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ABSTRACT

Efficiency measurement in public transport requis adequate account of
unobserved network characteristics that are tyfgicabdeled as factors separable from
the production process. This paper proposes a miatal model that allows for non-
separable firm-specific heterogeneity in an inpstathce function. The proposed model
is applied to a sample of German and Swiss urlzarsitrcompanies operating from 1991
to 2006. The results underline the presence ofsaparable unobserved factors and their
effects on technological characteristics such &srnme to scale. Moreover, the data
suggest that the effect of time-invariant heteregggncould be significantly greater than

technical inefficiency.
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1.0 Introduction

Following the explosive growth of subsidy requirense for public transport
services in the 1970s and 1980s, several Europesermgments have gradually
introduced regulatory reforms in their local trangpsectors. Most of these countries, in
line with the EU directives, have adopted a contipetitendering procedure for the
assignment of franchised monopolies to local serpioviders. Competitive tendering is
expected to induce relatively strong incentives faost efficiency. However, as
documented in several studies (Toner, 2001; Boiaa Cambini, 2002; Cambini and
Filippini, 2003) these procedures have experiengexhy implementation obstacles
resulting in a tendency toward auctioning smallwoeks with suboptimal scale and
density as well as potential collusion among theders. An alternative approach would
be incentive regulation schemes, such as yardstckpetition or performance based
contracts. These schemes are based on benchmarking analysists and/or quality to
determine the transfers and prices.

In Switzerland and Germany competitive tendering l@en introduced but remains
limited to certain areas.Nevertheless, regional authorities have been sisog the
possibility of adopting high-powered contracts lohsm yardstick competition as in
Shleifer (1985). In this context benchmarking namektimating companies’ productive
efficiency could be used as a complementary commgitument in determining subsidies

and prices. However, given the observed sensitivity of bendtking methods, the

! For a general discussion on these two approackesDemsetz (1968), Laffont and Tirole (1993),
Klemperer (1999), Hensher (2007) and Hensher aadI&t (2003). In particular, the latter two studies
have shown that performance based contracts cah eegreater social surplus than competitive tenger

2 These include Swiss rural areas, one German ($iesse) and only a few large German cities (Hamburg
and Munich). In most other cases, particularlySwiss urban areas, concessions are granted to sum
providers without any risk of competitive tendering

3 For an application of yardstick competition in trensport sector see Dalen and Gomez-Lobo (2003).



reliability of efficiency estimates depends on a@eguate modeling of firms’ unobserved
heterogeneity.

Since urban transit companies operate in diffenetvorks and environments, and
provide urban passenger services using a dives$itsehicles (bus, tramway, light rail,
etc.) there are a great number of factors thattaffe production process. Benchmarking
methods have been subject to a strong criticisnmlgnaecause many of these firm-level
differences are not usually observed by the andlysteover, certain characteristics such
as network shape and complexity remain omitted ftbexmodels because they are not
easily measurable by single factors amenable tehyearking techniques. Therefore,
unobserved firm heterogeneity is inevitably an in@at part of measuring efficiency in
public transport.

Thus, our main objective is to derive and applyappropriate Stochastic Frontier
(SF) model, which is able to capture firm-specifiiobserved heterogeneity using panel
data. In recent SF panel data models such as G(260d, 2005a,b) unobserved firm-
specific heterogeneity is mainly modeled as antagdstochastic factor represented by
conventional fixed or random effects. Within thiarhework the unobserved factors are
considered as separable factors from the produgtiocess. In this paper, we argue that
the entire production process is organized aroimednetwork structure. In line with
Bagdadioglu and Weyman-Jones, (2008) we assuméhthanobserved heterogeneity is
inevitably non-separable from the production predésis interrelated with the observed

input and output factors.

* See Jamasb and Pollit (2003), Estache et al. [200#t Farsi et al. (2006b) for examples.



From a methodological point of view, the analysiatcbutes to the discussion of
unobserved heterogeneity that is particularly r@hevfor efficiency measurement in
network industries. The proposed method has bepledpto a sample of German and
Swiss public transport companies. The results atdithat the unobserved heterogeneity
could dominate the efficiency differences. Consisteith previous studies these results
point to the importance of the underlying assummgiaised to distinguish between
inefficiency and unobserved firm differences. Thestrof the paper is organized as
follows: Sections 2 presents the model specificatibhe data and the econometric
models are explained in Section 3. Section 4 ptegbe estimation results and discusses

their implications, and Section 5 provides the ¢asions.

2.0 Model Specification

There is a great body of literature on the estiomatif production and cost frontiers
for public transit operatorsHowever, the majority of these studies estimatglsioutput
production or cost frontiers. There are only a fwdies that estimated a multi-output
cost function. The most relevant ones in this aatggre Viton (1992), Viton (1993) and
Colburn and Talley (1992), both of which analyzkd tong run cost structure of urban
multi-mode transit system in the U.S. Viton (1998)died the cost structure of a sample
of 289 urban transit companies operating in the UeBveen 1984 and 1986. Six modes
are distinguished: motor-bus, rapid-rail, streettanlley-bus, demand responsive mode
and a last mode including all other modes. Vitoesua quadratic total cost function.
Colburn and Talley (1992) analyze the economiescafe and scope of a single urban

multi-service company using quarterly data from 9496 1988. Four modes are

® See De Borger et al. (2002) for a detailed litmereview.



distinguished: motor-bus, dial-a-ride, elderly segy and van pool service. Colburn and
Talley used a translog total cost function. ThetflEuropean analysis for multi-output
firms has been performed by Farsi et al. (2006b)thils study, the authors estimate a
guadratic cost function considering three modest@mlous, streetcar, trolley-bus) and
using a dataset composed of 16 Swiss multi-modarutbansport operators observed
during the period 1985-2003. None of these studstgnated a frontier function and,
therefore, did not perform an efficiency analy3iee main interest of these studies was
in the estimation of the economies of scale angesco

To measure the efficiency level of the multi-ougp@wiss and German urban
transit companies we apply a parametric frontigutrdistance functioh.We therefore
focus on the technical inefficiency as opposed tssible inefficiencies due to
suboptimal allocation of input factors. Becausé¢heflack of consistent data on costs and
input prices especially in the case of Germany,ceeld not use a multi-output cost
function. Compared to production functions the ahise functions are more readily
adaptable to multi-output contexts. In additiore thoice of distance functions does not
require the cost minimization assumptiorOne concern in the econometric estimation
might be the regressor endogeneity which may initedoossible simultaneous equation
bias® Sickles et al. (2002) and Atkinson and PrimontO@Oused methods based on
instrumental variables to correct for such endogexse However, Coelli (2002) showed

that compared to production functions, the distdnoetions do not face a greater risk of

® For the use of parametric distance functions énttansport sector see Coelli and Perelman (19330)2

’ For a discussion on the advantages and drawbddke aistance-functions approach see Coelli (2002)
and Coelli and Perelman (2000).

8 This results from the fact that for instance inimput distance function, the inputs appearingtanright
hand side of the equation might be correlated thighresiduals.



endogeneity biaAssuming that outputs are exogenous for given eoies, we favored

an input distance specification as opposed to gouodistance functior’

The input distance function is defined on the inpett as the extent to which the
input vector may be proportionally contracted witie output vector held fixed (see

Coelli, 2002):

d, (x,y) =maxp: (x/ p) D L(y)} @.

d, (x,y) will take a value greater than or equal to ort@éf input vectorx is an element
of the feasible input sé{y). In addition, d, (x,y) = 1if x is located on the inner
boundary of the input sejp represents the scalar distance, so the amounthimhwhe

input vector can be deflated. It is assumed thattdthnology satisfies the standard

axioms: d, (x,y) is non-decreasing, linearly homogeneous and cendavx and

decreasing iny .

°A second issue is that estimated input distancetioms often fail to satisfy the concavity propesti
implied by economic theory. Regularity conditiorauld also be imposed by estimating the model in a
Bayesian framework (see O’Donnell and Coelli, 2005)

19 An input-oriented distance function is motivateyl the nature of production in the public transport
sector, because it implies that efficiency is inva by reducing input usage for a given exogenaxsub,

set by regulators or the demand side factors tledbeyond the provider’s control.

1 See Coelli (2002) and Fare and Primont (1995)rfore details on these properties.



For the specification of the model we consideredliputransit companies
characterized by a production process with thrpatsand two outputs. Following Farsi
et al. (2006a, 2006b) we consider two purely swopignted measures of the output
namely, seat-kilometers provided by tramways anseburespectiveli# Labor input,
number of trams and number of buses are consider@tput factors. The input distance

function can be accordingly specified as:

d=f (X, Xer, Xca, Yr, Ya, Z, 4 1) (2),

wherex_ is labor input andcg, Xcr are respectively two indicators of the capitalup
number of buses and number of tramwagsandyr are the numbers of seat-kilometers
provided by buses and tramways respectivdlys a time variable which captures the
shift in technologyZ is the total network length (trams and bus netsjprktroduced in
the model in order to capture part of the obseevdi¥terogeneity of the operating
environment of the companies, apds a time-invariant stochastic term that repréesen
all the unobserved structural characteristics efrtatwork.

As in most empirical studies in the productiorrture, we specify a translog
functional form in order to satisfy flexibility wha allowing a straightforward imposition

of linear homogeneity® The adopted model in (2) might appear a rathesimpanious

12 We concentrate our analysis only on transit corgs supplying services using the same transport
modes (buses and tramways). Therefore, we excluidetsit companies operating with underground
system as well as small companies that use onlgsbioreover, in Switzerland some of the companies
supply trolley as well as autobus services. We rassufor the empirical analysis that the trolley drss
feature similar characteristics as the autobusesetore we sum up both singles branches to have an
aggregated bus stock and aggregated supplied sgrvic

13 Following Lovell et al. (1994) and Coelli and Pleran (2000), a convenient method for imposing linea
homogeneity constraint is to divide the inputs bg of the input factors. In translog form the input

distance function is invariant to which input ioskn as the numéraire.



model that does not include some of the observedacteristics available in the data
such as the size of service area and covered pgapuks well as number of seats in each
company’s fleet. However, due to strong correlatadnthese variables with network
length and other variables, models with additiomatiables face a great risk of
multicollinearity that is particularly exacerbatedcause of the second-order terms in the
translog form. Our preliminary analyses using salvelternatives have favored the
adopted specification above in terms of model’daxatory power as well as plausibility
of the estimated coefficients.

Recognizing that the network length controls forlyora part of network
heterogeneity, we assume that the remaining fadtwat are constant over time, in
particular those related to the shape and compféxf the network are captured by the
stochastic variablg:

Assuming non-separability of the unobserved netwsirkictural variabley; the

translog formulation of the model in equation (2hde expressed as follows:

14 Using a complexity indicator based on graph thedjippini and Maggi (1992) have shown the
importance of network complexity in a cost functifom transport companies. Unfortunately, we do not
have data on the shape and structure of the network
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where subscripts andt denote the company and year respectivelyvarmgpresents the
additive residuals as a random error tetmd: is a nonnegative variable which can be

associated with technical inefficienay, . A radial input-oriented measure of technical

efficiency can be obtained bi]E=di=exp(—uit). As we will see in the following
it

section the model in (3) can be formulated as anscomSF model with the combined

error termv,, —u, .

3.0 Data and econometric specification
3.1. Data
The sample used in this study is composed of aalanbed panel data from Swiss
and German transit companies that provide motorangstramway transport services.

The data include 13 annual observations from 56peones including 49 German and 7



Swiss companies. The sample period differs actussauntries, covering from 1994 to
2006 for the case of Germany and 1991 to 2003h@rSwiss companies. In both cases
the companies in the sample can be defined as endept local monopolies, given the
fact that there is no overlap between the offeradsport services across the companies.
The data for Germany is provided by the VDV Stafist® Data are available for
360 public transport companies; among which 60rdjtes transport as well as regional
rail services. We created a balanced panel dafarsé® multi-output companies offering
tram and motor bus services in medium and largem@ercitiest® In the case of
Switzerland, all the local public transit servicgghin the country’s urban centers are
covered by sixteen companies. For our analysiselexted seven Swiss companies that
offer motor bus and tram transpoftEor the years between 1991 and 1997 the Swiss data
has been extracted from the annual statistics dtigotransport reported by the Swiss
Federal Statistical Office (BFS (1991-97)). Theadfatr the following years (1998-2003)
have been collected from companies’ annual repAridescriptive summary of the data

is given in Table 1.

Table 1

The companies included in the sample are charaeteiby a potentially strong

heterogeneity in technologies, regulation restitdj environmental variables and in

15 VDV (Verband Deutscher Verkehrsunternehmen) or the Association of German Transport Companies
represents about 440 member companies operatmgpiic transport and freight.

%1n order to have a more or less uniform sampleex@uded four large companies (operating in Berlin,
Hamburg, Munich and Nuremberg) that offer undergtbtailway transport and three small single-output
tolley-bus operators.

" We excluded the companies that offer trolley-tersises and those that are specialized in a simglee

of transport.
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particular network complexities. This large outputterogeneity is not completely
observed in the data and evidently become morevaetefor cross-country efficiency
analyses. In the next section we describe how p#atal models have been used in order

to separate such unobserved factors from ineffooésn

3.2 Econometric Specification using panel data

The first use of panel data models in stochastatfer models goes back to Pitt
and Lee (1981) who interpreted the panel data ranelifects as inefficiency rather than
heterogeneity? A main shortcoming of these models is that anybseoved, time-
invariant, firm-specific heterogeneity is considkges inefficiency. In order to solve this
problem, the SFA model in its original form (Aigretral., 1977) can be readily extended
to panel data models, by adding a fixed or rand@ieciein the model. Although similar
extensions have been proposed by several previghsra'® Greene (2005a,b) provides
effective numerical solutions for both models wigndom and fixed effects, which he
respectively refers to as “true” fixed and randoifects models. Several recent studies
such as Greene (2004), Farsi et al. (2006b), Awvateal. (2004) and Tsionas (2002) have
followed this line. Some of these models have pdoaeertain success in a broad range

of applications in network industries in that thgwe more plausible efficiency

18 pitt and Lee (1981)'s model is different from t@nventional RE model in that the individual spiecif
effects are assumed to follow a half-normal distiidn. Important variations of this model were reed

by Schmidt and Sickles (1984) who relaxed the ithgtion assumption and used the GLS estimatorbgnd
Battese and Coelli (1988) who assumed a truncatemial distribution. In more recent papers the ramdo
effects model has been extended to include timeswviamefficiency. Cornwell et al. (1990) and Baite
and Coelli (1992) are two important contributiongthiis regard. In particular the former paper psgsoa
flexible function of time with parameters varyingnang firms. However, in both these models the
variation of efficiency with time is considered asleterministic function that is commonly defined &ll
firms.

9n particular Kumbhakar (1991) and Heshmati andnkhakar (1994) proposed a three-stage estimation
procedure to solve the model with time- and firnedfic effects.
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estimate<® These results raise an important question as & @ittent panel data models
can be used for a better understanding of theiameficies and whether they can provide
a reliable basis for benchmarking and incentiveulagn systems in industries

characterized by strong heterogeneity. This quest® especially important when

companies operate in multiple networks, entailiegesal network-specific heterogeneity
dimensions. In most SF models the unobserved faet@ widely modeled as separable
factors from the production process (Greene, 2@)58pwever, we argue that the entire
production process is organized around the netswuctures. Therefore, the unobserved
heterogeneity is inevitably non-separable from theserved inputs and outputs. We
propose a model assuming that unobserved heterogef@ctors are non-separable from

the production process (see for instance Bagdadergdl Weyman-Jones, 2008).

Along with the variation over time, the distinctidoetween separable and non-
separable factors can be helpful in disentangliveyibefficiency from the unobserved
firm-specific factors: Assuming that firm-speciffactors are time-invariant but non-
separable, while the inefficiency components amgetvariant and separable, one can
achieve a more realistic separation between the demponents. In fact, being an
integrated part of the technology process the wroks network characteristics are non-
separable but more or less time-invariant. Wheitaadikely that the main driving factor
behind technical inefficiency namely, the managefeerfforts and incentives are
independent from the production technology thussspe but, as shown by Alvarez et

al. (2004), time-variant.

% See Saal et al. (2007), Farsi et al. (2005, 2006y applications in water distribution, elecityc
networks, bus transport and railroads respectively.
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Considering the technical efficiency as a time-aatristochastic term with half-

normal distribution,u, ~N* (0,0?), and an additive idiosyncratic symmetric errorhwit
normal distribution,v, ~ N (0,07), the distance from the stochastic frontigrd, ) can

be specified as, -u,. By substituting forind,, the stochastic frontier given in equation

(3) can therefore be transformed to a random parmansechastic frontier model with a

single time-invariant random effegt, as follows:
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We assume that the generic random effert follows a standard normal
distribution, N(0,1). With this assumption the econometric specificatb the model is

exactly similar to the ‘fixed management model’ pweed by Alvarez et al. (200%)As

L1t should be noted that Alvarez et al. (2004)®ipretation of the latent variable in their modsla
proxy for management’s fixed input (effort), leaglito an interrelation between inefficiency and the

generic random effecty; . Here, we assume th# is an exogenous characteristic of the network thus

independent of efficiency ternu;, .
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it can be seen in equation (4), the latent varigblenters in the model’s intercept in a

quadratic form as: a,+ny. +%/72 2, creating a skewed additive random effect,

composed of a normal variable plus a Chi-squared ane degree of freedom (Greene,

2007). Moreover, the coefficients of all the firsbrder terms of inputs
(e +1.1), (as +17,y4) . outputs (B, +1.y,), (B 1)), and the structural variable
network length(a, +7,);) will become random coefficients with a common r@md

effect, whereas all the coefficients of the secordkr terms remain fixed. The random
parameter model in (4) is estimated using the Sitedl Maximum Likelihood module
provided inLIMDEP 9.0

In summary, we see that the unobserved firm-spebifterogeneity attributed to
the different network structures of the transpampanies applies to marginal products
represented by the coefficients of the distancetfon (see Section 4.1). We therefore
allow firms to have different underlying productitechnologies caused by unobserved
differences in technological conditions and netwstkuctures. In particular network
structural characteristics play an important ral¢hie production of transport services and
cannot be fully captured by a production frontiathwfixed coefficients. The proposed
random coefficient frontier accounts for these at#hces using a single stochastic
variable that is interpreted as an aggregate measdr unobservable structural
characteristics that remain constant over time. alge use a special case of the model

with complete separability, in which case, the @ndvariabley; disappears from all the

coefficients except the intercept.

22 See Greene (2007) for more details on the numeigarithm and choice of random draws.
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4.0 Empirical results

Table 2 shows the regression results of the distédnaction, based on the
stochastic frontier model given in equation 8. Takle also includes the results of an

alternative specification in which the unobservetiwork variable {) is assumed to be

separable from all production factors. Given thethe variables are in logarithmic form,
these coefficients can be directly interpretedlastieities. For instance, the derivative of
a translog input distance function with respecatparticular input is equal to the input
contribution share of that input. In the interpteta of the coefficients it should be noted
that a positive coefficient implies a contractidrtlee feasible input set thus, an increase
in the distance function. Conversely, the negateftects are associated with an
expansion in the input set. Therefore, outputseapected to have negative coefficients
while inputs are associated with positive effe@smilarly any positive coefficient
indicates an improvement in production feasib#ifigzhile negative coefficients can be
interpreted as more resources and costs. For oestéme value of the coefficient of the
time trend indicates an average technological gssyof about 2 per cent per year over

the sample period.

Table 2

The estimated coefficients (means for the randorarpaters) of the first-order
terms have the expected signs and are statistis@hificant at the sample median. As

expected, the coefficients of first-order outputialles are negative and significantly

15



different from zero implying that the estimatedtdise function is decreasing in outputs.
The coefficients of the first-order terms of thepital and labor inputs are as expected
positive and significantly different from zero. Tisem of the coefficients of the two
output variables is 0.79 or 0.82 (depending on ritedel). This result suggests the
presence of economies of density at the sample amethecausegeteris paribus, by
increasing both outputs by 10 per cent, the inpquirement will increase only by about
8 per cent. As for the effect of network lengtle tesults show that the first order term is,
as expected negative and statistically significhe sum of this coefficient with the two
coefficients of the two output variables is 0.87082. This result indicates the presence
of economies of scale, because by increasing hatuts and network length by 10 per

cent, the input requirement will increase only bpat 8 (9) per cerft

The negative coefficients of the output square $efor both bus and tram
outputs, suggest that the rate of economies okdgsatlecreasing in each output. The
positive coefficient of the interaction of the twatputs indicates cost-complementarity
between tram and bus services. For instance, thdtsesuggest that increasing one
output by 10 per cent, will result in 0.9 or 1. pent (depending on the model) decrease
in the marginal cost of the other output. The aftéanteractions with the network length
suggest that providing bus services over longewaordss is relatively less costly, while
for trams, longer networks are associated with dngmarginal costs. This result is
consistent with the fact that in tramways, the rremance of the network infrastructure
(rails and cables) in longer network might taketigkly more capital and labor resources

than in bus transport.

23 Note that in translog form, any statement alsantple points other than the approximation poiatgh
sample median), should consider the second-ordesta addition to the main effects.

16



The table shows that in both models, the coeffisief the unobserved structural

variable 7, —17,) are significantly different from zero at convemtal 5 per cent levels of

significance. This provides empirical evidence ftire presence of unobserved
heterogeneity. Using a Wald test we tested the thygsts of separability. The results
(also listed in the table) favor the complete moawlicating that the unobserved network
characteristics are not separable from observeduptmn factors. Comparing the results
across the two models indicates a close similanityhe coefficients of the first-order
terms, suggesting that the estimates of returnssdale and other technological
characteristics at the approximation point (heree gample median) are not sensitive to
the assumption of separability. However, most sdamder terms especially those
related to network length (variab®, vary across the two models. This suggests that
guantities such as complementarity effects betwddferent outputs as well as
substitution elasticities between inputs could besgive to the assumptions related to
separability from the unobserved network charasties. The differences of second-order
effects across the two models also suggest thatahation of the economies of scale at
different levels of output and network length iasiéve to the separability assumption.
Studying the coefficients of the latent heteroggnean be helpful in detecting the

effects captured by that variable. The positivensif the constantsf) indicates that

higher levels of the latent variablg) (@re associated with network and environmental
characteristics that are beneficial to productidherefore the latent variablecan be
interpreted as an aggregate indicator of netwatlcgiral characteristics with an inverse
correlation with network complexity. With this impgetation in mind, namely associating

lower values ofy with greater network complexity, we can explore tionsistency of the

17



regression results with our underlying assumptiaheut network heterogeneity. The

coefficients of the interactions of the unobsertetkerogeneity with both outputs, tram

seat-kilometers/f;) and bus seat-kilometergy(), have a negative sign, implying that the

network complexity has a lower effect in higherdisvof output. Similarly, the positive

coefficient of the interaction of the latent vat@lwith the network lengthsf,) suggests

that the network complexity has a relatively greadéfect in larger networks. The

positive sign of the squared term of the latentalde (/7,) can also be interpreted as an

increasing marginal effect of complexity. While #tlese interpretations appear to be
consistent with the idea of linking the latent aate to network complexity, we should

recognize that alternative interpretations couldadlg be justified. The results however

point to the fact that the time-invariant heteragjgnis not separable from observed
production factors.

The results listed in Table 2 also indicate considie variation across companies
with regard to time-invariant heterogeneity. Thgngficant effect of interaction terms of
the latent variable with outputs suggest that dehnological characteristics such as the
economies of scope or rates of returns to scaledandity show a considerable variation
across different companies. These variations averegl in the model with separability
assumption. In principle, such variations can Ise ahodeled with a random coefficients
model with several random effects. However, considean identical latent variable
allows a more tangible interpretation of such w#&ies by associating them to
unobserved characteristics such as network contplekor instance, considering the

latent variable as an inverse measure of the n&twomplexity, we can interpret the

18



negative coefficients of the output interactions aas indication that more complex

networks have higher rates of economies of scale.

The inefficiency scores, are summarized in Table 3. The estimated valugs va

from 0.01 to about 0.62. The values of the meanraadian technical inefficiency are

fairly low amounting to about 8 per céftA simple calculation based on the estimated

coefficients of y; and )7, indicates that the effect of heterogeneity iGeatsubstantial:
Considering the estimated coefficients in Tablegpéciallys, ), one standard deviation
of y is approximately equivalent to about 0.14 or (2pending on the model. These

results suggest that the effect of time-invariaetelogeneity on inputs (and costs) is

significantly greater than the average estimatedficiencies. Moreover, in the model
with separability assumption the coefficients gf and )7, are significantly smaller

suggesting that the effect of unobserved heterogeseould be underestimated.

Table 3

5.0 Conclusions
Modeling unobserved heterogeneity in stochastiatieo literature is often
based on certain assumptions about separability bbserved production factors. Such
separability assumptions can be restrictive indbretext of transport networks, in which
the entire production process is organized withivery network structures entailing

unobserved characteristics such as complexity hages This paper proposes a random

% For comparison purposes, we also estimated asick% model for panel data proposed by Pitt and Le
(1981) that considers any unobserved firm-spetifiterogeneity as inefficiency. As expected, theiesl
of technical inefficiency are higher and have mdispersion than those emerging from our models.
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coefficient stochastic frontier model that allowes hon-separability between unobserved
time-invariant factors and observables.

An input distance function is used to examine thehnical efficiency of a
sample of Swiss and German urban transit compailies. results suggest that the
estimated distance function could be a reasonéltle the observed data. The estimated
input and output elasticities have the correct sagd magnitude. The statistical tests
favor the presence of considerable network heteige and reject the separability
assumption. The estimated scale elasticities itelittzat the median company operates
under both economies of density and scale. Theysisaindicates that while the first-
order coefficients of the distance function are s@tsitive to the separability assumption,
the second-order terms could differ significantbrass the models. This is especially
important in estimating the variation of technotmdiproperties such as returns to scale
with output and network characteristics. In theases, the proposed model can be used
to relax the separability assumption, while allogvia possible association between
unobservable factors and tangible structural chariatics such as network complexity.

In general, the results indicate considerable tianiaacross companies in the
marginal impact of the observed input and outpstgygesting that the unobserved
characteristics of the network structure play aiauole in transport services. Thus, the
proposed model can improve the estimates taking @wicount different unobserved
network complexities. Finally, the results suggésat the effect of time-invariant
heterogeneity could be greater than the estimagftigiencies. This result underlines the
possibility of substantial errors in the measurenaodiproductive efficiency. Along with

previous empirical studies, the present analysigfimos that the direct use of
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benchmarking results in regulation could have $icgmt and possibly undesired
financial consequences for the regulated compaifitesefore, the benchmarking results
should not be directly applied to define the tariipplied to individual companies.
However, the results can be used as an instrunenminhimize the information

asymmetry between the regulator and companies.
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Appendices

Table 1: Summary statistics for Germany and Swdper

Variable Obs | Mean Min M ax Obs M ean Min M ax
German = GE; GE GE GE GE CH CH CH CH
Swiss=CH

Covered population | 616 | 366,709| 40,800 164,200p 91 285,215 76,381 921,8
Number of 616 978 30 3996 91 953 76 2798
employees

Network length 616 49 3 155 91 32 8 110
tramin km

Network length 616 465 5 2653 91 139 42 362
busin km

Number trams 616 118 2 755 91 128 12 432
Number buses 616 135 2 470 91 167 30 314
Tram-km in 1000 616 5664 61 34,363 91 6,111 398 20,518
km

Bus-kmin 1000km | 616 7211 86 28,519 91 8,121 1,52p 18,438
Seat-km tramin 616 | 96,4943 5000 6,187,000 91 847,835 37387 2,986,0
1000 km

Seat-km busin 1000 | 616 | 584,293 4000 2,303,00D 91 974,980 121,443 25383
km

Areain km? 616 171 21 405 91 169 90 275
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Table 2: Distance function estimation results

Random parameter model |Random parameter model
Wwith separable unobserved |with non-separable
heter ogeneity unobserved heter ogeneity
Variable Parameter Coefficient Standard Coefficient Standard
error error
Constant a, -0.090* 0.008 0.031* 0.008
L n(Xa/X1) et 0.191* 0.007 0.243* 0.007
L n(Xa/Xy) Ucp 0.365* 0.012 0.357* 0.013
L n(Xa/X1)? Ocrer -0.051* 0.016 -0.060* 0.015
L n(Xa/X1)? Ocpes 0.067* 0.028 0.124* 0.023
L n(Xa/X1)*IN(xa/Xy) Ocer 0.139* 0.014 0.098* 0.012
Iny, B -0.334* 0.006 -0.333* 0.006
Inys Bs -0.485* 0.007 -0.456* 0.007
Iny,2 Br 0.113* 0.011 -0.110* 0.012
Iny,? Bes -0.174* 0.018 -0.179* 0.020
Iny,*Iny, Ber 0.114* 0.014 0.091* 0.015
L n(Xa/X1)*Iny; Orcr 0.092* 0.013 0.086* 0.013
L n(Xa/x1)*Iny, Orcs -0.044* 0.014 -0.017 0.015
L n(xa/xy)*Iny; Oger -0.004 0.018 0.054* 0.017
L n(Xa/x1)*Iny, Ogcs 0.007 0.018 -0.084* 0.019
Trend a 0.022* 0.001 0.022* 0.001
Inz, a; -0.049* 0.006 -0.032* 0.006
Inz,? az; 0.010 0.013 -0.033* 0.014
Inzy* IN(Xo/X1) azr 0.159* 0.010 0.138* 0.009
Inzy* In(Xa/X1) Uz -0.119* 0.014 -0.109* 0.015
Inz;*Iny, Azt -0.122* 0.009 -0.131* 0.009
Inz;*Iny, Qycn 0.188* 0.009 0.206* 0.010
o=\, +0; 0.123* 0.004 0.121* 0.004
A=o,l0, 1.927 0.225 2.322% 0.284
Coefficients
related to latent
heter ogeneity
Y
h 0.136* 0.004 0.277* 0.008
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Vi *In(xa/x1) 73 0.125* 0.010

Vi *In(xa/xy) un -0.130* 0.015
Y *Iny, 15 -0.021* 0.010
¥ *Iny, s -0.023* 0.010
Vi *Inzy 1 0.024* 0.009
Vv 1, 0.055* 0.006 0.093* 0.011
\Wald Test

Hy:

s =114 =15 =15 =1,=0
Chi-squared = 526.95
p-value = 0.000

Hoisregected

Notes: The coefficient reported for each randonapeater is the mean; (a) we report estimates offSD o
normal distribution of random parameters. (*) ired&s significance at the 5 per cent level.
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Table 3: Descriptive statistics of inefficiencyiesites

Model 1 with Model 2 with non-
separability separability
assumption assumption
Number of
Observation 707 707
Mean 0.084 0.085
Std. Dev 0.053 0.057
Min 0.012 0.012
Median 0.071 0.069
M ax 0.617 0.601
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