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ABSTRACT 

Efficiency measurement in public transport requires an adequate account of 

unobserved network characteristics that are typically modeled as factors separable from 

the production process. This paper proposes a panel data model that allows for non-

separable firm-specific heterogeneity in an input distance function. The proposed model 

is applied to a sample of German and Swiss urban transit companies operating from 1991 

to 2006. The results underline the presence of non-separable unobserved factors and their 

effects on technological characteristics such as returns to scale. Moreover, the data 

suggest that the effect of time-invariant heterogeneity could be significantly greater than 

technical inefficiency.  
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1.0 Introduction 

Following the explosive growth of subsidy requirements for public transport 

services in the 1970s and 1980s, several European governments have gradually 

introduced regulatory reforms in their local transport sectors. Most of these countries, in 

line with the EU directives, have adopted a competitive tendering procedure for the 

assignment of franchised monopolies to local service providers. Competitive tendering is 

expected to induce relatively strong incentives for cost efficiency. However, as 

documented in several studies (Toner, 2001; Boitani and Cambini, 2002; Cambini and 

Filippini, 2003) these procedures have experienced many implementation obstacles 

resulting in a tendency toward auctioning small networks with suboptimal scale and 

density as well as potential collusion among the bidders. An alternative approach would 

be incentive regulation schemes, such as yardstick competition or performance based 

contracts.1 These schemes are based on benchmarking analysis of costs and/or quality to 

determine the transfers and prices.  

In Switzerland and Germany competitive tendering has been introduced but remains 

limited to certain areas.2 Nevertheless, regional authorities have been discussing the 

possibility of adopting high-powered contracts based on yardstick competition as in 

Shleifer (1985). In this context benchmarking namely, estimating companies’ productive 

efficiency could be used as a complementary control instrument in determining subsidies 

and prices.3 However, given the observed sensitivity of benchmarking methods,4 the 

                                                 
1 For a general discussion on these two approaches see Demsetz (1968), Laffont and Tirole (1993), 
Klemperer (1999), Hensher (2007) and Hensher and Stanley (2003). In particular, the latter two studies 
have shown that performance based contracts can reach a greater social surplus than competitive tendering. 
2 These include Swiss rural areas, one German state (Hesse) and only a few large German cities (Hamburg 
and Munich). In most other cases, particularly, in Swiss urban areas, concessions are granted to incumbent 
providers without any risk of competitive tendering. 
3 For an application of yardstick competition in the transport sector see Dalen and Gòmez-Lobo (2003). 
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reliability of efficiency estimates depends on an adequate modeling of firms’ unobserved 

heterogeneity.  

Since urban transit companies operate in different networks and environments, and 

provide urban passenger services using a diversity of vehicles (bus, tramway, light rail, 

etc.) there are a great number of factors that affect the production process. Benchmarking 

methods have been subject to a strong criticism, mainly because many of these firm-level 

differences are not usually observed by the analyst. Moreover, certain characteristics such 

as network shape and complexity remain omitted from the models because they are not 

easily measurable by single factors amenable to benchmarking techniques. Therefore, 

unobserved firm heterogeneity is inevitably an important part of measuring efficiency in 

public transport. 

Thus, our main objective is to derive and apply an appropriate Stochastic Frontier 

(SF) model, which is able to capture firm-specific unobserved heterogeneity using panel 

data. In recent SF panel data models such as Greene (2004, 2005a,b) unobserved firm-

specific heterogeneity is mainly modeled as an additive stochastic factor represented by 

conventional fixed or random effects. Within this framework the unobserved factors are 

considered as separable factors from the production process. In this paper, we argue that 

the entire production process is organized around the network structure. In line with 

Bagdadioglu and Weyman-Jones, (2008) we assume that the unobserved heterogeneity is 

inevitably non-separable from the production process thus interrelated with the observed 

input and output factors.  

                                                                                                                                                 
4 See Jamasb and Pollit (2003), Estache et al. (2004) and Farsi et al. (2006b) for examples.  
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From a methodological point of view, the analysis contributes to the discussion of 

unobserved heterogeneity that is particularly relevant for efficiency measurement in 

network industries. The proposed method has been applied to a sample of German and 

Swiss public transport companies. The results indicate that the unobserved heterogeneity 

could dominate the efficiency differences. Consistent with previous studies these results 

point to the importance of the underlying assumptions used to distinguish between 

inefficiency and unobserved firm differences. The rest of the paper is organized as 

follows: Sections 2 presents the model specification. The data and the econometric 

models are explained in Section 3. Section 4 presents the estimation results and discusses 

their implications, and Section 5 provides the conclusions. 

 

2.0 Model Specification 

There is a great body of literature on the estimation of production and cost frontiers 

for public transit operators.5 However, the majority of these studies estimate single output 

production or cost frontiers. There are only a few studies that estimated a multi-output 

cost function. The most relevant ones in this category are Viton (1992), Viton (1993) and 

Colburn and Talley (1992), both of which analyzed the long run cost structure of urban 

multi-mode transit system in the U.S. Viton (1992) studied the cost structure of a sample 

of 289 urban transit companies operating in the U.S. between 1984 and 1986. Six modes 

are distinguished: motor-bus, rapid-rail, streetcar, trolley-bus, demand responsive mode 

and a last mode including all other modes. Viton uses a quadratic total cost function. 

Colburn and Talley (1992) analyze the economies of scale and scope of a single urban 

multi-service company using quarterly data from 1979 to 1988. Four modes are 
                                                 
5 See De Borger et al. (2002) for a detailed literature review. 
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distinguished: motor-bus, dial-a-ride, elderly service, and van pool service. Colburn and 

Talley used a translog total cost function. The first European analysis for multi-output 

firms has been performed by Farsi et al. (2006b). In this study, the authors estimate a 

quadratic cost function considering three modes (motor-bus, streetcar, trolley-bus) and 

using a dataset composed of 16 Swiss multi-mode urban transport operators observed 

during the period 1985–2003. None of these studies estimated a frontier function and, 

therefore, did not perform an efficiency analysis. The main interest of these studies was 

in the estimation of the economies of scale and scope. 

To measure the efficiency level of the multi-outputs Swiss and German urban 

transit companies we apply a parametric frontier input distance function.6 We therefore 

focus on the technical inefficiency as opposed to possible inefficiencies due to 

suboptimal allocation of input factors. Because of the lack of consistent data on costs and 

input prices especially in the case of Germany, we could not use a multi-output cost 

function. Compared to production functions the distance functions are more readily 

adaptable to multi-output contexts. In addition, the choice of distance functions does not 

require the cost minimization assumption.7  One concern in the econometric estimation 

might be the regressor endogeneity which may introduce possible simultaneous equation 

bias.8 Sickles et al. (2002) and Atkinson and Primont (2002) used methods based on 

instrumental variables to correct for such endogeneities. However, Coelli (2002) showed 

that compared to production functions, the distance functions do not face a greater risk of 

                                                 
6 For the use of parametric distance functions in the transport sector see Coelli and Perelman (1999, 2000). 
7 For a discussion on the advantages and drawbacks of the distance-functions approach see Coelli (2002) 
and Coelli and Perelman (2000).  
8 This results from the fact that for instance in an input distance function, the inputs appearing on the right 
hand side of the equation might be correlated with the residuals.  
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endogeneity bias.9 Assuming that outputs are exogenous for given companies, we favored 

an input distance specification as opposed to an output distance function.10  

 

The input distance function is defined on the input set as the extent to which the 

input vector may be proportionally contracted with the output vector held fixed (see 

Coelli, 2002):  

 

                                             { })()/(:max),( yLxyxd I ∈= ρρ                                        (1). 

 

),( yxd I  will take a value greater than or equal to one if the input vector x  is an element 

of the feasible input set )( yL . In addition, 1),( =yxd I  if x  is located on the inner 

boundary of the input set. ρ  represents the scalar distance, so the amount by which the 

input vector can be deflated. It is assumed that the technology satisfies the standard 

axioms: ),( yxd I  is non-decreasing, linearly homogeneous and concave in x  and 

decreasing in y .11 

 

 

 

                                                 
9A second issue is that estimated input distance functions often fail to satisfy the concavity properties 
implied by economic theory. Regularity conditions could also be imposed by estimating the model in a 
Bayesian framework (see O’Donnell and Coelli, 2005). 
10 An input-oriented distance function is motivated by the nature of production in the public transport 
sector, because it implies that efficiency is improved by reducing input usage for a given exogenous output, 
set by regulators or the demand side factors that are beyond the provider’s control.  
11  See Coelli (2002) and Färe and Primont (1995) for more details on these properties. 
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For the specification of the model we considered public transit companies 

characterized by a production process with three inputs and two outputs. Following Farsi 

et al. (2006a, 2006b) we consider two purely supply-oriented measures of the output 

namely, seat-kilometers provided by tramways and buses respectively.12 Labor input, 

number of trams and number of buses are considered as input factors. The input distance 

function can be accordingly specified as:  

 

                                           d =f (XL , XCT, XCB , YT , YB , Z , γ, t)                                   (2), 

 

where xL is labor input and xCB, xCT are respectively two indicators of the capital input, 

number of buses and number of tramways. yB and yT are the numbers of seat-kilometers 

provided by buses and tramways respectively.  t is a time variable which captures the 

shift in technology, Z is the total network length (trams and bus networks) introduced in 

the model in order to capture part of the observable heterogeneity of the operating 

environment of the companies, and γ, is a time-invariant stochastic term that represents 

all the unobserved structural characteristics of the network.  

 As in most empirical studies in the production literature, we specify a translog 

functional form in order to satisfy flexibility while allowing a straightforward imposition 

of linear homogeneity.13 The adopted model in (2) might appear a rather parsimonious 

                                                 
12 We concentrate our analysis only on transit companies supplying services using the same transport 
modes (buses and tramways). Therefore, we excluded transit companies operating with underground 
system as well as small companies that use only buses. Moreover, in Switzerland some of the companies 
supply trolley as well as autobus services. We assumed for the empirical analysis that the trolley busses 
feature similar characteristics as the autobuses, therefore we sum up both singles branches to have an 
aggregated bus stock and aggregated supplied services. 
13 Following Lovell et al. (1994) and Coelli and Perelman (2000), a convenient method for imposing linear 
homogeneity constraint is to divide the inputs by one of the input factors. In translog form the input 
distance function is invariant to which input is chosen as the numéraire. 
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model that does not include some of the observed characteristics available in the data 

such as the size of service area and covered population as well as number of seats in each 

company’s fleet. However, due to strong correlation of these variables with network 

length and other variables, models with additional variables face a great risk of 

multicollinearity that is particularly exacerbated because of the second-order terms in the 

translog form. Our preliminary analyses using several alternatives have favored the 

adopted specification above in terms of model’s explanatory power as well as plausibility 

of the estimated coefficients.  

Recognizing that the network length controls for only a part of network 

heterogeneity, we assume that the remaining factors that are constant over time, in 

particular those related to the shape and complexity14 of the network are captured by the 

stochastic variable γ.  

Assuming non-separability of the unobserved network structural variable, γ, the 

translog formulation of the model in equation (2) can be expressed as follows:  

 

                                                 
14 Using a complexity indicator based on graph theory, Filippini and Maggi (1992) have shown the 
importance of network complexity in a cost function for transport companies. Unfortunately, we do not 
have data on the shape and structure of the networks. 
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where subscripts i and t denote the company and year respectively and vit represents the 

additive residuals as a random error term. itdln  is a nonnegative variable which can be 

associated with technical inefficiency itu . A radial input-oriented measure of technical 

efficiency can be obtained by )exp(
1

it
it

u
d

TE −== . As we will see in the following 

section the model in (3) can be formulated as a common SF model with the combined 

error term itit uv − .  

 

3.0 Data and econometric specification 

3.1. Data 

The sample used in this study is composed of an unbalanced panel data from Swiss 

and German transit companies that provide motor bus and tramway transport services. 

The data include 13 annual observations from 56 companies including 49 German and 7 
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Swiss companies. The sample period differs across the countries, covering from 1994 to 

2006 for the case of Germany and 1991 to 2003 for the Swiss companies. In both cases 

the companies in the sample can be defined as independent local monopolies, given the 

fact that there is no overlap between the offered transport services across the companies.  

The data for Germany is provided by the VDV Statistics.15 Data are available for 

360 public transport companies; among which 60 offer bus transport as well as regional 

rail services. We created a balanced panel data set for 49 multi-output companies offering 

tram and motor bus services in medium and large German cities.16 In the case of 

Switzerland, all the local public transit services within the country’s urban centers are 

covered by sixteen companies. For our analysis we selected seven Swiss companies that 

offer motor bus and tram transport.17 For the years between 1991 and 1997 the Swiss data 

has been extracted from the annual statistics on public transport reported by the Swiss 

Federal Statistical Office (BFS (1991-97)). The data for the following years (1998-2003) 

have been collected from companies’ annual reports. A descriptive summary of the data 

is given in Table 1.  

 

Table 1 

 

The companies included in the sample are characterized by a potentially strong 

heterogeneity in technologies, regulation restrictions, environmental variables and in 

                                                 
15 VDV (Verband Deutscher Verkehrsunternehmen) or the Association of German Transport Companies 
represents about 440 member companies operating in public transport and freight.  
16 In order to have a more or less uniform sample we excluded four large companies (operating in Berlin, 
Hamburg, Munich and Nuremberg) that offer underground railway transport and three small single-output 
tolley-bus operators.  
17 We excluded the companies that offer trolley-bus services and those that are specialized in a single mode 
of transport. 
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particular network complexities. This large output heterogeneity is not completely 

observed in the data and evidently become more relevant for cross-country efficiency 

analyses. In the next section we describe how panel data models have been used in order 

to separate such unobserved factors from inefficiencies.  

 

3.2 Econometric Specification using panel data  

The first use of panel data models in stochastic frontier models goes back to Pitt 

and Lee (1981) who interpreted the panel data random effects as inefficiency rather than 

heterogeneity.18 A main shortcoming of these models is that any unobserved, time-

invariant, firm-specific heterogeneity is considered as inefficiency. In order to solve this 

problem, the SFA model in its original form (Aigner et al., 1977) can be readily extended 

to panel data models, by adding a fixed or random effect in the model. Although similar 

extensions have been proposed by several previous authors,19 Greene (2005a,b) provides 

effective numerical solutions for both models with random and fixed effects, which he 

respectively refers to as “true” fixed and random effects models. Several recent studies 

such as Greene (2004), Farsi et al. (2006b), Alvarez et al. (2004) and Tsionas (2002) have 

followed this line. Some of these models have proved a certain success in a broad range 

of applications in network industries in that they give more plausible efficiency 

                                                 
18 Pitt and Lee (1981)’s model is different from the conventional RE model in that the individual specific 
effects are assumed to follow a half-normal distribution. Important variations of this model were presented 
by Schmidt and Sickles (1984) who relaxed the distribution assumption and used the GLS estimator, and by 
Battese and Coelli (1988) who assumed a truncated normal distribution. In more recent papers the random 
effects model has been extended to include time-variant inefficiency. Cornwell et al. (1990) and Battese 
and Coelli (1992) are two important contributions in this regard. In particular the former paper proposes a 
flexible function of time with parameters varying among firms. However, in both these models the 
variation of efficiency with time is considered as a deterministic function that is commonly defined for all 
firms. 
19 In particular Kumbhakar (1991) and Heshmati and Kumbhakar (1994) proposed a three-stage estimation 
procedure to solve the model with time- and firm-specific effects.   



 12

estimates.20 These results raise an important question as to what extent panel data models 

can be used for a better understanding of the inefficiencies and whether they can provide 

a reliable basis for benchmarking and incentive regulation systems in industries 

characterized by strong heterogeneity. This question is especially important when 

companies operate in multiple networks, entailing several network-specific heterogeneity 

dimensions. In most SF models the unobserved factors are widely modeled as separable 

factors from the production process (Greene, 2005a,b). However, we argue that the entire 

production process is organized around the network structures. Therefore, the unobserved 

heterogeneity is inevitably non-separable from the observed inputs and outputs. We 

propose a model assuming that unobserved heterogeneous factors are non-separable from 

the production process (see for instance Bagdadioglu and Weyman-Jones, 2008).  

Along with the variation over time, the distinction between separable and non-

separable factors can be helpful in disentangling the inefficiency from the unobserved 

firm-specific factors: Assuming that firm-specific factors are time-invariant but non-

separable, while the inefficiency components are time-variant and separable, one can 

achieve a more realistic separation between the two components. In fact, being an 

integrated part of the technology process the unobserved network characteristics are non-

separable but more or less time-invariant. Whereas it is likely that the main driving factor 

behind technical inefficiency namely, the management’s efforts and incentives are 

independent from the production technology thus separable but, as shown by Alvarez et 

al. (2004), time-variant. 

                                                 
20 See Saal et al. (2007), Farsi et al. (2005, 2006a,b) for applications in water distribution, electricity 
networks, bus transport and railroads respectively. 
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Considering the technical efficiency as a time-variant stochastic term with half-

normal distribution, ),0(~ 2
uit Nu σ+ , and an additive idiosyncratic symmetric error with 

normal distribution, ),0(~ 2
vit Nv σ , the distance from the stochastic frontier ( itdln ) can 

be specified as itit uv − . By substituting for itdln  the stochastic frontier given in equation 

(3) can therefore be transformed to a random parameter stochastic frontier model with a 

single time-invariant random effect iγ , as follows:   
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 We assume that the generic random effect iγ  follows a standard normal 

distribution, (0,1)N . With this assumption the econometric specification of the model is 

exactly similar to the ‘fixed management model’ proposed by Alvarez et al. (2004).21 As 

                                                 
21 It should be noted that Alvarez et al. (2004)’s interpretation of the latent variable in their model as a 
proxy for management’s fixed input (effort), leading to an interrelation between inefficiency and the 

generic random effect ,iγ . Here, we assume that iγ  is an exogenous characteristic of the network thus 

independent of efficiency term, itu . 



 14

it can be seen in equation (4), the latent variable iγ  enters in the model’s intercept in a 

quadratic form as:  2
0 1 2

1

2i iα η γ η γ+ + , creating a skewed additive random effect, 

composed of a normal variable plus a Chi-squared with one degree of freedom (Greene, 

2007). Moreover, the coefficients of all the first order terms of inputs 

3 4( ), ( )CT i CB iα η γ α η γ+ + , outputs 5 6( ), ( )T i B iβ η γ β η γ+ + , and the structural variable 

network length 7( )Z iα η γ+  will become random coefficients with a common random 

effect, whereas all the coefficients of the second-order terms remain fixed.  The random 

parameter model in (4) is estimated using the Simulated Maximum Likelihood module 

provided in LIMDEP 9.0.22   

In summary, we see that the unobserved firm-specific heterogeneity attributed to 

the different network structures of the transport companies applies to marginal products 

represented by the coefficients of the distance function (see Section 4.1). We therefore 

allow firms to have different underlying production technologies caused by unobserved 

differences in technological conditions and network structures. In particular network 

structural characteristics play an important role in the production of transport services and 

cannot be fully captured by a production frontier with fixed coefficients. The proposed 

random coefficient frontier accounts for these differences using a single stochastic 

variable that is interpreted as an aggregate measure of unobservable structural 

characteristics that remain constant over time.  We also use a special case of the model 

with complete separability, in which case, the random variable iγ  disappears from all the 

coefficients except the intercept.  

                                                 
22 See Greene (2007) for more details on the numerical algorithm and choice of random draws. 
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4.0 Empirical results 

Table 2 shows the regression results of the distance function, based on the 

stochastic frontier model given in equation 8. The table also includes the results of an 

alternative specification in which the unobserved network variable ( iγ ) is assumed to be 

separable from all production factors. Given that all the variables are in logarithmic form, 

these coefficients can be directly interpreted as elasticities. For instance, the derivative of 

a translog input distance function with respect to a particular input is equal to the input 

contribution share of that input. In the interpretation of the coefficients it should be noted 

that a positive coefficient implies a contraction of the feasible input set thus, an increase 

in the distance function. Conversely, the negative effects are associated with an 

expansion in the input set. Therefore, outputs are expected to have negative coefficients 

while inputs are associated with positive effects. Similarly any positive coefficient 

indicates an improvement in production feasibilities, while negative coefficients can be 

interpreted as more resources and costs. For instance, the value of the coefficient of the 

time trend indicates an average technological progress of about 2 per cent per year over 

the sample period. 

 

Table 2 

 

The estimated coefficients (means for the random parameters) of the first-order 

terms have the expected signs and are statistically significant at the sample median. As 

expected, the coefficients of first-order output variables are negative and significantly 
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different from zero implying that the estimated distance function is decreasing in outputs. 

The coefficients of the first-order terms of the capital and labor inputs are as expected 

positive and significantly different from zero. The sum of the coefficients of the two 

output variables is 0.79 or 0.82 (depending on the model). This result suggests the 

presence of economies of density at the sample median, because, ceteris paribus, by 

increasing both outputs by 10 per cent, the input requirement will increase only by about 

8 per cent. As for the effect of network length, the results show that the first order term is, 

as expected negative and statistically significant. The sum of this coefficient with the two 

coefficients of the two output variables is 0.87 or 0.82. This result indicates the presence 

of economies of scale, because by increasing both outputs and network length by 10 per 

cent, the input requirement will increase only by about 8 (9) per cent.23  

The negative coefficients of the output square terms for both bus and tram 

outputs, suggest that the rate of economies of scale is decreasing in each output. The 

positive coefficient of the interaction of the two outputs indicates cost-complementarity 

between tram and bus services. For instance, the results suggest that increasing one 

output by 10 per cent, will result in 0.9 or 1.1 per cent (depending on the model) decrease 

in the marginal cost of the other output. The effect of interactions with the network length 

suggest that providing bus services over longer networks is relatively less costly, while 

for trams, longer networks are associated with higher marginal costs. This result is 

consistent with the fact that in tramways, the maintenance of the network infrastructure 

(rails and cables) in longer network might take relatively more capital and labor resources 

than in bus transport.  

                                                 
23 Note that in translog form, any statement about sample points other than the approximation point (here, 
sample median), should consider the second-order terms in addition to the main effects. 
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The table shows that in both models, the coefficients of the unobserved structural 

variable ( 1 7η η− ) are significantly different from zero at conventional 5 per cent levels of 

significance. This provides empirical evidence for the presence of unobserved 

heterogeneity. Using a Wald test we tested the hypothesis of separability. The results 

(also listed in the table) favor the complete model, indicating that the unobserved network 

characteristics are not separable from observed production factors.  Comparing the results 

across the two models indicates a close similarity in the coefficients of the first-order 

terms, suggesting that the estimates of returns to scale and other technological 

characteristics at the approximation point (here the sample median) are not sensitive to 

the assumption of separability. However, most second-order terms especially those 

related to network length (variable Z), vary across the two models. This suggests that 

quantities such as complementarity effects between different outputs as well as 

substitution elasticities between inputs could be sensitive to the assumptions related to 

separability from the unobserved network characteristics. The differences of second-order 

effects across the two models also suggest that the variation of the economies of scale at 

different levels of output and network length is sensitive to the separability assumption.     

Studying the coefficients of the latent heterogeneity can be helpful in detecting the 

effects captured by that variable. The positive sign of the constant (1η ) indicates that 

higher levels of the latent variable (γ) are associated with network and environmental 

characteristics that are beneficial to production. Therefore the latent variable γ can be 

interpreted as an aggregate indicator of network structural characteristics with an inverse 

correlation with network complexity. With this interpretation in mind, namely associating 

lower values of γ  with greater network complexity, we can explore the consistency of the 
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regression results with our underlying assumptions about network heterogeneity. The 

coefficients of the interactions of the unobserved heterogeneity with both outputs, tram 

seat-kilometers (5η ) and bus seat-kilometers (6η ), have a negative sign, implying that the 

network complexity has a lower effect in higher levels of output. Similarly, the positive 

coefficient of the interaction of the latent variable with the network length (7η ) suggests 

that the network complexity has a relatively greater effect in larger networks. The 

positive sign of the squared term of the latent variable ( 2η ) can also be interpreted as an 

increasing marginal effect of complexity. While all these interpretations appear to be 

consistent with the idea of linking the latent variable to network complexity, we should 

recognize that alternative interpretations could equally be justified. The results however 

point to the fact that the time-invariant heterogeneity is not separable from observed 

production factors.  

The results listed in Table 2 also indicate considerable variation across companies 

with regard to time-invariant heterogeneity. The significant effect of interaction terms of 

the latent variable with outputs suggest that the technological characteristics such as the 

economies of scope or rates of returns to scale and density show a considerable variation 

across different companies. These variations are ignored in the model with separability 

assumption. In principle, such variations can be also modeled with a random coefficients 

model with several random effects. However, considering an identical latent variable 

allows a more tangible interpretation of such variations by associating them to 

unobserved characteristics such as network complexity. For instance, considering the 

latent variable as an inverse measure of the network complexity, we can interpret the 
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negative coefficients of the output interactions as an indication that more complex 

networks have higher rates of economies of scale.  

The inefficiency scores iu  are summarized in Table 3. The estimated values vary 

from 0.01 to about 0.62. The values of the mean and median technical inefficiency are 

fairly low amounting to about 8 per cent.24 A simple calculation based on the estimated 

coefficients of iγ  and 2
iγ , indicates that the effect of heterogeneity is rather substantial: 

Considering the estimated coefficients in Table 2 (especially 7η ), one standard deviation 

of iγ  is approximately equivalent to about 0.14 or 0.28 depending on the model. These 

results suggest that the effect of time-invariant heterogeneity on inputs (and costs) is 

significantly greater than the average estimated inefficiencies. Moreover, in the model 

with separability assumption the coefficients of iγ  and 2
iγ , are significantly smaller 

suggesting that the effect of unobserved heterogeneities could be underestimated.    

 

Table 3 

 

5.0 Conclusions 

Modeling unobserved heterogeneity in stochastic frontier literature is often 

based on certain assumptions about separability from observed production factors. Such 

separability assumptions can be restrictive in the context of transport networks, in which 

the entire production process is organized within given network structures entailing 

unobserved characteristics such as complexity and shape. This paper proposes a random 

                                                 
24 For comparison purposes, we also estimated a “classical” model for panel data proposed by Pitt and Lee 
(1981) that considers any unobserved firm-specific heterogeneity as inefficiency. As expected, the values 
of technical inefficiency are higher and have more dispersion than those emerging from our models.  
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coefficient stochastic frontier model that allows for non-separability between unobserved 

time-invariant factors and observables.  

An input distance function is used to examine the technical efficiency of a 

sample of Swiss and German urban transit companies. The results suggest that the 

estimated distance function could be a reasonable fit to the observed data. The estimated 

input and output elasticities have the correct sign and magnitude. The statistical tests 

favor the presence of considerable network heterogeneity and reject the separability 

assumption. The estimated scale elasticities indicate that the median company operates 

under both economies of density and scale. The analysis indicates that while the first-

order coefficients of the distance function are not sensitive to the separability assumption, 

the second-order terms could differ significantly across the models. This is especially 

important in estimating the variation of technological properties such as returns to scale 

with output and network characteristics. In these cases, the proposed model can be used 

to relax the separability assumption, while allowing a possible association between 

unobservable factors and tangible structural characteristics such as network complexity.  

In general, the results indicate considerable variation across companies in the 

marginal impact of the observed input and outputs, suggesting that the unobserved 

characteristics of the network structure play a crucial role in transport services. Thus, the 

proposed model can improve the estimates taking into account different unobserved 

network complexities. Finally, the results suggest that the effect of time-invariant 

heterogeneity could be greater than the estimated inefficiencies. This result underlines the 

possibility of substantial errors in the measurement of productive efficiency.  Along with 

previous empirical studies, the present analysis confirms that the direct use of 
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benchmarking results in regulation could have significant and possibly undesired 

financial consequences for the regulated companies. Therefore, the benchmarking results 

should not be directly applied to define the tariffs applied to individual companies. 

However, the results can be used as an instrument to minimize the information 

asymmetry between the regulator and companies.  
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Appendices 
 
 

Table 1: Summary statistics for Germany and Switzerland 

Variable Obs Mean Min Max Obs Mean Min Max 

German = GE;  
Swiss=CH 

GE GE GE GE  CH  CH  CH  CH 

Covered population 616 366,709 40,800 164,2000 91 285,215 76,381 421,802 

Number of 
employees  

616 978 30 3996 91 953 76 2798 

Network length  
tram in km 

616 49 3 155 91 32 8 110 

Network length 
bus in km 

616 465 5 2653 91 139 42 362 

Number trams 616 118 2 755 91 128 12 432 
Number buses 616 135 2 470 91 167 30 314 
Tram-km in 1000 
km 

616 5664 61 34,363 91 6,111 398 20,518 

Bus-km in 1000 km 616 7211 86 28,519 91 8,121 1,525 18,438 

Seat-km tram in 
1000 km 

616 96,4943 5000 6,187,000 91 847,835 37387 2,926,006 

Seat-km bus in 1000 
km 

616 584,293 4000 2,303,000 91 974,580 121,443 2,283,553 

Area in km2 616 171 21 405 91 169 90 275 
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Table 2: Distance function estimation results  

 

  

Random parameter model 
with separable unobserved 
heterogeneity  

Random parameter model 
with non-separable 
unobserved heterogeneity 

Variable Parameter Coefficient 
Standard 

error 
Coefficient 

Standard 
error 

Constant iα  -0.090* 0.008 0.031* 0.008 

Ln(x2/x1) CTα  0.191* 0.007 0.243* 0.007 

Ln(x3/x1) CBα  0.365* 0.012 0.357* 0.013 

Ln(x2/x1)
2 CTCTα  -0.051* 0.016 -0.060* 0.015 

Ln(x3/x1)
2 CBCBα  0.067* 0.028 0.124* 0.023 

Ln(x2/x1)*ln(x3/x1) CBCTα  0.139* 0.014 0.098* 0.012 

lny1 Tβ  -0.334* 0.006 -0.333* 0.006 

lny2 Bβ  -0.485* 0.007 -0.456* 0.007 

lny1
2 TTβ  -0.113* 0.011 -0.110* 0.012 

lny2
2 BBβ  -0.174* 0.018 -0.179* 0.020 

lny1*lny2 BTβ  0.114* 0.014 0.091* 0.015 

Ln(x2/x1)*lny1 TCTδ  0.092* 0.013 0.086* 0.013 

Ln(x2/x1)*lny2 TCBδ  -0.044* 0.014 -0.017 0.015 

Ln(x3/x1)*lny1 BCTδ  -0.004 0.018 0.054* 0.017 

Ln(x3/x1)*lny2 BCBδ  0.007 0.018 -0.084* 0.019 

Trend tα  0.022* 0.001 0.022* 0.001 

lnz1 Zα  -0.049* 0.006 -0.032* 0.006 

lnz1
2 ZZα  0.010 0.013 -0.033* 0.014 

lnz1*ln(x2/x1) ZTα  0.159* 0.010 0.138* 0.009 

lnz1*ln(x3/x1) ZBα  -0.119* 0.014 -0.109* 0.015 

lnz1*lny1 ZCTα  -0.122* 0.009 -0.131* 0.009 

lnz1*lny2 ZCBα  0.188* 0.009 0.206* 0.010 

2 2
u uσ σ σ= +   0.123* 0.004 0.121* 0.004 

/u vλ σ σ=   1.927* 0.225 2.322* 0.284 
 Coefficients 

related to latent 
heterogeneity  

  

  

iγ  
1η  0.136* 0.004 0.277* 0.008 
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iγ *ln(x2/x1) 3η    
0.125* 0.010 

iγ *ln(x3/x1) 4η    
-0.130* 0.015 

iγ *lny1 5η    
-0.021* 0.010 

iγ *lny2 6η    
-0.023* 0.010 

iγ *lnz1 7η    
0.024* 0.009 

iγ * iγ  2η  0.055* 0.006 0.093* 0.011 
 
Wald Test 

0

3 4 5 6 7

:

0

H

η η η η η= = = = =
 

Chi-squared = 526.95 
p-value = 0.000 
 
H0 is rejected 
      

Notes: The coefficient reported for each random parameter is the mean; (a) we report estimates of SD of 
normal distribution of random parameters. (*) indicates significance at the 5 per cent level. 
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Table 3: Descriptive statistics of inefficiency estimates  

 Model 1 with 
separability 
assumption 

Model 2 with non-
separability 
assumption 

Number of 
Observation 

707 707 

Mean 0.084 0.085 
Std. Dev 0.053 0.057 
Min 0.012 0.012 
Median 0.071 0.069 
Max 0.617 0.601 

 


