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ABSTRACT

We develop a new framework for multivariate intertemporal portfolio choice that allows

us to derive optimal portfolio implications for economies in which the degree of correlation

across industries, countries, or asset classes is stochastic. Optimal portfolios include distinct

hedging components against both stochastic volatility and correlation risk. We find that the

hedging demand is typically larger than in univariate models, and it includes an economically

significant covariance hedging component, which tends to increase with the persistence of

variance-covariance shocks, the strength of leverage effects, the dimension of the investment

opportunity set, and the presence of portfolio constraints.

This paper develops a new multivariate modeling framework for intertemporal

portfolio choice under a stochastic variance-covariance matrix. We consider an incomplete

market economy, in which stochastic volatilities and stochastic correlations follow a multivari-

ate diffusion process. In this setting, volatilities and correlations are conditionally correlated

with returns, and optimal portfolio strategies include distinct hedging components against

volatility and correlation risk. We solve the optimal portfolio problem and provide simple

closed-form solutions that allow us to study the volatility and covariance hedging demands

in realistic asset allocation settings. We document the importance of modeling the multi-

variate nature of second moments, especially in the context of optimal asset allocation, and

find that the optimal hedging demand can be significantly different from the one implied by

more common models with constant correlations or single-factor stochastic volatility.
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An important thread within the asset pricing literature has documented the character-

istics of the time-variation in the covariance matrix of asset returns.1 The importance of

solving portfolio choice models taking into account the time-variation in volatilities and cor-

relations is highlighted by Ball and Torous (2000), who study empirically the comovement of

a number of international stock markets. They find that the estimated correlation structure

changes over time depending on economic policies, the level of capital market integration,

and relative business cycle conditions. They conclude that ignoring the stochastic component

of the correlation can easily imply erroneous portfolio choice and risk management decisions.

A revealing example of the importance of modeling time-varying correlations is offered

by the comovement of financial markets during the recent 2007 to 2008 financial markets

crisis. During the period between April 2005 and April 2008, the sample average correla-

tion of S&P500 and Nikkei (FTSE) weekly stock market returns has been less than 0.20.

However, its time-variation has been large: since summer 2007 international equity correla-

tions increased dramatically, with correlations between the S&P500 and the FTSE reaching

a value close to 0.80 for the quarter ending in April 2008 (see Panel 1 of Figure 1).

Insert Figure 1 about here.

Another feature highlighted by the data is that correlation processes seem far from being

independent: as the correlation with the FTSE has increased, the correlation with the Nikkei

has also increased, reaching its highest value of 0.60 in the same month. A last important

feature, highlighted in Panel 2 of Figure 1, is the correlation leverage effect: correlations of

stock returns tend to be higher in phases of market downturn. While some of these empirical

facts have been documented in the literature (see, e.g., Harvey and Siddique (2000), Roll

(1988), and Ang and Chen (2002)), little is known about (a) the solution of the optimal port-

folio choice problem when correlations are stochastic and (b) the extent to which stochastic

correlations affect the characteristics of optimal portfolios in realistic economic settings.

An extensive literature has explored the implications of stochastic volatility for intertem-

poral portfolio choice. However, the implications of stochastic correlations in a multivariate

setting are still not well known. In part, this is due to the difficulty in formulating a flexible

and tractable model satisfying the tight nonlinear constraints implied by a well defined corre-

1Longin and Solnik (1995) reject the null hypothesis of constant international stock market correlations
and find that they increase in periods of high volatility. Ledoit, Santa-Clara, and Wolf (2003) show that
the level of correlation depends on the phase of the business cycle. Erb, Harvey, and Viskanta (1994) find
that international markets tend to be more correlated when countries are simultaneously in a recessionary
state. Moskowitz (2003) documents that covariances across portfolio returns are highly correlated with
NBER recessions and that average correlations are highly time-varying. Ang and Chen (2002) show that
the correlation between U.S. stocks and the aggregate U.S. market is much higher during extreme downside
movements than during upside movements. Barndorff-Nielsen and Shephard (2004) find similar results.
Bekaert and Harvey (1995, 2000) provide direct evidence that market integration and financial liberalization
change the correlation of emerging markets’ stock returns with the global stock market index.
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lation process. We use our model to address a number of questions on the role of correlation

hedging for intertemporal portfolio choice.

First, what is the economic importance of stochastic variancecovariance risk for intertem-

poral portfolio choice ? We estimate the model using a data set of international stock and

U.S. bond returns and find that – even for a moderate number of assets – the hedging de-

mand can be about four to five times larger than in univariate stochastic volatility models.

This has two reasons. First, covariance hedging can count for a substantial part of the total

hedging demand. Its importance tends to increase with the strength of leverage effects and

the dimension of the investment opportunity set. Second, our findings show not only that the

joint features of volatility and correlation dynamics are better described by a multivariate

model with nonlinear dependence and leverage, but also that they play an important role in

the implied optimal portfolios. For instance, in a univariate stochastic volatility model we

find that the estimated total hedging demand for S&P500 futures of investors with a relative

risk aversion of eight and an investment horizon of 10 years is only about 4.8% of the myopic

portfolio. This finding is consistent with the results in Chacko and Viceira (2005). However,

in a multivariate (three risky assets) model, the total hedging demand for S&P500 futures

is 28% and the covariance hedging demand is 16.9% of the myopic portfolio.

Second, how do both optimal investment in risky assets and covariance hedging demand

vary with respect to the investment horizon ? This question is for optimal life-cycle decisions

as well as for pension fund managers. We find that the absolute correlation hedging demand

increases with the investment horizon. If the correlation hedging demand is positive (neg-

ative), this feature implies an optimal investment in risky assets that increases (decreases)

in the investment horizon. For instance, in a multivariate model with three risky assets, the

estimated total hedging (covariance hedging) demand for S&P500 futures of investors with

a relative risk aversion of eight is only about 6.3% (4.5%) of the myopic portfolio at horizons

of three months. For horizons of 10 years the total hedging demand increases to 28%.

Third, what is the link between the persistence of correlation shocks and the demand for

correlation hedging ? The persistence of correlation shocks varies across markets. In highly

liquid markets like the Treasury and foreign exchange markets, which are less affected by

private information issues, correlation shocks are less persistent. In other markets, frictions

such as asymmetric information and differences in beliefs about future cash flows make price

deviations from the equilibrium more difficult to be arbitraged away. Examples include both

developed and emerging equity markets. Consistent with this intuition, we find that the

optimal hedging demand against covariance risk increases with the degree of persistence of

correlation shocks.

Fourth, what is the impact of discrete trading and portfolio constraints on correlation

hedging demands ? In the absence of derivative instruments to complete the market, we
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find that the covariance hedging demand in continuous-time and discrete-time settings are

comparable. Simple short-selling constraints tend to reduce the covariance hedging demand

of risk-tolerant investors, typically by a moderate amount, but Value-at-Risk (VaR) con-

straints can even reinforce the covariance hedging motive. For instance, in the unconstrained

discrete-time model with two risky assets the estimated total hedging (covariance hedging)

demand for S&P500 futures of investors with relative risk aversion of two is about 12.5%

(4.6%) of the myopic portfolio at horizons of two years. In the VaR-constrained setting, the

total hedging (covariance hedging) demand increases to 16.7% (8.1%).

This paper draws upon a large literature on optimal portfolio choice under a stochastic

investment opportunity set. One set of papers studies optimal portfolio and consumption

problems with a single risky asset and a riskless deposit account.2 Portfolio selection prob-

lems with multiple risky assets have been considered in a further series of papers, but the

majority of these are based on the assumption that volatility and correlation are constant.

Examples include Brennan and Xia (2002), who study optimal asset allocation under in-

flation risk, and Sangvinatsos and Wachter (2005), who investigate the portfolio problem

of a long-run investor with both nominal bonds and a stock. A notable exception to the

constant volatility assumption is Liu (2007), who shows that the portfolio problem can be

characterized by a sequence of differential equations in a model with quadratic returns.

However, to solve in closed form a concrete model with a riskless asset, a risky bond, and

a stock, he assumes independence between the state variable driving interest rate risk and

the additional risk factor influencing the volatility of the stock return. Under these assump-

tions, correlations are restricted to being functions of stock and bond return volatilities.

Therefore, optimal hedging portfolios do not allow volatility and correlation risk to have

separate roles. We investigate an economy with multivariate risk factors, where correlations

are nonredundant sources of risk and several risky assets can be conveniently considered.

We follow a new approach in modeling stochastic variance-covariance risk and directly

specify the covariance matrix process as a Wishart diffusion process.3 This process can

2Kim and Omberg (1996) solve the portfolio problem of an investor optimizing utility of terminal wealth,
where the riskless rate is constant and the risky asset has a mean reverting Sharpe ratio and constant
volatility. Wachter (2002) extends this setting to allow for intermediate consumption and derives closed-
form solutions in a complete markets setting. Chacko and Viceira (2005) relax the assumption on both
preferences and volatility. They consider an infinite horizon economy with Epstein-Zin preferences, in which
the volatility of the risky asset follows a mean reverting square-root process. Liu, Longstaff, and Pan (2003)
model events affecting market prices and volatility, using the double-jump framework in Duffie, Pan, and
Singleton (2000). They show that the optimal policy is similar to that of an investor facing short selling and
borrowing constraints, even if none are imposed. Although their approach allows for a rather general model
with stochastic volatility, they focus on an economy with a single risky asset.

3See Bru (1991). The convenient properties of Wishart processes for modeling multivariate stochastic
volatility in finance are exploited first by Gouriéroux and Sufana (2004); Gouriéroux, Jasiak, and Sufana
(2009) provide a thorough analysis of the properties of Wishart processes, both in discrete and continuous
time.
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reproduce several of the empirical features of returns covariance matrices highlighted above.

At the same time, it is sufficiently tractable to grant closed-form solutions to the optimal

portfolio problem, which we can easily interpret economically. The Wishart process is a

single-regime mean-reverting matrix diffusion, in which the strength of the mean reversion

can generate different degrees of persistence in volatilities, correlations, and co-volatilities. A

completely different approach to modelling co-movement in portfolio choice relies on either

a Markov switching regime in correlations or the introduction of a sequence of unpredictable

joint Poisson shocks in asset returns. Ang and Bekaert (2002) consider a dynamic portfolio

model with two i.i.d. switching regimes, one of which is characterized by higher correlations

and volatilities. Das and Uppal (2004) study systemic risk, modeled as an unpredictable

common Poisson shock, in a setting with a constant opportunity set and in the context of

international equity diversification.

The article proceeds as follows: Section I describes the model, the properties of the

implied correlation process, and the solution to the portfolio problem. In Section II we

estimate the model in a real data example and quantify the portfolio impact of correlation

risk. Section III discusses extensions that study the impact of discrete rebalancing and

investment constraints on correlation hedging. Section IV concludes. Proofs are in the

Appendix, while an Internet Appendix reports additional results.4

I. The Model

An investor with Constant Relative Risk Aversion (CRRA) utility over terminal wealth

trades three assets, a riskless asset with instantaneous riskless return r and two risky assets,

in a continuous-time frictionless economy on a finite time horizon [0, T ].5 The dynamics of

the price vector S = (S1, S2)
′ are described by the bivariate stochastic differential equation:

dS(t) = IS
[
(r1̄2 + Λ(Σ, t))dt+ Σ1/2(t) dW (t)

]
, IS = Diag[S1, S2], (1)

where r ∈ R+, 1̄2 = (1, 1)′, Λ(Σ, t) is a vector of possibly state-dependent risk premia, W

is a standard two-dimensional Brownian motion, and Σ1/2 is the positive square root of the

conditional covariance matrix Σ. The investment opportunity set is stochastic because of the

time-varying market price of risk Σ−1/2(t)Λ(Σ, t). The constant interest rate assumption can

4An Internet Appendix for this article is online in the “Supplements and Datasets” section at
http://www.afajof.org/supplements.asp. It is organized in four sub-appendices, labeled with capital let-
ters from A to D. In the text, we refer to these sub-appendices as ‘Internet Appendix x’, where x is the
letter that identifes the sub-appendix.

5Our analysis extends to opportunity sets consisting of any number of risky assets and correlations,
without affecting the existence of closed-form solutions and their general structure. We consider a two-
dimensional setting to keep our notation simple and focus on the key economic intuition and implications of
the solution.
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easily be relaxed. Such an extension is investigated in Internet Appendix B. The diffusion

process for Σ is detailed below. Let π(t) = (π1(t), π2(t))
′ denote the vector of shares of

wealth X(t) invested in the first and the second risky asset, respectively. The agent’s wealth

evolves according to

dX(t) = X(t) [r + π(t)′Λ(Σ, t)] dt+X(t)π(t)′Σ1/2(t)dW (t). (2)

The agent selects the portfolio process π that maximizes CRRA utility of terminal wealth,

with RRA coefficient γ. If X0 = X(0) denotes the initial wealth and Σ0 = Σ(0) the initial

covariance matrix, the investor’s optimization problem is

J(X0,Σ0) = sup
π

E

[
X(T )1−γ − 1

1 − γ

]
, (3)

subject to the dynamic budget constraint (2).

A. The Stochastic Variance Covariance Process

To model stochastic covariance matrices, we use the continuous-time Wishart diffusion

process introduced by Bru (1991). This process is a matrix-valued extension of the univariate

square-root process that gained popularity in the term structure and stochastic volatility

literature; see, for instance, Cox, Ingersoll, and Ross (1985) and Heston (1993). Let B(t) be

a 2 × 2 standard Brownian motion. The diffusion process for Σ is defined as

dΣ(t) = [ΩΩ′ +MΣ(t) + Σ(t)M ′] dt+ Σ1/2(t)dB(t)Q+Q′dB(t)′Σ1/2(t), (4)

where Ω, M , and Q are 2×2 square matrices (with Ω invertible). Matrix M drives the mean

reversion of Σ and is assumed to be negative semidefinite to ensure stationarity. Matrix Q

determines the co-volatility features of the stochastic variance-covariance matrix of returns.

Process (4) satisfies several properties that make it ideal to model stochastic correlation in

finance. First, if ΩΩ′ >> Q′Q, then Σ is a well-defined covariance matrix process. Second, if

ΩΩ′ = kQ′Q for some k > n−1, then Σ(t) follows a Wishart distribution. Third, the process

(4) is affine in the sense of Duffie and Kan (1996) and Duffie, Filipovic, and Schachermayer

(2003). This feature implies closed-form expressions for all conditional Laplace transforms.

Fourth, if d lnSt is a vector of returns with a Wishart covariance matrix Σ(t), then the

variance of the return of a portfolio π is a Wishart process. Fifth, processes (1) and (4) can

feature some important empirical regularities of financial asset returns documented in the

literature, such as leverage and co-leverage.

To model leverage effects, we assume a nonzero correlation between innovations in stock

6



returns and innovations in the variance-covariance process. Specifically, we define the stan-

dard Brownian motion W (t) in the return dynamics as

W (t) =
√

1 − ρ′ρZ(t) +B(t)ρ, (5)

where Z is a two-dimensional standard Brownian motion independent of B and ρ = (ρ1,ρ2)
′

is a vector of correlation parameters ρi ∈ [−1, 1] such that ρ′ρ ≤ 1. Parameters ρ1 and ρ2

parameterize leverage effects in volatilities and correlations of the multivariate return process

(1). Since n risky assets are available for investment and the covariance matrix depends on

n(n+ 1)/2 independent Brownian shocks, the market is incomplete when n ≥ 2.

B. Specification of the Risk Premium

The investment opportunity set can be stochastic due to changes in expected returns or

changes in conditional variances and covariances. It is well known that to obtain closed-form

solutions one needs to impose restrictions on the functional form of the squared Sharpe ratio.

Affine squared Sharpe ratios imply affine solutions if the underlying state process is affine.

Thus, we consider risk premium specifications Λ(Σ, t) that imply an affine dependence of

squared Sharpe ratios on the state process.

We consider a setting with a constant market price of variance-covariance risk, Λ(Σ, t) =

Σ(t)λ for λ = (λ1, λ2)
′ ∈ R

2. This assumption implies squared Sharpe ratios that increase

with volatilitiy, but that can increase or decrease in the correlation depending on the sign

of the prices of risk.6 We solve the dynamic portfolio problem implied by this specification

in Section I.D.2. In Internet Appendix B, we solve the portfolio problem also under the as-

sumption of a constant risk premium, Λ(Σ, t) = µe, µe = (µe
1, µ

e
2)

′ ∈ R
2, and an affine matrix

diffusion (4) for the precision process Σ−1. In this setting, the investment opportunity set is

stochastic exclusively due to the stochastic covariance matrix.7 However, the disadvantage

is that state variables are defined by means of Σ−1, which makes the interpretation of model

parameters (e.g., in terms of volatility and correlation leverage effects) less straightforward.

C. Correlation Process and Leverage

An application of Itô’s Lemma gives us the correlation dynamics implied by the Wishart

diffusion (4).

PROPOSITION 1: Let ρ be the correlation diffusion process implied by the covariance matrix

6The assumption of a constant market price of variance-covariance risk implies a positive risk-return
tradeoff and embeds naturally the univariate model studied, among others, in Heston (1993) and Liu (2001).

7Buraschi, Trojani, and Vedolin (2009) investigate a general equilibrium orchard economy in which both
volatility and correlations are priced in equilibrium and are affected by time-varying economic uncertainty.
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dynamics (4). The instantaneous drift and conditional variance of dρ(t) are given by

Et[dρ(t)] =
[
E1(t)ρ(t)

2 + E2(t)ρ(t) + E3(t)
]
dt, (6)

Et[dρ(t)
2] =

[
(1 − ρ2(t)) (E4(t) + E5(t)ρ(t))

]
dt, (7)

where the coefficients E1, E2, E3, E4, and E5 depend exclusively on Σ11, Σ22, and the model

parameters Ω, M , and Q. The explicit expression for the coefficients E1, . . . , En in the

correlation dynamics is derived in the Appendix.

The correlation dynamics are not affine, because the correlation is a nonlinear function

of variances and covariances. The nonlinear drift and volatility functions imply nonlinear

mean reversion and persistence properties, depending on the model parameters. Moreover,

the drift and volatility coefficients are functions of the volatility of asset returns, showing

the intrinsic multivariate nature of the correlation in our model. This property is a clear

distinction from approaches that model correlations with a scalar diffusion (see, for instance,

Driessen, Maenhout, and Vilkov (2007)).

Black’s volatility “leverage” effect, that is, the negative dependence between returns

and volatility, is an empirical feature of stock returns, which has important implications

for optimal portfolio choice. Roll’s (1988) correlation “leverage” effect, that is, the negative

dependence between returns and average correlation shocks, is also a well-established stylized

fact; see, for example, Ang and Chen (2002). In our model, these effects depend on parameter

ρ and the matrix Q. To see this explicitly, one can use the properties of the Wishart process

to obtain

corrt

(
dS1

S1

, dΣ11

)
=
q11ρ1 + q21ρ2√

q2
11 + q2

21

, corrt

(
dS1

S1

, dρ

)
=

(q11ρ1 + q21ρ2)(1 − ρ2(t))√
(Et[dρ2]/dt)Σ22(t)

, (8)

where for any i, j = 1, 2, parameters qij denote the ijth element of matrix Q and the expres-

sion for Et[dρ
2] is given in equation (7). The expressions for the second asset are symmetric,

with q12 replacing q11 and q22 replacing q21, both in the first and the second equality. The

element Σ11 replaces Σ22 in the second equality. From these formulas, the parameter vector

Q′ρ controls the dependence between returns, volatility, and correlation shocks: volatility

and correlation leverage effects arise for all assets if both components of Q′ρ are negative.

D. The Solution of the Investment Problem

The first challenge in solving investment problem (3) subject to the covariance matrix

dynamics (4) is that markets are incomplete. If we consider a market with only primary

risky securities, then there is no (nondegenerate) specification of the model that allows the
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number of available risky assets to match the dimensionality of the Brownian motions.8

D.1. Incomplete Market Solution Approach

To solve the portfolio problem, we follow He and Pearson (1991) and solve the following

static problem:

J(X0,Σ0) = inf
ν

sup
π

E

[
X(T )1−γ − 1

1 − γ

]
, (9)

s.t. E [ξν(T )X(T )] ≤ x, (10)

where ν indexes the set of all equivalent martingale measures and ξν is in the set of associated

state price densities. The optimality condition for the optimization over π in problem (9) is

X(T ) = (ψξν(T ))−1/γ , where ψ is the multiplier of the constraint (10), so that we can focus

without loss of generality on the solution of the problem:9

Ĵ(0,Σ0) = inf
ν

E
[
ξν(T )(γ−1)/γ

]
. (11)

To obtain the value function of this problem in closed form, we take advantage of the fact

that the Wishart process (4) is an affine stochastic process.

D.2. Exponentially Affine Value Function and Optimal Portfolios

The solution of the dynamic portfolio problem is exponentially affine in Σ, with coeffi-

cients obtained as solutions of a system of matrix Riccati differential equations.

PROPOSITION 2: Given the covariance matrix dynamics in (4), the value function of prob-

lem (3) takes the form

J(X0,Σ0) =
X1−γ

0 Ĵ(0,Σ0)
γ − 1

1 − γ
,

8In order to hedge volatility and correlation risk, one may consider derivatives with a pay-off that depends
on the variances of a portfolio of the primary assets, for instance variance swaps or options on a “market”
index; see for example Leippold, Egloff, and Wu (2007) for a univariate dynamic portfolio choice problem with
variance swaps. If these derivatives completely span the state space generated by variances and covariances,
then they can be used to complete the market and solve in closed form the optimal portfolio choice problem.
The extent to which volatility and correlation hedging demands in the basic securities will arise depends
on the ability of these additional derivatives to span the variance-covariance state space. Since variance
swaps are available only in some specific markets, in many cases variance-covariance risk is not likely to be
completely hedgeable, which makes the incomplete market case of primary interest.

9Results in Schroder and Skiadas (2003) imply that if the original optimization problem has a solution,
the value function of the static problem coincides with the value function of the original problem. Cvitanic
and Karatzas (1992) show that the solution to the original problem exists under additional restrictions on
the utility function, most importantly that the relative risk aversion does not exceed one. Cuoco (1997)
proves a more general existence result, imposing minimal restrictions on the utility function.
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where the function Ĵ(t,Σ) is given by

Ĵ(t,Σ) = exp (B(t, T ) + tr (A(t, T ) Σ)) , (12)

with B(t, T ) and the symmetric matrix-valued function A(t, T ) solving the system of matrix

Riccati differential equations

0 =
dB

dt
+ tr[AΩΩ′] − γ − 1

γ
r, (13)

0 =
dA

dt
+ Γ′A+ AΓ + 2AΛA+ C, (14)

under the terminal conditions B(T, T ) = 0 and A(T, T ) = 0. Constant matrices Γ, Λ, and

C, as well as the closed-form solution of the system of matrix Riccati differential equations

(13) to (14), are reported in the Appendix.

Remark. In the term structure literature, it is well known that modeling correlated stochas-

tic factors is not straightforward. Duffie and Kan (1996) show that for a well-defined affine

process to exist, parametric restrictions on the drift matrix of the factor dynamics have

to be satisfied. These features restrict the correlation structures that many affine models

can fit (see, for example, Duffee, 2002). In the Dai and Singleton (2000) classification for

affine Am(n) models, restrictions need to be imposed for the model to be solved in closed

form. This issue is well acknowledged also in the portfolio choice literature. For instance,

Liu (2007) addresses it by assuming a triangular factor structure in an affine portfolio prob-

lem with two risky assets. Using the Wishart specification (4), we obtain a simple affine

solution for problem (3), which does not imply excessive restrictions on the dependence of

variance-covariance factors.10
�

An advantage of the exponentially affine solution Ĵ in Proposition 2 is that it allows

for a simple description of the partial derivatives of the marginal indirect utility of wealth

with respect to the variance-covariance factors. This property implies a simple and easily

interpretable solution to the multivariate portfolio choice problem.

PROPOSITION 3: Let π be the optimal portfolio obtained under the assumptions of Propo-

sition 2. It then follows that

π =
λ

γ
+ 2

[
(q11ρ1 + q21ρ2)A11 + (q12ρ1 + q22ρ2)A12

(q12ρ1 + q22ρ2)A22 + (q11ρ1 + q21ρ2)A12

]
, (15)

10The Wishart state space is useful also more generally, for example, for term structure modeling. Buraschi,
Cieslak, and Trojani (2007) develop a completely affine model with a Wishart state space to explain several
empirical regularities of the term structure at the same time.
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where Aij denotes the ijth component of the matrix A, which characterizes the function

Ĵ(t,Σ) in Proposition 2, and the coefficients qij are the entries of the matrix Q appearing in

the Wishart dynamics (4).

The portfolio policy π = (π1, π2)
′ is the sum of a myopic demand and a hedging demand. The

interpretation is simple and can easily be linked to Merton’s (1969) solution. The myopic

portfolio is the optimal portfolio that would prevail in an economy with a constant opportu-

nity set, that is, a constant covariance matrix. When the opportunity set is stochastic, the

optimal portfolio also consists of an intertemporal hedging demand. This portfolio compo-

nent reduces the impact of shocks to the indirect utility of wealth. The size of intertemporal

hedging depends on two components: (a) the extent to which investors’ marginal utility of

wealth is indeed affected by shocks in the state variables, and (b) the extent to which these

state variables are correlated with returns. Using Merton’s notation, the optimal hedging

demand, denoted πh, can be written as

πh = −
∑

i,j

JXΣij

XJXX

Σ−1Covt(I
−1
S dS, dΣij)

dt
. (16)

The term − JXΣij

XJXX
= − JX

XJXX

JXΣij

JX
= Aij is a risk tolerance weighted sensitivity of the log of

the indirect marginal utility of wealth with respect to the state variable Σij. The regression

coefficient Σ−1Covt(I
−1
S dS, dΣij) captures the ability of asset returns to hedge unexpected

changes in this state variable. The hedging portfolio is zero if and only if either JXΣij
= 0

for all i and j (e.g., log utility investors) or Σ−1Covt(I
−1
S dS, dΣij) = 0. Using the properties

of the Wishart process, the hedging portfolio then follows, in explicit form:

πh = Σ−1
Covt(I

−1
S dS,

∑
i,j AijdΣij)

dt
= 2

(
A11 A12

A12 A22

)(
q11ρ1 + q21ρ2

q12ρ1 + q22ρ2

)
. (17)

This is the second term in the sum on the right-hand side of formula (15). Hedging demands

are generated by the willingness to hedge unexpected changes in the portfolio total utility

due to shocks in the state variables Σij. Hedging demands proportional to Aij are demands

against unexpected changes in Σij. It follows that hedging portfolios proportional to A11

and A22 are volatility hedging portfolios, and hedging portfolios proportional to A12 are

covariance hedging portfolios. The role of parameters Q and ρ in the hedging portfolio is

clarified by writing equation (17) in the equivalent form:

πh = 2A11

(
q11ρ1 + q21ρ2

0

)
+ 2A22

(
0

q12ρ1 + q22ρ2

)
+ 2A12

(
q12ρ1 + q22ρ2

q11ρ1 + q21ρ2

)
. (18)

11



The parameters Q and ρ determine the ability of asset returns to span shocks in risk factors,

because they determine the regression coefficients Σ−1Covt(I
−1
S dS, dΣij) in equation (16):

Σ−1Covt(I
−1
S dS, dΣ11)

dt
= 2

(
q11ρ1 + q21ρ2

0

)
, (19)

Σ−1Covt(I
−1
S dS, dΣ22)

dt
= 2

(
0

q12ρ1 + q22ρ2

)
, (20)

Σ−1Covt(I
−1
S dS, dΣ12)

dt
= 2

(
q12ρ1 + q22ρ2

q11ρ1 + q21ρ2

)
. (21)

By comparing (19) to (21) with (8), the sign of each component of Σ−1Covt(I
−1
S dS, dΣij)

equals the sign of the co-movement between returns, variances, and correlations. It follows

that the first and second columns of Q impact the volatility and covariance hedging demand

for the first and second assets, respectively, via the coefficient vectors (q11, q21)
′ and (q12, q22)

′.

In contrast, parameter ρ directly impacts all hedging portfolios. Risky assets are better

at spanning the risk of variance-covariance shocks when q11ρ1 + q21ρ2 and q12ρ1 + q22ρ2

are large in absolute value. Moreover, asset i is a better hedging instrument against its

stochastic volatility Σii, and less so against shocks in the covariance Σij, when the coefficient

q1iρ1 + q2iρ2 is the largest one. Despite the simple hedging portfolio (15), a variety of

other hedging implications can arise. For instance, when q11ρ1 + q21ρ2 and q12ρ1 + q22ρ2

are both negative, volatility and correlation leverage effects arise for all returns. However, if

parameters q11ρ1+q21ρ2 and q12ρ1+q22ρ2 have mixed signs some returns will feature leverage

effects, but others will not.

D.3. Sensitivity of the Marginal Utility of Wealth to the State Variables

The second determinant of the hedging demand is the sensitivity of the marginal utility

of wealth to the state variables Σij. This effect is summarized by the components Aij.

Therefore, it is useful to gain intuition on the dependence of Aij on the structural model

parameters. For brevity, we focus on investors with risk aversion above one and a vector λ

such that λ1λ2 ≥ 0. This setting includes the choice of parameters implied by the model

estimation results in Section II.

PROPOSITION 4: Consider an investor with risk aversion parameter γ > 1. (i) The fol-

lowing inequalities, describing the properties of the sensitivity of the indirect marginal util-

ity of wealth with respect to changes in the state variables Σij, hold true: A11, A22 ≤ 0

and |A12| ≤ |A11 + A22|/2. (ii) If it is additionally assumed that either λ1 ≥ λ2 ≥ 0 or

λ1 ≤ λ2 ≤ 0, then A12 ≤ 0 and |A22| ≤ |A12| ≤ |A11|.
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This result describes the link between the indirect marginal utility of wealth and the

state variables Σij: Aij = − JXΣij

XJXX
. This sensitivity is increasing with the sensitivity of the

stochastic opportunity set, that is, the squared Sharpe ratio, to unexpected changes in Σij.

The squared Sharpe ratio is given by λ2
1Σ11+λ2

2Σ22+2λ1λ2Σ12. Its sensitivity to the variance

risk factor Σ11 is highest when |λ1| ≥ |λ2|, and vice versa. The sensitivity to the covariance

risk factor is bounded by the absolute average sensitivity to the variance factors, because

squared Sharpe ratios depend on Σ12 via a loading that is twice the product of λ1 and λ2.

To understand the sign of Aij, recall that investors with risk aversion above one have a

negative utility function bounded from above. Wealth homogeneity of the solution implies

JX(t) = X(t)γ−1Ĵ(t,Σ(t))1−γ, so that JΣij
and JXΣij

have the same sign. An increase in the

variance Σii of one risky asset increases the squared Sharpe ratio of the optimal portfolio,

but at the same time it increases the squared Sharpe ratio variance.11 Investors with risk

aversion above one dislike this effect, because ex-ante they profit less from higher future

Sharpe ratios than they suffer from higher future Sharpe ratio variances. These features

imply the negative sign of Aii. The sign of JΣ12 depends on how squared Sharpe ratios

depend on Σ12. If λ1λ2 ≥ 0, Σ12 affects the squared Sharpe ratios positively, which implies

A12 ≤ 0.

II. Hedging Stochastic Variance-Covariance Risk

We quantify volatility and covariance hedging for a realistic stock-bond portfolio problem

in which a portfolio manager allocates wealth between the S&P500 Index futures contract,

traded at the Chicago Mercantile Exchange, the Treasury bond futures contract, traded at

the Chicago Board of Trade, and a riskless asset.

A. Data and Estimation Results

The model is estimated by GMM (Generalized Method of Moments) using the conditional

moment conditions of the process, derived in closed form.12 The methodology is easily

implemented and provides asymptotic tests for overidentifying restrictions. As a first step,

we use the methodology proposed by Andersen et al. (2003) to obtain model-free realized

volatilities and covariances from daily quadratic variations and covariations of log prices.13

The high-frequency data set we use is from “Price-Data” and “Tick-Data” and it includes

11This variance equals 4λ′Σλλ′Q′Qλ, using the properties of Wishart processes.
12See Internet Appendix A. A closed form expression for the moments of the Wishart process can be found,

for instance, in the Appendix of Buraschi, Cieslak, and Trojani (2007).
13Bandorff-Nielsen and Shephard (2002) apply quasi-likelihood methods to time series of realized volatili-

ties, and they estimate the parameters of continuous-time stochastic volatility models. Bollerslev and Zhou
(2002) apply GMM to high frequency foreign exchange and equity index returns to estimate stochastic volatil-
ity models. Monte Carlo simulations indicate that the estimation procedure is accurate and the statistical
inference reliable.
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tick-by-tick futures returns for the S&P500 index and the 30-year Treasury bond, from

January 1990 to October 2003.14

We use both weekly and monthly returns, realized volatilities, and covariances, to inves-

tigate the impact of different exact discretizations of the model on the estimated parameters.

Let θ := (vec(M)′, vec(Q)′, λ′, ρ′)′. A GMM estimator of θ is given by

θ̂ = arg min
θ

(µ(θ) − µT )′ V (θ) (µ(θ) − µT ) , (22)

where µT is the vector of empirical moments implied by the historical returns and their

realized variance-covariance matrices, and µ(θ) is the theoretical vector of moments in the

model. The term V (θ) is the GMM optimal weighting matrix in the sense of Hansen (1982),

estimated using a Newey-West estimator with 12 lags. We estimate θ using moment condi-

tions that provide information about returns, their realized volatilities and correlations, and

the leverage effects. The term µT consists of the following moment restrictions: uncondi-

tional risk premia of log-returns, unconditional first and second moments of variances and

covariances of log-returns, and unconditional covariances between returns and each element

of the variance-covariance matrix of returns. This leaves us with 17 moment restrictions for

a 13-dimensional parameter vector, so that we have four overidentifying restrictions.

A.1. Basic Estimation Results

Table I presents results of our GMM model estimation.

Insert Table I about here

Hansen’s test of overidentifying restrictions does not reject the model specification at the

weekly and monthly frequency.15 The parameter estimates support the multivariate specifi-

cation of the correlation process. The null hypothesis that the volatility of volatility matrix

Q is identically zero is rejected at the 5% significance level, which supports the hypothesis

of a stochastic correlation process. Parameter estimates for the components of M are also

almost all significant, supporting a multivariate mean reversion and persistence in variances

and covariances. The estimated eigenvalues of matrix M imply clear-cut evidence for two

14See the web pages www.grainmarketresearch.com and www.tickdata.com for details. When we estimate
the model with three risky assets, in Internet Appendix D, we also use returns for the Nikkei225 Index
futures contract.

15We also estimate the model using daily returns, realized volatilities, and covariances. Results are reported
in Internet Appendix D. In this case, the Hansen’s statistic rejected the model. We find that jumps in
returns and realized conditional second moments are mainly responsible for this rejection, suggesting the
misspecification of a pure multivariate diffusion in this context. The extension of our setting to a matrix-
valued affine jump diffusion would be an interesting topic for future research.
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very different mean reversion frequencies, a high one and a low one, underlying the returns

covariance matrix.16 All estimated eigenvalues are negative, which supports the stationarity

of the variance-covariance process. The larger eigenvalues estimated with monthly returns

imply a larger persistence of variance-covariance shocks at monthly frequencies. The esti-

mated components of vector ρ are all negative and significant. Together with the positive

point estimates for the coefficients ofQ, this feature implies volatility and correlation leverage

features for all risky assets. The point estimates for Q highlight a large estimated parameter

q11. Thus, the first leverage parameter q11ρ1 + q21ρ2 is about twice the size of the leverage

parameter q12ρ1 + q22ρ2. This implies that S&P500 returns are better vehicles to hedge their

volatility risk than 30-year Treasury returns. At the same time, 30-year Treasury returns

are better hedging instruments for hedging the covariance risk.

A.2. Estimated Correlation Process

Using the model parameter estimates, we can study the nonlinear dynamic properties of

the implied correlation process. A convenient measure of the mean reversion properties of a

nonlinear diffusion is given by its pull function - see Conley et al. (1997). The pull function

℘(x) of a process X is the conditional probability that Xt reaches the value x + ǫ before

x− ǫ, if initialized at X0 = x. To first order in ǫ, this probability is given by

℘(x) =
1

2
+

µX(x)

2σ2
X(x)

ǫ+ o(ǫ), (23)

where µX and σX are the drift and the volatility function of X. Figure 2 presents non-

parametric estimates of the pull function for the correlation and volatility processes of the

S&P500 futures and 30-year Treasury futures returns, shifted by the factor 1/2 in equation

(23).

Insert Figure 2 about here

Each panel in the left column plots the estimated pull functions for volatilities and corre-

lations for weekly and monthly data. The panels in the middle (right) column plot pull

functions estimated from a long time series of observations simulated from our model. These

pull functions are all inside a two-sided 95%confidence interval around the empirical pull

functions, which indicates that our model can capture adequately the nonlinear mean rever-

16Evidence for a multifactor structure in the variance-covariance of asset returns is provided by Da and
Schaumburg (2006), who apply Asymptotic Principal Component analysis to a panel of realized volatilities for
U.S. stock returns. They find that three to four factors explain no more than 60% of the variation in realized
volatilities and that the forecasting power of multifactor volatility models is superior to that of univariate
ones. Similar findings are obtained by Andersen and Benzoni (2007). Calvet and Fisher (2007) develop an
equilibrium model in which innovations in dividend volatility depend on shocks that decay with different
frequencies. They show that this feature of volatility is crucial for the model’s forecasting performance.
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sion properties of volatilities and correlations in our data. Estimated pull functions for the

correlation are highly asymmetric and are typically smaller in absolute value for positive cor-

relations above 0.3 than for negative correlations below -0.4. This feature indicates a higher

persistence of correlation shocks when correlations are positive and large. The pull function

for the volatility of S&P500 futures returns in the first row of Figure 2 is almost flat and

moderately positive for volatilities larger than 10%. On average, the pull function estimated

for the volatility of 30-year Treasury futures returns tends to be larger in absolute value,

which indicates a lower persistence of shocks in the volatility of Treasury futures returns.

Given the evidence of a nonlinear mean reversion of volatilities and correlations in the

data, it is natural to ask whether univariate Markov continuous-time models can repro-

duce these features accurately. We estimate the Heston (1993) square-root processes for

the volatility and an autonomous specification for the correlation process, as in Driessen,

Maenhout, and Vilkov (2007). When we compute the model-implied pull functions, we find

that (i) they are often outside the 95% confidence band around the empirical pull function

and (ii) they are almost linear in shape, which is difficult to reconcile with our data. This

suggests the importance of using an explicitly multivariate modeling approach.

B. The Size of Variance Covariance Hedging

We study the structure of the hedging demands based on our parameter estimates, and

compute the optimal hedging components in Proposition 3 as a function of the relative risk

aversion and the investment horizon.

B.1. Basic Results

Table II summarizes the estimated volatility and covariance hedging demands, as a per-

centage of the myopic portfolio allocations.

Insert Table II about here

Overall, monthly estimates of the hedging demands are greater than weekly estimates.17

A more persistent variance-covariance process implies that variance-covariance shocks have

more persistent effects on future squared Sharpe ratios and their volatility. This feature

yields a higher absolute sensitivity of the marginal utility of wealth to variance-covariance

shocks and greater absolute hedging demands on average.

Consider, for illustration purposes, the hedging demands estimated for monthly returns

under an investment horizon of T = 5 years and a relative risk aversion parameter of six.

The estimated risk premium for the S&P500 futures returns implies a higher loading of

17Weekly estimates are reported in Internet Appendix D.
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volatility than the one for the risk premium of 30-year Treasury futures returns: λ1 ≥ λ2.

Thus, the estimated sensitivity of the marginal utility of wealth to the returns volatility

is highest for S&P500 futures returns: |A11| > |A22|. Moreover, according to the GMM

parameter estimates, stocks are better instruments to hedge their volatility than bonds:

q11ρ1 + q21ρ2 ≥ q12ρ1 + q22ρ2. These features imply a higher volatility hedging demand for

stocks (about 13% of the myopic portfolio) relative to the volatility hedging component for

bonds (about 8% of the myopic portfolio). The total average volatility hedging demand

is approximately 10.5% of the myopic portfolio, while the total average covariance hedging

demand on the two risky assets is slightly higher (about 11%). According to the GMM

point estimates, bonds are better hedging vehicles than stocks to hedge covariance risk:

q12ρ1 + q22ρ2 ≥ q11ρ1 + q21ρ2. This effect determines the higher covariance hedging demand

for bonds (about 17%) than for stocks (about 7%).

Given the evidence of a misspecification of univariate stochastic volatility models in our

data, we compare the portfolio implications of our setting with those of univariate portfolio

choice models with stochastic volatility; see Heston (1993) and Liu (2001), among others.

This is an easy task since these models are nested in our setting for the special case in which

the dimension of the investment opportunity set is equal to one. For each risky asset in our

data set, we estimate these univariate stochastic volatility models by GMM.

Internet Appendix D presents the estimated volatility hedging demands as a percentage

of the myopic portfolio. For illustration purposes, consider a relative risk aversion coefficient

of γ = 8 and an investment horizon of T = 5 years. The volatility hedging demands

estimated for the univariate models are 4.8% and 4%, respectively, for stocks and bonds.

In the multivariate model, the corresponding pure volatility hedging demands are 13.6%

and 8.8%, respectively, and the average total hedging demand is as large as 21.1%. One

explanation for this finding is the very different mean reversion and persistence properties

of second moments in the data, relative to those implied by univariate stochastic volatility

models. A second reason is the fact that univariate models cannot capture the correlation

and co-volatility dynamics, which generate a good portion of the total hedging demand. This

is important since the optimal portfolio, as the results show, presents a substantial bias.

B.2. Comparative Statics

To get more insight into the determinants of hedging motives, it is useful to study

comparative statics with respect to model parameters. To this end, we modify the value of

these parameters in an interval of one sample standard deviation around the true parameter

estimate, and compute the implied hedging demands.

It is natural to focus on parameters that have an impact on the indirect marginal utility

sensitivities Aij, and the volatility and correlation leverage effects. Matrix M drives the
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persistence on the variance-covariance process, but leaves unaffected the leverage properties

of asset returns. For brevity, we consider comparative statics with respect to the parameters

m12. The matrix Q and vector ρ affect primarily the ability of each asset to span unexpected

variance-covariance shocks. To study the effects of these parameters, we consider for brevity

comparative statics with respect to q11 and both components of ρ. In doing so, we decompose

the total effect on hedging demands into one part due to a modification of the leverage

properties of returns and one part due to the change in the marginal utility sensitivity

coefficients Aij. The investment horizon we consider is T = 5 years and the relative risk

aversion is γ = 6.

In the first row of Figure 3, the comparative statics with respect to m12 show that,

ceteris paribus, covariance and volatility hedging demands increase with m12: for a value

of m12 = 1.18, that is, one standard deviation above the GMM estimate, the covariance

(volatility) hedging component increases to 8% (14%) for stocks and 23% (14%) for bonds.

Insert Figure 3 about here

This effect is due to the higher persistence of the variance-covariance process caused by an

increase in m12, which implies a greater absolute marginal utility sensitivity to all variance-

covariance risk factors.

The plots in the second row of Figure 3 present comparative statics with respect to

q11. As q11 increases, the first risky asset becomes a better hedging instrument against its

volatility, and the second risky asset becomes a better hedging instrument against covariance

risk. Parameter q11 also has an effect on the marginal utility sensitivities Aij. We find that

the higher variability of variance-covariance shocks implied by a higher parameter q11 lowers

all absolute sensitivities |Aij|, 1 ≤ i, j ≤ 2. However, this effect is considerably smaller than

the one implied by the change in the leverage structure of asset returns. Consequently, as

q11 increases we obtain a decreasing (increasing) covariance hedging demand for the S&P500

futures (30-year Treasury futures), but also an increasing (decreasing) volatility hedging

component.

The comparative statics with respect to parameters ρ1 and ρ2 are given in the third

and fourth rows of Figure 3. As ρ1 decreases, all assets become better hedging instruments

against volatility and correlation risk. At the same time, the variance-covariance process

under the minimax measure becomes more persistent, increasing each absolute sensitivity

coefficient |Aij|. These two effects go in the same direction, but the effect on leverage is

proportionally greater, and increases all volatility and covariance hedging demands. As ρ2

decreases, we observe almost no variation in volatility and covariance hedging demands. This

follows from the fact that the leverage coefficients (18) and the minimax variance-covariance
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dynamics depend on ρ2 with a weight that is proportional to the parameters q12 and q22.

According to our GMM estimates, these parameters are much smaller than q11 and q21.

B.3. Time Horizon

An important question addressed by the literature is how the optimal allocation in risky

assets varies with respect to the investment horizon. For instance, Kim and Omberg (1996)

show that for the investor with utility over terminal wealth, and for γ > 1, the optimal

allocation increases with the investment horizon as long as the risk premium is positive.

Wachter (2002) extends this result to the case of utility over intertemporal consumption.

When covariances are stochastic, it is reasonable that the optimal demand for hedging

covariance risk could mitigate, or strengthen, the speculative components. Internet Ap-

pendix D reports estimated hedging demands for the S&P500 Index futures and the 30-year

Treasury Futures, as a function of the investment horizon. The total hedging demand of

an investor with risk aversion γ > 1 increases with investment horizons of up to five years,

where it approximately reaches a steady-state level. The reason for such a convergence is

the stationarity of the Wishart process implied at our parameter estimates: shocks in the

variance-covariance matrix do not seem to affect the transition density of the estimated

variance-covariance process over horizons longer than five years. At very short horizons, for

example, three months, hedging demands are small. For investment horizons of five years

and higher, the total hedging demand is approximately 20% (25%) of the myopic portfolio

for the S&P500 (Treasury) futures contracts. The covariance hedging demand for the 30-

year Treasury futures increases quite quickly with the investment horizon, and it reaches a

steady-state level of approximately 16% of the myopic demand. The covariance hedging de-

mand for the S&P500 futures reaches a steady state of approximately 6.5% as the investment

horizon increases.

B.4. Higher-dimensional Portfolio Choice Settings

For simplicity we have so far focused on a portfolio choice setting with only two risky

assets. However, it is important to gain some intuition on the relevance of volatility and

covariance hedging when more risky assets are available for investment. The complexity of

the portfolio setting increases as more volatility and covariance factors affect returns, which

makes general statements and conclusions difficult. On the one hand, given that the number

of covariance factors increases quadratically with the dimension of the investment universe,

but the number of volatility factors increases only linearly, one could expect covariance

hedging to become proportionally more important as the investment dimension rises. On

the other hand, as the number of assets rises, one could also argue that covariance risk could

become less important than volatility risk because the potential for portfolio diversification
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increases. The final effect depends on the extent to which shocks to the different covariance

and volatility processes are diversifiable across assets.

We study quantitatively these issues in a concrete portfolio setting that includes also the

Nikkei225 Index futures contract in the previous opportunity set, consisting of the S&P500

futures and the 30-year Treasury futures contracts. We estimate by this three-dimensional

version of model (1) to (4) using GMM. Estimated hedging demands for covariance and

volatility hedging are given in Internet Appendix D.

For illustration purposes, consider a relative risk aversion of γ = 6 and an investment

horizon of T = 5 years. The covariance hedging demand for the S&P500 futures is now

approximately 12.5%, almost twice the hedging demand of 6.5% estimated in the two risky

assets setting. The inclusion of the Nikkei225 futures sensibly lowers the covariance hedging

demand for 30-year Treasury futures, which drops from 17% in the two-asset case to 6.1%.

The covariance hedging demand for the Nikkei225 futures is approximately 13%. On aver-

age, these results imply a covariance hedging demand of about 11%. The intuition for these

findings is simple: as the dimension of the investment opportunity set increases, the relative

importance of covariance shocks to the squared Sharpe ratio of the optimal portfolio in-

creases. The Nikkei225 provides a good opportunity to diversify domestic equity risk, under

the assumption that covariances do not change. At the parameter estimates, an increased

investment in equity becomes increasingly coupled with a greater demand for hedging po-

tential changes in these covariances. The volatility hedging demands for each asset are 9%,

6.1%, and 7.6%, respectively, and imply an average volatility hedging of about 7.5%. In the

model with two risky assets, the average covariance hedging demand is about 11% and the

average volatility hedging demand is about 10.5%.

Overall, these findings support the intuition that covariance hedging can become pro-

portionally more important than volatility hedging as the dimension of the investment op-

portunity set rises.

III. Robustness and Extensions

In this section, we study the robustness of our findings, for example, with respect to a

discrete-time solution of the portfolio choice problem or the inclusion of different portfolio

constraints.

A. Risk Aversion

Our main findings do not depend on the choice of the relative risk aversion parameter

used. Internet Appendix D contains a plot of hedging portfolios as a function of risk aversion.

Hedging demands as a percentage of the myopic portfolio are monotonically increasing in

the relative risk aversion coefficient, although the increase is small for relative risk aversion
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parameters above six. Average covariance hedging demands as a percentage of the myopic

portfolio are typically higher than average volatility hedging demands. For instance, the

average covariance (volatility) hedging demand for a relative risk aversion of 10 is approxi-

mately 12% (10.5%) of the myopic portfolio. Thus, although we assume a constant relative

risk aversion utility function to preserve closed-form optimal portfolios, our findings are likely

to be even stronger in a setting with intertemporal consumption and Epstein-Zin recursive

preferences, since the risk aversion can be calibrated at a higher level without generating

undesirable properties for the elasticity of intertemporal substitution.

B. Discrete-time Solution and Portfolio Constraints

In our model, the optimal dynamic trading strategy is given by a portfolio that must be

rebalanced continuously over time. In practice, this can at best be an approximation, because

trading is only possible at discrete trading dates. Moreover, transaction costs, liquidity

constraints, or policy disclosure considerations might further prevent investors from frequent

portfolio rebalancing. Even if we do not model these frictions explicitly in our setting, it is

instructive to analyze the impact of discrete trading on the optimal hedging strategy in the

context of our model. We address this issue in Section I of Internet Appendix C. At a daily

frequency, the hedging demands in the discrete-time model are virtually indistinguishable

from the continuous-time hedging demands. The discrete-time optimal hedging demands for

the monthly frequency are close to the hedging demands computed from the continuous time

model. These findings suggest that the main implications derived from the continuous time

multivariate portfolio choice solutions are realistic even in the context of monthly rebalancing.

Portfolio constraints are useful to avoid unrealistic portfolio weights, which can poten-

tially arise due to extreme assumptions on expected returns, volatilities, and correlations, or

from inaccurate point estimates of the model parameters. Intuitively, constraints on short

selling or the portfolio VaR tend to constrain the investor from selecting optimal portfolios

that are excessively levered. Therefore, it is interesting to study such constraints and their

impact on the volatility and covariance hedging demands in our setting. Section II of Internet

Appendix C provides a thorough analysis of this issue. We find that a VaR constraint has a

significant effect on the optimal portfolios of investors with low risk aversion, which are those

with the largest exposure to risky assets in the unconstrained setting. The VaR-constrained

investor tends to reduce the size of the myopic demand. Furthermore, since changes in co-

variances have a first-order impact on the VaR of the portfolio, the investor can even increase

the covariance hedging demand, to exploit the spanning properties of the risky assets. Thus,

in this setting, which is relevant for institutions subject to capital requirements or for asset

managers with self-imposed risk management constraints, the impact of covariance risk can

be economically very significant.
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IV. Discussion and Conclusions

We develop a new multivariate framework for intertemporal portfolio choice, in which

stochastic second moments of asset returns imply distinct motives for volatility and co-

variance hedging. The model is solved in closed form and is used to study volatility and

covariance hedging in several realistic settings. We find that the multivariate nature of sec-

ond moments has important consequences for optimal asset allocation: hedging demands are

typically four to five times larger than those of models with constant correlations or single-

factor stochastic volatility. They include a substantial correlation hedging component, which

tends to increase with the persistence of variance-covariance shocks, the strength of leverage

effects, and the dimension of the investment opportunity set. These findings also arise within

discrete-time versions of our model with short selling or VaR constraints.

The hedging demands due to variance-covariance risk are typically smaller than those

found in the literature on intertemporal hedging with returns predictability. This feature

follows mainly from the fact that returns span shocks in their covariance matrix much less

than they typically do for shocks to the predictive variables. We do not explicitly incorpo-

rate Bayesian learning about model parameters. In continuous time, it is hard to motivate

learning behavior about second moments of returns, because they are typically observable

from the quadratic variation of returns. In discrete time, Bayesian learning about second

moments can be more naturally considered. However, it is difficult to obtain tractable so-

lutions for portfolio choice without a simple structure for the variance-covariance process.

Barberis (2000), among others, studies estimation risk about the parameters of a predictive

equation in a model with homoskedastic returns, and finds that parameter uncertainty dra-

matically reduces the exposure to stocks over longer horizons. Our model is very different

from that of Barberis. However, one might try to conclude by analogy that learning could

also substantially reduce hedging demands in our case. Interesting evidence on this issue

is given in Brandt et al. (2005). They develop a dynamic programming algorithm to effi-

ciently solve the portfolio problem with predictability. When learning is considered, they

find hedging demands that are comparable to those found in our paper. When learning is

neglected, these policies are much higher than ours. Interestingly, the hedging demand re-

duction is almost entirely due to learning about the predictability equation: learning about

the variance-covariance matrix has a small influence on optimal portfolios. An interest-

ing direction for future research could use the discrete-time Wishart process to study more

systematically the portfolio implications of learning about the covariance matrix of returns.
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APPENDIX

Proof of Proposition 1: The dynamics of the correlation process implied by the Wishart covariance matrix
diffusion (4) is computed using Itô’s Lemma. Let

ρ(t) =
Σ12(t)√

Σ11(t)Σ22(t)
(A1)

be the instantaneous correlation between the returns of the first and second risky assets and denote by σij ,
qij , and ωij the ijth component of the volatility matrix Σ1/2, the matrix Q, and the matrix Ω′Ω = kQ′Q
in equation (4), respectively. Applying Itô’s Lemma to (A1) and using the dynamics for Σ11, Σ22, and Σ12,
implied by (4), it follows that

dρ =

[
ω12√

Σ11Σ22

− ρ

2Σ11
ω11 −

ρ

2Σ22
ω22 +

ρ

2

(
q211 + q221

Σ11
+
q212 + q222

Σ22

)

+(ρ2 − 2)
q11q12 + q21q22√

Σ11Σ22

+ (1 − ρ2)
m21Σ11 +m12Σ22√

Σ11Σ22

]
dt

−
[

ρ

2Σ11Σ22
(Σ22σ11q11 + Σ11σ12q12) −

σ12q11 + σ11q12√
Σ11Σ22

]
dB11

−
[

ρ

2Σ11Σ22
(Σ11σ22q12 + Σ22σ21q11) −

σ22q11 + σ21q12√
Σ11Σ22

]
dB21

−
[

ρ

2Σ11Σ22
(Σ22σ11q21 + Σ11σ12q22) −

σ11q22 + σ12q21√
Σ11Σ22

]
dB12

−
[

ρ

2Σ11Σ22
(Σ11σ22q22 + Σ22σ21q21) −

σ21q22 + σ22q21√
Σ11Σ22

]
dB22. (A2)

Bij(t), i, j = 1, 2, are the entries of the 2×2 matrix of Brownian motions in (4). Therefore, the instantaneous
drift of the correlation process is a quadratic polynomial with state-dependent coefficients:

E [dρ(t)| Ft] =
[
E1(t) ρ(t)

2 + E2(t) ρ(t) + E3(t)
]
dt, (A3)

where the coefficients E1(t), E2(t), and E3(t) are given by

E1(t) =
q11q12 + q21q22√

Σ11(t)Σ22(t)
−m21

√
Σ11(t)

Σ22(t)
−m12

√
Σ22(t)

Σ11(t)
, (A4)

E2(t) = − ω11

2Σ11
− ω22

2Σ22
+

1

2

(
q211 + q221
Σ11(t)

+
q212 + q222
Σ22(t)

)
, (A5)

E3(t) =
ω12√

Σ11Σ22

− 2
q11q12 + q21q22√

Σ11(t)Σ22(t)
+m21

√
Σ11(t)

Σ22(t)
+m12

√
Σ22(t)

Σ11(t)
. (A6)

The instantaneous conditional variance of the correlation process is easily obtained from equation (A2) and
is a third-order polynomial with state dependent coefficients:

E
[
dρ(t)2

∣∣Ft

]
=

[
(
1 − ρ2(t)

)
(
q211 + q221
Σ11(t)

+
q212 + q222
Σ22(t)

− 2ρ(t)
q11q12 + q21q22√

Σ11(t)Σ22(t)

)]
dt.

This concludes the proof. �

Proof of Proposition 2: Since markets are incomplete, we follow He and Pearson (1991) and represent
any market price of risk as the sum of two orthogonal components, one of which is spanned by the asset
returns. Since Brownian motion W can be rewritten as W = Bρ + Z

√
1 − ρ′ρ, for a standard bivariate

Brownian motion Z independent of B, we rewrite the innovation component of the opportunity set dynamics
as Σ1/2[Z,B]L, with L = [

√
1 − ρ′ρ, ρ1, ρ2]

′. Let Θν be the matrix-valued extension of Θ that prices the
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matrix of Brownian motions B = [Z,B]. By definition of the market price of risk, we have

Σ1/2ΘνL = Σλ, (A7)

from which
Θν = Σ1/2λL′ + Σ1/2ν (A8)

for any 2×3 matrix valued process ν such that ΣνL = 02×1. Since Σ is nonsingular, it follows that ν must be
of the form ν = [−ν ρ√

1−ρ′ρ
, ν]. ν is a 2× 2-matrix that prices the shocks that drive the variance-covariance

matrix process.
Given Θν , the associated martingale measure implies a process ξν of stochastic discount factors, defined

for t ∈ [0, T ] by18

ξν(t) = e−rt−tr(
R

t

0
Θ′

ν(s) dB+ 1
2

R

t

0
Θ′

ν(s)Θν(s)ds). (A9)

Our dynamic portfolio choice problem allows for an equivalent static representation by means of the
following dual problem, as shown by He and Pearson (1991):

J(x,Σ0) = inf
ν

sup
π

E

[
X(T )1−γ − 1

1 − γ

]
, (A10)

s.t. E [ξν(T )X(T )] ≤ x, (A11)

where X(0) = x. In what follows, we focus on the solution of problem (A10) to (A11). The optimality
conditions for the innermost maximization are

X(T ) = (ψξν(T ))
−

1
γ , (A12)

where the Lagrange multiplier for the static budget constraint is

ψ = x−γ
E

[
ξν(T )

γ−1
γ

]γ
.

It then follows that

J(x,Σ0) = x1−γ inf
ν

1

1 − γ
E

[
ξν(T )

γ−1
γ

]γ
− 1

1 − γ
. (A13)

Using (A9) and (A13), one can see that the solution requires the computation of the expected value of
the exponential of a stochastic integral. A simple change of measure reduces the problem to the calculation
of the expectation of the exponential of a deterministic integral. Let P γ be the probability measure defined
by the following Radon-Nykodim derivative with respect to the physical measure P :

dP γ

dP
= e

−tr

„

γ−1
γ

R

T

0
Θ′

ν(s) dB(s)+ 1
2

(γ−1)2

γ2

R

T

0
Θ′

ν(s)Θν(s)ds

«

. (A14)

We denote expectations under P γ by E
γ [·]. Then the minimizer of (A13) is the solution to the following

problem:19

Ĵ(0,Σ0) = inf
ν

E

[
ξν(T )

γ−1
γ

]

= inf
ν

E
γ
[
e
−

γ−1
γ

rT+ 1−γ

2γ2 tr(
R

T

0
Θ′

ν(s)Θν(s)ds)
]

= inf
ν

E
γ
[
e
−

γ−1
γ

rT+ 1−γ

2γ2 tr(
R

T

0
Σ(s)(λλ′+νν′)ds)

]

= inf
ν

E
γ

[
e
−

γ−1
γ

rT+ 1−γ

2γ2 tr
“

R

T

0
Σ(s)

“

λλ′+ν′ν(I2+
ρρ′

1−ρ′ρ
)
”

ds
”

]
. (A15)

18Remember that W = BL.
19Strictly speaking, this holds for γ ∈ (0, 1). For γ > 1, minimizations are replaced by maximizations and

all formulas follow with the same type of arguments.
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Notice that the expression in the exponential of the expectation in (A15) is affine in Σ. By the Girsanov
Theorem, under the measure P γ the stochastic process Bγ = [Zγ , Bγ ], defined as

Bγ(t) = B(t) +
γ − 1

γ

∫ t

0

Θν(s)ds,

is a 2 × 3 matrix of standard Brownian motions. Therefore, the process (4) is an affine process also under
the new probability measure P γ :

dΣ(t) =

[
ΩΩ′ +

(
M − γ − 1

γ
Q′(ρλ′ + ν′)

)
Σ(t) + Σ(t)

(
M − γ − 1

γ
Q′(ρλ′ + ν′)

)′
]
dt

+ Σ1/2(t)dBγ(t)Q+Q′dB(t)γ ′
Σ1/2(t). (A16)

Using the Feynman Kac formula, it is known that if the optimal ν and Ĵ solve the probabilistic problem
(A15), then they must also be a solution to the following Hamilton-Jacobi-Bellman (HJB) equation:

0 =
∂Ĵ

∂t
+ inf

ν

{
AĴ + Ĵ

[
−γ − 1

γ
r +

1 − γ

2γ2
tr

(
Σ

(
λλ′ + ν′ν

(
I2 +

ρρ′

1 − ρ′ρ

)))]}
, (A17)

subject to the terminal condition Ĵ(T,Σ) = 1, where A is the infinitesimal generator of the matrix-valued
diffusion (A16), which is given by

A = tr

((
ΩΩ′ +

(
M − γ − 1

γ
Q′(ρλ′ + ν′)

)
Σ + Σ

(
M − γ − 1

γ
Q′(ρλ′ + ν′)

)′
)
D
)

+ tr(2ΣDQ′QD), (A18)

where

D :=

( ∂
∂Σ11

∂
∂Σ12

∂
∂Σ21

∂
∂Σ22

)
. (A19)

The generator is affine in Σ. The optimality condition for the optimal control ν, implied by HJB
equation (A17), is

− 1

γ
Σν

(
I2 +

ρρ′

1 − ρ′ρ

)
=

∂

∂ν
tr

(
(Q′ν′Σ + ΣνQ)

DĴ
Ĵ

)
=

∂

∂ν
tr

(
DĴ
Ĵ
Q′ν′Σ + ΣνQ

DĴ
Ĵ

)
.

Applying rules for the derivative of trace operators, the right-hand side can be written as Σ
(

D bJ
bJ

+ D bJ ′

bJ

)
Q′.

It follows that

ν = −γ
(
DĴ
Ĵ

+
DĴ ′

Ĵ

)
Q′

(
I2 +

ρρ′

1 − ρ′ρ

)−1

. (A20)

Note that
(
I2 + ρρ′

1−ρ′ρ

)−1

= I2 − ρρ′. Substituting the expression for ν in equation (A18), we obtain
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the generator

A = tr

((
ΩΩ′ +

(
M − γ − 1

γ
Q′ρλ′

)
Σ + Σ

(
M − γ − 1

γ
Q′ρλ′

)′
)
D + 2ΣDQ′QD

)

+ (γ − 1)Ĵ tr

(
(I2 − ρρ′)

(
Q′Q

(
DĴ
Ĵ

+
DĴ ′

Ĵ

)
Σ + Σ

(
DĴ
Ĵ

+
DĴ ′

Ĵ

)
Q′Q

)
D
)

= tr

((
ΩΩ′ +

(
M − γ − 1

γ
Q′ρλ′

)
Σ + Σ

(
M − γ − 1

γ
Q′ρλ′

)′
)
D + 2ΣDQ′QD

)

− (1 − γ)Ĵ tr

(
(I2 − ρρ′)Σ

(
DĴ
Ĵ

+
DĴ ′

Ĵ

)
Q′Q

(
D
Ĵ

+
D′

Ĵ

)′
)
.

Substitution of the last expression for A into the HJB equation (A17) yields the following partial

differential equation for Ĵ :

−∂Ĵ
∂t

= tr

((
ΩΩ′ +

(
M − γ − 1

γ
Q′ρλ′

)
Σ + Σ

(
M − γ − 1

γ
Q′ρλ′

)′
)
D + 2ΣDQ′QD

)
Ĵ

+
γ − 1

γ
Ĵ

(
−r − tr(Σλλ′)

2γ

)
− 1 − γ

2
Ĵ tr

(
(I2 − ρρ′)Σ

(
DĴ
Ĵ

+
DĴ ′

Ĵ

)
Q′Q

(
DĴ
Ĵ

+
DĴ ′

Ĵ

)′)
,

subject to the boundary condition Ĵ(Σ, T ) = 1. The affine structure of this problem suggests an exponentially
affine functional form for its solution,

Ĵ(t,Σ) = exp(B(t, T ) + tr(A(t, T )Σ),

for some state-independent coefficients B(t, T ) and A(t, T ). After inserting this functional form into the

differential equation for Ĵ , the guess can be easily verified. The coefficients B and A are the solutions of the
following system of Riccati equations:

−dB
dt

= tr(AΩΩ′) − γ − 1

γ
r,

−tr
(
dA

dt
Σ

)
= tr

(
Γ′AΣ +AΓΣ + 2AQ′QAΣ − 1 − γ

2
(A′ +A)Q′(I2 − ρρ′)Q(A′ +A)Σ + CΣ

)
,

with terminal conditions B(T, T ) = 0 and A(T, T ) = 02×2, where

Γ = M − γ − 1

γ
Q′ρλ′ (A21)

C =
1 − γ

2γ2
λλ′. (A22)

For a symmetric matrix function A, the second differential equation implies the following matrix Riccati
equation:

02×2 =
dA

dt
+ Γ′A+AΓ + 2AΛA+ C, (A23)

where
Λ = Q′(I2γ + (1 − γ)ρρ′)Q. (A24)

This is the system of matrix Riccati equations in the statement of Proposition 2. These differential
equations are completely integrable, so that closed-form expressions for Ĵ (and hence for J) can be computed.
For convenience, we consider coefficients A and B parameterized by τ = T−t. This change of variable implies
the following simple modification of the above system of equations:
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dB

dτ
= tr(AΩΩ′) − γ − 1

γ
r, (A25)

dA

dτ
= Γ′A+AΓ + 2AΛA+ C, (A26)

subject to initial conditions A(0) = 02×2 and B(0) = 0. Given a solution for A, function B is obtained by
integration:

B(τ) = tr

(∫ τ

0

A(s)ΩΩ′ ds

)
− γ − 1

γ
r τ.

To solve equation (A26), we use Radon’s Lemma. Let us represent the function A(τ) as

A(τ) = H(τ)−1K(τ), (A27)

where H(τ) and K(τ) are square matrices, with H(τ) invertible. Pre-multiplying (A26) by H(τ), we obtain

H
dA

dτ
= HΓ′A+HAΓ + 2HAΛA+HC. (A28)

Where no confusion may arise, we suppress the argument τ for brevity. On the other hand, in light of
(A27), differentiation of

HA = K (A29)

results in

H
dA

dτ
=

d

dτ
(HA) − dH

dτ
A, (A30)

and
d

dτ
(HA) =

dK

dτ
. (A31)

Substituting (A29), (A30), and (A31) into (A28) we get

dK

dτ
− dH

dτ
A = HΓ′A+KΓ + 2KΛA+HC.

After collecting coefficients of A, we conclude that the last equation is equivalent to the following matrix
system of ODEs:

dK

dτ
= KΓ +HC, (A32)

dH

dτ
= −2KΛ −HΓ′, (A33)

or
d

dτ
(K H) = (K H)

(
Γ −2Λ
C −Γ′

)
.

The above ODE can be solved by exponentiation:

( K(τ) H(τ) ) = ( K(0) H(0) ) exp

[
τ

(
Γ −2Λ
C −Γ′

)]

= ( A(0) I2 ) exp

[
τ

(
Γ −2Λ
C −Γ′

)]

= ( A(0)F11(τ) + F21(τ) A(0)F12(τ) + F22(τ) )
= ( F21(τ) F22(τ) ).

We conclude from equation (A27) that the solution to (A26) is given by

A(τ) = F22(τ)
−1F21(τ). (A34)
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This concludes the proof. �

Proof of Proposition 3: To recover the optimal portfolio policy, we have, from the proof of Proposition
2,

X∗(t) =:
1

ξν∗(t)
E[ξν∗(T )X∗(T ) |Ft] = ψ−

1
γ ξν∗(t)−

1
γ Ĵ(t,Σ(t)). (A35)

For the Wishart dynamics (4), Itô’s Lemma applied to both sides of (A35) gives, for every state Σ,

X∗(t) tr
([
π1 π2

]
Σ1/2dBL

)
= X∗(t) tr

(
1

γ
Θ′

ν∗dB +
DĴ ′

Ĵ

(
Σ1/2dBUQ+Q′U ′dB′Σ1/2

))
. (A36)

where matrix U is given by:

U =




0 0
1 0
0 1



 .

This implies

L
[
π1 π2

]
Σ1/2 =

1

γ
(Lλ′ + ν′) Σ1/2 + 2UQAΣ1/2.

Pre-multiplying both sides by L′, post-multiplying them by Σ1/2, and recalling that L′ν′Σ = 01×2, we
conclude that portfolio weight π = (π1, π2)

′ is

π =
λ

γ
+ 2AQ′ρ =

1

γ

[
λ1

λ2

]
+ 2

[
(q11ρ1 + q21ρ2)A11 + (q12ρ1 + q22ρ2)A12

(q12ρ1 + q22ρ2)A22 + (q11ρ1 + q21ρ2)A12

]
. (A37)

This concludes the proof of the proposition. �

Proof of Proposition 4: We apply the following lemma, similar to a result in Buraschi, Cieslak and
Trojani (2007), to which we refer for a proof.

Lemma A1: Consider the solution A(τ) of matrix Riccati equation (A26). If matrix C is negative semidef-
inite, then A(τ) is negative semidefinite and monotonically decreasing for any τ , that is, A(τ2) −A(τ1) is a
negative semidefinite matrix for any τ2 > τ1.

Since C = (1 − γ)/(2γ2)λλ′, if γ > 1 then C is negative semidefinite. From Lemma IA.A1, A(τ) is also
negative semidefinite. It follows that A11(τ) ≤ 0 and A22(τ) ≤ 0. Inequality |A12| ≤ |A11 + A22|/2 follows
from the properties of negative semidefinite matrices. Now consider a neighborhood of τ = 0 of arbitrary
small length ǫ. By the fundamental theorem of calculus, we have

A(ǫ) = A(0) +
dA(τ)

dτ

∣∣∣∣
τ=0

ǫ+ o(ǫ). (A38)

But A(0) = 0 and dA(τ)
dτ

∣∣∣
τ=0

= C. If λ1 and λ2 agree in sign and γ > 1, then C12 < 0 and A12(ǫ) < 0.

If, in addition, |λ1| > |λ2|, we have λ2
1 > λ1λ2 > λ2

2, that is, |C11| > |C12| > |C22|. We conclude from (A38)
that |A11| > |A12| > |A22|. This concludes the proof of the proposition. �
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Figure 1. Joint correlation dynamics of stock index returns and leverage effect. Panel 1 shows sample
correlations between the S&P500 and FTSE100 Index (x−axis) versus sample correlations between the S&P500 and
Nikkei225 Index (y−axis). Each point in the graph represents couples of realized sample correlations between these
stock indices. Sample correlations for the time period April 2005 to April 2008 are computed applying the methodology
proposed by Andersen et al. (2003) on high frequency data to obtain realized volatilities and covariances from daily
quadratic variations and covariations of log futures prices. Panel 2 shows monthly returns on the S&P500 index (from
January 1987 to April 2008) have been divided into six equal size bins. The y−axis of this figure shows the average
empirical correlations between the S&P500 and the Nikkei225 (circles), and between the S&P500 and the FTSE100
(triangles), given S&P500 return realizations. Return bins are reported on the x−axis.
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Figure 2. Pull function of the volatility and correlation processes. Panels 1, 4, and 7 show the nonparametric pull
functions for weekly and monthly data frequencies (dotted and solid lines, respectively) based on the estimation procedure in
Conley et al. (1997). Panels 1 and 4 present the pull function estimates for the conditional volatility of S&P500 Index and
30-year Treasury bond futures returns, respectively. Panel 7 plots the pull function estimate for their conditional correlation.
Panels 2, 5, and 8 present the corresponding pull function estimates for volatilities and correlations, but based on a long
time series of weekly volatilities and correlations simulated from the Wishart variance-covariance process (4) using the weekly
parameter estimates in Table I. Panels 3, 6, and 9 present corresponding pull function estimates for volatilities and correlations,
but based on a long time series of monthly volatilities and correlations simulated from the Wishart variance-covariance process
(4) using the monthly parameter estimates in Table I. In Panels 2,3,5,6,8, and 9, the model implied pull functions are plotted
together with a 95% confidence interval around the empirical pull functions of Panels 1, 4 and 7.
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Figure 3. Comparative statics of optimal hedging demands. This figure shows comparative statics for optimal
covariance hedging demands (Panels 1, 3, 5, and 6) and volatility hedging demands (Panels 2, 4, 7, and 8), obtained by letting
the values of parameters m12 (Panels 1 and 2), q11 (Panel 3 and 4), ρ1, and ρ2 (Panels 7 to 10) vary in a confidence interval
of one sample standard deviation around the monthly parameter estimates in Table I. mij and qij are the entries of parameter
matrices M and Q, respectively, appearing in the Wishart covariance matrix dynamics:

dΣ(t) = (ΩΩ′ + MΣ(t) + Σ(t)M ′)dt + Σ1/2(t)dB(t)Q + Q′dB(t)′Σ1/2(t) .

ρ1 and ρ2 are the entries of the vector ρ, which controls leverage by means of the following relation:

dW (t) = dB(t)ρ +
p

1 − ρ′ρ dZ(t),

where W (t) is the Brownian motion driving asset returns. In Panels 1 to 4, hedging demands for the S&P500 index (30-year
Treasury bond) futures are plotted with solid (dotted) lines. A relative risk aversion coefficient of five and an investment horizon
of six years have been assumed.
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Table I

Estimation Results for the Model with Two Risky Assets

This table shows estimated matrices M and Q and vectors λ and ρ for the returns dynamics (1) under the
Wishart variance-covariance diffusion process

dΣ(t) = (ΩΩ′ + MΣ(t) + Σ(t)M ′)dt + Σ1/2(t)dB(t)Q + Q′dB(t)′Σ1/2(t),

where we have set ΩΩ′ = kQ′Q and k = 10. Parameters are estimated by GMM using time series of returns
and realized variance-covariance matrices for S&P500 Index and 30-year Treasury bond futures returns,
computed at both a weekly and a monthly frequency. The detailed set of moment restrictions used for
GMM estimation is given in Internet Appendix A. We report parameter estimates and their standard errors
(in parentheses), together with the p-values for Hansen’s J-test of overidentifying restrictions. An asterisk
denotes estimated parameters that are not significant at the 5% significance level.

M Q λ ρ

weekly

−1.210 0.491
(0.330) (0.203)

0.329 −1.271
(0.127) (0.363)

0.167 0.033∗

(0.047) (0.027)

0.001∗ 0.090
(0.020) (0.044)

4.722
(1.910)

3.317
(1.442)

−0.115
(0.058)

−0.549
(0.250)

monthly

−1.122 0.747
(0.410) (0.368)

0.884∗ −0.888
(0.556) (0.235)

0.160 0.083
(0.063) (0.0413)

−0.021∗ 0.009∗

(0.028) (0.118)

4.612
(1.182)

2.891
(1.342)

−0.279
(0.139)

−0.247
(0.086)

p-values for
Hansen’s J-test Weekly: 0.14 Monthly: 0.38

Table II

Optimal Hedging Demands for the Model with Two Risky Assets

This table shows optimal covariance and volatility hedging demands as a percentage of the myopic
portfolio for different investment horizons and relative risk aversion parameters. The last column of
each panel reports the myopic portfolio. We compute these demands for monthly parameter estimates
reported in Table I. Each entry in the table is a vector with two components: the first component is
the demand for the S&P500 Index futures and the second one is the demand for the 30-year Treasury
futures.

Covariance
hedging
(/ myopic)

RRA T 3m 6m 1y 2y 5y 7y 10y Myopic
demand

2 0.0090
0.0221

0.0170
0.0420

0.0293
0.0728

0.0418
0.1040

0.0472
0.1172

0.0473
0.1175

0.0474
0.1175

2.3060
1.4455

6 0.0150
0.0370

0.0281
0.0698

0.0472
0.1171

0.0625
0.1550

0.0665
0.1655

0.0670
0.1659

0.0670
0.1659

0.7687
0.4818

8 0.0156
0.0388

0.0295
0.0733

0.0493
0.1225

0.0648
0.1610

0.0686
0.1705

0.0687
0.1705

0.0687
0.1705

0.5765
0.3641

11 0.0162
0.0404

0.0307
0.0761

0.0511
0.1267

0.0666
0.1654

0.0704
0.1747

0.0705
0.1748

0.0705
0.1748

0.4193
0.2628

16 0.0168
0.0417

0.0316
0.0785

0.0525
0.1303

0.0682
0.1692

0.0718
0.1782

0.0718
0.1783

0.0718
0.1784

0.2883
0.1807

21 0.0170
0.0423

0.0321
0.0797

0.0532
0.1322

0.0690
0.1712

0.0726
0.1800

0.0727
0.1801

0.0727
0.1802

0.2196
0.1377

41 0.0175
0.0434

0.0329
0.0816

0.0544
0.1350

0.0702
0.1742

0.0737
0.1829

0.0740
0.1832

0.0740
0.1832

0.1125
0.0705

Volatility
hedging
(/ myopic)

RRA T 3m 6m 1y 2y 5y 7y 10y
Myopic
demand

2 0.0205
0.0097

0.0360
0.0195

0.0594
0.0364

0.0800
0.0553

0.0883
0.0640

0.0883
0.0640

0.0883
0.0640

2.3060
1.4455

6 0.0346
0.0160

0.0622
0.0317

0.0983
0.0568

0.1245
0.0789

0.1309
0.0852

0.1309
0.0852

0.1309
0.0852

0.7687
0.4818

8 0.0364
0.0168

0.0654
0.0332

0.1031
0.0591

0.1297
0.0814

0.1360
0.0874

0.1360
0.0874

0.1360
0.0874

0.5765
0.3641

11 0.0379
0.0174

0.0681
0.0345

0.1070
0.0610

0.1340
0.0834

0.1401
0.0892

0.1401
0.0892

0.1401
0.0892

0.4193
0.2628

16 0.0391
0.0179

0.0703
0.0355

0.1103
0.0626

0.1376
0.0850

0.1434
0.0906

0.1434
0.0906

0.1434
0.0906

0.2883
0.1807

21 0.0398
0.0182

0.0726
0.0360

0.1128
0.0634

0.1397
0.0858

0.1452
0.0913

0.1452
0.0913

0.1452
0.0913

0.2196
0.1377

41 0.0408
0.0187

0.0733
0.0368

0.1147
0.0646

0.1423
0.0871

0.1479
0.0924

0.1480
0.0924

0.1480
0.0924

0.1125
0.0705
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Internet Appendix

for

“Correlation Risk and Optimal Portfolio Choice”∗

This Internet Appendix includes four subappendices, identified by roman letters from
A to D. Internet Appendix A provides details about the estimation procedure that we use
in the empirical application of Section II of the article. In particular, it derives in closed
form the GMM moment restrictions. In Internet Appendix B we solve and discuss a model
specification alternative to that considered in Section I of the article, namely a specification
that comprises stochastic interest rates and constant risk premia. Internet Appendix C
reports results for the discrete-time analog of the continous-time specification of the article.
In this discrete-time setting, we also discuss the implications of short selling and VaR-type
constraints on portfolio allocations. Finally, Internet Appendix D reports tables and graphs
in support of the robustness checks and extensions provided in the article.

Propositions, lemmas, and equation numbers are prefixed with the letter that identifies
the appendix. Numbers without prefix refer to Propositions, lemmas, or equations in the
main text. Tables and figures of this appendix are labeled as “Table (Figure) IA.LX”, where
X denotes the number of the Table (Figure) and L is the letter that identifies the Appendix.

∗ Citation format: Buraschi, Andrea, Paolo Porchia, and Fabio Trojani, Internet Appendix to “Correla-
tion Risk and Optimal Portfolio Choice”, Journal of Finance [vol #], [pages], http://www.afajof.org/IA/[year].
Please note: Wiley-Blackwell is not responsible for the content or functionality of any supporting information
supplied by the authors. Any queries (other than missing material) should be directed to the authors of the
article.
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A. Moment Restrictions for the GMM Estimation

This Appendix provides detailed expressions for the moment conditions used in the GMM estimation
of our model. The following computations make use of the closed-form expressions for the moments of the
Wishart process, which can be found, for example, in the Appendix of Buraschi, Cieslak, and Trojani (2007).

Let τ denote data sampling frequency. We have τ = 5/250 for weekly data and τ = 22/250 for monthly
data.

1) Unconditional risk premia of log returns.
The conditional risk premia of asset i’s logarithmic returns, at frequency τ , i = 1, 2, are given by

Et

[
log Si(t + τ) − log Si(t)

]
−
∫ t+τ

t

rds = Et

[∫ t+τ

t

e′iΣ(s)(λ − 1

2
ei)ds

]
. (IA.A1)

The unconditional risk premia are thus

M1 =

(
E[Σ(t)]λ − 1

2

[
e′1E[Σ(t)]e1

e′2E[Σ(t)]e2

])
τ. (IA.A2)

2) Unconditional mean of the realized variance-covariance matrix of log returns.

M2 = vech (E[Σ(t)]) τ, (IA.A3)

where vech(X) denotes the lower triangular vectorization of a square matrix X.

3) Unconditional second moment of the realized variance-covariance matrix of log-returns.

E

[(∫ t+τ

t

vec (Σ(s)) ds

)(∫ t+τ

t

vec (Σ(s)) ds

)′
]

= 2

∫ τ

0

dr2

∫ r2

0

dr1E [vec(Σ(r1))vec(Σ(r2))
′](IA.A4)

= 2

∫ τ

0

dr2

∫ r2

0

dr1E [vec(Σ(r1))Er1
[vec(Σ(r2))

′]]

= 2

(
E [vec(Σ(r1))vec(Σ(r1))

′]

∫ τ

0

dr2

∫ r2

0

dr1(exp(M ′(r2 − r1)) ⊗ exp(M ′(r2 − r1)))

+E[vec(Σ(r1))]

∫ τ

0

dr2

∫ r2

0

dr1vec

(∫ r2−r1

0

exp(sM)kQ′Q exp(sM ′)

)′

ds

)
.

Therefore,

M3 = vech

(
E

[(∫ t+τ

t

vec (Σ(s)) ds

)(∫ t+τ

t

vec (Σ(s)) ds

)′
])

.

4) Unconditional covariance between assets’ simple excess returns and the variance-covariance matrix of log
returns. For asset i, i = 1, 2, and s > t, we have

lim
t→∞

Et

[
exp

(∫ s+τ

s

eiΣ(u)dW (u) +

∫ s+τ

s

eiΣ(u)λdu − 1

2

∫ s+τ

s

eiΣ(u)e′idu

)
⊗
∫ s+τ

s

Σ(u)du

]
=

exp
(
Al(τ) + Ãl(∞)

)(∫ τ

0

exp(M̃(u)u)E [Σ(t)] exp(M̃(u)′u)du +

∫ τ

0

∫ s

0

exp(M̃(u)u)kQ′Q exp(M̃(u)′u)du ds

)
,

(IA.A5)

where
M̃(τ) = M + Q′ρe′i + Q′QBl(τ)
Al(τ) = k

∫ τ

0
tr (Bl(s)Q

′Q) ds

Ãl(∞) = k
∫∞

0
tr
(
B̃l(s)Q

′Q
)

ds

Bl(t) = B22(t)
−1B21(t)

B̃l(t) = (Bl(t)B̃12(t) + B̃22(t))
−1Bl(t)B̃11(t)
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and (
B11(t) B12(t)
B21(t) B22(t)

)
= exp

[
t

(
M + Q′ρe′i −2Q′Q

λe′i −(M + Q′ρe′i)
′

)]

(
B̃11(t) B̃12(t)

B̃21(t) B̃22(t)

)
= exp

[
t

(
M −2Q′Q
0 −M ′

)]
.

The last set of moment conditions is therefore given by

M3+i = vech
(
exp

(
Al(τ) + Ãl(∞)

)
×

(∫ τ

0
exp(M̃(u)u)E [Σ(t)] exp(M̃(u)′u)du +

∫ τ

0

∫ s

0
exp(M̃(u)u)kQ′Q exp(M̃(u)′u)du ds

)) (IA.A6)

for i = 1, 2. Summarizing, the vector-valued function µτ (M,Q, λ, ρ, k) of theoretical moment conditions, for
sampling frequency τ , is given by

µτ (M,Q, λ, ρ, k) =





M1

M2

M3

M4

M5




.

In our GMM estimation, this is compared to its empirical counterpart µ̂τ based on historical returns,
volatilities, and covariances.
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B. Constant Risk Premia and Stochastic Interest Rate

A direct way to study pure variance-covariance hedging demands is by assuming a constant risk premium.
For analytical purposes, this comes at the cost of specifying a Wishart state process for the precision matrix
Σ−1, which implies a less transparent interpretation of some model parameters. This can be achieved even
in a setting with a stochastic interest rate, where the interest rate can also depend on some of the risk factors
driving the covariance matrix of asset returns.1

ASSUMPTION IA.B1: Let the process Y satisfy the following Wishart dynamics:

dY (t) = [ΩΩ′ + MY (t) + Y (t)M ′]dt + Y 1/2(t)dBQ + Q′dB′Y 1/2(t), (IA.B1)

where matrices Ω, M , and Q are now of dimension 3 × 3 and where B is a 3 × 3 matrix of independent
standard Brownian motions. We model Σ−1 as a projection of matrix Y :

Σ−1 = SY S′,

where the 2 × 3 matrix S is such that SS′ = id2×2.
2 The stochastic riskless rate r(t) is defined by

r(t) = r0+tr(Y (t)D), (IA.B2)

where r0 > 0 and D is a 3 × 3 matrix.

Notice that the nonnegativity of r(t) can be easily ensured simply by assuming that matrix D is positive
definite. Since Σ−1 = SY S′, we define Σ−1/2 as the 2 × 3 matrix SY −1/2. Since Σ−1/2Σ1/2′ = id2×2, it is
natural to define Σ1/2 as the 2 × 3 matrix SY 1/2. We introduce the following process for asset returns:

dS(t) = IS

[(
r(t) + µe

1

r(t) + µe
2

)
dt + Σ1/2(t)dW (t)

]
, (IA.B3)

where the excess return vector µe = (µe
1, µ

e
2)

′ ∈ R
2 is constant and r(t) is given by equation (IA.B2). To

model leverage effects, we define the standard Brownian motion W as

W (t) =
√

1 − ρ′ρZ(t) + B(t)ρ, (IA.B4)

where Z is a three-dimensional standard Brownian motion independent of B and ρ = (ρ1,ρ2, ρ3)
′ is a vector

of correlation parameters such that ρi ∈ [−1, 1] and ρ′ρ ≤ 1.
This setting is effectively a six-factor model with some interest rate risk factors that might be linked

to the covariance matrix of stock returns, depending on the form of the matrix D in equation (IA.B2).
The squared Sharpe ratio in this model is affine in Y . Therefore, we can solve in closed form the dynamic
portfolio choice problem in this extended dynamic setting as well.

PROPOSITION IA.B1: The solution to the portfolio problem for the return dynamics (IA.B1) to (IA.B3)
and under a stochastic interest rate (IA.B2) is

J(X0, Y0) =
X1−γ

0 Ĵ (0, Y0)
γ − 1

1 − γ
,

where
Ĵ(t, Y ) = exp (B(t, T ) + tr (A(t, T )Y )) ,

with B(t, T ) and the symmetric matrix-valued function A(t, T ) solving in closed form the following system
of matrix Riccati differential equations:

−dB

dt
= −γ − 1

γ
r0 + tr(AΩΩ′), (IA.B5)

−dA

dt
= Γ′A + A′Γ + 2A′ΛA + C, (IA.B6)
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subject to B(T, T ) = 0 and A(T, T ) = 0. In these equations, the coefficients Γ, Λ, and C are given by

Γ = M − γ

γ − 1
Q′ρµe′S

Λ = Q′(γI3 + (1 − γ)ρρ′)Q

C =
1 − γ

2γ2
S′µeµe′

S − γ − 1

γ
D.

Finally, the optimal policy for this portfolio problem reads

π =
1

γ
Σ−1µe + 2Σ−1SAQ′ρ . (IA.B7)

Proof. Analogous to the proof of Proposition 2, we rewrite the innovation component of the opportunity
set dynamics as Σ1/2[Z,B]L, with L = [

√
1 − ρ′ρ, ρ1, ρ2, ρ3]

′. By definition, the market price of risk Θν

satisfies
Σ1/2ΘνL = µe , (IA.B8)

from which
Θν = Σ−1/2′

µeL′ + Y 1/2ν , (IA.B9)

where Σ−1/2 = SY 1/2 and ν is a 3×4 matrix-valued process such that νL = 03×1, that is ν = [−ν ρ√
1−ρ′ρ

, ν].

ν is a 3 × 3 matrix that prices the shocks that drive the Wishart state variable Y .
It turns out, that the value function can be written in the form:

J(x, Y0) = xγ inf
ν

1

1 − γ
E

[
ξν(T )

γ−1
γ

]γ
− 1

1 − γ
=

x1−γ Ĵ(0, Y0)
γ − 1

1 − γ
,

where

E

[
ξν(T )

γ−1
γ

]
= E

γ

[
e
−

γ−1
γ

R

T

0
r(s)ds+ 1−γ

2γ2 tr(
R

T

0
Σ(s)−1dsµeµe′+

R

T

0
Y (s)ds ν′ν(I3+

ρρ′

1−ρ′ρ
))
]

= E
γ

[
e
−

γ−1
γ

(r0+tr(
R

T

0
Y (s)dsD))+ 1−γ

2γ2 tr(
R

T

0
Y (s)ds(S′µeµe′S+ν′ν(I3+

ρρ′

1−ρ′ρ
))
]

, (IA.B10)

for a probability measure P γ defined by the density

dP γ

dP
= e

−tr

„

γ−1
γ

R

T

0
Θ′

ν(s)dB+ 1
2

(γ−1)2

γ2

R

T

0
Θ′

ν(s)Θν(s)ds

«

.

The dynamics of Y under the probability P γ are

dY (t) =

[
ΩΩ′ +

(
M − γ − 1

γ
Q′(ρµe′S + ν′)

)
Y (t) + Y (t)

(
M − γ − 1

γ
Q′(ρµe′S + ν′)

)′
]

dt

+ Y 1/2(t)dBγ(t)Q + Q′dB(t)γ ′
Y 1/2(t). (IA.B11)

These dynamics are affine in Y . It follows that the function Ĵ is a solution of the following HJB equation:

0 =
∂Ĵ

∂t
+ inf

ν

{
AĴ + Ĵ

[
−γ − 1

γ
(r0 + tr(Y D)) +

1 − γ

2γ2
tr

(
Y

(
S′µeµe′

S + ν′ν

(
I3 +

ρρ′

1 − ρ′ρ

)))]}
,

(IA.B12)

subject to the terminal condition Ĵ(T, Y ) = 1, where A is the infinitesimal generator of the matrix-valued
diffusion (IA.B11), which is given by

A = tr

((
ΩΩ′ +

(
M − γ − 1

γ
Q′(ρµe′S + ν′)

)
Y + Y

(
M − γ − 1

γ
Q′(ρµe′S + ν′)

)′
)
D
)

+ tr(2Y DQ′QD). (IA.B13)
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The generator is affine in Y . As in the proof of Proposition 2, the optimality condition for the optimal
control ν yields

ν = −γ

(
DĴ

Ĵ
+

DĴ ′

Ĵ

)
Q′

(
I3 +

ρρ′

1 − ρ′ρ

)−1

. (IA.B14)

Note that
(
I3 + ρρ′

1−ρ′ρ

)−1

= I3 − ρρ′. Substituting the expression for ν into equation (IA.B12), we

obtain the following partial differential equation for Ĵ :

− ∂Ĵ

∂t
= tr

((
ΩΩ′ +

(
M − γ − 1

γ
Q′ρµe′S

)
Y + Y

(
M − γ − 1

γ
Q′ρµe′S

)′
)
D + 2Y DQ′QD

)
Ĵ

+
γ − 1

γ
Ĵ

(
−r0 − tr(Y D) − tr(Y S′µeµe′

S)

2γ

)

− 1 − γ

2
Ĵ tr

(
(I3 − ρρ′)Y

(
DĴ

Ĵ
+

DĴ ′

Ĵ

)
Q′Q

(
DĴ

Ĵ
+

DĴ ′

Ĵ

)′)
,

subject to the boundary condition Ĵ(Σ, T ) = 1. The affine structure of this problem suggests an exponentially
affine functional form for its solution:

Ĵ(t,Σ) = exp(B(t, T ) + tr(A(t, T )Y ),

for some state-independent coefficients B(t, T ) and A(t, T ). After inserting this functional form into the

differential equation for Ĵ , the guess can be easily verified. The coefficients B and A are the solutions of the
following system of Riccati equations:

−dB

dt
= tr(AΩΩ′) − γ

γ − 1
r0,

−tr

(
dA

dt
Y

)
= tr

(
Γ′AY + AΓY + 2AQ′QAY − 1 − γ

2
(A′ + A)Q′(I3 − ρρ′)Q(A′ + A)Y + CY

)
,

with terminal conditions B(T, T ) = 0 and A(T, T ) = 03×3, where

Γ = M − γ − 1

γ
Q′ρµe′S (IA.B15)

C =
1 − γ

2γ2
S′µeµe′

S − 1 − γ

γ
D. (IA.B16)

Explicit solutions for B(t, T ) and A(t, T ) are computed as in the proof of Proposition 2. By the same
argument applied in the Proof of Proposition 3, the following equality must hold:

X∗(t) tr
([

π1 π2

]
Σ1/2dBL

)
= X∗(t) tr

(
1

γ
Θ′

ν∗dB +
DĴ ′

Ĵ

(
Y 1/2dBUQ + Q′U ′dB′Y

))
. (IA.B17)

where matrix U is given by

U =





0 0 0
1 0 0
0 1 0
0 0 1



 .

This implies

L
[
π1 π2

]
Σ1/2 =

1

γ

(
Lµe′Σ−1/2 + ν′Y 1/2

)
+ 2UQAY 1/2.

Pre-multiplying both sides by L′, post-multiplying them by Σ−1/2′

, and recalling that L′ν′ = 01×3 and
Σ−1/2 = SY 1/2, we conclude that portfolio weight π = (π1, π2)

′ is

π =
1

γ
Σ−1µe + 2Σ−1SAQ′ρ.
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This concludes the proof of Proposition IA.B1:. �

The optimal policy (IA.B7) consists of a myopic and an intertemporal hedging portfolio, which are both
proportional to the stochastic inverse covariance matrix. As noted by Chacko and Viceira (2005), in the
univariate setting the relative size of the hedging and myopic demands is independent of the current level of
volatility. This property also holds in the multivariate case, in the sense that both policies are proportional
to the inverse covariance matrix Σ−1.

We investigate the empirical implications of this specification in a scenario where, for simplicity, a
constant interest rate (D = 0) has been assumed. This setting is the exact multivariate extension of
the univariate model considered in Chacko and Viceira (2005). We use the same basic GMM estimation
procedure and the same data used for the empirical application in the main text,3 but we now apply it to
the information matrix Σ−1. The GMM moment restrictions for the variance-covariance matrix process are
replaced by those for the precision process, which is assumed to follow a Wishart diffusion process. Table
IA.BI, Panel A, presents estimation results for the model with a constant risk premium. Panel B summarizes
the estimated hedging demands.

Insert Table IA.BI about here

The myopic portfolio is time varying, via the variation of the inverse covariance matrix Σ−1. This time
variation is also partly reflected in the time variation of hedging demands. All in all, the absolute size
of total hedging demands is comparable to that obtained in the main text for a constant market price of
variance-covariance risk. For example, for a risk aversion parameter γ = 6 and an investment horizon of
T = 5 years, the average hedging demand is approximately 23% of the myopic portfolio. Similar demands
obtain for higher risk aversions and investment horizons.
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C. Discrete-time Solution and Portfolio Constraints

C.1 Discrete-time Solution

In our model, the optimal dynamic trading strategy is given by a portfolio that must be rebalanced con-
tinuously over time. In practice, this can at best be an approximation, because trading is only possible at
discrete trading dates. Moreover, transaction costs, liquidity constraints, or policy disclosure considerations
might further constrain investors from frequent portfolio rebalancing. Even if we do not model these fric-
tions explicitly in our setting, it is interesting to study the impact of discrete trading on the optimal hedging
strategy in the context of our model.

Several studies have found that, as long as the investment opportunity set does not contain derivatives,
the gains/losses of the optimal discrete-time portfolio policy with respect to a naively discretized continuous-
time policy are small. See, for instance, Campbell et al. (2004) and Branger, Breuer, and Schlag (2006). We
study whether similar conclusions hold in our multivariate portfolio choice setting. We consider the exact
discrete-time process implied by the continuous-time model (1) to (4) of the main text, in which observations
are generated at fixed, evenly spaced, points in time. The parameters of the continuous-time model have
been estimated by GMM using the exact discrete-time moments of this process. The moments are easily
obtainable in closed form for each sampling frequency because the Wishart process allows for aggregation
over time. By construction, the estimated parameters are then consistent with the discrete time transition
density of the process, which is the one relevant to study optimal portfolio choice in discrete-time.

The discrete-time portfolio choice problem does not allow for closed-form solutions. Therefore, we rely
on standard numerical methods to compute the optimal portfolio strategies. Table IA.CI presents the total
hedging demands in S&P500 Futures (π1) and Treasury Futures (π2), as fractions of the myopic demand.
The transition density used for the discrete time portfolio optimization is the one implied by the estimated
continuous time model with monthly returns, realized volatilities, and realized correlations.

Insert Table IA.CI about here

We focus on optimal portfolios that can be rebalanced monthly, but we also compute optimal strategies using
a weekly and daily rebalancing frequency in order to verify the convergence of our numerical solution to the
continuous-time portfolio problem solution. At a daily frequency, the hedging demands in the discrete-time
model are virtually indistinguishable from the continuous-time hedging demands reported in Table III of
the main text. Consistent with the findings in the literature, the discrete-time optimal hedging demands
for the monthly frequency are close to the hedging demands computed from the continuous-time model: the
mean absolute difference between the hedging demands using daily and monthly rebalancing is less than
10% of the hedging demand implied by a monthly rebalancing frequency. These findings suggest that the
main implications derived from the continuous-time multivariate portfolio choice solutions are realistic even
in the context of monthly rebalancing.

C.2 Portfolio Constraints

Portfolio constraints are useful to avoid unrealistic portfolio weights, which can potentially arise due to some
extreme assumptions on expected returns, volatilities, and correlations, or from inaccurate point estimates
of the model parameters. The empirical results of the previous sections can imply, for instance, levered
portfolios in settings of low risk aversion. For instance, for a relative risk aversion of γ = 2, the optimal
portfolio of an investor with horizon T = 5 years implies an investment of approximately 260% of the total
wealth in stocks and 170% in bonds. Intuitively, constraints on short selling or on the portfolio VaR tend
to constrain the investor from selecting optimal portfolios that are excessively levered. Therefore, it is
interesting to study these types of portfolio constraints and their impact on the volatility and correlation
hedging demands in our setting. We solve the discrete-time portfolio choice problem in the last section
and additionally impose, in two separate steps, short- selling and VaR constraints. In order to quantify the
correlation and volatility hedging components, we numerically compute the projection of the total hedging
demand on the implied elasticity of the indirect marginal utility of wealth with respect to volatilities and
covariances.

In the first exercise, we consider state-independent constraints on the optimal portfolio weights. For
every fraction πi of total wealth invested in the risky asset i, we first enforce a short-selling constraint
πi ≥ 0. In a second step, we also consider a less severe position limit πi ≥ −1. Table IA.CII presents the
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optimal volatility and covariance hedging demands implied by these two settings. Note that even in cases
where the current constraint might not be binding, the optimal hedging strategy is different from the one
implied by the unconstrained solution. This feature exists because the future opportunity set is restricted
by the fact that the constraint might be binding, with some probability, in the future. The indirect marginal
utility of wealth in the constrained problem depends on the strength of this effect. Therefore, the optimal
intertemporal hedging demand is different.

Insert Table IA.CII about here

Table IA.CII shows that the more severe the constraint is, the smaller are the absolute demands for volatility
and covariance hedging as a percent of the myopic portfolio. However, the impact of the constraint is quite
moderate, even in the short-selling case, and does not greatly influence the relative size of the hedging
demands against volatility and covariance risk across assets. For instance, for an investment horizon of
T = 10 years and a risk aversion of γ = 2, the average covariance (volatility) hedging demand is 10.5% (7%)
in the unconstrained case and 8.5% (6.5%) in the setting with short selling constraints. For a higher risk
aversion of γ = 8, the average covariance (volatility) hedging demand is 13.25% (10.25%) in the unconstrained
case and 10.75% (9%) in the setting with short-selling constraints. These findings are consistent with the
state-independent nature of the constraint used, which is not a function of the conditional covariance matrix
of returns. The slightly larger percentage decrease in the hedging demands of low risk-aversion investors in
the constrained case is mainly due to their large myopic demands in the unconstrained portfolio problem.

The results are different when we study the effects of (state-dependent) VaR constraints. At each trading
date, we impose a constant upper bound on the VaR of the optimally invested wealth at the next trading
date. We use a VaR at a confidence level of 99%. Since the VaR is computed for a monthly rebalancing
frequency and investment horizons longer than one month, the VaR constraint is dynamically updated, as
in Cuoco, He, and Isaenko (2008). Table IA.CIII summarizes our findings for the optimal VaR-constrained
portfolios. For computational tractability of our numerical solutions, we focus on investment horizons up to
T = 2 years.

Insert Table IA.CIII about here

The VaR constraint has a more significant effect on the optimal portfolios of investors with low risk aversion,
which are those with the largest exposure to risky assets in the unconstrained setting. For instance, for a risk
aversion coefficient of γ = 2 and an investment horizon of T = 2 years, the mean total allocation to stocks
(bonds) shrinks from approximately 250% (160%) to about 175% (115%) of the total wealth. At the same
time, the relative importance of the covariance hedging demand increases: even for a moderate investment
horizon of T = 2 years and a low risk aversion of γ = 2, the correlation and volatility hedging demands
are on average 11% and 7% of the myopic portfolio, respectively. With the same choice of parameters, the
corresponding hedging demands in the unconstrained case are 7.7% and 10.7%, respectively. For a higher
risk aversion of γ = 8 and the same investment horizon, the covariance hedging demand is on average about
11% of the myopic portfolio both in the VaR-constrained and VaR-unconstrained cases.

The VaR-constrained investor dislikes more volatile or extreme portfolio values than the unconstrained
agent does, since (ceteris paribus) the VaR constraint becomes more restrictive when the volatility on the op-
timally invested portfolio increases. It follows that the investor is more concerned about the total volatility of
the portfolio, which can cause the VaR constraint to be hit with a probability that is too large. Therefore, the
VaR-constrained investor reduces the size of the myopic demand. Furthermore, since changes in correlation
have a first-order impact on the VaR of the portfolio, the investor increases the covariance hedging demand,
exploiting the spanning properties of the risky assets. Thus, in this setting, which is relevant for institutions
subject to capital requirement or for asset managers with self-imposed risk management constraints, the
impact of covariance risk is economically significant.
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D. Additional Empirical Results

Figure IA.D1. The Effect of the Investment Horizon

Figure IA.D1 reports intertemporal hedging demands for the S&P500 Index futures and the 30-year Trea-
sury futures, as functions of the investment horizon, using the GMM parameter estimates for the underlying
opportunity set dynamics reported in Table I of the main text.

Figure IA.D2. The Effect of the Risk Aversion Parameter

Figure IA.D2 plots hedging demands as a function of the coefficient of Relative Risk Aversion.

Table IA.DI. Estimation Results for Univariate Stochastic Volatility Models

We compare the portfolio implications of our setting with those of univariate portfolio choice models with
stochastic volatility; see Heston (1993) and Liu (2001), among others. These models are nested in our setting
in the special case in which the dimension of the investment opportunity set is set equal to one. For each
risky asset in our data set, we estimate these univariate stochastic volatility models by GMM. The moment
restrictions employed are the univariate counterpart of the moment conditions used in the estimation of the
multivariate model. Panel A of Table IA.DI presents parameter estimates, whereas Panel B reports the
estimated volatility hedging demands as a percentage of the myopic portfolio.

Table IA.DII. Estimation Results for Model with Three Risky Assets

Using GMM we estimate the three-dimensional version of model (1) to (4) in the main text obtained by
including also the Nikkei225 Index futures contract in the opportunity set consisting of the S&P500 futures
and the 30-year Treasury futures contracts. We use monthly time series of returns, realized volatilities, and
realized covariances for these three risky assets. GMM moment restrictions are obtained in closed form as for
the bivariate case above using the properties of the Wishart process. It is also straightforward to extend the
proofs of Propositions 2 and 3 in the main text to cover the general setting with n risky assets. With these
results, we compute the estimated optimal portfolios for the model with three risky assets. Table IA.DII,
Panel A, presents the results of our GMM model estimation. The implied hedging demands for covariance
and pure volatility hedging on each asset are given in Panel B.

Table IA.DIII. Estimation Results for Model with Two Risky Assets Using Daily Data

Table IA.DIII reports estimates for the parameters of model (1) to (4) in the main text, obtained with
daily data and using the GMM procedure discussed in Internet Appendix A.

Table IA.DIV. Optimal Hedging Demands with Two Risky Assets Using Weekly Data

Table IA.DIV reports estimated optimal covariance and volatility hedging demands obtained using the weekly
parameter estimates reported in Table I of the main text.
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Notes

1In this way, local asymmetries in the covariance matrix dynamics can be introduced in
the model. To model asymmetric correlations across regimes, Ang and Bekaert (2002) use
an i.i.d. regime-switching setting, in which one of the regimes is characterized by greater
correlations and volatilities.

2A possible choice for S is a 2 × 3 selection matrix, for example,

S =

[
1 0 0
0 1 0

]
.

In this case, SS ′ = id2×2 and SY S ′ is the 2 × 2 upper diagonal sub-block of Y .
3Discussed in Internet Appendix B.
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Table IA.BI

Estimation Results and Hedging Demands for the Model with Constant Risk Premia

Panel A: We report parameter estimates, Hansen’s statistics, and hedging demands for the following model specifica-
tion:

dS(t) = IS µ dt + IS Y −1/2(t)(dB(t)ρ +
p

1 − ρ′ρ dZ(t))

dY (t) =
ˆ

ΩΩ′ + MY (t) + Y (t)M ′
˜

dt + Y 1/2(t)dB(t)Q + Q′dB(t)′Y 1/2(t),

S(t) is the two-dimensional vector of the prices of S&P500 Index and 30-year Treasury bond futures. µ is a bivariate
vector of constants and the interest rate r is also constant. Y (t) models the information matrix Σ(t)−1 and follows a
Wishart diffusion. B(t) is a 2×2 matrix of standard Brownian motions and Z(t) is a 2×1 vector of Brownian motions
independent of B(t). Vector ρ and matrices M and Q are the remaining model parameters. Parameters are estimated
with the same GMM methodology outlined in Internet Appendix A, that is now applied to the information matrix
Y = Σ−1 sampled at a monthly frequency. An asterisk denotes parameter estimates that are not significant at the 5%
significance level. Panel B: Optimal hedging demands in percentages of the myopic portfolio are given for different
investment horizons and relative risk aversion parameters. Each entry of the array of Panel B is a two-dimensional
vector, the first component of which is the hedging demand for the S&P500 Index futures, while the second one is the
hedging demand for the 30-year Treasury futures.

Panel A

M Q ρ µ

point estimates

(standard errors)

−0.149 0.114∗

(0.074) (0.081)

0.070 −0.112
(0.036) (0.055)

0.706 0.494∗

(0.34) (0.312)

0.806 0.641∗

(0.371) (0.591)

0.381
(0.161)

0.392
(0.189)

0.0616
(0.008)

0.0114
(0.0009)

p-value for

Hansen’s J-test
0.254

Panel B

RRA T 3m 6m 1y 2y 5y 7y 10y

2 −0.034
−0.036

−0.061
−0.053

−0.111
−0.095

−0.151
−0.135

−0.172
−0.144

−0.173
−0.145

−0.174
−0.146

6 −0.049
−0.048

−0.105
−0.090

−0.175
−0.160

−0.240
−0.207

−0.251
−0.213

−0.252
−0.214

−0.253
−0.214

8 −0.057
−0.053

−0.115
−0.104

−0.182
−0.164

−0.258
−0.212

−0.262
−0.224

−0.263
−0.224

−0.264
−0.224

11 −0.061
−0.055

−0.119
−0.108

−0.189
−0.170

−0.260
−0.219

−0.263
−0.228

−0.264
−0.229

−0.265
−0.230

16 −0.063
−0.063

−0.120
−0.110

−0.190
−0.171

−0.261
−0.220

−0.270
−0.230

−0.271
−0.231

−0.271
−0.231

21 −0.065
−0.064

−0.121
−0.111

−0.191
−0.172

−0.262
−0.221

−0.272
−0.231

−0.273
−0.232

−0.273
−0.232

41 −0.065
−0.065

−0.121
−0.112

−0.192
−0.173

−0.262
−0.221

−0.273
−0.233

−0.274
−0.235

−0.275
−0.236
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Table IA.CI

Optimal Hedging Demands in the Discrete-Time Model

Using standard numerical dynamic programming methods, we compute optimal hedging demands in per-
centages of the myopic portfolio for the exact discretization of the continuous-time model (1) to (4) of the
main text, for different investment horizons and relative risk aversion parameters. The parameters used to
compute the exact discrete-time transition density of the model are the monthly estimates in Table II of
the main text. We compute optimal discrete-time hedging demands for a daily (d), a weekly (w), and a
monthly (m) rebalancing frequency, and denote by π1 and π2 the hedging demands for the S&P500 Index
and the 30-year Treasury bond futures, respectively.

RRA T 3m 6m 1y 2y

2

π1 π2

d 0.0304 0.0344
w 0.0295 0.0401
m 0.0291 0.0449

π1 π2

d 0.0541 0.0650
w 0.0561 0.0702
m 0.0570 0.0759

π1 π2

d 0.0910 0.1151
w 0.0917 0.1189
m 0.0918 0.1240

π1 π2

d 0.1250 0.1661
w 0.1243 0.1715
m 0.1248 0.1879

8

π1 π2

d 0.0525 0.0589
w 0.0515 0.0605
m 0.0525 0.0632

π1 π2

d 0.0972 0.1123
w 0.1021 0.1162
m 0.1078 0.1208

π1 π2

d 0.1550 0.1915
w 0.1545 0.1955
m 0.1533 0.1803

π1 π2

d 0.1975 0.2543
w 0.1969 0.2636
m 0.1966 0.2566

21

π1 π2

d 0.0573 0.0640
w 0.0569 0.0641
m 0.0580 0.0665

π1 π2

d 0.1069 0.1209
w 0.1134 0.1259
m 0.1266 0.1365

π1 π2

d 0.1686 0.2045
w 0.1705 0.2078
m 0.1761 0.1993

π1 π2

d 0.2111 0.2685
w 0.2099 0.2645
m 0.2076 0.2705
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Table IA.CII

Optimal Hedging Demands in the Discrete-time Model with Short-selling Constraints

Using standard numerical dynamic programming methods, we compute optimal hedging demands as a percentage of the myopic portfolio for the exact discretization of the
continuous-time model (1) to (4) of the main text, when short-selling constraints are applied, for different investment horizons and relative risk aversion parameters. The
parameters used to compute the exact discrete-time transition density of the model are the monthly estimates in Table II of the main text, and the rebalancing frequency is
monthly. We denote by π1 and π2 the hedging demands for the S&P500 Index and the 30-year Treasury bond futures, respectively, and distinguish the cases u, c1, and c2
corresponding to the unconstrained solution, the solution for a position limit of the form π ≥ −1, and the solution in the short-selling constrained case (π ≥ 0), respectively.
Total hedging demands are decomposed into covariance and volatility hedging components by means of a cross-sectional regression of simulated hedging demands on the
wealth-scaled ratios of simulated indirect marginal utilities of covariance and variances.

Covariance hedging
RRA T 3m 6m 1y 2y 5y 7y 10y

2

π1 π2

u 0.0071 0.0352
c1 0.0081 0.0254
c2 0.0054 0.0253

π1 π2

u 0.0168 0.0521
c1 0.0154 0.0448
c2 0.0136 0.0387

π1 π2

u 0.0319 0.0814
c1 0.0298 0.0695
c2 0.0283 0.0591

π1 π2

u 0.0406 0.1281
c1 0.0393 0.1280
c2 0.0385 0.0932

π1 π2

u 0.0512 0.1293
c1 0.0515 0.1091
c2 0.0486 0.1043

π1 π2

u 0.0571 0.1382
c1 0.0528 0.1125
c2 0.0513 0.1084

π1 π2

u 0.0562 0.1394
c1 0.0498 0.1121
c2 0.0514 0.1089

8

π1 π2

u 0.0140 0.0435
c1 0.0100 0.0322
c2 0.0084 0.0316

π1 π2

u 0.0298 0.0924
c1 0.0291 0.0812
c2 0.0215 0.0760

π1 π2

u 0.0452 0.1244
c1 0.0425 0.1021
c2 0.0392 0.0951

π1 π2

u 0.0619 0.1859
c1 0.0592 0.1635
c2 0.0496 0.1486

π1 π2

u 0.0603 0.1924
c1 0.0532 0.1765
c2 0.0524 0.1522

π1 π2

u 0.0612 0.1929
c1 0.0581 0.1818
c2 0.0525 0.1533

π1 π2

u 0.0612 0.1929
c1 0.0581 0.1819
c2 0.0525 0.1534

21

π1 π2

u 0.0165 0.0484
c1 0.0139 0.0491
c2 0.0125 0.0367

π1 π2

u 0.0371 0.0842
c1 0.0363 0.0715
c2 0.0342 0.0683

π1 π2

u 0.0510 0.1328
c1 0.0481 0.1296
c2 0.0413 0.1198

π1 π2

u 0.0671 0.1828
c1 0.0623 0.1768
c2 0.0556 0.1541

π1 π2

u 0.0651 0.1985
c1 0.0632 0.1812
c2 0.0561 0.1599

π1 π2

u 0.0662 0.2001
c1 0.0679 0.1858
c2 0.0588 0.1615

π1 π2

u 0.0679 0.2003
c1 0.0679 0.1858
c2 0.0588 0.1615

Volatility hedging
RRA T 3m 6m 1y 2y 5y 7y 10y

2

π1 π2

u 0.0198 0.0076
c1 0.0171 0.0074
c2 0.0151 0.0067

π1 π2

u 0.0381 0.0190
c1 0.0342 0.0185
c2 0.0284 0.0183

π1 π2

u 0.0578 0.0330
c1 0.0538 0.0325
c2 0.0478 0.0318

π1 π2

u 0.0790 0.0459
c1 0.0750 0.0455
c2 0.0690 0.0420

π1 π2

u 0.0801 0.0588
c1 0.0765 0.0581
c2 0.0711 0.0571

π1 π2

u 0.0802 0.0589
c1 0.0766 0.0583
c2 0.0712 0.0572

π1 π2

u 0.0803 0.0591
c1 0.0766 0.0583
c2 0.0714 0.0574

8

π1 π2

u 0.0354 0.0131
c1 0.0321 0.0118
c2 0.0290 0.0111

π1 π2

u 0.0755 0.0254
c1 0.0712 0.0252
c2 0.0673 0.0250

π1 π2

u 0.1031 0.0499
c1 0.0945 0.0489
c2 0.0891 0.0451

π1 π2

u 0.1287 0.0655
c1 0.1189 0.0631
c2 0.1121 0.0612

π1 π2

u 0.1344 0.0698
c1 0.1255 0.0677
c2 0.1150 0.0633

π1 π2

u 0.1345 0.0700
c1 0.1255 0.0677
c2 0.1150 0.0633

π1 π2

u 0.1345 0.0700
c1 0.1255 0.0677
c2 0.1150 0.0633

21

π1 π2

u 0.0389 0.0154
c1 0.0366 0.0149
c2 0.0312 0.0143

π1 π2

u 0.0711 0.0294
c1 0.0657 0.0291
c2 0.0621 0.0281

π1 π2

u 0.1201 0.0525
c1 0.1088 0.0523
c2 0.1061 0.0511

π1 π2

u 0.1375 0.0705
c1 0.1301 0.0701
c2 0.1145 0.0671

π1 π2

u 0.1439 0.0710
c1 0.1354 0.0704
c2 0.1201 0.0691

π1 π2

u 0.1439 0.0710
c1 0.1354 0.0704
c2 0.1201 0.0691

π1 π2

u 0.1439 0.0710
c1 0.1354 0.0704
c2 0.1201 0.0691
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Table IA.CIII

Optimal Hedging Demands in the Discrete-time Model with VaR constraints

This table reports optimal VaR-constrained volatility and covariance hedging demands in percentages of the myopic
portfolio for the exact discretization of the continuous-time model (1) to (4) of the main text, as a function of different
investment horizons and relative risk aversion parameters. The parameters used to compute the exact discrete-time
transition density of the model are the monthly estimates in Table II of the main text, and the rebalancing frequency
is monthly. As in Cuoco, He, and Isaenko (2008), the VaR constraint is updated at each trading date, by imposing
a constant upper bound on the 99%-VaR of next-trading-date wealth. Total hedging demands are decomposed into
covariance and volatility hedging components by means of a cross-sectional regression of simulated hedging demands
on the wealth-scaled ratios of simulated indirect marginal utilities of variances and covariances. Each entry of the two
arrays in the table is a two-dimensional vector, the first component of which is the hedging demand for the S&P500
Index futures, while the second one is the hedging demand for the 30-year Treasury bond futures.

Volatility Hedging Covariance Hedging

RRA T 3m 6m 1y 2y

2
0.023
0.014

0.048
0.026

0.064
0.040

0.086
0.058

8
0.028
0.019

0.052
0.031

0.069
0.045

0.092
0.061

21
0.031
0.023

0.055
0.032

0.072
0.047

0.095
0.062

RRA T 3m 6m 1y 2y

2
0.019
0.043

0.035
0.073

0.048
0.101

0.069
0.130

8
0.021
0.046

0.041
0.081

0.051
0.102

0.082
0.138

21
0.032
0.059

0.052
0.097

0.072
0.121

0.082
0.149

16



0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

Investment horizon (years)

T
o
ta

l 
h
e
d
g
in

g
 d

e
m

a
n
d

Panel 1: total hedging demands
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Panel 2: covariance and volatility hedging demands

Figure IA.D1. The effect of the investment horizon. Panel 1: Total hedging demands for the S&P500
Index futures (solid line) and 30-year Treasury futures (dotted line) as a percentage of the Merton myopic portfolio
are plotted as a function of the investment horizon (in years). These hedging demands are computed using the
monthly parameter estimates in Table I of the main text, for a relative risk aversion parameter of γ = 6. Panel 2:
Volatility hedging and covariance hedging demands for the 30-year Treasury bond futures (dotted and solid lines,
respectively) and the S&P500 Index futures (dashed and dashed-dotted lines, respectively) are plotted as functions
of the investment horizon (in years). Both hedging demands are expressed as a percentage of the Merton myopic
portfolio. The same parameters as for Panel 1 are used to computed them.
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Panel 3: total hedging demands (absolute weights)
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Figure IA.D2. The effect of the risk aversion parameter. Panel 1: Total hedging demands for the S&P500
Index futures (solid line) and 30-year Treasury futures (dotted line) as a percentage of the Merton myopic portfolio are
plotted as functions of the relative risk aversion coefficient for a fixed investment horizon of five years. To compute
these policies, we use the monthly parameters estimates in Table I of the main text. Panel 2: Volatility hedging
and covariance hedging demands for the 30-year Treasury bond futures (dotted and solid lines, respectively) and
the S&P500 Index futures (dashed and dashed-dotted lines, respectively) as a percentages of the Merton myopic
portfolio are plotted as functions of the relative risk aversion coefficient. The same parameters as in Panel 1 are used
to compute these policies. Panel 3: Same plots as in Panel 1, but with percentage hedging demands replaced by
actual hedging portfolio weights. Panel 4: Total portfolio weights for covariance hedging (solid line) and for volatility
hedging (dotted line), aggregated over risky assets, are plotted as functions of the Relative risk aversion parameter.
The same parameters as in Panel 1 are used to compute these policies.
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Table IA.DI

Estimation Results and Hedging Demands for Univariate Stochastic Volatility Models

Panel A: We report point estimates and standard errors (in parentheses) for the parameters of the following univariate
stochastic volatility model:

dSt = St(r + λσ2
t )dt + σt(ρdWt +

p

1 − ρ2dZt)

dσ2
t = (k b2 + 2 m σ2

t )dt + 2 b σtdWt. (1T)

St is the futures price of either the S&P500 futures, the 30-year Treasury bond futures, or the Nikkei 225 Index futures.
σt is the stochastic volatility process of returns, modeled by a Heston (1993)-type model. Wt and Zt are independent
scalar Brownian motions and (k, λ, ρ, b, m) is the vector of parameters of interest. We estimate model (1T) by GMM
using monthly time series of returns and realized volatilities for the S&P500 futures, 30-year Treasury bond futures,
and Nikkei 225 Index futures returns. Panel B: We compute optimal (volatility) hedging demands for the univariate
stochastic volatility model (1T), as a percentage of the myopic portfolio, using the parameter estimates in Panel A and
for different investment horizons and relative risk aversion coefficients. The last column reports optimal myopic demands.
The notation S&P500, Trea, and Nik225 corresponds to the hedging demands in the univariate models for the S&P500
Index futures, the 30-year Treasury Bond futures, and the Nikkei225 Index futures, respectively.

Panel A

k m b ρ λ

S&P500 1.18
(0.36)

−2.39
(0.42)

0.36
(0.08)

−0.88
(0.05)

0.72
(0.21)

Treasury 2.45
(0.84)

−2.10
(0.24)

0.29
(0.07)

−0.56
(0.04)

1.05
(0.34)

Nikkei 4.33
(1.16)

−2.82
(0.55)

−0.28
(0.08)

−0.67
(0.19)

0.64
(0.19)

Panel B

RRA T 6m 1y 5y 10y
Myopic
demand

2
S&P500 0.022
Trea 0.018
Nik225 0.012

S&P500 0.025
Trea 0.021
Nik225 0.019

S&P500 0.027
Trea 0.023
Nik225 0.023

S&P500 0.027
Trea 0.024
Nik225 0.025

S&P500 0.360
Trea 0.525
Nik225 0.320

4
S&P500 0.034
Trea 0.028
Nik225 0.016

S&P500 0.038
Trea 0.032
Nik225 0.021

S&P500 0.041
Trea 0.034
Nik225 0.031

S&P500 0.041
Trea 0.034
Nik225 0.033

S&P500 0.180
Trea 0.262
Nik225 0.160

8
S&P500 0.041
Trea 0.033
Nik225 0.019

S&P500 0.045
Trea 0.038
Nik225 0.025

S&P500 0.048
Trea 0.040
Nik225 0.036

S&P500 0.048
Trea 0.040
Nik225 0.038

S&P500 0.090
Trea 0.131
Nik225 0.080
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Table IA.DII

Estimation Results and Hedging Demands for the Model with 3 Risky Assets

We present parameter estimates, Hansen’s statistics and optimal hedging demands for model (1)-(4) with 3 risky
assets. Panel A: We report parameter estimates for M , Q, λ and ρ (with standard errors in parentheses) in the
returns dynamics (1)-(4), where ΩΩ′ = kQQ′ for k = 10. The parameters are estimated using monthly returns,
realized volatilities and correlations of S&P 500 index, 30-year US Treasury bond, and Nikkei 225 index future returns
sampled at a monthly frequency. The GMM estimation procedure is similar to the one used to estimate the bivariate
model and detailed moment restrictions are given in Internet Appendix A. Parameters that are not significant at
the 5% significance level are marked with an asterisk. Panel B: We report optimal covariance and volatility hedging
demands in percentage of the myopic portfolio. Each entry of the array in Panel B consists of three components, the
first of which is the demand for the S&P500 Index Futures, the second one the demand for the 30-year Treasury bond
Futures and the third one the demand for the Nikkei 225 Index Futures, respectively.

Panel A

M Q ρ λ

point estimates
(standard errors)

−0.762 −0.251∗ 0.390
(0.293) (0.162) (0.180)

0.511 −0.872 0.120∗

(0.240) (0.281) (0.110)

0.286∗ 0.425 −0.968
(0.153) (0.212) (0.394)

0.005∗ 0.064 0.069∗

(0.060) (0.029) (0.051)

0.059∗ 0.105∗ 0.060∗

(0.048) (0.074) (0.100)

0.070 0.055 0.004∗

(0.033) (0.022) (0.180)

−0.210
(0.090)

−0.230∗

(0.140)

−0.170
(0.075)

2.482
(0.380)

2.327
(0.490)

1.561
(0.160)

p-value for
Hansen’s J-test 0.115

Panel B

Volatility Hedging

RRA T 3m 6m 1y 2y 5y 7y 10y 20y Myopic
demand

2
0.005
0.007
0.004

0.009
0.011
0.008

0.017
0.016
0.014

0.027
0.020
0.023

0.034
0.021
0.029

0.035
0.021
0.030

0.035
0.021
0.030

0.035
0.021
0.030

1.2410
1.1635
0.7805

6
0.014
0.019
0.013

0.028
0.033
0.025

0.051
0.050
0.044

0.077
0.059
0.065

0.090
0.061
0.076

0.091
0.061
0.077

0.091
0.061
0.077

0.091
0.061
0.077

0.4137
0.3878
0.2602

8
0.018
0.026
0.018

0.037
0.045
0.034

0.066
0.065
0.059

0.097
0.076
0.083

0.110
0.078
0.093

0.110
0.078
0.094

0.110
0.078
0.094

0.110
0.078
0.094

0.3103
0.2909
0.1951

11
0.025
0.036
0.025

0.050
0.061
0.046

0.088
0.087
0.077

0.123
0.100
0.105

0.134
0.101
0.114

0.134
0.101
0.114

0.135
0.101
0.115

0.135
0.101
0.115

0.2256
0.2115
0.1419

16
0.037
0.052
0.035

0.071
0.087
0.065

0.122
0.121
0.106

0.158
0.133
0.136

0.167
0.134
0.143

0.167
0.134
0.144

0.167
0.134
0.144

0.167
0.134
0.144

0.1551
0.1454
0.0976

21
0.048
0.068
0.047

0.092
0.113
0.085

0.150
0.152
0.132

0.187
0.163
0.161

0.194
0.164
0.167

0.194
0.164
0.167

0.194
0.164
0.167

0.194
0.164
0.167

0.1182
0.1108
0.0743

41
0.092
0.130
0.090

0.166
0.200
0.153

0.242
0.250
0.215

0.275
0.260
0.237

0.278
0.260
0.240

0.279
0.260
0.240

0.279
0.260
0.240

0.279
0.260
0.240

0.0605
0.0568
0.0381

Covariance Hedging

RRA T 3m 6m 1y 2y 5y 7y 10y 20y
Myopic
demand

2
0.010
0.004
0.008

0.017
0.008
0.016

0.030
0.013
0.029

0.041
0.019
0.042

0.046
0.021
0.048

0.048
0.022
0.048

0.048
0.022
0.049

0.049
0.022
0.049

1.2410
1.1635
0.7805

6
0.029
0.013
0.026

0.050
0.025
0.046

0.087
0.041
0.079

0.117
0.058
0.114

0.125
0.061
0.133

0.130
0.065
0.138

0.130
0.065
0.138

0.130
0.065
0.138

0.4137
0.3878
0.2602

8
0.041
0.016
0.031

0.068
0.031
0.061

0.119
0.051
0.102

0.151
0.068
0.148

0.163
0.072
0.159

0.163
0.073
0.159

0.164
0.073
0.160

0.164
0.073
0.160

0.3103
0.2909
0.1951

11
0.054
0.022
0.044

0.102
0.040
0.085

0.158
0.071
0.144

0.182
0.087
0.184

0.195
0.094
0.191

0.195
0.095
0.191

0.196
0.096
0.192

0.196
0.096
0.192

0.2256
0.2115
0.1419

16
0.078
0.031
0.063

0.138
0.062
0.122

0.211
0.098
0.196

0.253
0.125
0.247

0.265
0.128
0.247

0.267
0.130
0.268

0.267
0.130
0.268

0.268
0.132
0.270

0.1551
0.1454
0.0976

21
0.095
0.041
0.082

0.178
0.083
0.159

0.269
0.128
0.251

0.291
0.145
0.310

0.310
0.152
0.321

0.310
0.154
0.322

0.310
0.154
0.322

0.310
0.154
0.323

0.1182
0.1108
0.0743

41
0.172
0.081
0.167

0.331
0.159
0.271

0.422
0.193
0.391

0.450
0.205
0.431

0.451
0.206
0.432

0.451
0.206
0.432

0.451
0.206
0.432

0.451
0.206
0.432

0.0605
0.0568
0.0381
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Table IA.DIII

Estimation Results for the Model with Two Risky Assets Using Daily Data

This table shows estimated matrices M and Q and vectors λ and ρ for the returns dynamics (1) in the
main text, under the Wishart variance covariance diffusion process:

dΣ(t) = (ΩΩ′ + MΣ(t) + Σ(t)M ′)dt + Σ1/2(t)dB(t)Q + Q′dB(t)′Σ1/2(t),

where ΩΩ′ = kQ′Q and k = 10. Parameters are estimated by GMM using time series of returns and realized
variance-covariance matrices for S&P 500 Index and 30-year Treasury bond futures returns, computed for
a daily frequency. The detailed set of moment restrictions used for GMM estimation is given in Internet
Appendix A. We report parameter estimates and their standard errors (in parentheses), together with the
p-values for Hansen’s J-test of overidentifying restrictions.

M Q λ ρ

point estimates

(p-values)

−1.098 0.42
(0.0002) (0.001)

0.21 −1.58
(0.002) (0.0035)

−0.16 0.028
(0.01) (0.3435)

0.0049 0.103
(0.4534) (0.024)

4.89
(0.03)

5.54
(0.04)

0.1296
(0.0035)

−0.24
(0.0121)

p-value for

Hansen’s J-test
0.03
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Table IA.DIV

Optimal Hedging Demands in the Model with Two Risky Assets Using Weekly Data

This table shows optimal covariance and volatility hedging demands as a percentage of the myopic
portfolio, for different investment horizons and relative risk aversion parameters. The last column
of each panel reports the myopic portfolio. We compute these demands for the weekly parameters
estimates reported in Table I of the main text. Each entry in the table is a vector with two components,
nemely the demand for the S&P500 Index futures and the demand for the 30-year Treasury futures.

Covariance Hedging

RRA T 3m 6m 1y 2y 5y 7y 10y
Myopic
demand

2 0.0186
0.0121

0.0310
0.0202

0.0441
0.0290

0.0512
0.0334

0.0523
0.0342

0.0523
0.0342

0.0523
0.0342

2.3610
1.6585

6 0.0311
0.0203

0.0520
0.0340

0.0732
0.0480

0.0835
0.0541

0.0848
0.0554

0.0848
0.0555

0.0848
0.0555

0.7870
0.5528

8 0.0327
0.0214

0.0545
0.0357

0.0768
0.0502

0.0874
0.0571

0.0888
0.0580

0.0888
0.0580

0.0888
0.0580

0.5903
0.4146

11 0.0340
0.0222

0.0568
0.0371

0.0797
0.0521

0.0906
0.0592

0.0920
0.0610

0.0920
0.0610

0.0920
0.0610

0.4293
0.3015

16 0.0351
0.0229

0.0586
0.0383

0.0822
0.0537

0.0933
0.0618

0.0947
0.0621

0.0947
0.0621

0.0947
0.0621

0.2951
0.2073

21 0.0359
0.0233

0.0595
0.0389

0.0835
0.0545

0.0947
0.0623

0.0961
0.0626

0.0961
0.0626

0.0961
0.0626

0.2249
0.1580

41 0.0366
0.0239

0.0610
0.0400

0.0855
0.0556

0.0969
0.0633

0.0983
0.0642

0.0985
0.0642

0.0985
0.0642

0.1152
0.0809

Volatility Hedging

RRA T 3m 6m 1y 2y 5y 7y 10y
Myopic
demand

2 0.0116
0.0194

0.0188
0.0336

0.0256
0.0500

0.0289
0.0599

0.0294
0.0617

0.0294
0.0617

0.0294
0.0617

2.3610
1.6585

6 0.0195
0.0327

0.0314
0.0564

0.0425
0.0830

0.0477
0.0977

0.0477
0.0999

0.0477
0.0999

0.0477
0.0999

0.7870
0.5528

8 0.0205
0.0343

0.0330
0.0593

0.0446
0.0871

0.0494
0.1023

0.0500
0.1046

0.0500
0.1046

0.0500
0.1046

0.5903
0.4146

11 0.0213
0.0357

0.0343
0.0617

0.0463
0.0905

0.0513
0.1061

0.0518
0.1084

0.0518
0.1084

0.0518
0.1084

0.4293
0.3015

16 0.0219
0.0368

0.0354
0.0636

0.0477
0.0933

0.0528
0.1092

0.0533
0.1105

0.0533
0.1105

0.0533
0.1105

0.2951
0.2073

21 0.0223
0.0374

0.0360
0.0647

0.0484
0.0947

0.0536
0.1108

0.0541
0.1132

0.0541
0.1132

0.0541
0.1132

0.2249
0.1580

41 0.0229
0.0384

0.0369
0.0663

0.0496
0.0970

0.0548
0.1134

0.0554
0.1157

0.0554
0.1157

0.0554
0.1157

0.1152
0.0809
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