standard, virtual machines that can run on many the IaaS
platform without requiring modifications. For example, we ran them on the
Reservoir, Eucalyptus and Amazon Ec2 platforms. When released, these applica-
tions could be used as benchmarks to compare controllers for dynamic resource
management in the Cloud.

Other components We developed a set of additional components, mainly infrastruc-
tural components, to perform our empirical validation. These components are
generic and can be reused. In particular, we extended the Lattice monitoring
framework originally developed by Clayman et al. [18], we provided a Web
based GUI to live-monitor the status of the system, and we extended the open
source Apache JMeter workload generator.
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6.2 Limitations

We make assumptions on system behavior stability, smoothness, continuity and ho-
moscedastici that may limit the applicability of our approach or its validity, and our
results shall be revised when dealing with systems that do not satisfy these properties.
Among them the most critical is the assumption of finite and constant variance that in
the case of performance modeling may not always hold: For example, systems under
heavy loads that have the utilization factor (p) close to or greater than the unity may
not have finite variance for the average response time. Nevertheless, we empirically
showed that common systems running on Clouds most of the time do not invalidate
these assumptions. For example, their evolution has a slow pace, they are approxi-
mated well with continuous dimensions, and in general, have a smooth behavior.

Regarding the adaptability of the model, our approach can deal with all the sys-
tems’ evolutions that do not require changing the input space of the models. For exam-
ple, the approach can automatically capture improvements in the system performance
due to code optimization, and reflect them in the models. However, the approach
cannot automatically deal with structural changes in the system architecture. For ex-
ample, if designers introduce an additional elastic tier, both controllers and Kriging
models must be manually reconfigured to account for the added input feature, i.e, the
amount of VMs allocated to the new tier.

6.3 Open Research
This thesis opens the road for new research in several domain:

Advanced model-based controllers This thesis can be the starting point for design-
ing advanced solutions that employ new surrogate models, combine models in
different ways, and employ time varying parameters in the models. These ad-
vanced controllers find their application in problems like dynamic resources allo-
cation, autonomic design optimization, and more generally self-optimizing and
self-managing system.

Experiment automation and automatic surrogate model training Designer can lever-
age the ability of Kriging models to highlight system configurations that are not
optimally explored, and automatically plan for experiments to run. This is in
line with the traditional research on models and simulations that commonly in-
volve Kriging models for design optimization. Designers can also adopt similar
techniques to plan staging tests with the aim of collecting data to produce good
quality models, that is, experiments to optimally train surrogate models.

'Homoscedasticity is the property of having equal (and finite) statistical variances.
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Model based testing and validation of dynamically varying systems Surrogate mod-
els and self-adaptive systems can be used to test dynamically varying or other
self-adaptive systems. Designers can leverage the powerful modeling capabili-
ties of surrogate models to capture the behavior of the self-adaptive systems and
other dynamically varying systems, like elastic applications, and use the models
to test or validate them.
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Appendix A

Use of sig

In this appendix, we report more details about the use of the confidence measure, i.e.,
sig, in designing robust control policies and for the implementation of the Combined
model.

The importance of sig

sig is the uncertainty measure that the Kriging models pair with each prediction. The
importance of sig relies in the fact that we can correlate it with the prediction error:
If the value of sig is high then we might expect an high prediction error, while if the
value of sig is low we expect a small prediction error.

It must be noted that “high” and “low” may takes very different values depending
on the data set and application considered. If the dataset contains noisy data then the
absolute value of the prediction error, and sig will be bigger than the ones obtained
by not noisy data.

To evaluate the correlation between the prediction error and sig we follow a pro-
cedure similar to K fold cross validation: We split the original dataset in K subsets; we
remove one of such subset, and we build a Kriging model with the remaining data; we
predict the removed subset with the model just trained. We repeat this process for all
the K subsets.

At each iteration, we compute the correlation between the sig and the absolute
prediction error using the Spearman’s coefficients (usually denoted using the greek
letter p). We repeat the same process ten times with K = 20, and we average the
values of all the correlation coefficients.

The sign of the Spearman correlation indicates the direction of association between
the two variables, and it increases in magnitude as they become closer to being perfect
monotone functions of each other. If variables under study are perfectly monotonically
related, the p becomes 1, at the contrary, if its value is -1 the variables have opposite
signs, thus opposite directions.

135



136

We use the dataset of the Sun grid engine case study, and we show the result of the
experiment in Figure The upper plot shows the actual and predicted values for all
the K runs, the plot in the middle shows the corresponding absolute prediction error,
and the plot at the bottom shows the corresponding sig. To ease the explanation we
sort the data according to the absolute values of the predictions.
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Figure A.1. Correlation of sig and absolute error

We obtain an average correlation coefficient of 0.68404 that means a good corre-
lation between sig and the absolute prediction error.
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The use of sig in robust control

We leverage the value of sig to decide whenever a prediction of the Kriging model is
expected to be accurate enough and resort to another model otherwise, for example
the analytic model presented in Chapter[5] To decide on the accuracy of a prediction
we define a threshold on the ration between the sig value paired to the prediction and
the maximum value of sig as given by the Kriging model. In case the resulting value
is above the threshold we discard the prediction, otherwise we keep it.

We design a set of experiment to prove that combining Kriging model even with
the simple analytical model and using sig to switch between them gives more accurate
results than using the Kriging model alone. We run the K fold cross-validation and we
compare the resulting value of the cross validation error (CVE). For the experiment, we
set the threshold value to 0.4 (i.e., 40% of the maximum value of sig for the model).

Figure summarizes the results of the K-fold cross validation as bar plot: Each
color corresponds to a different model and bars are grouped according to the value of
K.
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Figure A.2. Cross validation error comparison of standard Kriging, analytic model,
and the combined model

From the height of the bars we can see that except for very small values of K the
Combined model outperform both analytic model and the standard Kriging model. As
more data are used for the training, the difference between the Combined and the
Kriging models fades out.

The previous experiment showed that an aggregate value of the accuracy has an
improvement by using the combined model. This however does not highlight clearly
the benefits of the combination that appear by considering the locality of the predic-
tion. To stress this point with train several Kriging models by partitioning the original
dataset for the Sun grid engine in the following way: We set the value of K to de-
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fine the size of each validation subset, but differently from the standard K-fold cross
validation that takes random data points to form the validation set, we pick elements
that are geometrically close in the input space, and we create a subset of data for each
system configuration. This procedure enables us to create on purpose “holes” in the
training sets that corresponds to entire system configurations. In the missing regions,
we expect that the Kriging model will perform less good than the combined model
because of the missing data points.

It must be noted that this situation may appear in real life: For example, this is
usual when designers have not enough resources for collecting training data for all the
possible system configurations.

For this experiment, we divided the possible configurations of the Sun grid engine
in the following four subsets that we label with the minimum and maximum number
of executors allocated: {2-5}, {6-10}, {11-15},{16-21}. We always keep the minimal,
i.e., one executor, and the maximal, i.e., twenty-two executors, configurations in the
training set to account for the boundaries of the systems and the interpolating nature
of Kriging models.

Table reports the results of running this experiment using the original dataset
for the Sun grid engine. The first column refers to the validation subset used to collect
the data, in particular it identifies which configurations were removed from the train-
ing data. The second and third columns report the mean absolute error and the root
square mean error for the standard Kriging models, while the next two report the same
figures for the combined model.

Table A.1. Comparison of the prediction ability of the Kriging model and the Com-
bined model

Kriging Combined
Validation set MAE RSME MAE RSME
msec msec msec msec
{2-5} 38960.38 | 46462.30 | 29916.24 | 39639.23
{6-10} 22946.66 | 38263.52 | 14318.20 | 18461.97
{11-15} 2125.05 3125.35 2127.23 2949.60
{16-21} 4239.01 5042.64 | 4166.53 | 4850.23

From the table we can see that almost all the time the combined model has a lower

error compared to the standard Kriging model.




Appendix B

Evaluation

In this appendix, we report additional details about the evaluation process that we
did not include in Chapter [5| In particular, the appendix reports the results that we
obtained with different case studies for the evaluation of Kriging model accuracy and
promptness, and more extensive results on the Sun grid engine.

Kriging models for prediction

Table summarizes the results we obtained using Kriging models to predict the
average response time and throughput of the Doodle Web service and the DoReMap
system. These results were originally presented in [[31]] and [[103].

We collect data for training and validation through batch experiments and we aver-
age the data over the run to simulate the system steady state. In the table, the first col-
umn indicates the case study application, the second column indicates the performance
index that is modeled, either average response time (Avg RT) or average throughput
(Avg TX), the third column reports the size of the training set, while the fourth reports
the size of the validation set, the last two columns show the error metrics.

Table B.1. Prediction ability of Kriging models for different applications and perfor-
mance indexes

Application SLO T Set | V Set MAE RMSE
Doodle Web service | Avg RT 30 18 52 (msec) 91 (msec)
DoReMap Avg TX | 100 20 5.2788 (req/s) | 8.4500 (req/s)
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Kriging models for control

Robustness of the models

This section presents additional details about the robustness for the Combined model,
regression tree and multivariate adaptive regression splines.

Figures and plots the predictions and the prediction error that we
obtained with these models against the first dataset present in Section|5.3
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Figure B.1. Combined model predictions and prediction error on Dataset 1

Figures and show the results obtained with the second dataset.

Promptness of the models

Table reports results about promptness of the Kriging models with the Doodle We
service and the DoReMap system. The tables has the same structure of Table ?? but
we obtained the results using different settings. In particular, we use a single-vCPU
VM running a Debian GNU/Linux 5.0 and Octave 3.0.1 on a dual-core Dell desktop to
obtain the results in Table [B.2l
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Regression tree predictions of Dataset 1
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Figure B.2. Regression tree predictions and prediction error on Dataset 1

Table B.2. Kriging models training time

Case study Sample size | Training time
(msec)
Doodle Web service 6 18
Doodle Web service 12 18
Doodle Web service 18 15
Doodle Web service 30 146
Doodle Web service 48 112
DoReMap 50 24.20
DoReMap 75 48.15
DoReMap 100 87.45
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MARS predictions of Dataset 1
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Combined model predictions of Dataset 2
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Figure B.4. Combined model predictions and prediction error on Dataset 2
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MARS predictions of Dataset 2
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