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Abstract

This thesis aims to study the local robustness properties of Bayesian posterior summaries and

to derive a robust procedure to estimate such quantities. Such results are then applied to in the

Bayesian Mean-Variance portfolio selection problem. In the first part, we study the local robustness

of Bayesian estimators. In particular we build a framework where any Bayesian quantity can be seen

as a posterior functional. This point of view allows us to construct different robustness measures.

We derive local influence measures for posterior summaries with respect both to prior and sampling

distributions and to observations. Afterwards we address the issue of efficient implementation of

the derived measures through MCMC algorithms. In the second part, we deal with the problem of

robust estimation in a Bayesian context, providing a useful result to generalize univariate robust

distributions to the multivariate case. We also propose criteria to assess when a robust model

is recommended and how to choose among estimates obtained with different distributions. The

third part finally considers the Mean-Variance portfolio selection problem. We give evidence that

the Bayesian approach works better than the Certainty Equivalence approach whenever data are

normally distributed, although this is no longer true when data contain few outlying observations.

Moreover, we compute useful measures of sensitivity of Bayesian weights and we construct and

implement a new estimator, which is robust to the presence of ’extreme’ observations.

Keywords: Bayesian Mean-Variance approach, Estimation risk, Posterior summaries, Robust-

ness measures, Robust estimation, MCMC methods.
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Introduction

The Mean-Variance approach to portfolio theory (Markowitz, 1952; Markowitz, 1959) states that

a risk-averse investor should choose the amount to invest among a set of assets relying just on

the first and second moments of return distribution. Such approach relies on assumptions which

may appear too simplistic with respect to the empirical evidence on asset returns distribution

(Cont, 2001), e.g. the normality of asset returns distribution and independence. Furthermore,

it is not able to account for important characteristics such as the presence of extremely high or

low returns. Nevertheless, this approach is important for both practitioners and researchers in

finance (Britten-Jones, 1999) and it is central to many asset pricing theories. Its popularity in

practical applications is due to the fact that in the classical implementation of this theory (known

as Certainty Equivalence or naive approach) unknown parameters are simply replaced by their

sample estimates. However practitioners find that the derived optimal portfolio allocation is often

unreasonable (Black and Litterman, 1992).

A first reason for this fact is that the naive approach does not consider the estimation risk, i.e.

the risk due to the fact that the estimated parameters display a sampling error which cannot be ig-

nored. There is evidence in the literature that not taking into account parameters uncertainty leads

to suboptimal portfolios (Barry, 1974; Brown, 1979; Jorion, 1986; Cavadini, Sbuelz and Trojani,

2002). A Bayesian approach to Mean-Variance portfolio selection problem is a possible solution

(see Bawa, Brown and Klein, 1979; for a more general reference on Bayesian statistics see Berger,

1985; Cifarelli and Muliere, 1989; Bernardo and Smith, 1994). In this approach Bayesian Mean-
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Variance portfolio weights turn out to be a function of the moments of the predictive distribution

of future returns. The Bayesian point of view not only considers parameter uncertainty but also

satisfies the axiomatic paradigm of Neumann-Morgenstern-Savage’s expected utility maximization.

A second reason for this inefficiency is that Mean-Variance portfolio weights are extremely

sensitive to observations. It is found in practice that time series of asset returns are characterized

by the presence of several extremely low or high returns. Such outlying values are due for instance

to market crashes that can hardly be included in the data generating process. This fact can induce a

bias in the estimates and leads to the so called model risk problem. Recent papers deal with model

risk in the Certainty Equivalence approach (Victoria-Feser, 2000; Cavadini, Sbuelz and Trojani,

2002; Perret-Gentil and Victoria-Feser, 2003). They show that few outlying returns have a strong

influence on the composition of the resulting optimal portfolio. Moreover Cavadini, Sbuelz and

Trojani (2002) find that model risk plays a greater role than estimation risk. However no evidence

of this fact is given for Bayesian weights.

This thesis aims to study the robustness properties of Bayesian Mean-Variance weights and

proposes a new estimator which is not too much affected by the presence of extreme observations

in the sample. In order to do this we first review the field of robustness in Bayesian statistics and

we propose a simple and unified framework that helps to construct useful measures of sensitivity

of Bayesian quantities and to build robust Bayesian estimators.

In recent years the question about Bayesian procedures sensitivity to their inputs has become

more and more popular, and all contributions in this sense fall into the category of the so-called

Bayesian robust statistics. Any Bayesian quantity depends on two distributional assumptions and

on a sample of observed data. Most efforts concentrate on building measures of sensitivity to

changes in the distributional assumptions (prior or/and sampling distributions).

One of the first attempts in this direction is due to Box and Tiao (Box and Tiao, 1964; Box

and Tiao, 1992), who distinguish between criterion robustness and inference robustness. When

we make inference from a sample of data, the criterion to draw inferential conclusions (e.g. a

2



statistics) depends on the assumption we made about the data generating process. Criterion

robustness evaluates how the chosen statistics changes as the distributional assumptions change.

If the statistics does not differ substantially under different distributions, it is said to be (criterion)

robust. However, if distributional assumptions are known to be different from the ones believed, the

fixed criterion would also be different. Inference robustness evaluates how inferential conclusions

change as the criterion changes.

More recent literature within the field of criterion robustness studies the sensitivity of Bayesian

quantities to questionable distributional assumptions. Usually, this uncertainty is represented by

varying the suspected source (either the prior or the sampling model) within a class of distributions.

The global approach to robustness considers large classes of different distributions and evaluates

the range of variation of the quantity under study. A good review on this topic can be found in

Berger (1994). A second direction is the local approach to robustness. It assesses the effects of small

perturbations of the assumed distributions represented by neighborhoods of the base models. The

sensitivity to small deviations from the base model is evaluated with suitable derivatives (Ruggeri

and Wasserman, 1993; Sivaganesan, 1993; Dey et al., 1996; Gustafson et al., 1996; Moreno et al.,

1996; Peña and Zamar, 1997; Gustafson, 2000). Little attention has been paid in the Bayesian

literature to the sensitivity to observations. However this is a well-known matter in the Theory

of Robust Statistics developed in Hampel, Ronchetti, Rousseeuw and Stahel (1986). Here any

statistics is seen as a functional and different quantities can be defined in order to assess the

influence of a single observation in the sample.

Once the sensitivity of a Bayesian quantity has been checked, the next step is to build robust

Bayesian procedures. We find two main directions in the literature. The first direction is developed

within the global approach and applies when a large range of variation is obtained for the quantity

under study. It aims to narrow the class of prior and/or sampling distributions down to the

point where a satisfactory range is reached (see Berger, 1994; Liseo et al., 1996; Moreno et al.,

1996). A second direction applies when normality is adopted for the sampling distribution and

3



this assumption may appear inadequate because of the presence of few atypical observations. In

Bayesian analyses the normality assumption is often convenient in order to obtain analytical results

for the posterior distribution. However, in this case it is well known that the sensitivity of posterior

quantities to observations is more pronounced and that only few atypical values in the sample

heavily influence estimates. The reason for this fact has been found by many authors in light tails

of the normal model adopted (Box and Tiao, 1992; Dawid, 1973; Zellner, 1976). Robustness with

respect to atypical observations is achieved by choosing a so-called robust model, i.e. a location-scale

family of symmetric unimodal distributions enriched with ‘robustness’ parameters that control its

shape (see Box and Tiao, 1962; Ramsay and Novick, 1980; West, 1984; Albert et al., 1991).

This thesis follows the local approach to Bayesian robustness. Such approach would consider

the fact that asset returns display sometimes ’extreme’ values which can be hardly reflected in a

normal data generating model and we may be interested to capture the structure of the stochastic

process that generates the bulk of the data. In the first chapter we build a framework where any

Bayesian quantity can be seen as a posterior functional and its sensitivity to all inputs is checked.

Moreover, we derive local of influence measures for posterior summaries with respect both to

distributional assumptions and to observations and we consider the issue of efficient implementation

of the derived measures. In the second chapter we deal with the problem of robust estimation in

a Bayesian context, providing a useful result to generalize univariate robust distributions to the

multivariate case. We also propose criteria to assess when a robust model is recommended and

how to choose among estimates obtained with different distributions. Finally, the third chapter

considers the Mean-Variance portfolio selection problem. We give evidence that when data are

normally distributed the Bayesian approach works better than the Certainty Equivalence approach,

but this is no longer true when data contain few outlying observations . Moreover, we computed

useful measures of sensitivity of Bayesian weights and we construct a new estimator which is robust

to the presence of ’extreme’ observations.

4



Chapter 1

Local robustness measures for

posterior summaries

1.1 Abstract

This paper deals with measures of local robustness for particular Bayesian quantities, i.e. poste-

rior summaries. We build a framework where any Bayesian quantity can be seen as a posterior

functional and its sensitivity to all inputs is checked. First, we use the Gateaux derivatives to

measure the impact on posterior summaries of perturbations of prior or sampling models, giving

some general expressions. Such quantities capture both a ’data effect’ and a ’model effect’ on the

functional. Secondly, we check the sensitivity to one observation in the sample, once a particular

combination of prior/sampling models has been chosen. Moreover, we propose a new estimator of

the Bayes factor for efficient implementation. Finally, illustrative examples of sensitivity analyses

are provided and discussed.
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1.2 Introduction

Any Bayesian quantity depends strongly on the modeling assumptions and on the sample of ob-

served data. Bayesian Robust Statistics evaluates the sensitivity of this quantity to their inputs

and in recent years there has been a growing literature in the field (D. Rìos Insua and F. Ruggeri,

2000). Most efforts concentrate on global robustness, in particular with respect to prior specifica-

tion. Such approach consists in calculating the range of the quantity of interest as the model varies

within a class of distributions. If this range is small, the quantity is declared to be robust. If not,

further analysis is needed. For more details on this issue see Lavine (1991), Berger (1994), Basu

(1999), Sivaganesan (1999, 2000), Berger et al. (2000), Moreno (2000) and Shyamalkumar (2000).

A second approach - named local - assesses the sensitivity to deviations only in a neighborhood

of the reference model. Measures of local robustness are obtained by suitable derivatives of the

functional (Ruggeri and Wasserman, 1993; Sivaganesan, 1993; Dey et al., 1996; Gustafson et

al., 1996; Moreno et al., 1996; Peña and Zamar, 1997). The functional is said to be robust if the

measure is small. Also in this case, most contributions are only concerned with local prior influence

(Gustafson, 2000).

In this paper we deal with local robustness. It is interesting to note that the same approach

is used in robust statistics as developed in the frequentist framework (Huber, 1981; Hampel et

al., 1986). However the robustness perspective slightly differs in a frequentist and in a Bayesian

context. We discuss this point in Section 1.3, introducing the concept of functional and looking

at any Bayesian quantity as a function of three distinct elements, i.e. the prior, the sampling

model and the data. Such point of view constitutes a simple and unified framework for robustness

evaluation in Bayesian statistics. In particular we consider the posterior expectation of a generic

function ρ (θ), called posterior summary. The goal of this paper is to check the sensitivity of

posterior summaries to a given input, all the rest remaining fixed. Different diagnostic tools

for distributional assumptions -called local influence measures- are derived in Section 1.4. Such

measures capture the impact on the functional of contaminations of the reference model in different

6



directions. The sensitivity of a Bayesian functional to observations is addressed in Section 1.5.

Section 1.6 deals with the matter of implementation of local influence measures when analytical

calculations are not feasible. Starting from the work of Chen and Shao (1997), we propose a new

estimator for the Bayes Factor which is more efficient in terms of computational time. Illustrative

examples are given in Section 1.7. Finally, Section 1.8 gives a summary of the findings and Section

1.9 suggests possible directions for future research.

1.3 Frequentist and Bayesian robustness

In this section we underline some common and different features of the robustness concept in a

Bayesian and in a frequentist framework.

First let us introduce some notation. We will use capital letters for both a probability distri-

bution and its corresponding cumulative distribution function. Moreover, we denote with small

letters the corresponding density, when it exists. We consider i.i.d. one-dimensional random

variables X = (X1, ..,Xn) generated by a reference distribution Fθ0 , which belongs to the set

F ∗ = {Fθ : θ ∈ Θ}. Each observation in sample x = (x1, .., xn) takes value in a sample space

Ξ ⊆ R.

We denote by Fn (y) =
1
n

Pn
i=1∆xi (y) the empirical distribution where ∆x (y) is the Dirac

distribution which puts mass 1 at x. In a Bayesian setting we also define Π(θ) and P (θ|x) to be an

element respectively of the set Π∗ of all possible priors and of the set P ∗ of all possible posteriors

on the parameter space Θ.

In frequentist statistics observed data are used to make inference on the true parameter value θ0,

which is assumed to be a fixed constant (Cox and Hinkley, 1974). The approach of classical robust

theory based on influence functions (Hampel, 1974; Hampel et al., 1986) deals with estimators that

can be (at least asymptotically) expressed as functionals, i.e. Tn(Fn) = T (Fn) for all n and Fn.

Such functional T : F ∗ → Rk is such that it converges to the asymptotic value of the estimator

(T (Fn) −→
n→∞ T (Fθ0)) and that Fisher consistency holds (T (Fθ0) = θ0).
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Measures of robustness to small deviations from the reference model are obtained by computing

the influence function (IF ), which is the Gateaux derivative of the functional under a locally per-

turbed distribution in direction of a point mass. Therefore the evaluation of robustness properties

of the estimator occurs at an asymptotic level. In the sample one can calculate some empirical

version of the IF such as the Empirical Influence Function and the Sensitivity Curve.

In Bayesian statistics the parameter θ is not a fixed quantity, but a random variable, whose

entire probability distribution has to be computed (Bernardo and Smith, 1994). Two distributions

are matched with the observed data: Π that represents our knowledge a priori on θ and Fθ that

expresses the parametric model we believe generated observations x. Using the Bayes theorem,

the posterior distribution for parameter θ is obtained:

P (θ|x) =
Π(θ)LF (x|θ)
m (x ;Π, Fθ)

(1.1)

=
eP (θ|x)

m (x ;Π, Fθ)
,

where LF (x|θ) =
Y
i

fθ (xi) is the likelihood and m (x ;Π, Fθ) =
R ep (θ|x) dθ is the marginal likeli-

hood. Inferential conclusions on the value of θ are based on (1.1).

Any Bayesian quantity can be expressed as a functional of type

TB : F
∗
n ×Π∗ × F ∗ → Υ,

where F ∗n = {all discrete distributions with probability p1, .., pn at the points x1, .., xn, pi > 0,P
i pi = 1} and Υ is a suitable space. For example, one can be interested in the entire posterior

distribution (Υ = P ∗) or in some posterior summaries (Υ = Rk, k > 1).

When the number of observations increases, the impact of Π on (1.1) disappears because the

likelihood dominates the prior distribution and the posterior collapses to a point mass on the true

parameter value θ0. Therefore, Bayesian functionals satisfy TB(Fn,Π, Fθ) −→
n→∞ T (Fθ0). Asymp-

totic functionals do not allow to capture the sensitivity of posterior quantities to perturbations

in the prior. Hence, we will work with sample-based functionals. In particular we will focus on
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robustness evaluation for posterior summaries of type

TB(Fn,Π, Fθ) =

Z
ρ (θ) p (θ|x) dθ. (1.2)

In the sequel we will in short denote TB and m (x) respectively the posterior summary and the

marginal likelihood under reference models Π and Fθ.

1.4 Sensitivity to distributional assumptions

In this section we deal with the sensitivity of a Bayesian estimator to small departures from the

assumed model, either the prior or the sampling distribution. In order to simplify the notation we

will denote the posterior functional only as a function of the distribution under study, say a distri-

bution H, keeping the remainder fixed. We represent these deviations through ε−contamination

classes of type:

Iε (H) = {Hε = (1− ε)H + εC | 0 ≤ ε ≤ 1, C ∈ C∗} . (1.3)

Set (1.3) represents the perturbation of the reference distribution H in the direction of C and

ε is the contamination’s amount (assumed to be small in local analysis). Clearly, the wider the

set of contaminating distribution C∗ is, the richer the neighborhood we are considering. As in

Sivaganesan (1993) and Peña and Zamar (1997), we measure the impact of such contaminations

on functional (1.2) by the Gateaux derivative:

LI (C;TB,H) =

·
∂TB (Hε)

∂ε

¸
ε=0

(1.4)

=

Z
ρ (θ)

·
∂pε (θ|x)

∂ε

¸
ε=0

dθ.

We refer to this quantity as local influence (LI) of TB when H is perturbed in the direction of C.

Note that measure (1.4) is a sample-based quantity. We will see that it captures both a ’data effect’,

i.e. the effect on the functional of choosing a contaminating model which is more adequate than the

reference one with respect to observed data, and a ’model effect’, i.e. the effect on the functional

value of perturbing the reference model in some directions. The strong dependence of measure
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(1.4) on the sample is the reason why Sivaganesan (1993) looks at it only to compare whether

a functional is more sensible to prior or sampling model specifications and does not evaluate its

magnitude. For this purpose we define

LI∗(C∗;TB,H) = sup
C∈C∗

¯̄̄̄
LI (C;TB,H)

TB (H)

¯̄̄̄
, (1.5)

which gives the maximum relative effect on the functional as the distribution moves locally around

H in different directions. Measure (1.5) evaluates the magnitude of the sensitivity of the functional

and can be used to compare robustness properties among different functionals. In the following

sections we derive local influence measures for both the prior and the sampling model.

1.4.1 Prior distribution

Many papers in Bayesian robustness are concerned with the assessment of the sensitivity with

respect to the prior (Ruggeri and Wasserman, 1993; Gustafson et al., 1996; Moreno et al., 1996;

Peña and Zamar, 1997). The main reason for this widespread interest is probably due to the feeling

that prior knowledge formalized by the researcher is the most subjective source of the analysis.

Much work has been done in the direction of global robustness. A good review on the topic is

provided by Berger (1994).

Local robustness assesses effects of small prior perturbations on the functional. We consider a

neighborhood of the reference prior Π of type (1.3), with Q the contaminating distribution. The

local influence of TB when Π is perturbed in the direction of Q is given by:

LI(Q;TB,Π) =

·
∂TB(Πε)

∂ε

¸
ε=0

=

·Z
ρ (θ)

∂

∂ε

µ
LF (x|θ)πε(θ)
m (x ;Πε, Fθ)

¶
dθ

¸
ε=0

=

Z
ρ (θ)

LF (x|θ) [q (θ)− π(θ)]

m (x)
dθ +

+

Z
ρ (θ)

[m (x ;Q,Fθ)−m (x )]LF (x|θ)π(θ)
m (x )

dθ

=
m(x;Q,Fθ)

m(x)
[TB(Q)− TB] , (1.6)
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where m(x;Q,Fθ) and TB(Q) are respectively the marginal likelihood and the posterior summary

obtained when the prior is Q. Measure (1.6) depends on two factors. The first is the ratio of

marginal likelihoods under contaminating and reference distribution respectively (Bayes factor).

This can be regarded as a measure of data supporting degree for different contaminating priors

that compares the researcher’s subjectivity and the objectiveness of the data. If this amount is

greater (smaller) than one, data may be said to support more (less) the contaminating prior then

the reference one. For this reason the Bayes factor can be said to capture a ’data effect’ on the

functional. The second factor is the difference between the functional value computed under the

contaminating and the reference prior respectively. It captures the effect on the functional when

choosing a different model for the prior and we refer to this as ’model effect’. For example, if

the value of TB(Q) is very different from the value of TB , the model effect turns out to be large.

However the total effect on the functional will be large itself only if model Q is not completely

discarded by the data, i.e. the Bayes factor does not go to zero.

1.4.2 Sampling distribution

Another source of possible misspecification is the data-generating model. Robustness with respect

to sampling model specification is referred in the literature as model or likelihood robustness. In

most scenarios inference will depend much more heavily on the model than on the prior (see Section

1.3). However, few contributions in assessing likelihood robustness can be found in the literature

(see Sivaganesan, 1993; Dey et al., 1996; Gustafson, 1996; Shyamalkumar, 2000).

This fact can be explained by considering the non linearity of the posterior with respect to the

sampling distribution. Indeed when regarded as a function of the prior, (1.1) is a ratio of two linear

functionals, or briefly is said to be ratio-linear. This is not true when considered as a function of

the sampling model, as the sampling density enters through the likelihood function. This often

leads to intractable global analysis from an analytical point of view. However, in local analysis

this problem can be tackled by taking the derivative with respect to the quantity of contamination
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ε when ε is small.

Assume we represent uncertainty about the reference sampling model Fθ by (1.3) with G the

contaminating distribution. The obtained perturbed likelihood will be differently combined with

the prior according to the information G brings on θ.

If G is a distribution still depending on parameter θ, we denote the contaminating distribution

by Gθ. For example Gθ can be an unimodal distribution around θ. In this case the local influence

of TB when Fθ is perturbed in the direction of Gθ is given by

LI(Gθ;TB, Fθ) =

·
∂TB(Fθ,ε)

∂ε

¸
ε=0

=

·Z
ρ (θ)

∂

∂ε

µ
LFε (x|θ) · π(θ)
m (x ;Π, Fθ,ε)

¶
dθ

¸
ε=0

=
X
j

mj(x;Π, Fθ, Gθ)

m(x)
[TB,j (Fθ, Gθ)− TB] , (1.7)

where

mj(x;Π, Fθ, Gθ) =

Z epj (θ|x) dθ
and

TB,j (Fθ;Gθ) =

R
ρ (θ) epj (θ|x) dθ

mj(x;Π, Fθ,Gθ)

are respectively the marginal likelihood and the posterior functional obtained when the sampling

distribution is Gθ only for observation xj and Fθ for the others, the quantity epj is defined as
epj (θ|x) = gθ (xj)LF

¡
x(−j)|θ

¢
π (θ) ,

and x(−j) is the sample x without observation xj.

If G does not depend on θ we denote the contaminating distribution by V . The local influence

of TB when Fθ is perturbed in the direction of V is then given by:

LI(V ;TB, Fθ) =

·
∂TB(Fθ,ε)

∂ε

¸
ε=0

=

·Z
ρ (θ)

∂

∂ε

µ
LFε (x|θ) · π(θ)
m (x ;Π, Fθ,ε)

¶
dθ

¸
ε=0

=
X
j

mj(x;Π, Fθ, V )

m(x)

h
T
(−j)
B − TB

i
, (1.8)
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where mj(x;Π, Fθ, V ) = v (xj) ·m(x(−j);Π, Fθ) and m(x(−j);Π, Fθ) and T (−j)B are respectively the

marginal likelihood and the posterior functional under reference models using sample x(−j). For

detailed calculations see Appendix A.

For any observation xj the local influence measure for the sampling distribution is still a function

of two factors and it captures both a ’data effect’ and a ’model effect’. The Bayes factor plays the

important role of increasing (decreasing) the difference when data support (do not support) the

contaminating distribution more than the reference distribution for observation j (’data effect’).

The second factor is the difference between the value of the functional computed when model G is

assumed only for observation xj and the base functional TB. Note that observation xj enters in the

calculation of the former value only if G depends on θ. Otherwise, xj cannot give any information

for updating our prior knowledge and the resulting functional has the form of the reference one

where one observation has been dropped out. The total effect on the functional of perturbations

of the sampling model turns out to be the sum of the effect for each observation.

1.5 Sensitivity to observations

In the previous section we assessed the influence on posterior summaries of a perturbation of the

assumed model in some direction. In this section we measure the influence of a given observation

in the sample (outlier robustness). It is worth stressing the difference between model robustness

and outlier robustness. Model robustness evaluates the impact on the functional of a small con-

tamination of the reference sampling model (see section 1.4.2). Outlier robustness evaluates the

effect of moving one observation in the sample once prior and sampling distributions are fixed. In

this section we still denote the Bayesian functional as a function of the distribution under study,

i.e. the empirical distribution.

Little attention has been paid in Bayesian literature to the impact of outliers and mainly focused

on the posterior distribution. Ramsay and Novick (1980), for example, propose to look at the rate

of change of the sampling model density with respect to an observation value. A similar idea is
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used by West (1984) on Bayesian regression. However such approach is hardly applicable because

it involves derivatives which are difficult to compute apart from particular family of distributions.

The same problem is addressed by Chen and Fournier (1999). Their influence measure summarizes

the difference between posterior distributions computed with original data and with an additional

observation. Such posterior distributions are obtained through the use of numerical techniques

and are therefore always applicable.

In this paper, however, we do not deal with posterior distributions directly, but with posterior

summaries. Studying the sensitivity of such a quantity to observations is a well known matter in

frequentist robust statistics. It is done by means of the Sensitivity Curve (see Hampel et al., 1986),

defined as

SC(z) =
[T

B
(F z

n)− T
B
(Fn−1)]

1
n

, (1.9)

where Fn−1 = (x1, .., xn−1) is the empirical distribution of the sample of (n− 1) observations and

F z
n = (x1, .., xn−1, z) is the sample in which observation z has been added. In a Bayesian context

this measure captures the influence of moving just one observation under a certain prior/sampling

model combination. If this measure diverges as z becomes larger, the functional is said to be non

robust with respect to observations. Typically this curve is useful to identify observations with

a large influence, such as outliers and loosely speaking an outlier is defined to be an observation

that is unlikely to have been generated by the assumed sampling model. For its simple definition

(1.9) can be implemented even when analytical calculations are not feasible by means of numerical

algorithms.

In the next section we will discuss the practical implementation of local sensitivity measures

derived in the previous sections when analytical results are not available.

1.6 Implementation of local sensitivity measures

Posterior distribution and local influence measures are analytically tractable when conjugate prior

and sampling models are assumed. However, often this is not the case and we need to use numerical
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procedures to compute them. Typically MCMC algorithms are used to generate a sample from

complicated distributions. Local influence measures can be then easily obtained by estimating the

Bayes factor and the functionals under reference and contaminating distributions. In this section

we concentrate on implementation of (1.7) by means of Metropolis-Hastings algorithm and we

propose a way to speed up its computation.

Local influence measures for the sampling distribution involve the computation of Bayes factors

and of posterior summaries (see Section 1.4.2). We first consider the estimation of the former

quantity (shortly denoted by rj), which is given by

rj =
mj(x;Π, Fθ, G)

m(x)
(1.10)

=

R epj (θ|x) dθR ep (θ|x) dθ .

Different bridge estimators (Meng and Wong, 1996; Chib and Jeliazkov, 2001; Mira and Nicholls,

2001) are available. However, to compute such local influence measures we would have to run n+1

simulations, where n is the number of observations. Clearly, the estimation procedure will take a

long time when n is large.

We need a way to be more efficient in terms of computational time. A good starting point is

the two-stage estimator proposed by Chen and Shao (1997). Ratio (1.10) can be written as

rj =

R epj(θ|x)
ξ(θ) ξ (θ) dθR ep(θ|x)
ξ(θ) ξ (θ) dθ

, (1.11)

where ξ (θ) is an arbitrary importance sampling density. When observations are i.i.d. from ξ, the

importance density which minimizes the relative mean square error of the estimator is given by

ξoptj (θ) =
|pj (θ|x)− p (θ|x)|R |pj (θ|x)− p (θ|x)| dθ

=
|epj (θ|x)− rj · ep (θ|x)|R |epj (θ|x)− rj · ep (θ|x)| dθ , (1.12)

where pj = epj/mj and p = ep/m.
The corresponding estimator broptj is implemented in two stages. First, a Monte Carlo estimate

of (1.11) is computed with a random sample from an arbitrary distribution. Then a random draw
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from (1.12) can be obtained by means of a MCMC simulation. One advantage of broptj is that its

estimate is available with a single random sample from ξoptj rather than two samples respectively

from pj and p. However, we are still expected to generate n samples to compute (1.7).

In order to run a single MCMC simulation we propose to use an importance sampling density

with a form similar to the optimal one, but which does not depend on j. Such a density is given

by

ξ∗ (θ) =
|ep∗ (θ|x)− r∗ · ep (θ|x)|R |ep∗ (θ|x)− r∗ · ep (θ|x)| dθ , (1.13)

where ep∗ (θ|x) = 1
n

Pn
j=1 epj (θ|x) and r∗ = R ep∗(θ|x)dθR ep(θ|x)dθ . Figure 1.1 compares density (1.13) with the

posterior densities p and p0js.

Figure 1.1: Importance sampling densities ξ∗ and posterior densities p and pj ’s.

The sampling density displays fatter tails which is a crucial characteristic for a good importance

sampling. The corresponding modified two-stages estimator is given by

br∗j =
Pnξ

i=1
epj(θi|x)eξ∗(θi|x)Pnξ

i=1
ep(θi|x)eξ∗(θi|x)

, (1.14)
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where [θi]
nξ
i=1 is the output of a MCMC simulation for (1.13). We tested the performance of the

new estimator by running K = 30 independent simulations of length s (s = 1000, 2000, .., 5000)

under the normal sampling model. For each chain we estimate (1.14) and we compute its mean

value with the corresponding confidence interval. Figure 1.2 shows that estimator (1.14) behaves

well with a mean value of br∗j close to the analytical value and smaller variability with increasing
number of simulations.

Figure 1.2: Analytical and estimated value of rj (j = 1, 2, 3) with confidence intervals.

To estimate the local influence measure for the sampling distribution, we still need to compute

TB and TB,j (Fθ, G). The former quantity can be obtained by running a MCMC simulation for

posterior p. The latter can be obtained using importance sampling technique with different sampling
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densities. If ξ∗ is chosen as importance density, measure (1.7) can be written as

LI(G;TB, Fθ) =
X
j

mj(x;Π, Fθ, G)

m(x)
[TB,j (Fθ,G)− TB ]

=
X
j

rj

·Z
ρ (θ) pj (θ|x) dθ −

Z
ρ (θ) p (θ|x) dθ

¸

=
X
j

rj ·
"
mξ

mj
·
Z

ρ (θ)
epj (θ|x)eξ∗ (θ|x)ξ∗ (θ|x) dθ −

Z
ρ (θ) p (θ|x) dθ

#

=
X
j

"
rξ ·

Z
ρ (θ)

epj (θ|x)eξ∗ (θ|x)ξ∗ (θ|x) dθ − rj ·
Z

ρ (θ) p (θ|x) dθ
#
, (1.15)

where rξ =
mξ

m . Denoting by [θs]
np
s=1 and [θi]

nξ
i=1 respectively the samples from p (θ|x) and from

ξ∗ (θ), the ratio rξ can be estimated using optimal Meng and Wong’s bridge estimator given by

brt+1ξ =

1
np

Pnp
s=1

eξ∗(θs)
nξ · eξ∗(θs) + np · brtξ · ep(θs)

1
nξ

Pnξ
i=1

ep(θi)
nξ · eξ∗(θi) + np · brtξ · ep(θi)

.

An estimator of (1.15) is then obtained as

cLI(G;TB, Fθ) = nX
j=1

"brξÃ 1

nξ

nξX
i=1

ρ (θi)
epj (θi|x)eξ∗ (θi|x)

!
− br∗j

Ã
1

np

npX
s=1

ρ (θs)

!#
. (1.16)

If p is chosen as importance density, measure (1.7) can be written as

LI(G;TB, Fθ) =
X
j

mj(x;Π, Fθ, G)

m(x)
[TB,j (Fθ,G)− TB]

=
X
j

rj ·
·
1

rj
·
Z

ρ (θ)
epj (θ|x)ep (θ|x) p (θ|x) dθ −

Z
ρ (θ) p (θ|x) dθ

¸

and its estimator is given by

cLI(G;TB, Fθ) = nX
j=1

"Ã
1

np

npX
s=1

ρ (θi)
epj (θs|x)ep (θs|x)

!
− br∗j

Ã
1

np

npX
s=1

ρ (θs)

!#
. (1.17)

In the next section we will provide some examples on how to perform a Bayesian sensitivity analysis.

1.7 Examples of local sensitivity analyses

In the following simple examples we perform sensitivity analyses of the functional of interest. We

keep the same notation as in previous sections. We first consider the Bayes estimator given by the
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mean of the posterior distribution. For this example we simulate a sample of n = 3 observations

from a standard univariate normal given by (0.5375, 1.4221, 1.0946). Then we consider a Bayesian

regression model using real data. In both case we perform conjugate analyses in order to obtain

analytical results.

1.7.1 Posterior mean

The posterior mean is a frequently used estimator of the parameter of interest. We now illustrate

how a sensitivity analysis on this functional can be carried out. We assume that prior Π isN(θ0, σ20)

with θ0 = 0.5 and σ20 = 1. Moreover sampling distribution Fθ is N
¡
θ, σ2

¢
with σ2 = 0.2. The

posterior mean and the marginal likelihood can be computed analytically and turn out to be

respectively

TB =
nσ20

nσ20 + σ2
x+

σ2

nσ20 + σ2
θ0

and

m(x) = (2π)
−n

2
¡
σ2
¢− (n−1)

2
¡
nσ20 + σ2

¢− 1
2 ·

· exp
(
− 1

2σ2

X
i

(xi − x)2
)
exp

(
− n (θ0 − x)

2

2 (nσ20 + σ2)

)
.

First, we assume we are not very confident about the value of prior mean θ0. We express our uncer-

tainty through the set of possible contaminating prior distribution eQ = ©N(λ, σ20) : λ ∈ [−4.5, 5.5]ª .
In this case the local influence measure is given by (1.6) with

TB (Q) =
nσ20

nσ20 + σ2
x+

σ2

nσ20 + σ2
λ

and

m(x;Q,Fθ) = (2π)
−n

2
¡
σ2
¢− (n−1)

2
¡
nσ20 + σ2

¢− 1
2 ·

· exp
(
− 1

2σ2

X
i

(xi − x)
2

)
exp

(
− n (λ− x)

2

2 (nσ20 + σ2)

)
.

Table 1.1 and Figure 1.3 show such a measure for different values of σ20. The magnitude of

LI decreases with increasing prior variances, meaning that flatter priors are less influenced by

perturbations. The two factors of measure (1.6) are displayed in Figure 1.4.
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σ20

0.5 1 10 100

TB 0.9571 0.9857 1.0146 1.0177

LI∗
³ eQ;TB,Π´ 0.1270 0.0702 0.0148 0.0029

λ for LI∗
³ eQ;TB,Π´ 1.6 1.8 3.9 5.5

λ for max m(x;Q,Fθ)/m (x) 1 1 1 1

Table 1.1: Relative local influence measures of the posterior mean with

respect to the prior model with different prior precision.

Figure 1.3: LI(Q;TB ,Π) measure for the posterior mean with different values of prior variance σ20.
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The effect on the functional of choosing prior Q instead of prior Π (’model effect’) is linear and

smaller with decreasing prior precision. Moreover, priors with λ around the value of the sample

mean (x = 1.01) appear to be more adequate than Π for small value of σ20. As long as the reference

prior becomes flatter, the Bayes factor approaches to 1 for all possible contaminating distributions.

Figure 1.4: Difference TB (Q)− TB and Bayes factor for different values of prior variance σ20.

We turn now to the sampling model. We account for perturbations of the reference distribution

in the direction of flatter ones. The chosen contaminating set is eGθ =
©
N(θ, η2) : η2 ∈ [0.2, 2]ª .Clearly

this contamination is quite restrictive, but it leads to analytical results. LI measure for the sam-

pling model is given by (1.7) with

mj(x;Π, Fθ,Gθ) = (2π)
−n

2
¡
σ2
¢− (n−2)

2
¡
σ2η2 + (n− 1) η2σ20 + σ2σ20

¢− 1
2

· exp
− 1

2σ2

X
i6=j

¡
xi − x(−j)

¢2 − σ2 (xj − θ0)
2

2 (σ2η2 + (n− 1) η2σ20 + σ2σ20)


· exp

(
−(n− 1)η

2
¡
x(−j) − θ0

¢2
+ (n− 1)σ20

¡
x− x(−j)

¢2
2 (σ2η2 + (n− 1) η2σ20 + σ2σ20)

)
,

where x(−j) is the mean of the sample without observation xj . Calculations can be found in
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Appendix B.

Table 1.2 and Figure 1.5 show measures (1.7) for different values of σ2. LI measure is very

small when σ2 = 0.2, which corresponds to the value of the sample variance, and LI∗ shows its

minimum value which is around 0.009. As long as σ2 moves away from 0.2, LI∗ increases up to

around 0.065.

σ2

0.1 0.2 1 4

TB 1.0014 0.9857 0.8885 0.7220

LI∗
³ eGθ;TB, Fθ

´
0.0650 0.0096 0.0544 0.0651

η2 for LI∗
³ eGθ;TB , Fθ

´
1.0 0.6 4.0 13.6

Table 1.2: Relative local influence measures of the posterior mean with

respect to the sampling model with different sampling precision.

To better understand such a result, each row of Figure 1.6 plots the two factors of measure (1.7)

for observation j (j = 1, 2, 3). The ’model effect’ on the functional is increasing with increasing

variance of the contaminating model, but it is no longer linear as in the prior case. When σ2 = 0.1

or σ2 = 0.2, data support at least few contaminating models more than the reference one. This

is not true in other cases where the Bayes factor declines rapidly. Therefore the plot of the Bayes

factor helps also to check whether the assumed sampling model is reasonable with respect to the

data we have in the hand.
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Figure 1.5: LI (G;TB, Fθ) measure for the posterior mean with different values

of sampling variance σ2.

Figure 1.6: Difference TB,j (Fθ, G)− TB and ratio mj (x;Π, G) /m (x) for

different values of sampling variance σ2.
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Comparing now the two bold columns in Table 1.1 and Table 1.2, we conclude that with

these data the posterior mean is more sensible to perturbations in the prior model specification

(LI∗
³ eQ;TB,Π´ = 0.0702 > LI∗

³ eGθ;TB, Fθ

´
= 0.0096). However both measures are small and

the estimate is evaluated locally robust with respect to our distributional assumptions.

Finally Figure 1.7 plots the SC (z). We let observation z move in the range [−5, 5]. The effect

of an extreme observation on the posterior mean with a normal prior/normal sampling model

combination is linear and therefore potentially unbounded.

Figure 1.7: SC for the posterior mean under normality of both prior and sampling distributions.

Hence, it is crucial to assess whether some extreme observations are present in the sample.

We expect that in such a case measure (1.7) increases since data would support sampling models

with higher variance more than the reference one and model effect would also display a greater

value. In order to investigate this point we introduce the observation x4 = −5 in the sample and

we compute LI measures again. Results given in Table 1.3 support our hypothesis. Therefore in

presence of outliers measure (1.7) takes into account the fact that the normal distribution becomes
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inadequate.

TB −0.4395

LI∗
³ eQ;TB,Π´ 0.2303

LI∗
³ eGθ;TB , Fθ

´
7.41 · 1025

Table 1.3: Relative local influence measures of the posterior mean

with respect to the base prior and sampling models.

Contaminated sample.

1.7.2 Linear Bayesian Regression

We now consider the Bayesian linear model y = Xβ + u. For simplicity, we assume that the

error distribution F is a N
¡
0, σ2I

¢
with known variance σ2. We further adopt a normal prior

distribution Π (β) of type N
¡
β0, σ

2Σ0
¢
. Under the assumed models, the Bayes estimator of β is

given by

bβBayes = ¡Σ−10 +X 0X
¢−1 ¡

Σ−10 β0 +X 0y
¢
.

If eQ is the family
©
N
¡
α0, σ

2Σ0
¢
: αinf0 ≤ α0 ≤ αsup0

ª
that accounts for uncertainty in the prior

mean, measure (1.6) is given by

LI (Q;TB,Π) = exp

(
− (α0 − β0)

0 £Σ−10 − Σ−10 V 0Σ−10
¤
(α0 − β0)

2σ2

)
·

·
h¡
X 0X +Σ−10

¢−1
Σ−10 (α0 − β0)

i
. (1.18)

Furthermore, assuming a contaminating family eG for the sampling distribution of type ©N ¡0, c2I¢ :
cinf ≤ c2 ≤ csup

ª
, measure (1.7) becomes

LI (G;TB, F ) =
nX
j=1

µ
c2 |V |
σ2 |Vj |

¶− 1
2

· exp
−

³
σ2

c2 − 1
´
y2j +

bβ0BayesV −1bβBayes
2σ2

 ·
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· exp
bβ

(j)0
BayesV

−1
j
bβ(j)Bayes

2σ2

 ·
µbβ(j)Bayes − bβBayes¶ , (1.19)

where c2 is the variance of the contaminating distribution, Vj =
h
X 0
(−j)X(−j) +σ2

c2 xjx
0
j +Σ

−1
0

i−1
and bβ(j)Bayes = Vj ·

³
X 0
(−j)y(−j) +

σ2

c2 xjyj +Σ
−1
0 β0

´
are respectively the posterior variance and mean

when distribution G is assumed only for observation j, x0j is the row of matrix X corresponding

to observation j, X(−j) and y(−j) are respectively matrix X and vector y without observation j.

For detailed calculations see Appendix C.

Relative measures of local influence are given respectively by

LI∗
³ eQ;TB ;Π´ = sup

Q∈ eQ
¯̄̄
diag−1

³bβBayes´ · LI (Q;TB ,Π)¯̄̄
and

LI∗
³ eG;TB ;F´ = sup

G∈ eG
¯̄̄
diag−1

³bβBayes´ · LI (G;TB, F )¯̄̄ ,
where diag−1

³bβBayes´ is the inverse of the diagonal matrix with diagonal elements given by
bβBayes.
Bayesian estimation and local influence measures in the normal linear model are now illustrated.

We use the same data set employed by Ramsay and Novick (1980). These are observations on 29

children on 3 psychological variables: a test of verbal intelligence (VI), a test of performance intelli-

gence (PI) and sin−1
¡√

pi
¢
, where pi is the proportion correct on a dichotic listening task (DL). We

regress DL on remaining variables including a constant term. β1 and β2 are the coefficient corre-

sponding to VI and PI respectively, whereas β3 is the intercept. We also adopt the same values for

both prior parameters and sampling variance which have been discussed at length by the authors.

Analytical Bayes estimate of regression coefficients bβBayes equals (0.7458,−0.0734, 38.3505)0.
Plots of measure (1.18) and (1.19) are shown in Figure 1.8 and Figure 1.9. Each component

of contaminating prior mean α0 varies in the range (−2, 2) with respect to the corresponding

component of β0. The impact on the Bayes estimate of contaminations in the prior is negligible.

However, this is probably more a proof of the disappearing impact of the prior as the number of

observations increases than a sign of robustness itself.
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Figure 1.8: LI (Q;TB ,Π) measure for regression coefficients.

Figure 1.9: LI (G;TB , F ) measure for regression coefficients.
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Contaminating variance c2 moves in the range
¡
σ2, 10 · σ2¢ . Perturbations of the sampling

distribution play an important role on the estimates. The effect seems more pronounced for

intercept β3, but relative measures of Table 1.4 reveal a stronger impact for β2. The size of LI
∗

measure for the sampling model is not negligible at all. Coefficient estimates turn out to be very

sensitive to the assumption of a normal model for the data generating process.

component 1 2 3

LI∗
³ eQ;TB ;Π´ 2.2 · 10−19 2.9 · 10−18 1.0 · 10−18

α0 for LI∗
³ eQ;TB;Π´ −1.69 −1.69 41

LI∗
³ eG;TB;F´ 42.93 458.18 13.14

c2 for LI∗
³ eG;TB ;F´ 360 360 360

Table 1.4: Relative local influence measures of regression coefficient

estimates with respect to the base prior and sampling models.

We now concentrate on the sensitivity to observations. We move the value of the first two

regressors in the range1 (65, 135) as represented by asterisks in Figure 1.10 and we look at the

effect on the estimates. Figure 1.11 measures whether the added observation is an influential point

through the Cook’s distance. As the value moves away from the mean value of the regressors

(V I = 99.75 and PI = 104.89), the added point becomes more and more influential. The same

pattern is found in Figure 1.12 where the SC of β is displayed. Coefficient estimates are strongly

dependent on the value of just one observation. In normal regression, hence, coefficients turn out

to be so sensible that we do not necessary have to observe “extreme” value before estimates are

influenced.
1This interval represents the theoretical values of the regressors.
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Figure 1.10: Scatterplot of V I towards PI. Asteriscs represent the observations which have been added.

Figure 1.11: Cook’s distance for observations which have been added.
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Figure 1.12: SC of regression coefficients moving the first two regressors in the range (65, 135) .

1.8 Summary

In this paper we construct a framework to perform the sensitivity analysis of any Bayesian quantity

to all inputs. Bayesian robustness literature considers the sensitivity mainly to the prior distri-

bution only. In our framework the sensitivity to all inputs is considered, giving a picture of the

whole robustness properties of the functional itself. We concentrate on posterior summaries and we

measure the impact of perturbations of prior or sampling models in different directions by means

of local influence measures. Such impact is the product of two effects: a ’data effect’, i.e. the effect

on the functional of choosing a contaminating model which is more adequate than the reference

one with respect to observed data, and a ’model effect’, i.e. the effect on the functional value of

perturbing the reference model in some directions. In some special cases we also derive analyti-

cal formulations for these quantities. Local influence measure for the prior model decreases with

flatter (less informative) prior and with increasing number of observations. However, the latter is

probably simply an effect of the disappearing impact of the prior as the number of observations

30



increases.

Then we check the sensitivity of a Bayesian functional to observations by means of the Sen-

sitivity Curve. Typically this curve is useful to identify observations with a large influence, such

as outliers and loosely speaking an outlier is defined to be an observation that is unlikely to have

been generated by the assumed sampling model. Therefore when the influence on the functional of

a single observation is potentially unbounded, it is crucial to determine whether some outliers are

present in the sample. We show that the local influence measure for the sampling model can be

used for this purpose. In this case, indeed, it assumes huge values revealing that reference sampling

model is very sensitive to perturbations and hence probably inadequate for the presence of some

outlying observations.

Finally we deal with the issue of practical implementation. We concentrate on the local influence

measure for the sampling model and we propose a new estimator for the Bayes factor which speeds

up computations. Such estimator performs well, giving precise estimates with small confidence

intervals.

1.9 Outlook on future research

In this final section we suggest some possible directions for future research. First, it would be

interesting to extend the local influence measures proposed in this paper to more general measures,

e.g. measures that consider the sensitivity to more than one input a time. This would help to

assess the combined effect on a Bayesian quantity of perturbing a particular prior/sampling model

combination. A second direction would be to consider the intrinsic discrepancy measure between

probability distributions (Bernardo and Ruenda, 2002). Such measure has been shown to have

many attractive properties (Bernardo and Juárez, 2003) and it may be used to define a new type

of sensitivity measures.
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Chapter 2

Robust Bayesian estimation

2.1 Abstract

This paper deals with the problem of robust estimation in a Bayesian context. We present an

overview on some families of so-called robust distributions and we show that they belong to the

family of elliptical distributions. According to this result, extensions to the multivariate case can be

easily obtained. Moreover we propose criteria to assess when using a robust model is recommended

and how to choose among estimates obtained with different models.

2.2 Introduction

The problem of building robust estimation procedures in a Bayesian context is an intriguing issue.

In 1980 Box argues that to build efficient models, model robustification is required, “where by

robustification I mean judicious and grudging elaboration of the model to ensure against particular

hazard (..). Robustification becomes necessary when it is known that likely, but not easy detectable,

model discrepancies can yield badly misleading analyses.”

In the Bayesian literature we find two ways to build robust procedures. The first one is used

within the global approach and applies when a large range is obtained for the functional. It aims
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to narrow the class of prior and/or sampling distributions down to the point where a satisfactory

range is reached. We refer for example to Berger (1994), Liseo et al. (1996) and Moreno et al.

(1996) for different ways of reducing the width of a class. A second way applies when normality is

adopted for the sampling distribution. In Bayesian analyses this assumption is often convenient in

order to obtain analytical results for the posterior. However, in this case it is well known that the

sensitivity of posterior quantities to observations is more pronounced and that only few atypical

values in the sample heavily influence estimates. The reason for this fact has been found by many

authors in light tails of the normal model adopted (Box and Tiao, 1992; Dawid, 1973; Zellner,

1976). Robustness with respect to outliers is achieved by choosing a so-called robust model. A

robust model consists in a location-scale family of symmetric unimodal distributions enriched with

‘robustness’ parameters that control its shape. Therefore different univariate unimodal heavy-

tailed models have been proposed to replace the normal model (Box and Tiao, 1962; Ramsay and

Novick, 1980; West, 1984; Albert et al., 1991) and the resulting posterior distribution becomes

analytically intractable. However nowadays this is not a limitation since the availability of faster

personal computers allow us to easily obtain estimates by means of Monte Carlo Markov Chain

algorithms. Alternatively, normal approximations of the posterior distribution can be used (see

for example Box and Tiao, 1992).

The goal of this paper is to propose Bayesian estimates which are robust against outliers,

where we define an outlier1 to be an observation which is unlikely to have been generated by

the assumed sampling model. For this purpose we follow the second way and we concentrate on

posterior summaries with a normal sampling model assumption. However, many points have to be

discussed. First, in many situations the presence of influential observations is not easily detectable

(e.g. for the multivariate nature of data) and we may fail to recognize the need of a robust sampling

model. Is it possible to define measures that help us in deciding whether a robust model has to be

adopted? Secondly, once we judge that a robust distribution is needed, how do we choose between

1We use the term outlying observation as a synonymous.
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different models? This paper discusses such points and it is organized as follows. In Section 2.3

we present an overview of some univariate robust models and we show that they fall into the more

general elliptical family. The main contribution of the paper is to provide criteria to assess when

adopting a robust model is recommended and how to choose between different distributions. We

do this in Section 2.4. Different examples of robust Bayesian estimation are then implemented in

Section 2.5. Finally a brief summary of the findings and suggestions for future research are given

in Section 2.6.

2.3 Robust models

In this section we present different models which have been proposed in the literature. First, we

briefly introduce the class of elliptical distributions. Then we present an overview of some families

of robust models. We show that such distributions fall into the class of elliptical distributions.

Detailed proofs are given in Appendix D. This result helps to easily generalize univariate distri-

butions to the multivariate case and it is useful in many practical situations. Finally we propose

criteria to assess the need of adopting robust models and to choose among them.

2.3.1 Elliptical distributions

The class of Elliptical Distribution (ED) is a family of symmetric distributions which includes

among others the normal and the student−t. Moreover, it offers a simple way to generalize a

univariate distribution to the multivariate case. It was first introduced by Kelker (1970) and then

studied by several authors (e.g. Fang and Anderson, 1990 and Gupta and Varga, 1993).

Definition 1 Let X be a k × 1 dimensional random vector whose distribution is absolutely con-

tinuous. Then, X ∼ EDk (θ,Σ) if and only if the p.d.f. of X has the form

f (X) = c · |Σ|−1/2 g
µ
1

2
(X − θ)

0
Σ−1 (X − θ)

¶
(2.1)
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where g is an univariate function called density generator. Moreover the characteristic function of

X can be written as

ϕX (t) = exp (it
0θ) ·Ψ

µ
1

2
t0Σt

¶
,

where Ψ is an univariate function.

The condition
R∞
0

u
k
2−1g(u)du < ∞ guarantees g to be a density generator. Moreover, the

normalizing constant can be obtained using the polar coordinates in several dimensions and is

given by

c =
Γ (k/2)

(2π)
k/2

·Z ∞
0

u
k
2−1g(u)du

¸−1
.

A detailed prove of this result can be found in the paper by Landsman and Valdez (2003).

2.3.2 Main robust distributions

We now present location-scale families of distributions with tails decreasing to zero more slowly

than in the normal case. Parameters (µ, σ) represent the mean and the standard deviation of the

distribution. We give the form of the density generator when a distribution belongs to the elliptical

family. Moreover in Appendix D we show that the condition
R∞
0

u
k
2−1g(u)du < ∞ holds for the

densities where this result has never been proved.

In 1962 Box and Tiao introduce the family of exponential power-series distributions (EPS).

Such a family is given by(
f(x|µ, σ, δ) = kδ · σ−1 · exp

Ã
−cδ ·

¯̄̄̄
x− µ

σ

¯̄̄̄ 2
δ+1

!
, x ∈ <,−1 < δ ≤ 1

)
, (2.2)

where

cδ =

"
Γ
¡
3
2 (δ + 1)

¢
Γ
¡
1
2 (δ + 1)

¢# 1
δ+1

and

kδ =

£
Γ
¡
3
2 (δ + 1)

¢¤1/2
(δ + 1)

£
Γ
¡
1
2 (δ + 1)

¢¤3/2 .
In EPS family µ is the location parameter, σ the scale parameter and δ can be regarded as a non-

Normality parameter. For δ > 0 the distributions have heavier tails, for δ < 0 the distributions
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have flatter tails than the normal form. This family is quite large including as special cases the

normal ( δ = 0), the double exponential ( δ = 1) and the rectangular ( δ → −1) distributions.

Since we are interested in distributions which are only slightly different from the normal one, we

will choose small values for δ. The EPS distribution belongs to the elliptical family with density

generator g (u) = exp{−cδ · (2u)
1

δ+1 }.

Ramsay and Novick (1980) measure the influence of a single observation xj on the posterior

distribution by considering the derivative of the logposterior with respect to xj . The latter turns

out to be a function of a particular quantity, named influence function of the likelihood (IFlik).

They show that for a certain symmetric family of distributions, which includes the normal, the

IFlik is unbounded. Hence, they propose a new family with bounded IFlik given by

©
f(x|µ, σ, a, b) = ka,b · r(x) · s(µ, σ) · exp

©−ηa,b(d)ª , a > 0, b > 0ª , (2.3)

where ηa,b(d) =
1

ba2/b
γ(2/b, a |d|b), d is a measure of the distance of x from the location parameter

µ, γ(p, z) is the incomplete gamma function and ka,b is the normalizing constant. The normal

distribution is obtained for a→ 0. Therefore we would consider small values of this parameter. A

peculiarity of this distribution is that its tails do not decrease to zero as x tends to ∞. Indeed

in this case ηa,b(d) → 1
ba2/b

Γ(2/b), which is a fixed quantity. The consequence is that ka,b has to

be computed in a region of integration with finite fixed limits. The choice of such limits is not so

important as long as they are sufficiently far away from observed data. The RN distribution belongs

to the elliptical family with density generator g (u) = exp{− ¡ba2/b¢−1 · R a·(2u)b/2
0

e−tt2/b−1dt}.

In 1991 Albert, Delampady and Polasek propose an extension of the EPS distribution, called

extended power distribution (EP ). This family is given by(
f(x|µ, φ, c, λ) = kc,λ · φ1/2 · exp

(
− c
2
· ρλ

Ã
1 +

φ (x− µ)
2

c− 1

!)
, c > 1, λ ≥ 0

)
, (2.4)

37



where

ρλ (v) =



vλ−1
λ if λ > 0

lim
λ→0

vλ−1
λ = log v if λ = 0.

,

(µ, φ) are the location-scale parameters, (c, λ) are the robustness parameters and kc,λ is the normal-

izing constant. The main advantage of (2.4) with respect to (2.2) is that the former is differentiable

everywhere. For this density we know that a relation of type σ2 = ν (φ) between the variance σ2

and parameter φ holds. Therefore we may alternatively express (2.4) as

f(x|µ, σ, c, λ) = kc,λ · σ−1 ·
£
ν−1

¡
σ2
¢ · σ2¤ 12 · exp(− c

2
· ρλ

Ã
1 +

ν−1
¡
σ2
¢ · σ2

c− 1
µ
x− µ

σ

¶2!)
.

If λ = 0 the relation is given by σ2 = (c−1)√2
(c−3)φ . If λ > 0 the relation can be found only numerically.

Different location-scale densities are included in this family, like the normal and the Student-t.

The tails behavior is controlled by the parameter λ. For 0 ≤ λ < 1 we get fatter tails, whereas

for λ > 1 we get sharper tails than the normal case. For our purpose, we consider only the

case λ = 0 and we choose the scale parameter φ so that the variance σ2 equals the variance of

the other distributions. Also this density belongs to the elliptical family with density generator

g (u) =
£
ν−1

¡
σ2
¢ · σ2¤ 12 · exp½− c

2 · ρλ
µ
1 +

2 ν−1(σ2)· σ2
c−1 u

¶¾
.

Another well known heavy-tailed distribution is the Student-t. The advantage of considering

the previous families rather than the Student-t may be found in the larger choice of the elements in

the class. In particular for distributions (2.3) and (2.4) two robustness parameters control the shape

of the density function better. Furthermore the fact that for such models the normalizing constant

has to be computed numerically does not represent a limitation. Indeed, robust estimation under

these distributions is implemented through MCMC algorithms like Metropolis-Hastings (Hastings,

1970). This way turns out to be very convenient because the normalizing constant cancels out

in the acceptance probability. Figure 2.1 and 2.2 show plots of the densities we presented in this

section for different values of the robust parameters.
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Figure 2.1: Plots of normal and robust densities: (a) Student-t and (b) RN distributions.
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Figure 2.2: Plots of normal and robust densities: (a) EPS and (b) EP distributions.
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2.4 Criteria for robust estimation procedures

In this Section we describe how understanding when robust models have to be used and how

choosing among different distributions.

In the literature robust models are adopted when the normal assumption appears inadequate.

Typically this conclusion is drawn on the basis of a visual inspection of the data, which is straight-

forward in the univariate or bivariate dimensions. When the dimension increases up to k (k > 2)

checking up the adequacy of normal model assumption is not so straightforward. For this purpose

local robustness measures described in Chapter 1 are useful tools. Indeed we have shown that such

measures reveal the presence of observations that have been unlikely generated by the assumed

sampling model (outlier).

In this paper we concentrate on robust estimation of posterior summaries of type (1.2). To

establish the need of using robust models, the first thing to do is to compute the SC defined

in Section 1.5. Such quantity evaluates the effect of moving one observation in the sample once

a particular combination of prior/sampling distributions is fixed. If this measure diverges as

z becomes bigger, a single observation has a potentially unbounded influence on the functional

estimated value. However, this is not a sufficient reason to justify the use of a robust rather than

a normal sampling model because influential observations may not be present in the sample. In

order to detect outliers we have to compute the local influence measure for the sampling model (see

Section 1.4.2). Such measure assesses the so-called model or likelihood robustness and evaluates

the impact on the functional of a small contamination of the base sampling model. For posterior

summaries, it can be written as

LI(G;TB , Fθ) =
X
j

mj(x;Π, Fθ, G)

m(x)
[TB,j (Fθ,G)− TB ] , (2.5)

where mj/m is the Bayes factor and TB,j (Fθ;G) is the posterior functional obtained when the

sampling distribution is G only for observation xj and Fθ for the others. Alternatively, a relative

local influence measure can be defined for the purpose of comparing different functionals (see
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Chapter 1) and it will be denoted by LI∗. The Bayes factor in measure (2.5) captures the effect on

the functional of choosing a contaminating model for observation j which is more adequate or less

adequate than the base one with respect to observed data. If an outlier is present in the sample we

expect that this quantity would assume values greater than 1 and the difference [TB,j (Fθ, G)− TB]

would be not negligible, leading to a substantial value of (2.5). In this case the use of a robust

model is recommended for dumping the effect of extreme observations on the estimate.

Finally, measure (2.5) can also help in choosing the most appropriate robust model. If we adopt

one of the distributions presented in Section 2.3.2, we guess that the corresponding LI measure

for the sampling model displays quite a small value. Therefore a criterion of choice is to adopt the

distribution which displays the smallest value for (2.5). Furthermore, if such value is small, we

achieve robustness both with respect to outliers and with respect to the sampling model. In the

next Section we provide some examples on robust estimation procedures.

2.5 Examples of robust estimates

In this section we continue the examples considered in the previous Chapter. We first consider the

mean of the posterior distribution in the univariate case with a sample drawn from a Gaussian

distribution and we evaluate the effect of assuming a robust model when it is necessary and when

it is not. Then we consider a Bayesian regression model using Ramsay and Novick’s data and we

produce robust estimates of regression coefficients. We use different heavy-tailed models for the

sampling distribution to illustrate the robust estimation procedure. When MCMC algorithms are

used we check the convergence of the chain and of the averages by means of BOA library in R

language.

2.5.1 Posterior mean

In Chapter 1 we found that the posterior mean was not robust with respect to observations.

However, the small size of LI measures suggested that atypical observations were not present and
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robust estimation was not necessary. What would be the effect on the estimate of assuming a

robust model in such a situation? We answer this question considering different sampling models

whose densities are shown in Figures 2.1 and 2.2. The choice of robustness parameters has been

made so that robust densities show heavier tails than the normal case (Figure 2.3).

Figure 2.3: Plot of the thickness of tails in normal and robust models.

By means of Random Walk Metropolis-Hastings algorithm the posterior distribution has been

computed. For each simulation we run a chain of 100.000 steps. The prior is chosen to be N (0.5, 1)

and different sampling models are used.

Estimates of posterior quantities are shown in Table 2.1. Analytical estimates, computed for the

normal case, are reported in the bottom line. The concordance between analytical and numerical

results supports convergence of our algorithm. Estimates of posterior mean do not differ as much

under different sampling models. However, the more we move away from normality, the more we

loose in efficiency, since posterior variance increases. This trade-off between efficiency and dumping
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effect of outliers is typical of robust estimates. Moreover the concordance of posterior mean and

median together with a visual insight show that the posterior distribution is still symmetric and

unimodal for all distributions considered.

TB (Fθ) median σ2post

Normal 0.9862 (0.0021) 0.9858 0.0625

Student-t (15) 0.9875 (0.0022) 0.9872 0.0697

EPS (0.2) 0.9996 (0.0021) 1.0037 0.0639

EPS (0.5) 1.0038 (0.0022) 1.0149 0.0669

EP (8; 0) 0.9953 (0.0023) 0.9966 0.0764

RN (0.03; 2) 0.9798 (0.0022) 0.9803 0.0699

RN (0.3; 1) 0.9663 (0.0027) 0.9737 0.1020

Analytical 0.9857 0.0625

Table 2.1: Posterior estimates (standard error) under different sampling

models. MCMC simulations with 100.000 runs.

Table 2.2 shows relative local influence measures under different sampling models, computed by

perturbing the base sampling distribution in the direction of a N
¡
θ, 10 · σ2¢ . Derived LI∗ measures

are small, supporting the fact that all models are approximately adequate to our data. Looking

at all these elements together, we conclude that using a robust family of distributions when no

extreme observations are present let us still correctly estimate the posterior mean.

In Table 2.3 and 2.4 we reproduce the same analysis introducing the observation x4 = −5 in the

sample. Numerically estimated posterior expectations are now very different and change according

to the robust model adopted. Tails inflation permits controlling the impact of the outlier on the

estimate. Again the efficiency of estimates decreases as we move away from the normal case.
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LI∗
³ eGθ;TB, Fθ

´
range TB,j(Fθ, Gθ) range rj

Normal 0.0065 [0.8111; 1.1584] [0.3864; 0.6978]

Student-t (15) 0.0123 [0.8151; 1.1606] [0.4049; 0.7203]

EPS (0.2) 0.0183 [0.8083; 1.1654] [0.3869; 0.7553]

EPS (0.5) 0.0249 [0.8119; 1.1785] [0.3872; 0.8356]

EP (8; 0) 0.0162 [0.8129; 1.1571] [0.3434; 0.6910]

RN (0.03; 2) 0.0173 [0.8112; 1.1583] [0.4023; 0.7017]

RN (0.3; 1) 0.0553 [0.8058; 1.1146] [0.4920; 0.7440]

Analytical 0.0096 [0.8149; 1.1611] [0.3871; 0.6995]

Table 2.2: Relative local influence measures of the posterior mean with respect

to the sampling distribution under different sampling models.

MCMC simulations with 100.000 runs.

TB (Fθ) median σ2post

Normal −0.4384 (0.0018) −0.4392 0.0469

Student-t (15) 0.8032 (0.0023) 0.8067 0.0754

EPS (0.2) 0.0407 (0.0024) 0.0464 0.0825

EPS (0.5) 0.5207 (0.0024) 0.5295 0.0832

EP (8; 0) 0.8805 (0.0024) 0.8857 0.0823

RN (0.03; 2) 0.9776 (0.0022) 0.9761 0.0703

RN (0.3; 1) 0.9270 (0.0027) 0.9309 0.1028

Analytical −0.4395 0.0476

Table 2.3: Posterior estimates (standard error) under different sampling models

MCMC simulations with 100.000 runs. Contaminated sample.
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LI∗
³ eGθ;TB, Fθ

´
range TB,j(Fθ, Gθ) range rj

Normal 7.02 · 1025 [−0.943; 0.804] [0; 2.49] · 1025

Student-t (15) 91.9854 [ 0.572; 0.921 ] [0; 3.07] · 103

EPS (0.2) 2.52 · 1016 [−0.460; 0.801] [0; 1.43] · 1015

EPS (0.5) 6.50 · 107 [ 0.104; 0.965 ] [0; 1.13] · 108

EP (8; 0) 3.4226 [0.6841; 1.0256] [ 0.19; 21.88 ]

RN (0.03; 2) 147.8905 [−0.071; 0.582] [0.39; 878.17]

RN (0.3; 1) 0.3508 [0.6721; 1.0482] [ 0.39; 2.07 ]

Analytical 7.41 · 1025 [−0.947; 0.804] [0; 2.62] · 1025

Table 2.4: Relative local influence measures of the posterior mean with respect

to the sampling distribution under different sampling models. MCMC

simulations with 100.000 runs. Contaminated sample.

As expected, the relative measure of local influence for the normal sampling model explodes,

revealing inadequacy of the model to the data (LI∗ = 7.02 · 1025). This explosion is due to the

huge value that ratio rj assumes in correspondence to the outlier (j = 4). Marginal likelihood

m4 (x;Π, Fθ, G) is much bigger than the base marginal m (x), which means that data support

more distributions with heavy tails for observation x4. In all robust models considered ranges both

for TB,j and for rj are narrowed and local influence measure is reduced up to 0.35. Therefore to

compute robust estimation we would adopt the RN distribution with parameters (0.3; 1). Robust

estimate of the posterior mean is given by 0.9270.

In the previous section we say that to achieve robustness with respect to outliers a robust

sampling model has to be adopted. Therefore, in such a situation we expect the SC of posterior

mean to be bounded for extreme observations. In Figure 2.4 we compute the SC for the selected

robust model. The curve shows the expected behavior.
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Figure 2.4: Sensitivity curve of the posterior mean under a RN (0.3, 1)

sampling model. MCMC simulations with 100.000 runs.

2.5.2 Bayesian Linear Regression

We now consider a Bayesian linear regression. We use the same data set employed by Ramsay

and Novick (1980) and we study the impact that both a test of verbal intelligence and a test of

performance intelligence have on dichotic listening task2. Bayes estimate of regression coefficients

are found to be extremely sensitive to observations. Moreover the local influence measure with

respect to the sampling model reveals that the normal distribution is not so adequate (see Section

1.7.2). In this section we will derive robust estimates of regression coefficients.

We consider different robust sampling models and compute the posterior distribution with

200.000 runs of the Metropolis-Hastings algorithm. Computed Bayes estimates are shown in Table

2.5.
2We choose a normal prior distribution with the same parameters used by Rambsay and Novick (1980).
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Regression coefficients

β1 β2 β3

normal 0.7455 −0.0716 38.1791

(0.0006) (0.0006) (0.0492)

RN (0.05, 2) 0.6637 0.0082 37.6231

(0.0008) (0.0009) (0.0577)

EPS (0.2) 0.7051 −0.0290 37.6690

(0.0007) (0.0007) (0.0515)

student (15) 0.6677 0.0067 37.4549

(0.0022) (0.0023) (0.1449)

EP (5, 0) 0.5836 0.0716 38.6109

(0.0009) (0.0008) (0.0691)

Analytical 0.7458 −0.0734 38.3505

Table 2.5: Bayes Estimates (standard error) of regression coefficients under

different sampling models. MCMC simulations with 200.000 runs.

The value of coefficients changes substantially according to different models while the standard

error increases only a little. The substantial difference with normal estimates is clear for bβ2. In
this case the relation between the dichotic listening task and the test of performance intelligence

changes from negative to slightly positive.

In order to choose robust estimates we compute local influence measures of regression co-

efficients for the sampling distribution. Table 2.6 shows the results. All robust models lead

an improvement in terms of reducing the value of LI∗ measures, in particular the density pro-

posed by Ramsay and Novick. Robust estimates of regression coefficients are therefore given

by bβrobBayes = (0.6637, 0.0082, 37.6231)
0
. Such values are expected to be robust against influential
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points.

LI∗ (G;TB, F ) relative to

β1 β2 β3

normal 43.14 471.41 5.82

RN (0.05, 2) 0.14 · 10−5 5.94 · 10−5 0.15 · 10−5

EPS (0.2) 0.11 · 10−2 0.79 · 10−2 0.12 · 10−2

student (15) 7.32 173.14 0.30

EP (5, 0) 0.91 2.34 0.14

Table 2.6: Relative local influence measures of regression coefficients with

respect to the sampling distribution under different models.

MCMC simulations with 100.000 runs.

Figure 2.5: Sensitivity Curve of regression coefficients under a RN (0.05, 2)

sampling model. MCMC simulations with 100.000 runs.
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Figure 2.5 shows the SC of bβrobBayes. The improvement for regression coefficients estimates is

clear since all the curves become bounded.

2.6 Summary and outlook on future research

In this paper we review some families of so-called robust distributions and we show that they belong

to the more general elliptical family. According to this result, multivariate robust distributions

can be easily obtained. Moreover we propose criteria to assess when the use of a robust model is

recommended and how to choose between different distributions. First, the SC has to be computed

for the estimator of interest. If a single observation plays a potentially unbounded influence, it is

crucial to determine whether influential observations are present in the sample. For this purpose

we use the local influence measure for the sampling model proposed in the previous Chapter. The

examples show both that the size of this measure becomes substantial when outliers are present

and that adopting a robust model leads to estimates on which the effect of outlying observations

is dumped. Moreover, the use of a robust family of distributions when no extreme observations

are present let us still obtain correct estimates. Obtained robust estimates behave well since the

corresponding SC is bounded for extreme observations. Finally, the local influence measure for

the sampling model provides also a criterion for choosing among different robust estimates. An

interesting matter for future research on the field would be to include prior distributions also for

robustness parameters of robust models.

50



Chapter 3

Robust Bayesian mean-variance

portfolio selection

3.1 Abstract

It is well known that the Bayesian approach to mean-variance portfolio selection problem accounts

for estimation risk. However, no results are present on the effects of model risk in this case. This

paper aims to study the robustness properties of the Bayesian mean-variance weights. We first per-

form a simulation study to explore the effect of model risk on Bayesian weights. Then we compute

their measures of sensitivity both to distributional assumptions and to observations. Moreover,

we propose a robust estimation procedure which dampens the effect of ’extreme’ observations. We

study the performance of computed measures through a simulation study and we obtain robust

Bayesian mean-variance weights using real market data.
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3.2 Introduction

According to Markowitz’s modern portfolio theory (Markowitz, 1952; 1959), a risk-averse investor

should choose the amount to invest among a set of assets relying just on the first and second

moments of return distribution1. However practitioners found that the derived optimal portfolio

allocation are often unreasonable (Black and Litterman, 1992). Two main reasons can be given

for this fact.

The first one is that means and variances are generally unknown parameters that have to

be estimated. Not accounting for this fact can induce a bias in the estimated weights and lead

to the so called estimation risk problem. In mean-variance portfolio selection problem observed

returns are assumed to be i.i.d. random drawn from a multivariate normal distribution2. There

are essentially two different approaches for the implementation of portfolio theory: the Certainty

Equivalence or naive approach, where parameters uncertainty is ignored and unknown parameters

are simply replaced by their sample estimates, and the Bayesian approach, where parameters

are treated as random variables and unknown parameters are estimated by summary measures

of the predictive distribution. There is evidence in the literature that not taking into account

parameters uncertainty leads to suboptimal portfolios (Barry, 1974; Brown, 1979; Jorion, 1986;

Cavadini, Sbuelz and Trojani, 2002). The Bayesian point of view not only considers parameter

uncertainty but also satisfies the axiomatic paradigm of Neumann-Morgenstern-Savage’s expected

utility maximization (see Bawa, Brown and Klein, 1979).

The second reason is that mean-variance portfolio weights are extremely sensitive to observa-

tions. It is found in practice that securities display sometimes extremely low or high returns. We

1 It may be argued that such moments can be not sufficient in describing portfolio returns characteristics and

that including higher moments can be more efficient. However we choose to deal with the mean-variance framework

because of its wide use in practical applications.
2We known that the i.i.d. assumption can be unrealistic since observed series of returns may exihibit autocorre-

lation. However in practice the i.i.d. multivariate normal model is widely used and we do not explore this matter

here.
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refer to them as outlying observations. This fact can induce a bias in the estimates and leads to

the so called model risk problem. Indeed mean-variance weights are derived under the assumption

of a normal data generating process. Nothing is assured when the assumed mechanism is only

approximately true. Recent papers deal with model robustness in the CE approach (Victoria-

Feser, 2000; Cavadini, Sbuelz and Trojani, 2002; Perret-Gentil and Victoria-Feser, 2003). They

show that few outlying returns have a strong influence on the composition of the resulting optimal

portfolio. Moreover Cavadini, Sbuelz and Trojani (2002) find that model risk plays a greater role

than estimation risk. However no evidence of this fact is given for Bayesian weights.

This paper focuses on Bayesian mean-variance portfolio selection and aims to assess its ro-

bustness properties. It is organized as follow. In Section 3.3 we briefly describe two different

approaches to portfolio theory implementation and we compare them. Measures of sensitivity of

Bayesian weights both to distributional assumptions and to observations are computed in Section

3.4. The behavior of such measures is then explored by means of a simulation study. In Section

3.5 we propose a Bayesian estimation procedure for investment decisions which dampens the effect

of ’extreme’ observations. An example on estimates of robust Bayesian weights with real market

data is given in Section 3.6. Finally Section 3.7 concludes.

3.3 Certainty Equivalence and Bayesian portfolio selection

In mean-variance portfolio theory the optimal portfolio is the one that minimizes portfolio risk for

a given level of portfolio expected return or, viceversa, maximizes portfolio expected return for a

given level of portfolio risk. Assuming both a multivariate normal distribution for future returns

r and a negative exponential utility function3, this approach can be set in an expected utility

maximization paradigm. We would consider a standard one-period model in which investors use

portfolio to transfer wealth from one period to the next.

Maximizing the expected utility of the end-of-period wealth is equivalent to maximizing the

3An alternative assumption would be to assume a quadratic utility function for investors.
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expected utility of portfolio return. Under some constraints4, investors would choose the weights

q such that

max
q

E [U(r
P
)] = max

q

Z
U(rP )p(rP |ϑ)dz (3.1)

= max
q

½
E (rP )−

b

2
V ar (rP )

¾
= max

q

½
q0θ − b

2
q0Σq

¾
with r

P = q0r the portfolio return, b the risk aversion coefficient and ϑ = (θ,Σ) the first and

second moments of the assumed future returns distribution. The optimal weights are given by:

q =
1

b
Σ−1(θ − λ · 1), (3.2)

where q is the vector of the proportion invested on the risky assets, 1 is the vector of ones and

λ = 10Σ−1θ−b
10Σ−11 .

In the classical application of Markowitz’s theory, known as Certainty Equivalence (CE) or naive

approach, the unknown parameters are simply replaced by their sample estimates and portfolio

selection problem is solved by finding weights q such that

max
q

Er
P
|ϑ

·
U(rP )|

∧
ϑ

¸
= max

q

Z
U(rP )p(rP |

∧
ϑ)dz (3.3)

= max
q

½
q0bθ − b

2
q0bΣq¾ .

This way completely ignores the estimation risk, that is the risk linked with the variability of

parameter estimates.

Some works in this direction (Best and Grauer, 1991; Victoria-Feser, 2000) show that CE

portfolio weights and moments are very sensitive to changes in parameters value, especially when

non-negative weights constraint is absent. An evaluation of the relative impact of errors in pa-

rameter estimates is also provided by Chopra and Ziemba (1993), who find that for risk-tolerant
4We consider the contraint 10q = 1.
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investors the impact of errors in mean is much greater than the impact of errors in variance and

covariance parameters.

Alternatively weights q can be estimated using a Bayesian approach, in which prior informations

about the unknown parameters are matched with observed asset returns through the posterior

distribution. Bayesian portfolio selection problem would choose weights q such that:

max
q

Eϑ|x
h
Er

P
|ϑ [U(rP )|ϑ]

i
= max

q
Er

P
|x[U(rP )] (3.4)

= max
q

Z
U(rP )p(rP |x)drP

= max
q

½
q0θr|x − b

2
q0Σr|xq

¾
,

where p(r
P |x) =

R
p(rP |ϑ)p(ϑ|x)dϑ is the predictive density of portfolio returns and

¡
θr|x,Σr|x

¢
are the moments of the predictive density of future returns r|x.

Bawa, Brown and Klein (1979) are the first that explore in deep the Bayesian approach and set

it in a Neumann-Morgenstern-Savage paradigm. Brown (1979) provides numerical evidence of the

impact of estimation risk. By means of a measures of utility loss due to the estimation process he

shows that CE rule is dominated by Bayes rule. Similar results are found by Jorion (1986), who

compares the risk linked with different estimators of asset expected return and gives a Bayesian

interpretation to the proposed Stein estimator.

These results point out that in the presence of normally distributed data the Bayesian approach

outperforms the CE one. But what happens if we move away from the normality assumption of

model distribution? Will the portfolio weights be still near the optimal solution (3.2)? This

matter, known in the literature as model risk, has recently been addressed for the CE estimator of

portfolio weights. Victoria-Feser (2000) shows that the efficient frontier and portfolio composition

can be seriously biased when data contain ’extreme’ observations. In a later work Perret-Gentil

and Victoria-Feser (2003) study the (asymptotic) stability properties in an neighborhood of the

model, proving that bias of portfolio composition only depends on bias of estimated moments.
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Moreover Cavadini, Sbuelz and Trojani (2002) prove that in classical estimated portfolios model

risk generates greater bias than estimation risk. All these papers clearly show that in such a

situation robust estimation procedures should be used. However no results are present for the

Bayesian case. In the next section we perform a simulation study to compare CE and Bayesian

estimators and we explore the effect of model risk on Bayesian weights.

3.3.1 Comparison of the two approaches through a simulation study

In this section we compare CE and Bayesian approach when the normality assumption of data is

both satisfied and not satisfied. We generate T sets (T = 1000) of n observations (n = 100) from

a multivariate normal with parameters given in Table 3.1

Sample estimates of monthly returns (January 1977-December 1981)

Mean Covariance Matrix

Canada 1.287 42.18

France 1.096 20.18 70.89

Germany 0.501 10.88 21.58 25.51

Japan 1.524 5.30 15.41 9.60 22.33

Switz. 0.763 12.32 23.24 22.63 10.32 30.01

U.K. 1.854 23.84 23.80 13.22 10.46 16.36 42.23

U.S. 0.620 17.41 12.62 4.70 1.00 7.20 9.90 16.42

Table 3.1: Parameters of the sampling model in the first simulation study.

Dollar returns in percent per month.

The parameters5 used for the exercise consist in sample estimates from monthly stock market

returns for seven major countries calculated over a 60-month period (January 1977-December

5The parameters are the same as in the study of Jorion (1986). For calculations in the Bayesian case we choose

a normal prior with mean 0.005 · 1 and covariance matrix 0.0025 · I.
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1981). Contaminated samples are obtained by substituting randomly the 5% of the observations

as specified in the sequel.

We are first interested in detecting the effect of the presence of ’extreme’ returns on portfolio

composition. For this purpose we estimated K optimal weights using non contaminated and con-

taminated samples. The latter are generated by substituting randomly the 5% of the observations

with random drawn from a Dirach distribution ∆θ∗ (y) which puts mass 1 at θ
∗ = θ + Σ

1
2 · 3 · 1.

Vector θ∗ has components that are 15 to 40 time larger than the ones of θ. We obtained the boxplot

for each of its component (Figure 3.1 and 3.2) and computed summary measures of the accuracy

of each estimate (Table 3.2). The circle represents the true weight components. The risk aversion

coefficient is set equal to 2 but similar results are achieved for different values of this parameter6.

Figure 3.1: Boxplot of CE and Bayesian weights with non contaminated data.

Figure 3.1 displays the boxplot of CE and Bayesian weights when the data are not contaminated.

6The risk aversion coefficient has been set equal to 0.1, 2, 10 and 23 respectively.
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From a visual insight the precision of estimates looks like the same, but the size of the box appears

smaller under the Bayesian approach. This is confirmed by numerical measures of the difference

between estimated and true components in Table 3.2. While the biases are similar, variability

measures support the fact that in the presence of normally distributed data the Bayesian method

works better.

Figure 3.2: Boxplot of Bayesian weights with non contaminated and contaminated data.

A similar analysis for Bayesian weights with non contaminated and contaminated data leads to

Figure 3.2. The more evident effect of the presence of outliers is that estimated components are far

away from the true ones. As a consequence, summary measures of Table 3.2 increase. Component

1, 5 and 7 show the greatest bias and variability measures rise up to three times the one in the non

contaminated case. Curiously, these components do not correspond to the greatest components of

outlier θ∗.
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Measure q1 q2 q3 q4 q5 q6 q7

med (qB,j − qtrue,j) 0.01 -0.02 +0.04 0.02 0.04 -0.05 0.13

med
³
q
(ε)
B,j − qtrue,j

´
1.04 0.73 -0.67 -0.62 1.04 0.24 -1.73

med (qCE,j − qtrue,j) 0.05 0.01 -0.13 0.14 0.06 0.03 -0.05

med
¡
(qB,j − qtrue,j)

2
¢

0.55 0.20 1.34 0.51 1.16 0.41 0.84

med
³
(q
(ε)
B,j − qtrue,j)

2
´

1.39 0.59 1.43 0.83 1.68 0.50 3.09

med
¡
(qCE,j − qtrue,j)

2
¢

0.75 0.25 1.71 0.70 1.68 0.61 1.06

Table 3.2: Summary measures of estimated weights with CE and Bayesian

approach with and without contamination.

We want to investigate also the effect of the presence of ’extreme’ observations on the maximum

expected utility of investors. We use the loss measure proposed by Jorion7 (1986), given by:

L(q, bq) = EUMAX −EU(bq)
|EUMAX | , (3.5)

where EUMAX is the maximum expected utility when everything is known, and EU(bq) is the
maximum expected utility when the weights are estimated using either the CE or the Bayesian

approach. Figure 3.3 shows such measure for different length of the sample computed both with non

contaminated and contaminated data. For each possible sample size, measure (3.5) is calculated

1000 times and then averaged. The contaminated sample is obtained by replacing the 5% of the

observations with random drawn from a multivariate normal with the same mean but the variance

100 time larger than parameters of Table 3.1.

7The analysis has been performed setting the risk aversion coefficient equal to 23, as in Jorion (1986).
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Figure 3.3: Loss function for the CE and B approach with and without contamination.

For both methods the loss function increases under contaminated data. However, for small

sample sizes the gain of Bayesian over CE approach is no longer evident. We repeated the same

analysis with different values of the risk aversion coefficient and we found that for more risk tolerant

investors the loss in expected utility is even worst for the Bayesian case under contaminated data.

Therefore if the data do not satisfies the normality assumption it is not guaranteed that the

Bayesian approach gives an improvement in terms of loss in expected utility.

To explore the effect of different investor attitudes to the risk on the maximum expected

utility we compared the mean loss over 1000 simulated samples of fixed size for different methods

and values of b (Table 3.3). For each level of contamination Bayesian loss results very stable

over different values of risk aversion coefficient. Incorporation of estimation risk in the Bayesian

approach seems to preserve from the increasing loss that the CE approach displays as b increases.

Therefore we could say for example that with a sample of 100 observations the Bayesian approach

leads a loss in expected utility around the 3% or the 20% depending on how well the data satisfies
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the normality assumption. If the data does not contain outliers the Bayesian approach always

outperforms the CE one, but if it does we find that for small sample size or more risk tolerant

investors the loss is even greater.

Number of Approach and size value of b

observations of contamination 0.1 2 10 23

CE 0% 7.55 7.92 8.62 11.86

50 B 0% 5.67 5.72 5.64 5.85

CE 5% 6.11 6.34 9.56 31.03

B 5% 42.32 43.37 44.98 45.98

CE 0% 3.61 3.49 3.95 4.90

100 B 0% 2.93 2.94 2.87 3.03

CE 5% 3.32 3.61 6.59 21.72

B 5% 19.68 20.41 19.63 19.44

CE 0% 1.39 1.42 1.52 2.01

250 B 0% 1.19 1.18 1.17 1.20

CE 5% 2.70 2.76 4.41 12.41

B 5% 7.52 7.60 7.31 7.20

CE 0% 0.32 0.33 0.36 0.46

1000 B 0% 0.30 0.29 0.30 0.29

CE 5% 2.83 2.82 3.22 4.92

B 5% 1.80 1.80 1.74 1.81

Table 3.3: Percent loss (%) in expected utility using CE and Bayesian

approach with and without contamination.
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These results highlight that the normality assumption is necessary for the Bayesian method

to work well. Otherwise a procedure is needed that still guarantees its property of optimal tool.

In the next sections we formalize the problem and derive some measures of sensitivity which are

helpful to check the robustness properties of Bayesian weights.

3.4 Robustness of Bayesian mean-variance portfolio selec-

tion

3.4.1 Defining the problem

In portfolio selection problem the multivariate normal distribution is assumed to be the returns

generating process. However it is well known that observed returns are often not normal and

securities have sometimes unexpected high or low values. If this is the case we may be interested

that such outlying observations do not play a strong influence on portfolio composition, that is we

would like a robust estimator of portfolio weights. More generally with the word robust we define

the insensitivity of a statistical procedure to deviation from the assumptions.

In this paper we focus on Bayesian mean-variance portfolio selection. In Chapter 1 we showed

that robustness evaluation in a Bayesian setting involves the prior, the sampling distribution and

the data. As first we are interested in developing measures of sensitivity of portfolio composition

to distributional assumptions. Such quantities reveal the effect on Bayesian weights of perturbing

the base model in different directions. For the sampling model it also turns out to be a useful tool

for detecting the presence of outlying observations. Secondly we assess the influence that a single

observation plays on the portfolio composition derived under a specific choice of prior/sampling

models. Then we would like to use the Bayesian estimation procedure presented in Chapter 2 to

obtain Bayesian weights that work well even if some outlying observations are present.

The first step is to see the Bayesian weights as a function of the three distinct elements we

previously mentioned. We will do it in the next section.
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3.4.2 Bayesian weights as functional

In this section we write the Bayesian weights in a functional form. We will denote a probability

distribution and its corresponding cumulative distribution function by capital letters. If it exists,

we use small letters for the density function.

In Section 3.3 we assume the normality of future returns r. In order to allow analytical calcula-

tions, we suppose covariance matrix Σ to be known8. Therefore we denote by Fθ the multivariate

normal model N (θ,Σ). We assume that the same distribution generated also past observations

(sampling model). The prior Π for parameter θ is chosen to be N (θ0,Σ0) and the empirical distri-

bution is denoted by F
n
(y) = 1

n

Pn
i=1∆xi (y) where ∆x (y) is the Dirach distribution which puts

mass 1 at x.

Under these assumptions, the predictive distribution of future returns turns out to beN
¡
θr|x,Σr|x

¢
with

θr|x = θθ|x

= Σθ|x
£
nΣ−1x+Σ−10 θ0

¤
and

Σr|x = Σ+Σθ|x

= Σ+
£
nΣ−1 +Σ−10

¤−1
.

Such moments depend only on the moments of posterior distribution Pθ|x denoted by θθ|x and

Σθ|x. This result holds for any posterior distribution as long as we adopt such normal distribution9

for future returns. A detailed proof of this result is given in Appendix E. It is worth to notice

8Note that this assumption seems quite realistic, as its estimate is more stable over time (Merton, 1980) and

plays a minor role with respect to the mean estimate. In pratice, Σ is simply replaced by its sample estimate S.
9This hypothesis can also be relaxed and we can compute the moments of the predictive distribution directly.
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the structure of predictive moments. First of all, the predictive mean coincides with the posterior

mean. This means that the best prediction for expected future returns given past observations is

reasonably the expected value of the random variable θ according to the distribution we obtain

after updating our prior information with the observed returns x. However, the key point of this

approach can be recognized by looking at Σr|x. The predictive variance accounts both for the

variability of the data generating process Σ (assumed known) and for the variability of expected

returns θ measured by its posterior variance Σθ|x. Therefore the investor takes into account the

risk of the estimation process into the variance structure.

The solution of the maximization problem (3.4) gives the Bayesian weights

q
B =

1

b
Σ−1r|x(θr|x − λr|x · 1)

=
1

b

£
Σ+Σθ|x

¤−1
(θθ|x − λθ|x · 1),

where λr|x =
10Σ−1

r|xθr|x−b
10Σ−1

r|x1
=

10[Σ+Σθ|x]
−1

θr|x−b
10[Σ+Σθ|x]

−1
1

= λθ|x.

Such quantity can be seen as a function of the posterior distribution and hence, as we show in

Section 1.3, as a function of the data, the prior and the sampling model. We have:

q
B = qB (Pθ|x)

= qB (Fn,Π, Fθ)

=
1

b

£
Σ+Σθ|x (Fn,Π, Fθ)

¤−1
(θθ|x (Fn,Π, Fθ)− λθ|x (Fn,Π, Fθ) · 1).

For a shorter notation we will denote only by q
B , Σθ|x, θθ|x and λθ|x the functionals under the

base distributions. We can now assess the sensitivity of Bayesian weights both to distributional

assumptions and to observations. Since in next sections such sensitivity is considered for one model

a time, we will denote the Bayesian functional as a function of the only distribution under study.

64



3.4.3 Sensitivity measures for Bayesian weights

In this section we derive measures of sensitivity of portfolio composition in a neighborhood of

the assumed models. We represent such neighborhood by usual ε-contamination classes and we

compute the measures presented in Section 1.4.

We first consider prior distribution Π. The local influence measure of Bayesian weights when

the prior is perturbed in the direction of a generic contaminating distribution Q ∈ eQ is given by

LI (Q; q
B ,Π) =

·
∂qB(Πε)

∂ε

¸
ε=0

(3.6)

=
1

b

£
Σ+Σθ|x

¤−1 £
LI
¡
Q; θθ|x,Π

¢− LI
¡
Q;λθ|x,Π

¢ · 1
−LI ¡Q;Σθ|x,Π¢ £Σ+Σθ|x¤−1 ¡θθ|x − λθ|x · 1

¢i
=

1

b
Σ−1r|x ·

¡
LI
¡
Q; θθ|x,Π

¢− LI
¡
Q;λθ|x,Π

¢ · 1¢
−Σ−1r|x · LI

¡
Q;Σθ|x,Π

¢ · qB .
For detailed calculations and definitions of quantities involved see Appendix F.

A similar structure is found for the local influence measure of Bayesian weights when sampling

model Fθ is perturbed in the direction of a generic contaminating distribution G ∈ eG. Such

measure is given by:

LI (G; qB , Fθ) =

·
∂q

B (Fθ,ε)

∂ε

¸
ε=0

(3.7)

=
1

b

£
Σ+Σθ|x

¤−1 £
LI
¡
G; θθ|x, Fθ

¢− LI
¡
G;λθ|x, Fθ

¢ · 1
−LI ¡G;Σθ|x, Fθ¢ £Σ+Σθ|x¤−1 ¡θθ|x − λθ|x · 1

¢i
=

1

b
Σ−1r|x ·

¡
LI
¡
G; θθ|x, Fθ

¢− LI
¡
G;λθ|x, Fθ

¢ · 1¢
−Σ−1r|x · LI

¡
G;Σθ|x, Fθ

¢ · qB .
For detailed calculations and definition of quantities involved see Appendix G.

The stability of Bayesian weights in a neighborhood of the assumed model depends on the

65



stability of the first two moments of the posterior distribution, which are posterior summaries.

We have shown in Chapter 1 that their local influence measures capture both a ’data effect’ and a

’model effect’ on the functional. For this reason, measures (3.6) and (3.7) are expected to reveal the

total effect on the Bayesian weights of perturbations of the prior and sampling model respectively.

Moreover, it may be useful to put in relation the obtained sensitivity measure with the corre-

sponding component of Bayesian weights. We therefore define relative measures of local influence

for the prior and the sampling model to be respectively

LI∗
³ eQ; qB ;Π´ = sup

Q∈ eQ
¯̄
diag−1 (qB) · LI (Q; qB ,Π)

¯̄
and

LI∗
³ eG; qB ;Fθ´ = sup

G∈ eG
¯̄
diag−1 (q

B
) · LI (G; q

B
, Fθ)

¯̄
, (3.8)

which give the absolute component by component maximum relative effect as the distribution

moves locally around the base model in different directions.

Once a certain combination of prior/sampling model is chosen, portfolio composition becomes

a function only of observations. To see the component by component change of q
B
as a single

observation in the sample is moved, we use the Sensitivity Curve (see Chapter 1). For the Bayesian

weights it is defined as

SC(z) =
T

b

n£
Σ+ Σθ|x (F z

n)
¤−1

(θθ|x (F z
n)− λθ|x (F z

n) · 1)+

− £Σ+Σθ|x (Fn−1)¤−1 (θθ|x (Fn−1)− λθ|x (Fn−1) · 1)
o
,

where Fn−1 = (x1, .., xT−1) is the empirical distribution of the sample of (n− 1) observations and

F z
n = (x1, .., xT−1 , z) is the sample in which observation z has been added. If this measure diverges

as z becomes larger, the functional is said to be non robust with respect to observations.

In the next section we explore the behavior of such local sensitivity measures.
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3.4.4 Performance of sensitivity measures

In the previous sections we derived different measures of sensitivity of the portfolio composition.

In this section we assess their performance by means of a simulation study. In order to obtain

analytical formulations we consider normal contaminating distributions for both the prior and the

sampling model.

We let contaminating prior Q to vary within the set {N (θ0,Ψ0) : Ψ0 = c · Σ0, c ∈ [0.2, 3]} ,

which allow smaller and greater prior precision around the same prior mean. The measure of local

influence of Bayesian weights to perturbations of the prior in the direction of Q is then given by

(3.6) with

θθ|x (Q) = Σθ|x (Q)
£
nΣ−1x+Ψ−10 θ0

¤
,

Σθ|x (Q) =
£
nΣ−1 +Ψ−10

¤−1
and

m (x ;Q,Fθ)

m (x)
=

|Ψ0|−1/2
¯̄
Σθ|x (Q)

¯̄1/2
|Σ0|−1/2

¯̄
Σθ|x

¯̄1/2 exp

½
−1
2
θ00
¡
Ψ−10 − Σ−10

¢
θ0+

+
1

2
θθ|x (Q)

0
Σ−1θ|x (Q) θθ|x (Q)−

1

2
θ0θ|xΣ

−1
θ|xθθ|x

¾
.

For the sampling model we consider contaminating distribution G that moves within the set

{N (θ,Ω) : Ω = d · Σ, d ∈ [1, 3]}. Such family allows to increase the volatility of portfolio asset

returns without changing the correlation structure between assets. The measure of local influence

of Bayesian weights is then given by (3.7) with

θ
(j)
θ|x (Fθ, G) = Σ

(j)
θ|x (Fθ, G)

£
(n− 1)Σ−1x(−j) +Ω−1xj +Σ−10 θ0

¤
,

Σ
(j)
θ|x (Fθ, G) =

£
(n− 1)Σ−1 +Ω−1 +Σ−10

¤−1
and
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mj (x ;Π, Fθ, G)

m (x ;Π, Fθ)
=

|Σ| 12 |W | 12
|Ω| 12 |V | 12

exp

½
− (n− 1)

2
tr(Σ−1S(−j))+

n

2
tr(Σ−1S)− 1

2
x0jΩ

−1xj +
n

2
x0Σ−1x+

−(n− 1)
2

x0(−j)Σ
−1x(−j) − 1

2
θ0θ|xΣ

−1
θ|xθθ|x +

+
1

2
θ
(j)
θ|x (Fθ, G)

0 hΣ(j)θ|x (Fθ, G)i−1 θ(j)θ|x (Fθ,G)¾ ,

where x(−j) and S(−j) are respectively the sample mean and covariance matrix computed

dropping observation j from the sample. Analytical calculations of marginal likelihoods can be

found in Appendix H.

We simulate T sets (T = 30) of n returns (n = 260) -corresponding to one year of observations-

from a k-variate normal (k = 6) with parameters given in Table 3.4. Parameters for the simulation

study are estimated from real market data. We consider daily returns of stock indexes of the six

major European countries in the period January 1995-December 2003. We use sample estimates

in the period January 1995-December 1997 as parameters for prior distribution Π and sample

estimates in the next period (January 1998-December 2003) as parameters for sampling model

Fθ. Such choice of prior parameters reflect a positive view with high expected returns and small

volatilities and correlations. Contaminated samples are generated from the model (1− ε)Fθ + εG

where ε = 0.05 and the contaminating distribution G is a N (θ, 3 · Σ).
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Sample estimates of daily return (January 1995-December 1997)

Mean Covariance Matrix

UK 0.0889 0.0082

FR 0.0596 0.0062 0.0121

CH 0.1127 0.0045 0.0056 0.0087

GE 0.0914 0.0053 0.0068 0.0060 0.0117

IT 0.0680 0.0054 0.0078 0.0045 0.0058 0.0166

SP 0.1091 0.0052 0.0072 0.0049 0.0062 0.0068 0.0105

Sample estimates of daily return (January 1998-December 2003)

Mean Covariance Matrix

UK -0.0127 0.0209

FR 0.0109 0.0190 0.0269

CH -0.0058 0.0159 0.0188 0.0238

GE -0.0044 0.0193 0.0251 0.0192 0.0344

IT 0.0044 0.0166 0.0219 0.0170 0.0225 0.0258

SP 0.0041 0.0163 0.0219 0.0110 0.0220 0.0208 0.0260

Table 3.4: Parameters of the prior and sampling models respectively in

the second simulation study. Euro returns in percent per day.

Figure 3.4 and Figure 3.5 show the average sensitivity measures of Bayesian weights to pertur-

bation in the prior over the T non contaminated and contaminates sets respectively. Perturbations

in the direction of more precise prior play a greater influence. However, the LI measure is small over

all the set of contaminating models and Bayesian portfolio components are stable to perturbations

of the prior10 . This is confirmed by relative measures in Table 3.5.

10We notice that the size of local influence measures decreases with increasing n, i.e. prior information plays a

69



Figure 3.4: LI (Q; qB ,Π) measure for Bayesian weights. Non contaminated data.

Figure 3.5: LI (Q; qB ,Π) measure for Bayesian weights. Contaminated data.

Moreover the plot of the LI measure does not change in the contaminated case. These two

minor role when the number of observations increases.
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facts support a more general intuition. When the number of observation is large the value of

the Bayesian estimate does not depend heavily on the prior and hence sensitivity to our prior

choice is negligible. Therefore with a reasonable amount of past returns such estimates incorporate

estimation risk without depending too much on the choice is negligible. Therefore with a reasonable

amount of past returns such estimates incorporate estimation risk without depending too much on

the choice of the prior.

ε% UK FR CH GE IT SP

0% LI∗
³ eQ;TB;Π´ 0.0551 0.0705 0.0533 0.0277 0.7984 0.0349

0% LI∗
³ eG;TB;F´ 9.3968 7.1536 30.2748 13.4007 15.5017 5.1747

5% LI∗
³ eQ;TB;Π´ 0.0592 0.0635 0.6446 0.0732 0.0280 0.0417

5% LI∗
³ eG;TB;F´ 105 · [2.3936 0.2572 0.4357 0.3525 0.6610 0.5550]

Table 3.5: Average relative local sensitivity measures of estimated Bayesian weights with

respect to the base prior and sampling models under non contaminated and

contaminated samples.

This is not the case when considering local influence measures for the sampling model (Figures

3.6-3.7). Portfolio components are now more sensitive to perturbations. Under non contaminated

data the local influence measure remains small up to d around 2.4 and increases after that point,

leading to quite large relative measures in Table 3.5. We check both the size of the "data effect" and

of the "model effect" for each posterior summaries in measure (3.7). We find that this increasing

pattern is due to the model effect, since Bayes factors remain reasonably small over all the set of

contaminating distributions. Figure 3.7 shows the effect of introducing few outlying observations.

The sensitivity measure for each component increases up to order 105. Hence the LI measure for
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the sampling model is found to be a useful tool for detecting the presence of ’extreme’ observations

where no visual representation would be possible because of the multivariate nature of the data.

Figure 3.6: LI (G; qB , Fθ) measure for Bayesian weights. Non contaminated data.

Figure 3.7: LI (G; qB , Fθ) measure for Bayesian weights. Contaminated data.
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Finally we want to measure the influence of a given observation on Bayesian weights. We first

consider the case where outlying returns are added only for one security at a time (Figure 3.8).

Such observations are chosen to vary between the minimum and the maximum observed return

for each security in the period January 1995-December 2001. Of course, the weight which is most

influenced corresponds to the one of the perturbed security. However all the other components are

changed in the opposite direction because portfolio weights have to sum to one. It is also interesting

to note the linear relationship between each weight component and the ’extreme’ observation.

Figure 3.8: SC for Bayesian weights under normality of both prior

and sampling distributions adding ’extreme’ returns only

in one security a time.

Figure 3.9 shows the SC of q
B when vector z is added. Such observation is chosen so that all its

components vary between the minimum and the maximum observed return for each security in

the portfolio. The sensitivity of the different components to observations are very different. While

the weights of Italy and Germany increase with increasing outlying observations, the opposite
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behavior is displayed for UK and Spain. The components of France and Switzerland appear

almost insensitive. However, we can conclude that the effect of a single observation on Bayesian

portfolio composition is potentially unbounded. In the next Section we propose a procedure that

does not suffer from this problem.

Figure 3.9: SC for Bayesian weights under normality of both prior

and sampling distributions. Simulated daily returns.

3.5 Robust Bayesian weights

In the previous section we derived measures of sensitivity of Bayesian weights to different inputs.

We found that portfolio components are extremely sensitive to observations because of the un-

boundedness of the SC. Moreover the local influence measure of the sampling model turns out to

be a useful tool for detecting the presence of outlying observations. In this section we propose a

robust estimation procedure for Bayesian weights, that is a procedure that works well even if only
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the majority of the data fits the normal model.

When the presence of outliers is detected robust Bayesian procedure can be built by adopting

a robust model for the sampling distribution. Such model consists in a location-scale family

of symmetric unimodal distributions enriched with further parameters that control the shape,

especially in the tails. Different robust models have been presented in Chapter 2 and generalized

to the multivariate case.

Robust Bayesian mean-variance weights q
(R)

B
are therefore the solution of (3.4) where the robust

predictive density of future returns is given by p
(R)

(rP |x) =
R
p(rP |θ)p

(R)

(θ|x)dθ with p(R) (θ|x) the

robust posterior density obtained with a robust sampling model. However the resulting predictive

distribution is no longer normal11. As we said in Section 3.4.2, robust Bayesian weights basically

depend on the first two moments of posterior distribution since the normality assumption of future

returns r holds, i.e.

q
(R)

B
=
1

b

h
Σ+Σ

(R)

θ|x
i−1

(θ
(R)

θ|x − λ
(R)

θ|x · 1). (3.9)

Therefore θ
(R)

θ|x and Σ
(R)

θ|x can be computed by means of MCMC algorithms that generate a

random drawn from p
(R)

(θ|x).

When a robust model is assumed the effect of outlying observations is dampened and measure

(3.7) is reduced. This latter fact can be used as a selection criterion among different robust

estimates. We choose the robust weights (3.9) that display the smallest value of the LI measure

for the sampling distribution. In the next section we will compute robust Bayesian estimates using

real market data.
11Under the assumption of a quadratic utility function for investors, the Robust Bayesian mean-variance weights

still satisfy the expected utility maximization paradigm.
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3.6 Application to real data

In this section we implement the robust estimator of Bayesian weights using daily returns of stock

indexes of the six major European countries from 1st January 2001 to 31th December 2001.

In order to establish the need for a robust estimation procedure we compute both the SC and

measure (3.7) of Bayesian weights under a normal prior/normal sampling model assumptions12 .

Figure 3.10 shows that each component of the Bayesian weights is a linear function of a single

observation.

Figure 3.10: SC for Bayesian weights assuming a normal

distribution for the sampling model. Daily

returns over the period 1.1.2001-31.12.2001.

As expected, qB are not robust to the presence of outliers. Moreover the computed relative LI

12The parameters for the prior distribution are the sample estimates of daily returns from the 1st January 1995

to 31th December 1997 in Table 3.4.
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measure for the sampling distribution13 shown in Table 3.6 is very large compared to the case in

which data are generated from a normal distribution (see Table 3.5). Therefore robust estimation

is clearly needed.

UK FR CH GE IT SP Sum

qB 4.0068 -4.5500 -0.2860 -0.1124 -3.5419 5.4835 1

LI∗ (G; qB , Fθ) 104 · [0.0372 0.3347 0.0079 68.2439 0.2970 0.2280] 691489.61

Table 3.6: Analytical estimates of the Bayesian weights and their relative local influence

measures for the sampling distribution.

We use a random walk Metropolis-Hasting algorithm (Hastings, 1970) to compute θ
(R)

θ|x and

Σ
(R)

θ|x under different robust sampling models. We made all the computations in Matlab and we

checked the convergence of the chain and of the averages by means of BOA library in R. Estimates

of Bayesian weights (3.9) and their relative local influence measures are shown in Table 3.7.

Under the normal model the components of the Bayesian weights are well estimated. LI∗

measures are computed using estimator (1.17) (see 1.5) but estimated values are different from

analytical results. This is probably due to the fact that (1.17) relies on the importance sampling

technique and the choice of the posterior density as sampling density is not adequate. We tried to

estimate LI∗ using estimator (1.16) that uses density (1.13), but the results were even worse.

13Measure (3.8) is calculated assuming a normal contaminating model G with mean θ and variance Ω = 3 · Σ.
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UK FR CH GE IT SP

Normal Sum

qB 4.0047 -4.5491 -0.2889 -0.1031 -3.5229 5.4593 1

LI∗ 2455.28 2781.77 27299.47 159375.39 3629.39 1257.99 196799.30

Student-t (15)

q
(S)
B 4.0298 -4.8719 -0.7565 -0.3808 -2.0476 5.0271 1

LI∗ 4.37 0.06 14.49 30.51 5.84 0.62 55.88

EPS (0.3)

q
(EPS)
B 3.9479 -4.3803 -0.6596 -0.4331 -2.6897 5.2148 1

LI∗ 8.67 3.75 33.33 81.74 12.49 0.99 140.97

EP (8;0)

q
(EP )
B 3.9799 -5.2537 -1.1010 -0.4641 -1.6224 5.4614 1

LI∗ 1.29 0.32 3.17 4.21 0.63 0.51 10.14

RN (0.05;2)

q
(RN)
B 3.8091 -4.3510 -0.8678 -0.4971 -1.8808 4.7877 1

LI∗ 1.31 0.50 3.69 3.08 0.47 0.61 9.67

Table 3.7: Numerical estimates of the Bayesian weights and their relative local

influence measures for the sampling distribution under different

sampling models. MCMC simulations with 500.000 runs.
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However, what it is more important is to look at the effect of assuming a robust model for

the sampling distribution on LI∗. For all robust models considered such measure is drastically

reduced and the sum of all its components declines up to 9.67. Therefore robust Bayesian weights

are obtained under the RN distribution with parameters (0.05; 2). Note that the position held in

the robust portfolio is the same (i.e. long in the UK and Spain market indexes and short in the

others). Only the proportion invested in each security changes. Moreover as expected the SC of

q
(RN)
B in Figure 3.11 shows a bounded behavior.

Figure 3.11: SC for Bayesian weights assuming a RN distribution for

the sampling model. MCMC simulations with 250.000 runs.

Daily returns over the period 1.1.2001-31.12.2001.

We now focus on the estimates of the posterior moments under the normal and the RN sampling

distributions (Table 3.8 and Table 3.9). Estimated values in the normal case are very close to

the values computed analytically. Under the robust distribution the estimated mean of expected

returns increases for Italy and decreases for Switzerland and Spain, whereas the covariance matrix
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of the expected return becomes larger. This is a crucial point: using robust estimation procedures

for the Bayesian weights does not underestimate the risk of the investment which is given by the

predictive variance Σr|x = Σ+Σθ|x. Matrix Σθ|x takes into account the fact that the robust mean

of expected returns is obtained dampening the effect of some observations and therefore there is a

loss in efficiency which is typical of robust estimation procedures.

Mean expected returns θθ|x

Analytical estimates Normal MCMC estimates RN MCMC estimates

UK -0.000555 -0.000576
¡
1.19 · 10-5¢ -0.000597

¡
1.43 · 10-5¢

FR -0.000934 -0.000967
¡
1.28 · 10-5¢ -0.000929

¡
1.39 · 10-5¢

CH -0.000799 -0.000828
¡
1.18 · 10-5¢ -0.000913

¡
1.44 · 10-5¢

GE -0.000826 -0.000869
¡
1.45 · 10-5¢ -0.000867

¡
1.77 · 10-5¢

IT -0.001148 -0.001181
¡
1.31 · 10-5¢ -0.000996

¡
1.64 · 10-5¢

SP -0.000294 -0.000333
¡
1.32 · 10-5¢ -0.000356

¡
1.60 · 10-5¢

Table 3.8: Comparison of analytical and numerical estimates of the posterior mean under the

normal and the selected robust sampling models. For the MCMC estimates the error

is given in parenthesis. Euro returns in percent per day.
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Covariance Matrix of expected returns Σθ|x

Analytical estimates

UK 8.29 · 10-7

FR 7.61 · 10-7 9.95 · 10-7

CH 6.35 · 10-7 6.93 · 10-7 8.62 · 10-7

GE 8.09 · 10-7 9.63 · 10-7 7.38 · 10-7 1.25 · 10-6

IT 7.15 · 10-7 8.99 · 10-7 6.84 · 10-7 9.61 · 10-7 1.06 · 10-6

SP 6.52 · 10-7 8.84 · 10-7 6.40 · 10-7 9.04 · 10-7 8.72 · 10-7 1.07 · 10-6

Normal MCMC estimates

UK 8.39 · 10−7

FR 7.75 · 10−7 1.01 · 10−6

CH 6.36 · 10−7 6.96 · 10−7 8.62 · 10−7

GE 8.18 · 10−7 9.71 · 10−7 7.39 · 10−7 1.25 · 10−6

IT 7.21 · 10−7 9.09 · 10−7 6.83 · 10−7 9.63 · 10−7 1.06 · 10−6

SP 6.66 · 10−7 8.97 · 10−7 6.43 · 10−7 9.09 · 10−7 8.74 · 10−7 1.08 · 10−6

RN MCMC estimates

UK 1.17 · 10−6

FR 1.08 · 10−6 1.41 · 10−6

CH 8.99 · 10−7 9.81 · 10−7 1.22 · 10−6

GE 1.14 · 10−6 1.36 · 10−6 1.05 · 10−6 1.78 · 10−6

IT 1.01 · 10−6 1.28 · 10−6 9.74 · 10−7 1.37 · 10−6 1.52 · 10−6

SP 9.31 · 10−7 1.25 · 10−6 9.14 · 10−7 1.29 · 10−6 1.24 · 10−6 1.51 · 10−6

Table 3.9: Comparison of analytical and numerical estimates of the posterior covariance

matrix under the normal and the selected robust sampling models.
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3.7 Conclusions and future developments

This paper discusses the robustness properties of the Bayesian mean-variance portfolio weights.

We first initially compare the CE and the Bayesian approaches to portfolio selection when data

come from a normal distribution or contain some outlying observations. We find that the presence

of ’extreme’ returns makes the Bayesian method lose its property of outperforming the CE method

for small sample sizes or more risk tolerant investors.

Then we compute measures of local sensitivity both to distributional assumptions and to obser-

vations. Their behavior is explored by means of a simulation study. We find that LI measure for

the prior is very small, which means that results do not depend heavily on prior assumptions with

a sample greater than n = 260 observations. Moreover the LI measure for the sampling model

turns out to be a useful tool for revealing the presence of outlying observations. Our result is useful

because the multivariate nature of the data makes this task difficult to achieve otherwise. We also

find that Bayesian weights are extremely sensitive to observations when a normal prior/normal

sampling models combination is assumed.

Finally we propose a Bayesian estimation procedure for portfolio weights which dampenes the

effect of ’extreme’ observations. We consider an application to real market data. The unbound-

edness of the SC and the large size of the LI measure of Bayesian weights reveal that robust

estimation is needed. We then compute the robust Bayesian weights and their LI measures turn

out to be much smaller than in the normal case. A final important remark: when a robust model is

adopted the effect of outlying observations is dampened on the estimated mean of expected returns,

but its covariance matrix becomes larger. This means that using robust estimation procedures for

the Bayesian weights does not underestimate the risk of the investment.

A possible direction for future research would be to build the robust estimator for Bayesian

weights when the hypothesis of known covariance matrix is relaxed and also a prior on this param-

eter is assumed as in Frost and Savarino (1986).
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Appendix A

Consider a linear perturbation of the sampling distribution of type (1.3) with G the contaminating

distribution. The perturbed posterior density is given by

pε (θ|x) = π (θ) · LFε (x|θ)
m (x ;Π, Fθ,ε)

,

and its derivative·
∂pε (θ|x)

∂ε

¸
ε=0

=


³
π (θ)

∂LFε (x|θ)
∂ε

´
m (x ;Π, Fθ,ε)

m (x ;Π, Fθ,ε)
2 +

−
(π (θ) · LFε (x|θ))

³
∂m(x ;Π,Fθ,ε)

∂ε

´
m (x ;Π, Fθ,ε)

2


ε=0

=

π (θ) ·
nX
j=1

(g (xj)− fθ (xj))
Y
i6=j

fθ (xi)


m (x ;Π, Fθ)

−

−
π (θ) LF (x|θ)

nX
j=1

[mj (x ;Π, Fθ, G)−m (x ;Π, Fθ)]

m (x ;Π, Fθ)
2

=
nX
j=1

pj (θ|x) mj (x ;Π, Fθ, G)

m (x ;Π, Fθ)
− n · p (θ|x)

−π (θ|x)
nX
j=1

mj (x ;Π, Fθ, G)

m (x ;Π, Fθ)
+ n · p (θ|x)

=
nX
j=1

mj (x ;Π, Fθ,G)

m (x ;Π, Fθ)
[pj (θ|x)− p (θ|x)] ,

where

pj (θ|x) =
π (θ) · g (xj) ·

Y
i6=j

fθ (xi)

mj (x ;Π, Fθ,G)
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is the posterior obtained when a sampling distribution G is adopted only for observation j and

mj (x ;Π, Fθ, G) =

Z
g (xj) ·

Y
i6=j

fθ (xi)π (θ) dθ

is the corresponding marginal likelihood.

The measure of local influence of the functional to the sampling model is therefore given by

LI(G;TB, Fθ) =

Z
ρ (θ)

·
∂pε (θ|x)

∂ε

¸
ε=0

dθ

=

Z
ρ (θ) ·

nX
j=1

·
mj (x ;Π, Fθ, G)

m (x ;Π, Fθ)
· (pj (θ|x)− p (θ|x))

¸
dθ

=
nX
j=1

mj (x ;Π, Fθ,G)

m (x ;Π, Fθ)

Z
ρ (θ) · (pj (θ|x)− p (θ|x)) dθ. (A.1)

Expression (A.1) takes different forms depending on the contaminating distribution G. If G is a

distribution with parameter θ, we denote it by Gθ. Local influence measure of TB is then given

by:

LI(Gθ;TB , Fθ) =
nX
j=1

mj (x ;Π, Fθ, Gθ)

m (x ;Π, Fθ)
·
³
T
(j)
B (Fθ,Gθ)− TB (Fθ)

´
where mj(x;Π, Fθ, Gη) =

R
gθ (xj)

Y
i6=j

fθ (xi) π (θ) dθ.

If G depends on a different known parameter η (η 6= θ), the contaminating distribution is

denoted by Gη and (A.1) turns out to be

LI(Gη;TB, Fθ) =
X
j

mj(x;Π, Fθ, Gη)

m(x)

³
T
(−j)
B − TB

´
where mj(x;Π, Fθ, Gη) = gη (xj) ·

R Y
i6=j

fθ (xi)π (θ) dθ and T
(−j)
B is the posterior functional under

base models using sample x without observation xj .
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Appendix B

Assume prior Π and sampling model Fθ to be respectively N(θ0, σ
2
0) and N(θ, σ2). We need to

compute the marginal likelihood m (x) =
R
LF (x|θ)π (θ) dθ where LF (x|θ) is the likelihood under

the reference sampling model. It is well known that in this case the posterior is N
³
θθ|x;σ2θ|x

´
with

θθ|x =
nσ20x+σ

2θ0
nσ20+σ

2 and σ2θ|x =
σ2σ20

nσ20+σ
2 . Our quantity of interest turns out to be:

m(x) =

Z
π (θ) · LF (x|θ) dθ

=

Z ¡
2πσ20

¢− 1
2
¡
2πσ2

¢−n
2 exp

(
− 1

2σ20
(θ − θ0)

2 − 1

2σ2

X
i

(xi − θ)
2

)
dθ

= (2π)−
(n+1)
2
¡
σ2
¢−n

2
¡
σ20
¢− 1

2 exp

(
− 1

2σ2

X
i

(xi − x)2
)
·
Z
exp {A (θ)} dθ,

where A (θ) = − 1
2σ20

(θ − θ0)
2 − n

2σ2 (x− θ)2. Let’s work with the exponent A (θ). We have

A (θ) = −1
2

"¡
θ2 + θ20 − 2θθ0

¢
σ20

+
n
¡
x2 + θ2 − 2θx¢

σ2

#
= − 1

2σ20σ
2

£
σ2θ2 + σ2θ20 − 2σ2θθ0 + nσ20x

2 + nσ20θ
2 − 2nσ20θx

¤

= −1
2

σ2 + nσ20
σ20σ

2| {z }
=σ−2

θ|x

θ2 − 2
µ
σ2θ0 + nσ20x

σ2 + nσ20

¶
| {z }

=θθ|x

θ +
σ2θ20 + nσ20x

2

σ2 + nσ20

 .

Adding and subtracting θ2θ|x we get

A (θ) = −
σ−2θ|x
2

·¡
θ − θθ|x

¢2
+

σ2θ20 + nσ20x
2

σ2 + nσ20
− θ2θ|x

¸
= −1

2

µ
θ − θθ|x
σθ|x

¶2
− 1
2

n

σ2 + nσ20
(θ0 − x)

2
.
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Therefore substituting into m (x) we have

m(x) = (2π)
− (n+1)

2
¡
σ2
¢−n

2
¡
σ20
¢− 1

2

³
2πσ2θ|x

´ 1
2

· exp
(
− 1

2σ2

X
i

(xi − x)
2 − 1

2

n

σ2 + nσ20
(θ0 − x)

2

)

·
Z ³

2πσ2θ|x
´− 1

2

exp

(
−1
2

"µ
θ − θθ|x,j
σθ|x,j

¶2#)
dθ| {z }

=1

= (2π)
−n

2
¡
σ2
¢− (n−1)

2
¡
σ2 + nσ20

¢− 1
2

· exp
(
− 1

2σ2

X
i

(xi − x)2 − 1
2

n

σ2 + nσ20
(θ0 − x)2

)
.

Consider now the class of contaminating distribution eGθ =
©
N(θ, η2) : η2 ∈ £σ2, 10 · σ2¤ª. We

need to compute the marginal likelihood in the case where contaminating model G is assumed only

for observation j. We denote with L
(j)
F,G (θ|x) the likelihood function in this case. The marginal

likelihood is now given by

mj(x;Π, Fθ, G) =

Z
L
(j)
F,G (θ|x)π (θ) dθ

=
¡
2πσ20

¢− 1
2
¡
2πσ2

¢− (n−1)
2
¡
2πη2

¢− 1
2 ·

·
Z
exp

(
− 1

2σ20
(θ − θ0)

2 − 1

2σ2

X
i

(xi − θ)2 − 1

2η2
(xj − θ)2

)
dθ

= (2π)−
(n+1)
2
¡
σ2
¢− (n−1)

2
¡
σ20η

2
¢− 1

2 ·

· exp
− 1

2σ2

X
i6=j

¡
xi − x(j)

¢2 ·
Z
exp {Bj (θ)} dθ,

where Bj (θ) = − 1
2σ20

(θ − θ0)
2 − (n−1)

2σ2

¡
x(j) − θ

¢2 − 1
2η2 (xj − θ)2.

Working again with the exponent Bj (θ) we have:

Bj (θ) = −1
2

¡θ2 + θ20 − 2θθ0
¢

σ20
+
(n− 1)

³
x2(j) + θ2 − 2θx(j)

´
σ2

+

¡
x2j + θ2 − 2θxj

¢
η2


= − 1

2σ20σ
2η2

h
σ2η2θ2 + σ2η2θ20 − 2σ2η2θθ0 + (n− 1) η2σ20x2(j)

+(n− 1) η2σ20θ2 − 2 (n− 1) η2σ20θx(j) + σ2σ20x
2
j + σ2σ20θ

2 − 2σ2σ20θxj
¤
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= − 1

2σ20σ
2η2

£¡
σ2η2 + (n− 1) η2σ20 + σ2σ20

¢ · θ2 + σ2σ20x
2
j + σ2η2θ20

+(n− 1) η2σ20x2(j) − 2
¡
σ2η2θ0 + (n− 1) η2σ20x(j) + σ2σ20xj

¢ · θi

= −1
2

σ2η2 + (n− 1) η2σ20 + σ2σ20
σ20σ

2η2| {z }
=σ−2

θ|x,j

θ2 − 2
µ
σ2η2θ0 + (n− 1) η2σ20x(j) + σ2σ20xj

σ2η2 + (n− 1) η2σ20 + σ2σ20

¶
| {z }

=θθ|x,j

· θ

+
σ2σ20x

2
j + σ2η2θ20 + (n− 1) η2σ20x2(j)

σ2η2 + (n− 1) η2σ20 + σ2σ20

#
.

Adding and subtracting θ2θ|x,j we get

Bj (θ) = −
σ−2θ|x,j
2

"¡
θ − θθ|x,j

¢2
+

σ2σ20x
2
j + σ2η2θ20 + (n− 1) η2σ20x2(j)

σ2η2 + (n− 1) η2σ20 + σ2σ20
− θ2θ|x,j

#

= −1
2

µ
θ − θθ|x,j
σθ|x,j

¶2
−

σ−2θ|x,j
2

·
Ã
σ2σ20x

2
j + σ2η2θ20 + (n− 1) η2σ20x2(j)

σ2η2 + (n− 1) η2σ20 + σ2σ20
− θ2θ|x,j

!

= −1
2

µ
θ − θθ|x,j
σθ|x,j

¶2
−

σ−2θ|x,j
2

·

³
σ2σ20x

2
j + σ2η2θ20 + (n− 1) η2σ20x2(j)

´
(σ2η2 + (n− 1) η2σ20 + σ2σ20)

2 ·

·
¡
σ2η2 + (n− 1) η2σ20 + σ2σ20

¢
(σ2η2 + (n− 1) η2σ20 + σ2σ20)

2 −
¡
σ2η2θ0 + (n− 1) η2σ20x(j) + σ2σ20xj

¢2
(σ2η2 + (n− 1) η2σ20 + σ2σ20)

2

!

= −1
2

µ
θ − θθ|x,j
σθ|x,j

¶2
−

σ−2θ|x,j
2

· σ20σ
2η2

(σ2η2 + (n− 1) η2σ20 + σ2σ20)
2

·
³
σ2 (xj − θ0)

2
+ (n− 1)η2 ¡x(j) − θ0

¢2
+ (n− 1)σ20

¡
x(j) − xj

¢2´
= −1

2

µ
θ − θθ|x,j
σθ|x,j

¶2
− 1
2
·
³
σ2 (xj − θ0)

2 + (n− 1)η2 ¡x(j) − θ0
¢2´

σ2η2 + (n− 1) η2σ20 + σ2σ20

−1
2
· (n− 1)σ20

¡
x(j) − xj

¢2
σ2η2 + (n− 1) η2σ20 + σ2σ20

.

Therefore substituting in mj(x;Π, Fθ, G) we get

mj(x;Π, Fθ, G) = (2π)
−n

2
¡
σ2
¢− (n−1)

2
¡
σ20η

2
¢− 1

2

³
2πσ2θ|x,j

´ 1
2

· exp
− 1

2σ2

X
i6=j

¡
xi − x(j)

¢2 − 1
2
· σ2 (xj − θ0)

2

(σ2η2 + (n− 1) η2σ20 + σ2σ20)


· exp

(
−1
2
· (n− 1)η

2
¡
x(j) − θ0

¢2
+ (n− 1)σ20

¡
x(j) − xj

¢2
(σ2η2 + (n− 1) η2σ20 + σ2σ20)

)

·
Z ³

2πσ2θ|x,j
´− 1

2

exp

(
−1
2

"µ
θ − θθ|x,j
σθ|x,j

¶2#)
dθ| {z }

=1
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= (2π)
−n

2
¡
σ2
¢− (n−2)

2
¡
σ2η2 + (n− 1) η2σ20 + σ2σ20

¢− 1
2

· exp
− 1

2σ2

X
i6=j

¡
xi − x(j)

¢2 − 1
2
· σ2 (xj − θ0)

2

(σ2η2 + (n− 1) η2σ20 + σ2σ20)


· exp

(
−1
2
· (n− 1)η

2
¡
x(j) − θ0

¢2
+ (n− 1)σ20

¡
x(j) − xj

¢2
(σ2η2 + (n− 1) η2σ20 + σ2σ20)

)
.
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Appendix C

Consider the Bayesian linear regression model where a normal distribution is assumed both for the

error model F and for the prior Π. The posterior distribution of regression coefficients turns out

to be normal with mean

E (β|y,X) = V
¡
Σ−10 β0 +X 0y

¢
and variance

V ar (β|y,X) = σ2V,

where V =
¡
Σ−10 +X 0X

¢−1
. The corresponding marginal likelihood is given by

m (y,X) =
¡
2πσ2

¢− k+n
2 |Σ0|−

1
2 exp

½
−A
2

¾¡
2πσ2

¢ k
2 |V | 12 ,

where A = σ−2
¡
y0y + α00Σ

−1
0 α0 − β0BayesV −1βBayes

¢
. The Bayes estimator βBayes for regression

coefficients is given by the posterior mean E (β|y,X), which is a posterior summary of type (1.2).

Therefore measures of local influence of the functional to prior and sampling model perturbations

are respectively given by

LI (Q;TB,Π) =

·
∂TB (Πε)

∂ε

¸
ε=0

=

Z
β ·
·
∂

∂ε
p (β|y,X,Πε, F )

¸
ε=0

dβ

=
m (y,X;Q,F )

m (y,X)
[TB (Q)− TB] ,
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and

LI (G;TB , F ) =

·
∂TB (Fε)

∂ε

¸
ε=0

=

Z
β ·
·
∂

∂ε
p (β|y,X,Π, Fε)

¸
ε=0

β

=
nX
j=1

mj (y,X;Π, F,G)

m (y,X)

h
T
(j)
B (F,G)− TB

i
,

where mj (y,X;Π, F,G) =
R
L
(j)
F,G (y|X,β)π (β) dβ and pj (β|y,X) = π(β)·L(j)F,G(y|X,β)

mj(y,X;Π,F,G)
.

Both measures can be solved analytically only performing a conjugate analysis. Suppose that

the uncertainty about the prior distribution on β is represented by the family eQ = ©N ¡α0, σ2Σ0¢ :
αinf0 ≤ α0 ≤ αsup0

ª
. The posterior derived with such a prior is still normal with mean β∗Bayes =¡

X 0X +Σ−10
¢−1 ¡

X 0y +Σ−10 α0
¢
and covariance matrix σ2V ∗ = σ2

¡
X 0X +Σ−10

¢−1
= σ2V. The

corresponding marginal likelihood is given by

m (y,X;Q,F ) =
¡
2πσ2

¢− k+n
2 |Σ0|−

1
2 exp

½
−A

∗

2

¾¡
2πσ2

¢ k
2 |V ∗| 12 ,

where A∗ = σ−2
¡
y0y + α00Σ

−1
0 α0 − β∗0BayesV −1β

∗
Bayes

¢
.

Under this assumption the local influence for the prior becomes

LI (Q;TB,Π) =
exp

n
−A∗

2

o
exp

©−A
2

ª ¡
β∗Bayes − βBayes

¢
= exp

½
−(α0 − β0)

0Σ−10 (α0 − β0)

2σ2

¾
= exp

(
+

¡
β∗Bayes − βBayes

¢0
V −1

¡
β∗Bayes − βBayes

¢
2σ2

)¡
β∗Bayes − βBayes

¢
= exp

(
−(α0 − β0)

0 £Σ−10 − Σ−10 V 0Σ−10
¤
(α0 − β0)

2σ2

)£
V Σ−10 (α0 − β0)

¤
.

Let’s now consider the perturbation of the sampling distribution. We will denote by x0j (1× k) the

row j of matrix X corresponding to observation j and with X(−j) (n−1×k) and y(−j) respectively

the matrix X and the vector y where the observation j has been dropped out. Assuming a contam-

inating family of type eG = ©N ¡0, c2¢ : cinf ≤ c2 ≤ csup
ª
the marginal likelihood mj (y,X;Π, F,G)
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is given by

mj (y,X;Π, F,G) =

Z
L
(j)
F,G (y|X,β)π (β) dβ

=
¡
2πσ2

¢− (k+n−1)
2

¡
2πc2

¢− 1
2 |Σ0|−

1
2 exp

½
−1
2
eB¾ .

The terms eB is given by

eB = σ−2 (β − β0)
0Σ−10 (β − β0) + c−2

¡
yj − x0jβ

¢0 ¡
yj − x0jβ

¢
+σ−2

¡
y(−j) −X(−j)β

¢0 ¡
y(−j) −X(−j)β

¢
= σ−2β0Σ−10 β − 2σ−2β0Σ−10 β0 + σ−2β00Σ

−1
0 β0 + c−2y2j − 2c−2β0xjyj

+c−2β0xjx0jβ + σ−2y0(−j)y(−j) − 2σ−2β0X 0
(−j)y(−j) + σ−2β0X 0

(−j)X(−j)β

= β0
h
σ−2

³
X 0
(−j)X(−j)

´
+ c−2

¡
xjx

0
j

¢
+ σ−2Σ−10

i
β

−2β0
³
σ−2X 0

(−j)y(−j) + c−2xjyj + σ−2Σ−10 β0

´
+σ−2β00Σ

−1
0 β0 + c−2y2j + σ−2y0(−j)y(−j)

= σ−2β00Σ
−1
0 β0 + c−2y2j + σ−2y0(−j)y(−j) − σ−2mjV

−1
j mj| {z }

= eBj
+σ−2

³
β − β

(j)
Bayes

´0
V −1j

³
β − β

(j)
Bayes

´
= eBj + σ−2

³
β − β

(j)
Bayes

´0
V −1j

³
β − β

(j)
Bayes

´
,

where

β
(j)
Bayes =

·
X 0
(−j)X(−j) +

σ2

c2
xjx

0
j +Σ

−1
0

¸−1µ
X 0
(−j)y(−j) +

σ2

c2
xjyj +Σ

−1
0 β0

¶
,

and

Vj =

·
X 0
(−j)X(−j) +

σ2

c2
xjx

0
j +Σ

−1
0

¸−1
.

Marginal mj (y,X;Π, F,G) becomes

mj (y,X;Π, F,G) =
¡
2πσ2

¢− (n−1)
2
¡
2πc2

¢− 1
2 |Σ0|−

1
2 |Vj |

1
2 exp

(
−
eBj

2

)
,

and the corresponding posterior distribution turns out to be aN
³
β
(j)
Bayes, σ

2Vj

´
. Therefore T (j)B (F,Gβ) =

β
(j)
Bayes.
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Under this assumption the local influence for the sampling model is given by

LI (G;TB, F ) =
nX
j=1


¡
2πσ2

¢− (k+n−1)
2

¡
2πc2

¢− 1
2 |Σ0|−

1
2 exp

n
− eBj

2

o¡
2πσ2

¢ k
2 |Vj |

1
2

(2πσ2)
− k+n

2 |Σ0|−
1
2 exp

©−A∗
2

ª
(2πσ2)

k
2 |V | 12

·
³
β
(j)
Bayes − βBayes

´i
=

nX
j=1

µ c2 |V |
σ2 |Vj |

¶− 1
2

exp

−
³ eBj −A

´
2


³β(j)Bayes − βBayes

´

=
nX
j=1

µ c2 |V |
σ2 |Vj |

¶− 1
2

exp

−
³
σ2

c2 − 1
´
y2j

2σ2


· exp

(
−β

0
BayesV

−1βBayes − β
(j)0
BayesV

−1
j β

(j)
Bayes

2σ2

)³
β
(j)
Bayes − βBayes

´#
.
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Appendix D

In this appendix we give the form of the density generator g for some univariate distributions.

Results are summerized in the following table:

Model g (u)

Normal N
¡
θ, σ2

¢
exp (−u)

Student-t t
¡
θ, σ2, p

¢ ³
1 + 2·u

p

´− (1+p)
2

EPS EPS (θ, σ, δ) exp
³
−cδ · (2u)(δ+1)

−1´
RN RN (θ, σ, a, b) exp

³
− ¡b · a2/b¢−1 · R a·(2u)b/2

0
e−tt

2
b−1dt

´
EP EP (θ, σ, c, λ)

£
ν−1

¡
σ2
¢ · σ2¤ 12 exp½− c

2 · ρλ
µ
1 +

2 ν−1(σ2)· σ2
c−1 u

¶¾

The paper by Landsman and Valdez (2003) proves the condition

Z ∞
0

u
k
2−1g(u)du <∞ (D.1)

that guarantees g to be a density generator for the normal, student-t ans EPS distributions.

In this appendix we prove such condition to be satisfied for the RN and EP distributions. We

denote by u the quantity u = 1
2

¡
x−θ
σ

¢2
.
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Ramsay and Novick’s distribution

If X ∼ RN (µ, σ, a, b) , then it belongs to elliptical family with

g (u) = exp

Ã
−
³
b · a2/b

´−1
·
Z a·(2u)b/2

0

e−tt
2
b−1dt

!
, a > 0, b > 0.

Integral (D.1) is given in this case by

I =

Z ∞
0

u−
1
2 e−(b·a

2/b)
−1·R a·(2u)b/20 e−tt

2
b
−1dtdu,

and it cannot be computed analitically.

However, considering the integral in the exponent, the following relation holds

Z a·(2u)b/2

0

e−tt
2
b−1dt ≤ a · (2u)b/2 e−t∗t 2b−1∗ ,

where t∗ = maxt
³
e−tt

2
b−1

´
> 0 because the function is define on R+.

Therefore (D.1) can be written as

I ≤
Z ∞
0

u−
1
2 e−(b·a

2/b)−1·a·(2u)b/2e−t∗ t
2
b
−1
∗ du

= 2
1
2κ−

1
bΓ

µ
1 +

1

b

¶
<∞,

where κ = b−1a2/b−1e−t∗t
2
b−1∗ .

It follows that g is a density generator and the RN distribution belongs to the elliptical family.

Extended Power distribution

If X ∼ EP (µ, σ, a, b) , then it belongs to elliptical family with

g (u) =
£
ν−1

¡
σ2
¢ · σ2¤ 12 exp(− c

2
· ρλ

Ã
1 +

2 ν−1
¡
σ2
¢ · σ2

c− 1 u

!)
.

Integral (D.1) is given by

I =
£
ν−1

¡
σ2
¢ · σ2¤ 12 · "Z ∞

0

u−
1
2 exp

(
− c
2
· ρλ

Ã
1 +

2 ν−1
¡
σ2
¢ · σ2

c− 1 u

!)
du

#
,

and it can be computed analitically only for λ = 0.
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In this case we have

σ2 =
(c− 1)√2
(c− 3)φ =⇒ φ =

(c− 1)√2
(c− 3)σ2 ,

and

Z ∞
0

u
k
2−1g(u)du =

"
(c− 1)√2
(c− 3)σ2 σ2

# 1
2 Z ∞

0

u−
1
2 exp

(
− c

2
log

Ã
1 +

2 σ2

(c− 1)
(c− 1)√2
(c− 3)σ2 u

!)
du

=

"
(c− 1)√2
(c− 3)

# 1
2 Z ∞

0

u−
1
2

Ã
1 +

2
√
2

(c− 3) u
!− c

2

du

=

·
(c− 1)π
4
√
2

¸ 1
2 Γ

¡
c
2 − 1

¢
Γ
¡
c
2

¢ <∞.
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Appendix E

In this appendix we show that, as long as future returns r are normally distributed, the moments

of the predictive distribution Pr|x depend uniquely on the moments of posterior distribution Pθ|x,

for any posterior distribution considered. Let’s assume r ∼ N (θ,Σ) with Σ known.

Predictive moments are given by

θr|x =

Z
rp (r|x) dr

=

Z
r

µZ
p (r|θ) p (θ|x) dθ

¶
dr

=

Z µZ
rp (r|θ) dr

¶
p (θ|x) dθ

=

Z
θp (θ|x) dθ = θθ|x

and

Σr|x =

Z
rr0p (r|x) dr −

µZ
rp (r|x) dr

¶µZ
rp (r|x) dr

¶0
=

Z µZ
rr0p (r|θ) dr

¶
p (θ|x) dθ − θθ|xθ

0
θ|x

=

Z ¡
Σ+ θθ0

¢
p (θ|x) dθ − θθ|xθ

0
θ|x

= Σ+Σθ|x + θθ|xθ
0
θ|x − θθ|xθ

0
θ|x

= Σ+Σθ|x.

which are a function of posterior moments
¡
θθ|x,Σθ|x

¢
.
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Appendix F

The local sensitivity measure of Bayesian weights q
B
to perturbation of prior Π in the direction of

contaminating distribution Q is given by:

LI (Q; q
B
,Π) =

·
∂qB(Πε)

∂ε

¸
ε=0

=

"
∂q

B
(Πε)

∂vec(
£
Σ+Σθ|x (Πε)

¤−1
)0
· ∂vec(

£
Σ+Σθ|x (Πε)

¤−1
)

∂vec(Σ+Σθ|x (Πε))0

·∂vec(Σ+Σθ|x (Πε))
∂ε

¸
ε=0

+

"
∂qB(Πε)

∂θθ|x (Πε)
0 ·

∂θθ|x (Πε)
∂ε

#
ε=0

+

·
∂qB (Πε)

∂λθ|x (Πε)
· ∂λθ|x (Πε)

∂ε

¸
ε=0

.

Using the properties of operator vec and of Kronecker product ⊗, such derivative can be easily

computed. The vector of the Bayesian weights q(Πε) can be written as

q
B
(Πε) = vec(q

B
(Πε))

=
1

b

£
(θθ|x (Πε)− λθ|x (Πε) · 1)0 ⊗ IN

¤ · vec(£Σ+Σθ|x (Πε)¤−1).
Therefore we have:

"
∂q(Πε)

∂vec(
£
Σ+Σθ|x (Πε)

¤−1
)0

#
ε=0

=
1

b

£
(θθ|x − λθ|x · 1)0 ⊗ IN

¤
,

"
∂vec(

£
Σ+Σθ|x (Πε)

¤−1
)

∂vec(
£
Σ+Σθ|x (Πε)

¤−1
)0

#
ε=0

= − £Σ+Σθ|x¤−1 ⊗ £Σ+Σθ|x¤−1 ,"
∂qB (Πε)

∂θθ|x (Πε)
0

#
ε=0

=
1

b

£
Σ+Σθ|x

¤−1
,
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and ·
∂qB(Πε)

∂λθ|x (Πε)

¸
ε=0

= −1
b

£
Σ+Σθ|x

¤−1 · 1.
For all remaining quantities it is crucial to compute the derivative of the posterior distribution. If

we assume a contaminated prior density of type πε (θ) = (1− ε)π (θ) + εq (θ), we obtain

·
∂

∂ε

µ
πε (θ)LF (θ|x)
m (x;Πε, Fθ)

¶¸
ε=0

=

"
∂πε(θ)
∂ε LF (θ|x)m (x;Πε, Fθ)

m (x;Πε, Fθ)
2 +

−πε (θ)LF (θ|x) ∂m(x;Πε,Fθ)∂ε

m (x;Πε, Fθ)
2

#
ε=0

=
(q (θ)− π (θ))LF (θ|x)

m (x)
+

−π (θ)LF (θ|x) (m (x;Q,Fθ)−m (x))

m (x)

=
m (x ;Q,F )

m (x)

µ
q (θ)LF (θ|x)
m (x ;Q,F )

− π (θ)LF (θ|x)
m (x)

¶
.

Indeed, we have

·
∂θθ|x (Πε)

∂ε

¸
ε=0

=

Z
θ

·
∂

∂ε

µ
πε (θ)LF (θ|x)
m (x;Πε, Fθ)

¶¸
ε=0

dθ

=
m (x ;Q,F )

m (x)

¡
θθ|x (Q)− θθ|x

¢
= LI

¡
Q; θθ|x,Π

¢
.

Moreover

·
∂vec(Σ+Σθ|x (Πε))

∂ε

¸
ε=0

=

·
∂vec(Σθ|x (Πε))

∂ε

¸
ε=0

= vec

·
∂Σθ|x (Πε)

∂ε

¸
ε=0

,

100



where

·
∂Σθ|x (Πε)

∂ε

¸
ε=0

=

·
∂

∂ε

µZ
θθ0
µ
πε (θ)LF (θ|x)
m (x;Πε, Fθ)

¶
dθ − θθ|x (Πε) θθ|x (Πε)

0
¶¸

ε=0

=

·Z
θθ0

∂

∂ε

µ
πε (θ)LF (θ|x)
m (x;Πε, Fθ)

¶
dθ+

−∂θθ|x (Πε)
∂ε

θθ|x (Πε)
0 − θθ|x (Πε)

∂θθ|x (Πε)
∂ε

0#
ε=0

=
m (x ;Q,F )

m (x)

£
Σθ|x (Q)− Σθ|x + θθ|x (Q) θθ|x (Q)

0
+

−θθ|x (Q) θ0θ|x − θ0θ|xθθ|x (Q)
0 + θ0θ|xθ

0
θ|x
i

= LI
¡
Q;Σθ|x,Π

¢
.

The last term depends on the previous quantities, and it is given by:

·
∂λθ|x (Πε)

∂ε

¸
ε=0

=

"
∂

∂ε

Ã
10
£
Σ+Σθ|x (Πε)

¤−1
θθ|x (Πε)− b

10
£
Σ+Σθ|x (Πε)

¤−1
1

!#
ε=0

=

µ
10
·
∂[Σ+Σθ|x(Πε)]

−1

∂ε

¸
ε=0

θθ|x

¶³
10
£
Σ+Σθ|x

¤−1
1
´

³
10
£
Σ+Σθ|x

¤−1
1
´2 +

+

³
10
£
Σ+ Σθ|x

¤−1 h∂θθ|x(Πε)
∂ε

i
ε=0

´³
10
£
Σ+Σθ|x

¤−1
1
´

³
10
£
Σ+Σθ|x

¤−1
1
´2 +

−

³
10
£
Σ+ Σθ|x

¤−1
θθ|x − b

´µ
10
·
∂[Σ+Σθ|x(Πε)]

−1

∂ε

¸
ε=0

1

¶
³
10
£
Σ+Σθ|x

¤−1
1
´2

=
−
³
10
£
Σ+Σθ|x

¤−1
LI
¡
Q;Σθ|x,Π

¢ £
Σ+Σθ|x

¤−1
θθ|x

´
³
10
£
Σ+Σθ|x

¤−1
1
´ +

+

³
10
£
Σ+ Σθ|x

¤−1
LI
¡
Q; θθ|x,Π

¢´³
10
£
Σ+Σθ|x

¤−1
1
´ +

³
10
£
Σ+Σθ|x

¤−1
θθ|x − b

´
³
10
£
Σ+Σθ|x

¤−1
1
´2 ·

·
³
10 · £Σ+Σθ|x¤−1 LI ¡Q;Σθ|x,Π¢ £Σ+Σθ|x¤−1 · 1´
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=
m (x ;Q,F )

m (x)

"
10Σ−1r|x

¡
θθ|x (Q)− θθ|x

¢
10Σ−1r|x1

+

−
10Σ−1r|x

¡
Σθ|x (Q)− Σθ|x

¢
Σ−1r|xθθ|x

10Σ−1r|x1
+

−
10Σ−1r|x

³
θθ|x (Q) θθ|x (Q)

0 − θ0θ|xθ
0
θ|x
´
Σ−1r|xθθ|x

10Σ−1r|x1
+

+
10Σ−1r|x

³
θθ|x (Q) θ

0
θ|x + θ0θ|xθθ|x (Q)

0´Σ−1r|xθθ|x
10Σ−1r|x1

+

+

³
10Σ−1r|xθθ|x − b

´³
10 · Σ−1r|x

¡
Σθ|x (Q)− Σθ|x

¢
Σ−1r|x · 1

´
³
10Σ−1r|x1

´2 +

+

³
10Σ−1r|xθθ|x − b

´³
10 · Σ−1r|x

³
θθ|x (Q) θθ|x (Q)

0 − θθ|x (Q) θ
0
θ|x
´
Σ−1r|x · 1

´
³
10Σ−1r|x1

´2 +

+

³
10Σ−1r|xθθ|x − b

´³
10 · Σ−1r|x

³
θ0θ|xθ

0
θ|x − θ0θ|xθθ|x (Q)

0´Σ−1r|x · 1´³
10Σ−1r|x1

´2


= LI
¡
Q;λθ|x,Π

¢
,

where "
∂
£
Σ+Σθ|x (Πε)

¤−1
∂ε

#
ε=0

= − £Σ+Σθ|x¤−1 ·∂Σθ|x (Πε)
∂ε

¸
ε=0

£
Σ+Σθ|x

¤−1
= − £Σ+Σθ|x¤−1 LI ¡Q;Σθ|x,Π¢ £Σ+Σθ|x¤−1 .

Finally, LI (Q; q
B
,Π) can be written as:

LI (Q; qB ,Π) = −1
b

£
Σ+Σθ|x

¤−1
LI
¡
Q;Σθ|x,Π

¢ £
Σ+Σθ|x

¤−1 ¡
θθ|x − λθ|x · 1

¢
+

+
1

b

£
Σ+Σθ|x

¤−1
LI
¡
Q; θθ|x,Π

¢− 1
b

£
Σ+Σθ|x

¤−1
LI
¡
Q;λθ|x,Π

¢ · 1
=

1

b
Σ−1r|x ·

¡
LI
¡
Q; θθ|x,Π

¢− LI
¡
Q;λθ|x,Π

¢ · 1¢+
+Σ−1r|x · LI

¡
Q;Σθ|x,Π

¢ · qB .
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Appendix G

The local sensitivity measure of Bayesian weights q
B
to perturbation of sampling Fθ in the direction

of contaminating distribution G is given by:

LI (G; q
B
, Fθ) =

·
∂q

B
(Fθ,ε)

∂ε

¸
ε=0

=

"
∂qB(Fθ,ε)

∂vec(
£
Σ+Σθ|x (Fθ,ε)

¤−1
)0
· ∂vec(

£
Σ+Σθ|x (Fθ,ε)

¤−1
)

∂vec(Σ+ Σθ|x (Fθ,ε))0
·

·∂vec(Σ+Σθ|x (Fθ,ε))
∂ε

¸
ε=0

+

"
∂qB (Fθ,ε)

∂θθ|x (Fθ,ε)
0 ·

∂θθ|x (Fθ,ε)
∂ε

#
ε=0

+

+

·
∂qB (Fθ,ε)

∂λθ|x (Fθ,ε)
· ∂λθ|x (Fθ,ε)

∂ε

¸
ε=0

.

As in the previous Appendix, such derivative is computed using the properties of operator vec and

of Kronecker product ⊗. Most of the terms involved have already been obtained. For all remainig

quantities it is crucial to compute the derivative of the posterior distribution. If we assume a

contaminated sampling density of type fε (θ) = (1− ε) f (θ)+ εg (θ), we derive in Appendix A the

following result:

·
∂

∂ε

µ
π (θ) · LFε (x|θ)
m (x ;Π, Fθ,ε)

¶¸
ε=0

=
nX
j=1

mj (x ;Π, Fθ, G)

m (x ;Π, Fθ)
(pj (θ|x)− p (θ|x)) ,

where pj (θ|x) =
π (θ) · g (xj) ·Y

i6=j
fθ (xi)

 /mj (x ;Π, Fθ, G) is the posterior obtained when a sam-

pling distributionG is adopted only for observation j andmj (x ;Π, Fθ, G) =
R
g (xj)·

Y
i6=j

fθ (xi)π (θ) dθ

is the corresponding marginal likelihood.
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Indeed, we have

·
∂θθ|x (Fθ,ε)

∂ε

¸
ε=0

=

Z
θ

·
∂

∂ε

µ
π (θ) · LFε (x|θ)
m (x ;Π, Fθ,ε)

¶¸
ε=0

dθ

=
nX
j=1

mj (x ;Π, Fθ, G)

m (x ;Π, Fθ)

³
θ
(j)
θ|x (Fθ, G)− θθ|x

´
= LI

¡
G; θθ|x, Fθ

¢
.

Moreover

·
∂vec(Σ+Σθ|x (Fθ,ε))

∂ε

¸
ε=0

=

·
∂vec(Σθ|x (Fθ,ε))

∂ε

¸
ε=0

= vec

·
∂Σθ|x (Fθ,ε)

∂ε

¸
ε=0

,

where:

·
∂Σθ|x (Fθ,ε)

∂ε

¸
ε=0

=

·Z
θθ0

∂

∂ε

µ
π (θ) · LFε (x|θ)
m (x ;Π, Fθ,ε)

¶
dθ

¸
ε=0

−
·
∂θθ|x (Fθ,ε)

∂ε

¸
ε=0

θθ|x − θθ|x

·
∂θθ|x (Fθ,ε)

∂ε

¸
ε=0

=
nX
j=1

mj (x ;Π, Fθ, G)

m (x ;Π, Fθ)

h
Σ
(j)
θ|x (Fθ, G)− Σθ|x+

+θ
(j)
θ|x (Fθ, G) θ

(j)
θ|x (Fθ, G)

0 + θ0θ|xθ
0
θ|x +

−θ(j)θ|x (Fθ,G) θ0θ|x − θ0θ|xθ
(j)
θ|x (Fθ,G)

0i
= LI

¡
G;Σθ|x, Fθ

¢
.

The last term to be computed is:

∂λθ|x (Fθ,ε)
∂ε

=
∂

∂ε

Ã
10
£
Σ+Σθ|x (Fθ,ε)

¤−1
θθ|x (Fθ,ε)− b

10
£
Σ+Σθ|x (Fθ,ε)

¤−1
1

!
ε=0

=
−
³
10
£
Σ+Σθ|x

¤−1
LI
¡
G;Σθ|x, Fθ

¢ £
Σ+Σθ|x

¤−1
θθ|x

´
³
10
£
Σ+Σθ|x

¤−1
1
´ +

+

³
10Σ−1r|yLI

¡
G; θθ|x, Fθ

¢´³
10
£
Σ+Σθ|x

¤−1
1
´ +

³
10
£
Σ+Σθ|x

¤−1
θθ|x − b

´
³
10
£
Σ+Σθ|x

¤−1
1
´2 ·

·
³
10 · £Σ+Σθ|x¤−1 LI ¡G;Σθ|x, Fθ¢ £Σ+Σθ|x¤−1 · 1´
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=
nX
j=1

mj (x ;Π, Fθ,G)

m (x ;Π, Fθ)

10Σ−1r|x
³
θ
(j)
θ|x (Fθ, G)− θθ|x

´
10Σ−1r|x1

+

−
10Σ−1r|x

³
Σ
(j)
θ|x (Fθ, G)− Σθ|x

´
Σ−1r|xθθ|x

10Σ−1r|x1
+

−
10Σ−1r|x

³
θ
(j)
θ|x (Fθ, G) θ

(j)
θ|x (Fθ, G)

0
+ θ0θ|xθ

0
θ|x
´
Σ−1r|xθθ|x

10Σ−1r|x1
+

+
10Σ−1r|x

³
θ
(j)
θ|x (Fθ, G) θ

0
θ|x + θ0θ|xθ

(j)
θ|x (Fθ, G)

0´Σ−1r|xθθ|x
10Σ−1r|x1

+

+

³
10Σ−1r|xθθ|x − b

´³
10 · Σ−1r|x

³
Σ
(j)
θ|x (Fθ, G)− Σθ|x

´
Σ−1r|x · 1

´
³
10Σ−1r|x1

´2 +

+

³
10Σ−1r|xθθ|x − b

´³
10 · Σ−1r|x

³
θ
(j)
θ|x (Fθ, G) θ

(j)
θ|x (Fθ,G)

0´Σ−1r|x · 1´³
10Σ−1r|x1

´2 +

+

³
10Σ−1r|xθθ|x − b

´³
10 · Σ−1r|xθ0θ|xθ0θ|xΣ−1r|x · 1

´
³
10Σ−1r|x1

´2 +

+

³
10Σ−1r|xθθ|x − b

´³
10 · Σ−1r|xθ(j)θ|x (Fθ,G) θ0θ|xΣ−1r|x · 1

´
³
10Σ−1r|x1

´2 +

+

³
10Σ−1r|xθθ|x − b

´³
10 · Σ−1r|xθ0θ|xθ(j)θ|x (Fθ, G)Σ−1r|x · 1

´
³
10Σ−1r|x1

´2


= LI
¡
G;λθ|x, Fθ

¢
Finally, LI (G; qB , Fθ) can be written as:

LI (G; q
B , Fθ) = −1

b

£
Σ+Σθ|x

¤−1
LI
¡
G;Σθ|x, Fθ

¢ £
Σ+Σθ|x

¤−1 ¡
θθ|x − λθ|x · 1

¢
+

+
1

b

£
Σ+Σθ|x

¤−1 · LI ¡G; θθ|x, Fθ¢− 1
b

£
Σ+Σθ|x

¤−1
LI
¡
G;λθ|x, Fθ

¢ · 1
=

1

b
Σ−1r|x ·

¡
LI
¡
G; θθ|x, Fθ

¢− LI
¡
G;λθ|x, Fθ

¢ · 1¢+
+Σ−1r|x · LI

¡
G;Σθ|x, Fθ

¢ · qB .
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Appendix H

In this appendix we compute marginal likelihood m (x ;Π, Fθ) when the prior and the sampling

distribution are respectively N (θ0,Σ0) and N (θ,Σ). Under the same assumption for Π and Fθ,

we then derive marginal likelihood mj (x ;Π, Fθ, G) when contaminating distribution G is N (θ,Ω).

The marginal likelihood m (x ;Π, Fθ) is given by

m (x ;Π, Fθ) =

Z
(2π)−

kn
2 (2π)−

k
2 |Σ|−n

2 |Σ0|−
1
2 exp

(
−1
2

nX
i=1

(xi − θ)0Σ−1(xi − θ)

)
·

· exp
½
−1
2
(θ0 − θ)0Σ−10 (θ0 − θ)

¾
dθ

= (2π)−
kn
2 (2π)−

k
2 |Σ|−n

2 |Σ0|−
1
2 ·

·
Z
exp

(
−1
2

nX
i=1

(xi − x+ x− θ)0Σ−1(xi − x+ x− θ)

)
·

· exp
½
−1
2
(θ0 − θ)0Σ−10 (θ0 − θ)

¾
dθ

= (2π)−
kn
2 (2π)−

k
2 |Σ|−n

2 |Σ0|−
1
2 · exp

(
−1
2

nX
i=1

(xi − x)0Σ−1(xi − x)

)
·

·
Z
exp

½
−n
2
(θ − x)0Σ−1(θ − x)− 1

2
(θ − θ0)

0Σ−10 (θ − θ0)

¾
dθ

= (2π)−
kn
2 |Σ|−k

2 |Σ0|−
1
2
¯̄
Σθ|x

¯̄ 1
2 · exp©n · tr(Σ−1S)ª ·

· exp
½
−n
2
x0Σ−1x− 1

2
θ00Σ

−1
0 θ0 +

1

2
θ0θ|xΣ

−1
θ|xθθ|x

¾
·

·
Z
(2π)−

k
2

¯̄
Σθ|x

¯̄− 1
2 exp{−1

2
((θ − θθ|x)0Σ−1θ|x(θ − θθ|x)}dθ| {z }
=1

= (2π)−
kn
2 |Σ|− k

2 |Σ0|−
1
2
¯̄
Σθ|x

¯̄ 1
2 · exp©n · tr(Σ−1S)ª ·

· exp
½
−n
2
x0Σ−1x− 1

2
θ00Σ

−1
0 θ0 +

1

2
θ0θ|xΣ

−1
θ|xθθ|x

¾
,
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where

θθ|x = Σθ|x
£
Σ−10 θ0 + nΣ−1x

¤
,

Σθ|x =
£
Σ−10 + nΣ−1

¤−1
,

ans S is the sample covariance matrix.

With the same procedure we derive the marginal likelihood mj (x ;Π, Fθ, G) which is given by

mj (x ;Π, Fθ, G)mj (x ;Π, Fθ,G) =

Z
(2π)−

kn
2 (2π)−

k
2 |Σ|− (n−1)

2 |Ω|− 1
2 |Σ0|−

1
2 ·

· exp
−12X

i6=j
(xi − θ)0Σ−1(xi − θ)

 ·
· exp

½
−1
2
(xj − θ)0Ω−1(xj − θ)− 1

2
(θ0 − θ)0Σ−10 (θ0 − θ)

¾
dθ

= (2π)−
kn
2 |Σ|− (n−1)

2 |Ω|− 1
2 |Σ0|−

1
2

¯̄̄
Σ
(j)
θ|x (Fθ, G)

¯̄̄ 1
2 ·

· exp
½
−1
2
(n− 1) · tr(Σ−1S(−j))− 12x

0
jΩ
−1xj − 1

2
θ00Σ

−1
0 θ0

¾
·

· exp
½
−1
2
(n− 1)x0(−j)Σ−1x(−j)

¾
·

· exp
½
1

2
θ
(j)0
θ|x (Fθ, G)

h
Σ
(j)
θ|x (Fθ, G)

i−1
θ
(j)
θ|x (Fθ, G)

¾
,

where

θ
(j)
θ|x (Fθ, G) = Σ

(j)
θ|x (Fθ, G) ·

£
Σ−10 θ0 + (n− 1)Σ−1x(−j) +Ω−1xj

¤
,

Σ
(j)
θ|x (Fθ, G) =

£
Σ−10 + (n− 1)Σ−1 +Ω−1¤−1 ,

x(−j) =
1

n− 1
X
i6=j

xi,

and S(−j) is the sample covariance matrix computed dropping observation j from the sample.
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