A Transport Protocol
for Best-Effort Content-Based Networks

Doctoral Dissertation submitted to the
Faculty of Informatics of the Universita della Svizzera Italiana
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by
Amirhossein Malekpour

under the supervision of

Prof. Antonio Carzaniga, Prof. Fernando Pedone

November 2012

Dissertation Committee

Prof. Matthias Hauwswirth Universita della Svizzera Italiana, Switzerland

Prof. Mehdi Jazayeri Universita della Svizzera Italiana, Switzerland
Prof. Benoit Garbinato University of Lausanne, Lausanne, Switzerland
Prof. Bettina Kemme McGill University, Montreal, Canada

Prof. Peter Triantafillou University of Patras, Rio, Greece

Dissertation accepted on November 2012

Prof. Antonio Carzaniga
Research Advisor
Universita della Svizzera Italiana, Switzerland

Prof. Fernando Pedone
Research Advisor
Universita della Svizzera Italiana, Switzerland

The PhD program Director Prof. Antonio Carzaniga
PhD Program Director

I certify that except where due acknowledgement has been given, the work pre-
sented in this thesis is that of the author alone; the work has not been submitted
previously, in whole or in part, to qualify for any other academic award; and the con-
tent of the thesis is the result of work which has been carried out since the official
commencement date of the approved research program.

Amirhossein Malekpour
Lugano, November 2012

iii

To my parents

iv

On any conceivable horizon -
I'll say until about 5 billion
years from now, when the sun
explodes we’re not going to
run out of discoveries.

- Paul Romer

vi

Abstract

Content-based publish/subscribe (or simply content-based) networking is a relatively
new communication paradigm compared to IP networking, with a different approach
to addressing network hosts. In content-based networking addressing as well as in-
formation dissemination center around information and interests. A host’s address is
represented by its interest and information is routed by a network of brokers to hosts
with relevant interests. We advocate the idea that content-based networking should be
implemented and offered as a basic network service and be accessible everywhere and
to all applications.

Best-effort content-based systems which substantiate this idea are high-throughput
low-delay publish/subscribe systems in which messages are treated as datagrams with-
out end-to-end or in-network acknowledgments and flow control. In such systems,
publishers (senders) do not avoid or even detect congestion, and brokers respond to
congestion by simply dropping overflowing messages. These systems are therefore un-
able to provide reliable message delivery and fair resource allocation and to properly
handle traffic anomalies, which may degrade the overall quality of service. Further-
more, extensive usage of concurrent matching and routing algorithms in broker soft-
ware causes frequent message reordering in the brokers and ultimately out-of-order
delivery of messages to clients. These shortcomings of best-effort content-based sys-
tems impede their deployment for many applications and environments. For instance,
the lack of congestion control hinders the deployment of such systems in the open In-
ternet, where congestion-unaware flows are considered a major threat to the stability
of the network.

With this motivation, we propose an end-to-end “transport protocol” that improves
three key properties of best-effort content-based systems namely, message ordering,
reliability, and congestion control. These essential requirements have been previously
addressed at the protocol and broker-level, at the cost of much higher complexity and
lower messaging efficiency. On the contrary, our guiding principle in designing this
transport protocol is to view the underlying best-effort publish/subscribe network as
a black box and only assume that it provides a general publish/subscribe API. This
design principle has multiple advantages. First, the transport protocol works with vir-
tually every best-effort content-based system, for it makes no assumptions about the
underlying network. Second, individual clients can optionally take advantage of this

vii

viii

transport protocol for better quality of service while those with relaxed requirements
can opt out and avoid unnecessary overheads. More importantly, the end-to-end proto-
col has a minimum impact on the favorable performance and inherent simplicity of the
best-effort network since it does not require the involvement of the broker network.

Our methodology in developing this transport protocol, on the one hand, is based
on understanding the body of related research on end-to-end solutions for FIFO order-
ing, reliability and congestion control, and on the other hand, dealing with challenges
in adopting them for our purpose. This requires understanding the key distinguishing
characteristics of traffic in content-based networks, and their practical implications on
the design of the transport protocol. In particular, message loss detection is a canonical
issue which we discuss in detail in the thesis.

Our transport protocol is comprised of three separate components for FIFO order-
ing, reliability, and congestion control, where the FIFO ordering protocol is prerequisite
for the other two. Our FIFO ordering protocol, which is also responsible for loss de-
tection, is probabilistic in that it does not guarantee deterministic FIFO ordering on all
messages but it eliminates a vast majority of out-of-order deliveries. This compromise
in the precision of message ordering is to minimize its overhead on the network. The
reliability and congestion control protocols are inspired by existing proposals for IP
multicast. We will detail the challenges in adopting these protocols for our purpose
and propose methods and enhancements for their application in our target context. In
brief, the reliability component of our protocol is based on a technique, similar to reli-
able multicast, that takes advantage of collaborative caching and retrieval of messages
by the clients through a request/repair process. The proposed congestion-control pro-
tocol is also inspired by an existing rate-control scheme for IP multicast. This protocol
uses an equation-based flow-control algorithm that reacts to congestion in a manner
similar to and compatible with TCP. For the purposes of fairness and efficiency, this
protocol is also content-aware, meaning that it modulates specific content-based traf-
fic flows along a congested path.

We have a complete implementation of the proposed transport protocol. Experi-
mental results with a best-effort content-based system and our transport protocol re-
veal that the protocol improves message ordering and reliable delivery by up to 95%.
Also, congestion control protocol eliminates a large number of messages losses and pro-
vides considerably better resource sharing among concurrent content-based and TCP
flows. Most importantly, our results show that these improvements come with a mini-
mum compromise in the throughput and end-to-end delay of the messaging service. In
summary, the experimental results are encouraging and confirm our fundamental hy-
pothesis that the basic service provided by best-effort content-based networks can be
significantly improved in terms of key quality measures, using an end-to-end transport
protocol.

Acknowledgements

I am thankful to my advisors Antonio Carzaniga and Fernando Pedone for their pa-
tience, friendship and invaluable involvement in the development of my research. With
Fernando and Antonio on board, one never longs for better technical insight, sharper
and more constructive criticism and interesting ideas.

I am grateful to my dissertation committee members, Mehdi Jazayeri, Matthias
Hauwswirth, Peter Triantafillou, and, Bettina Kemme, for their insightful comments.
In particular, I would like to thank Benoit Garbinato for his constructive feedback and
also for the collaboration during the first two years of my studies.

During the past five years I was privileged to enjoy the company of a group of
friends and colleagues in the Distributed Systems lab and the Faculty of Informatics.
Thanks to Vaide Narvaez, Lasaro Camargos, Marcin Wieloch, Nicolas Schiper, Marco
Primi, Daniele Sciascia, Alex Tomic, Eduardo Bezerra, Parisa Jalili, Ricardo Padilha,
Daniele Sciascia, Leandro Pacheco, Cyrus Hall, Jeff Rose, Shima Gerani, Mehdi Mirza-
aghaei, Navid Ahmadi, Hamid Ghods, Parvaz Mahdabi, Mark Carman, Giovanni Tof-
fetti, Mircea Lungu, Aliaksei Tsitovich, Marco Pasch, Edgar Pek, Lile Hattori, Paolo
Bonzini, Giovanni Ciampaglia, Giovanni Ansaloni, Elisa Larghi, Janine Caggiano, Dani-
jela Milicevic and many others for their contributions to my social and academic life.
Mostafa Keikha, thank you for being a great pal, for helping me improve my math
and for the Friday afternoon statistics group reading. Adina Mosincat, my beloved col-
league and friend, you are missed and I will never forget you. Thanks to Mouna Allani
for our fruitful collaboration on Streamline project.

Last but not least, I am grateful to my family for their patience and love, for being
there whenever I needed them. Dad, thank you for asking me, every time we had
a phone conversation, if I was working on a new paper, and mom, thanks for not
asking. Leila, Parisa, Mehran and little Raha, thank you for cheering me up and always
reminding me of what a wonderful family I have.

Contents

[Contents|

List of Figures

[List of Tables|

(1_Introduction|

[1.2 Challenges and Solution Overview|

[1.3 Structure of the DisSertationl v v v v v v v v vt e et

|2 Background and Related Research|

2.1 Language Models|

|2.2 Subscription Representation and Matching|

[2.3 Architecture and EventRouting|

[2.4 Reliable Delivery and Ordering|.

R.4.1

Reliable versus best-effort systems|

R.4.2

Reliabledelivery]

243

Ordered delivery|

[2.5 Scalability and Load Balancing|.,

[2.6 Congestion Control|

2.7 Siena B-DRP| e e

|3 FIFO Ord er1n§|

3.1 Overview of Problem and Solution| o.....

BI.1

FIFO ordering|. o v v vt ittt et et e e e e e e e

[3.2 Probabilistic FIFO Ordering|

B.2.1

Model of end-to-end delay|

B.2.2

Measuring delay differences|

323

End-to-end delay distribution| o L L.

B24

Distribution of delay differences|

B3.2.5

Determining the latch time|.

Xi

xi

Xix

N U1 W

\O

11
11
13
14
15
17
19
19
20

Xii Contents

[3.2.6 Publicationrecord 35

[3.3 LoSSDetection] v v v v it e e e e 37
[3.4 Algorithmic Description] 37
[3.5 Evaluationl e 40
[3.5.1 Network delay model validation| 40
[3.5.2 Effectiveness of the ordering protocol| 42
[3.5.3 Adaptivity of the protocoll 45

3.6 Conclusion| 45
4 Reliability 47
4.1 Context and Preliminaries|.t 48
[4.1.1 Reliable IP multicast{. 48
[4.1.2 Problem and overview of the solution| 49

[4.2 End-to-end Loss Recovery|, 51
[4.2.1 Message loss detection| 51
[4.2.2 Routingrequests| 51
[4.2.3 Sending repairs|. 54
|4.2.4 Adaptive message cache| 54
|4.2.5 Interaction with FIFO ordering protocoll. 57

4.3 DISCUSSION| vttt e e e e e 57
4.4 Evaluationl e 58
|4.4.1 Experimental setup and workload| 59
[4.4.2 Recovery effectiveness| 60
[4.4.3 Performance and network overhead| 63
[4.4.4 Adaptivecachel L 64

4.5 Conclusion| 66
|5 Congestion Control| 67
[5.1 Context and High-Level Design|. 68
[5.1.1 Congestion control for IP multicast|. 68
[5.1.2 TCP friendly multicast congestion control|. 69
5.1.3 Content-awareratecontroll. 70
[5.1.4 High-leveldesign|. 72

[5.2 Content-Aware Congestion Control Protocoll. 73
[5.2.1 Content-based flows|. 73
[5.2.2 Congestion control protocol| o o L. 73
[5.2.3 Dealing with imprecise loss detection| 78

5.3 Evaluation| 80
[5.3.1 Experimentalsetup| 80
[5.3.2 Effectiveness, stability, and responsiveness| 81
[5.3.3 Fairness among concurrent content-based flows|. 83

5.3.4 TCP friendliness| e 84

Xiii Contents

[5.3.5 Large scaledeployment|. 84

[5.3.6 Concurrent operation with the recovery protocol 86

5.4 Conclusion| 88

89
[6.1 Summaryof Work{. 89
6.2 Future Researchl 91

|IA Statistics of the sum of two Laplacian random variables| 95
IA.0.1 Probability Density Functionf. 95

IA.0.2 Cumulative Density Function and Quantile Function| 96

|A.0.3 Parameter Estimation|ttt 97

Bibliography 101

Xiv Contents

Figures

[1.1 Schematic diagram of the transport protocol and its interface with ap- |

plication and the underlying IP and content-based publish/subscribe |

(CBPS) networks| 6

[2.1 Two types of publish/subscribe architecture. (a): Peer-to-peer (b):Broker- |

I 7T P 12
[3.1 Throughput of ActiveMQ and B-DRP in an 8-broker network.| 25
[3.2 FIFO violations of B-DRP in an 8-broker network corresponding to Fig- |

urel3.11. 25
[3.3 Illustration of how a FIFO violation occurs|. 27

[3.4 (a) End-to-end delays for a sender/receiver pair 3 brokers apart. (b) Cu- |

mulative distribution of end-to-end delay samples fitted in a 5-phase |

hypoexponential distribution.|. 31

[3.5 Histogram of the delay difference for a sender and receiver separated |

by 5 brokers. The thick line is the approximation with the sum of two |

Laplacian random variables.|, 31
[3.6 By virtually increasing 0, we avert a FIFO violation| 34
[3.7 Message mg carrying a publication record of size 4f 35

[3.1 Probabilistic ordering FIFO algorithm run by a recipient for each publisher| 38
[3.8 Distribution of end-to-end delay for all of the delivered messages during |

the first 90 seconds of the experiment.| 40
[3.9 End-to-end delays of every two consecutive messages for a chosen pair |
of senderand receiver| 41
[3.10 Delay variation distribution for messages with end-to-end delay of (a) delay(m) <
1500ms and (b) delay(m) > 1500ms respectively. | 42
[3.11 Effectiveness of different FIFO algorithms in an 8-broker setup: the total |
number of incurred FIFO violations with and without ordering|. 43
[3.12 Effectiveness of different FIFO algorithms in an 8-broker setup: the av- |
erage extra delay caused by different ordering algorithms.|. 43
[3.13 Effectiveness of different FIFO algorithms in a 46-broker setup: the total |
number of FIFO violations with and without ordering| 44

XV

XVi

Figures

[3.14 Effectiveness of different FIFO algorithms in a 46-broker setup: the av-

[erage extra delay caused by different ordering algorithms.|. 45
[3.15 From top to bottom: timestamps of out of order receptions; publication |
[rate; probability of a FIFO violation; latch time in enhanced mode with |
| a publication record of size 25; latch time in basic mode.|. 46
[4.1 Message ms is lost before reaching B and C (a); having received mg (b), [
[C publishes a request for mg (d); A replies with a repair (d).| 53

[4.2 Probabilistic ordering FIFO algorithm run by a recipient for each publisher| 56

[4.2 Probability of loss detection for (a) different sizes of publication record

and match probability, (b) different sizes of publication record, match

probability and different number of nodes sharing a loss (2, 3, 5 from

bottom to top in each line category).|,

57

[4.3 (a) Number of receivers for cumulative distribution of messages. (b) Match

[probability for cumulative distribution of subscriber/publisher pairs.| . . 60
4.4 Aggregate publication and notification rates in (a) 12-broker and (b) 46- |
[brokernmetworks] 60
|4.5 Impact of publication-record size on the effectiveness of the recovery |
[protocol in (a) 12-broker and (b) 46-broker networks.| 61
[4.6 (a) Changes in the aggregate rate of false negatives (message loss) with |
[and without the recovery protocol, for (a) 12-broker and (b) 46-broker |
| networks. L e 62
[4.7 Cumulative distribution of the end-to-end delay for original and repair |
| messages and request/repair delay for (a) 12-broker and (b) 46-broker |
[networks] 62
|4.8 (a) Aggregate publication rate, request, and repair messages during the |
[experiment for (a) 12-broker and (b) 46-broker networks.[. 63
[4.9 Delivery delay with and without the recovery protocol in (a) 12-broker |
| and (b) 46-broker networks.| L oL oo oL 64
[4.10 Changes in the cache hit ratio in (a) 12-broker and (b) 46-broker net- |
[WOIKS.] . . . 65
|4.11 Changes in the minimum, mean, and maximum cache size of all nodes |
| in (a) 12-broker and (b) 46-broker networks| 65
[5.1 The output of TCP response function: (a) for values of p € [0.01,0.1] |
[and tprr € 110,20,100,200} milliseconds. (b) for values of tprr € |
| [10,200] milliseconds and p € {0.001,0.01,0.1}.| 70
[5.2 Content-awareratecontroll, 71
[5.3 Content-aware congestion control: C’s involvement in the congestion |
| CONtrol process 1S NOL NeCESSATY| « « « v v v v v v v v v v e e e e e e e e e e e 72
|5.4 Transport header in a publication message.| 74
|5.5 Per-publisher session state maintained by a subscriber| 75

XVii

Figures

53

Congestion monitoring and control run by a subscriber for each pub-

lisher from which there is an incoming message flow|

5.6

A publisher’s congestion control state|.

5.4

Processing feedback message M received from subscribers|

5.7

Loss event rate (left) and TCP response function (right) computed for

the ideal receiver (top), publication record of size 5 (middle) and pub-

lication record of size 2 (bottom).|

5.8

Experiment topology|

5.9

The effect of variable input load (a) without and (b) with congestion

control in place. Top: traffic rate (Kbps) on the bottleneck link. Bottom:

aggregate publication, reception, and false negative rate (messages per

second) during the experiment.|

[5.10 Effects of variable bottleneck link capacity (a) without and (b) with con-

gestion control. Top: traffic rate (Kbps) on the bottleneck link. Bottom:

aggregate publication, reception, and false negative rate (messages per

second) during the experiment. |.

[5.11 The solid lines show reception rates (mps) for 3 pairs of publishers and

subscribers sharing the bottleneck link (a) without and (b) with con-

gestion control in effect. The dotted lines show the fair share of each

[5.12 TCP and content-based reception rate (Kbps) for a TCP flow and a pub-

lish/subscribe flow sharing a bottleneck link (a) without and (b) with

congestion control in place. The horizontal dotted lines show the ideal

| fair share.o e

[5.13 Broker topology for large scale experiment|

[5.14 Publication, reception, and false negative rate (mps) in a large scale

network (a) without and (b) with congestion control in place.|

[5.15 (a) the number of received feedback messages (mps) for one of the

publishers. (b) changes in the number of entries in the publisher’s state

|5.17 Network dynamics (a) without and (b) with transport protocol in place.

Top and middle: traffic rate (Kbps) on the two bottleneck links. Bottom:

aggregate publication, reception, and false negative rate (messages per

second) during the experiment.|

[5.18 Changes in (a) total number of request/repair messages (mps), (b) num-

ber of received feedback messages for one of the publishers.|

XViii Figures

Tables

4.1 Parameters used in the calculation of the cache size.

XiX

XX

Tables

Chapter 1

Introduction

In publish/subscribe communication the addressing of messages is implicit and con-
trolled by receivers. Receivers express their interests through subscriptions that state
conditions on the content of messages, while senders simply publish messages without
any set address. Each message is then delivered to all receivers whose interests match
the content of the message. This messaging paradigm aims to eliminate some of the
inefficiencies of IP networks that became evident with the exponential growth of avail-
able information and the number of connected devices on the Internet. For one, in IP
networks a host’s address pertains to its location while in publish/subscribe networks
a client’s addresses is tied to its interests and hence mobile with the client itself. For
another, in IP networks access to desired content is usually facilitated through multiple
tiers of centralized or distributed services that work atop IB such as the domain name
system (DNS), directory services and web services. Publish/subscribe communication
eliminates or reduces the need to many of these services, for the addressing and rout-
ing protocols in these networks evolve around content and interests instead of devices
and physical locations.

Publish/subscribe communication is already used in several types of applications
and seems generally useful to virtually all data-driven applications. Examples of such
uses include system monitoring and management (e.g., management of a large data
center), information dissemination (e.g., news), resource discovery and sharing (e.g.,
service discovery in a “cloud” computing infrastructure, proactive search in on-line auc-
tions), stream processing (e.g., analysis of financial data), and distributed simulations
(e.g., multi-player gaming) [[BRS02; [EFGKO3].

The successful deployment of this communication paradigm has motivated the de-
velopment of such standards as Java Messaging Service (JMS)E] and Advanced Message
Queuing Protocol (AMQP)EL followed by enterprise-level implementations like Apache
ActiveMQ and IBM MQ Series. Publish/subscribe networking has also been the subject

thttp://java.sun.com/products/jms
Zhttp://www.amqp.org

of substantial research in academia to devise and implement robust and efficient pub-
lish/subscribe systems [BCM™99;[CRW01; [CDKR02; PB02; FJLMO5; BMVV05]; RPS06].

For the purposes of scalability and fault tolerance, a publish/subscribe system is
usually implemented as a distributed service, and falls into either of the two major ar-
chitectural categories: peer-to-peer and broker-based systems. In the broker-based net-
work design, which is the focus of this thesis, a network of brokers functions as a rout-
ing substrate which efficiently routes messages to their intended receivers. Content-
based publish/subscribe networks (or simply content-based networks) are a type of
publish/subscribe system with rich addressing schemes that allow clients to express
fine-grained details about the information they are willing to receive.

Content-based networks like any other communication system face an array of chal-
lenges such as scalability, security and privacy, authenticity, message ordering, reliabil-
ity, fair resource sharing, and efficiency in terms of throughput and communication
delay. Unfortunately, these are conflicting goals, in the sense that an improvement for
one of them typically implies a loss for another. Therefore, system designers often tar-
get and optimize a subset of these factors based on the application requirements. In the
set of requirements for a content-based network, three crucial elements are message
ordering, reliability, and fair resource usage. The importance of these three measures
is that they are among the basic properties of any communication system and directly
affect its quality of service.

In this dissertation, by message ordering we mean FIFO ordering which is a basic
ordering guarantee in communication and distributed systems. According to FIFO
ordering, for any given sender, messages must be delivered in the same order they
were sent. Many applications rely on FIFO ordering to ensure the consistency of actions
between a sender and a receiver or among different receivers. FIFO ordering is also
a building block for more involved ordering semantics such as causal ordering. By
reliability, we mean reliable delivery, that is ensuring that messages are received by
their intended recipients. Naturally, the reliability of a communication system is crucial
to the effective functionality and often to the ultimate correctness of an application
that relies on it. Furthermore, since a communication system is often a shared resource
among multiple clients, it is imperative to ensure that all clients have access to their fair
share of the network resources. In other words, it is often desirable to prevent a single
client from exhausting network resources, causing other clients to suffer from inability
to communicate. An important observation is that these requirements are in many
ways intertwined, meaning that satisfying or improving one is often a prerequisite for
another. As a result, these problems are often addressed in unison, in the form of a set
of protocols with complementary functionalities.

Based on the aforementioned quality measures, we can classify the current broker-
based architectures into two categories. In the first category, FIFO ordering and reliable
message delivery are built in the protocol and implemented by the broker network.
While these properties are favorable advantages from the client’s perspective, provid-

3 1.1 Motivation and Rationale

ing such guarantees complicates protocol and broker design and is costly at run-time.
In particular, providing such guarantees usually requires compromising throughput,
scalability, and message delivery delay. Obviously, mission-critical applications with
stringent message ordering and delivery requirements opt for this class of systems
while applications that need to scale to a very large set of loosely coupled clients or
require rapid message delivery opt for an alternative design.

On the contrary, in the so called best-effort design, protocols do not provide such
guarantees but instead aim for maximum throughput and minimum end-to-end de-
livery delay. So, typically, these systems do not log messages to a persistent storage,
nor do they implement any mechanism to guarantee message ordering or fair resource
usage. Acknowledgment messages are not used and no explicit congestion control
mechanism is in place. The advantage of these systems is that they allow for more
streamlined message processing, with simpler protocols and with broker designs closer
to those of network routers. This design allows for various types of performance op-
timizations, hardware-assisted implementations, and extension through modular de-
sign. Moreover, these protocols thanks to a simple core specification have better
prospects for widespread adoption on the Internet. One of the primary reasons for
this is that service providers are reluctant to adopt protocols which impose potential
high costs, are difficult to analyze, and interoperate and require complex configura-
tions. Still, despite their better performance and simplicity, the unreliable nature of
best-effort systems seems to limit their deployment significantly, especially in critical
application domains.

1.1 Motivation and Rationale

This dissertation centers around the idea that content-based publish/subscribe (or sim-
ply content-based networking) should be seen as a basic networking protocol with
efficient and scalable message routing as its primary functionality, much like in con-
ventional IP networking. Such a design opts for a layered and modular protocol stack
resembling that of TCP/IB in which the client side network stack or middleware builds
optional enhancements atop the underlying unreliable communication primitives. In
essence, we look at the best-effort publish/subscribe protocol as an underlying high-
throughput but unreliable network service, and build a transport protocol that targets
end-to-end FIFO ordering, reliable delivery and congestion control. By an end-to-end
solution we mean considering the broker network as a black box and having clients
involved in providing these services without making any particular assumption about
the internals of routing and forwarding infrastructure.

This modular approach will allow a wider range of applications to take advantage
of a best-effort service with optional additional costs in return for a better service.
For instance, maintaining FIFO ordering within brokers can be memory intensive and
would delay all messages without distinction. By contrast, when ordering is handled

4 1.1 Motivation and Rationale

by end-points, it is up to the client to decide the right balance between strictness of
the ordering and cost in terms of additional delivery delay. Moreover, this design is
applicable to virtually every publish/subscribe system, regardless of their architectures,
routing protocols, and broker technologies.

The principles of end-to-end protocol design for data networks can be traced back
to the first years of ARPANET [Bar64; MW88]] where end-to-end protocols were devised
to eliminate out-of-order reception of messages. Later, Saltzer et al. [SRC84] in their
seminal work titled “End-to-end arguments in system design” maintain “end-to-end
argument” as an essential design principle in communication systems:

“In a system that includes communications, one usually draws a modular
boundary around the communication subsystem and defines a firm interface
between it and the rest of the system. When doing so, it becomes apparent that
there is a list of functions each of which might be implemented in any of sev-
eral ways: by the communication subsystem, by its client, as a joint venture,
or perhaps redundantly, each doing its own version. In reasoning about this
choice, the requirements of the application provide the basis for the following
class of arguments: The function in question can completely and correctly be
implemented only with the knowledge and help of the application standing at
the endpoints of the communication system. Therefore, providing that ques-
tioned function as a feature of the communication system itself is not possible,
and moreover, produces a performance penalty for all clients of the commu-
nication system. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)
We call this line of reasoning against low-level function implementation the
end-to-end argument.”

A natural question follows this statement: is the end-to-end argument applicable to
content-based networks? The answer to this question requires answering the following
canonical question: is it possible to implement message ordering and reliable delivery
completely and correctly with an end-to-end approach? In IP networking, TCP is a
very successful adoption of the end-to-end argument that is, reliable message delivery
and message ordering are completely and correctly provided by end-to-end protocols.
At a first glance one might think that a transport protocol for content-based networks
can implement the same solutions that exist in TCP Unfortunately, there are some in-
herent properties of data flows in content-based networks that obstruct adoption of
TCP mechanisms for content-based networks. In particular, precise end-to-end loss de-
tection which is necessary for reliable message delivery, FIFO ordering and congestion
detection requires a set of changes that cause significant overhead to the network and
fall into contrast with the design principles of the publish/subscribe communication.
Thus, we find a middle ground between precision and practicality of loss detection
and propose a loss detection mechanism that is prone to errors but has practical values

5 1.2 Challenges and Solution Overview

to our transport protocol. As a result, the reliability and ordering components of our
transport protocol are probabilistic in the sense that FIFO violations or message losses
are not completely eliminated, but their probability of occurrence is reduced. In other
words, the end-to-end transport protocol eliminates the vast majority of FIFO violations
and recovers many of the lost messages, effectively enhancing service quality that is
experienced by the application. Similarly, our congestion control protocol may exhibit
suboptimal resource sharing due to its reliance on loss detection, but we will show
that it is able to largely reduce the negative effects of congestion and improve fairness.
Therefore, we emphasize that the primary purpose of this research is not to replace
reliable publish/subscribe networks but to propose, implement, and evaluate a set
of end-to-end protocols that improve the quality of service of best-effort content-based
networks with minimum sacrifice in their favorable properties. Moreover, we hope that
the contributions of this work will pave the way in designing “complete and correct”
end-to-end protocols for CBPS networks in the future.

1.2 Challenges and Solution Overview

The three components of our end-to-end transport protocol are FIFO ordering, relia-
bility and congestion control. These problems have been extensively studied and ad-
dressed in the domain of distributed systems and data networks. Throughout the thesis
we will study the applicability of the existing relevant solutions to our problem. This
requires understanding the distinguishing characteristics of traffic in a content-based
network and its practical implications for the components of our end-to-end protocol.

In unicast or multicast IP networks, traffic originating from a given source is chan-
neled in a flow whose recipients are interested in all of its constituting packets (e.g, a
media stream or a file). On the contrary, in a content-based network, each published
message is usually an independently meaningful object which based on a subscriber’s
subscription might be of interest to it (selective reception). This property is the root
of two key distinguishing factors between IP networks and content-based networks.
First, as a consequence of selective reception, source-based sequence numbers are in-
applicable to detect message loss on the receiver side. This is a major challenge in the
adoption of mechanisms used in TCP or any of the existing reliability schemes for IP
multicast. Second, publish/subscribe networks although categorized as one-to-many
communication systems, do not incorporate the notion of group membership nor do
they have the means for explicit addressing of a set of nodes. This is in contrast to
IP multicast, in which group membership is a well defined concept where all group
members are addressed using the multicast address dedicated to the group.

In this work, we introduce mechanisms to tackle these two problems. We propose
a probabilistic loss detection algorithm that takes advantage of an efficient encoding
scheme and augments messages with information that enables receivers to detect mes-
sage losses with a configurable precision. We also elaborate on how the underlying

6 1.2 Challenges and Solution Overview

Application

Publish)
Subscribe ¢ Conﬁg¢ TNotify

Unsubscribe

Transport Protocol

loss -— ! congestion
recovery — control

i 4)

FIFO ordering/loss detection

Publish
Subscribe ¢ Notify Send¢ T Receive

Unsubscribe

CBPS Network IP Network

Figure 1.1. Schematic diagram of the transport protocol and its interface with appli-
cation and the underlying IP and content-based publish/subscribe (CBPS) networks

publish/subscribe network can be used to route control messages to a set of sub-
scribers. These solutions enable us to tailor the existing protocols for reliability and
congestion control for IP multicast to content-based networks.

Figure illustrates how the transport protocol sits between the application and
the publish/subscribe network. The transport protocol communicates with other end-
points through the publish/subscribe network as well as the IP network to exchange
control messages. Publish/subscribe API calls (subscribe, unsubscribe, publish) by the
application are intercepted by the transport protocol and relayed to the network after
necessary processing and adding required transport headers. The publish/subscribe
API is extended to provide means for adjustment of the protocol parameters.

Notifications are first received by the transport protocol, processed, possibly buffered
by the FIFO ordering component for ordered delivery, and finally delivered to the ap-
plication after removing their transport header. The FIFO ordering component is also
responsible for the probabilistic loss detection that is essential to the functionality of re-
liability and congestion control protocols. Reliability and congestion control protocols
can be independently disabled or enabled. When both of these protocols are in use,
the reliability component consults congestion control before sending out any control
message to ensure that congestion control policies are not violated by the generated
outgoing traffic.

The FIFO ordering component of our transport protocol is a probabilistic mecha-
nism that attempts to reduce the number of out-of-order deliveries that are visible to

7 1.3 Structure of the Dissertation

the application, at the cost of a minimum additional delay. In other words, having re-
ceived a set of messages whose delivery to the application might cause potential FIFO
violations, the protocol treats messages in a way that the probability of the potential
FIFO violations after the delivery of the involved messages is reduced to a configurable
value. More specifically, this is the probability of a single FIFO violation and can be
chosen by the client as a configuration parameter. This parameter also affects the extra
cost (in terms of delivery delay) of using the ordering protocol. This scheme builds
a model for the distribution of end-to-end delay as a random variable, which is then
used to determine a latch time for each message. This probabilistic design implies that
the protocol is not able to guarantee the FIFO delivery of messages but instead, aims
at reducing the probability of each instance of a FIFO violation. The end result is that
the total number of FIFO violations that the application incurs is significantly reduced,
subject to a minimum extra cost in message delivery delay.

The reliability component of our transport protocol is an adoption of Scalable Re-
liable Multicast[FJL."97] which is a generic reliability scheme for applications running
on IP multicast. Loss recovery is performed through a request/repair process dur-
ing which nodes recover lost messages from other receivers. Our protocol includes a
novel approach to routing request messages to their intended receivers through the
publish/subscribe network.

The third component of the transport protocol is a content-aware congestion con-
trol protocol that is designed to prevent persistent congestion and to improve fairness
when scarce network resources are shared among concurrent flows. This protocol is
inspired by TCP friendly multicast congestion control [WHOI]] and is TCP friendly in
the sense that its long term throughput is not more than that of TCP under the same
network dynamics.

1.3 Structure of the Dissertation

Chapter [2| reviews the core properties of the publish/subscribe technology and high-
lights the points of distinction between different systems: namely language and archi-
tectural models. We then discuss the related research with a particular focus on the
problems that we intend to study in this thesis. The next three chapters discuss the
main components of the transport protocol. In Chapter [3|we discuss the FIFO ordering
component of our transport protocol. In Chapter |4 and Chapter |5| we detail reliabil-
ity and congestion control components respectively. Finally, Chapter [6] concludes the
thesis and outlines future research directions.

1.3 Structure of the Dissertation

Chapter 2

Background and Related Research

In this section, we review the relevant literature and discuss the state of the art in
publish/subscribe systems with an emphasis on the topics that relate to the contri-
butions of this thesis. We first review language and architectural models, describing
how different systems define syntax and semantics of publications and subscriptions.
There is a large body of work on subscription representation, processing, and summa-
rization. Here we briefly mention the main topics and notable publications on these
areas. We will review the existing prominent architectures, highlight major challenges
in designing such systems, and discuss proposed solutions. We then turn our atten-
tion to the three specific aspects that relate to the thesis, namely message ordering,
reliable message delivery, and congestion control. Finally, we review Siena B-DRE an
implementation of the Siena publish/subscribe system which we use as the underlying
network for all the experimental analyses presented in this thesis.

2.1 Language Models

The language model of a publish/subscribe system specifies how subscriptions and pub-
lications are expressed. It also defines rules according to which messages match sub-
scriptions. Generally, there are two main categories of language models: topic-based
and content-based. In the topic-based model [[CDKR0Z; [OB06; [CMTV07al; [CMTVO07b;
BBQ"07; JZRT09] subscriptions and publications are associated with a topic (tag).
Topics usually have a hierarchical structure like topic.sub-topic.sub-sub-topic in which
parts of the topic are delimited by a “.” and each part covers a number of subtopics. An
example of a topic is sports.football.uk.liverpool. In subscriptions, usage of wildcards
are usually allowed, for instance sports.football. * where “*” matches any word. Match-
ing in this model is easily performed by a character-by-character comparison between
the subscription and the publications.

On the other hand, the content-based language model [SA97; BCM™99; [GKP99};
CDNFO1} [FJLT01; [CRWO1} [PB02; FMMBO02; FGKZ03} [GSAA04; [TAO4; [FJLMOS5]; [CSO5),

9

10 2.1 Language Models

RPS06; IDGH™06; BFG07; JHMVO09; [AT11]] provides a rich set of operators that fa-
cilitates advanced and fine grained filtering and selection of messages. The set of
operators and language syntax differs from a system to another, though in essence all
of them provide similar facilities. In this thesis we will use the expressive and gen-
eral model proposed by Carzaniga et al. [CRWOI]]. In this language model, events or
messages are assigned a tuple of attributes, each attribute composed of a name and a
value. These attributes are typed with one of the three main types: numeric, boolean,
and string. For instance, (symbol="AMD”, price=100, market=“NYSE”) exemplifies a
message with three attributes.

A constraint defines a filtering rule on the type, name, and value of a single at-
tribute. For example, (price < 120) mandates existence of an attribute in the message,
named “price” with a value less that 120 (type of the attribute is implied). A conjunc-
tion of constraints is called a filter which allows for defining conjunctive filtering rules
on multiple attributes. For instance, (symbol=“IBM” A price < 120) is a filter with two
constraints. Finally, a predicate (commonly called subscription) is a disjunction of mul-
tiple filters which represents the complete form of a subscriber’s interests. An example
of a predicate is ((symbol= “IBM” A market=“NYSE” A price < 120) V (symbol="AMD”
A market="“NYSE” A price < 100)). In addition to equality, some systems provide string
matching operators including substring, string prefix and suffix [CRWOT}; [TE04;AT07].

While most common content-based publish/subscribe systems offer operators of
numerical, boolean, and string type, there are proposals for richer operators to support
specific applications. For instance, to facilitate dissemination of geographical informa-
tion (e.g., position of a user or an object) with the aid of a publish/subscribe network
Konstantinidis et al. [KCW11l] propose enhancements for supporting 2D spatial ob-
jects. Some systems define the notion of a composite event which reflects occurrence
of a given pattern in a set of events [[Cou02; [LJO5; JE10Q]. Accordingly, there are com-
posite subscriptions to detect correlations among events or to find a given pattern in
them. For instance, ((symbol="AMD” A price=$X) & (symbol="AMD” A price < $X))
yields a match only if the two subsequent events indicate a decrease in the value of the
attribute “price” (the operator “&” specifies two consecutive events). Similarly, para-
metric subscriptions [JJEIQ] allow a subscriber to parametrize its subscription (e.g.,
(symbol="AMD” A price=$X), where $X is the parameter) and update the correspond-
ing parameter during runtime, instead of unsubscribing and subscribing anew for the
new value.

A third approach to publish/subscribe takes advantage of extended markup lan-
guage (XML) to describe events in XML format along with XPat or XQue to de-
scribe subscriptions. [[SCGOTal; [CF04; DRF04]]. The major drawback of these systems
is the processing overhead of the XML files which is an obstacle to system’s scalability.

Finally, in this subsection we explain two notions of subscription covering and sub-

thttp:/ /www.w3.org/TR/xquery/
Zhttp://www.w3.org/TR/xpath/

11 2.2 Subscription Representation and Matching

scription overlap that will be frequently referred to, in this thesis. Considering two
subscriptions S; and S, and the set of all messages that match these two subscriptions,
M, and M, respectively, we say S; covers S, if M, € M;. Also, S; and S, are said to be
overlapping subscriptions if M; N M, # 0.

2.2 Subscription Representation and Matching

The publish/subscribe communication paradigm is intended to facilitate development
of high throughput, large-scale applications. Obviously, efficient event matching is
crucial to this goal. Since the appearance of the first publish/subscribe systems, much
research has been done to devise processor- and memory-efficient matching algorithms
that take advantage of commodity hardware and multicore technology [[ASS™99; PFLS00;;
CCC*01}; [FJLT01} [CW03; [FFTJ09; [CTCHWO09; RCFT09]]. Deployment of specialized
hardware has also drawn attention recently. Margara and Cugola [MCI1]] propose us-
ing Graphical Processing Units (GPU) while Sadoghi et al. [[SLS™10;[SSJ11]] use FPGAs
for high speed event matching.

Beside the large body of research on matching static subscriptions (subscriptions
whose format does not change), there are also works on matching dynamic subscrip-
tions like composite subscriptions ([LJO5]) and stateful subscriptions ([DGHT06])
which require stateful matching. This means that in addition to the subscriptions, bro-
kers also need to maintain soft state about previously matched messages and account
for this state for matching the next incoming messages.

Subscription matching is an interconnected problem with subscription representa-
tion where the goal is to represent and aggregate subscriptions in a compressed manner
with minimum sacrifice in accuracy. This helps preserve memory at each individual
broker, reduces network bandwidth usage and leads to better matching throughput
[TE04; [LHJO5) [CTCHWO9; BFGO7: UETT].

2.3 Architecture and Event Routing

Typically, a publish/subscribe system is a network of processes that take on the role
of publisher, subscriber, or event router (or a subset of these). The interaction among
these components is usually intertwined with the event routing mechanism. Broadly
speaking, publish/subscribe systems fall into one of the two architectural types: peer-
to-peer systems and broker based systems (See Figure [2.).

In broker-based systems, a network of brokers routes subscriptions and messages

among publishers and subscribers. Examples of such systems are Siena [[CRWOT]],
JEDI [[CDNFO1]], Hermes [[PBO2]], PADRES [[FJLMO5] and various implementations of

12 2.3 Architecture and Event Routing

J j I pp all Broker BRADD |

Figure 2.1. Two types of publish/subscribe architecture. (a): Peer-to-peer (b):Broker-
based

JMS such as Apache Active M(ﬂ and IBM WebSphere MQE| Cluster-based architec-
ture is a variation of the broker-based model proposed in where brokers are
grouped into clusters in order to achieve better scalability.

In peer-to-peer publish/subscribe systems subscriptions and publications are routed
by peers without reliance on any broker network [AT06; [CWO06);
IAT11]]. Data Distribution Service (DDS)E| is a prominent architecture of peer-
to-peer publish/subscribe system, defined as a formal specification developed by the
Object Management Groupﬁ There is a variety of proprietary implementations of the
standard such as PrismTech’s OpenSplice and RTI DDS. These systems are usually tar-
geted at specific applications such as real-time processes and military purposes.

Predicate and event routing algorithms are directly influenced by architectural de-
sign and the underlying assumptions about the network topology e.g., if the broker
network is an acyclic graph or a general mesh. Most routing algorithms for pub-
lish/subscribe systems account for covering relations among predicates and filters. in
order to reduce the amount of state that has to be propagated throughput the network
and maintained in the brokers’ routing table.

For broker-based systems a variety of routing protocols has been proposed, many
of which adopt a variation of reverse path forwarding [CRWOT; FMMBOZ2;;
[CWO03}; LMJOS]. In these systems, publishers issue advertisement messages that are
propagated throughout the network, effectively creating a tree, rooted at the pub-
lisher’s home broker [CHJO5; LMJOS]]. Filters are then routed towards bro-
kers with matching advertisements on the formed trees. This process enables the in-
termediate brokers to populate their routing tables to route messages. There are also
broker-based systems that incorporate routing schemes similar to those used in IP net-
works where a variant of a link-state or distance vector [GLAM97]] routing
protocol is used. Siena B-DRP is an example of such systems that works

3http://activemq.apache.org
“http://www-01.ibm.com/software/integration/wmq
Shttp://portals.omg.org/dds

Shttp://www.omg.org

13 2.4 Reliable Delivery and Ordering

atop any conventional distance vector or link state routing protocol.

In a separate class of broker-based systems, certain topics or contents are associated
with rendezvous points in the network, typically using a predefined hash function.
Subscriptions and events are routed to the rendezvous point, ensuring that they will
intersect at some intermediate broker or eventually at the rendezvous point from which
they will be propagated along a tree rooted at that rendezvous point. Optimizations
are applied to avoid unnecessary routing of events towards the rendezvous point where
routing decisions can be made locally. Most of the systems in this class rely on a DHT to
map topics or contents to certain brokers in the network [PB02; BMVVO05; JHMVO09].

Peer-to-peer publish/subscribe systems rely on conventional query and message
routing algorithms previously proposed for structured and unstructured peer-to-peer
networks, including distributed hash tables (DHT) and epidemic algorithms. In partic-
ular, DHTs have been shown to effectively facilitate event routing in large scale peer-
to-peer networks, while providing favorable reconfigurability in response to failures.
For instance, Scribe [[CDKRO2]], PastryString [AT06] and Marshmallow [GLZT1]] are
based on Pastry [[RDO1]]; SPICE [[CQLO08]] works atop Tapestry [[ZHS™04]; FEL [CW06]]
and the work by [TBF'03]] are based on Chord [SMLN"03]]; and Meghdoot J[GSAA04]
relies on CAN [RFHT01]]. There are also DHT-independent publish/subscribe systems
that view the underlying DHT as a black box with a common lookup API [[TAaJO3}
TA04; BMVVO5}; [ATOS5); [BFDGO7; [ATT1]].

Among the publish/subscribe systems that are built upon unstructured networks,
[ICFO05; [CPO5L; VRKS06}; [CMTVO07b; BBQT07] are notable works that rely on epidemic
algorithms like CYCLONE [VGSO05] that facilitate dynamic self management for the
overlay. One of the primary challenges in this category of systems is the optimal con-
struction of the overlay in a way that peers with similar interest shape clusters in or-
der to reduce event propagation delay and network resource usage [BBQV04; [OR10;
GCV™10; [CIV10; [CVI1T} [ORT1].

Finally, few proposals leverage generic multicast protocols like IP multicast for
event dissemination. Event space is partitioned into smaller partitions and each par-
tition is assigned to a distinct multicast group. Here again, the primary concern is to
reduce the number of partitions (and hence the number of multicast groups). Unfor-
tunately, the lack of wide availability of multicast protocols obstructs the deployment
of such protocols on the Internet [OAA™00; [CSO5; EGN0S; Hol11]].

2.4 Reliable Delivery and Ordering

Message oriented middleware and in particular, content-based publish/subscribe sys-
tems, have a wide range of applications in enterprise environments. Mission criti-
cal applications usually have stringent requirements in terms of delivery guarantees
and ordered delivery, so to support such applications, system architects opt for pub-
lish/subscribe systems that provide such guarantees. As we will discuss in this section,

14 2.4 Reliable Delivery and Ordering

most publish/subscribe systems address these two issues within the same technical
framework, with logging on persistent storage and hop-by-hop acknowledgement mes-
sages inside the broker network.

Of the numerous types of ordering guarantees that have been defined in the con-
text of fault tolerant systems [HT93]; DSUO4], some can be directly applied to pub-
lish/subscribe communication. In this thesis, we consider the most basic form of or-
dering, that is known as FIFO ordering. This means that if two messages m; and m,
sent by the same sender are delivered to a receiver, then they must be delivered in the
same order they were sent. Violation of this property can cause wrong or inconsistent
decisions by different receivers. Hereafter, we refer to FIFO message ordering simply
as message ordering. Also, various forms of reliability have been studied, along with
various methods to achieve them [BSB™02; [BZA03; [PB02; FJLMO5} [KJ09]. However,
in this chapter we refer primarily to a form of reliable delivery also known as message
persistence in such standards as the Java Messaging Service specification. According to
this delivery mode, the service must guarantee not to lose messages due to failures of
message brokers.

2.4.1 Reliable versus best-effort systems

Reliable publish/subscribe systems strive to ensure that any subscriber will receive all
of the published messages that match its subscriptions and the receiver will not receive
messages “out-of-order” (i.e., according to some ordering semantics) [BSB™02; BZA03;
PB02; [FJLMO5; [KJO9]. Guaranteed delivery and service availability are provided by
broker replication, deployment of redundant links and logging of messages on durable
storage. Moreover, reception of messages by the intermediate brokers and the final
recipients are acknowledged at each hop. These solutions are known as store and
forward systems. Persistent storage and ordered delivery are clearly favorable (and for
some applications essential) service qualities. Nevertheless, providing these guarantees
come at the cost of lower messaging throughput and higher delivery delay.

On the other hand, systems in the “best-effort” class [JZR™09; [CRWO1; [CDNFOT};
SCGO01a] do not offer guaranteed delivery but instead try to maximize throughput
and reduce end-to-end delay through a simple design that satisfies a minimal set of
tasks. Messages in these systems are similar to IP datagrams, receiving a best-effort
treatment. So, typically these systems do not log messages to persistent storage, nor do
they guarantee ordered delivery of any kind. Also, unlike most systems in the previous
category, the best-effort systems do not use any sort of acknowledgment messages or
flow control. This simplicity in protocol allows for a simple broker design that makes
optimum usage of multicore processors through concurrent matching and forwarding
algorithms. In fact, brokers in such systems have functionalities and tasks similar
to those of routers in IP networks, with a primary task of routing and forwarding
messages. This category of systems in their basic form are suitable for interactive
and realtime applications or applications that require scalability and are tolerant to

15 2.4 Reliable Delivery and Ordering

occasional message losses or FIFO violations.

As we mentioned before, the purpose of this thesis is to combine the best of both
worlds i.e., to bring better reliability, message ordering and congestion awareness to
best-effort systems with an end-to-end solution that requires a minimum sacrifice in
terms of messaging throughput and delivery delay. With this objective, we will next
review reliable publish/subscribe systems and detail various approaches to offer guar-
anteed and ordered message delivery in this context.

2.4.2 Reliable delivery

Kazemzadeh and Jacobsen [[KJ11]] tackle the problem of partitioning in a network of
brokers, which can happen as a result of broker failures. The underlying assumption
in this work is that brokers are structured in a tree rather than a mesh. To facilitate
tolerance against network partitioning, brokers maintain local knowledge about their
immediate neighboring brokers as well as brokers located within a given distance (in
terms of broker hop). This allows a broker to bypass network partitions and directly
connect to working brokers in its downstream. As a result, the broker network is able
to rapidly reconstruct itself from a set of disconnected partitions. The protocol also in-
corporates a mechanism to ensure that publications are forwarded to a given subscriber
only when all of the intermediate brokers are aware of the complete subscription set of
that subscriber. This is a method to disallow gaps in the stream of messages delivered
to a subscriber.

Yuanyuan [ZSB04] et al. address the same issue by placing two or more brokers
in small broker groups. Broker groups are connected through multiple propagation
trees which provide redundant routing paths to counter link failure and facilitate load
balancing. However, utilization of multiple propagation trees creates the possibility of
incomplete or inconsistent subscription information as well as gaps in delivered mes-
sages (e.g., in case of using different trees to route messages to a given subscriber). To
address this challenge, this approach relies on virtual time (VT) vectors to convey tem-
poral consistency in propagating incremental subscription information along different
trees. Brokers maintain VT vectors for their subscription information and messages
carry a VT vector that indicates their publication timestamp. Brokers decide if they
have the necessary information to route the message, by comparing their VT vector
with that of a message. If the test indicates insufficient or out-of-date information,
the brokers conservatively flood the message to all neighbors on a routing tree (hence
eliminate the possibility of causing a gap by falsely filtering a message). Although
the proposed method does not require subscription state agreement across redundant
paths it requires separate protocols to maintain the broker network in groups and mul-
tiple overlays.

Ostrowski and Birman[|[OB06]] divide the publish/subscribe network to scopes where
reliability is provided within each scope using a mechanism that may vary from one
scope to another. The authors briefly mention the possibility of combining reliable

16 2.4 Reliable Delivery and Ordering

multicast protocols like Scalable Reliable Multicast (SRM) [FJLT97]] and Reliable Mul-
ticast Transport Protocol (RMTP) [LS96]] with an unreliable publish/subscribe protocol
to provide reliability within one scope. The idea is that scopes are arranged in a tree,
forming a hierarchy of scopes. Within each scope there is a second tree of receivers
where delivery of each message is acknowledged to the root of the tree and lost mes-
sages are recovered from the root. If a lost message can not be recovered by the local
root it is forwarded to the upper node the in scope tree, and the recovery process
continues in a recursive fashion (similar to RMTP). However, the proposed general ap-
proach is limited to topic-based publish/subscribe systems. Even so, this work lacks a
precise and concrete plan on how it can be implemented.

Bhola et al. [BSB*02] propose a mechanism in which publishers and subscribers
together with brokers form a knowledge graph. Soft state information labeled as knowl-
edge and curiosity flow downstream and upstream among the nodes of the tree. Using
these state messages, nodes decide about the delivery order of the events and ensure
one-time guaranteed delivery even in the presence of failure. While this method can
guarantee FIFO and total order delivery, it introduces complexities in the implemen-
tation of the broker and does not integrate with any broker technology in a seamless
manner.

Yoon et al. [YMJI1]] study algorithms for instantaneous restructuring of broker
overlay in response to failures or in order to optimize overlay in terms of delivery de-
lay, based on the current subscription or publication pattern. The authors first define
a set of requirements for a publish/subscribe network, in terms of ordered and guar-
anteed delivery and then propose algorithms for overlay reconfiguration that respect
the defined properties. To this end, a set of primitives and operations are worked out
(for instance to remove or add an inter-broker link) using which the broker topology
can be restructured. The limitation of this work comes from the assumption that the
broker network is a tree, instead of a general overlay.

Costa et al. [CMPCO3]] propose using epidemic and peer-to-peer techniques to pro-
vide reliability in publish/subscribe networks. This work includes two separate pro-
tocols both relying on gossip-based message dissemination. The first protocol called
active push with positive digest, is a push-based gossip protocol in which a receiving
node[] periodically gossips a digest of its recently received messages which match one
of its subscriptions s. The choice of s is based on a configurable strategy (e.g., ran-
domly chosen from the set of local subscriptions). The gossip message is labelled with
s and then routed towards other nodes with similar interest. Each receiving node that
has s as one of its local subscriptions compares the digest with the list of its received
messages. If the comparison indicates a lost message a request is sent to the source of
the message to recover the lost event.

The second protocol proposed by Costa et al. is named reactive pull based with neg-

"This work does not explicitly distinguish between a broker or an ordinary client, hence we call it a
node here.

17 2.4 Reliable Delivery and Ordering

ative digest, requires publishers to tag each message with the unique identifier of the
subscription that matches the message, assuming that the all publishers have global
knowledge about all subscriptions in the network. The message also bears a sequence
number that is associated with the subscription that matched the message. This re-
quires the publisher to maintain a separate sequence number for each distinct predi-
cate in the network. Subscribers, upon reception of a message, compare its sequence
number with their expected sequence number, which enables them to detect a mes-
sage loss. A lost message is then recovered either from the publisher or from another
subscriber using gossiping. The first protocol provides reliability in probabilistic terms
in the sense that loss detection (and hence message recovery) is not guaranteed. The
second protocol is prone to poor scalability due to the fact that publishers need to
maintain a separate sequence number for all predicates in the network.

Esposito et al. [ECG09; ERB™12]] try to provide both reliability and timely message
delivery in best-effort topic-based systems targeted for Internet scale deployment. The
proposed protocol is comprised of two phases. First, a dissemination phase in which
the publisher transmits the original data messages along with redundant messages
which are a linear combination of the original messages (through network coding), in
order to provide redundancy. The second phase is recovery, when a subscriber detects
a messages loss (using timeouts) and starts a gossip-based recovery process to recover
the lost event. This approach is in fact similar to that of Ricochet [BBPPO7]] which
targets reliability and timeliness for overlay multicast. Unfortunately, the protocols
proposed in the two previous works suffer from inherent limitations of gossip based
communication, specially substantial resource usage and propagation delay in larger
networks.

2.4.3 Ordered delivery

Aguilera and Storm [JASO0] propose a bias algorithm to deterministically provide uni-
form total order of messages. In this scheme, some of the nodes act as merger nodes,
each one responsible for a subset of subscribers. All of the events go through the
merger nodes to be ordered in a globally uniform manner and then they are forwarded
to subscribers. This algorithm functions based on the assumption that publishers have
access to synchronized clocks and they have a known publish rate. Although this algo-
rithm has the interesting ability to determine an upper bound on the delivery delay, it
may cause substantial delivery delays and confine scalability. Furthermore, there needs
to be a smart assignment of subscribers to merger nodes in order to share the balance
among them and prevent overloading of some mergers.

The method described by Lumezanu et al. [LSB06]] provides causally ordered mes-
sage delivery to the members of any two overlapping subscription groups. A sub-
scription group is a set of subscribers with equal subscriptions and it is possible for
subscription groups to have common members. This work is based on the observation
that when events are routed to overlapping subscription groups via different routing

18 2.4 Reliable Delivery and Ordering

paths it is possible for subscribers to receive events in an inconsistent order. To address
this problem the authors utilize a set of sequencing atoms, that is a set of receivers in the
network, that sequence messages by assigning globally consistent sequence numbers.
The challenge is to place sequencers at the intersection of different routing paths so
that messages en route to overlapping groups undergo the same sequencing operation.
This work is based on the assumption that links guarantee FIFO message ordering.

Platina [Plal1]] argues that when sequencers are used to assign sequence numbers
to all events published to a given topic, it is possible for a set of subscribers whose sub-
scription include multiple topics, to receive events in a non-uniform order. This is due
to the fact that sequence numbers assigned to events of two different topics have no
ordering relation. The author then describes an algorithm to provide Total Notification
Order (TNO) in which for any two events e; and e i all subscribers that receive both of
them must receive them in the same order. Thus, TNO is semantically similar to Weak
Total Order where the ordering agreement is limited to a given view of the network
[DSUO04]. This work assumes that channels provide FIFO message ordering and topics
have a predefined total order. To achieve TNO, Platina uses a set of topic managers
where the manager of a given topic has a knowledge about all subscriptions (as well
as their respective subscribers) that include that topic. Before publishing a message to
a given topic T, publishers obtain a sequence number from the topic manager My as-
signed to that topic. To issue a sequence number, the topic manager sends a request to
the topic manager responsible for the immediately preceding topic T’ in the ordering
sequence, provided that T and T’ are both included in more than one subscription.
This process continues recursively, while each topic manager adds the sequence num-
ber of the latest message published to that topic to a vector attached to the message.
The result is sent back to the publisher in the form of a vector of sequence numbers
which enables the receiving subscribers to deliver events of different topics according
to a uniform order.

Zhange et al. [ZMJ11]] study and propose methods to implement total order in pub-
lish/subscribe systems. They introduce three levels of total order in publish/subscribe
networks: First, per publisher total order in which for any two messages m and m’ pub-
lished by a given publisher all subscribers that deliver m and m’ must agree on their
delivery order. Second, local total order where for any two messages, m and m’ if they
have the same set of receivers then those receivers must agree on the delivery order
of m and m’. Finally, pairwise total order is defined for any two messages irrespective
of their publisher or their set of receivers. Total ordering is optional i.e., it is enabled
at the request of a publisher or subscribers. The process involves a conflict detection
phase where by checking the content of a message published by a publisher and ad-
vertisements of other publishers in the network, a broker determines if there is the
possibility of an ordering conflict. In the second phase, the resolution phase, brokers
that route the conflicting messages to the subscribers defer their delivery until there
is indication that all brokers agree upon the delivery order of messages. This protocol

19 2.5 Scalability and Load Balancing

is designed to work with routing protocols based on advertisement and reverse path
routing [[CRWOT]] and assumes an acyclic broker topology.

2.5 Scalability and Load Balancing

Like any other communication paradigm, scalability is one of the main factors by which
the usability of a publish/subscribe system is measured. Two main components of scal-
ability in these systems are the ability to serve a large number of clients (or subscrip-
tions) and the capacity to handle high publication rates. In large networks with many
clients and/or high aggregate input load, parts of the broker network may not be able
to handle the high rate of incoming messages.

Cheung et al. [YCJO6] propose a method to handle the excessive load when there
are a large number of clients associated with a broker. Load balancing is achieved
by moving the responsibility of some of the subscribers to the brokers with underuti-
lized capacity. In [LMJOS8]] the authors propose a routing scheme that routes messages
through different paths in order to distribute forwarding and routing load among mul-
tiple brokers and bypass overloaded links and brokers.

Jafarpour et al. [JMVQ9] propose a load balancing scheme for their cluster-based
architecture. Brokers are statically grouped into clusters in such a way that clients
whose subscriptions are highly probable to match popular events (and hence require
more matching and forwarding effort) are distributed equally among clusters. More-
over, during the operation, the overloaded brokers can offload some of their tasks to
other brokers in the same cluster. The downside of this technique is the administrative
overhead associated with clustering the brokers; not to mention that there needs to be
prior information or assumptions about the popular events.

2.6 Congestion Control

Congestion control and fair resource allocation have been one of the primary chal-
lenges in any data communication system including publish/subscribe networks. The
work by Pietzuch and Bhola [[PB03] is the only published work we know of that ex-
plicitly addresses congestion control for publish/subscribe networks with a focus on
reliable broker-based systems. The authors propose two orthogonal protocols: first a
protocol to address congestion caused by high rate publishers and a second protocol
to control the rate at which brokers recover from failure by requesting lost messages
from the publishing end (pubend).

This first mechanism tries to keep the publish rate to the rate that the slowest link
in the broker network can handle. This scheme requires involvement of the broker
network in the congestion control process where there are upstream and downstream
congestion control messages along the route between the publisher’s home broker and

20 2.7 Siena B-DRP

the subscribers’ home brokers. The rate at the publisher’s home broker is adjusted to
the lowest rate which is requested by the broker that suffers from congestion the most.
Subscriber hosting brokers (SHBs) frequently check if they receive messages at the
same rate at which the pubend sends messages; if there is an indication of congestion,
through feedback messages the pubend is requested to slow down. These feedback
messages are propagated upstream toward the publisher hosting broker (PHB) while
the intermediate brokers aggregate feedback messages coming from different down-
stream brokers. The PHB in response to feedback messages deploys a combination of
additive and multiplicative increase with a multiplicative decrease to adjust its sending
rate.

The second protocol allows for smooth recovery of brokers that lost messages due
to failures. The recovery phase involves requesting lost messages from the pubend
while retransmission of the lost messages has to be rate-controlled to prevent conges-
tion during the recovery phase. Rate limiting is facilitated through a NACK window
which indicates which part of the message stream has to be requested. The size of this
window is adjusted in a similar fashion to TCP Vegas [BOP94], according to the level
of congestion in the network.

The main drawback of this protocol is its requirement to modify the broker soft-
ware. Moreover, the protocol is not capable of providing fairness among concurrent
flows between separate endpoints sharing the same PHB and SHB.

2.7 Siena B-DRP

Siena B-DRP [[CTCHWOY] is a recent implementation of the Siena publish/subscribe
system which we have used for all the evaluations in this thesis. Siena B-DRP is a best-
effort protocol and broker software which implements a high-throughput, low latency
content-based network. It does not order nor store messages at intermediate brokers,
and does not use acknowledgments to confirm delivery. As such, this system provides
an appropriate platform upon which we develop and test our transport protocol.

At its heart, D-DRP uses a probabilistic encoding that transforms filters and mes-
sages into Bloom filters, and that admits to a matching algorithm consisting of a simple
bit-wise operation between the two Bloom filters. The matching of a message against
a predicate in this encoding scheme is defined by covering relation as follows: if the
Bloom filter of a message covers the Bloom filter of at least one filter in the predicate,
then the message matches that predicate. The covering relation between two Bloom
filters of size M is denoted by B; € B, (B, covers B;) and is defined as below:

B, CBy = (Viel.M :B[i]=1=By[i]=1)

This encoding scheme and the covering relation is extensively used in the design
of our transport protocol. Throughout the thesis, we will detail some other properties

21 2.7 Siena B-DRP

of this encoding method and how it is used in the transport protocol.

In Siena B-DRE brokers advertise (broadcast) the set of Bloom filters that represent
the interests of the subscribers that they serve. As a result, all brokers have a global
information about all subscriptions and their associated home broker. Publisher home
brokers encode messages to Bloom filters and using a simple matching algorithm find
the set of brokers with an advertised Bloom filter that match the message. The iden-
tifier of such brokers is added to the message header and the message is then routed
towards the destination brokers using a generic destination routing protocol. If an
intermediate broker is a split point in the dissemination tree, then the message is du-
plicated for each separate downstream subtree and the header that represents the set
of destination brokers is adjusted accordingly to only contain the set of brokers in that
specific subtree.

22

2.7 Siena B-DRP

Chapter 3

FIFO Ordering

Message ordering is a fundamental element of many transport-level services in tradi-
tional networking and fault-tolerant distributed systems. Of the numerous types of
ordering guarantees that have been defined and extensively studied [HT93}; DSU04],
some can be directly applied to content-based communication. One such guarantee is
first-in-first-out (FIFO) ordering which requires that messages sent by a given sender
be delivered in the same order they were sent. The importance of FIFO ordering in
messaging systems stems from the fact that individual messages can be independently
meaningful, and reception of different messages by different subscribers in non-FIFO
orders can result in faulty or inconsistent actions. For example, consider a tempera-
ture monitoring system whose responsibility is to react to any temperature increase,
where temperature is measured and reported by a single sensor. If two consecutive
messages that indicate a temperature rise (e.g., the second published message reports
a value higher than what was reported by the first message) are received out-of-order,
the monitoring system will fail to detect the correct pattern.

Beside its important impact on application logic and semantics, FIFO ordering is a
primitive upon which more complex ordering and reliability semantics are defined and
implemented [[DSU04]. For instance, as we discussed in Section there are pro-
posals to implement causal and total ordering in reliable publish/subscribe systems,
with the assumption that communication channels provide FIFO message ordering. Fi-
nally, in the context of a transport protocol, FIFO ordering is interrelated with message
loss detection which is itself a prerequisite for loss recovery and congestion detection.

Intuitively, FIFO violations are caused by short-term variations of the end-to-end
delay of messages, which may occur in the presence of different delivery paths or if the
forwarding process is parallelized and therefore does not itself maintain FIFO ordering.
The out of order reception of messages due to parallelism and queuing complexities has
been acknowledged and studied by the networking community. In particular, Bennet
et al. suggest that IP packet reordering is not a pathological behavior but rather an
inevitable outcome of highly parallelized processing [Bol93} [Pax97; BPS99]|. Best-

23

24

effort content-based networks are also prone to the same issue due to their heavy
usage of multithreading for the matching and forwarding process.

FIFO ordering is typically implemented using sequence numbers set on the sender
side to reflect the sending order, and checked on the receiver side to enforce the same
order for delivery [[HT93]]. When the network delivers a message with a higher-than-
expected sequence number, the receiver must decide whether to wait for the missing
message or to proceed by delivering the message it has received. In practice, protocols
like TCP assume a bound on end-to-end delay and trigger a timeout on a missing mes-
sage after a given threshold. This is called the timed asynchronous distributed system
model and is showed to have practical values for implementing a variety of distributed
systems [CMA97;;[CF99]]. Unfortunately, in the context of content-based networks, this
simple mechanism is inapplicable. More precisely, because of the implicit addressing
induced by the content-based model, the receiver does not know whether the hole in
the sequence is due to a message that was delayed along the delivery path, or to a
message that does not match the receiver’s interests.

In this chapter we present a probabilistic method to achieve FIFO ordering in
content-based communication. We illustrate this method using Siena B-DRP that we
introduced in Section B-DRP’s design is intended to achieve high delivery rates
thanks to an efficient routing scheme as well as highly parallelized matching and pro-
cessing within brokers. Thus, B-DRP is arguably an ideal testbed to experiment with
message ordering. Yet, the method we present is generic, as it applies to end-points
(publishers and subscribers) and treats the whole network as a black box.

At a high-level, our approach is to measure the delay variations and then compen-
sate for their effect. Consider two messages m; and m, published within 6 seconds by
the same sender. If the delay variation on the path to a receiver is comparable to &,
then m, may be delivered before m,, thereby leading to a FIFO violation. Upon receiv-
ing m,, the receiver must decide whether to deliver m,, thereby assuming that m; will
never arrive perhaps because it did not match the receivers’ interest, or to hold m, and
wait for m;. Our approach is to give the receiver some effective means to inform this
decision. In particular, if the receiver knew 6 and the distribution of delay variations,
then it could determine an optimal holding time for m, so as to reduce the probability
of incurring a FIFO violation.

To understand and measure delay variations, we study the dynamics of B-DRP
and show that the end-to-end delay of messages along a specific path follows a hy-
poexponential distribution. We also develop a way to measure the parameters of this
distribution dynamically, and therefore a method to calculate the probability of a FIFO
violation upon the observation of a hole in the sequence numbers. We also use the
same model and technique to estimate the necessary latch time (i.e., deferring the de-
livery of messages to the application) to reduce the probability of a FIFO violation. We
then enhance the receiver’s decision algorithm with a method to estimate the relevance
of missing messages, to prevent the unnecessary holding of a message when none of

25 3.1 Overview of Problem and Solution

g 35000 ‘ ‘ ‘ 35000 ‘ ‘
8 30000} "'+ Publications ————————— ~\- ————————— E 30000} "'+ Publications ————————— j
) e : j : e : i
& 25000+ Notlfncatloné RN SN IR] 25000+ Not|f|cat|on§ RN ORI
3 — — False Negatives |: : : — — False Negatives |:
A, 20000f =) Bereeens PTRERE 20000 |- = e fre
S 15000f B S B B A 15000 -+ B N RR SEERIER SISPIRRR
b0 : i : : A : . :
© 10000} 20000 -3 emeeeeeefieenniti
w
< 5000 5000 R & :
= 1. ; ‘ N i

0 L saa) I I] 0 L i) I L

0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time (seconds) Time (seconds)
(a) ActiveMQ: Throughput (b) B-DRP: Throughput

Figure 3.1. Throughput of ActiveMQ and B-DRP in an 8-broker network.

1400
1200} -------- e P P N NN R

1000f Y

messages per second
©
5
T

0 50 100 150 200 250 300
Time (seconds)

B-DRP: FIFO Violations

Figure 3.2. FIFO violations of B-DRP in an 8-broker network corresponding to Fig-

ure

the missing messages matches any local interest. Our extensive experiments with net-
works of up to 46 brokers and 2500 clients reveal that our model reflects the dynamics
of the network in various working conditions, and is able to avoid more than 95% of
FIFO violations while keeping the extra delay caused by latching to a minimum.

In Section [3.I] we begin by motivating this work and overviewing the problem and
our proposed solution. We then detail the model and our probabilistic FIFO ordering
algorithm in Sections [3.2] and Section [3.4] formalizes our protocol with an algo-
rithmic description. We present an experimental evaluation of the proposed algorithm
in Section We conclude this chapter in Section [3.6]

3.1 Overview of Problem and Solution

We motivate this work through an experimental comparison between B-DRP and Apache
ActiveMQE] Our purpose here is to exemplify the problem at a high level, so we give

!ActiveMQ (http://activemq.apache.org/) is a very popular and reportedly very efficient messaging
system that also implements a content-based publish/subscribe service as part of the Java Messaging

26 3.1 Overview of Problem and Solution

only a cursory description of the experiment, focusing on the comparative analysis of
the two systems. In Section we discuss this and other experiments in greater
depth. The experiment measures the throughput and the rate of FIFO violations in a
content-based publish/subscribe network of 8 brokers subjected to increasing message
traffic. The network topology is a graph of diameter 3. Each broker runs on a ded-
icated machine and serves 50 clients running on the same machine. All 400 clients
are subscribers, but only 50 also act as publishers. In order to simulate a wide-area
network, we apply transmission delays and bandwidth limits on inter-broker links. In
particular, the bandwidth limit is 10Mbps and the transmission delay is 50ms with a
dynamic runtime variability of £5ms which is typical of the Internet, based on different
Internet measurements

Clients generate a synthetic workload of subscriptions and publications, and the
generation algorithm is parametrized so as to induce an intense stream of messages
to a few subscribers combined with a steady but slower flow to all other subscribers.
The experiment modulates the publication rates over a period of 300 seconds using
two groups of high-rate and low-rate publishers, respectively. Two high-rate publish-
ers, each one publishing 1200 messages per second, join the network at 90 and 190
seconds, respectively, and cause the two noticeable increases in the aggregate input
and output rate. The remaining 48 are low-rate publishers, with a publication rate
that slowly ramps up from about 1.5 messages per second at the beginning of the ex-
periment to a maximum of 25 messages per second at the end of the experiment. This
mixed workload is intended to show, to the extent possible in a single experiment, the
general reaction of the broker network to abrupt as well as gradual increases of pub-
lication rates, and also to congestion, since the workload is also designed to reach the
maximum (collective) delivery capacity of the network for both systems.

Figures and show the throughput measurements. In particular, we plot
the rates of publication, message deliveries (i.e., notifications) and false negatives for
both ActiveMQ and B-DRP (A false negative occurs when a subscriber does not receive
a published message that matches its subscriptions, and is typically caused by conges-
tion.) Both networks gracefully handle gradual and sudden increases of the aggregate
input load during the first 200 seconds of the experiment. At this point B-DRP reaches
its delivery limit of about 30000 messages per second, and from then on it starts drop-
ping messages, as evidenced by a raise in the rate of false negatives in the diagram.
ActiveMQ handles the growth of the input rate up to time 240, when it delivers 32500
messages per second. However, after this peak point, it exhibits a sudden reduction
in delivery rate. Also, about 20 seconds after this congestion point, ActiveMQ brokers
start blocking publishers, presumably to counter congestion.

As for ordering, ActiveMQ delivers all its notifications in FIFO order—as it should,

Service.
2For example see measurements by RIPE Network Coordination Centre (RIPE) available at
http://www.ripe.net/data-tools/stats/ttm/ttm-data

27 3.1 Overview of Problem and Solution

)
Sender ma...~>~. ... 1102

Receiver
TR ma

delay(ma)

<o
delay(mz2)

Figure 3.3. lllustration of how a FIFO violation occurs

according to the Java Messaging Service specification—while B-DRE which is designed
as a best-effort network, does not prevent FIFO violations, and in fact incurs a rate of
violations that is roughly proportional to the delivery rate (see Figure[3.2).

In summary, we observe that ActiveMQ maintains FIFO ordering at all times but
suffers an almost catastrophic reaction to congestion, while B-DRP reacts more grace-
fully to congestion but incurs a significant number of FIFO violations. Our goal is to
combine the best behaviors of these two systems. In particular, we argue that FIFO
ordering can be best supported as an optional, end-to-end service implemented on top
of a best-effort publish/subscribe system. Notice that, while this approach is consistent
with well-established principles in network design, it is practically incompatible with
the specification of the Java Messaging Service and other similar publish/subscribe
standards.

3.1.1 FIFO ordering

FIFO is a simple ordering condition defined for each sender/receiver pair: considering
a sender s and a receiver r, for every pair of messages m; and m, sent by s and
received by r, a FIFO violation occurs whenever s sends m; before m, but r receives
m, before m;. It is also useful to express this condition in terms of the total travel
time of each message: let departure(m) be the departure time of a message m, and
assume 6 = departure(m,) — departure(m,) > 0; let arrival(m) be the arrival time, and
delay(m) = arrival(m) — departure(m) the total travel time of a message m. Then, a
FIFO violation occurs when delay(m,) — delay(m,) > & (see Figure[3.3).

Furthermore, the total travel time of a message can be expressed as the sum
delay(m) = delay*(m) + vardelay(m) of a nominal delay, delay*(m), representing the
long-term-average link, queuing, and processing delays, plus a short-term-variable de-
lay vardelay(m). This distinction is useful because, ignoring pathological cases, FIFO
violations occur only when the departure interval & is small, and therefore when the
long-term-average delays of m; and m, can be reasonably considered constant. This
means that FIFO violations are essentially a function of the short-term-variable delays

28 3.1 Overview of Problem and Solution

and the departure interval 6. Specifically,

FIFO violation < vardelay(m,) — vardelay(m,) > & 3.1)

Equation (3.1)) expresses the essence of the problem as well as the idea upon which
we develop a solution.

FIFO ordering is typically implemented with sequence numbers attached to each
message by the sender to reflect the sending order, and used by receivers to follow
the same order for delivery. One might try to apply the same sequencing technique
to content-based communication. However, in this case, holes in the sequence (e.g.,
receiving m, immediately after ms) must be treated differently. Specifically, because of
the implicit addressing of the content-based model, the receiver does not know—and in
some cases it can not know—whether a hole in the sequence is due to a message being
delayed along the delivery path (e.g., due to its longer processing time) or whether
that message was not supposed to be delivered at all because it does not match the
receiver’s interests.

Therefore, in order to avoid (or minimize) FIFO violations, we must solve two
problems: first, a receiver must decide whether or not to wait for a missing message;
second, if the missing message is determined to be likely to arrive, the receiver must
determine an appropriate buffering time (or “latch” time) for the message(s) received
out of order. One might argue that the receiver can always wait until the missing
messages arrive. However, due to the best-effort nature of the service, those messages
may get lost, leaving the receiver in a live-lock condition. So eventually, the receiver
must timeout after a certain latch time and drop or deliver the buffered messages.

Our approach is to give receivers a way to answer these questions on the basis of
the condition defined in Equation (3.I). In particular, we propose to carry with each
message its departure time, the departure time of the preceding message, and a sum-
mary of the content of some previous messages. With departure times (time-stamped
by senders) and arrival times (recorded locally) a receiver can continuously measure
the distribution of end-to-end short-term-variable delays. Also, upon receiving mes-
sage m, in the absence of the preceding m;, a receiver can use the time stamps on
my to compute the sending interval 6 between m; and m,. Then, with 6 and the
measured distribution of delays, the receiver can decide, up to a set error probability,
whether m; may have been delayed and, using the content summary carried by m,,
whether m; may arrive. If so, the receiver determines, also based on & and the delay
measurements, how long to hold m, so as to avoid a FIFO violation without delaying
the delivery of m, excessively. Our approach does not require synchronized clocks. We
do however, assume that clock drifts are small enough so that changes in clock skews
are negligible in short periods of time (e.g. less than one second).

29 3.2 Probabilistic FIFO Ordering

3.2 Probabilistic FIFO Ordering

The method we propose is probabilistic in nature, since it is based on a probabilistic
model of delay variations. We now detail this model and how we use it to reduce FIFO
violations.

3.2.1 Model of end-to-end delay

We model the end-to-end delay of a message m as the sum of a long-term average delay
plus a short-term variation vardelay(m). Since we are interested in comparing the end-
to-end delay of pairs of messages sent by the same publisher within a short interval,
we consider the long-term-average component of these delays to be the same. Thus,
we focus on the delay variation vardelay(m). In particular, we model vardelay(m) as
a random variable with a probability distribution whose parameters are also constant
during the short interval that separates two consecutive messages.

In general, the variable component of the processing time (including queuing) and
the transmission times at each hop in the publish/subscribe network contribute to the
end-to-end variable delay. Typically, a broker has a set of tables to store subscriptions
and routing information, and forwarding a message involves comparisons against the
entries of the subscriptions table and/or a lookup in the routing table. As a result, the
processing time may vary according to several factors, including the number of sub-
scriptions, their constraints, the number of attributes in the message, and the matching
algorithm, which might itself be randomized.

Furthermore, in a typical modern implementation on multi-processor hardware,
the forwarding process is usually parallelized for maximum throughput, at a minimum
with each message handled by a separate thread, and possibly with finer-grained par-
allelism. Therefore, since forwarding incurs minimal (if any) contention on shared
data, the processing times for two different messages are mostly independent. Similar
considerations apply to the transmission time, although typically with much less vari-
ability, to the point that transmission time for two messages published within a small
time frame can be considered equal.

In summary, considering two messages m; and m, that might give rise to a FIFO
violation, we model their short-term variable delays vardelay(m;) and vardelay(m,)
as two independent and identically distributed random variables whose distribution
depends essentially on the processing time in brokers. (We validate this model exper-
imentally and discuss our findings in Section [3.5.1]) Thus, our goal is to characterize
this distribution in general, and then to measure and parametrize it at run-time.

3.2.2 Measuring delay differences

Measuring end-to-end delays with a significant precision requires synchronized clocks,
and therefore is not practical outside of a tightly controlled environment. On the

30 3.2 Probabilistic FIFO Ordering

other hand, the difference between the delays of two messages m; and m, can be
readily computed, without synchronized clocks, using the time stamps associated with
messages. In practice, a receiver stores the departure time departure(m;) stamped on
m; by the sender, records its arrival time arrival(m;), and also records departure and
arrival times, departure(m;_,) and arrival(m;_,), for the previous message m;_;. With
this information, it computes delay(m;)—delay(m;_,) = [arrival(m;)—arrival(m;_,)] —
[departure(m;) — departure(m;_;)]. The crucial point here is that, by subtracting a
departure time from a departure time, and an arrival time from an arrival time, the
result is not affected by the lag between the two clocks. We do assume though that the
imprecision due to clock drift during delivery is negligible.

In summary, a receiver can measure the distribution of the difference between end-
to-end delays, and can then use it as the basis for the estimation of the probability
of FIFO violation and the estimation of the optimal latch time. In our model, any two
messages that a subscriber receives from a specific publisher go through the same route
and hence the same number of brokers. Consider two messages m, and m, received
by a subscriber that is k brokers away from the publisher. Subtracting the delay of two
messages cancels out the constant component of the delay and the subtraction reduces
to subtracting two random variables. Writing each variable in terms of its components
we have:

delay(m,)—delay(m,) =
(X1+X2++Xk)—(Y1+Y2++Yk):
X -7+ X—Y)+ -+ (X — 1) (3.2)

where X; and Y;, 1 < i < k, are the independent and identically distributed random
variables representing the processing time of messages m, and m, at each broker
i. Observe that in the last form of Equation each term of the summation (i.e.,
X; —Y;) is itself the difference between two independent and identically distributed
random variables and hence is a symmetric random variable with a mean of zero.

As such, without making any further assumption about any of the random vari-
ables involved in this equation we can find probabilistic bounds on the value of the
above delay difference using probabilistic inequalities such as Chebyshev’s inequality.
In more specific cases, when the broker-hop count is known (e.g., as a field in the mes-
sage header similar to IP header) we can also use Bernstein inequalities or Hoeffding’s
inequality to find better bounds. This is indeed of great advantage because as we will
detail later, to find the latch time we need to find the probability of delay difference
being more than a given value. Furthermore, as the number of terms in the second
form of Equation grows, the resulted distribution converges to a Normal distri-
bution, due to the central limit theorem. Thus, we can also use properties of Normal
distribution to find probabilistic bounds on the resulted summation.

Here, instead of using the aforementioned probabilistic inequalities, we focus on
finding a more accurate characterization of the delay difference distribution and how

31 3.2 Probabilistic FIFO Ordering

0.35 - r : ; 1 T T
030} 1o S S oreerennes VVVVVVVVVVVVVVVVVVVV PR e A S 4
: : : : 0.8 T : : 4
L P A Tttt e N S U S L Lo L 4
Z o2l S S S S w06 o ot]
e . : . : O L B
3 oastf-- P O O T
[: : . : 0.4 b e N
o : : . L] . . . H
0.10 - peasessseees oo o R T & At SRR Delay data 4
. H ' . 02kt e — — G : -
0.05 I e Feveseeeas PRI P E : 5-phase hypoexponential
0.00 ,,,hllu.,....l,,,, S e e 0 i i i i i
100 120 140 160 180 200 0 5 10 15 20 25 30
Delay (milliseconds) Delay (milliseconds)
(@ (b)

Figure 3.4. (a) End-to-end delays for a sender/receiver pair 3 brokers apart. (b) Cu-
mulative distribution of end-to-end delay samples fitted in a 5-phase hypoexponential
distribution.

Probability
o
o
w

0.00 L
2150 —100 -50 o 50 100 150

Delay Variation (Milliseconds)
Figure 3.5. Histogram of the delay difference for a sender and receiver separated by
5 brokers. The thick line is the approximation with the sum of two Laplacian random
variables.

to measure its parameters. To this end, finding the distribution of end-to-end delays
will enable us to find the distribution of delay differences. In the next section we will
analyze the distribution of end-to-end delays in more detail.

3.2.3 End-to-end delay distribution

In order to model the difference between end-to-end delays, which is the observable
distribution for a receiver, we start from the distribution of end-to-end delays. In the
context of IP networks, various researchers have proposed different methodologies and
distributions to model end-to-end IP-level packet delay. For instance Zhang et al. found
that a power-law distribution offers a good model [[ZGGO35[], while Mukherjee [[Muk92]]
reported that Internet packet delays can be represented by a shifted Gamma distribu-
tion whose shape and location factor depend on traffic load and path length.

To extend some of these results to the case of content-based publish/subscribe

32 3.2 Probabilistic FIFO Ordering

systems, and to study the dynamics and distribution of end-to-end delays, we con-
ducted experiments with a variety of parameters such as network size and topology,
subscription and publication patterns and rates, and link delays. We then synchronized
publishers and subscribers via NTP up to a clock difference of less than one millisec-
ond, which enabled us to accurately measure the end-to-end delay of messages with a
negligible error.

Our first observation is that neither Gamma nor power-law distributions properly
fit the traces of the end-to-end message delay. Figure shows the delay distribution
of messages received by a subscriber from a publisher through 3 brokers. The inter-
broker links have an assigned delay of 50ms. The links that connect subscriber and
publishers to their local brokers have no delay. Since there are two inter-broker links,
all the delays have a constant component of 100 milliseconds. This distribution has
two pronounced characteristics: a long tail, which is composed of low frequencies at
large values, and a large density around its mean.

As mentioned in Section[3.2.1] the variable component of the delay of a message is
the sum of the processing delays at all the brokers it passes through. So, we start the
analysis of the distribution of end-to-end delays (Figure [3.4p) with a specific experi-
ment to measure the distribution of processing times in a single broker. In a typical
setup with a few brokers and 10 clients per broker, we observed that most messages
take a few milliseconds to be processed while a few of them need longer processing
times. More specifically, in the case of our subject system B-DRB measurements with
different combinations of workload parameters (number and sizes of subscriptions,
number and sizes of messages) reveal that the processing time is best fit by an expo-
nential distribution.

We therefore proceed to model the variable component of the end-to-end delay as
the sum of n exponentially distributed random variables, where n is the number of
brokers between the publisher and the subscriber. This distribution is called a hypoex-
ponential distribution which is a member of a general class of distributions called phase
type distributions. To test this modeling hypothesis, we used the method described by
Asmussen et al. [ANO96] to fit the measured end-to-end delay in a hypoexponential
distribution with the appropriate number of phases, where a phase corresponds to a
hop in the network. Before fitting each data set into the distribution, we removed the
constant component of the samples (i.e., the delay caused by the inter-broker links).
We performed the sampling and fitting process with a variety of configurations and
different number of brokers and topologies with diameters of up to 10. In all cases,
the data closely follow the theoretical distribution.

Figure shows the cumulative distribution function of 6500 samples of end-to-
end delay measurements, for a given publisher-subscriber pair, fitted into a hypoexpo-
nential distribution with 5 phases (in the experiment, the publisher and the subscriber
were 5 brokers apart). Next, we detail how we use this model to find the distribution
of delay differences.

33 3.2 Probabilistic FIFO Ordering

3.2.4 Distribution of delay differences

We established that the end-to-end delay of a message is a hypoexponential random
variable, resulting from the sum of exponentially distributed random variables, each
representing the processing time at a broker.

Therefore each term in the second form of the Equation (i.e., X; — Y;) is the
difference of two identically distributed exponential random variables, which is known
as a Laplacian random variable. It follows that the distribution of differences of end-

to-end delays is the sum of independent Laplacian random variables. The probability
—lx—pl

density function of a Laplacian random variable is f (x) = ﬁe b where u is the mean
of the distribution and b is its scale parameter. Due to the linearity of expectation, u is
zero for all of the above Laplacian random variables that are the result of subtracting
two exponentially distributed random variables (e.g., X; — Y;). This is because all the
brokers run the same forwarding algorithms, thus we can assume that b is similar for
all the Laplacian random variables.

So, our analysis shows that the difference between end-to-end delays for a given
publisher/subscriber pair can be modeled as the sum of k Laplacian random variables,
where k is the number of hops between the publisher and the subscriber. However,
unfortunately, determining an analytical expression of the distribution of the sum of
k > 2 Laplacian random variables with different scale parameters is still an open prob-
lem [[NKO5]. So, as an approximation, we use the statistical properties—namely, the
probability distribution, cumulative density, and quantile functions—of the sum of two
Laplacian random variables. Even though this model is an approximation, we have em-
pirical evidence that the two-sum distribution also fits reasonably well the sum of up to
8 Laplacian random variables. The sum of two independent and identically distributed
Laplacian random variables with mean u = 0 and scale factor b has probability density

x|
flx)= (bj%b)e_T and cumulative distribution F(x) = Pr[X < x] for X > O:

2b+x) _«
4—be b (X > O) (3.3)

The estimation of the scale factor b based on a set of n samples is possible with maxi-
mum likelihood estimation, which yields b = % er.lzl |x;|. In Appendix@we illustrate
the steps we took to derive Equation and how we estimate parameter b in this
equation.

Figure shows the histogram of delay differences for messages received 5 hops
away from the sender. The thick line represents the sum of two Laplacian random
variables whose parameter is estimated from the data. The sharp spike around zero
falls outside of the approximate distribution because of the approximation of sum of 5
random variables to only two. In other words, as the number of broker-hops increases,
the density of the real distribution increases around the mean and the tails become
shorter, while the approximation is less dense around zero but has longer tails. This
does not cause a problem though, since in determining the latch time, the likelihood of

F(x)=1-

34 3.2 Probabilistic FIFO Ordering

ma 5 latch time 1

Sender Sender

Receiver ——— ——————— = Receiver

T T2
Figure 3.6. By virtually increasing 6, we avert a FIFO violation

the extreme values of delay difference is used (i.e., the tails of its distribution) which
we will detail next.

3.2.5 Determining the latch time

Based on the model we developed, we now go back to Equation to estimate the
probability that m; and m, are received out of order (a FIFO violation). This probabil-
ity is a function of the difference between their departure times, 6 = departure(m;) —
departure(m,). In particular,

Pr[FIFO Violation] = Pr[delay(m;) — delay(my) > &]
=1-—Pr[delay(m;) —delay(m,) < 6] =1—F(5)

where F(-) is the cumulative distribution of delay differences.

Whenever the receiver detects a gap in the sequence numbers, it can virtually in-
crease & by latching the messages whose delivery would cause the FIFO violations so
that the probability of a FIFO violation drops below a given threshold (Figure [3.6).
More precisely, we would like to determine a latch time 7 that reduces the FIFO viola-
tion probability below a given threshold P, for a pair of messages m; and m, published
0 time units apart from each other. Thus

t=F1l1-P)-6 (3.4)

where F~! is the quantile function of the delay variation. Intuitively, T is the minimum
amount of time that the receiver has to hold m, and wait for the missing message m;
based on the sampled delay difference. We call P, the FIFO violation coefficient. Higher
values of P, map to smaller latch times and more FIFO violations. F~! is the inverse of
Equation and corresponds to

F7(p)=b[w(4e 2(p — 1))+ 2] (0.5<p<1) (3.5)

where w(-) is the Lambert Omega Function, and can be efficiently computed using
several existing numerical methods. Appendix [A| shows how the above equation is
derived.

35 3.2 Probabilistic FIFO Ordering

mi t [oTaTa]a]0] [1]1] Me te

M3 § t3 i [of1]1]of0] [o]1]

class = "stock"
Ms ity [oT1T1To]1] [oTo] symbol = "IBM"
price =301

Ms ¢ ts ! [1]o[1]ofo] [1]0]

Figure 3.7. Message mg carrying a publication record of size 4

Now let us consider cases with more than one message missing (e.g., a receiver
receives message mg immediately followed by m;g).

Let ®(m,n) denote the occurrence of a FIFO violation for messages m and n, let
O m.n = departure(m)—departure(n) denote the time difference between the publication
time of two messages m and n, and let 7,, , be the latch time given by Equation (3.5)
for messages m and n. Since 6199 < 619 < 019 it follows that Pr[®(mgy, m;,)] =
Pr[®(mg, mo)] = Pr[®(m;,my,)] and therefore 7¢ 19 > 7519 = T7.10-

In words, in this probabilistic model, the latch time is independent of the number
of messages in a chain of missing messages. In such cases, in order to calculate the
latch time, the receiver only considers the time difference between the latest received
message and the latest missing message.

3.2.6 Publication record

So far, we have assumed that whenever there is a gap in the message sequence num-
ber, the missing messages would match the interests of the receiver. This assumption
enforces the assessment of a latch time upon every message that causes a gap in the se-
quence, even when the missing messages are not even supposed to be received because
they do not match the subscriber’s interest. Obviously, this may introduce unnecessary
delivery delays.

To eliminate (or reduce) this problem, we propose to attach to each message some
information about previously published messages along with their publication times-
tamps (see Figure[3.7). We call this information the publication record of the publisher.
As a simplistic example, consider attaching to each message a copy of the previous 4
messages sent by the same publisher. In this case, a receiver receiving mg right af-
ter m,, and therefore detecting a gap of three messages, might be able to deliver mg
immediately after checking that none of the missing messages (whose Bloom filter is
attached to mg) matches its subscriptions. The question then becomes how to compile
a compact and yet informative publication record.

In topic-based publish/subscribe systems this is easily achieved by attaching the
topic of the last k messages to each new publication. Things are not as simple in
content-based publish/subscribe systems, although it is possible to attach a summary
of the content of the previous k messages. A good encoding for this summary is a
message representation based on Bloom filters that was developed for B-DRP and we

36 3.2 Probabilistic FIFO Ordering

introduced in Section

The salient properties of this encoding, which are detailed in [CTCHWQ9], are that
it is compact and it admits to a fast matching algorithm, but it may incur false positives,
meaning that an encoded message may be found to match the interests of the receiver
while the original message would not. This does not compromise correctness but may
lead to unnecessary delays. Nevertheless, given that in general only a small percentage
of the publications of a publisher match the interests of a given subscriber, in most cases
this simple method is effective in preventing unnecessary delivery delays. We call this
the enhanced mode of the probabilistic FIFO ordering protocol as opposed to the basic
mode in which messages do not carry any publication record.

A publication record is attached to a message m, by its source s and consists of R en-
tries representing the previous R messages my_;, My_o, ..., M;_g published by s. Each
entry B; is a Bloom filter obtained by encoding message m;_;. The encoding works
as follows: first, a message m is mapped into a set of “categories” or “tags.” For ex-
ample, a message that contains the attributes (event=disk-failure, cause=overheating,
priority=high) might be associated with tags “disk-failure,” “overheating,” and “high-
priority.” Then the set of tags is simply represented as a Bloom filter. In addition to
defining sets of tags for messages, the encoding scheme also defines tags for subscrip-
tions with the intended semantics that, if a message m matches a subscription S, then
the tags associated with m are a superset of the tags associated with S. In summary, a
subscription S is encoded as a Bloom filter B¢ (representing a set of tags) and a mes-
sage m is encoded as a Bloom filter B, (representing a set of tags), and if m matches
S then B,,, 2 Bg (where a Bloom filter B is interpreted as a set of bits).

When a subscriber receives a message m,, that carries a publication record (B, ...Bg)
the subscriber checks whether it has received messages my_1, ..., my_g from the same
publisher. Then, for each message m; that was not received, the subscriber checks
whether the B; entry in the publication record matches any of its subscriptions S. That
is, the subscriber checks whether there is one of its subscriptions S such that B; 2 Bg.
(Of course, the subscriber does not have to recompute the encoding of its subscrip-
tions for each message.) If one such subscription is found for B;, then the subscriber
concludes that message my._; was of interest and may decide to latch message m; (see
Section for a formal definition of covering relation).

As mentioned at the end of Section |3.2.5 when the sequence number gap contains
more than one message, in basic mode the receiver has to consider only the latest miss-
ing message. Instead, in enhanced mode, the receiver has to consider only the latest
missing message that is found to match local subscriptions. Referring to the example
where a receiver receives message mg immediately followed by m,, if the receiver de-
tects that ms does not match local interests (through the publication record attached
to mg) but my is of interest, it takes m, into account to calculate & in Equation (3.4)
since mg will not be received anyway:.

The size of the publication record attached to each message is controlled by the

37 3.3 Loss Detection

publisher. A larger record translates into shorter delivery delays, at the expense of
a greater bandwidth consumption. In general, high publication rates require large
publication records because the interval between publications is smaller and thus the
probability of out-of-order deliveries is higher.

3.3 Loss Detection

A publication record that is attached to each message has a second purpose in our
transport protocol, that is loss detection. Recall that a publication record of size k
determines which one of the latest k published messages are of interest to a receiver
(match its subscription). Assume for instance that the publication record attached to
message m; determines message m; to be of interest while m; itself is not received.
In this case, the FIFO ordering protocol latches m; for a time given by equation Equa-
tion (3.4). After this time, m; is delivered and m; is determined to be lost. This event
is then sent to reliability and congestion control components of the transport protocol
(if they are enabled) to recover the lost message or enable congestion control policies
if necessary.

A major limitation of this loss detection method stems from the limited size of
publication record. In other words, with a publication record of size k a receiver is able
to detect only the k latest published and lost messages. We will discuss this limitation
and its effects on reliability and congestion control in the next two chapters.

3.4 Algorithmic Description

Algorithm shows the core of our probabilistic FIFO ordering mechanism. A
receiver (subscriber) executes a separate instance of this algorithm for each sender
(publisher) from which it receives messages, and maintains a separate set of variables
associated with that sender. The configurable parameters of the algorithm are the FIFO
violation coefficient P, and the size q of the ring buffer that stores the delay-difference
samples.

The main algorithm (starting on line|1)) is executed for each message received from
the publisher. A variable called base stores the previously received message with the
highest sequence number. The algorithm starts by computing the delay difference with
respect to base, and uses that to update the parameters of the distribution of delay
difference (line[7). If the received message m, causes a gap in the sequence number,
the algorithm assesses a latch time based on the difference in departure time between
m, and the latest missing message that is known (in enhanced mode) or assumed (in
basic mode) to match the local subscriptions. In particular, in basic mode the relevant
message is assumed to be the immediate predecessor m,_; whose departure time is
attached to m,,. Conversely, in enhanced mode, the receiver looks in the publication

38 3.4 Algorithmic Description

1: procedure initialize

2: base — L {last in-order received message}
3: B0 {scale factor of the distribution of delay difference}
4: Q < RingBuffer(q) {ring buffer of size q}
5: upon receiving m, from publisher do

6: if base # | then

7: x « [arrival(m,) — arrival(base)] — [departure(m,) — departure(base)]

8 update(x) {update the distribution}
9: n <« sequence(m,)

10: if n =0 or n = sequence(base) + 1 then

11: schedule(m,,0) {schedules m, for immediate delivery}

12: else if n < sequence(base) then

13: schedule(m,,,0)

14: return

15: else

16: if publication_record(m,) # 1 then

17: R < publication_record(m,,)

18: m, <« latest message in R that matches local subscriptions and was not
already received

19: if m, =1 then

20: m, < earliest message in R

21: if sequence(m,) < sequence(base) then

22: schedule(mn, 0) {none of the missing messages is relevant, deliver m, now}

23: base «— m,,

24: return

25: t, < read departure(m,) from R

26: 6 « departure(m,) — t,

27: else

28: t,_, < read departure(m,_) from m,

29: 0 « departure(m,) — t,_1

30: T « latch_time(5)

31: schedule(m,,, T)

32: base «— m,
33: function latch_time(5)
34: T« Blw(4e 2(-P))+2]-6 {(P, <0.5)}

35: return v

36: procedure update(x)

37: Q.append(x) {add the sample to the ring buffer}
38: fBe % x€Q ;] {update scale factor of the distribution }

Algorithm 3.1. Probabilistic ordering FIFO algorithm run by a recipient for each
publisher

39 3.4 Algorithmic Description

record (attached to m,,) for the latest missing message that matches its subscriptions
(line [18). If no such message is found in the publication record then the receiver
conservatively assumes that the latest matching message was published at the same
time as the earliest message in the publication record (line [20).

For instance, suppose that the size of the publication record is three and the recip-
ient receives myq but the last 5 consecutive messages prior to my, (e.g., ms to mg) are
missing. The publication record attached to m;q covers the last three messages (m-,
mg, and mg). If none of these three messages appears to match the interests of the
recipient, the algorithm assumes that message m¢ matches local interests and assumes
that its publication time equals the publication time of its proceeding message, i.e.,
departure(mg) = departure(my).

Having computed an appropriate latch time 7, the receiver schedules the message
for delivery to the receiver application. This is done through a procedure schedule(m,)
that also assures the ordered delivery of all scheduled messages. This procedure (not
shown in the listing) is analogous to the mechanisms found in most sliding-window
protocols. In essence, the scheduler maintains a queue of pending messages and a
set of corresponding timers. A message is queued until its timer expires or all earlier
messages have been delivered, at which point the message is also delivered to the ap-
plication and removed from the queue. Also, in the enhanced mode of the protocol, if a
relevant message is not received before a timer expires, then a message loss is signaled
to both reliability and congestion control components for further actions. The signal
also contains relevant information about the lost message like its sequence number
and its Bloom filter for usage in the recovery process.

Since the ordering protocol is probabilistic, the latch time of a set of messages may
not be large enough to cover the time needed for the missing messages to arrive. In
such cases, the timer associated with the latched messages expires and the messages
are delivered. When the missing messages are received, they might be simply dropped
or delivered to the application, thereby causing a FIFO violation (see line[13]). We have
implemented this treatment as a configurable parameter of the ordering protocol.

40 3.5 Evaluation

o
o
]
o

Probability
o
o
=
w

I Il Il Il
0 50 100 150 200 250 300 350 400
Delay (milliseconds)

Figure 3.8. Distribution of end-to-end delay for all of the delivered messages during
the first 90 seconds of the experiment.

3.5 Evaluation

We implemented the recovery protocol as a pluggable module which integrates into
any publish/subscribe application and protocol. Specifically, the publication record
and other metadata that is required by the ordering protocol is attached to messages
as an array of bytes, perceived by brokers as application payloadE] Our experiment
testbed is a cluster of Dell PowerEdge with two dual-core 2GHz AMD Opteron pro-
cessors and 4GB of main memory running Linux with a 2.6 kernel. Connectivity is
through an isolated high-throughput Gigabit Ethernet switch. Broker software, client,
and transport protocol are run on the 64-bit open-JDK VM.

We now present the experimental evaluation of the proposed FIFO ordering method.
This evaluation addresses three high-level questions. First, it validates the statistical
models, developed in Section[3.2] upon which the method is built. Second, it evaluates
the benefits, costs, and scalability of the method in its basic and enhanced form. Third,
it evaluates the ability of the method to respond and adapt to dynamic workloads.

3.5.1 Network delay model validation

This first experiment corresponds to the scenario described in Section However,
whereas in Section we compared global statistics of throughput and FIFO viola-
tions for ActiveMQ and B-DRP here we focus on B-DRP (because we are interested in
modeling best-effort delivery) and look closer at the distribution of end-to-end delays
and their variations.

Figure shows a histogram of the end-to-end delay for nearly 250000 messages
that were delivered across the network during the first 90 seconds of the experiment.
Recall that this initial phase is characterized by a slow (and slowly growing) flow of
publications. Below we also examine the later phases of the experiment when high-rate

3Most implementations of the Java Messaging Service (JMS) are capable of carrying an opaque pay-
load.

41 3.5 Evaluation

3000

2500

2000

1500

1000

500}

Delay(M,_,) (milliseconds)

; ; ‘ ; ;

0 500 1000 1500 2000 2500 3000
Delay(a,,) (milliseconds)

Figure 3.9. End-to-end delays of every two consecutive messages for a chosen pair of

sender and receiver.

publishers cause congestion, and therefore cause a significant shift in the delay distri-
bution. The histogram shows 4 distinct clusters corresponding to the hop-distance
between publisher and subscriber. For example, messages that pass through 3 brokers
(two broker-to-broker hops) have a transmission delay of around 100 milliseconds.
The histogram of Figure is qualitatively consistent with our model of end-to-end
delay. Now, in order to validate the model more precisely, we isolate a single pub-
lisher/subscriber pair and measure end-to-end delays and delay differences.

We first examine the delay of pairs of consecutive messages recorded over the
entire duration of the experiment. The results are reported in the scatter-plot of Fig-
ure The plot highlights two facts. First, the delays of two consecutive messages
are highly correlated; second, the delays vary significantly throughout the experiment,
and since the data refers to a single sender/receiver pair, this indicates the effect of
significant queuing delays. We also note that we purposely select a sender/receiver
pair that experiences an intense flow of messages that ultimately causes congestion in
the intermediate brokers.

We now take a closer look at the effect of delays and congestion on delay variation.
In particular, we test our intuition that queuing delays do not have any substantial
effect on the distribution of delay variation. To do that, we compute the distribution of
delay variations between consecutive messages for pairs of messages subject to delays
within two ranges, corresponding to the areas marked with dotted lines in Figure
The resulting histograms, plotted in Figure demonstrate that the delay variations
are essentially independent from the delay.

To confirm this visual analysis, we use Wilcoxon rank-sum test to test whether this
data is consistent with our hypothesis that the two datasets follow the same distribu-
tion. The resulted p-value of the Wilcoxon test is 0.35 which confirms that the evidence
is compatible with our hypothesis with a high statistical significance.

42 3.5 Evaluation

o
=
N

Probability

o o o o
o o o =
S (o)) [e¢] o

o
o
N

o
o
S

—40 -60 —40 O 40 60
Delay Variation (milliseconds) Delay Variation (milliseconds)

(@ ()

-60

Figure 3.10. Delay variation distribution for messages with end-to-end delay of
(a) delay(m) < 1500ms and (b) delay(m) > 1500ms respectively.

3.5.2 Effectiveness of the ordering protocol

We evaluated the effectiveness of the ordering protocol through various experiments.
In general, these experiments are intended to measure both the reduction in FIFO
violations and the additional latency incurred by the protocol. Specifically, to charac-
terize the trade-offs between these benefits and costs, and also to obtain a comparative
baseline, we juxtapose the performance of our probabilistic protocol with that of a
simpler protocol that uses a static latch time. This protocol latches each message that
creates a gap for a fixed amount of time. However, to obtain the most conservative
comparison, we first select the parameters of our probabilistic protocol and measure
its performance in terms of FIFO violations, and then configure the static protocol with
the optimal latch time that achieves the same (or nearly the same) level of FIFO viola-
tions. (We determine the optimal static latch time experimentally with a trial-and-error
search.)

We set up and perform each experiment so that receivers run multiple instances of
static and probabilistic ordering protocols with different parameters. This enables us
to compare the efficiency of the protocols and the effect of different parameters in the
exact same scenario.

We report the results of our experiments in Figures and for an 8-broker
setup and Figures and for a large scale experiment with 46 brokers. Each
data set corresponding to the static protocol is labeled “CST-t,” where t is the constant
latch time (milliseconds); and each set of the probabilistic FIFO ordering protocol is
labeled “P-x-y,” where x is the probabilistic FIFO coefficient P,, and y is the number
of previously published messages whose encoded Bloom filters are attached to each
message (in the enhanced version of the algorithm). The probabilistic FIFO ordering
protocol also uses a sample buffer Q of size 25 in all the experiments, and uses an
encoding of the publication record that uses 16 bytes per message, so for example,
“P-0.2-5” and “P-0.2-25” indicate experiments in which the enhancement of the publi-

43 3.5 Evaluation

180000

160000

140000
9]

o]

Y
N
o
o
o
o

100000
80000
60000
40000
20000

FIFO Violation

0 : : :
W/0 CST-15 CST-30 P-0.05-0 P-0.2-0
Transport Protocol

Figure 3.11. Effectiveness of different FIFO algorithms in an 8-broker setup: the total
number of incurred FIFO violations with and without ordering.

350

300
250}

T
|
|
|
200 |

150 .

100} I | .

52——_1_%1:_&.%'%*

CST-15 (CST-30 P-0.05-0 P-0.05-5 P-0.05-25 P-0.2-0 P-0.2-5 P-0.2-25
Transport Protocol

Avg. Extra Delay (millisec.)

Figure 3.12. Effectiveness of different FIFO algorithms in an 8-broker setup: the aver-
age extra delay caused by different ordering algorithms.

cation record introduces an overhead of 80 and 400 bytes, respectively.

Figure compares the total number of FIFO violations observed by 400 re-
ceivers, with and without ordering mechanisms. Note that for a given P;, the size of
the publication record does not have any effect on the performance of the protocol in
terms of the number of reduced FIFO violations. Recall that the use of the publication
record allows the receiver to assess a reduced latch time, but does not change the be-
havior of the protocol in terms of FIFO violations. Hence, we only plot the number of
FIFO violations for the basic mode of the probabilistic protocol. For example, in Fig-
ure [3.11| with P, equal to 0.05, the number of FIFO violations for P-0.05-0 is the same
for P-0.05-25; what differs is the extra delay, as we will show later. In total there were
almost 173000 out-of-order receptions. The probabilistic FIFO ordering with P, set to
0.05 mitigated more than 99% of the FIFO violations, performing as well as CST-30.
With P, = 0.2, the probabilistic FIFO algorithm reduced FIFO violations by about 91%.

To demonstrate the benefit of the probabilistic FIFO ordering algorithm with re-
spect to minimizing the overall delivery delay when compared to the static protocol,
we first define a measure we call the average extra delay. If M is the set of all the mes-

44 3.5 Evaluation

120000 —

100000

80000

60000

40000

FIFO Violations

20000

OW/O CST-100 C5T-250 P-0.050 P-0.2-0
Transport Protocol
Figure 3.13. Effectiveness of different FIFO algorithms in a 46-broker setup: the total
number of FIFO violations with and without ordering.

sages that a given subscriber received from a given publisher, we define the average

extra delay for the messages of that stream as ﬁ ZmeM latch_time(m).

Figure presents the average extra delay caused by the static and probabilistic
FIFO algorithms for all of the pairs of sender and receiver. Unsurprisingly, the static
algorithm with constant latch time induces the same average extra delay for all nodes.
P-0.05-25 performs better than CST-30 in terms of average extra delay. P-0.05-0 (basic
mode) causes much larger extra delays, but when enhanced with a publication record
of only 5 messages (P-0.05-5), it incurs a considerably smaller extra delay. Note that
the large average extra delay in basic mode is largely due to the intentionally extreme
scenario in which two high-rate publishers are combined with subscribers configured to
receive a very high portion of their publications (more than 80%). This is an extreme
case that is relatively uncommon in a publish/subscribe network. In other words,
whenever the publisher sends messages at lower rates, the difference in the average
extra delay between the static protocol and our adaptive protocol increases signifi-
cantly. This is because the adaptive protocol is sensitive to the time difference between
two consecutive publications while any static protocol latches messages irrespective of
the publication rate.

To demonstrate the performance of the protocol in larger networks, in Figures|3.13
and we present the performance of the probabilistic ordering in a network of 46
brokers where each broker serves 10 clients. We use a workload with similar char-
acteristics to the 8-broker experiment, except that this one runs for 240 seconds. We
choose a low-degree network topology with a graph diameter of 15. Due to this larger
diameter, constant latch times of 30 or 50 milliseconds are not effective. Indeed, like
in the previous experiments, we ran several setup experiments to find the optimal con-
stant latch time for our comparative analysis. On the other hand, the adaptive nature
of our algorithm captures very well the dynamics of larger-diameter networks. In this
experiment, there are more than 115000 out-of-order receptions without any ordering
algorithm in place, and our probabilistic ordering algorithm with P, = 0.05 is able to

45 3.6 Conclusion

1000 T T

T
8001 I 4
I
I
600 |
I

400

T

1
T 1
| —

2001 $| I El 1
L= = [1 T
CST-100 CST-250 P-0.05-0 P-0.05-5 P-0.05-25 P-0.2-0 P-0.2-5 P-0.2-25

Transport Protocol

Avg. Extra Delay (millisec.)

Figure 3.14. Effectiveness of different FIFO algorithms in a 46-broker setup: the aver-
age extra delay caused by different ordering algorithms.

prevent 99.5% of such FIFO violations. This mitigation in basic mode comes at a cost
of a maximum 960 milliseconds in average additional delivery delay, while with a pub-
lication record of 25, this cost is nearly zero for more than 50% of the nodes and less
than 190 milliseconds for 90% of them.

3.5.3 Adaptivity of the protocol

Figure[3.15|shows the dynamics of the FIFO-ordering protocol for a publisher/subscriber
pair in response to changes in publication rate. The top frame pin-points out-of-order
deliveries in the message stream; the second frame shows the publication rate of the
publisher (messages per second); the third frame plots the changes in FIFO-violation
probability calculated by our algorithm; and the two bottom frames show the changes
in latch time when the publication record is O (basic mode) and 25 (enhanced mode).

The FIFO violation probability and the latch time follow the trend in the changes
of publication rate. This is the result of delay variation and change of time gap be-
tween two consecutive messages. Observe that in the basic version of the protocol,
where there is no publication record attached to messages, the latch time spikes more
frequently, for there are many cases when the missing message does not match the
subscriptions of the receiver but the ordering algorithm latches the messages for that
specific time frame.

3.6 Conclusion

In this chapter we presented our approach to enhancing FIFO ordering in best-effort,
content-based publish/subscribe networks. Our general idea is to implement an end-
to-end, probabilistic algorithm to avoid FIFO violations. More specifically, first we
studied and modeled the causes of FIFO violations, and showed experimentally that
the major cause of FIFO violations is the variation in end-to-end delays. Then, based on

46 3.6 Conclusion

WAMAMALN AL LA A SR\ 4 v vy v v wv AAA AR A A4 w VYV vy

.- e
_e-:® .

.o

. - .® .9

O~ . e - @~ e

Notifications |

i

Latch time, y=25

| TR T

Latch time, y=0 -

AA“A‘W Il L LG AL VBRI MO e AL 0 DRI
100 150 200 250 300
Time (seconds)

Figure 3.15. From top to bottom: timestamps of out of order receptions; publication
rate; probability of a FIFO violation; latch time in enhanced mode with a publication
record of size 25; latch time in basic mode.

a simple analytical model of the end-to-end delay, we developed a method to quantify
its variation, which we also validated experimentally. This allowed us to devise an
algorithm to estimate the probability of a FIFO violation whenever there is a gap in the
sequence number of an incoming message stream. The same estimation also allows us
to find an adequate latch time for some of the received messages in order to reduce
the FIFO-violation probability below a desired threshold. Through experiments, we
showed that this method can mitigate up to 99.5% of the FIFO violations while keeping
the unnecessary delivery delay to a minimum.

Chapter 4

Reliability

In this chapter we introduce and detail the second component of our transport pro-
tocol that provides end-to-end reliability for best-effort content-based networks. By
reliability, we mean a type of message persistence which enables subscribers to re-
cover lost messages. Obviously, an end-to-end approach requires the involvement of
end-points in providing message persistence and a collaborative mechanism for the
recovery of lost messages. In designing the end-to-end reliability protocol we had a
few key requirements in mind. First, for scalability reasons, it should require the least
compromise of the loose coupling between publishers and subscribers. For instance,
direct communication between end-points should only happen as a reaction to a mes-
sage loss, instead of a correct message reception (NACK instead of ACK). Second, given
the multicast nature of content-based communication, the protocol should incorporate
mechanisms for efficient recovery of shared losses (cases where a lost message has
multiple intended receivers). Third, the recovery protocol should be flexible enough
to allow for optimizations like location aware caching/retrieval of messages for perfor-
mance and efficiency reasons.

These requirements are common to any reliability scheme for multicast protocols.
Indeed, in the development of our reliability protocol we borrow ideas from reliability
protocols for IP multicast, namely, Scalable Reliable Multicast (SRM) [[FJL."97]. Briefly,
SRM works as follows: a receiver that detects a message loss (using sequence numbers)
tries to recover a copy of that message from other group members by multicasting
a request to the group. A group member that has already received and cached the
message will send a copy of the message back to the requesting node. As we will
detail later, SRM’s properties make it an attractive basis for our reliability protocol.
However, SRM is not directly applicable to content-based publish/subscribe networks
because messages are not explicitly addressed to a multicast group, and therefore it is
not immediately clear how to address a request and replies for a lost message. In fact,
for the same reason, it is not even clear how to detect a message loss. This is because
there is no clearly identifiable stream of messages other than what is published by a

47

48 4.1 Context and Preliminaries

single source, and gaps in such a stream are very often due to the legitimate filtering
of the content-based selection. In other words, simple sequence numbers do not allow
a receiver to distinguish a lost message from a message that was legitimately filtered
out by the receiver’s subscriptions.

In Section we discussed a probabilistic loss detection mechanism based on a
synthetic publication record that is attached to messages. This information allows
receivers to detect message losses that occurred within a limited time frame in the
past. In this chapter, we build a probabilistic reliability protocol atop this loss detection
method and then study the effects of this imprecise loss detection on the performance
of the reliability protocol. The major contribution of this chapter is to propose an
approach to routing requests to relevant clients in the publish/subscribe network, in a
manner similar to SRM, in order to retrieve a lost message. We also extend SRM with
a simple scheme for better cache management. Finally, through experiments we show
that the protocol is capable of recovering from a large number of message losses in
networks of different size and with different dynamics.

In Section we first set the context of our work by discussing reliable IP multi-
cast, and then present the problem we address and give an overview of the reliability
protocol we propose as a solution. In Section we detail the reliability protocol
and its implementation, with an in-depth discussion of its performance in Section 4.3
Section [4.4] presents the experimental evaluation. Finally in Section 4.5|we offer some
concluding remarks.

4.1 Context and Preliminaries

Since our reliability protocol is inspired by reliable IP multicast, in this section we first
give a summary about Scalable Reliable Multicast which is the basis of our protocol
and then give a bird’s eye view of the problem we intend to solve and the solution.

4.1.1 Reliable IP multicast

A best-effort content-based network offers a service that is similar in nature to IP mul-
ticast. Since our goal is to improve the reliability of a best-effort content-based net-
work, and specifically since we propose to do that with a pure end-to-end solution,
we model our solution after the existing end-to-end reliability protocols developed for
IP multicast. As we will discuss later, such protocols are not immediately applicable
to a content-based addressing because of its greater expressiveness. Nevertheless, we
review such protocols here and in particular we focus on Scalable Reliable Multicast
(SRM) [FJL"97] as a basis for our reliability protocol.

In the context of IP networks, a number of reliability mechanisms have been pro-
posed in the form of additions to the standard IP multicast. Among the most notable
ones, Scalable Reliable Multicast (SRM) [FJL"97] and Reliable Multicast Transport

49 4.1 Context and Preliminaries

Protocol (RMTP) [LS96] provide reliability without reliance on the routing infrastruc-
ture (i.e., “end-to-end”) while Pragmatic General Multicast (PGM) [SCG"01b] pro-
poses additional functionalities to routers in order to provide reliability. In the ter-
minology of these protocols, a request is a (broadcast or multicast) message whose
function and meaning is similar to that of a negative acknowledgment (NACK), which
is to request a missing message. The term repair refers to a reply (to a request) that
carries the missing message. We also use these terms in rest of this chapter.

We chose SRM as a basis for our reliability protocol for two reasons. First, SRM
makes limited assumptions about the application logic, and second, it only relies upon
a basic multicast service to recover lost messages without requiring any addition or
modification to the underlying multicast service. Since in this chapter we often refer to
SRM semantics and internals, we now give a cursory description of how SRM achieves
end-to-end reliability. For a detailed description we refer the reader to the original
paper by Floyd et al. [FEJL"97].

SRM is a general-purpose reliability protocol designed for large-scale applications
that use IP multicast. To be generic, SRM does not make any particular assumption
about the formats and sizes of application-level messages. Thus, message loss detection
is not embedded in the protocol but is instead assumed to be part of the application
logic. Once the application detects the loss of a message within a group, it multicasts
a request to the same group. Other applications in the same group that received (and
cached) the message respond by multicasting a repair to the group. In order to reduce
duplicate requests and repairs for the same message, nodes hold their requests and re-
pairs for an initially random delay. A node holding a request would then progressively
back off by doubling the delay every time it receives a request for the same message. A
node holding a repair would simply cancel the repair upon receiving the same repair.

The random delays are chosen uniformly in the interval [C;d; 4,(C; + Cy)d; 4] for
request and [Dd; ,,(D; + Dy)d,] for repair messages where d; , is the average mes-
sage trip-time from the multicast source to the node and C;, C,, Dy, and D, are ad-
justable parameters. The protocol has an algorithm for automatic tuning of these pa-
rameters so that the likelihood of duplicates and the time to recover lost messages are
lowered to a minimum.

4.1.2 Problem and overview of the solution

To extend the simple idea of cooperative message recovery to content-based networks,
we must overcome two main technical problems. The first problem is to enable re-
ceivers to detect message losses. For some applications, specifically when messages are
channeled into identifiable streams and subscribers receive all messages in a stream,
this can be easily done by marking each message within its stream with a sequence
number. In this case, a gap in the sequence numbers indicates a message loss. How-
ever, such streams do not exist in a content-based publish/subscribe network, where
messages are delivered only if they match the interests of subscribers, and where such

50 4.1 Context and Preliminaries

interests may partially overlap. In other words, with partially overlapping receivers’
interests, it is impossible to assign sequence numbers to messages so as to obtain con-
tinuous sequences for all receivers. Therefore, in practice, a receiver can not distin-
guish a message that was lost from a message that was not delivered because it does
not match the receiver’s interests.

We address this problem by adding some information to each message that allows
a receiver to determine, with some probability, if any of the latest publications of the
sender that were not received was in fact of interest for the receiver. In Section
we briefly introduced this entity that we call publication record which consists of a set
of Bloom filters, each encoding one of the sender’s most recent publications.

The second problem is to recover a lost message that was determined to be of
interest. As in SRM, we propose a cooperative recovery scheme whereby a lost message
is recovered from some other application in the network that might have received and
cached the message. In SRM a receiver would multicast a request for a lost message to
the same multicast group to which the message was sent, which conveniently identifies
all potential caches from which the message might be recovered. Unfortunately, in a
content-based publish/subscribe network it is not as easy for a receiver to address other
receivers of a given message. One way to reach potential caches is to send a request to
all caches, which can be done by having all caching applications subscribe for a generic
“request” message. However, that solution might incur an unacceptable overhead for
caching applications and for the network in general, especially in situations where the
network is already congested.

We address this second problem using the same publication record attached to
messages. A receiver that receives a Bloom filter B,, from the publication record of a
message m’, and therefore determines that m was of interest, creates a request message
that includes B,,,. This request is intended for other applications interested in the same
message m that are willing to serve as caches for lost messages, and therefore that
would subscribe for request messages that match B,,,. This subscription in effect creates
a way to explicitly address such clients. Thus, any node that incurs loss of m can send
a request to other potential receivers, by simply publishing a request for m.

Lastly, an application that has a cached copy of a lost message and that receives a
request for a repair must somehow deliver that message to the requesting application.
This can be done in a straightforward way through a direct (unicast) connection, or
also through the publish/subscribe API by effectively republishing the message for the
requesting receiver. Each of these solutions has advantages and disadvantages that we
discuss below.

51 4.2 End-to-end Loss Recovery

4.2 End-to-end Loss Recovery

4.2.1 Message loss detection

In Section [3.3|we detailed how the FIFO ordering component of the transport protocol
performs loss detection. If the reliability protocol is enabled, upon every loss detection
the incident is signaled to the reliability component with a method call that in turn the
triggers recovery process for the lost message. The method call also passes information
about the lost message that is required for its recovery, namely the Bloom filter and
sequence number of the lost message (recall that an entry in the publication record is
a Bloom filter representing a message). We refer the reader to Section for details
of the encoding scheme that we use in generating publication record.

4.2.2 Routing requests

A subscriber may try to recover a lost message by requesting a copy of that message
from other applications that received and cached the message. The problem is then to
address such a request so as to reach all and only the receivers that might have cached
a copy of the lost message.

We propose to transmit the request through the same publish/subscribe system,
by constructing a special request message and by having receivers subscribe for those
requests. So, an application with subscription S that is willing to cache messages
for other applications must subscribe for requests for messages matching S. For ex-
ample, a simplistic way to do that for a subscriber interested in, say, {news=sport,
team=Yankees} would be to subscribe for a request message {reliability-message=request,
news=sport, team=Yankees}. However, this simplistic approach does not work. For
one thing, the second subscription is useless, since the first one would already match
all corresponding request messages. More importantly, a subscription for a request
that repeats the same constraints as a normal subscription would not work, because
a receiver trying to recover a missing message may not be able to fill in the relevant
attributes.

Consider in fact the following scenario. Application Alice subscribes for {team=Yankees}
while application Bob subscribes for {news=sport}. Now, suppose Alice receives mes-
sage m ={news=sport, team=Yankees} while the same message is lost on the way to
Bob. Also suppose that Bob receives a following message m’ ={news=sport, team=Mets}
carrying a publication record that allows Bob to detect the loss of m. At this point, Bob
can determine that the missing message m matches its own subscription {news=sport}
and therefore might issue a request {reliability-message=request, news=sport}. How-
ever, that request would not reach Alice. In order for such a request to reach all po-
tential caches, Bob would have to fill in all the attributes of m in the request. In other
words, Bob would have to know m completely in order to issue an effective request to
recover m.

52 4.2 End-to-end Loss Recovery

We propose to overcome this problem by once again relying on the information
contained in the publication record. In the scenario we just described, Bob does not
know the content of the missing message m, but he does know its encoding B,,,. There-
fore, Bob could include B,, in a request message such that Alice could subscribe for it
using an encoding of its own subscription. For example, suppose that Alice’s subscrip-
tion would be encoded in a Bloom filter B, whose bits at positions 7 and 15 are set
(all other bits are zero). Then, Alice could subscribe for {reliability-message=request,
b7=true, b15=true} effectively representing B, by means of attributes each represent-
ing one of the 1-bits in B,. Notice that what matters is the presence of such attributes,
not their value. Now, Bob could do the same by composing his request for m using the
encoding B,, he finds in the publication record. And since the encoding is such that a
message m matching a subscription S would be encoded by a Bloom filter B,, whose
1-bits are a superset of the subscription’s Bloom filter Bg, Alice would have to receive
that request.

Formally, if Alice intends to volunteer for providing repair messages that match
one of its subscriptions (filters) say F, it computes the Bloom filter of this subscription
which here we denote by Br and then issues a subscription for requests, similar to the
following:

F : {reliability-message=request, b; = true, ..., by = true}

where attributes b; through b; correspond to those bits of By, the Bloom filter of
F that are set to one i.e., if Br[i] = 1 then there is a constraint in F in the form
b; = true. Later, when Bob, detects that a message m was lost, because through
publication record, it has access to the encoded version of message m, (denoted by
B,,), it publishes a message similar to the following

m : {reliability-message=request, b; =true, ..., b; = true}

where b; to b; correspond to bits of B,, with value one. Now, if the lost messages m
matched F, Alice’s subscription, then, B, covers By and thus {b;, ..., by} S {b;,..., b;}.
Subsequently, m will match the filter F and so, Alice will receive this request.

With the ability to detect lost messages and to route requests to all potential caches
for those messages, the recovery process proceeds in a similar fashion as in SRM.
We illustrate this process through an example. Consider a subscriber A that has an
active subscription and suppose that A is willing to provide repairs for all the events
matching that subscription. To do that, A encodes the subscription and issues a second
subscription using the 1-bit attributes as described above. As subscribers intending
to participate in the recovery mechanism, B and C also initially issue an additional
subscription to receive matching repair requests. As we will detail below, this is done
to suppress duplicate requests.

Now, assume that later, a publisher P publishes an event m; matching A’s subscrip-
tion. The message is received by A but due to a temporary failure it is not received by B

53 4.2 End-to-end Loss Recovery

Figure 4.1. Message mg is lost before reaching B and C (a); having received mq (b), C
publishes a request for ms (d); A replies with a repair (d).

and C whose subscriptions also match my (see Figure[4.1j). Later, P publishes another
message mg that is received by B and C (because it matches their subscriptions). This
message carries the publication record of P that includes the Bloom-filter encoding of
ms. Using that data, both B and C realize that they have missed ms (see Figure 4.1p).

The detection of a message loss triggers the recovery mechanism at B and C. Thus,
B and C issue repair requests, but in doing that, they try to suppress duplicate requests.
The two nodes start to count down from a randomly generated timer (discussed in Sec-
tion [4.1.1). Assume that C picks the earlier timeout between the two. Once C’s timer
expires, C publishes a request for my by including the 1-bit attributes corresponding
to the Bloom-filter encoding of ms as well as a unique message id for ms (source plus
sequence number) that is also part of the publication record. This request is received
by both B and A because it matches their request subscriptions (see Figure [4.Ic). Upon
receiving the request, B, which has a timer running on an identical request, reacts by
delaying its own request by doubling its timer value.

A instead reacts by searching its message cache for a message with the given id,
and when it finds it, publishes a repair message consisting of the original message m;
with an additional attribute that indicates that it is a repair (and therefore a duplicate
publication). The repair message reaches both B and C (see Figure [4.1d), at which
point B cancels its pending request and both B and C deliver ms.

54 4.2 End-to-end Loss Recovery

Thanks to the expressiveness of content-based networking, this request routing
technique allows for fine-grained control over the request messages and their receivers.
On the one hand, it allows clients to precisely describe request messages they are will-
ing to reply to, if any. On the other hand, it also allows for the implementation of
special policies for the distribution of request messages, for example restricting re-
quest and repair messages within a single administrative domain. It is also easy to
use this recovery protocol with designated cache nodes distributed in strategic points
over the network that take on the responsibility of providing repairs, as suggested in
RMTP [LS96] for reliable IP multicast.

4.2.3 Sending repairs

As explained in the example of Figure [4.1} a caching subscriber can respond to a re-
quest by re-publishing a message and by flagging that publication as a repair. Alterna-
tively, the cache may send the repair directly to the requesting node through a unicast
connection. Re-publishing is advantageous when the same message is requested by
several receivers—something that might happen with overlapping subscriptions and
non-local faults. Conversely, a unicast reply may be a better option when no other
receivers requested the same message, and when that message would reach many
receivers that already received the original copy. There may also be security and au-
thenticity issues with the repair messages that are provided by caching nodes. This
can be seen as a general trust and security management problem in the context of
publish/subscribe systems, which is out of the scope of the thesis.

4.2.4 Adaptive message cache

An important parameter that is not discussed in the original paper on SRM by Floyd
et al. [FJL"97] is the amount of memory a caching node (generally, a subscriber) has
to allocate to its message cache. The cache should be allocated and managed so as
to obtain a high cache-hit ratio while also avoiding unnecessary caching and therefore
saving memory resources. In this section we elaborate on this issue.

On the one hand, for performance reasons we would like to have nodes maintain
the message cache in main memory, within the limits of their memory constraints. On
the other hand, it is also desirable to limit memory usage to a minimum. Therefore,
nodes need to know when to drop some of the messages from their cache. The best
strategy depends on various parameters, such as end-to-end message delivery delay,
sender publication rate, match probability, and timer parameters of the requesting
nodes. A message cache of constant size is oblivious to such network dynamics and
may sometime lead to memory waste and other times to cache misses. Instead, we
seek an adaptive cache that would perform well under variable network conditions. In
particular, we formulate an approximation for the optimum cache size focusing on the
most common scenario.

55 4.2 End-to-end Loss Recovery

Symbol | Meaning |

A Publication rate
Ci, C5 | SRM request timers
P, Match probability
dzp Trip time between requester and publisher
dg 4 Trip time between requester and caching node
K Cache size

Table 4.1. Parameters used in the calculation of the cache size.

We consider the message cache as a ring buffer with dynamic size, and we consider
the problem of finding the optimum size of this ring buffer based on the parameters
summarized in Table (indeed, our implementation uses a ring buffer for its mes-
sage cache). For this formulation we assume that message losses occur in bursts of S
messages per second, where 1 < S < AP,,. We further assume that request messages
are not lost.

Consider a publisher Z that publishes a message m;. This message has two intended
receivers: A that receives m; and B that incurs a message loss and does not receive m;.
To find a lower bound for the size K of the message cache at A, we assume that A
is closer to the publisher while B is farther away from the publisher in terms of end-
to-end delay. Thus, on average, it takes d; 5 + % + ¢ time units for B to receive
m;, the next (relevant) message from Z, and detect the loss of m; by investigating
the publication record attached to m;. We neglect ¢, the small processing time of m;.
Therefore, the request message from B will be received by A after an expected delay of
(Cy + %)dz,B + dp 4 time units. Consequently, in order to be able to provide a repair

for the lost message m;, A has to store m; in its ring buffer for at least d; + % +

(C+ %)dz,B + dp 4 time units.

The minimal caching time we just computed, together with the arrival rate at A,
determines a minimal cache size. Since A receives messages from the publisher with
an expected inter-arrival time of ﬁ, and hence must overwrite m; in its ring buffer
approximately after ﬁ time units. Thus, in order for A to be able to provide repair for
m;, the request must arrive at A before A overwrites m; in its ring buffer. So we have:

1 Cy
dZ,B +—+ (Cl + ?)dZ,B + dB,A S

AP, AP,

solving the inequality, we find a lower bound for the cache size K:

C
K > AP, [(C; + ?2 +1)dy 5 + dp 4]

56 4.2 End-to-end Loss Recovery

1: if closets_repair_provider = True then
20 a—((Ci+2+1)dyp+dg AP, +1
3: be0

4. if HitRatio < H then
5: b—1.1K

6: ¢ < max(a,b)

7: else

8 ¢« 0.9K

9: if Kpin < ¢ <Ko then
10:. K«

Algorithm 4.2. Probabilistic ordering FIFO algorithm run by a recipient for each
publisher

The parameters of the above formula vary over time, and therefore must be con-
tinuously estimated. Each caching node A, can directly measure AP,, which equals the
reception rate from the publisher Z at A. The value of (C; + %)dz,B) is not measurable
by A and therefore is included in each request message sent by B. The auto-tuning al-
gorithm in SRM works in a way that the requesting node is likely to be the closest node
to the point of failure. Thus, the requesting node for a given publisher is likely to often
be the same node. Thus, this value is averaged over received requests for message of
the publisher Z with the assumption that requests are coming from the same node or
nodes at the same distance from the publisher. Finally, the value of dj 4 is easily found
by the simple method described by Floyd et al. in [FJLT97].

Another consideration is that based on SRM semantics, via auto-adjustable timer
parameters, the node that provides repair messages is usually the closest node (in
terms of end-to-end delay) to the point of message loss, which is in fact a method to
minimize recovery time. Therefore, it is better to have this node handle caching more
aggressively and other nodes gradually reduce their cache size, since they are not
actively involved in providing repairs for messages coming from that specific publisher.
Moreover, given that the above formulation gives a lower bound for K, caching nodes
also need to monitor their average hit ratio, which is updated upon reception of each
request, and if this ratio is below a preconfigured value, increase their cache size.
Algorithm[4.2]shows this procedure, which a caching node executes periodically. H is a
preconfigured hit ratio and K,,;,, and K,,,,, are minimum and maximum allowed cache
size, respectively, and are configurable parameters. This algorithm is quick to increase
the cache size as a reaction to sudden spikes in publication rate A, and instead reacts
with a gradual increase (10%) of the cache size when the network is stable but the hit
ratio is lower than the configured level H. The algorithm is also rather conservative
when it comes to reducing cache size, since we would like to avoid dropping cache

57 4.3 Discussion

entries too early as a result of abrupt but transient changes in the network dynamics.

4.2.5 Interaction with FIFO ordering protocol

We implemented the recovery protocol as a part of our transport protocol, where it
functions beside FIFO ordering protocol. If the publication record of a message hints
the possibility of a message loss, the received messages that proceed the missing mes-
sage are latched for some time. This latch time is determined by the FIFO ordering
protocol. If a missing message arrives before the latch time expires, then the delivery
proceeds as usual; otherwise the recovery process for that message triggers.

4.3 Discussion

The effectiveness of the proposed recovery protocol is primarily influenced by the ef-
fectiveness of the loss detection. Obviously, the publication record carried by each
message must be limited in size due to practical limitations and also to limit traffic
overhead. This is in fact, where the probabilistic nature of our recovery protocol stems
from.

1.0 1.0
> >
§ 0.8 § 0.8
o [}
2 0.6 Q 0.6
5 §
E 0.4 :gj 0.4
3 3
@ 0.2 @ 0.2
S S

0.0 0.0

Publication record size Publication record size
(@) (b)

Figure 4.2. Probability of loss detection for (a) different sizes of publication record
and match probability, (b) different sizes of publication record, match probability and
different number of nodes sharing a loss (2, 3, 5 from bottom to top in each line
category).

We now discuss the impact of publication-record size on the probability of loss
detection. Considering a subscriber S and a publisher P whose publication matches
S’s subscriptions with probability P, the probability that S detects the loss of a
message sent by P depends on the message loss probability P, on the path from P
to S, the matching probability P, and the size R of the publication record. Simply
put, if each message carries a publication record of size R, then the loss of a message m
will not be detected by its intended receiver if none of the R messages published after
m are received by that receiver. So, the probability of loss detection is:

58 4.4 Evaluation

1- (1 - pmatch + Pmatchploss)R (4-1)

Figure shows the probability of loss detection for different sizes of publication
record and different match probabilities for a loss probability of 0.01. As the figure
suggests, when the match probability is 0.001 (i.e., out of every 1000 publications,
only one message is expected to match the subscriber’s interests) the loss detection
mechanism is very inefficient. With 5% matching probability, a publication record of
size 10 makes the loss-detection possible with a probability of 0.4. At a first glance,
Figure might suggest that this loss detection mechanism would limit the appli-
cability of our recovery mechanism. While this is true for applications with very low
match probability, note that Figure demonstrates the worst case where there is
only one intended receiver for the lost message. In other words, when a message loss
is shared among multiple receivers, it is sufficient that only one of them detects the
loss. This happens when subscribers have overlapping subscriptions.

As an example, let us consider a case of Figure where a node n has a match
probability of 0.01. Let us also assume that there are k other nodes (k = 1,2,4 in
Figure [4.2p) with the same matching probability as n and we also assume that all
these nodes’ subscriptions have a 50% overlap with n’s subscriptions. That is, any
message that matches n’s subscription will match all of the other nodes’ subscriptions
with a probability of 0.5. Figure (the three bottom lines) shows the growth of
the loss-detection probability (the probability that at least on node detects a shared
loss) with the growth of the publication-record size. The three top lines correspond to
the case where nodes have a match probability of 0.05 and the rest of the scenario is
similar. Notice that the growth of loss-detection probability with the size of publication
record is faster for larger values of k.

Another consideration about this loss-detection mechanism is that if the publication
rate (number of publications per time unit) is relatively low, detection of a message loss
will be late, especially for subscribers with low match probability. This problem can be
alleviated by periodic soft-state messages sent by the publisher. Such messages only
serve the purpose of enhancing the loss detection on the receiver side. Receivers whose
match probability is too low can subscribe for soft-state messages for faster and more
successful loss detection.

4.4 Evaluation

In this section we evaluate the performance of the recovery protocol with a focus on
effectiveness and cost. More specifically, we are interested in measuring how many
lost messages are recovered and how long it takes to recover them. Another practical
question we explore is how much extra traffic is generated by the recovery protocol
and what is the user-tangible impact on the ordinary traffic.

59 4.4 Evaluation

We note that the performance of the recovery protocol depends significantly on
the choice of topology, workload, and message-loss probability. Our choice for these
experimental settings does not aim to demonstrate the best-case performance of our
protocol, but rather intends to examine its effectiveness under stress, in the presence
of frequent message losses, and with conservatively chosen workloads that do not
necessarily contribute to increase the effectiveness of the recovery protocol.

4.4.1 Experimental setup and workload

In our experiments each physical machine hosts a broker that serves 5 instances of
the client (as their home broker) running on the same machine. To simulate a wide-
area network, we used the Linux traffic control tools to apply delay and message loss
on all inter-broker and links. Each link’s delay d; is randomly chosen in the range
of [25,75] milliseconds, which also continuously varies during the execution in the
range of [d; — 5, d; + 5] milliseconds. This variation of 5 milliseconds is typical of the
Internet, based on different Internet measurements

We present the results for two sets of experiments with two different network
topologies and workloads. The first topology is composed of 12 brokers with a di-
ameter of 5 broker-hops in which out of the total of 60 clients, 6 nodes are publishers
and 54 are subscribers. Then to probe scalability of the recovery protocol, the second
experiment involves a larger topology of 46 brokers with a diameter of 11 broker-hops.
Among the total of 230 clients, 10 are publishers and the rest are subscribers.

Using the Linux traffic control tools, we apply a link-level message loss probability
of 0.01 to all inter-broker links (i.e., each link loses approximately one message out
of each 100 messages). This loss probability is rather large because for a network of
diameter 11 it sums to unrealistically large likelihoods of message loss for some end-
points. For example, for a sender and a receiver 11 broker-hops apart, the probability
of message loss is as large as 0.1. This is a deliberate choice to stress-test the recovery
protocol under very frequent message losses.

In both experiments, we use synthetic workloads with varying publication rates
that simulate sudden short-term spikes in publication rate of publishers, to simulate
bursty traffic that causes queuing delays. In these experiments, all the nodes partici-
pate in the recovery process. That is, they all volunteer to provide repair for messages
that they receive. As shown in Section two crucial factors in the loss detection
and hence in the effectiveness of the recovery protocol are the matching probability
and the number of receivers for a message. To be conservative in our evaluation,
we choose workloads that exhibit low subscription/publication match probability (the
probability that a message matches a node’s subscription) and a low number of re-
ceivers per message. Figure characterizes the two workloads for the 12-broker and

1For example see measurements by RIPE Network Coordination Centre (RIPE) available at
http://www.ripe.net/data-tools/stats/ttm/ttm-data

60 4.4 Evaluation

10 T T T

— 12-broker : : : Ol
081 = = agiroker | 1T e

0.6

—
[l

o
o
T

o
=N
T

0.4

<
=~
-

0.2

<
o

CDF of messages
CDF of sender/receiver pair

,,,,, e D T 12-broker |
: : : : o| = = 46-broker

I I I I 0. I ! I [I I L !
5 10 15 20 25 30 35 40 8.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
Number of recipients Matching probability

<
o

(a) (b)

Figure 4.3. (a) Number of receivers for cumulative distribution of messages. (b) Match
probability for cumulative distribution of subscriber/publisher pairs.

4000 ‘ ‘ ‘ ‘ ‘ 7000
3500 6000
3000 5000
3 3
g 2500 [} swvens Publications "\ T I § 4000 1
173 — ifi i IR . .. i (%]]
§ 2000 ‘Not|f|catlons % 3000 -1 vvuris Publications | : :
1500 |--eoerneee e R R R SERE R RREEREE R 2000 |--{ = Notifications |:--------- ARRERREES B
1000 i ersiiss v e 1000 |+t SRR RS SRR e o]
500 ‘ ‘ ‘ ‘ i oLy YIOTIE friviin KT T (it
50 100 150 200 250 300 0 50 100 150 200 250 300
Time (seconds) Time (seconds)
(a) (b)

Figure 4.4. Aggregate publication and notification rates in (a) 12-broker and (b) 46-
broker networks.

46-broker experiments. As Figure shows, in both workloads 50% of the messages
have at most two receivers. Figure plots the subscription/publication match prob-
ability for each pair of subscriber and publisher. In both workloads, 80% of the pairs
have a match probability of less than 0.08 while the maximum match probability is not
higher than 0.1.

Figure plots the aggregate publication and delivery rates without the recovery
protocol during the course of the experiments, which runs for a total of 5 minutes. The
rapid changes in delivery rate is due to spikes in publication rates.

4.4.2 Recovery effectiveness

First we look at the number of false negatives (that is, the number of messages that
were not delivered to their intended receivers) with and without the recovery protocol.
One determining factor in the effectiveness of the protocol is the size of the publication
record. Figure illustrates the effectiveness of the recovery protocol with different

61 4.4 Evaluation

26000

24000 s SR SR b .
22000 N e AR A S .
20000 -+ i SUEREIE: e oo Feneenees .
Y e A A

False negatives
False negatives

16000 [+ omoieeeeeees N g P .
) e f _ .

12000 i i i L L
0 2 4 6 8 10 0 2 4 6 8 10
Publication record size Publication record size

@ (b)

Figure 4.5. Impact of publication-record size on the effectiveness of the recovery
protocol in (a) 12-broker and (b) 46-broker networks.

publication-record sizes. The y-axis shows the total number of false negatives (message
losses); the zero on the x-axis represents the case where no recovery protocol is in
place. The decrease in the number of false negatives is more pronounced in the 46-
broker network while it is slower in the 12-broker network. Indeed, in the 12-broker
experiment, growing the publication record size from 1 to 10 only halves the number
of false negatives while in the 46-broker network the false negatives are reduced by a
factor of 3, approximately.

Our calculation of the probability of message loss detection by Equation |4.1| as
well as Figure explain this result, which is mostly due to the characteristics of
the workload, i.e., small matching probability and small subscriber/message, which
hinder a more effective loss detection in the 12-broker network. Furthermore, our ex-
periments with smaller message loss probabilities showed that the exponential effect
of publication record size on the recovery effectiveness is more substantial when mes-
sage loss probability is smaller, which is also explained by Equation For instance,
in the 46-broker network when loss probability is 0.001, the recovery protocol with
a publication record size of 10 reduces the number of false negatives by more than 8
times.

We now examine the network dynamics and the corresponding protocol behavior
over time. To do that, we focus on the experiments with the best effectiveness results
(the highest recovery rate), that is, with a publication record of size 10. We choose
this case because a larger size for the publication record generates larger amounts of
network traffic and hence by studying this case we gain a better understanding of its
impact on the network.

We begin our probe by looking at the aggregate rate of false negatives with and
without the recovery protocol during runtime, shown in Figure The reduction in
the false negatives that is almost a factor of two for the 12-broker and a factor of three
for the 46-broker network is persistent during the whole course of the experiment. So,
at a high level, the recovery protocol does not show any pathological behavior during

62 4.4 Evaluation

120 ‘ 300

100 k| '** W/ recovery —— W recovery] R 250 W/O recovery —— W recovety | .

Messages
Messages

I 1 1 1 1 0 \ 1 1 1 1
0 50 100 150 200 250 300 0 50 100 150 200 250 300

Time (seconds) Time (seconds)
(@ (b)

Figure 4.6. (a) Changes in the aggregate rate of false negatives (message loss) with and
without the recovery protocol, for (a) 12-broker and (b) 46-broker networks.

the experiment.

1.0 10 ‘ ‘
0 0.8 @ 0.8 Pt erbrrede o]
o o} :
(o] (o)) .
@] I :
20.6 2 0.6 28 | ERS SRR Y S CIRIIEN ITIRPIE SRR :
[0] (0] | .
= = ‘ ;
5 04 : S 04l e]
o [+ Repair & e 1 ¢4 1 |= Repair
O 2 | = Original O gof- =t e«é--------i-| ™ Original |

= = Req./rep. N D oens © | == Reaq.rep.
00 Lo 1 \ 1 00 | \ : \ 1 1 1
] 200 400 600 800 1000 0 200 400 600 800 1000 1200 1400
Delay (milliseconds) Delay (milliseconds)
(@ (b)

Figure 4.7. Cumulative distribution of the end-to-end delay for original and repair
messages and request/repair delay for (a) 12-broker and (b) 46-broker networks.

We now proceed to examine another aspect of the recovery effectiveness, namely
the time it takes to recover a lost message. Figure [4.7] shows the end-to-end delay
of the original (non-repair) messages as well as the repair messages. Note that the
delay of repair messages is in fact the time difference between their publication by the
original publisher and their delivery to the indented receiver as a repair. Figure[4.7]also
plots the request/repair delay, which is the time difference between multicast of the
first request for a certain message and the first repair for that message. An interesting
observation is that the request/repair delay in both networks is relatively small: for
80% of the messages in 12-broker and 46-broker networks, this delay is below 200
and 350 milliseconds, respectively, while the total time to recover missing messages is
considerably larger. This means that a large part of the recovery delay is due to “late”
loss detection, which is a result of low matching probability and/or low publication
rate. This is not surprising, since the publication rate of each publisher varies between

63 4.4 Evaluation

20 and 500 messages per second in the 12-broker, and between 20 and 250 messages
per second in the 46-broker networks, and hence, with a match probability of 0.05, it
might take up to 1 second to detect a message loss.

Also, note that our choice of large message loss probability causes many of the
requests to be lost and so, some requests must be reissued for a second or a third time,
each time after a timeout. In fact, in other experiments with the 46-broker network
when we applied smaller link loss probabilities, we observed that the request/repair
delays were almost 50% smaller, which in turn resulted in smaller recovery times.

4.4.3 Performance and network overhead

We now turn our attention to the operating costs of the recovery protocol. In particular,
We consider two measures: network usage and the overall impact on the receivers in
terms of the extra delivery delay that the original messages incur. The extra network
load is caused by the publication record attached to each message as well as the traffic
of request and repair messages. In our workload all messages have 10 attributes and
to produce each entry of a publication record we encoded a message in a Bloom filter
of size 256 bits. Thus, a message with a publication record of size 10 carries 320
bytes of extra information. We deliberately used this large number of attributes and
large-size Bloom filters to examine the negative effects of the recovery scheme in a
rather extreme case. In reality though, where messages usually have smaller number
of attributes, Bloom filters of size 128 or 64 would suffice and cause less network

overhead.
1200 400 T
oo iia 50 o

1000 f----

]

n 0 oo [
S : : e Publication g 20
@ 600 e o Fo| T T Repair @ 200 [SR | Publication ||
4} : : .| = Request o L L L .| == Repair B
: : : 150 : : : P
2 a0 s = : : .| ™" Request
: : : : : 100 e
200 |- R EAREEEEEPETFERPEPPES e f w1 W Y S AAL T\ N A Vo eed 7 0e ped WA
¢ : : ; ; o0 S “I“\ri\/v”gf_l\/lf\-,l\ 7\/"1‘
0 | 1 | | | | 1 | | |
0 50 100 150 200 250 300 0(] 50 100 150 200 250 300
Time (seconds) Time (seconds)
(@) (b)

Figure 4.8. (a) Aggregate publication rate, request, and repair messages during the
experiment for (a) 12-broker and (b) 46-broker networks.

Figure illustrates the aggregate rate of request and repair messages during the
experiment as well as the aggregate rate of publications to be used as a reference mea-
sure. Ideally, for each lost message there must be only one request and one repair
message. However, in many cases request and repair messages are also lost, which is
indeed the reason why in Figure the number of requests is more than the number

64 4.4 Evaluation

of repairs. Interestingly, we observed that in both networks the multicast suppres-
sion mechanism built in SRM works favorably well. More specifically, in the 12-broker
network more than 90% of the request and 80% of the repair messages were not du-
plicated while in the 46-broker network these values were 80% and 70%, respectively.
This larger duplicate number in the 46-broker network is due to the network’s greater
diameter, which is twice the diameter of the 12-broker network. A higher diameter has
a slight effect on SRM’s multicast suppression mechanism, but more importantly leads
to more frequent losses of request/repair messages.

1.0 1.0
o 08 b R T S R R @ 08| o :
(] . . - ! . (0]
> . L e . j=2)
« ‘ Do ‘ ‘ I
@ 0.6 Feeeeeeeees R e P B 0.6 Preeeeebees @l b
Q . = . . [0} .
E] ‘]] E]
B QA e o] G 04 e | R R EEEEEEEREI RS R
w ‘ : ‘ ‘ w ‘
a . . a : T :
O p2f- et i W recovery || O g2 R . W recovery |
o ap : "+ W/O recovery - : et W/O recovery
0.0 - I I 1 1 0.0 2 I ! 1 1
() 50 100 150 200 250 "0 100 200 300 400 500 600
Delay (milliseconds) Delay (milliseconds)
(a) (b)

Figure 4.9. Delivery delay with and without the recovery protocol in (a) 12-broker
and (b) 46-broker networks.

In effect, the overall and user-visible overhead is the change in the delivery delay
of the messages when the recovery protocol is active and causes extra network traffic.
Figure[4.9 shows the end-to-end delivery delay for cumulative distribution of messages
with and without the recovery scheme. As the diagram suggests, the recovery protocol
shifts the plot of end-to-end delay without recovery to the right, which implies a con-
stant increase in the end-to-end delivery delay of all messages. Nevertheless, given the
minimum and maximum values of end-to-end delay without recovery, an increase of
25 milliseconds in delay is not prohibitively large, since the dominant network traffic is
the ordinary publication traffic and so, request/repair messages do not cause tangible
impact on the overall network performance.

4.4.4 Adaptive cache

We now examine the performance of the adaptive message cache by measuring the hit
rate and the size of message cache in the network. A cache hit occurs when a request
for a message is sent out and at least one of the nodes that received the request is
able to provide a repair. Thus, considering the whole network as a single cache, we
define hit ratio as the ratio between total number of cache hits to the total number of
requests.

In our experiment we assigned values of 5 and 300 to K,,,;, and K,,,,., respectively,

65 4.4 Evaluation

1.00
0.95 [1
2 0.90 k)
S g
T 085 T
080 095 b e g .
075 \ 1 1 1 1 094 1 1 1 1 1
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time (seconds) Time (seconds)
(@) (b)

Figure 4.10. Changes in the cache hit ratio in (a) 12-broker and (b) 46-broker networks.

80 T T 70

TOF = Max [i o 60
SO i [N T o 50
% 50 % 4
240 2
Qaol N YT 83
O~ (@)

20 20

10 : ‘ 10 : : SRV :

9 g w e L Y g bt iz it e o Lon oty !
O 1 1 0 1 1 1 1 1
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time (seconds) Time (seconds)
(@) (b)

Figure 4.11. Changes in the minimum, mean, and maximum cache size of all nodes
in (@) 12-broker and (b) 46-broker networks

with an initial cache size of K,,;;,. The target hit ratio H (see Algorithm [4.2) was
set to 1. Figure plots the changes in hit ratio during the experiment. In both
networks, the hit ratio grows rapidly in the first few seconds of the experiment and then
does not exhibit large changes during the rest of the experiment despite the continuous
oscillation of the publication rates.

The effectiveness of the adaptive cache is further demonstrated by Figure |4.11]
which shows the minimum, mean, and maximum cache size among all the network
nodes during the experiment. Despite the high hit ratio, the amount of memory used
for caching was small. This is because most of the nodes keep their cache size to a min-
imum, as evidenced by small value of the mean cache size. This is because the adaptive
cache mechanism causes the nodes that do not actively participate in providing repair
messages to reduce their cache size. On the other hand, nodes that are actively pro-
viding repairs adjust their cache size to accommodate changes in publication rate and
improve hit ratio.

66 4.5 Conclusion

4.5 Conclusion

In this chapter we presented an end-to-end reliability scheme that is part of our trans-
port protocol for best-effort publish/subscribe systems. The goal is to improve the
reliability of these systems with a minimum reduction in high throughput and end-to-
end delivery delay that such systems offer. In essence, our solution is an adoption of
SRM with an enhancement to enable efficient routing of requests and an algorithm for
cache management. The protocol is built on top of a standard publish/subscribe API,
and therefore does not require any modification to the broker network.

Perhaps the main drawback of this recovery protocol is its probabilistic nature, i.e.
its inability to guarantee that all lost messages will eventually be recovered. This, as
we discussed in detail, is an outcome of the underlying probabilistic loss detection. We
argued that when message losses are shared among multiple subscribers the chances
of loss detection (and hence recovery) is considerably improved. This argument was
in fact validated through experiments in which more than 75% of the lost messages
were recovered despite very frequent message losses, where most lost messages had
on average 5 receivers. More importantly, the experiments showed that the overhead
that is the result of extra request/repair messages is insignificant and does not cause
any inhibiting effect on the ordinary network traffic.

Chapter 5

Congestion Control

Best-effort systems typically process and forward messages as fast as they can, with-
out taking into account the balance between independent flows, and without feedback
(acknowledgements) or other flow-control mechanisms to avoid congestion within a
single flow. On the one hand, best-effort systems are simple and fast, but on the other
hand, they offer little or no support for fair resource utilization and congestion con-
trol. In such systems, publishers do not avoid or even detect congestion, and brokers
respond to congestion by simply dropping overflowing messages.

Congestion and its adverse effects on traffic and applications have been studied ex-
tensively [BCC™ 98} BHL™00; WHO1]. Congestion manifests itself when router queues
fill up and ultimately overflow, which forces the router to drop packets. Congestion
may be caused by transient and typically harmless traffic bursts, or by persistent high-
rate flows that may cause severe delays and disruptions and even the complete lock-out
of other flows [BCC™98]]. In fact, network congestion is the primary cause of packet
loss and long end-to-end delays, and it is a serious threat to the stability of a network.

These considerations motivate the work presented in this chapter. Our high-level
goal is to develop a congestion-control mechanism for best-effort content-based pub-
lish/subscribe systems and as an integrated component of our end-to-end transport
protocol. Our guiding principle in the design of the congestion control is to maintain
the simplicity and elasticity of the underlying best-effort network of brokers, and at the
same time provide applications with a method and a mechanism to modulate message
flows according to available resources and in a fair manner.

We develop our protocol based on the design of a congestion control protocol for
IP multicast called TCP-friendly multicast congestion control (TFMCC). We present the
rationale for this design and discuss the challenges of implementing it in the context of
content-based communication. In particular, we discuss the specificity of content-based
communication with respect to flow control. We then describe our design, implemen-
tation, and the experimental evaluation of a content-aware congestion control protocol.

In brief, in our solution each receiver (subscriber) measures the end-to-end delay

67

68 5.1 Context and High-Level Design

and loss rate within each message flow from a sender (publisher). These measures
are then used, through a so-called TCP-response function, to determine a proper max-
imal rate for that flow. That information is then fed back to the sender that in turn
aggregates it across flows and adjusts its sending rates accordingly. Our protocol is
TCP friendly in that, under the same network dynamics, it behaves like TCP in terms
of fairness and long-term transmission rate.

Unlike the original TFMCC or any other congestion control scheme for IP networks,
we implement a rate control algorithm that is content aware, in the sense that traffic
measurement and feedback by subscribers, as well as feedback aggregation and rate
control by publishers, are based upon and grouped by subscriptions and message con-
tent. This protocol only assumes the existence of an underlying content-based network
with a common publish/subscribe API, and hence it is a generic protocol that can be
applied to virtually any best-effort content-based network without any modification to
the broker software and in particular to its routing and forwarding algorithms.

In Section we elaborate on the problem of congestion control in the context
of content-based networks and in the wider context of traditional IP networks. We
then detail the internals of our protocol in Section Experimental evaluation of the
protocol is presented in Section[5.3] and we conclude in Section 5.4

5.1 Context and High-Level Design

As in traditional networking, controlling and avoiding congestion in a publish/subscribe
network amounts to witholding some publications on the part of publishers. More
specifically, it amounts to controlling message flows as they are produced by publish-
ers. Notice that, as is commonly intended in the context of congestion control, the term
flow refers specifically to a stream of messages going from one sender (publisher) to
one receiver (subscriber), even if the same stream in its entirety or in part might also
reach other receivers. In this case we distinguish separate, possibly interdependent
flows.

5.1.1 Congestion control for IP multicast

Congestion control has been studied in great depth in traditional networking, with
some results that are very relevant to the work presented here. In particular, since
content-based communication is a form of multicast communication (a message may
be delivered to multiple receivers), it is natural to consider porting congestion-control
protocols developed for IP multicast to content-based communication. Summarizing,
existing congestion control protocols for IP multicast are designed so that multicast
flows would compete in a fair way with other multicast or TCP flows, which are them-
selves designed to avoid congestion and to share network resources in a fair way. Ex-
isting methods of end-to-end congestion control for IP multicast are grouped into two

69 5.1 Context and High-Level Design

major categories: single-rate and multi-rate multicast.

Single-rate schemes are essentially extensions of TCP to multicast networks. In
these protocols, a receiver, usually called the acker; measures network dynamics in
terms of end-to-end delay and message loss, and sends feedback to the multicast source
which in turn adjust its transmission rate accordingly. These protocols differ in the type
of feedback messages and in the rate-limiting algorithm. Some protocols take a TCP-
like approach where the control feedback is in the form of ACK/NACK, and rate is
limited by a transmission window [[WS98}; [GS99} Riz00]. In other protocols, receivers
compute a desired rate on the basis of measures such as the delay and loss rate using
a TCP-response function, and communicate the result to the source that in turn limits
its sending rate accordingly [BTK99; WHOT].

In multi-rate approaches, mostly applicable to media streaming [VCR98} BHL"00;
SWO0O0]], senders usually deploy a flavor of forward error correction encoding to break
a data chunk into a set of stripes (sometimes with redundancy) and send each stripe to
a separate multicast group. Recipients join a base group to receive a minimum amount
of data, enabling them to retrieve or play the original media at a base-level playback
quality. Joining additional groups leads to better-quality playback levels or faster re-
trieval of a file. The number of groups a receiver subscribes to is determined based
on its estimate of congestion in its network area; in more congested areas, receivers
downgrade their subscription to a smaller number of multicast groups which leads to
a reduction of traffic in that area. In order for this method to be effective, there needs
to be a coordination mechanism that coordinates all the receivers behind the same
bottleneck to join the same number of groups.

5.1.2 TCP friendly multicast congestion control

An important representative of the single-rate protocols which we use as a basis for
our protocol, is TCP friendly multicast congestion control (TFMCC). TFMCC is a single-
rate, equation-based multicast congestion control protocol, and is an extension of TCP-
Friendly rate control (TFRC), a congestion control for unicast [FHPWOO]. Basically,
for each flow (one sender) a receiver monitors the round-trip time tzyr as well as the
loss event rate p (discussed below) and computes the maximum acceptable rate T for
that flow using the following “TCP-response” function (s is the packet size) [WHOI]:

s
T =
trrT (\/TgpJF (12 \/Sgp)P(l + 32P2))

The resulting rate T is the maximum rate that would assure compliance with TCP
behavior for that flow. When the receiver measures a delivery rate exceeding the com-
puted maximum rate, the receiver communicates its desired rate to the sender. The
sender then adjusts its transmission rate to the lowest requested rate, which is usually
dictated by the receiver with the most scarce network resources, called the current lim-
iting receiver (CLR). The sender always tracks the CLR, lowering its rate in response to

(5.1)

70 5.1 Context and High-Level Design

9000 — : 35000
8000 .- == RTT=10ms [] 30000 == p=0001 |
< 7000 g : RTT = 20 ms @ g = = p=0.01
M) : : [N p
S 6000 [—— RTT-100ms g 29000K : ; — p-01
= 5000 Lt] —#— RTT = 200 ms = 20000 oo P p RN b
Qo N . N Q. N . .
g 4000 : © 15000+ Prerenes e e 1
£ 3000 2 10000 ‘ ‘ ‘ .
= 2000 = : : :
1000 B000 [Sogrpr Tt 1
0 i b " 0 e AR
0.02 0.04 0.06 0.08 0.10 150 200
Loss event rate RTT (millisecond)
(a) (b)

Figure 5.1. The output of TCP response function: (a) for values of p € [0.01,0.1] and
trrr € {10, 20,100,200} milliseconds. (b) for values of tzrr € [10,200] milliseconds
and p € {0.001,0.01,0.1}.

a rate feedback lower than the current rate (possibly switching to a new CLR) and only
increasing its rate in response to a corresponding request from the CLR.

The parameter p in the TCP-response function is the loss event rate and plays a
central role in how the protocol responds to message loss. A loss event is the loss of one
or more messages during one round-trip time, and a loss interval, hereafter denoted by
¢, is the number of messages received between two loss events. Accordingly, p (loss
event rate) is defined as 1/¢ where { is the average loss interval over the last i loss
events. Note the difference between loss event rate and loss rate (lost messages over
total number of messages): the loss event rate is always less than loss rate. The choice
of using the loss event rate in the TCP response function reflects the fact that common
variants of TCP (e.g., TCP Reno) react only once to multiple message losses in a single
round-trip time [FHPWOQ].

Figure[5.1] plots TCP response function for different values and ranges of loss event
rate and RTT (p and tgyy in Equation (5.1))). Both plots show that for larger values of
RTT the sensitivity of the response function to changes in p declines. In other words,
in presence of congestion where RTT is relatively high, the output of the response
function is mostly dominated by the value of RTT. More importantly, Figure shows
that for smaller values of p (which reflects the lack of congestion), the response to
increases in RTT is more pronounced. This leads to a conservative behaviour which
avoids congestion by observing the fact that any increase in RTT is an indicator for
congestion starting to happen [FHPWOQ].

5.1.3 Content-aware rate control

In a content-based network, message flows are induced by receiver predicates. The rate
As_p of a flow between a publisher A and a subscriber B depends on the publisher’s
sending rate A4 as well as on the matching rate p, 5 of the subscriber’s predicate with

71 5.1 Context and High-Level Design

bottleneck B messages published by A

1

messages of
interest to C

messages of

interest to B .
messages flowing

C ~through bottleneck

Figure 5.2. Content-aware rate control

respect to A’s output. In other words, p, 5 can be seen as the probability that a message
published by A matches B’s predicate, and thus the rate of the A — B flow with sending
rate A, iS Ap.p = Ap - Pagp-

This combination of factors in the context of a content-based network makes con-
gestion control more complicated but it also allows for more flexibility. In fact, a sender
A whose publications reach two receivers B and C could modulate the rates A,_,z and
Aaosc of the two flows independently, whereas traditional rate limitation in IP multicast
would dictate that A reduce its overall sending rate A,. So, with IP multicast, if only
B is experiencing congestion, C would also see a reduced flow from A. Instead, with
the proper knowledge of the specific content-based flows A — B and A — C, A could
reduce A,_,p and thereby avoid congestion while still maintaining a high rate A,_,..
In particular, this would be possible only if B’s predicate does not cover C’s predicate,
meaning that not all messages that are of interest for C are also of interest for B (see
Figure[5.2)).

In practice, content-based communication introduces two requirements for an ef-
ficient and fair end-to-end congestion control protocol. First, rate-limitations must
be applied (by the sender) only to those messages that are part of intense flows on
congested routes. Second, the rate-control algorithm should account for the partial
or total overlap between message flows, which is determined by their content-based
nature. We also require such an algorithm to provide some level of fairness among
competing flows, similar to TCP fairness.

To better understand the second requirement stated above, consider the example
network of Figure Assume that the only bottleneck link is B,—B; and B’s predicate
covers that of C (i.e., the set of messages matching C’s predicate is a subset of the
messages matching B’s predicate). Suppose that A,_,5, the rate of messages from A
to B is 100 messages per second while A,_,- is 10 messages per second. In this case,
modulating the message flow that matches B’s predicate will also reduce the reception
rate at C. Thus, even though both B and C share the same bottleneck and both suffer
from congestion, C’s involvement in the congestion control process is not necessary.

In order to meet the aforementioned requirements, the rate-control algorithm must
inspect message content on the publisher’s side, and in particular it must be able to
match messages against the subscriptions of receivers on congested paths. In essence,

72 5.1 Context and High-Level Design

O Broker @ —oB

® Client
A \
Bottleneck link @ C

Figure 5.3. Content-aware congestion control: C’s involvement in the congestion
control process is not necessary

the congestion-control algorithm on both ends must be informed by receiver predicates
and message contents, and hence we call it content-aware congestion control.

5.1.4 High-level design

We designed an equation-based congestion-control protocol in which the maximum
allowed throughput is a function of a set of measurable network dynamics. Three
reasons motivate our choice of an equation-based rate control instead of a window-
based one.

First, content-based communication does not allow for precise loss detection and
equation-based rate control is less sensitive to errors in loss detection than window-
based algorithms for which correct negative acknowledgments are essential. Also,
irrespective of the efficiency of the loss detection method in use, equation-based rate
control protocols tend to exhibit a smooth response to congestion relative to that of
TCP [BBFS01]] and hence are better choices for controlling traffic with frequent short
bursts.

Second, we target networks with thousands of subscribers where equation-based
control would scale better than a window-based control such as pragmatic multicast
congestion control (PGMCC) [Riz0Q]. This is because, in PGMCC each message must
be acknowledged by an acker. In contrast, an equation-based protocol requires only
one feedback message per round trip time, which imposes a lower processing and
communication overhead on the publisher and other network resources.

Third, equation-based rate control gives receivers good flexibility. For example,
having computed a maximal flow rate, a receiver could prioritize some messages over
others within that flow. This could be done directly using the same rate control feed-
back to the sender, by allocating a larger portion of the flow to some filters over others,
in effect by distinguishing multiple sub-flows.

73 5.2 Content-Aware Congestion Control Protocol

5.2 Content-Aware Congestion Control Protocol

We now describe our content-aware congestion control protocol in detail. In particular,
we define the notion of content-based flows and we detail the transport headers and
the roles and operations of subscribers and publishers.

5.2.1 Content-based flows

As explained in Section [5.1.2] in TFMCC, the current limiting receiver (CLR) dictates
the maximum sending rate for a multicast group by sending feedback messages to
the sender in that group. (Multiple senders are considered as different flows and are
therefore treated separately.) The sender considers the feedback messages from all
group members and elects the receiver with the lowest requested rate as the CLR of
that group, and then communicates the identity of the CLR to all group members using
a special header in its outgoing messages. In essence, this means that the CLR becomes
a representative of the group, which makes sense because all members of the group
see the same flow of messages from the sender to that group.

Unfortunately, this notion of a multicast group does not exist in content-based
communication, and different subscribers might see different flows from the same pub-
lisher, and therefore no single subscriber can meaningfully represent all the subscribers
in dictating a maximum sending rate. In other words, the publisher can not identify a
single flow within which it can select a CLR and to which it would make sense to apply
rate control.

To address this fundamental difference, we define a specific and more expressive
notion of flow. We identify a content-based flow f as the stream of messages originat-
ing at a publisher P and matching a given filter s. Each subscriber may define multiple
flows with the same publisher P each associated with a requested maximum rate. The
publisher collects all the flow specifications sent by subscribers through feedback mes-
sages, and it processes them by merging flows from different subscribers whenever
possible. (Merging flows from the same subscriber is also possible, although that can
and should be done directly by the subscriber.) For each flow, the publisher then elects
a CLR which determines the rate limitation for that flow.

5.2.2 Congestion control protocol
Control messages

Publishers and subscribers execute and coordinate the rate control algorithm by ex-
changing two types of control messages. Subscribers send ad-hoc feedback messages
to define content-based flows and to control their rate. Depending on the network con-
figuration, feedback messages could be transmitted through end-to-end IP primitives
(TCP or UDP) or through the primitives of the content-based network itself. In this
latter case, a sender would effectively subscribe for feedback messages addressed to it.

74 5.2 Content-Aware Congestion Control Protocol

Publishers on the other hand transmit congestion control information to subscribers
by attaching a transport header to each publication that belongs to a controlled flow

(see Figure[5.4).

publication time publish rate

record stamp rate controlled CIR Spupase message body

m, | 10100---10 | ¢,

m, | 00011---10 | t,
my | 00110---01 | t, 917 2000 true s

m, | 11100---00 | t,

120

Figure 5.4. Transport header in a publication message.

Representation of filters and messages

Rate control at the publisher amounts to evaluating the filters in each flow specification
against the messages the publisher intends to publish, so as to recognize and rate-limit
the flow according to the demands of the corresponding CLR. In order to reduce the
overhead of this evaluation and also to reduce the overhead of transmitting filters
in feedback messages, here again we take advantage of the encoding scheme that
was developed by Carzaniga et al. [[CTCHWO9] and we used to create publication
record, as detailed in Section In the following sections we explain how the
congestion protocol takes advantage of this scheme. Notice however that the encoding
is an optimization and a modular part of the congestion control protocol, and can be
replaced or even removed altogether.

Loss detection

As mentioned in Section upon a loss detection by the FIFO ordering component,
a signal is sent to the congestion control component (if it is enabled). This signal
triggers a procedure to update loss event rate, that may in turn lead to a change in the
congestion control policy, in a way that we will detail later.

Round-trip time

In addition to the loss event rate, the subscriber must measure the round trip time
(RTT) between itself and the publisher. To measure the RTT, we adopt the mecha-
nism proposed in TFMCC, which is based on echo request/response messages. In our
protocol, an echo request can be sent either directly or through the publish/subscribe
network (similar to feedback messages). However, the echo response is always sent
back through the publish/subscribe network, since its purpose is to measure the la-
tency at that level.

75 5.2 Content-Aware Congestion Control Protocol

filter id Bloom filter CLR reception rate quota
F, 01110---11 | true R, Q,
F, 01100---01 | true R, Q,
F, 01101---11 | false R, Q,
F, 10101---00 | false R, Q.

Figure 5.5. Per-publisher session state maintained by a subscriber.

In TFMCC and also in our protocol, echo requests/replies are used at the beginning
of a session to compute the RTT when a node joins the network. Then the RTT is
continuously estimated in cooperation with the publisher: the publisher measures the
travel time of the feedback messages received from the CLR; it then transmits that to
subscribers using publications (8 fegpeck header in Figure ; at the same time, the
subscriber measures the travel time of the same publications using the publisher’s time
stamp (timestamp in Figure [5.4); finally, the subscriber adds the publisher’s measured
one-way delay with its own measure for the opposite direction, obtaining an estimate
of the RTT in which clock differences cancel out.

Subscriber’s state and operations

Subscribers maintain a session with each publisher from which they receive publica-
tions. Figure shows the information associated with such a session. The subscriber
stores the reception rate for each filter that generates an incoming flow from that
publisher, and for each filter it maintains the measured reception rate and the target
rate (quota) and it also remembers whether the subscriber itself is the CLR for that
flow. Here again we use Bloom filters for fast matching of incoming messages against
local subscriptions, though as stated before, this mechanism can be replaced by any
matching algorithm. The subscriber then runs its congestion control algorithm (Al-
gorithm for each session (i.e., for each publisher). Once every RTT interval, the
subscriber updates its measurements and in particular the reception rates and, given
the average RTT and loss event rate measurements, it estimates a rate limit based
on the TCP response function (Line . Then, based on that limit and on the cur-
rent cumulative reception rate (over all filters) the subscriber initiates its rate control
operations.

If the current reception rate exceeds the limit, the subscriber distributes the avail-
able rate to filters according to their priorities (which depend on the internal applica-
tion logic). In our implementation we use a max-min algorithm (maximize the mini-
mum rate) in order to favor filters with lower reception rates. If on the other hand the
reception rate is lower than the limit, and if the subscriber is the CLR for at least one
of its filters, then the subscriber proceeds with a rate increase. The subscriber assigns
the unused rate to the filters for which it is CLR, but it limits each increase to at most
a factor of a of current reception rate. This limit is intended to prevent rapid changes

76 5.2 Content-Aware Congestion Control Protocol

1: every tprr time units

2: R < ESTIMATE_RATE() {calculate the allowed throughput}

3: t<—0 {overall rate from this publisher}

4. for each entry e in the session state S do

5: t < t + e.reception_rate

6: if R <t then

7: DECREASE_RATE(R) {request a rate decrease}

8: elseif R >t then

9: INCREASE_RATE(R) {request a rate increase}
10: SEND_FEEDBACK() {send feedback message to publisher if necessary}

11: procedure DECREASE_RATE(R)

12: for each entry e in the session state S do
13: e.quota < 0

14: ASSIGN_QUOTA_MAXMIN(S,R)

{reassigns quotas based on new R}

15: procedure INCREASE_RATE(R)

16: t<—20 {total reception rate}
17: n<0 {number of filters for which this subscriber is CLR}
18: for each entry e in the session state S do

19: t < t + e.reception_rate {calculate total reception rate}
20: e.quota < e.reception_rate {quota is at least the current reception rate}
21: if e.clr = true then

22: n—n+1

23: if n=0 then

24: return {not a CLR for any flow, no action required}
25: q < (R—t)/n {divide the unused quota by the number of throttled filters}
26: for each entry e in the session state S do

27: if e.clr = true then

28: e.quota < e.quota + MIN(a - e.reception_rate, q)

{never increase quotas by more than a times the current reception rate}

29: procedure SEND_FEEDBACK()

300 M0 {set of filters in the feedback message}
31: for each entry e in the session state S do

32: if e.quota < e.reception_rate or e.clr = true then

33: M — M U {{e filter, e.quota)}

34: send M to the publisher

35: function ESTIMATE_RATE()
S

tm(\/%‘#(lz %")p(1+32p2))
37: return r

36: I«

Algorithm 5.3. Congestion monitoring and control run by a subscriber for each

publisher from which there is an incoming message flow

77 5.2 Content-Aware Congestion Control Protocol

filter | Bloom filter | CLR | quota | tokens | feedback time | queue
F, | 001010---00 | S, Q T, f
F, | 010010---10 | S, Q, T, t
F, | 100001---01 | S, Q, T, ty
F, | 100100---00 | s, Q. T, t,

Figure 5.6. A publisher’s congestion control state

and therefore to reduce instability. Our experiments demonstrate that a value of a
between 0.5 and 1 is appropriate. Finally, when the necessary changes are made in the
local state, the subscriber proceeds to send a corresponding feedback message to the
publisher.

Publisher’s state and operations

A publisher processes feedback messages and throttles message flows when necessary.
A publisher maintains state describing and controlling its outgoing flows in a single
table (see Figure [5.6). For each filter, again stored as Bloom filters for efficiency, the
subscriber stores the identity of the CLR, the current rate limit (quota) and the current
instantaneous available portion of that quota (implemented as a token bucket). The
publisher also associates a filter with a feedback time, which is a timestamp of the
latest feedback message from the CLR (set with the publisher’s clock). The feedback
time serves two purposes: first, it is used to compute the 6 ¢,.qpqck header for outgoing
publications (see Figure that is then used by subscribers to estimate the RTT;
second, it allows the subscriber to discard stale entries after a set timeout.

Processing feedback messages

A feedback message carries a set of flow requests each defined by a subscription and
an associated rate limit. The publisher collects and processes feedback messages using
Algorithm merging overlapping flows in its flow table whenever possible. Each
flow f in the feedback message is processed individually. The publisher checks whether
(1) f already exists in the flow table and s is already the CLR for that flow, in which
case the publisher simply updates the flow; (2) f is covered by an existing flow with a
lower rate limit, in which case the publisher ignores f; and (3) f covers existing flows
with higher rate limits, in which case the publisher removes those flows from the table
and then ultimately adds f to the table.

Rate control

Rate control is implemented on a per-flow basis with a token bucket. Tokens arrive at
a rate determined by the value of the quota. Each publication sent by applications is
first encoded as a Bloom filter that is then compared against all filters in the flow table.

78 5.2 Content-Aware Congestion Control Protocol

=

: upon receiving feedback message M from subscriber s do

2: for each flow f € M do
3: PROCESS_FLOW_REQUEST(f,s)
4: procedure PROCESS_FLOW_REQUEST(f,s)
5. for each flow g in the flow table F do
6: if f filter = g filter and g.clr = s then
7: g.quota < f.quota {accept quota change request from CLR}
8: g feedback_time < TIMESTAMP()
9: return
10: if g filter covers f .filter and g.quota < f.quota then
11: return
12: if f filter covers g filter and f.quota < g.quota then
13: remove flow g from flow table F
14: F <« F U {({f filter,s, f .quota, TIMESTAMP())} {add f to the flow table}

Algorithm 5.4. Processing feedback message M received from subscriber s

If all matching flows have enough tokens then a token is taken from each bucket (one
for each matching filter) and the message is sent out, otherwise the message is queued
until tokens become available. Matching messages are also tagged with the necessary
transport headers (shown in Figure before transmission into the network.

5.2.3 Dealing with imprecise loss detection

We now discus the effects of potential errors in the estimation of the loss event rate p
in the TCP response function (Equation (5.1))) and how those effects can be mitigated.
Recall from Section that, as is done in TFRC, the loss event rate p is calculated
as the inverse of the average loss interval ¢, which is the average number of correct
deliveries between consecutive losses. Thus, if the current loss interval is £ then a
correct delivery would increase £ by 1 and a loss would insert the current £ into the
average and then reset £ to 1.

Consider now a subscriber that receives two consecutive messages m; and m; with
sequence numbers i < j and therefore with a gap g = j—i—1 in the sequence. Assume
that messages carry a publication record of size k. If g < k and therefore the publica-
tion record covers the gap, then the subscriber can operate as in TFRC, increasing the
loss interval if the publication record does not reveal any loss, or otherwise resetting
the interval. And even if the publication record does not cover the whole gap (g > k)
but it still reveals a loss, then the subscriber should reset the loss interval.

The problem arises when the publication record does not cover the whole gap and

79 5.2 Content-Aware Congestion Control Protocol

does not indicate any loss. In this case, the receiver could conservatively assume there
was at least one message loss in the gap between m; and m;, then based on this as-
sumption update the loss event rate and set £ to 1. In other words, the subscriber
would attribute every gap in sequence number only to message loss. Obviously, this
leads to substantial overestimation of p and underestimation of the available band-
width, notably when the matching probability is low (so, gaps in sequence number are
very common). Alternatively, the subscriber could assume there was not any message
loss between m; and m;, and increment loss interval by one (i.e., £ < [+ 1) without
changing p. This in turn tends to underestimate p specially for small values of k and
may overshoot the allowed throughput.

Our purpose is to find a balance between these two options with a higher weight
on the second i.e., to attribute gaps in the sequence number to a mismatch other than
a message loss. Thus, in this case we optimistically assume that no message was lost.
However, to account for the expected error of this optimistic assumption, we increment
the loss interval by a value that is less than one. In particular, we use an increment
corresponding to the probability that the optimistic assumption is correct, which is
the probability that none of the messages not covered by the publication record was
relevant. This probability is (1—pps)$ ~k where p ps is the matching probability, that is,
the probability that each publication of publisher P matches the subscriber’s predicate,
which we can estimate as the ratio ppg = Rp/Ap between the reception rate Rp seen
by the subscriber and the publish rate Ap indicated by the publisher in the message
header (see Figure[5.4).

Qualitatively, the optimistic assumption is generally valid in non congested and
even in slightly congested network conditions, but it does not hold in the presence
of persistent congestion. However, in such cases, where message losses are frequent,
the receivers with higher matching ratios and hence high reception rates are likely to
detect loss events anyway and therefore react with their rate control. This is because
messages of a high-rate flow are more likely to be lost in persistent congestion. Also,
it is more probable that the publication record covers at least one of the relevant but
lost messages of such a receiver.

In order to better understand the effectiveness of our loss detection mechanism in
estimating loss event rate and throughput, we conducted a simulation analysis. We
simulated a simple scenario in which a flow of publications goes through a link that
is unable to sustain the intensity of that flow. Figure shows the estimated loss
event rate (left) and throughput (right) during 100 seconds of simulation for three
different sizes of the publication record: k = oo (top) corresponding to an ideal all-
knowledgeable receiver, k = 5 (middle) and k = 2 (bottom). For a publication record
of size k = 2 many loss events are not detected (e.g., around 15 seconds into the
simulation) and the estimated throughput is often larger than that of the ideal receiver.
However, with k = 5 loss detection is reasonably accurate which in turn results in an
estimated throughput close to that of the ideal receiver.

80 5.3 Evaluation
0.10 1500 o
0.05 Ideal 1000 } ea
: 500}
[! ! h a f f !
— Q
g 0.10 £ 1500 ——
< k=5 = 1000F 1
o 3
% I I h 8 h i | I
350.10 £ 1500
k=2
0.0 k=2 "~ 1000
-0 500
0-005 20 40 60 80 100 % 20 40 60 0 100

Time (seconds)

Time (seconds)

Figure 5.7. Loss event rate (left) and TCP response function (right) computed for the
ideal receiver (top), publication record of size 5 (middle) and publication record of

size 2 (bottom).
O Broker
P

® Client

Ts

P>

X
Figure 5.8. Experiment topology

5.3 Evaluation

In this section we present the results of the experimental evaluation of our protocol.
The focus of the experiments is on the main functionality of the congestion control
protocol. In particular, we investigate the effectiveness of the protocol in controlling
congestion, responsiveness to changes in available bandwidth, fairness among concur-
rent content-based as well as TCP flows, and optimality of link utilization. We first
analyze these quantities in a series of ad-hoc scenarios with small networks, a few
clients, and specifically controlled workloads. We then demonstrate the effectiveness
of the protocol in a large-scale deployment.

5.3.1 Experimental setup

We used the Linux traffic control tools to emulate bottleneck links. Figure|5.8/shows the
topology we setup for all except the last two experiments. T, and T, are a pair of TCP
sender and receiver and P; and S; represent publishers and subscribers respectively.
As explicitly stated in each case below, different experiments use only a subset of the
client nodes, while the two brokers and the inter-broker link (bottleneck) are present
in all experiments.

81 5.3 Evaluation

We juxtapose the results of experiments with and without congestion control in
place, so that we can better demonstrate the necessity of a congestion control mecha-
nism and the effectiveness of our protocol in each case. In all experiments, the size k of
the publication record is set to 2, implying that on average the transport header adds
an extra 80 bytes to each message. To make the comparison meaningful in terms of
bytes per second, in experiments without congestion control we increased the message
size by adding a payload of 80 bytes. This obviously introduces a penalty that should
be taken into consideration when evaluating the maximum message throughput of the
best-effort network alone. However, the additional payload is relatively small and in
any case does not fundamentally change the behavior of the system in terms of losses,
especially in the relevant case of congestion.

5.3.2 Effectiveness, stability, and responsiveness

We start by investigating the basic properties of our congestion control protocol in a
unicast scenario with one publisher and one subscriber (i.e., P; and S; in Figure[5.8).
Figure (bottom chart) shows the publication rate, message reception rate (notifi-

500 F 500
2 psasd 2
2 250 3 250
4 4

4000 T 4000
® 3000 ff e Publications 0 3000
é : Eolt|f|cat|0n§ é Publications
g 2000 alse negatives & 2000 || = = Notiications
GE) : GEJ — False negatives

1000 1000

0 : 0 — —
0 50 100 150 200 250 0 50 100 150 200 250
Time (seconds) Time (seconds)
(@) (b)

Figure 5.9. The effect of variable input load (a) without and (b) with congestion control
in place. Top: traffic rate (Kbps) on the bottleneck link. Bottom: aggregate publica-
tion, reception, and false negative rate (messages per second) during the experiment.

cations) and false negatives (message losses) in terms of messages per second (mps)
during 250 seconds of an experiment without (a) and with (b) congestion control. To
demonstrate the optimality of resource utilization, the top graph shows traffic (Kbps)
on the bottleneck link whose bandwidth is 500Kbps. In order to observe the perfor-
mance of the protocol in the presence of persistent as well as transient congestion,
we designed the workload so that the publisher generates traffic with an increasing,
than stable, and then bursty rate. The publication rate starts at 400mps (messages per
second) ramping up to 4000mps where it stabilizes for 60 seconds and then descends
to 600mps continuing with short bursts of up to 2500mps. Once the publication rate

82 5.3 Evaluation

grows above 1000mps the network reaches its capacity and starts to exhibit message
losses (false negatives). In all three phases, congestion control is able to mitigate per-
sistent and transient congestion, reducing the number of lost messages by a factor of
20, particularly during the period where congestion is persistent.

Figure [5.9] also shows that the available network capacity is efficiently utilized
for the most part of the experiment. More precisely, without congestion control in
place nearly 46000 messages were received by the subscriber while with congestion
control this figure was more than 45000 messages. Notice in Figure that, with
congestion control, the fluctuations in publication rate are still present while the rate
of message losses remains almost unchanged. This is a benefit of content-awareness
in our congestion control protocol that only regulates outgoing message streams that
form a flow through the bottleneck link.

2000 2000
sl L LT L] . LT
2 1000 2 1000
X X
Publications
» 3000 | — ~ Notifications © 3000F)
3 — False negatives 3 s I Tt g™
% g Tt ewThe LRI Taad P
@ 2000 [@ 20000 e Publications
uE.> W’m OE) - NOtiﬁcationS
1000 1000 } — False negatives
- - r=—- r——- r= -\ el Fe == -
| R, | S [J— [T —
0 ! ! ! ! 0 o™, L™, . L]
0 50 100 150 200 250 0 50 100 150 200 250
Time (seconds) Time (seconds)
(a) (b)

Figure 5.10. Effects of variable bottleneck link capacity (a) without and (b) with con-
gestion control. Top: traffic rate (Kbps) on the bottleneck link. Bottom: aggregate
publication, reception, and false negative rate (messages per second) during the ex-
periment.

We now examine the responsiveness of our protocol to changes in bandwidth re-
sources. More precisely, we want to answer the following two questions: First, when
available bandwidth drops, how fast does the protocol reduce the send rate to control
message loss? Second, upon an increase in the available bandwidth, how rapidly does
the protocol saturate the new resources while controlling message loss? Figure [5.10]
shows the results of an experiment in which we control the bandwidth of the bottleneck
by alternating, in periods of 40 seconds, between 1Mbps and 2Mbps. As Figure
suggests, reaction to both decrease and increase in bottleneck link capacity is quite
fast. Specifically, the flow adapts in less than two seconds to the new bandwidth and
reaches a stable state while persistent message losses are barely noticeable.

83 5.3 Evaluation

5.3.3 Fairness among concurrent content-based flows

We now proceed to examine fairness properties of our congestion control protocol with
regards to concurrent content-based flows. In such settings we expect the receivers
with higher reception rates to start the congestion control before low rate receivers. In
the next experiment we use 3 publishers and 3 subscribers (i.e., S; to S; and P; to P; in
Figure with each publisher sending messages at a constant rate of 1000mps. Each
subscriber receives messages from only one publisher but matching ratios are different,
inducing three content-based flows going through the bottleneck link with different
average rates (all messages are of the same size). At the beginning of the experiment
the bottleneck link has a capacity of 2Mbps, causing no contention among the flows.
Then at t = 100 seconds we cut the link bandwidth in half (1Mbps), and again in
half at t = 200 seconds (500Kbps). Figure shows the reception rates (messages

200 200
100 100
300 300
200 200

100 100

400 400

200

Reception rate (messages/s)
Reception rate (messages/s)

Do
(==}
S

200 250

0 50 100 150 200 250 0 50 100 150
Time (seconds) Time (seconds)

(a) (b)

(=}

Figure 5.11. The solid lines show reception rates (mps) for 3 pairs of publishers and
subscribers sharing the bottleneck link (a) without and (b) with congestion control in
effect. The dotted lines show the fair share of each flow.

per second) for the three receivers (solid lines) and compares them with the fair share
of each flow for the network configuration at that time. Without congestion control
(Figure[5.11j), each reduction in link capacity results in a proportional rate reduction
for each receiver, which amounts to an unfair allocation of resources. On the other
hand, when congestion control is in effect (Figure [5.11p), the available link capacity
is shared among the three separate flows so as to follow the exact demands of each
client when there is enough bandwidth, and to share the available bandwidth in a fair
manner when bandwidth is limited. In particular, when bandwidth is halved to 1Mbps
at t = 100 seconds, the high rate receiver starts the congestion control process asking
its corresponding sender to reduce its send rate. As a result, the average reception
rate at this subscriber (Figure (bottom)) is reduced from 400mps to 140mps,
approximately the same as the other two receivers (receiving messages at 150mps). At
t = 200 seconds when link capacity is again halved to 500Kbps, all three subscribers
reduce their reception rate in a balanced way.

84 5.3 Evaluation

5.3.4 TCP friendliness

We conducted several experiments to investigate the TCP friendliness of our conges-
tion control protocol. In all cases, we observed that the short and long-term through-
put of our protocol does not exceed that of TCP when flows share a bottleneck link.
In this section we present the results of a simple setup involving a TCP flow and a
publish/subscriber flow (i.e., Ty, T,, Sy, and P; in Figure[5.8). The bottleneck link has
a bandwidth of 1Mbps. The TCP data flow starts at time t = 60 (indicated by the ver-
tical dotted line). As shown in Figure[5.12h, in the absence of congestion control, the

1000 - 1000

800 | : 800 |-
< 600 T _ 600
= - w
Z 400 : 2 400
X | - L
Y 208 TePfow: | o A At 208 TCP flow,
< 2
= 1000 _ < 1000 e~
% ool "WWWMW 5 s00}
g 600} T g 600
& 400} : & 400} :

208 [CBflow : . . . 208 [CBflow : . . .

0 50 100 150 200 250 0 50 100 150 200 250
Time (seconds) Time (seconds)
(a) (b)

Figure 5.12. TCP and content-based reception rate (Kbps) for a TCP flow and a pub-
lish/subscribe flow sharing a bottleneck link (a) without and (b) with congestion con-
trol in place. The horizontal dotted lines show the ideal fair share.

content-based flow dominates the link capacity, pushing more than 900Kbps and leav-
ing limited resources for the TCP connection. (The horizontal dotted line indicates an
ideal fair share.) This result in fact shows the importance of a rate control scheme for
deployment of best-effort content-based systems in tandem with TCP networks. With
congestion control in place (Figure[5.12b) once the TCP flow starts, the content-based
flow adapts its rate in less than two seconds. The average link share is slightly higher
for TCP with a difference between the two of about 5% of the total bandwidth. This
is because equation-based congestion control protocols tend to be more conservative
than TCP [VLBOS].

5.3.5 Large scale deployment

We now study the performance of the protocol in a large network with hundreds of
clients. The purpose of this experiment is to probe the protocol’s effectiveness and the
overhead it imposes on the publishers in a large scale deployment. This experiment
involves 46 physical machines hosting 8 brokers and 760 clients where each broker
runs on a dedicated physical machine and the remaining 38 hosts run client applica-
tions (20 instances per machine). The broker topology has a diameter of 6 and brokers

85 5.3 Evaluation

Bottleneck link

O Broker \

@® Client N\ o\ A\
Bs Be Bs Bg
4 A\ N/
Figure 5.13. Broker topology for large scale experiment
1000 1000
1 w
z 500 | 2 500
< <
4000 4000 =
» 3000 ° 3000
[} o
S Publications N
5 2000 — Notifications g 2000
GE) — ~ False negatives GEJ
1000 1000
[CROAPZ I '/‘V/-\../.;\’,"ﬂ,\-f'\-l‘l\\\ [V ERNVRTYP
UO 20 40 60 80 100 120 140 00 20 40 60 80 100 120 140
Time (seconds) Time (seconds)
(@ (b)

Figure 5.14. Publication, reception, and false negative rate (mps) in a large scale
network (a) without and (b) with congestion control in place.

have 1 to 3 neighbors (See Figure [5.13). All inter-broker links have a bandwidth of
10Mbps except for one bottleneck link with a capacity of 1Mbps. Each broker serves
95 clients. In this setup, we have only two publishers placed behind the bottleneck link
and each publishing at a constant rate of 2000mps. Each of the 758 subscribers has
one filter with 1 to 5 constraints defined by a Zipfian popularity distribution so that
most subscribers receive low rate flows while a few receive high-rate flows.

The bottom graphs of figures and juxtapose the throughput and mes-
sage loss rate with and without congestion control, while the top graphs show traffic
that passes through the bottleneck link. With congestion control the rate of false neg-
atives drops to nearly zero within three seconds and remains unchanged during the
entire experiment. However, the average throughput in terms of message delivery is
about 12% lower with congestion control, with more than 90% of the link’s capacity
utilized during the experiment. Another positive effect of congestion control is that the
average message delivery delay was 54 milliseconds, as compared to 102 milliseconds
without congestion control, an advantage that would presumably scale with the size of
the broker network.

86 5.3 Evaluation

120 T T T T T T

» 40 b
@ 90

> 3 30H i
@ 60 £ 20 .
[] w

£ 30 10]

00 20 40 60 80 100 120 140 00 20 40 60 80 100 120 140
Time (seconds) Time (seconds)
(@) (b)

Figure 5.15. (a) the number of received feedback messages (mps) for one of the
publishers. (b) changes in the number of entries in the publisher’s state table.

Now turning our attention to the publisher’s overhead, figures [5.15h and [5.15b
show the number of feedback messages (mps) received and the number of entries
in the flow table for one of the publishers. Given that 760 subscribers continuously
receive messages from this publisher, the traffic and state overhead for the publisher
are negligible. In fact, during the experiment we did not observe any tangible increase
in memory and processing load on any of the machines where the publishers were
running. Also, the relative stability of the number of feedback messages and entries in
the state table reflects a stable functionality of the congestion control protocol and a
smoothness of rate-limited flows.

5.3.6 Concurrent operation with the recovery protocol

We conclude this evaluation by presenting the results of an experiment with both con-
gestion control and recovery protocols enabled to show that the two protocols interact
smoothly and that the recovery does not cause traffic anomalies. Figure[5.16|shows the
topology we setup for this experiment. Broker B; serves 5 publishers each publishing
at a rate of 300mps. Brokers B,, B3, and B, each serve 5 subscribers. Links B;-B,
and B;-Bj have a limited bandwidth of 1.5 Mbps while link B;-B,4 has a capacity of
10mbps which is ample for the given traffic. Dotted arrows show the route of messages
from B, to other brokers.

O Broker

Bottleneck link

Bottleneck link

Figure 5.16. Experiment topology with both recovery and congestion control proto-
cols in use

87 5.3 Evaluation

Looking at Figure without transport protocol (left) the persistent loss rate
is about 5500mps, while it averages around 50mps with transport protocol (right).
Here the plot shows the message loss observed by the application, i.e., the losses not
recovered by the recovery protocol (about 40% of the message losses were recovered
by the recovery protocol). With transport protocol the total throughput is slightly
lower though, since the subscribers served by broker B, whose subscriptions overlap
with those of other subscribers on B, and B; receive messages at a suboptimal rate.

N 1500 " 1500 pv=—v~~v-v NP A Y
= 1000 | = 1000 |
e} Qo
¥ 500 ~ 500

1500 1500 = m— =
2 1000 | 2 1000 |
e} e}
¥ 500 ~ 500

6000 : —— — : 6000

5000 5000 | Publications
% Publicati g ~ ~ Notifications
& 4000 ublications 3 4000 | _ .
=3 = = Notifications > False negatives
§ 3000 — False negatives § 3000
€ 2000 Mo . € 2000 f

AW T DN T T O M T N T T A T T O T - “ =\ AN o AmA Ul U - [N PR N
1000 ’ wooo |\ I I
0 L L L L L L L 0 b L ol L L L e,
0 20 40 60 8 100 120 140 0 20 40 60 80 100 120 140
Time (seconds) Time (seconds)
(a) (b)

Figure 5.17. Network dynamics (a) without and (b) with transport protocol in place.
Top and middle: traffic rate (Kbps) on the two bottleneck links. Bottom: aggregate
publication, reception, and false negative rate (messages per second) during the ex-
periment.

=)
S
I
o

w
at

~ Request
""" Repair

ot
o
T
w
(e}

I
o

ot

messages/s
w
o
messages/s
N DN
o

t

20 |
10
10 : 5
0 ' L ' L L L 0 L L L L L L L
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Time (seconds) Time (seconds)
(a) (b)

Figure 5.18. Changes in (a) total number of request/repair messages (mps), (b) number
of received feedback messages for one of the publishers.

We also measure the network overhead caused by control messages. Figure[5.18|(a)
shows the number of request and repair messages (mps) that were sent during the ex-

88 5.4 Conclusion

periment. The number of loss recoveries (not plotted here) is roughly three times the
number of repairs, due to the shared losses. The plot suggests that the request/repair
traffic is negligible compared to ordinary network traffic. Figure [5.18|(b) shows the
number of feedback messages (mps) that were received by one of the publishers (other
publishers experienced similar overhead). Except for the brief period at the beginning
of the experiment, the feedback overhead averages around 15mps. Given the publica-
tion rate (300mps) and the total number of subscribers (15 clients), this feedback rate
is favorably small.

5.4 Conclusion

We presented an end-to-end content-aware congestion control scheme for best-effort
content-based networks. In particular we adapted an equation-based rate control
scheme to the specific context of content-based communication. We did that by de-
veloping a specific notion of content-based flow. We argued that to be effective and
fair an end-to-end congestion control protocol for CBPS networks should be content-
aware, in that it should account for subscriptions in the congested area of the network,
their covering relations and, the content of messages that flow along the congested
paths.

We also presented the results of the experimental evaluation of a full implementa-
tion of our protocol. Our results show that the protocol achieves its primary objectives,
namely effective resource usage, adaptability, and fairness. In reaction to changing bot-
tleneck bandwidth, the protocol rapidly adapts to new bandwidth constraints, while
keeping the loss rate to a minimum. In all experiments more than 90% of the bottle-
neck link bandwidth is saturated. Moreover, the protocol meets its TCP friendliness
requirement, although it behaves more conservatively than TCP We experimentally
showed that in practice, even with a publication record of size 2, the protocol achieves
a very good effectiveness and significantly reduces persistent message loss. Finally, we
demonstrated that the loss recovery protocol interacts smoothly with the congestion
control protocol.

Chapter 6

Conclusion

We believe simplicity and performance are key requirements for any data communica-
tion protocol to enjoy Internet-scale adoption. Best-effort content-based networking,
thanks to its favorable performance and simple architecture, has great potential to
emerge as a widespread communication service to support a variety of data-driven
applications. Within a modular setting, primitives like message ordering and reliable
delivery can be built atop the basic service offered by the content-based network, by
involving clients and potentially other dedicated network components in the process.
This thesis is an effort in this direction, to design, implement, and evaluate a set of end-
to-end protocols, integrated into a single transport protocol to improve message order-
ing, reliability, and fairness of the basic best-effort service. Our goal was to achieve
this with a minimum compromise of the high throughput and end-to-end delivery de-
lay that such systems offer. Our transport protocol uses the publish/subscribe as a
black box and so, works with any best-effort publish/subscribe network.

The problems that are targeted by this thesis have been extensively studied in the
domain of IP networking and distributed systems. In developing a transport protocol
for content-based networks, we believe the large body of literature on IP networking
and decades of experience with TCP/IP stack are valuable assets. In fact, our protocol
borrows ideas from reliability and congestion control protocols for IP multicast. How-
ever, we showed that certain characteristics of traffic and network model in content-
based networking obstruct easy adoption of such solutions. We then offered solutions
in three separate but inter-related components, each one discussed and evaluated in
one chapter of the thesis. Below we summarize the contributions of this thesis.

6.1 Summary of Work
A major problem we dealt with in this thesis is message loss detection. Simply put, in
publish/subscribe messaging, sequence numbers are incapable of indicating message

loss. Loss detection is an essential requirement for correct and efficient message or-

89

90 6.1 Summary of Work

dering, reliable delivery, and congestion control. However, correct and complete loss
detection in a pure end-to-end fashion, at a minimum requires frequent acknowledge-
ments from all subscribers back to publishers, as well as session state on the publisher’s
side for each subscriber. This choice would limit the scalability of our transport pro-
tocol, not to mention that is would violate loose coupling between publishers and
subscribers. Thus, we opted for a probabilistic loss detection mechanism that is based
on augmenting each message with a summary of the latest few messages published by
the same publisher. This limited information enables subscribers to perform a limited
form of loss detection with a quantifiable probability to miss a lost event.

The FIFO ordering protocol we proposed in this thesis is based on the observation
that message swaps are a result of uneven processing times and heavy usage of parallel
algorithms in brokers. We then developed a statistical model of delay variation with
which we estimate the probability of a FIFO violation and determine a proper latch
time to buffer messages upon observation of a gap in the message sequence number,
in order to minimize chances of FIFO violations.

We then presented a method to enhance the reliability of best-effort publish/subscribe
systems. More precisely, the goal was to enable recovery of lost messages from other
end-points in the network. We used scalable reliable multicast (SRM) as a model in
developing our reliability protocol with few key enhancements to facilitate adoption of
SRM in our context. We proposed a method to effectively implement a request/repair
recovery procedure, only using the general publish/subscribe API. We also extended
SRM with a mechanism that aids network clients to adjust their cache size (the num-
ber of messages they maintain in cache to later provide repair messages) in order to
reduce their memory overhead without compromise in the overall hit ratio. We analyt-
ically and experimentally showed that when message losses are shared among multiple
subscribers the likelihood of loss detection and recovery is considerably improved.

In the development of our end-to-end congestion control protocol we argued that
such a protocol should be content-aware, i.e., rate control should be applied only to
certain message streams (content) that flow through congested paths instead of all
outgoing flows of a publisher. Moreover, for efficiency reasons, the covering relation
among subscriptions that belong to the congested area of the network should be con-
sidered in the congestion control process. This requires feedback by receivers and
message classification by senders to center around subscriptions as well as message
content. TCP friendliness was also among the requirements we had in mind, that
is, coexistence of content-based flows with TCP flows, while respecting TCP fairness.
Based on these requirements we presented a content-aware, TCP-friendly congestion
control scheme that adopts ideas from an equation-based congestion control protocol
for IP multicast, called TCP friendly multicast congestion control (TFMCC). Here again,
we discussed how imprecise loss detection affects the effectiveness of our protocol and
how we mitigate the problem.

Finally, we put these ideas into practice with a concrete implementation of these

91 6.2 Future Research

components integrated into a transport protocol that sits on the client side and re-
lays client’s interactions with the network. Our implementation is in Java and was
tested with Siena B-DRP a best-effort content-based system that provided an ideal
testbed for our transport protocol. The results we obtained are encouraging and show
that it is possible to dramatically improve the overall service quality of a best-effort
content-based network through an end-to-end protocol with small impacts on the per-
formance of the network. Nevertheless, this protocol is not a replacement for reliable
publish/subscribe systems since its probabilistic loss detection does not allow for re-
covery of all lost messages or deterministic FIFO ordering.

We hope this thesis will motivate and provide a basis for further research to de-
velop more efficient end-to-end solutions for best-effort content-based networks. This
research can further develop in multiple directions some of which we highlight below.

6.2 Future Research

Multipath routing and FIFO ordering. In developing our FIFO ordering protocol,
we assume that all messages are disseminated on the same route and through the
same set of brokers. Based on this assumption, our analysis centers around the idea
that message swaps take place in brokers. However, another major cause of message
reordering is usage of multipath routing (i.e., routing messages between the same
end-points through multiple different paths, for load balancing and better resource
utilization) [[CKK12]]. Although our FIFO ordering protocol is designed to capture de-
lay variations and adaptively react to them, our statistical model is specifically tuned
for delay variations caused by in-broker processing times. Therefore, it remains an
open question, how the FIFO ordering protocol performs when multipath routing is in
effect, and how it can be extended to better support multipath routing. Perhaps, one
way to accommodate such cases is to extend the proposed statistical model, using the
general probabilistic bounds we briefly mentioned in Section[3.2.2]

Improving publication record. Undoubtedly, loss detection is a major challenge in
the development of end-to-end protocols for content-based networks. Thus, improve-
ment in loss detection is essential to further enhance the protocols developed in this
thesis. One way to mitigate the limitation of the proposed loss-detection mechanism is
to maximize the number of messages that can be summarized into a publication record
of a given size. One key to such optimizations is investigating the temporal locality of
events, i.e., when two or more consecutive events sent out by a publisher have over-
lapping attribute/value pairs. We believe by exploiting temporal locality of events it is
possible to enhance the encoding scheme to allow for compression that is, merging the
encoded format of a few similar events in a single Bloom filter. This might further in-
crease the likelihood of a false positive however, we believe that the overall bandwidth
usage will be improved with this compression mechanism. Entries of a publication

92 6.2 Future Research

record can be further compressed using compressed Bloom filters [Mit01] to reduce
space usage and bandwidth overhead.

Alternative loss detection methods. The loss detection method proposed in this work
is intended to be compatible with the concept of loose coupling between publishers
and subscribers and to scale to large networks. However, it is possible to achieve
more accurate loss detection mechanisms at the cost of higher load on the network
and publishers. For instance, subscribers can acknowledge each received message,
where an acknowledgement carries the sequence number of the messages that are
being acknowledged along with the matching subscriptions. The publisher then insures
that all of its previously published messages that match the filter are acknowledged by
the subscriber. This of course implies large amounts of session state and processing
on the publisher’s side, in particular with many subscribers receiving messages from
the publisher. Nevertheless, the congestion control protocol can take advantage of
this in a limited way, by enabling this loss detection only for CLRs. This will improve
efficiency and responsiveness of congestion control at the cost of more overhead on
the publisher. Generally speaking, because loss detection has substantial impact on all
performance aspects of the transport protocol, the pros and cons of such enhancements
need rigorous theoretical and experimental analysis.

Another way to improve loss detection is through explicit subscription for periodic
digest messages sent by publishers. These messages carry a publication record, similar
to any data message, but are specifically intended to facilitate loss detection, specially
for subscribers with small match probability and hence infrequent message reception
rate. This can also improve loss recovery time, since our experimental results in Chap-
ter [4| showed that recovery time is dominated by loss detection time.

Feedback suppression. Our congestion control protocol is prone to feedback implo-
sion in cases where a large number of subscribers have the exact same subscription,
share the same bottleneck link and happen to experience the same or very similar end-
to-end delays to a publisher. In such rare cases it is possible that all these subscribers
send feedback messages to the same publisher in a short time frame, causing large
bandwidth overhead to the network and processing load on the publisher. However,
this process can not last for prolonged time periods, because once a CLR is selected
for a filter then the rest of subscribers will stop sending feedback messages. Yet, in-
corporating a feedback suppression mechanism into the congestion protocol helps its
scalability and robustness. Perhaps an efficient way to implement feedback suppres-
sion is similar to the mechanism we introduced in Chapter[4]to suppress request/repair
duplicates.

Analytical work on TCP friendliness of congestion control. Since the appearance
of the first equation-based rate control protocols, much experimental and theoreti-

93 6.2 Future Research

cal work has been done to understand their long-term behavior and investigate their
compatibility with TCP [[YKLOT; BBFSO01}; [RX05; VL.BO5]]. Most empirical studies like
[YKLOI} [FHPWOO; BBFS01]] evidence TCP friendliness of such protocols. In particular,
these studies show that equation-based protocols tend to behave more conservatively
than TCP with regards to the long-term throughput they achieve. Our experimen-
tal results are also compatible with such observations. However, analytical work re-
veals that in extreme cases such protocols can exhibit non TCP compatible behaviors
[RX05; VLBO5]]. In particular, Vojnovic and Le Boudec [VLBO5]| show that the accuracy
of computing loss event rate plays a central role in TCP friendliness. Unfortunately the
rigorous analysis by Vojnovic and Le Boudec is not applicable to our protocol mainly
due to the properties of our loss detection mechanism. Therefore, better understanding
of the TCP friendliness of our congestion control protocol calls for separate analytical
work. Such effort will also allow for better understanding and tuning of the protocol’s
parameters such as publication record size.

Window-based congestion control. In Chapter [5| we argued for equation-based con-
gestion control and its advantages over a window-based protocol for our purpose. Nev-
ertheless, we believe this argument needs more quantitative justification. In particular,
it remains an open question whether a window-based congestion control protocol with
regular acknowledgements similar to what we explained above (under the item “Alter-
native loss detection methods”) performs better in terms of TCP friendliness and lim-
iting loss rate. Perhaps in this protocol a publisher maintains a separate transmission
window for each flow and the CLR for that flow sends regular acknowledgements to
the publisher. The publisher then having the subscriptions of the CLR, estimates mes-
sage loss with the help of received acknowledgements and adjusts the transmission
windows in a manner similar to TCP. This protocol can be thought of as an adoption of
PGMCC [[Riz00]], whose performance compared to our protocol remains to be seen in
a separate research work.

Experimental evaluation with alternative best-effort systems. Our experiments are
all conducted with Siena B-DRP. Admittedly, the one hypothesis we did not empirically
validate in our evaluation is that our transport protocol works with any best-effort
content-based network. Unfortunately, testing this hypothesis turned out to be a ma-
jor challenge, since at the time of this writing, there was not any solid and working
implementations of such systems that we could use for our purpose. Regardless, we
believe more extensive experiments in large-scale settings (multiple thousand clients)
and with alternative implementations will help us better understand the properties of
the transport protocol and its potential weaknesses.

Better support for end-to-end solutions by publish/subscribe protocols. Our pro-
tocol is designed to be oblivious to the internals of the underlying best-effort network

94 6.2 Future Research

and only assume a generic publish/subscribe API. However, to devise better end-to-end
solutions for the problems that we attacked in this thesis, a potential research direction
is to study how the underlying publish/subscribe routing and forwarding mechanisms
could be enhanced or designed as to offer a better support for a transport protocol that
works at a higher layer. In other words, we believe that design of an end-to-end trans-
port protocol in parallel with the design of the underlying publish/subscribe protocol,
and within a framework that adheres to a modular protocol stack, is a worthwhile
research effort and should yield favorable results.

Appendix A

Statistics of the sum of two
Laplacian random variables

Here we illustrates the steps to derive the sum of two Laplacian random variables and
how to estimate its parameter.

The probability density function of a Laplacian random variable is of the following
form:

_lx—ul

1
fx(x)= >5¢ b (A.1)

where b is the scale factor and u is called the location factor of the distribution. Assume
Y = X;+X, is arandom variable defined as the sum of two independent and identically
distributed Laplacian random variables with u equal to zero and equal scale factor of
b. We will derive probability density function, cumulative distribution function and
quantile function of Y. Also we derive the parameter estimator of b. Note that due to
linearity of expectations, E[Y] is zero.

A.0.1 Probability Density Function

In order to find the probability density function of Y we note that X;, X, and Y can
assume negative and positive values. Hence, we need to separate cases when Y is
positive from when it is negative. Here we show how fy(y) can be derived for positive
values of y. To do that, we need to consider three cases: when X; > 0, X, > 0, when
X, >0, X, <0and when X; <0, X, > 0. Now, assuming Y >0, X; >0, X, >0,
we have X, = Y —X; and X; € [0,Y]. Since X; and X, are two independent and
identically distributed random variables we have

fr(¥) = fx, x,(x1,x2) = fx(x1) - fx(x2) such that x;+x,=y

95

96

and from there

y Y q 1 o y
_xp =x1) | Y
fry)= . fx(h)-fx(y—xﬂdx:L 5 Pop€ ¢ dx:me ”L dx =
y
me b (X1>O,X2>0)

Now we find fy(y) for cases when Y >0, X; > 0, X, < 0. Similar to what we have
above, writing X, as X, =Y — X; implies that X; € [Y, 00) and hence

o (o) o0
1 1 o-x 1 4 2
fY(J’)=J fX(xl)-fX(y_xl)deJ Ee b 'Ee b dx:—ebf e b dx
y

y

— b (X;>0,X,<0) (A.2)
8b

Due to symmetry of the Laplace distribution, the third case where X; < 0,X, > 0 yields
the same result as Formula[A.2] Now fy(y) is the sum of three cases:

1 Y 1 Yy Yy Y (b+y) Yy
fY(J’)de b+£e b+4?eb e e b

(y =20)

By following the same method for cases when y < 0 we can find the general formula
of the density function for positive and negative values of y which is the following

(b+lyD) _m

fy(J’):Te b

A.0.2 Cumulative Density Function and Quantile Function

To find the cumulative density function denoted by Fyx(x), we can conveniently utilize
the symmetry of the density function. Therefore, we begin by finding Fyx(x) for cases
when x is negative. We have

Fy(x) J b-2) 5 1fx(b Yeh d
v(x) = ————ebdx=— —x)eb dx
L, 4b? 4b%)_

Using integration by parts, the above integral yields

1
4b2

x JX x (2b—x) «
[((b—x).(bebv)+ berdx]=—F¢evr (x<0)

—Q

Fx(x)=

97

and from there we can derive Fx(x) for positive values of x which yield the following
formula

(2b+x)
T

o=

Fx(x)=1- (x>0) (A.3)
The general form of Fx(x) for both negative and positive values of x can be written as
the following

(2b+x|)
——— €

Fx(x)=0.5[14+sgn(x)(1— 25 b)]

where sgn(x) is the sign of x. In order to to find F~!(p), the quantile function, we
note that for p < 0.5, the value of F~!(p) is negative and for p > 0.5 it is positive.
Now assuming that p > 0.5, we find the inverse of the Equation [A.3] Denoting Fx(x)
by p we have

2b+x x
p=1—(4—b)6_b thus
@+%)
1—p= b
p) e SO

x x
-2+ E) e b =4(p—1) which can be written as

—t -2 X
—te "=4e“(p—1) where t:E+2
The above equation is solved by w, the Lambert Omega Function. This function solves
the equation y = x e* by x = w(y) . As such, the answer to the above equation is
t=-w(e?(p-1)

By substituting t back, we get the final form of the quantile function

F'(p)=-blw@e?(p-1)-2)] (05<p<1)

A.0.3 Parameter Estimation

Having a set of n samples x4, ..., x,, the parameter of the probability density function
can be found trough maximum likelihood estimation. We denote the estimator of b by
B. Given that the values of each sample is independent of the other samples we have

98

POt xalB) = [[PCxilB) =]‘[(/s’+|x e
i=1

(4/32)”
The objective is to find the value of 8 that maximizes the preceding function. Since
it is a positive value (the product of some probabilities) it follows that maximizing its
natural logarithm is equal to maximizing the function itself. Taking natural log from
the function we have

1 n _ il
In(p(xt, - Xal B2) = (7 D(ﬁ +lx)e P)=

(4 + Y (B + D - Y (a9
i=1 i=1

Formula[A.4] can be seen as a function of 3. To find the value of § that maximizes the
value of this function, we take its derivative with respect to 3. Equating the resulted
function to zero and solving for (3, yields the answer. Thus, after taking derivative and
equating to zero we have

Z M=0 o)
(/5+|x|) 42

Z|x|+[522(ﬁ+| 5 —2nB =0 (A.5)

The above equation does not have a close form answer. In order to approximate its
root we approximate the second term of the left side of the equation as seen below.
Showing expected value of the random variable X by E[X] we see that

1 b 1
Elrmn = J G x) dx = J G) dr =

2 T ([3+x)e_%dx—i Ooe_%dx—i
o (B+x) 4p? - 2p2), 28

Therefore

L 1 n
EL v)= 36

Substituting this value back in Equation[A.5|we will have

99

n ﬁn
Z|xi|+——2n[3’=0
i=1 2

2 n
= — X;
B=3 ;le il

that gives

100

Bibliography

[ANO96]

[AS00]

[ASST99]

[ATO5]

[AT06]

[ATO7]

[AT11]

[Bar64]

S. Asmussen, O. Nerman, and M. Olsson. Fitting phase-type distribution
via the em algorithm. Scandinavian Journal of Statistics, 23:419-441,
1996.

M. K. Aguilera and R. E. Strom. Efficient atomic broadcast using deter-
ministic merge. In PODC ’00: Proceedings of the nineteenth annual ACM
symposium on Principles of distributed computing, pages 209-218, 2000.
ACM.

M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chandra.
Matching events in a content-based subscription system. In Proceedings
of the eighteenth annual ACM symposium on Principles of distributed com-
puting, PODC '99, pages 53-61, 1999. ACM.

I. Aekaterinidis and P Triantafillou. Internet scale string attribute pub-
lish/subscribe data networks. In Proceedings of the 14th ACM interna-
tional conference on Information and knowledge management, CIKM ’05,
pages 44-51, 2005. ACM.

I. Aekaterinidis and P Triantafillou. Pastrystrings: A comprehensive
content-based publish/subscribe dht network. In Distributed Comput-
ing Systems, 2006. ICDCS 2006. 26th IEEE International Conference on,
page 23, 2006.

I. Aekaterinidis and P Triantafillou. Publish-subscribe information de-
livery with substring predicates. IEEE Internet Computing, 11(4):16-23,
July 2007.

I. Aekaterinidis and P Triantafillou. Pyracanthus: A scalable solution
for dht-independent content-based publish/subscribe data networks. Inf.
Syst., 36(3):655-674, May 2011.

P Baran. On distributed communications networks. Communications
Systems, IEEE Transactions on, 12(1):1 -9, march 1964.

101

102

Bibliography

[BBFS01]

[BBPPO7]

[BBQT07]

[BBQV04]

[BCC'98]

[BCM™99]

[BEG04]

[BFDGO7]

[BFGO7]

[BHL"00]

[BMVVO5]

D. Bansal, H. Balakrishnan, S. Floyd, and S. Shenker. Dynamic behavior
of slowly-responsive congestion control algorithms, 2001.

M. Balakrishnan, K. Birman, A. Phanishayee, and S. Pleisch. Ricochet:
Lateral error correction for time-critical multicast. In NSDI 2007: Fourth
Usenix Symposium on Networked Systems Design and Implementation,
2007.

R. Baldoni, R. Beraldi, V. Quema, L. Querzoni, and S. Tucci-Piergiovanni.
Tera: topic-based event routing for peer-to-peer architectures. In Pro-
ceedings of the 2007 inaugural international conference on Distributed
event-based systems, DEBS '07, pages 2-13, 2007. ACM.

R. Baldoni, R. Beraldi, L. Querzoni, and A. Virgillito. Subscription-driven
self-organization in content-based publish/subscribe. Autonomic Com-
puting, International Conference on, 0:332-333, 2004.

B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin,
S. Floyd, V. Jacobson, G. Minshall, C. Partridge, L. Peterson, K. Ramakr-
ishnan, S. Shenker, J. Wroclawski, and L. Zhang. Recommendations on
queue management and congestion avoidance in the internet, 1998.

G. Banavar, T. Ch, B. Mukherjee, J. Nagarajarao, R. E. Strom, and D. C.
Sturman. An efficient multicast protocol for content-based publish-
subscribe systems. In ICDCS 99: Proceedings of the 19th IEEE Inter-
national Conference on Distributed Computing Systems, pages 262-272,
1999.

S. Baehni, P T. Eugster, and R. Guerraoui. Data-aware multicast. In
Proceedings of the 2004 International Conference on Dependable Systems
and Networks, DSN ’04, pages 233—, 2004. IEEE Computer Society.

S. Bianchi, P Felber, A. Datta, and M. Gradinariu. Stabilizing peer-to-peer
spatial filters. In Distributed Computing Systems, 2007. ICDCS "07. 27th
International Conference on, page 27, june 2007.

S. Bianchi, P Felber, and M. Gradinariu. Content-based publish/subscribe
using distributed r-trees. In Euro-Par, pages 537-548, 2007.

J. W. Byers, G. Horn, M. Luby, M. Mitzenmacher, and W. Shaver. Flid-dl:
congestion control for layered multicast. In Proceedings NGC 2000, pages
71-81, 2000.

R. Baldoni, C. Marchetti, A. Virgillito, and R. Vitenberg. Content-based
publish-subscribe over structured overlay networks. In ICDCS ’05: Pro-

103

Bibliography

[Bol93]

[BOP94]

[BPS99]

[BRS02]

[BSBT02]

[BTK99]

[BZA03]

[CcCccto1]

[CDKRO2]

ceedings of the 25th IEEE International Conference on Distributed Comput-
ing Systems, pages 437-446, 2005. IEEE Computer Society.

J.-C. Bolot. End-to-end packet delay and loss behavior in the internet. In
SIGCOMM ’93: Conference proceedings on Communications architectures,
protocols and applications, pages 289-298, 1993. ACM.

L. S. Brakmo, S. W. O'Malley, and L. L. Peterson. Tcp vegas: new tech-
niques for congestion detection and avoidance. In Proceedings of the
conference on Communications architectures, protocols and applications,
SIGCOMM 94, pages 24-35, 1994. ACM.

J. C. R. Bennett, C. Partridge, and N. Shectman. Packet reordering is not
pathological network behavior. IEEE/ACM Trans. Netw., 7(6):789-798,
1999.

A. R. Bharambe, S. Rao, and S. Seshan. Mercury: a scalable publish-
subscribe system for internet games. In Proceedings of the 1st workshop on
Network and system support for games, NetGames '02, pages 3-9, 2002.
ACM.

S. Bhola, R. E. Strom, S. Bagchi, Y. Zhao, and J. S. Auerbach. Exactly-
once delivery in a content-based publish-subscribe system. In DSN '02:
Proceedings of the 2002 International Conference on Dependable Systems
and Networks, pages 7-16, 2002. IEEE Computer Society.

S. Bhattacharyya, D. Towsley, and J. Kurose. The loss path multiplicity
problem in multicast congestion control. In IN PROC. OF IEEE INFOCOM,
pages 856-863, 1999.

S. Bhola, Y. Zhao, and J. Auerbach. Scalably supporting durable sub-
scriptions in a publish/subscribe system. In proceeding of the interna-
tional conference on dependable systems and networks (DSN 2003), pages
57-66, 2003.

A. Campailla, S. Chaki, E. Clarke, S. Jha, and H. Veith. Efficient filtering
in publish-subscribe systems using binary decision diagrams. In Proceed-
ings of the 23rd International Conference on Software Engineering, ICSE
'01, pages 443-452, 2001. IEEE Computer Society.

M. Castro, P Druschel, A.-M. Kermarrec, and A. Rowstron. Scribe: a
large-scale and decentralized application-level multicast infrastructure.
Selected Areas in Communications, IEEE Journal on, 20(8):1489 — 1499,
oct 2002.

104

Bibliography

[CDNFO1]

[CF99]

[CF04]

[CFO5]

[CIV10]

[CKK12]

[CMA97]

[CMPCO03]

[CMTV07a]

[CMTVO07b]

G. Cugola, E. Di Nitto, and A. Fuggetta. The jedi event-based infrastruc-
ture and its application to the development of the opss wfms. IEEE Trans.
Softw. Eng., 27(9):827-850, 2001.

E Cristian and C. Fetzer. The timed asynchronous distributed system
model. IEEE Trans. Parallel Distrib. Syst., 10(6):642—-657, June 1999.

R. Chand and P, Felber. Xnet: A reliable content-based publish/subscribe
system. In Proceedings of the 23rd IEEE International Symposium on Re-
liable Distributed Systems, SRDS ’04, pages 264-273, 2004. IEEE Com-
puter Society.

R. Chand and P Felber. Semantic peer-to-peer overlays for pub-
lish/subscribe networks. In Proceedings of the 11th international Euro-Par
conference on Parallel Processing, Euro-Par’05, pages 1194-1204, 2005.
Springer-Verlag.

C. Chen, H.-A. Jacobsen, and R. Vitenberg. Divide and conquer algo-
rithms for publish/subscribe overlay design. Distributed Computing Sys-
tems, International Conference on, 0:622-633, 2010.

A. Carzaniga, K. Khazaei, and E Kuhn. Oblivious low-congestion multi-
cast routing in wireless networks. In Proceedings of the thirteenth ACM
international symposium on Mobile Ad Hoc Networking and Computing,
MobiHoc ’12, pages 155-164, June 2012.

E Cristian, S. Mishra, and G. Alvarez. High-performance asynchronous
atomic broadcast. Distributed System Engineering Journal, 33, 1997.

P Costa, M. Migliavacca, G. P Picco, and G. Cugola. Introducing reliabil-
ity in content-based publish-subscribe through epidemic algorithms. In
Proceedings of the 2nd international workshop on Distributed event-based
systems, DEBS ’03, pages 1-8, 2003. ACM.

G. Chockler, R. Melamed, Y. Tock, and R. Vitenberg. Constructing scal-
able overlays for pub-sub with many topics. In Proceedings of the twenty-
sixth annual ACM symposium on Principles of distributed computing, PODC
'07, pages 109-118, 2007. ACM.

G. Chockler, R. Melamed, Y. Tock, and R. Vitenberg. Spidercast: a scal-
able interest-aware overlay for topic-based pub/sub communication. In
Proceedings of the 2007 inaugural international conference on Distributed
event-based systems, DEBS ’07, pages 14-25, 2007. ACM.

105

Bibliography

[Cou02]

[CPO5]

[CQLO8]

[CRWO1]

[CRWO04]

[CS05]

[CTCHWO09]

[CVJ11]

[CW03]

[CWO06]

S. Courtenage. Specifying and detecting composite events in content-
based publish/subscribe systems. In Proceedings of the 22nd International
Conference on Distributed Computing Systems, ICDCSW ’02, pages 602—
610, 2002. IEEE Computer Society.

P Costa and G. Picco. Semi-probabilistic content-based publish-subscribe.
In Distributed Computing Systems, 2005. ICDCS 2005. Proceedings. 25th
IEEE International Conference on, pages 575 —585, june 2005.

D. Cutting, A. Quigley, and B. Landfeldt. Spice: Scalable p2p implicit
group messaging. Comput. Commun., 31(3):437-451, February 2008.

A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation
of a wide-area event notification service. ACM Trans. Comput. Syst.,
19(3):332-383, 2001.

A. Carzaniga, M. Rutherford, and A. Wolf. A routing scheme for content-
based networking. In INFOCOM 2004. Twenty-third AnnualJoint Confer-
ence of the IEEE Computer and Communications Societies, volume 2, pages
918 — 928 vol.2, march 2004.

E Cao and J. P Singh. Medym: match-early with dynamic multicast
for content-based publish-subscribe networks. In Proceedings of the
ACM /IFIP /USENIX 2005 International Conference on Middleware, Middle-
ware ’05, pages 292-313, 2005. Springer-Verlag New York, Inc.

A. Carzaniga, G. Toffetti Carughi, C. Hall, and A. L. Wolf. Practical high-
throughput content-based routing using unicast state and probabilistic
encodings. Technical Report 2009/06, Faculty of Informatics, University
of Lugano, August 2009.

C. Chen, R. Vitenberg, and H.-A. Jacobsen. Scaling construction of
low fan-out overlays for topic-based publish/subscribe systems. In Dis-
tributed Computing Systems (ICDCS), 2011 31st International Conference
on, pages 225 —-236, june 2011.

A. Carzaniga and A. L. Wolf. Forwarding in a content-based network. In
Proceedings of the 2003 conference on Applications, technologies, architec-
tures, and protocols for computer communications, SIGCOMM ’03, pages
163-174, 2003. ACM.

S. Courtenage and S. Williams. The design and implementation of a
p2p-based composite event notification system. In Advanced Information
Networking and Applications, 2006. AINA 2006. 20th International Con-
ference on, volume 1, pages 701 -706, april 2006.

106

Bibliography

[DGH"06]

[DRF04]

[DSU04]

[ECG09]

[EFGKO03]

[EGNO08]

[ERBT12]

[FFTJ09]

[FGKZ03]

[FHPWOO]

A. Demers, J. Gehrke, M. Hong, M. Riedewald, and W. White. Towards
expressive publish/subscribe systems. In Proceedings of the 10th inter-

national conference on Advances in Database Technology, EDBT’06, pages
627-644, 2006. Springer-Verlag.

Y. Diao, S. Rizvi, and M. J. Franklin. Towards an internet-scale xml dis-
semination service. In Proceedings of the Thirtieth international conference
on Very large data bases - Volume 30, VLDB ’04, pages 612-623. VLDB En-
dowment, 2004.

X. Défago, A. Schiper, and P Urban. Total order broadcast and multicast
algorithms: Taxonomy and survey. ACM Comput. Surv., 36(4):372-421,
December 2004.

C. Esposito, D. Cotroneo, and A. Gokhale. Reliable publish/subscribe
middleware for time-sensitive internet-scale applications. In Proceedings
of the Third ACM International Conference on Distributed Event-Based Sys-
tems, DEBS 09, pages 16:1-16:12, 2009. ACM.

P T. Eugster, P A. Felber, R. Guerraoui, and A.-M. Kermarrec. The many
faces of publish/subscribe. ACM Comput. Surv., 35(2):114-131, 2003.

S. Erramilli, S. Gadgil, and N. Natarajan. Efficient assignment of mul-
ticast groups to publish-subscribe information topics in tactical net-
works. In Military Communications Conference, 2008. MILCOM 2008.
IEEE, pages 1 -7, nov. 2008.

C. Esposito, S. Russo, R. Beraldi, M. Platania, and R. Baldoni. Achieving
reliable and timely event dissemination over wan. In L. Bononi, A. K.
Datta, S. Devismes, and A. Misra, editors, ICDCN, volume 7129 of Lecture
Notes in Computer Science, pages 265-280. Springer, 2012.

A. Farroukh, E. Ferzli, N. Tajuddin, and H.-A. Jacobsen. Parallel event
processing for content-based publish/subscribe systems. In Proceedings
of the Third ACM International Conference on Distributed Event-Based Sys-
tems, DEBS ’09, pages 8:1-8:4, 2009. ACM.

L. Fiege, E C. Gartner, O. Kasten, and A. Zeidler. Supporting mobil-
ity in content-based publish/subscribe middleware. In Proceedings of the
ACM /IFIP /USENIX 2003 International Conference on Middleware, Middle-
ware ’03, pages 103-122, 2003. Springer-Verlag New York, Inc.

S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-based conges-
tion control for unicast applications. SIGCOMM Comput. Commun. Rev.,
30:43-56, August 2000.

107

Bibliography

[FILT97]

[FJL101]

[FJLMO5]

[FMMB02]

[GCVT10]

[GKP99]

[GLAM97]

[GLZ11]

[GS99]

S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang. A reliable
multicast framework for light-weight sessions and application level fram-
ing. IEEE /ACM Trans. Netw., 5(6):784-803, 1997.

F. Fabret, H. A. Jacobsen, E Llirbat, J. Pereira, K. A. Ross, and D. Shasha.
Filtering algorithms and implementation for very fast publish/subscribe
systems. In Proceedings of the 2001 ACM SIGMOD international conference
on Management of data, SIGMOD ’01, pages 115-126, 2001. ACM.

E. Fidler, H. A. Jacobsen, G. Li, and S. Mankovski. The padres distributed
publish/subscribe system. In In 8th International Conference on Feature
Interactions in Telecommunications and Software Systems, pages 12-30,
2005.

L. Fiege, M. Mezini, G. Miihl, and A. P Buchmann. Engineering event-
based systems with scopes. In Proceedings of the 16th European Confer-
ence on Object-Oriented Programming, ECOOP 02, pages 309-333, 2002.
Springer-Verlag.

S. Girdzijauskas, G. Chockler, Y. Vigfusson, Y. Tock, and R. Melamed.
Magnet: practical subscription clustering for internet-scale pub-
lish/subscribe. In Proceedings of the Fourth ACM International Confer-
ence on Distributed Event-Based Systems, DEBS "10, pages 172-183, 2010.
ACM.

R. Gruber, B. Krishnamurthy, and E. Panagos. The architecture of the
ready event notification service. In Electronic Commerce and Web-based
Applications /Middleware, 1999. Proceedings. 19th IEEE International Con-
ference on Distributed Computing Systems Workshops on, pages 108 -113,
1999.

J. Garcia-Luna-Aceves and S. Murthy. A path-finding algorithm for loop-
free routing. Networking, IEEE /ACM Transactions on, 5(1):148 -160, feb
1997.

S. Gao, G. Li, and P Zhao. Marshmallow: A content-based publish-
subscribe system over structured p2p networks. In Computational In-
telligence and Security (CIS), 2011 Seventh International Conference on,
pages 290 —294, dec. 2011.

S. Golestani and K. Sabnani. Fundamental observations on multicast
congestion control in the internet. In INFOCOM ’99. Eighteenth Annual
Joint Conference of the IEEE Computer and Communications Societies. Pro-
ceedings. IEEE, volume 2, pages 990 —1000 vol.2, mar 1999.

108

Bibliography

[GSAA04]

[Hol11]

[HT93]

[JE10]

[JE11]

[JHMV09]

[JJE10]

[JMVO08]

[JMV09]

A. Gupta, O. D. Sahin, D. Agrawal, and A. E. Abbadi. Meghdoot: content-
based publish/subscribe over p2p networks. In Proceedings of the 5th
ACM /IFIP /USENIX international conference on Middleware, Middleware
‘04, pages 254-273, 2004. Springer-Verlag New York, Inc.

V. Holopainen. Assignment of multicast groups to publish/subscribe top-
ics in multi-domain networks. In Computers and Communications (ISCC),
2011 IEEE Symposium on, pages 664 —670, 28 2011-july 1 2011.

V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and related prob-
lems. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA,
1993.

K. Jayaram and P Eugster. Scalable efficient composite event detec-
tion. In D. Clarke and G. Agha, editors, Coordination Models and Lan-
guages, volume 6116 of Lecture Notes in Computer Science, pages 168—
182. Springer Berlin / Heidelberg, 2010.

K. Jayaram and P Eugster. Split and subsume: Subscription normal-
ization for effective content-based messaging. In Distributed Computing
Systems (ICDCS), 2011 31st International Conference on, pages 824 —835,
june 2011.

H. Jafarpour, B. Hore, S. Mehrotra, and N. Venkatasubramanian.
Ccd: efficient customized content dissemination in distributed pub-
lish/subscribe. In Proceedings of the 10th ACM/IFIP/USENIX Interna-
tional Conference on Middleware, Middleware '09, pages 4:1-4:20, 2009.
Springer-Verlag New York, Inc.

K. R. Jayaram, C. Jayalath, and P Eugster. Parametric subscriptions
for content-based publish/subscribe networks. In Proceedings of the
ACM /IFIP /USENIX 11th International Conference on Middleware, Middle-
ware '10, pages 128-147, 2010. Springer-Verlag.

H. Jafarpour, S. Mehrotra, and N. Venkatasubramanian. A fast and robust
content-based publish/subscribe architecture. In NCA '08: Proceedings of
the 2008 Seventh IEEE International Symposium on Network Computing
and Applications, pages 52-59, 2008. IEEE Computer Society.

H. Jafarpour, S. Mehrotra, and N. Venkatasubramanian. Dynamic load
balancing for cluster-based publish/subscribe system. In SAINT 09: Pro-
ceedings of the 2009 Ninth Annual International Symposium on Applica-
tions and the Internet, pages 57-63, 2009. IEEE Computer Society.

109

Bibliography

[JZRT09]

[KCW11]

[KJO9]

[KJ11]

[LHJO5]

[LJO5]

[LMJOS]

[LS96]

[LSBO6]

P Jokela, A. Zahemszky, C. E. Rothenberg, S. Arianfar, and P Nikander.
LIPSIN: Line Speed Publish/Subscribe Inter-networking. In SIGCOMM
’09: Proceedings of the ACM SIGCOMM 2009 conference on Data commu-
nication, pages 195-206, 2009. ACM.

A. Konstantinidis, A. Carzaniga, and A. L. Wolf. A content-based
publish/subscribe matching algorithm for 2d spatial objects. In
ACM/IFIP/USENIX 12th International Middleware Conference, number
7049 in LNCS, pages 208-227, December 2011.

R. S. Kazemzadeh and H.-A. Jacobsen. Reliable and highly available
distributed publish/subscribe service. In SRDS ’09: Proceedings of the
2009 28th IEEE International Symposium on Reliable Distributed Systems,
pages 41-50, 2009. IEEE Computer Society.

R. Kazemzadeh and H.-A. Jacobsen. Partition-tolerant distributed pub-
lish/subscribe systems. In Reliable Distributed Systems (SRDS), 2011 30th
IEEE Symposium on, pages 101 =110, oct. 2011.

G. Li, S. Hou, and H.-A. Jacobsen. A unified approach to routing, cover-
ing and merging in publish/subscribe systems based on modified binary
decision diagrams. In Distributed Computing Systems, 2005. ICDCS 2005.
Proceedings. 25th IEEE International Conference on, pages 447 —457, june
2005.

G. Li and H.-A. Jacobsen. Composite subscriptions in content-based pub-
lish/subscribe systems. In Proceedings of the ACM /IFIP /USENIX 2005 In-
ternational Conference on Middleware, Middleware '05, pages 249-269,
2005. Springer-Verlag New York, Inc.

G. Li, V. Muthusamy, and H.-A. Jacobsen. Adaptive content-based routing
in general overlay topologies. In Middleware ‘08: Proceedings of the 9th
ACM /IFIP /USENIX International Conference on Middleware, pages 1-21,
2008. Springer-Verlag New York, Inc.

J. C. Lin and J. L. Sanjoy. Rmtp: A reliable multicast transport protocol.
In IEEE Journal on Selected Areas in Communications, pages 1414-1424,
1996.

C. Lumezanu, N. Spring, and B. Bhattacharjee. Decentralized mes-
sage ordering for publish/subscribe systems. In Proceedings of the
ACM /IFIP /USENIX 2006 International Conference on Middleware, Middle-
ware ‘06, pages 162-179, 2006. Springer-Verlag New York, Inc.

110

Bibliography

[MC11]

[Mit01]

[MRI*80]

[Muk92]

[MW388]

[NKO5]

[OAAT00]

[OB06]

[OR10]

[OR11]

[Pax97]

[PB02]

A. Margara and G. Cugola. High performance content-based matching
using gpus. In Proceedings of the 5th ACM international conference on
Distributed event-based system, DEBS "11, pages 183-194, 2011. ACM.

M. Mitzenmacher. Compressed bloom filters. In Proceedings of the twenti-
eth annual ACM symposium on Principles of distributed computing, PODC
'01, pages 144-150, 2001. ACM.

J. M. Mcquillan, I. I. Richer, M. Ieee, Eric, and C. Rosen. The new routing
algorithm for the arpanet. IEEE Transactions on Communications, 1980.

A. Mukherjee. On the dynamics and significance of low frequency com-
ponents of internet load. Internetworking: Research and Experience,
5:163-205, 1992.

J. McQuillan and D. Walden. The ARPA Network Design Decisions. Com-
puter Networks, 1(5):243-289, August 1988.

S. Nadarajah and S. Kotz. On the linear combination of laplace random
variables. Probab. Eng. Inf. Sci., 19(4):463-470, 2005.

L. Opyrchal, M. Astley, J. Auerbach, G. Banavar, R. Strom, and D. Stur-
man. Exploiting ip multicast in content-based publish-subscribe systems.
In IFIP/ACM International Conference on Distributed systems platforms,
Middleware ’00, pages 185-207, 2000. Springer-Verlag New York, Inc.

K. Ostrowski and K. Birman. Extensible web services architecture for no-
tification in large-scale systems. In ICWS ’06: Proceedings of the IEEE In-
ternational Conference on Web Services, pages 383-392, 2006. IEEE Com-
puter Society.

M. Onus and A. W. Richa. Parameterized maximum and average de-
gree approximation in topic-based publish-subscribe overlay network de-
sign. In Proceedings of the 2010 IEEE 30th International Conference on
Distributed Computing Systems, ICDCS ’10, pages 644-652, 2010. IEEE
Computer Society.

M. Onus and A. Richa. Minimum maximum-degree publish sub-
scribe overlay network design. Networking, IEEE/ACM Transactions on,
19(5):1331 -1343, oct. 2011.

V. Paxson. End-to-end internet packet dynamics. SIGCOMM Comput.
Commun. Rev., 27(4):139-152, 1997.

P R. Pietzuch and J. Bacon. Hermes: A distributed event-based middle-
ware architecture. In ICDCSW ’02: Proceedings of the 22nd International

111

Bibliography

[PBO3]

[PFLS00]

[Plal1]

[RCFT09]

[RDO1]

[RFH101]

[Riz00]

[RPS06]

[RX05]

[SA97]

Conference on Distributed Computing Systems, pages 611-618, 2002. IEEE
Computer Society.

P R. Pietzuch and S. Bhola. Congestion control in a reliable scalable
message-oriented middleware. In Middleware ’03: Proceedings of the
ACM/IFIP /USENIX 2003 International Conference on Middleware, pages
202-221, 2003. Springer-Verlag New York, Inc.

J. a. Pereira, E Fabret, E Llirbat, and D. Shasha. Efficient matching for
web-based publish/subscribe systems. In Proceedings of the 7th Interna-
tional Conference on Cooperative Information Systems, CooplS ’02, pages
162-173, 2000. Springer-Verlag.

M. Platania. Ordering, Timeliness and Reliability for Publish/Subscribe
Systems over WAN. PhD thesis, Sapienza University of Rome, 2011.

W. Rao, L. Chen, A.-C. Fu, H. Chen, and FE Zou. On efficient content
matching in distributed pub/sub systems. In INFOCOM 2009, IEEE, pages
756 —764, april 2009.

A. 1. T. Rowstron and P Druschel. Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. In Proceedings
of the IFIP/ACM International Conference on Distributed Systems Platforms
Heidelberg, Middleware ’01, pages 329-350, 2001. Springer-Verlag.

S. Ratnasamy, P Francis, M. Handley, R. Karp, and S. Shenker. A scalable
content-addressable network. In Proceedings of the 2001 conference on
Applications, technologies, architectures, and protocols for computer com-
munications, SIGCOMM 01, pages 161-172, 2001. ACM.

L. Rizzo. pgmcc: a tcp-friendly single-rate multicast congestion control
scheme. SIGCOMM Comput. Commun. Rev., 30(4):17-28, 2000.

V. Ramasubramanian, R. Peterson, and E. G. Sirer. Corona: a high per-
formance publish-subscribe system for the world wide web. In NSDI'06:
Proceedings of the 3rd conference on Networked Systems Design & Imple-
mentation, pages 2—2, 2006. USENIX Association.

I. Rhee and L. Xu. Limitations of equation-based congestion control. In
Proceedings of the 2005 conference on Applications, technologies, architec-
tures, and protocols for computer communications, SIGCOMM ’05, pages
49-60, 2005. ACM.

W. Segall and D. Arnold. Elvin has left the building: A pub-
lish/subscribe notification service with quenching. In Proceedings of

112

Bibliography

[SCGO1a]

[SCGT01b]

[SLST10]

[SMLN*03]

[SRC84]

[SSJ11]

[SWO00]

[TAO4]

[TAaJO3]

[TBET03]

the 1997 Australian UNIX Users Group, Brisbane, Australia, 1997.
http://elvin.dstc.edu.au/doc/papers/auug97/AUUGY97.html.

A. C. Snoeren, K. Conley, and D. K. Gifford. Mesh-based content routing
using xml. SIGOPS Oper. Syst. Rev., 35(5):160-173, 2001.

T. Speakman, J. Crowcroft, J. Gemmell, D. Farinacci, S. Lin,
D. Leshchiner, M. Luby, T. Montgomery, L. Rizzo, A. Tweedly, N. Bhaskar,
R. Edmonstone, R. Sumanasekera, and L. Vicisano. Pgm reliable trans-
port protocol specification, 2001.

M. Sadoghi, M. Labrecque, H. Singh, W. Shum, and H.-A. Jacobsen. Effi-
cient event processing through reconfigurable hardware for algorithmic
trading. Proc. VLDB Endow., 3(1-2):1525-1528, September 2010.

I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. E Kaashoek,
E Dabek, and H. Balakrishnan. Chord: a scalable peer-to-peer lookup
protocol for internet applications. IEEE/ACM Trans. Netw., 11(1):17-32,
February 2003.

J. H. Saltzer, D. P Reed, and D. D. Clark. End-to-end arguments in system
design. ACM Trans. Comput. Syst., 2(4):277-288, November 1984.

M. Sadoghi, H. Singh, and H.-A. Jacobsen. fpga-topss: line-speed event
processing on fpgas. In Proceedings of the 5th ACM international confer-
ence on Distributed event-based system, DEBS ’11, pages 373-374, 2011.
ACM.

D. Sisalem and A. Wolisz. Mlda: A tcp-friendly congestion control frame-
work for heterogeneous multicast environments. In Proceedings IWQoS
2000, 2000.

P Triantafillou and I. Aekaterinidis. Content-based publish/subscribe
over structured p2p networks. In Proc. third Int. Workshop Distributed
Event-based Systems (DEBSGAZ04), 16 of 16 R. BALDONI et al, pages 24—
25, 2004.

D. Tam, R. Azimi, and H. arno Jacobsen. Building content-based pub-
lish/subscribe systems with distributed hash tables. In In International
Workshop On Databases, Information Systems and Peer-to-Peer Computing,
pages 138-152, 2003.

W. W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, and A. P Buchmann. A
peer-to-peer approach to content-based publish/subscribe. In Proceed-

ings of the 2nd international workshop on Distributed event-based systems,
DEBS ’03, pages 1-8, 2003. ACM.

113

Bibliography

[TE04]

[TK06]

[VCR98]

[VGSO05]

[VLBO5]

[VRKS06]

[WHO01]

[WS98]

[YCJO6]

[YKLO1]

P Triantafillou and A. Economides. Subscription summarization: a new
paradigm for efficient publish/subscribe systems. In Distributed Comput-
ing Systems, 2004. Proceedings. 24th International Conference on, pages
562 - 571, 2004.

S. Tarkoma and J. Kangasharju. Optimizing Content-based Routers:
Posets and Forests. Distributed Computing, 19(1):62-77, September
2006.

L. Vicisano, J. Crowcroft, and L. Rizzo. Tcp-like congestion control for
layered multicast data transfer. In INFOCOM ’98. Seventeenth Annual
Joint Conference of the IEEE Computer and Communications Societies. Pro-
ceedings. IEEE, volume 3, pages 996 —1003 vol.3, 1998.

S. Voulgaris, D. Gavidia, and M. V. Steen. Cyclon: Inexpensive member-
ship management for unstructured p2p overlays. Journal of Network and
Systems Management, 13:2005, 2005.

M. Vojnovic and J. Y. Le Boudec. On the Long-Run Behavior of Equation-
Based Rate Control. IEEE/ACM Transactions on Networking (TON),
13(3):568-581, June 2005.

S. Voulgaris, E. Riviere, A.-M. Kermarrec, and M. V. Steen. Sub-2-sub:
Self-organizing content-based publish subscribe for dynamic large scale
collaborative networks. In In IPTPSGAZ06: the fifth International Work-
shop on Peer-to-Peer Systems, 2006.

J. Widmer and M. Handley. Extending equation-based congestion con-
trol to multicast applications. In Proceedings of the 2001 conference on
Applications, technologies, architectures, and protocols for computer com-
munications, SIGCOMM 01, pages 275-285, 2001. ACM.

H. A. Wang and M. Schwartz. Achieving bounded fairness for multicast
and tcp traffic in the internet. In Proceedings of the ACM SIGCOMM ’98
conference on Applications, technologies, architectures, and protocols for
computer communication, SIGCOMM ’98, pages 81-92, 1998. ACM.

A. K. Yeung Cheung and H.-A. Jacobsen. Dynamic load balancing in dis-
tributed content-based publish/subscribe. In Middleware ’06: Proceedings
of the ACM /IFIP/USENIX 2006 International Conference on Middleware,
pages 141-161, 2006. Springer-Verlag New York, Inc.

Y. R. Yang, N. S. Kim, and S. S. Lam. Transient behaviors of tcp-friendly
congestion control protocols. In INFOCOM 2001. Twentieth Annual Joint
Conference of the IEEE Computer and Communications Societies. Proceed-
ings. IEEE, volume 3, pages 1716 —1725 vol.3, 2001.

114

Bibliography

[YMJ11]

[ZGGO5]

[ZHST04]

[ZMJ11]

[ZSB04]

Y. Yoon, V. Muthusamy, and H. Jacobsen. Foundations for highly avail-
able content-based publish/subscribe overlays. In Distributed Computing
Systems (ICDCS), 2011 31st International Conference on, pages 800 -811,
june 2011.

H. Zhang, A. Goel, and R. Govindan. An empirical evaluation of inter-
net latency expansion. SIGCOMM Comput. Commun. Rev., 35(1):93-97,
2005.

B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and J. Kubiatowicz.
Tapestry: a resilient global-scale overlay for service deployment. Selected
Areas in Communications, IEEE Journal on, 22(1):41 - 53, jan. 2004.

K. Zhang, V. Muthusamy, and H.-A. Jacobsen. Total order in content-
based publish/subscribe systems. Technical report, Middleware Systems
Research Group, University of Toront, 2011.

Y. Zhao, D. Sturman, and S. Bhola. Subscription propagation in
highly-available publish/subscribe middleware. In Proceedings of the 5th
ACM/IFIP /USENIX international conference on Middleware, Middleware
‘04, pages 274-293, 2004. Springer-Verlag New York, Inc.

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation and Rationale
	Challenges and Solution Overview
	Structure of the Dissertation

	Background and Related Research
	Language Models
	Subscription Representation and Matching
	Architecture and Event Routing
	Reliable Delivery and Ordering
	Reliable versus best-effort systems
	Reliable delivery
	Ordered delivery

	Scalability and Load Balancing
	Congestion Control
	Siena B-DRP

	FIFO Ordering
	Overview of Problem and Solution
	FIFO ordering

	Probabilistic FIFO Ordering
	Model of end-to-end delay
	Measuring delay differences
	End-to-end delay distribution
	Distribution of delay differences
	Determining the latch time
	Publication record

	Loss Detection
	Algorithmic Description
	Evaluation
	Network delay model validation
	Effectiveness of the ordering protocol
	Adaptivity of the protocol

	Conclusion

	Reliability
	Context and Preliminaries
	Reliable IP multicast
	Problem and overview of the solution

	End-to-end Loss Recovery
	Message loss detection
	Routing requests
	Sending repairs
	Adaptive message cache
	Interaction with FIFO ordering protocol

	Discussion
	Evaluation
	Experimental setup and workload
	Recovery effectiveness
	Performance and network overhead
	Adaptive cache

	Conclusion

	Congestion Control
	Context and High-Level Design
	Congestion control for IP multicast
	TCP friendly multicast congestion control
	Content-aware rate control
	High-level design

	Content-Aware Congestion Control Protocol
	Content-based flows
	Congestion control protocol
	Dealing with imprecise loss detection

	Evaluation
	Experimental setup
	Effectiveness, stability, and responsiveness
	Fairness among concurrent content-based flows
	TCP friendliness
	Large scale deployment
	Concurrent operation with the recovery protocol

	Conclusion

	Conclusion
	Summary of Work
	Future Research

	Statistics of the sum of two Laplacian random variables
	Probability Density Function
	Cumulative Density Function and Quantile Function
	Parameter Estimation

	Bibliography

