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Introduction

General motivation of the thesis

The developments of financial theory in the last decades have shown that one of the most
fundamental topics in Finance is the specification of dependence between different risk vari-
ables. For instance, in portfolio analysis, it is well-known at least since Markowitz (1971)
that the optimal diversification of risk in a portfolio is related to the contemporaneous de-
pendence between the different assets included in the portfolio. Similarly, in a multiperiod
framework, optimal dynamic portfolio allocations are based on the predictability of assets’
returns and state variables, and therefore involve the serial dependence of the latter.
Empirical evidence on financial series such as returns, interest rates, or exchange rates

suggest that dependence between financial variables exhibits strong features of nonlinearity.
Beyond these by now well-documented empirical stylized facts, the logical need for nonlinear
modeling has been emphasized by recent developments in risk management, such as the
analysis of dependence between default risks of different borrowers, or dependence between
extreme risks. Indeed, the analysis of default risk, for instance, typically involves either
positive variables, such as times to default, or qualitative variables, such as binary indicators
for default in a given period. In these cases, due to the nature of the risk variables, linear
specifications are not appropriate. Moreover, in risk management applications nonlinear
dependence relates mainly to the whole joint distribution of the variables (and not only to
conditional moments, which typically underlie linear models), and the focus is often placed
on the tails of the distribution.
Supported by these motivations, a large interest has arisen in financial econometrics

for modeling nonlinear dependence. Beyond traditional specifications such as ARCH or
switching regimes models, a considerable amount of research has been recently devoted to
methodologies based on the joint distribution of the risk variables such as copulas, which
are standardized versions of the joint cdf where marginal features have been eliminated.
Nonlinear models have been successfully adopted in several financial applications, a tangible
proof of their relevance for a careful specification of dependence between risk variables.
Despite these very promising achievements, more work is still needed. Indeed, on the one
hand, traditional parametric specifications are typically excessively constrained, and are not
appropriate for performing a separate analysis of dependence between medium and high
risk, as required for instance in Value at Risk applications. On the other hand, in a pure
nonparametric approach the interpretation of the patterns of nonlinear dependence may
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be difficult due to the complete lack of structure, and moreover the statistical estimates are
inaccurate when a large number of risk variables or the tails of the distribution are concerned.
In this thesis we consider an approach to nonlinear dependence which is intermediate

between pure parametric and pure nonparametric specifications, combining desirable fea-
tures of the two. In this approach, called constrained nonparametric dependence, the joint
density is constrained and depends on a small number of one-dimensional functional para-
meters, that are functions of one variable. Constrained nonparametric dependence presents
several advantages for modeling nonlinear dependence in financial applications. Firstly the
presence of functional components in the model provides flexibility to the specifications and
richness to the admissible patterns of nonlinear dependence, while affording clear structural
interpretations of nonlinear dependence. Indeed, the nonparametric constraints are typi-
cally introduced by means of latent factors, omitted heterogeneities, proportional hazard
specifications, or exponential affine restrictions, which are appropriate for financial analysis.
Secondly, this approach allows to interpret and visualize the patterns of nonlinear depen-
dence by relating them to specific features of the one-dimensional functional parameters,
such as their shape, monotonicity, elasticity, or divergence behaviour at the boundary points
of the support. Thirdly, the nonparametric dimensionality is controlled, and the rate of con-
vergence of the estimators is the standard one-dimensional nonparametric rate, independent
of the number of underlying risk variables. This leads to more accurate and robust results for
estimation and inference on the functional parameters characterizing nonlinear dependence.
The purpose of this thesis is to develop new econometric methodologies involving con-

strained nonparametric dependence, aimed at providing valuable tools for financial applica-
tions, both from a modeling and a statistical inference point of view. The thesis is organized
in three chapters1. The first chapter introduces constrained nonparametric specifications,
and motivates their application in Finance. The core of the thesis consists of Chapter 2 and
3. Chapter 2 is devoted to modeling methodologies, and presents the analysis of nonlinear
serial dependence in a dynamic constrained nonparametric specification by treating the case
of dynamic duration models with proportional hazard. Statistical inference is considered in
Chapter 3, where we provide efficient nonparametric estimators for the functional parameters
characterizing nonlinear dependence. The content of the three chapters is detailed below.

Detailed outline of the chapters

In chapter 1 we consider the specification of models with constrained nonparametric depen-
dence, discuss the analysis of nonlinear dependence in this framework, and present several
financial applications. In constrained nonparametric models nonlinear dependence between
risk variables is specified by introducing one-dimensional functional parameters in an ap-
propriate representation of the joint density. Different approaches are possible according
to which functional representation of dependence is selected. Three alternative representa-
tions are: copulas, nonlinear canonical decompositions of the joint density, and conditional
Laplace transforms (also called conditional moment generating functions). We review the
main related definitions and results, and illustrate their relationship with traditional econo-

1They correspond to three papers written with Christian GOURIEROUX.
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metric specifications such as factor models. Constrained nonparametric specifications are
implemented by introducing restrictions in that characterization of dependence, which is
best-suited for the financial problem of interest. The analysis of the patterns of nonlinear
dependence is performed by relating them to the shape of the functional parameters, using
appropriate dependence concepts and measures. We present several financial and economic
applications involving either contemporaneous or dynamic nonlinear dependence between
two (or more) risk variables, and discuss the adequacy of various constrained nonparametric
specifications. The applications in the cross-sectional framework include: i) the study of the
age structure of default correlation, ii) problems based on nonlinear cross-moments, such
as expected utility maximization, and iii) the control of dependence between extreme risks.
In the dynamic framework we discuss: i) duration models with proportional hazard for the
analysis of liquidity risk, ii) derivative pricing and term structure of interest rates, and iii)
applications of nonlinear canonical analysis for continuous time models.

Chapter 2 illustrates the use of constrained nonparametric specifications for nonlinear dy-
namic modeling by introducing duration time series with proportional hazard. These models
are useful for the analysis of the liquidity risk, and assume lagged durations as regressors with
proportional hazard effect. Due to invariance by increasing transformation, the proportional
hazard constraint only concerns the copula of the process, and any stationary distribution F
may be imposed by appropriate marginal transformations. The copula of the Markov process
with proportional hazard is characterized by a one-dimensional functional parameter a de-
fined on [0, 1]. In this specification marginal features, included in the stationary cdf, and
serial dependence features, characterized by function a, are completely separated. Markov
processes with proportional hazard provide a dynamic duration model with rich dependence
features and flexible marginal specifications. The patterns and strength of serial dependence
(namely various forms of dependence, dependence in the tails, ergodicity) are related to the
elasticity of parameter a and to its behaviour at the boundary points of the support.

Chapter 3 is devoted to statistical inference in constrained nonparametric families of den-
sities, which depend on one-dimensional functional parameters. The functional parameter
may be defined up to one-to-one transformations, and the choice of the appropriate normal-
ization requires a nondegenerate differential and information operator. Various examples of
constrained nonparametric families are discussed, and closed forms expressions for the differ-
ential and the information operator are provided. A natural nonparametric estimator for the
functional parameter characterizing nonlinear dependence can be defined by minimizing a
chi-square distance between the constrained densities in the family and an unconstrained ker-
nel estimator of the density. We derive the asymptotic properties of the estimator and of its
linear functionals. In particular, the pointwise estimator for the one-dimensional parameter
is shown to have the expected one-dimensional nonparametric rate. Finally, nonparametric
efficiency bounds are derived, and the nonparametric efficiency of the minimum chi-square
estimator is shown.



4

Concluding remarks and future developments

Through this thesis we hope to provide valuable econometric methodologies for the analy-
sis of nonlinear dependence in financial applications. We have shown that the approach of
constrained nonparametric dependence presents several advantages in terms of flexibility,
structural interpretations of the patterns of nonlinear dependence, and control of the non-
parametric dimension. Further we have provided efficient nonparametric estimators for the
functional parameters characterizing nonlinear dependence.
Different future developments seem promising. On the one hand, Chapter 1 presents

several interesting economic and financial applications, which deserve a deeper theoretical
and empirical analysis. On the other hand, further methodological developments for statis-
tical inference are natural, for instance the introduction of specification tests based on the
minimum chi-square criterion.



Chapter 1

Constrained Nonparametric
Dependence with Application in
Finance and Insurance

1.1 Introduction

Dependence between risk variables, either contemporaneous or dynamic, is at the heart of
many topics in Finance and Insurance, including asset pricing, portfolio analysis and risk
management. Based on empirical investigations, there is by now a convincing evidence that
dependence between financial variables involves strong departures from the gaussian assump-
tion, such as fat tails or asymmetries1, and important nonlinearities, such as autoregressive
conditional heteroschedasticity or switching regimes2. These features are generally ascribed
to different causes, for instance complexity of the economic agents’ behaviour, such as atti-
tude towards risk, or peculiarities of financial contracts, which may involve nonlinear payoffs,
such as options. Beyond these empirical stylized facts, nonlinearity and non-normality fea-
tures are implied in some cases simply by the nature of the financial variables, which may be
qualitative, such as price variations at a tick by tick frequency, or positive, such as durations
until default in credit risk models3.
Several approaches have been proposed in the econometric literature to model nonlinear

dependence. On the one hand, parametric specifications have been typically adopted for
their simplicity. They include for instance extensions of the traditional linear regression
framework, such as ARCH, ACD, or Markov switching regimes models4, and parametric

1See e.g. Mandelbrot (1963), Clark (1973) for original references on fat tails in financial returns, and e.g.
Ang, Chen (2002) for a recent discussion of asymmetric correlations in equity portfolios.

2See Bollerslev, Engle, Nelson (1990) and Bollerslev, Chou, Kroner (1992) for reviews on ARCH effects,
Hamilton (1993) for a survey on regime switches, and e.g. Ang, Bakaert (2002b) for a recent discussion of
regime switches in interest rates. See further Tong (1990), and Teräsvirta, Tjostheim, Granger (1994) for
general reviews on nonlinear time series with economic and financial applications.

3See Campbell, Lo, MacKinlay (1997), chapter 12, and Gourieroux, Jasiak (2001a) for general reviews on
nonlinear models in finance.

4See Engle (1982), Engle, Russell (1998), and Hamilton (1989, 1999).
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families of standardized joint cdf’s called copulas5 . However, parametric specifications are
often excessively constrained, resulting in a poor fit to the data, with serious consequences for
pricing and risk management. In addition, in a nonlinear setting, it may be difficult to find
specifications whose parameters have a clear economic or financial interpretation, diminishing
the attractiveness of this approach. On the other hand, fully nonparametric approaches6

suffer from the curse of dimensionality, which causes inaccurate estimates when the number
of variables is larger than 3, or when we are interested in dependence between extremes
(since the number of informative observations becomes too small). Moreover, the complete
lack of structure complicates the interpretation of the models and diminishes the robustness
of the results, and therefore may be undesirable in economic or financial applications.
Intermediate approaches, which combine desirable features of parametric and nonpara-

metric specifications, are also possible. For instance nonlinear dependence between risk
variables can be summarized by one-dimensional functional parameters, that are functions
of one variable, characterizing the joint distribution. This approach is called constrained
nonparametric dependence. A typical example of this approach are transformation models,
where an unknown transformation of the endogenous variable satisfies a linear regression
model 7. A further example is provided by regression models where the mean and volatility
are unrestricted functions of a set of regressors 8. Indeed, in order to avoid the curse of
dimensionality when the number of regressors is large, these models typically assume that
the mean (and the volatility) is either the sum (the product, respectively) of one-dimensional
functions, or depends on a scalar transformation of the regressors, called index9. Recently,
different specifications with constrained nonparametric dependence have been introduced,
which involve more general restrictions and are more appropriate for financial applications,
such as the analysis of nonlinear dependence between durations until default for several
borrowers, or modeling the term structure of interest rates10. These constrained nonpara-
metric specifications presents several advantages. Firstly, as in a nonparametric approach,
the presence of functional components contributes to the flexibility of the specification and
to the richness of the admissible patterns of dependence. Secondly, by means of appropriate
dependence concepts, nonlinear dependence may be related to the shape of these functional
parameters, which becomes the focus of interest. Thirdly, the nonparametric dimensionality
is controlled, which allows for more accurate and robust results.
Another distinction between the approaches proposed to study nonlinear dependence

concerns the selection of an appropriate representation of the joint distribution summarizing
its characteristics. Typically the distribution of a one-dimensional continuous variable can
be characterized by either its probability density function, or its cumulative distribution
function, or its survivor function, or its hazard function, or its characteristic function. It

5See e.g. Rockinger, Jondeau (2001), Patton (2002).
6See e.g. Aït-Sahalia, Lo (1998), Brandt (1999), Fermanian, Scaillet (2002).
7See e.g. Han (1987a,b), Horowitz (1996), Gorgens, Horowitz (1999).
8Haerdle, Tsybakov (1999).
9See Hastie, Tibshirani (1990) for generalized additive models, and Härdle, Stocker (1989), Powel, Stock

(1989), Ichimura (1993), Horowitz, Härdle (1996) for index models.
10See e.g. Darolles, Gourieroux, Jasiak (2002), Gagliardini, Gourieroux (2002), Gourieroux, Robert (2002),

Gourieroux, Monfort, Polimenis (2002).
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is well known that some characteristics are more appropriate for given applications. For
instance the hazard function is easily interpreted for duration variables, and the constrained
duration models are usually defined by means of restrictions on the hazard function. The
same type of remark holds when we consider two variables and focus on nonlinear depen-
dence. Intuitively, we have to separate the marginal features and the dependence features.
However the latter one can be characterized in various ways, for instance by means of either
a conditional distribution, or a copula, or the canonical decomposition of the joint pdf, or a
conditional Laplace transform, and so on. In practice we have to select the representation
of nonlinear dependence, which is appropriate for the problem of interest. For instance, it is
known that the analysis of the term structure of interest rates and of default risk naturally
involves conditional Laplace transforms11, which are appropriate characterizations of nonlin-
ear dependence for these applications. The parametric or nonparametric specifications are
then implemented by introducing constraints on the well-chosen representation of nonlinear
dependence.

In section 2 we recall the definition of a copula, which is a measure of nonlinear de-
pendence widely used for joint analysis of financial risks12. A copula function summarizes
dependence which is invariant to increasing transformations of the variables. We consider
associated functional dependence concepts, measures and orderings, which may be used to
interpret the pattern and strength of nonlinear dependence. Finally, we introduce several
examples of parametric and nonparametric copula families, and discuss their dependence
properties.
In section 3 we consider two other functional characterizations of nonlinear dependence,
namely nonlinear canonical analysis and Laplace transforms. In nonlinear canonical analysis
the joint pdf is decomposed into orthonormal functional directions of dependence (called
canonical directions), and associated canonical correlations, in decreasing dependence or-
der13. We introduce a constrained nonparametric specification featuring finite dimensional
dependence by imposing a finite number of non-zero canonical correlations14. Finally in
the approach based on Laplace transforms, the joint density is characterized by the Laplace
transforms of a marginal and of a conditional distribution. We consider especially the com-
pound model, where the conditional Laplace transform is assumed to be exponential affine
in the conditioning variable15.
In section 4 we present several financial and economic applications involving contemporane-
ous nonlinear dependence between two (or more) risk variables, and discuss the appropriate-
ness of the characterizations of nonlinear dependence introduced in section 2 and 3 . The
applications include: i) the comparison of two scores (for default, for instance) attributed to
the same individuals by means of different criteria; ii) the analysis of dependence between

11Duffie, Pan, Singleton (2000)], Gourieroux, Monfort, Polimenis (2002).
12See e.g. Embrechts, McNeil, Straumann (1999) for a general discussion of the usefulness of copulas in

Finance, Jouanin et al. (2001) for an application to credit risk, Rockinger, Jondeau (2001) and Patton (2002)
for applications to dynamic portfolio selection.
13See e.g. Dunford, Schwarz (1968) and Lancaster (1968). See also Gourieroux, Jasiak (2001a) for an

application to intertrade durations, or Chen, Hansen, Scheinkman (2002) for a macroeconomic application.
14Gourieroux, Jasiak (2001b).
15Darolles, Gourieroux, Jasiak (2002).



8

competing default risks; iii) the study of the age structure of default correlation; iv) the
role of dependence between income and wealth for inequality theory; v) problems based on
nonlinear cross-moments, such as expected utility maximization and pricing of derivatives
written on more than one underlying asset, as well as vi) the control of dependence between
extreme risks. In section 5 we discuss nonlinear dependence in dynamic models, and char-
acterize serial dependence in nonlinear time series by means of copulas, nonlinear canonical
analysis, and Laplace transforms. Different constrained nonparametric specifications are in-
troduced, including Markov processes with finite-dimensional dependence, and Compound
Autoregressive processes. We provide simulated trajectories, autocorrelation functions, and
isodensity curves at several horizons for different examples, in order to analyse how the non-
linear dependence pattern affects the dynamics of the process. Several financial applications
in the dynamic framework are presented in section 6, including: i) trend correction in nonlin-
ear time series to study the ranking dynamics of different firms, ii) dynamic duration models
with proportional hazard for the analysis of liquidity risk, iii) derivative pricing and term
structure of interest rates, iv) prediction and pricing of default risk, as well as v) applications
to continuous time models. These applications require the specification of dynamic nonlinear
dependence either for an observed time series (such as a series of intertrade durations), or for
latent factors (such as the intensity processes in credit risk models, or the stochastic discount
factor in pricing models). Section 7 concludes.

For ease of exposition the theoretical results are generally presented in a continuous
bivariate framework, but most of them can be directly extended to a multivariate case.

1.2 Copulas

In this section we consider a functional measure of dependence called copula, which is in-
variant with respect to increasing transformations of the variables. We first review the main
definitions and results in copulas’ theory [see Joe (1997) and Nelsen (1999) for surveys on
copulas]. Then we give several examples of copula families, including the gaussian copula
and copula families characterized by one-dimensional functional parameters.

1.2.1 Definition and Sklar’s Theorem

Copula functions have been introduced to specify and analyse multivariate distributions
covering various types of dependence structures. A copula function couples marginal dis-
tributions to get a joint distribution, and summarizes the dependence which is invariant to
increasing transformations of the variables. Let us first introduce the definition of a copula
(for the bivariate case).

Definition 1.1 A joint cumulative distribution function (c.d.f.) C on [0, 1]2, with uniform
marginal distributions on [0, 1], is called a copula.
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Thus a function C : [0, 1]2 −→ [0, 1] is a copula if:

i) C(0, v) = C(u, 0) = 0, ∀u, v ∈ [0, 1];
ii) C(u, 1) = u, C(1, v) = v, ∀u, v ∈ [0, 1];
iii) for any rectangle R = [u1, u2]× [v1, v2] ⊂ [0, 1]2:Z Z

R

C(du, dv) = C (u2, v2)− C (u1, v2)− C (u2, v1) + C (u1, v1) ≥ 0. (1.1)

When the distribution C is continuous, the associated density:

c(u, v) =
∂2C

∂u∂v
(u, v), u, v ∈ [0, 1] , (1.2)

is called the copula density.

The main theorem in copulas’ theory is Sklar’s Theorem [Sklar (1959)]. In order to
introduce it, let FX and FY denote univariate c.d.f. and let C be a copula. Then the
function F defined by:

F (x, y) = C [FX(x), FY (y)] , x, y ∈ R, (1.3)

is a bivariate c.d.f., with marginal cdf FX and FY . Sklar’s Theorem shows that the reverse
is also true.

Theorem 1.1 (Sklar) Let F be a bivariate c.d.f., with marginal cdf FX and FY . Then there
exists a copula C such that:

F (x, y) = C [FX(x), FY (y)] , ∀x, y.
This copula is unique, if F is a continuous distribution.

The copula C of continuous variables (X,Y ) with joint distribution F and marginal cdf
FX , FY is defined as the unique copula satisfying (1.3). Let us sketch a proof of Sklar’s
Theorem, which is instructive to understand how the copula C is derived. Let X,Y be con-
tinuous variables with joint cdf F and marginal distributions FX , FY . Then the transformed
variables:

U = FX (X) and V = FY (Y ), (1.4)

have uniform marginal distributions, and their joint c.d.f. is given by:

P [U ≤ u, V ≤ v] = P
£
X ≤ F−1X (u) , Y ≤ F−1Y (v)

¤
= F

£
F−1X (u) , F−1Y (v)

¤
, ∀u, v ∈ [0, 1] .

We deduce that the c.d.f. of (U, V ) is a copula C satisfying condition (1.3). The uniqueness
follows from the continuity of the marginal distributions FX and FY .
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Corollary 1.1: The copula C of (X,Y ) is the c.d.f. of the transformed variables (U, V ).
The variables (U, V ) are called standardized variables (or quantile transformations).

Corollary 1.2: The copula of (X,Y ) is the same as the copula of (g(X), h(Y )), where g, h
are any increasing transformations.

Thus Sklar’s Theorem allows to separate the information contained in a joint c.d.f. F into:
i) the marginal features, described by FX and FY , and ii) some dependence characteristics,
described by the copula C. The dependence features characterized by the copula C are
invariant with respect to increasing transformations of the variables X and Y [see Corollary
2].

Sklar’s Theorem states the equivalence between the joint distribution on the one hand,
the copula and marginal distributions on the other hand. This equivalence explains the
usefulness of copulas. Firstly, given a joint c.d.f. F , we can describe the dependence which
is invariant to increasing transformations by recovering the associated copula C:

C(u, v) = F
£
F−1X (u) , F−1Y (v)

¤
, u, v ∈ [0, 1] . (1.5)

Symmetrically, if variables X and Y have marginal distributions FX , FY , we can specify
a joint distribution for (X,Y ) by specifying a copula C and defining the joint c.d.f. as
F (x, y) = C [FX(x), FY (y)], ∀x, y.

1.2.2 Concepts and measures of dependence

Various dependence concepts, measures and orderings based on copulas have been introduced
in the statistical literature to describe, measure and compare dependence in joint distribu-
tions. Contrary to standard correlation, they are mainly concerned with dependence which
is invariant to increasing transformations16. Moreover, whereas correlation measures linear
affine dependence, they will summarize nonlinear dependence features.
These concepts and measures can be either global in nature, when they summarize the de-
pendence in the whole distribution, or local, when they focus on some regions of the sample
space [0, 1]2. Moreover, they may involve either scalar, or functional summaries of depen-
dence.

i) Kendall’s tau

Kendall’s tau [Kendall (1938)] is one of the most well-known and frequently used global mea-
sures of dependence, which is invariant by increasing transformations. Let F be a bivariate
c.d.f., and (X,Y ),

¡
X

0
, Y

0¢
denote independent pairs with identical joint c.d.f. F . Then

Kendall’s tau τF of distribution F measures the probability of concordant pairs:

τF = P
h³

X −X
0
´³

Y − Y
0
´
> 0

i
− P

h³
X −X

0
´³

Y − Y
0
´
< 0

i
. (1.6)

16The correlation corr (X,Y ) is not invariant to nonlinear increasing transformations of the variables X,
Y , and it is not characterized by the copula of (X,Y ).
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Kendall’s tau τF can be written in terms of the copula C of F as:

τF = 4

Z Z
C(u, v)C(du, dv)− 1 = τC. (1.7)

The range of Kendall’s tau is [−1, 1]. Kendall’s tau reaches its maximal (minimal) value τF =
1 (τF = −1, respectively) if and only if variables X and Y are in an increasing (decreasing)
deterministic relationship: Y = g(X), (say), where g is an increasing (decreasing) function.
This result is the counterpart of the following standard property of correlation: corr (X,Y ) =
1 [corr (X,Y ) = −1] iff X and Y are in increasing (decreasing) affine relationship.
When X and Y are independent, then τF = 0. However, the reverse is not true, and a
zero Kendall’s tau does not imply independence. For instance, the Kendall’s tau of (X,Y )
is zero when the distribution of X given Y is symmetric. The analogous in terms of linear
correlation is that corr (X,Y ) = 0, when E [X | Y ] = 0.
ii) Positive Quadrant Dependence

Two random variables (X,Y ) ∼ F are Positive Quadrant Dependent (PQD) if they are more
likely both small under F , than it would be under the independence hypothesis:

P [X ≤ x, Y ≤ y] ≥ P [X ≤ x]P [Y ≤ y] , ∀x, y. (1.8)

Positive Quadrant Dependence is a property of the copula, since X and Y are PQD iff their
copula C is such that:

C(u, v) ≥ uv, ∀u, v ∈ [0, 1] , (1.9)

where Cind(u, v) = uv is the copula of independent variables. Moreover, since any decreasing
function of X, g(x) (say), is the limit of linear combinations of indicator functions I(−∞,xi]:

g(x) = lim
n
&
(
α0 +

nX
i=1

αiI(−∞,xi](x)

)
,

with positive components αi, i = 1, .., n, it is immediately deduced from the PQD condition
(1.8) that:

E [g(X)h(Y )] ≥ E [g(X)]E [h(Y )] , for any decreasing functions g, h,

or equivalently that:

Cov [g(X), h(Y )] ≥ 0, for any increasing functions g, h, (1.10)

(such that the covariance exists). In fact property (1.10) is equivalent to the PQD condition
(1.8) [see Dhaene, Goovaerts (1996)] and provides the interpretation of PQD in terms of
correlations.
Finally, an equivalent characterization of PQD in terms of survivor probabilities can be
derived. Variables X and Y are PQD iff they are more likely simultaneously large than their
independent copies:

P [X ≥ x, Y ≥ y] ≥ P [X ≥ x]P [Y ≥ y] , ∀x, y.
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To summarize, we have the following equivalent characterizations of PQD:

Property 1.1: Variables (X,Y ) are PQD if and only if any of the following conditions is
satisfied:
i) P [X ≤ x, Y ≤ y] ≥ P [X ≤ x]P [Y ≤ y], ∀x, y;
ii) C(u, v) ≥ uv, ∀u, v ∈ [0, 1];
iii) Cov [g(X), h(Y )] ≥ 0, for any increasing functions g, h, such that the covariance exists;
iv) P [X ≥ x, Y ≥ y] ≥ P [X ≥ x]P [Y ≥ y], ∀x, y.

Positive Quadrant Dependence between two variables can be introduced by means of common
factors.

Example 1: Let variables X and Y be such that:

X = a (Z, ε) , Y = b (Z, η) ,

where Z, ε and η are independent variables, and functions a and b are increasing in the
argument Z. In particular, the distribution of X given Z (and of Y given Z) is increasing
in Z for the first order stochastic dominance. We get:

Cov [g(X), h(Y )] = Cov {E (g [a (Z, ε)] | Z) , E (h [b (Z, η)] | Z)} ≥ 0,

for any increasing functions g, h, since E (g [a (Z, ε)] | Z) and E (h [b (Z, η)] | Z) are both
increasing with respect to Z. From Property 1 iii) we deduce that X and Y are PQD. The
analogous result in terms of linear correlation is that the variables:

X = αZ + ε, Y = βZ + η,

where α, β ≥ 0, have a positive correlation.

PQD can be used to define a dependence ordering. Copula C1 is said to be more PQD
than copula C2, noted C1 ºPQD C2, if:

C1(u, v) ≥ C2(u, v), ∀u, v ∈ [0, 1] . (1.11)

The maximal and minimal elements with respect to the PQD ordering are the upper and
lower Frechet bounds, respectively. They are characterized by the copulas:

Cu(u, v) = min(u, v), Cl(u, v) = max {u+ v − 1, 0} ,

respectively. They correspond to deterministic linear dependence between the quantile vari-
ables, U = V and U = 1 − V , respectively, and to increasing, and decreasing, respectively,
deterministic nonlinear dependence between X and Y .
Kendall’s tau is compatible with the PQD ordering: if copula C1 is more PQD than copula
C2, then Kendall’s tau of C1 is larger than that of C2.
The PQD dependence ordering can also be defined for the pair of initial variables (X1, Y1)
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and (X2, Y2). In particular if X1 and X2 (resp. Y1 and Y2) have the same distribution, the
PQD ordering can be characterized in terms of covariance:

Cov [g(X1), h(Y1)] ≥ Cov [g(X2), h(Y2)] ,

for any increasing functions g, h, (1.12)

(such that the covariances exist) 17, or in terms of survivor functions:

S1(x, y) ≥ S2(x, y), ∀x, y, (1.13)

where S1 and S2 are the joint survivor functions of (X1, Y1) and (X2, Y2), respectively.
The PQD ordering is useful to investigate the effect of nonlinear dependence between X
and Y on cross-moments such as E [g(X,Y )]. For instance if function g is the cumulative
function of a positive measure, by Fubini theorem we get:

E [g(X,Y )] =
g

E [S(X,Y )] , (1.14)

where S is the survivor function of (X,Y ), and
g

E denotes the expectation with respect to
measure g. Then, by characterization (1.13) of PQD, we deduce the following proposition
[see Tchen (1980), and Müller, Scarsini (2000) for equivalent formulations].

Proposition 1.2: Let g be the cumulative function of a positive bivariate measure. Let F1
and F2 be bivariate cdf with the same marginal distributions, and copulas C1 and C2, such
that C1 ºPQD C2. Then:

F1
E [g(X,Y )] ≥

F2
E [g(X,Y )] .

Thus the expectation E [g(X,Y )] is monotone with respect to PQD between X and Y ,
for given marginal distributions.

iii) Tail dependence

The observations drawn from the tails of a distribution are called extremes, or extreme values.
The dependence between extremes of several variables is important for many applications
in Finance and Insurance. For instance, the management of extreme risk in a financial
portfolio and the determination of the capital required to hedge these risks are based on
a careful analysis of the dependence between extreme returns of the assets included in the
portfolio. Therefore it is important to introduce measures which focus on dependence in
the joint tails. For this purpose the statistical literature has introduced the tail dependence
coefficients [Joe (1993)]. The lower tail dependence coefficient λL is defined by:

λL = lim
α→0

P
£
X ≤ F−1X (α) | Y ≤ F−1Y (α)

¤
,

17Note that the same inequalities hold for the correlations if X1 and X2, Y1 and Y2 have the same marginal
distributions. Otherwise the inequalities are generally not valid for the correlations.
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when this limit exists18. Thus λL is given by the limiting probability that X is extreme given
that Y is extreme. When λL > 0, X and Y feature positive lower tail dependence; otherwise
they are lower tail independent. The coefficient of lower tail dependence λL is symmetric
in variables X and Y , and is invariant by increasing transformations. It can be written in
terms of the copula C:

λL = lim
u→0

P [U ≤ u | V ≤ u]

= lim
u→0

C(u, u)

u
. (1.15)

iv) Tail conditional copulas

However the lower tail dependence coefficient is a scalar measure considering only the extreme
behaviour when α tends to 0. For practical purposes, such as the determination of the
required capital (Value at Risk), it is usual to study the extreme when α is small, but not
infinitely small. For instance we can be interested in the dependence when α is of order
5% or 1%, without tending to zero. In order to get a richer description of dependence in
the tails of a bivariate distribution, we have to introduce functional measures. Charpentier
(2002) and Juri, Wuethrich (2002 a,b) consider tail conditional copulas. The lower tail
conditional copula Cα of X and Y at threshold α is the copula of (X,Y ) given X ≤ F−1X (α),
Y ≤ F−1Y (α), that is the copula of (U, V ) given U ≤ α, V ≤ α. It is given by:

Cα (u, v) =
C
£
F−1U,α (u) , F

−1
V,α (v)

¤
C (α, α)

,

where C is the copula of (X,Y ),
FU,α (u) = P [U ≤ u | U ≤ α, V ≤ α] = C (min {u, α} , α) /C (α, α), and similarly FV,α (v) =
P [V ≤ v | U ≤ α, V ≤ α] = C (α,min {v, α}) /C (α, α). The conditional copula can be con-
sidered for a given level of α, such as α = 5% or α = 1%. Its asymptotic behaviour when
α→ 0 can also be investigated [see Juri, Wuethrich (2002 a,b)].

1.2.3 Examples

In this section we introduce examples of copula families and discuss their dependence prop-
erties. The most famous copula is the Gaussian copula, which is characterized by a linear
correlation parameter ρ. Constrained nonparametric specifications may be introduced by
considering copula families characterized by one-dimensional functional parameters.

18Dependence between the upper tails can be measured by the upper tail dependence coefficient λU , which
is defined by: λU = limα→1 P

£
X ≥ F−1X (α) | Y ≥ F−1Y (α)

¤
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1.2.3.1 Gaussian copula.

i) Definition

A gaussian copula is associated with a bivariate gaussian distribution:

N

·µ
0
0

¶
,

µ
1 ρ
ρ 1

¶¸
. (1.16)

Thus the copula family is indexed by the correlation parameter ρ ∈ [−1, 1] and is given by:
Cρ(u, v) = Φρ

£
Φ−1 (u) ,Φ−1 (v)

¤
,

where Φρ (x, y) denotes the c.d.f. of the gaussian distribution (1.16) with zero mean, unitary
variances and correlation coefficient ρ, and Φ (x) denotes the c.d.f. of a standard univariate
Gaussian distribution. Two variables X, Y with marginal distributions FX , FY and gaussian
copula Cρ admit the joint c.d.f.:

F (x, y) = Cρ [FX(x), FY (y)] = Φρ

£
Φ−1 (FX(x)) ,Φ

−1 (FY (y))
¤
.

ii) Dependence

The gaussian family Cρ is positively PQD ordered with respect to the dependence parameter
ρ. The case ρ = 0 corresponds to independence. When ρ = 1, we have U = V , and variables
X and Y are in increasing deterministic dependence: Y = F−1Y [FX (X)]

19. In particular,
when FX and FY are not identical, the deterministic relationship between X and Y is in
general nonlinear, and differs from the affine relationship between U and V . It is important
to note that the correlation between X and Y is an increasing function of ρ; it differs from ρ,
as soon as Φ−1 ◦ FX and Φ−1 ◦FY are not affine functions. Finally, gaussian copulas feature
both upper and lower tail independence: λU = λL = 0.

iii) Scatterplots and isodensity curves

Gaussian copula may be used to define random variables (X,Y ) with a gaussian dependence
structure, and nonnormal marginal distributions, featuring for instance fat tails. In Figure
1, Panels A and B, we report scatterplots of simulated pairs (X,Y ) with identical student
marginal distributions t4 and gaussian copula Cρ for different values of ρ: ρ = 0.2 in Panel
A, and ρ = 0.8 in Panel B.

[insert Figure 1A: scatterplot X,Y , marginal student, ρ = 0.2]

[insert Figure 1B: scatterplot X,Y , marginal student, ρ = 0.8]

In Panels C and D we provide the scatterplots of the corresponding standardized variables
(U, V ).

[insert Figure 1C: scatterplot U, V , ρ = 0.2]

19Similarly for ρ = −1.
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[insert Figure 1D: scatterplot U, V , ρ = 0.8]

As expected from the PQD order, when the dependence parameter ρ increases, the distri-
bution gets more concentrated along the 45 degree line. Copula densities are reported in
Figure 2, Panels A and B.

[insert Figure 2A: copula p.d.f., ρ = 0.2]

[insert Figure 2B: copula p.d.f., ρ = 0.8]

The density is more concentrated along the line u = v, when ρ increases. For sake of visual
interpretation and comparison with other families, it is useful to consider the density of the
transformations of X and Y having standard normal margins:

X∗ = Φ−1 [FX(X)] , Y ∗ = Φ−1 [FY (Y )] .

If X,Y have a gaussian copula Cρ, X∗, Y ∗ have joint standard normal distribution, with
correlation ρ. The isodensity curves of X∗, Y ∗ are ellipsoids represented in Figure 2, Panels
C and D.

[insert Figure 2C: isodensity curves, ρ = 0.2]

[insert Figure 2D: isodensity curves, ρ = 0.8]

1.2.3.2 Archimedean Copula

i) Definition

Let φ be a convex, decreasing, positive function on (0, 1], such that φ(1) = 0 and φ (0) = +∞.
An Archimedean copula with (strict) generator φ is defined by [Genest, Mc Kay (1986)]:

Cφ(u, v) = φ−1 [φ (u) + φ (v)] .

ii) Factor representation

A wide class of Archimedean copulas, including the most usual ones, admit a factor repre-
sentation. More precisely, let us consider a positive random variable Z such that X and Y
are independent conditionally on Z, and:

P [X ≤ x | Z] = GX (x)
Z , P [Y ≤ y | Z] = GY (y)

Z , (1.17)

where GX and GY are c.d.f.’s. The variable Z is a latent factor with a common effect on
X and Y , which admits an interpretation in terms of proportional hazard. Indeed, let us
recall that variable W features proportional hazard in variable Z if the conditional hazard
function of W given Z is proportional to Z, that is: P [W ≥ w | Z] = exp [−ZΛ0(w)], where
Λ0 is an increasing function called baseline integrated hazard. For Archimedean copulas,
we deduce from (1.17) that P [−X ≥ x | Z] = exp {−Z [− logGX (−x)]} = exp {−ZΛX(x)},
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(say), and similarly for Y . Thus, if for instance variablesX and Y are two duration variables
associated with competing risks, factor Z has a proportional hazard effect on X and Y , and
is often interpreted as omitted heterogeneity 20.
The joint c.d.f. of variables X and Y is given by:

F (x, y) = E
h
GX (x)

Z GY (y)
Z
i
= E exp [−Z (− logGX (x)− logGY (y))]

= ψ [− logGX (x)− logGY (y)] ,

where ψ is the real Laplace transform (moment generating function) 21 of the distribution of
Z, and the marginal cdf are given by:

FX(x) = ψ [− logGX (x)] , FY (y) = ψ [− logGY (y)] .

Thus the copula of the pair (X,Y ) is:

C(u, v) = F
£
F−1X (u), F−1Y (v)

¤
= ψ

£
ψ−1(u) + ψ−1(v)

¤
.

This is an Archimedean copula with generator φ = ψ−1.
The variablesX and Y admit the stochastic representations: X = G−1X

¡
ε1/Z

¢
, Y = G−1Y

¡
η1/Z

¢
,

with ε, η, Z independent, and ε, η uniformly distributed on [0, 1]. VariablesX and Y are both
increasing in the common factor Z for first order stochastic dominance. Thus from Example
1 Archimedean copulas with factor structure (1.17) feature positive dependence.

iii) PQD ordering

The PQD ordering in the Archimedean family can be described in terms of the generator
φ. Let Cφi, i = 1, 2, be two Archimedean copulas with generators φi, i = 1, 2. Different
characterizations of the Archimedean PQD ordering have been considered in the literature
[see e.g. Joe (1997), chapter 4, and Nelsen (1999), chapter 4]. For instance, a sufficient
condition for PQD ordering is the following [see Corollary 4.4.4 in Nelsen (1999)]: Cφ1 is
more PQD than Cφ2 if:

ν = φ2 ◦ φ−11 is concave. (1.18)

This condition has an interesting interpretation for Archimedean copulas derived from factor
models (1.17), in terms of the dispersion of the latent factor. Let Z1 and Z2 denote the latent
factors corresponding to Archimedean copula Cφ1 and Cφ2 , with real Laplace transforms ψ1
and ψ2, respectively. Let us assume for simplicity that Z1 and Z2 have finite expectation.
Since they are defined up to a multiplicative constant, we may assume without loss of gener-
ality that E [Z1] = E [Z2] = 1. Then, since ψ

0
1(0) = ψ

0
2(0) = −1, we deduce from (1.18) that

20This proportional hazard interpretation explains why these models are called frailty models [see e.g. Joe
(1997)].
21The real Laplace transform of variable Z is the function defined by:

ψ (u) = E [exp (−uZ)] .

When Z is positive, its domain of definition includes R+.
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ν
0
(0) = 1 and: V (Z1) = ψ

00
1(0)−ψ

0
1(0)

2 = ψ
00
2(0)−ψ

0
2(0)

2−ν 00(0) = V (Z2)−ν 00(0) > V (Z2).
Thus, when condition (1.18) is satisfied, factor Z1 is more dispersed than factor Z2, and the
Archimedean copula Cφ1 is more PQD than Cφ2 .

iv) Tail dependence

Let us now consider tail dependence in Archimedean copulas. From section 2.2 iii) the
coefficient of upper tail dependence is given by [see Joe (1997), Theorem 4.12]:

λU = 2− 2 lim
s→0

ψ
0
(2s)

ψ
0
(s)
,

where ψ = φ−1. When the Archimedean copula is derived from a latent factor model, tail
dependence is characterized by the magnitude of the factor tail. If the factor Z has a finite
mean, −ψ0

(0) = E [Z] < ∞, then λU = 0. Thus Archimedean copulas may feature upper
tail dependence only if E [Z] =∞. Let us assume for instance a factor Z with Pareto tails:
P [Z ≥ z] ∼ l(z)/zδ, where l is a slowly varying function, and 0 ≤ δ ≤ 1 [which implies
E [Z] = +∞]. Then, by the Tauberian Theorem [see Feller (1971)], the Laplace transform
ψ of Z near s = 0 is such that: ψ (s) ∼ 1− sδl(1/s), and thus: ψ

0
(2s)/ψ

0
(s) ∼ 2δ−1, s→ 0.

Therefore the tail dependence parameter is given by: λU = 2− 2δ. The smaller δ, the fatter
the tail of Z, and the stronger tail dependence in the copula.

v) Parametric Archimedean copula

Classical Archimedean copulas are the Gumbel copula and the Clayton copula.
The Gumbel copula [Gumbel (1960)] is defined by:

Cα(u, v) = exp
n
− [(− log u)α + (− log v)α]1/α

o
,

where 1 ≤ α ≤ ∞. The Gumbel family Cα corresponds to a positive α-stable factor Z,
with a real Laplace transform ψα (s) = exp

£−s1/α¤, s ≥ 0. Its generator is given by:
φα (u) = (− log u)α, u ∈ (0, 1]. The Gumbel family Cα is positively PQD ordered with respect
to α, since φα2 ◦ φ−1α1 (s) = sα2/α1, s ≥ 0, is sign alternating if α1 ≥ α2. In accordance with
the general result, the PQD ordering is related to the dispersion of the factor Z: the smaller
is α, the faster is the decay of the Laplace transform ψα, and thus the more concentrated the
distribution of Z close to 0. Finally, since ψα (s) ∼ 1−s1/α, when s→ 0, the Gumbel copula
features upper tail dependence, with λU = 2 − 21/α. The upper tail dependence coefficient
is increasing with respect to α. This is consistent with the interpretation of α as the tail
parameter of the distribution of Z: P [Z ≥ z] ∼ z−1/α, z →∞.
The Kimeldorf and Sampson copula, also called Clayton copula, [Kimeldorf, Sampson (1975),
Clayton (1978)] is given by:

Cδ(u, v) =
¡
u−δ + v−δ − 1¢−1/δ , u, v ∈ [0, 1] ,

where δ ≥ 0, with generator: φδ (u) = 1− u−δ, u ∈ (0, 1]. Clayton copula corresponds to a
common factor Z following a gamma distribution with parameter δ, and Laplace transform
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ψδ (s) = 1/ (1 + s)1/δ, s ≥ 0. This family is positively PQD ordered with respect to δ, and
features lower tail dependence.

vi) Scatterplots and isodensity curves

Scatterplots of (U, V ) and isodensity curves of random variables (X,Y ) with standard normal
marginal distributions for Gumbel (resp. Clayton) copula are reported in Figure 3, Panels
A and B (Panels C and D, respectively). The parameters are chosen to get Kendall’s tau
identical to that of a Gaussian copula with ρ = 0.8.

[insert Figure 3A, B: scatterplot and isodensity curves, Gumbel copula]

[insert Figure 3C, D: scatterplot and isodensity curves, Clayton copula]

Two important differences emerge with respect to the Gaussian copula (see Figure 1, Panel D,
and Figure 2, Panel D). First, isodensity curves are wedge-shaped in the upper (resp. lower)
quadrant for the Gumbel (resp. Clayton) copula. Intuitively the dependence between large
observations is stronger than dependence between small ones for the Gumbel copula, and
the reverse holds for the Clayton copula. Such an asymmetry in dependence is not possible
with gaussian copulas. The second, and related, important difference evidenced by the
scatterplots is that Gumbel (Clayton) copula features upper (resp. lower) tail dependence,
whereas Gaussian copula features tail independence in both tails.

1.2.3.3 Extreme value copulas

i) Definition

Let (X∗
i , Y

∗
i ), i = 1, ..., n, be independent pairs of random variables. Extreme value copulas

are associated with the limiting joint distribution of X = maxiX
∗
i , Y = maxi Y

∗
i , as n tends

to infinity. Extreme value copulas are of the form [see e.g. Joe (1997)]:

Cχ(u, v) = exp

½
(log u+ log v)χ

µ
log u

log u+ log v

¶¾
,

where function χ is defined on [0, 1], convex, and satisfies: max (v, 1− v) ≤ χ (v) ≤ 1,
∀v ∈ [0, 1].

ii) PQD dependence

Positive Quadrant Dependence is easily characterized in terms of the functional parameter
χ. If C1 and C2 are two extreme value copulas, with generators χ1 and χ2, respectively, then
C1 is more PQD than C2 iff χ1 ≤ χ2. The limiting generators χ1(v) = max (v, 1− v) and
χ2(v) = 1 correspond to positive deterministic dependence, and independence, respectively.
In particular, only positive dependence is allowed.
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iii) Parametric extreme value copulas

The Gumbel copula is an example of extreme value copula, with generator χ (v) =
³
vδ + (1− v)δ

´1/δ
.

Another example is provided by the asymmetric logistic copula:

Cα,β1,β2(u, v) = exp
n
− [(β1z)α + (β2w)α]1/α − (1− β1) z − (1− β2)w

o
, (1.19)

where z = − log u, w = − log v, and β1, β2 ∈ [0, 1], α ≥ 1 22. The generator is given by:
χ (v) = [(β1v)

α + (β2 (1− v))α]
1/α
+ (1− β1) v + (1− β2) (1− v).

iv) Scatterplots and isodensity curves

Scatterplots of variables (U, V ) with asymmetric logistic copula and parameters α = 2.62,
β1 = 1.3, δ = 0.8

23, and isodensity curves of corresponding variables (X,Y ) with standard
normal marginal distributions are reported in Figure 4, Panels A and B, respectively.

[insert Figure 4A: scatterplot, asymmetric logistic copula ]

[insert Figure 4B : isodensity curves, gaussian marginal distribution,

asymmetric logistic copula]

The most important difference with respect to previous examples is that variables U and
V do not play a symmetric role: the copula is not exchangeable, that is the distribution of
(U, V ) is not invariant for permutation of the components: C(u, v) 6= C(v, u), u, v ∈ [0, 1].
Realizations with U small and V large are more likely than the opposite ones. In the
asymmetric logistic copula family asymmetry is described by parameters β1, β2. The copula
is symmetric when β1 = β2. More generally, an extreme value copula is symmetric if and
only if its generator χ is such that: χ(v) = χ (1− v), ∀v ∈ [0, 1].

1.3 Other functional dependence measures.

As seen in section 2 copulas summarize the dependence properties which are invariant with
respect to increasing transformations. Thus they do not take into account the levels of both
variables. Other characterizations of dependence can be introduced and be more appropriate
for some applications. In section 3.1, we consider the so-called nonlinear canonical analy-
sis. We first define nonlinear canonical correlations and canonical directions, and provide
their interpretations. We then describe the nonlinear canonical decomposition of a bivariate
distribution, and of the associated copula density. Finally we introduce constrained non-
parametric specifications based on a finite-dimensional canonical decomposition. In section
3.2 the distribution is characterized by means of a marginal and a conditional Laplace trans-
form. We review the basic properties of Laplace transforms and introduce a nonparametric
constrained model for the conditional Laplace transform.
22This copula is obtained by the asymmetrization technique of Genest, Ghoudi, Rivest (1998). In this case

it is derived by mixing a Gumbel copula and an independent copula.
23These parameters are such that the upper tail dependence coefficient is equal to that of the Gumbel

copula considered in ii).
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1.3.1 Canonical analysis

1.3.1.1 Definition of canonical correlations and canonical directions

Let X, Y be a pair of random variables with joint distribution F and marginal distributions
FX , FY . The canonical directions of order j, ϕj ∈ L2 (FX), ψj ∈ L2 (FY ), and the associated
canonical correlations λj, j ∈ N, are defined recursively by:

λj = corr
£
ϕj (X) , ψj (Y )

¤
= max

ϕ∈L2(FX), ψ∈L2(FY ),
corr [ϕ (X) , ψ (Y )] ,

where the maximization is subject to the constraints24:

ϕ ⊥ span
©
ϕ1, ..., ϕj−1

ª
, ψ ⊥ span

©
ψ1, ..., ψj−1

ª
,

and to the normalizations:

E [ϕ (X)] = E [ψ (Y )] = 0, V [ϕ (X)] = V [ψ (Y )] = 1.

More explicitly, the first canonical directions ϕ1 and ψ1 are the transformations of X and Y
with maximal correlation (equal to λ1), given zero mean and unitary variance restrictions;
the second canonical directions ϕ2 and ψ2 are the transformations uncorrelated with ϕ1
and ψ1, with the maximal correlation (equal to λ2); and so on. Thus nonlinear canonical
analysis provides a sequence of orthonormal functional directions of nonlinear dependence
[the canonical directions ϕj, ψj, j varying] and associated canonical correlations λj ≥ 0, j
varying, in decreasing dependence order: λ1 ≥ λ2 ≥ ... ≥ 0.
Example 2: Let (X,Y ) follow a bivariate standard gaussian distribution with correlation
ρ > 0. Thus the canonical directions are given by [Barrett, Lampard (1955), Wiener (1958),
lecture 5, Neveu (1968)]:

ϕj = ψj =
1√
j!
Hj, j ∈ N,

where Hj, j varying, are the Hermite polynomials defined by:

Hj(x) =
X

0≤m≤bj/2c

j!

(j − 2m)!m!2m (−1)
mxj−2m.

The associated canonical correlations are:

λj = ρj, j ∈ N.
For a bivariate gaussian distribution the directions of stronger dependence are affine, and
the largest canonical correlation coincides with the linear correlation ρ. The canonical cor-
relations λj decrease geometrically with the order j ∈ N, and the associated directions
correspond to polynomial transformations of increasing degree.

24⊥ denotes orthogonality with respect to the standard inner product in L2 (FX) and L2 (FY ), respectively.
Thus ϕ⊥ϕ1 means E [ϕ(X)ϕ1(X)] = 0, and ψ⊥ψ1 means E [ψ(Y )ψ1 (Y )] = 0.
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1.3.1.2 The decomposition theorem

The canonical directions can be used to get a decomposition of the joint distribution sepa-
rating the effect of the marginal distributions and the nonlinear dependence. Let ϕj, ψj and
λj, j varying, be the canonical directions and canonical correlations of variables X and Y ,
respectively. Let us denote by f [resp. fX , fY ] the joint pdf of (X,Y )[the marginal pdf of
X and Y , respectively]. Under weak conditions25, the joint p.d.f. of X and Y admits the
decomposition [see Lancaster (1968), Dunford, Schwartz (1968)]:

f(x, y) = fX(x)fY (y)

"
1 +

∞X
j=1

λjϕj(x)ψj (y)

#
. (1.20)

The canonical decomposition (1.20) provides another characterization of the joint p.d.f. of
(X,Y ), where marginal effects fX , fY are clearly distinguished.

1.3.1.3 Invariance by increasing transformation

By definition the canonical correlations λj, j ∈ N, are invariant to increasing transformations
of the variables X and Y , whereas the canonical directions ϕj, ψj, j ∈ N, are transformed
by compounding: the canonical directions of g(X), h(Y ), where g, h are increasing transfor-
mations, are ϕj ◦ g−1, ψj ◦ h−1, j ∈ N. Thus the canonical decomposition of the distribution
of X and Y is characterized, up to increasing transformations of the canonical directions, by
the canonical decomposition of the copula p.d.f.:

c(u, v) = 1 +
∞X
j=1

λjaj(u)bj (v) , say,

where ϕj = aj ◦ FX , ψj = bj ◦ FY , j ∈ N. Canonical directions aj, bj, j ∈ N, satisfy the
following normalization and orthogonality conditions with respect to the uniform distribution
on [0, 1]: Z 1

0

aj(u)du =

Z 1

0

bj(v)dv = 0, ∀j,Z 1

0

ai(u)aj(u)du =

Z 1

0

bi(v)bj(v)dv =

½
0, i 6= j
1, i = j

, ∀i, j.

25Such as I =
R R

f(x, y)2/ [fX(x)fY (y)] dxdy <∞. Since I =
R R

λ (x, y)2 fX(x)fY (y)dxdy is an average
of nonlinear dependence measure λ (x, y) = f(x, y)/fX(x)fY (y), the condition means that the dependence
is not too strong. When I < ∞, we deduce from (1.20) that I is related to the canonical correlations by
I =

P∞
j=1 λ

2
j < +∞. Thus canonical correlations λj , j varying, cannot decrease too slowly.
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1.3.1.4 Finite dimensional dependence

From the decomposition theorem, the joint p.d.f. of (X,Y ) may be equivalently represented
by a nonlinear canonical decomposition as in the RHS of equation (1.20). This suggests
model specifications with constrained nonparametric dependence by imposing a finite number
of non-zero canonical correlations. We say that these models feature finite dimensional
dependence [see Gourieroux, Jasiak (2001)]. Let us consider one-dimensional dependence.
The copula admits the representation:

c(u, v) = 1 + λa(u)b (v) ,

where the canonical directions a and b satisfy the normalizations:Z 1

0

a(u)du =

Z 1

0

b(v)dv = 0,Z 1

0

a(u)2du =

Z 1

0

b(v)2dv = 1. (1.21)

By the positivity condition of the copula density, the canonical directions a and b are
bounded: a ≤ a ≤ a, b ≤ b ≤ b, for some constants a, b ≤ 0 ≤ a, b, and the canonical
correlation λ is constrained by: λ ≤ −1/min©ab, abª.
Let us study the positive quadrant dependence between X and Y . The copula c.d.f. is given
by:

C(u, v) = uv + λA (u)B (v) ,

where A (u) =
R u
0
a (w) dw, and B (v) =

R v
0
b (w) dw. Thus (X,Y ) features PQD iff:

either
½

A ≥ 0
B ≥ 0 , or

½
A ≤ 0
B ≤ 0 ,

that is A and B have the same constant sign. Since functions A and B vanish at the
boundaries u = 0 and u = 1, this condition is satisfied for instance when functions a and b
are either both monotonically decreasing, or both monotonically increasing.
In a model with one-dimensional dependence, PQD is increasing with respect to the canonical
correlation λ. Let us now investigate how the patterns of canonical directions a and b affect
the strength of PQD. Let (X,Y ) and (X∗, Y ∗) feature one-dimensional dependence, with
canonical directions a, b and a∗, b∗, and canonical correlations λ and λ∗, respectively. Let us
assume for simplicity A,B,A∗, B∗ ≥ 0. Then (X,Y ) is more PQD than (X∗, Y ∗) iff:

λA(u)B (v) ≥ λ∗A∗(u)B∗ (v) , ∀u, v,

or equivalently:
λ
λ∗

A(u)
A∗(u)

B(v)
B∗(v) ≥ 1, ∀u, v

⇐⇒ λ
λ∗ min

A
A∗ min

B
B∗ ≥ 1.
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Example 3: An example of copula with one-dimensional dependence is Morgenstern copula
[Morgenstern (1956)]:

c(u, v) = 1 + 3λ (1− 2u) (1− 2v) ,
where |λ| ≤ 1/3. The canonical directions a(w) = b(w) =

√
3 (1− 2w) are affine. In

particular the linear correlation between U and V is equal to λ and is necessarily smaller
than 1/3 in absolute value. When λ > 0 this copula features PQD.

1.3.2 Laplace transforms

In the nonlinear canonical decomposition the joint pdf plays an important role as the appro-
priate characterization of the joint distribution. In this section we consider the characteri-
zation of a distribution by means of the Laplace transform (also called moment generating
function). More precisely, it is well-known that the joint distribution is characterized by a
marginal distribution and a conditional one. We will use the equivalent decomposition in
terms of Laplace transform.

1.3.2.1 Definition

The (real) Laplace transform of a variable Y is the function:

u 7→ ΨY (u) = E [exp (−uY )] , u ∈ D ⊂ R.

The domain of definition D is an interval including 0. The expectation does not necessarily
exist for any real value of u, but the larger the domain D, the thinner are the tails of the
distribution of Y .

Important properties of the Laplace transform are known for positive variables. The domain
D contains the positive half-line R+. In addition, function Ψ is completely monotone26:
(−1)(m) dmΨY (u)/du

m = E [Y m exp (−uY )] ≥ 0, u ≥ 0, ∀m ∈ N. Finally, the real Laplace
transform Ψ on R+ characterizes completely the distribution of Y . Thus, in this case, the
knowledge of Ψ is equivalent to the knowledge of the distribution of Y 27.

Let us now consider two random variables X and Y . Their nonlinear dependence may
be described by the conditional distribution of X given Y . Its Laplace transform is given
by:

u 7−→ Ψ (u, Y ) = E [exp (−uX) | Y ] .
Under weak conditions28, the conditional Laplace transform Ψ (u, Y ) characterizes the con-
ditional distribution, and provides an equivalent description of nonlinear dependence, which
is appropriate in many applications.

26Together withΨ (0) = 1, this is an equivalent characterization of Laplace transforms for positive variables
[see Feller (1971)].
27In the general case, we have to consider the Laplace transform defined on the complex domain: ΨY (w) =

E [exp (−wY )], w ∈ DC ⊂ C.
28For instance X is positive, or w 7−→ Ψ (w, Y ) is analytic in a neighbourhood of 0 ∈ C.
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Finally, the joint Laplace transform of X and Y , which characterizes the joint distribution
of (X,Y ), is defined by:

(u, v) 7−→ Ψ (u, v) = E [exp (−uX − vY )] .

It can be written in terms of the conditional Laplace transform ofX given Y and the marginal
distribution of Y as:

Ψ (u, v) = E [Ψ (u, Y ) exp (−vY )] . (1.22)

1.3.2.2 The compound model

i) Definition

Constrained nonparametric specifications of the nonlinear dependence may be introduced
by imposing functional restrictions on the conditional Laplace transform Ψ (u, Y ). In the
so-called compound model, Ψ (u, Y ) is an exponential affine function of the conditioning
variable:

Ψ (u, Y ) = E [exp (−uX) | Y ] = exp [−a(u)Y − b(u)] , (1.23)

where a and b are one dimensional functions defined on a domain D ⊂ R. Notice that this
implies ΨX(u) = ΨY [a(u)] exp [−b(u)]. From (1.22) the joint Laplace transform of (X,Y )
becomes:

Ψ(u, v) = E [Ψ (u, Y ) exp (−vY )]
= E [exp (− [a(u) + v]Y − b(u))]

= ΨY [a(u) + v] exp [−b(u)]
= ΨX(u)

ΨY [a(u) + v]

ΨY [a(u)]
. (1.24)

Example 4: Let (X,Y ) follow a bivariate standard gaussian distribution with linear corre-
lation ρ. Then the conditional distribution of X given Y is gaussian N (ρY, 1− ρ2), and we
get:

E [exp (−uX) | Y ] = exp
·
−uρY + 1

2

¡
1− ρ2

¢
u2
¸
.

Thus (X,Y ) follows a compound model with a(u) = ρu, and b(u) = −1
2
(1− ρ2)u2, u ∈ R.

Example 5: Exponential affine conditional Laplace transforms are typical in compound
risk aggregation, which explains the name of the model. As an illustration let us denote
by Y the number of car accidents during a year. Moreover let us assume that the costs
of the claims (Wi) of the different accidents are independent of Y and i.i.d., with Laplace
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transform E [exp (−uW )] = exp [−a(u)]. Further let V denote an additional loss (the usual
”fixed” cost), which is not due to car accidents, and is independent from Y and (Wi) with
Laplace transform exp [−b (u)]. Then the nonlinear dependence between the total loss X =PY

i=1Wi + V and the number of accidents Y is such that:

E [exp (−uX) | Y ] = {exp [−a(u)]}Y exp [−b(u)] = exp [−a(u)Y − b(u)] .

ii) Nonlinear dependence

Let us now discuss nonlinear dependence in the compound model. For simplicity, we consider
the case of positive variables, satisfying the condition of Example 5: X =

PY
i=1Wi + V =

Z(Y ) + V , (say), where V , Wi, i varying, are independent positive variables. In particular
the values a(u), b(u) are nonnegative for positive argument u.
It is rather difficult to characterize the PQD ordering in terms of the functional para-

meter a summarizing the dependence. However it is possible to study a slightly weaker
ordering. Let us consider two pairs of variables (X1, Y1), (X2, Y2) following the compound
model of Example 5, with functional parameters a1, a2, respectively, and identical marginal
distributions. Then we get:

Cov(g(X1), h(Y1)) ≥ Cov(g(X2), h(Y2))

for any increasing functions g, h which are limits of positive linear combinations of affine
and increasing exponential functions, if and only if: a1(u) ≥ a2(u), ∀u ≥ 0 [see Appendix
1]. In particular any pair (X,Y ) satisfying the conditions of example 5 features PQD, since
a(u) ≥ 0, ∀u ≥ 0 [see Appendix 1].

iii) Link with canonical analysis

Finally, it is possible to relate the approach based on Laplace transforms with the approach
based on nonlinear canonical analysis. For instance, for a compound model with symmet-
ric joint distribution, the nonlinear canonical decomposition has been derived in Darolles,
Gourieroux, Jasiak (2002). For positive variables, the canonical correlations are geometri-
cally decreasing and related to function a by λj = [da/du(0)]

j, j ∈ N, whereas the canonical
directions ϕj = ψj are appropriate polynomials with increasing degrees.

1.4 Applications: static framework.

In this section we consider economic and financial applications involving contemporaneous
dependence between two risk variables X and Y . According to the problem, different notions
of nonlinear dependence are concerned. We discuss the appropriateness of the different
specifications of nonlinear dependence introduced in sections 2 and 3.
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1.4.1 Scoring comparison

A typical example of the usefulness of copula is the comparison of grades (or scores, or
ratings) attributed to individuals by two different auditors. For instance these grades can
represent the results at two intelligence quotient (IQ) tests, the results in mathematics and
literature of a set of students, or two scoring for default. The latter example is used in this
section for illustration.
Let us consider a set of borrowers i = 1, ..., n and the indicator variable representing

default during a given period: Yi = 1 if default occurs, 0, otherwise. The prediction of
default is usually performed by means of a dichotomous qualitative model, which assumes:

P [Yi = 1 | Xi] = G
³
z
0
ib
´
,

where Xi are observed explanatory characteristics, zi transformations of the basic explana-
tory characteristics introduced to include nonlinear or cross effects, b unknown parameters,
and G a cdf [see e.g. Gourieroux, Jasiak (2002b)]. A logit (resp. probit) specification is
selected when G is the cdf of the logistic distribution (resp. standard normal distribution).
The dichotomous specification can be used in two different ways: we can use either the
structural model to approximate the probability of default by G

³
z
0
i
bb´, or simply the score

Si = z
0
i
bb to rank the individuals by increasing grade. For the latter application the score is

defined up to an increasing transformation and the same individual ranking can be derived
by introducing the standardized score U = FS(S), where FS is the marginal distribution of
S. Note that, while the endogenous variable Y is qualitative, the set of exogenous variables
z includes generally quantitative covariates, which will imply a continuous score.
In practice it is usual to compare different scores S and S∗, say, corresponding to an old

score and an updated score. They differ by the choice of the set of transformed variables
z and by the selected cdf G. The compatibility of the scores S and S∗ can be analyzed
by means of the copula. Intuitively, the larger is the dependence in their copula, the more
compatible are the two scores. In this example Kendall’s tau measures the probability that
two borrowers are ranked in the same way by the two scores S and S∗. In particular S and
S∗ provide identical ranking if and only if the Kendall’s tau is equal to one.

1.4.2 Competing default risks

The standard competing risk models assume independent competing events and focus on the
distribution of the date of arrival of the first event (or second, third ... one). Mathematically
they assume independent duration variables and study the distribution of the corresponding
order statistics. It is interesting to see if the usual results are modified when the event
occurrences are linked.
To understand the interest of the question, we can consider a credit portfolio, including
homogeneous credits, that are credits with the same design (initial balance, interest rate,
maturity, pattern of monthly payments) granted to similar borrowers. The borrowers can
default and the defaults can be characterized by the duration variables giving the time
before default for each individual. Since there exist different credit derivatives providing for
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instance 1 money unit if the first (resp. the second ...) default occurs before maturity29,
it is necessary to know the distribution of the order statistics to price these derivatives.
By assuming the independence between the competing risks (the individual defaults in the
example), we neglect the possibility of default correlation and as a consequence the derivative
assets are likely mispriced.
Let us discuss the distribution of the order statistics for two homogeneous competing

risks (say), when the risks are dependent. The two duration variables are denoted by X and
Y , and have the same marginal distribution FX , because of the homogeneity assumption.
We note that:

X = F−1X (U), Y = F−1X (V ),

min (X,Y ) = F−1X (min (U, V )) , max (X,Y ) = F−1X (max (U, V )) .

Thus the dependence properties can be studied with respect to the standardized durations
U , V only, since the X, Y variables and the order statistics min (X,Y ) and max (X,Y )
are deduced from the U , V variables and the corresponding order statistics min (U, V ) and
max (U, V ) by some transformation F−1X , which can be interpreted as a nonlinear change of
time unit (time deformation). Moreover, the copula of the order statistics depends only on
the copula of (X,Y ), and not on the marginal distribution FX .
The magnitude of the dependence between U and V has both an effect on the marginal

distributions of min (U, V ) and max (U, V ) and on their dependence. These effects can be
illustrated by considering the limiting cases of deterministic dependence. The highest positive
dependence is obtained for V = U . Then min (U, V ) = max (U, V ) = U , and the two order
statistics coincide. The smallest dependence is obtained for V = 1− U . Then min (U, V ) =
min (U, 1− U) = 1−max (U, 1− U) = 1−max(U, V ), and the order statistics are in negative
deterministic dependence. The differencemax (U, 1− U)−min (U, 1− U) = |2U − 1| is likely
the largest possible one.
These results will be clarified by considering the marginal distributions of min (U, V ) and

max (U, V ), and their copula.

i) Marginal distributions

The marginal distributions of min (U, V ) and max (U, V ) are given by:

P [min (U, V ) ≤ x∗] = 1− P [U ≥ x∗, V ≥ x∗]

= 2x∗ − C(x∗, x∗) = ϕC(x
∗), say, (1.25)

and:
P [max (U, V ) ≤ y∗] = P [U ≤ y∗, V ≤ y∗] = C (y∗, y∗) = ψC (y

∗) , say.

Both marginal distributions depend on the value of the copula on the diagonal. In particular
when the copula increases, that is when the standardized durations U , V are more PQD,
the survivor function of min (U, V ) [resp. max (U, V )] increases [resp. decreases]. Therefore
min (U, V ) [resp. max (U, V )] is larger [resp. smaller] for first order stochastic dominance.

29These derivatives are called first (second, ...) to default baskets.
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ii) Copula

Let us now compute the copula of (min (U, V ) ,max (U, V )). It is given by [see Appendix 2]:

C∗ (u, v) = C
¡
ϕ−1C (u), ψ

−1
C (v)

¢
+ C

¡
ψ−1C (v), ϕ

−1
C (u)

¢
+u− 2ϕ−1C (u),

for u, v satisfying C [(u+ v) /2, (u+ v) /2] ≤ v, and

C∗ (u, v) = v,

otherwise.

1.4.3 Age structure of default correlation

Let us still consider the example of a credit portfolio including two similar credits. It is
interesting to analyse the seasoning effect, that is the evolution of the risk during the life
of the portfolio. Let us consider a given age h at which the two borrowers are still alive.
It is natural to study the dependence between the residual durations X − h, Y − h. Their
copula at age h coincides with the copula of (X,Y ) conditional to X > h, Y > h, and is
directly related to the tail conditional copulas Cα introduced in section 2.2 iv). Thus, after
an appropriate time deformation, the term structure of default correlation, that is the way
the copula depends on the age, corresponds to the application α → Cα. In particular, the
limiting copula limα→0Cα measures the default dependence in the long run.

Example 6: Let us assume that the two durations X, Y are independent conditionally to
a factor Z with constant hazard function Z. Then the conditional survivor function of X,Y
is:

P [X ≥ x, Y ≥ y | Z] = exp [−Z (x+ y)] ,

and by integrating out factorZ we get the unconditional survivor function: P [X ≥ x, Y ≥ y] =
Ψ (x+ y), where Ψ denotes the Laplace transform of factor Z. Thus the survivor copula cor-
responding to age h = 0 is Archimedean (see section 2.3.2):

Cs(u, v) = Ψ
£
Ψ−1(u) +Ψ−1(v)

¤
.

At age h the survivor function of residual times becomes:

P [X ≥ x+ h, Y ≥ y + h | X > h, Y > h] =
P [X ≥ x+ h, Y ≥ y + h]

P [X > h, Y > h]

=
Ψ (x+ y + 2h)

Ψ (2h)
.

Thus the survivor copula at age h is:

Cs
h(u, v) =

Ψ [Ψ−1 (uΨ (2h)) +Ψ−1 (vΨ (2h))− 2h]
Ψ (2h)

,
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which is an Archimedean copula with inverse generator Ψh(s) = Ψ (s+ 2h) /Ψ (2h). Thus
for the Archimedean family the pattern of the term structure of default correlation is char-
acterized by the Laplace transform of the factor Z. Let us for instance assume that the
factor Z has a gamma distribution with parameter δ, corresponding to a Clayton survivor
copula with Ψ (s) = (1 + s)−1/δ. Then the survivor copula at age h has inverse generator
Ψh(s) = Ψ [s/(1 + 2h)]. Since the Archimedean copula is invariant to scale transformations
of the factor Z, the survivor copula at age h is still a Clayton copula with parameter δ.
Thus the age structure of default correlation is flat in this case. In general the pattern of
the term structure of default correlation is related to the derivatives of Laplace transform Ψ.
For instance, by means of characterization (1.18) of the PQD ordering in the Archimedean
family, it can be shown that default correlation increases with the age h, that is Cs

h1
is more

PQD than Cs
h2
for h1 ≥ h2, if the Laplace transform Ψ satisfies the condition:

Ψ
00
(s)Ψ (s)

Ψ0(s)2
is increasing in s.

This condition is equivalent to the fact that V ars (Z) /Es (Z)
2 is increasing in s, where Es

and V ars denote expectation and variance with respect to the distribution exp (−sz)G(dz),
where G is the cdf of Z. When s increases, the moments Es and V ars downweight pro-
gressively large values of Z. Intuitively this condition requires that the variability of the
distribution of the factor Z is located sufficiently close to the origin.
Finally, the long term behaviour of default correlation depends on the asymptotic behav-

iour of the Laplace transform of Z at infinity. For instance, from Juri, Wüthrich (2002a,b),
if the Laplace transform of Z is asymptotically equivalent to the Laplace transform of a
gamma distribution:

Ψ (s) ∼ s−1/δ, s→∞, (1.26)

with δ > 0, then the survivor copula Cs
h converges to a Clayton copula with parameter δ

when the age h goes to infinity:

lim
h→∞

Cs
h(u, v) =

¡
u−δ + v−δ − 1¢−1/δ ,

By the Tauberian theorem, the tail of the Laplace transform of Z is related to the distribution
of Z at the origin. In particular, condition (1.26) is equivalent to [see Feller (1971), chapter
13]:

P [Z ≤ z] ∼ 1

Γ (1 + 1/δ)
z1/δ, z → 0.

The larger is δ, the more concentrated the distribution of Z close to the origin, and the
stronger is PQD in the long term default copula.

1.4.4 Income and wealth inequality

An important question in inequality theory is how to combine income and wealth. Indeed,
whereas an inequality ordering is clearly defined for a scalar variable by means of the Lorenz
curve, the analogous does not exist for a pair of variables. A natural idea to circumvent this
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difficulty is to transform any wealth into a regular income. For instance let us assume an
(indirect) intertemporal utility function of the type

P∞
k=0 δ

ku (πk), where δ is the discounting
factor and (πk) an income pattern. We can apply an equivalent utility principle to define
the regular income flow which is equivalent to the wealth by solving:

u(W ) =
∞X
k=0

δku (πW ) ,

where W is the wealth level and πW the implied regular income. Note that πW is an
increasing function of the wealth. Then the inequality could be measured on the aggregate
income π+πW , defined as the sum of the current income and the wealth equivalent income.
But an alternative approach can be based on wealth by considering the inequality measured
on the aggregate wealth W +Wπ, where W is the current wealth and Wπ is the implied
wealth defined by:

Wπ = u−1
" ∞X
k=0

δku (π)

#
= u−1

·
1

1− δ
u (π)

¸
.

Intuitively a larger PQD between income and wealth, with fixed marginal distributions,
will increase the inequality measures defined in either equivalent incomes, or equivalent
wealths. More precisely, we have to show that equivalent income and equivalent wealth are
decreasing with respect to PQD between income and wealth (with fix marginal distributions),
in the sense of second order stochastic dominance: the more PQD are income and wealth,
the riskier are equivalent income and equivalent wealth. Since equivalent income [resp.
equivalent wealth] is of the form π + h(W ) [W + h∗(π), respectively], with h (and h∗) a
positive increasing function, we have to show that for any pairs of random variables (X1, Y1)
and (X2, Y2) with identical marginal distributions, such that (X1, Y1) ºPQD (X2, Y2):

E [u (X1 + h(Y1))] ≤ E [u (X2 + h(Y2))] , (1.27)

for any concave, increasing utility function u, and any positive increasing function h. The
result follows from Proposition 2, since the function
g(X,Y ) = − {u [X + h(Y )]− u(X)− u [h(Y )] + u(0)} is the cumulative function of the pos-
itive measure30 with density −u00 [X + h(Y )]h

0
(Y ) ≥ 0.

1.4.5 Moment based problems

Different applications require the computation of a nonlinear cross moment between two
variables X and Y , such as:

E [g(X,Y ;A)] ,

where g(., .;A) is a parametric family of functions. According to the problem, the parametric
family is different and involves a different notion of nonlinearity.

30Without loss of generality we can assume that h(0) = 0.
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1.4.5.1 Expected Utility

Let us consider an investor allocating wealth between two risky assets, with prices pX,t

and pY,t at date t, respectively, and a riskfree asset over an horizon of h periods. We
assume that the investor has a Constant Absolute Risk Aversion (CARA) utility function
u(W ;A) = − exp (−AW ),W ≥ 0, whereA > 0 denotes the absolute risk aversion parameter.
Let us denote by α0 and α = (αX , αY ) the allocations in the riskfree asset and in the risky
assets, respectively. The optimal portfolio is determined by:

argmax
α0,α

E [− exp (−A [αXpX,h + αY pY,h + α0 (1 + r0,h)])] ,

subject to the budget constraint: αXpX,0+αY pY,0+ α0 =W0, where r0,h is the interest rate
for period [0, h), and W0 is the initial wealth. After eliminating the quantity invested in the
riskfree asset α0, the optimization problem becomes:

α∗ = argmax
α

E (− exp [−A (αXX + αY Y )]) = −Ψ (Aα) , (1.28)

where X = pX,h − (1 + r0,h) pX,0, Y = pY,h − (1 + r0,h) pY,0 denote the excess gains, and
Ψ is the joint Laplace transform of X and Y 31. Therefore for portfolio management with
CARA utility function it is more convenient to specify the nonlinear dependence by means
of the joint Laplace transform (instead of using the joint density, the copula, or the canonical
decomposition). This dependence can be either let unconstrained [see Brandt (1999), and
Gourieroux, Monfort (2002b)], or based on a parametric or semi-nonparametric specification.
Different constrained specifications have been considered in the literature on portfolio

management.

Example 7: The standard model assumes gaussian returns which leads to the usual mean-
variance framework [Markowitz (1967)]. Let us assume that (X,Y ) is jointly normalN (µ,Ω),
where µ is the vector of expected excess returns and Ω is the variance-covariance matrix.
Then the joint Laplace transform of (X,Y ) is given by:

Ψ (u, v) = exp

·
−µ0w + 1

2
w
0
Ωw

¸
,

where w = (u, v)
0
, and the optimization problem becomes:

argmax
α

α
0
µ− A

2
α
0
Ωα.

Its solution provides the standard mean-variance efficient allocation:

α∗ =
1

A
Ω−1µ.

31Note that the joint Laplace transform Ψ of excess gains X, Y is immediately deduced from that of the
prices pX,h, pY,h, which are positive variables.
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Example 8: A stochastic volatility model.
However it is well-known that the gaussian specification is ill-specified since it neglects fat
tails phenomenon. Fat tails can be introduced by including a stochastic volatility. It can
be checked that the Laplace transform is still appropriate in this framework. Indeed let us
assume that (X,Y ) follows a normal distribution N (µ, η2Ω) conditionally to factor η2:

E
£
exp (−uX − vY ) | η2¤ = exp ·−µ0w + η2

2
w
0
Ωw

¸
. (1.29)

When the stochastic volatility is integrated out, the joint Laplace transform is given by:

Ψ (u, v) = exp

½
−µ0w − φ

·
−1
2
w
0
Ωw

¸¾
,

where exp (−φ) is the real Laplace transform of the factor distribution 32. This is a semi-
nonparametric specification characterized by vector µ, matrix Ω, and functional parameter
φ 33.
A natural question in this framework is whether stochastic volatility increases PQD

dependence between X and Y . The answer is negative. Indeed, let us for convenience
consider the case µ = 0, Ω = Id. Then if η2 were constant, variables X and Y would be
independent. Let us verify whether stochastic volatility induces PQD dependence between
X and Y . Let us consider the increasing transformations g(X) = (X −K)+ and h(Y ) =
− (L− Y )+, which correspond to the payoffs of a call on X with strike K, and of a short
position in a put on Y with strike L, respectively. Then:

Cov [g(X), h(Y )] = −Cov ¡E £(X −K)+ | η2
¤
, E
£
(L− Y )+ | η2

¤¢
< 0,

since call and put prices E
£
(X −K)+ | η2

¤
, E

£
(L− Y )+ | η2

¤
are increasing functions of

the volatility η2. Since there exist increasing transformations of X and Y with negative
correlation, X and Y are not PQD 34.
The first order condition to the optimization of expected utility is:

µ = −Aφ0
·
−A

2

2
α∗

0
Ωα∗

¸
Ωα∗.

Thus the ratio of optimal allocations α∗X/α
∗
Y do not depend on functional parameter φ. This

is due to the fact that the conditional distribution of (X,Y ) given η2 is gaussian, with a
single factor η2 scaling the variance-covariance matrix of the assets.

32We assume that the Laplace transform of η2 is defined on ] − λ,+∞[, where λ > 0. Then Ψ is defined
for w = (u, v) such that w

0
Ωw/2 < λ.

33In the literature on portfolio analysis, such joint distributions are also known as elliptical distributions
[see e.g. Ingersoll (1987)]. Normal and student distributions are members of the family. In the literature
typically φ is not treated as a parameter, but it is specified a priori.
34Note the difference with Example 1. In the case of stochastic volatility, the common factor has not a

positive effect on X and Y in the sense of first order stochastic dominance, but instead in the sense of second
order stochastic dominance.
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1.4.5.2 Derivative pricing

Joint distributions of prices are also involved when we consider derivatives written on two
underlying assets, with risk neutral distribution replacing the standard historical one. Let
us denote by S1 and S2 the prices at maturity of two underlying assets, and eg(S1, S2;K)
the payoff at maturity of an European derivative, where K is a parameter characterizing
the derivative design. There exist various examples of derivative families written on two
underlying assets, for instance:
i) the quanto derivative with payoff eg(S1, S2;K) = (S1 −K)+ S2. A quanto derivative is a
call option, denominated in domestic currency and written on a foreign asset with price S1.
S2 corresponds to the exchange rate at maturity.

ii) The spread derivative, with payoff eg(S1, S2;K) = (S1 − S2 −K)+, is a call option on the
difference of prices.

iii) The basket derivative, with payoff eg(S1, S2;K) = (αS1 + βS2 −K)+, is a call option on
a portfolio formed by the two assets.

iv) The exchange (or chooser) derivative has a payoff equal to the maximum (or the min-
imum) of the two prices at maturity, eg(S1, S2) = max {S1, S2} [eg(S1, S2) = min {S1, S2},
respectively].

v) The Max and Min derivatives (also called under- and over-performance derivatives,
respectively, or Rainbow derivatives), with payoffs eg1(S1, S2;K) = (max {S1, S2}−K)+,eg2(S1, S2;K) = (min {S1, S2}−K)+, are call derivatives on the maximum and the minimum
of the two prices, respectively.

Let us denote by X and Y the returns of the two underlying assets over the holding
period: S1 = exp (X), S2 = exp (Y ) 35. The payoff can be written as g(X,Y ;K) =eg (exp (X) , exp (Y ) ;K). Due to the no arbitrage conditions, and assuming a zero riskfree
interest rate for convenience, the derivative price is equal to:

C(g) =
Q

E [g(X,Y ;K)] ,

where
Q

E denotes the expectation with respect to a risk neutral distribution Q. Thus it is
natural to select a risk neutral distribution for (X,Y ) [or (S1, S2)] which allows for tractable
computation of such derivative prices.

i) Truncated Laplace transforms

Let us for instance consider the case of a quanto derivative:

C (K) =
Q

E
£
(exp (X)−K)+ exp (Y )

¤
=

Q

E [exp (X + Y ) I (X ≥ logK)]
−K

Q

E [exp (Y ) I (X ≥ logK)] .
35Both current prices are normalized to 1 without loss of generality.
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Clearly the derivative price has no simple expression in terms of either the pdf, the copula,
or the Laplace transform. However, by introducing returns instead of prices, we point out
the importance of exponential payoffs [see e.g. Bakshi, Madan (2000), Duffie, Pan, Singleton
(2000), Gourieroux, Monfort (2001a)]. Moreover it is seen that the derivative prices are
easily derived when the dependence is summarized by the risk neutral truncated Laplace
transform [Duffie, Pan, Singleton (2000), Gourieroux, Monfort, Polimenis (2002)]:

Φ (u, v; k) =
Q

E [exp (−uX − vY ) I (X ≥ k)] .

Indeed the price of a quanto option is equal to:

C(K) = Φ (−1,−1, logK)−KΦ (0,−1, logK) .
The example of quanto options shows that any family of derivatives written on two underlying
assets requires an appropriate summary of the joint distribution, and that the summary has
no reason to correspond to either the pdf, or the copula ...

ii) Bounds based on copula.

However copula theory can be used to find bounds on derivative prices for some payoff
functions [Rapuch (2001), Embrechts, Höing, Juri (2001)]. Let us assume that the derivative
payoff eg is the cumulative distribution function of a positive measure. Then from Proposition
2 [section 2], the derivative price C(g) =

Q

E [eg(S1, S2)] is monotone increasing with respect to
PQD between S1 and S2 (or equivalently between X and Y ) in the risk neutral distribution,
for given risk neutral marginal distributions. Indeed, by partial integration we know that
[see (1.14)]:

Q

E [eg(S1, S2)] = eg
E
£
SQ(S1, S2)

¤
, (1.30)

where SQ is the joint risk neutral survivor function of (S1, S2), and the result follows by
characterization (1.13) of PQD.
In particular, if Q and Q∗ are two risk neutral distributions with the same pair of marginal
distributions, and copulas C and C∗ such that C ºPQD C∗, we have:

Q

C(g) =
Q

E [eg(S1, S2)] ≥ Q∗

E [g(S1, S2)] =
Q∗

C (g). (1.31)

Monotonicity of the derivative price in the reversed direction holds when eg is a negative
measure.
Since SQ(s, r) is the price of the digital option with payoff I (S1 ≤ s, S2 ≤ r), equation

(1.30) corresponds to a decomposition of the original derivative as a portfolio of digital
options with different thresholds (s, r), distributed according to measure eg. Since the price
of a bivariate digital option SQ(s, r) is increasing with respect to risk neutral PQD (with
fixed risk neutral marginal distributions), the monotonicity of the derivative price follows
when the measure associated to g is positive (or negative).
Let us now consider the examples above of derivative families, and compute the measure

associated with their payoffs.
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i) For a quanto derivative, it is easily verified that the payoff eg(S1, S2) = (S1 −K)+ S2 is the
cumulative function of the Lebesgue measure restricted to the set {(S1, S2) : S1 ≥ K}. Thus
the price of a quanto derivative is monotone increasing with respect to risk neutral PQD.

ii) Spread derivatives. The payoff eg(S1, S2) = (S1 − S2 −K)+ of a spread option is neither
the cumulative function of a positive, nor a negative measure. However, it is possible to
introduce the payoff g∗(S1, S2) =

√
2
£− (S1 − S2 −K)+ + (S1 −K)+

¤
, which is the cumu-

lative function of the Lebesgue measure restricted to the set {(S1, S2) : S1 − S2 = K}. Thus
the price of the spread derivative is monotone decreasing with respect to risk neutral PQD
between S1 and S2, for given risk neutral marginal distributions.

iii) Let us consider a basket derivative with payoff eg(S1, S2) = (αS1 + βS2 −K)+. Since ei-
ther α, or β has to be positive (otherwise the payoff is identical to zero), we may assume that
α > 0. When β > 0 (resp. β < 0) the payoff (αβ)−1

√
2[(αS1 + βS2 −K)+ − (αS1 −K)+ −

(βS2 −K)+] (resp. (α |β|)−1√2 £− (αS1 + βS2 −K)+ + (αS1 −K)+
¤
) is the cumulative

function of the Lebesgue measure restricted to the set {(S1, S2) : αS1 + βS2 = K}. Thus
the price of a basket derivative is monotone increasing (resp. decreasing) with respect to
risk neutral PQD between S1 and S2 when αβ > 0 (αβ < 0, respectively).

iv) Exchange derivative. The payoff eg(S1, S2) = min(S1, S2) is the cumulative function of the
Lebesgue measure restricted to the 45 degree line S1 = S2. The price of the corresponding
exchange derivative is monotone increasing with respect to risk neutral PQD. The payoff of
the chooser derivative eg(S1, S2) = max(S1, S2) is not the cumulative function of a positive
measure. However, since max(S1, S2) = S1 + S2 −min(S1, S2), we deduce that the price of
the chooser derivative is monotone decreasing with respect to risk neutral PQD.

v) The payoff of a Min derivative eg(S1, S2) = (min(S1, S2)−K)+ is the cumulative function
of the Lebesgue measure restricted to the set {(S1, S2) : S1 = S2 ≥ K}. The price of the
corresponding derivative is monotone increasing with respect to risk neutral PQD.

In the examples above the measure eg is a Lebesgue measure restricted to a subset of R2+, and
the designs differ by the selected subset. This subset can admit a two- or one-dimensional
support.
The monotonicity of the derivative price with respect to PQD between S1 and S2 in

the risk neutral distribution can be used to derive bounds on the derivative price. Indeed,
if the copula C of the risk neutral distribution Q is such that C

0 ºPQD C ºPQD C∗, for

two copulas C
0
and C∗, then:

Q
0

E [eg(S1, S2)] ≥ Q

E [eg(S1, S2)] ≥ Q∗

E [eg(S1, S2)], where Q0
and

Q∗ are risk neutral distributions with the same pair of marginal distributions as Q, and
copula C

0
and C∗, respectively. In particular, for given risk neutral marginal distributions,

the derivative price is contained between the bounds corresponding to the upper and lower
Frechet risk neutral copulas. We illustrate these lower and upper bounds in the example of a
spread option. Let us assume that the gross returns S1/S01 and S2/S

0
2 of the two assets have

marginal lognormal distributions with parameters (µ1T, σ
2
1T ) and (µ2T, σ

2
2T ), respectively,

corresponding to marginal Black Scholes models, where S01 and S02 are the prices at time 0,
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and T is the maturity of the spread option. In Figure 5 we plot the upper and lower bounds
for the spread option price C(g) as functions of the strike price K, for different values of the
initial asset prices S01 , S

0
2 : in Panel A we have S

0
1 = 90, S

0
2 = 100, in Panel B S02 = 100 = S02 ,

in Panel C S01 = 110, S
0
2 = 100, in Panel D S01 = 120, S

0
2 = 100.

[insert Figure 5: upper and lower bounds for the spread option price]

The parameter values are T = 1/12 (one month), and µ1 = 0.06, σ1 = 0.25, µ2 = 0.05,
σ2 = 0.2. The lower and the upper bounds are close to each other, identifying a narrow
interval for admissible option prices, when S01 is larger than S02 and the strike price K is
small.

1.4.6 Control of extreme risk

In order to control the extreme risks included in financial investments the regulators are
defining new rules for computing the reserves. For a payoff g(X,Y ), say, written on two risk
variables, the required capital is defined from a quantile of the payoff distribution, called
Value at Risk (VaR). More precisely the Value at Risk V aR (g, α) at level α of the payoff g
is defined as the α-quantile:

P [g (X,Y ) ≤ V aR (g, α)] = α.

The payoff can admit different patterns in finance or insurance applications. The VaR of a
portfolio including the quantities a, b of two assets corresponds to the quantile of a linear
payoff g(X,Y ) = aX + bY , where X and Y denote the asset returns. Nonlinear payoffs
are involved in insurance problems. For instance let X denote a loss, and Y a stochastic
reimbursement that a reinsurance company has to pay when the loss exceeds a threshold K.
The reinsurance company is interested in the VaR of the payoff g(X,Y ) = Y · I (X ≥ K).

The VaR of the payoff g(X,Y ) is influenced by the dependence structure of (X,Y ). The
dependence measures introduced in sections 2 and 3 are not appropriate for an analytical
computation of the VaR. However they can be used to derive exact bounds for the VaR, or
approximations of the VaR for small α.

i) Bounds for the VaR

As for derivative prices it is possible to derive bounds for the admissible Value at Risk
V aR (g, α) of the payoff g(X,Y ), for given marginal distributions FX , FY of X,Y . Let us
denote by G the c.d.f. of the payoff g(X,Y ), and assume that the copula C of (X,Y ) is
known to be larger than a lower bound C0: C ºPQD C0 [in absence of additional information
this bound is the lower Frechet bound, see section 2.2.ii)]. Durrlemann, Nikeghbali, Roncalli
(2000) and Embrechts, Höing, Juri (2001), following the original works of Makarov (1981)
and Williams (1987), derive functions H and K which provide lower and upper bounds for
the cdf of the payoff: H ≤ G ≤ K. The lower and upper bounds for the VaR of the payoff
g(X,Y ), for given marginal distributions of X,Y , are deduced immediately:

K−1 (α) ≤ V aR (g, α) ≤ H−1 (α) .
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Let us briefly sketch the derivation of bounds H and K. For expositional purpose, let us
assume that the payoff g(X,Y ) is strictly increasing in variable Y . Then, for any x, function
y 7−→ g(x, y) is invertible, and let us denote by g−1x its inverse.
To derive the upper bound, let us remark that, for any x, s, the condition X > x and
Y > g−1x (s) implies g(X,Y ) > s. Thus we get:

G(s) = P [g(X,Y ) ≤ s]

≤ P
£{X ≤ x} ∪ ©Y ≤ g−1x (s)

ª¤
= P [X ≤ x] + P

£
Y ≤ g−1x (s)

¤− P
£
X ≤ x, Y ≤ g−1x (s)

¤
= FX(x) + FY

£
g−1x (s)

¤− C
¡
FX(x), FY

£
g−1x (s)

¤¢
.

Since this inequality holds for any x, we get:

G(s) ≤ inf
x

©
FX(x) + FY

£
g−1x (s)

¤− C0
¡
FX(x), FY

£
g−1x (s)

¤¢ª ≡ K(s).

Similarly, to derive the lower bound, we use the property that for any x, s, the condition
X ≤ x and Y ≤ g−1x (s) implies g(X,Y ) ≤ s. We get:

G(s) = 1− P [g(X,Y ) > s]

≥ 1− P
£{X > x} ∪ ©Y > g−1x (s)

ª¤
= P

£
X ≤ x, Y ≤ g−1x (s)

¤
= C

¡
FX(x), FY

£
g−1x (s)

¤¢
,

and thus:
G(s) ≥ sup

x
C0
¡
FX(x), FY

£
g−1x (s)

¤¢ ≡ H(s).

For instance, if (X,Y ) are PQD, the lower and upper bounds for the cdf of a portfo-
lio value g(X,Y ) = aX + bY reduce to: H(s) = supx FX(x)FY [s/b− ax/b], K(s) =
infx {FX(x) + FY [s/b− ax/b]− FX(x)FY [s/b− ax/b]}.
Functions H and G do not correspond to the cdf of the payoff g(X,Y ) under the upper or
lower Frechet copulas, nor to the cdf of the payoff under any particular copula. For instance,
in the case of a portfolio g(X,Y ) = aX + bY , the worst scenario for the VaR does not cor-
respond to positive deterministic dependence between X and Y , that is the upper Frechet
bound. This point distinguishes the present result from that in Proposition 2.

ii) Tail approximation of the VaR

Whereas the PQD ordering associated with copulas seems appropriate to derive bounds for
the VaR, closer approximations can be derived from the Laplace transform when the critical
level α is small [Darolles, Gourieroux, Jasiak (2002)]. This possibility follows from Kara-
mata’s Tauberian theorem, which explains how the behaviour of a cdf at infinity is related
to the behaviour of the real Laplace transform at the origin. Typically, if W is a random
variable such that:

E [exp (−uW )] ∼ 1− uδl (1/u) , for u ≈ 0,
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where 0 ≤ δ ≤ 1, and l is a slowly varying function, then:

P [W ≤ w] ∼ 1− l(w)

wδΓ (1− δ)
, for w→ +∞,

where Γ is the gamma function [see e.g. Feller (1971) chapter 13, Bingham, Goldie, Teugels
(1987) Corollary 8.17].
This property can be applied to a portfolio valueW = aX+ bY , say. Let us assume that

the joint Laplace transform of (X,Y ) satisfies:

Ψ(u, v) ∼ 1− c1u
δ1 − c2v

δ2, u, v ≈ 0,

where 0 ≤ δ1, δ2 ≤ 1. Then the real Laplace transform of the portfolio value W is such that:

E [exp (−uW )] = E [exp (−auX − buY )]

= Ψ (au, bu) ∼ 1− ¡c1aδ1¢uδ1 − ¡c2bδ2¢uδ2, for u ≈ 0.

The behaviour at the origin of the real Laplace transform of the portfolio value W depends
on the relative magnitude of the exponents δ1, δ2, which are related to the tails of the joint
distribution of X, Y . Let us for instance consider the case where δ1 = δ2 = δ. Then:

E [exp (−uW )] ∼ 1− ¡c1aδ + c2b
δ
¢
uδ, for u ≈ 0,

and the Tauberian theorem implies that the cdf at infinity of the portfolio value W is such
that:

P [W ≤ w] ∼ 1− c1a
δ + c2b

δ

wδΓ (1− δ)
, for w→ +∞.

Thus the VaR for the portfolio value W at a small confidence level α is approximated by:

V aR (α) ∼
·

c1a
δ + c2b

δ

(1− α)Γ (1− δ)

¸1/δ
.

Example 9: Let us assume that the returnsX,Y follow compounds models in a latent factor
Z such that: E [exp (−uX) | Z] = exp [−a1(u)Z], E [exp (−vY ) | Z] = exp [−a2(v)Z], where
a1 and a2 are positive functions, and moreover that X and Y are independent conditionally
to factor Z:

E [exp (−uX − vY ) | Z] = exp {− [a1(u) + a2(v)]Z} .
By integrating out factor Z, the joint Laplace transform of X and Y is given by:

Ψ (u, v) = E (exp {− [a1(u) + a2(v)]Z})
= ψ [a1(u) + a2(v)] ,

where ψ is the Laplace transform of factor Z. Let us further assume that functions a1, a2
are such that: a1(u) ∼ c1u

γ1, a2(v) ∼ c2v
γ2 , for u, v ≈ 0.
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The behaviour of the joint Laplace transform Ψ in a neighbourhood of the origin depends
on the tails of factor Z.
i) If factor Z has gamma tails:

ψ (s) ∼
µ

λ

λ+ s

¶δ

, s ≈ 0,

for some λ, δ > 0, we get:

Ψ (u, v) ∼ 1− δ

λ
(c1u

γ1 + c2v
γ2) , u, v ≈ 0.

If γ1 = γ2 = γ, the VaR at a small critical level α is approximated by:

V aR (α) ∼
·
δ

λ

c1a
γ + c2b

γ

(1− α)Γ (1− γ)

¸1/γ
.

In particular, the exponent of (1− α) is affected only by the parameter γ characterising
dependence functions a1, a2, and the distribution of the factor Z only affects the scale of
V aR(α).

ii) Let us now assume that factor Z has Pareto tails:

ψ (s) ≈ 1− s1/δ, s ≈ 0.
Then if γ1 = γ2 = γ we get:

Ψ (au, bu) ≈ 1− (c1aγ + c2b
γ)1/δ uδ/γ, u ≈ 0,

and the VaR is approximated by:

V aR (α) ∼ (c1a
γ + c2b

γ)1/γ

[(1− α)Γ (1− γ/δ)]δ/γ
.

In this case both parameter γ and parameter δ characterising the tails of Z affect the exponent
of (1− α).

1.5 Nonlinear time series models

1.5.1 Characterizations of serial dependence

In this section we discuss the serial dependence in nonlinear time series Xt, t ∈ N. For
expository purpose, we consider a one-dimensional stationary Markov process. Thus the
distribution of the process is fully characterized by the joint distribution of Xt and Xt−1.
Moreover due to the stationarity assumption, this bivariate distribution admits identical
marginal distributions, which coincide with the stationary one. The serial dependence can
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be characterized in different ways.

i) Copulas

First the joint distribution of (Xt, Xt−1) can be defined by its copula C and a stationary dis-
tribution F . The Markov process Xt, t ∈ N, can be represented as an increasing (nonlinear)
transformation of a standardized Markov process Ut, t ∈ N:

Xt = F−1 (Ut) ,

with uniform marginal distribution, and a transition density given by:

fUt|Ut−1 (u | v) = c(u, v), u, v ∈ [0, 1] ,
where c is the copula density. Serial dependence properties of process Xt, t ∈ N, which are
invariant by stationary increasing transformations Xt −→ g(Xt), ∀t, of all components of the
process, are fully characterized by the copula C. Indeed, such serial dependence properties
are valid for the standardized process Ut = F (Xt), t ∈ N, whose distribution is characterized
by the copula C.

ii) Nonlinear canonical analysis

This approach is based on a decomposition of the joint density f1 of Xt and Xt−1 as:

f1(xt, xt−1) = f(xt)f(xt−1)

"
1 +

∞X
j=1

λjϕj(xt)ψj (xt−1)

#
, (1.32)

where ϕj, ψj, j varying, are the current and lagged canonical directions, λj, j varying, are
the canonical correlations, and f is the marginal density [see section 3.1].

iii) Laplace transforms

Finally, the distribution of (Xt,Xt−1) may be characterized by the joint Laplace transform:

Ψ (u, v) = E [exp (−uXt − vXt−1)] .

When theMarkov process admits a unique invariant distribution, the distribution of (Xt,Xt−1)
is also characterized by the Laplace transform of the conditional distribution ofXt givenXt−1:

Ψ (u,Xt−1) = E [exp (−uXt) | Xt−1] .

1.5.2 Transitions at any horizon

The investigation of persistency properties, forecasting, and the computation of conditional
expectations at any horizon of the process Xt, t ∈ N, require the analysis of the dependence
between Xt and Xt−h, at any lag h ∈ N. We discuss below the convenience of the different
representations of serial dependence for the analysis at larger horizon.
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i) Copulas

The copula density ch of (Xt,Xt−h) may be deduced from the copula at horizon 1 by
Chapman-Kolmogorov equation. The copula ch is given by:

ch(ut, ut−h) =
Z

...

Z
c(ut, ut−1)...c(ut−h+1, ut−h)dut−1...dut−h+1. (1.33)

Example 10: Markov process with finite dimensional dependence.
Markov processes with finite dimensional dependence have been introduced by Gourieroux,
Jasiak (2001), and are characterized by a nonlinear canonical decomposition of the density
of (Xt, Xt−1) with only a finite number of non-zero canonical correlations. For a Markov
process with one-dimensional dependence, the copula of (Xt,Xt−1) is given by:

c(u, v) = 1 + λa (u) b (v) ,

where a and b are the first canonical directions, and λ the first canonical correlation (see sec-
tion 3.1.4). By Chapman-Kolmogorov equation (1.33), and the normalizations of canonical
directions, the copula p.d.f. ch of (Xt,Xt−h) is given by:

ch(u, v) = 1 + λha (u) b (v) , (1.34)

where the canonical correlation λh at horizon h is given by36:

λh = λ

µ
λ

Z 1

0

a (u) b (u) du

¶h−1

= λρh−1, say.

In the general framework ch does not admit a tractable form. However interesting prop-
erties of the sequence ch, h ∈ N, that is of the age structure of copula, can be derived in
special cases. For instance, some properties can be deduced from a theorem by Fang, Hu
and Joe (1994), which involves the concept of stochastic increasing dependence. Let us recall
that Xt is said to be stochastic increasing (SI) in Xt−1, if Xt is increasing with respect to
Xt−1 for first order stochastic dominance37. The SI dependence only involves the copula of
(Xt,Xt−1), and is stronger than PQD [see e.g. Joe (1997)].

Theorem 1.2 (Fang, Hu, Joe) Let Xt, t ∈ N , be a stationary Markov process, such that Xt

is SI in Xt−1. Then the sequence Ch, h ∈ N , is decreasing, such that:

uv ≤ Ch+1 (u, v) ≤ Ch (u, v) , ∀u, v, ∀h ∈ N.

Thus, under conditions of Theorem 2, the process features PQD at any lag, and this
dependence decreases with the horizon38. In particular, the sequence Ch admits a limit:

36We assume that
R 1
0
a (u) b (u) du ≥ 0. Otherwise, the minus sign of λh has to be assigned to one of the

canonical directions.
37That is the conditional survivor function of Xt given Xt−1 = y, S (x|y) say, is increasing in y, for any x.
38More precisely, Fang, Hu, Joe (1994) show that Xt is SI in Xt−h for any h.
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C∞ = limh→∞Ch (for pointwise convergence). It is easily checked that function C∞ is a
copula such that C∞(u, v) ≥ uv, which can be called the long-term copula.

Example 10 (cont.) For the stationary Markov process with one-dimensional dependence
we have: P (Ut ≤ u | Ut−1 = v) = u+λA(u)b(v), where A(u) =

R u
0
a(w)dw. Thus Xt is SI in

Xt−1 if and only if functions a and b are both increasing, or both decreasing. The copula cdf
at horizon h is given by Ch(u, v) = uv + λρh−1A(u)B(v), where B(v) =

R v
0
b(w)dw. When

ρ < 1, the sequence Ch decreases geometrically to the long-term copula C∞(u, v) = uv,
which is the independent copula.

ii) Canonical decomposition

The density fh of (Xt,Xt−h) admits a canonical decomposition:

fh(xt, xt−h) = f(xt)f(xt−h)

"
1 +

∞X
j=1

λj,hϕj,h(xt)ψj,h (xt−1)

#
, (1.35)

where ϕj,h, ψj,h, j varying, are the current and lagged canonical directions, and λj,h, j varying,
are the canonical correlations at horizon h ∈ N. For instance, for the Markov process with
one-dimensional dependence, the canonical decomposition at horizon h is given in (1.34).
Generally the canonical directions and correlations at horizon h have no tractable expression
in terms of the canonical directions and correlations at horizon 1. However a simple relation
can be derived for reversible Markov processes. A Markov process is said to be reversible if
its distribution is the same in direct and reversed time, that is if (Xt,Xt−1) and (Xt−1,Xt)
have the same distribution. This is the case if the current and lagged canonical directions
at horizon one are equal up to sign: ϕj = ±ψj. By applying Chapman-Kolmogorov and the
orthogonality properties of the canonical directions ϕj, it is easily checked that the canonical
decomposition of fh for a reversible process is given by:

fh(xt, xt−h) = f(xt)f(xt−h)

"
1 +

∞X
j=1

λhjϕj(xt)ϕj (xt−h)

#
.

Since λj ≤ λ1 < 1, we deduce that a reversible stationary Markov process admits an asymp-
totic copula corresponding to independence, and that the convergence of ch to the long term
copula is at a geometric rate.

iii) Laplace transforms

Finally, the distribution of (Xt,Xt−h) may be characterized by the joint Laplace transform:

Ψh (u, v) = E [exp (−uXt − vXt−h)] ,

or equivalently by the conditional Laplace transform at horizon h:

Ψh (u,Xt−h) = E [exp (−uXt) | Xt−h] .
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In general, no explicit expressions for Ψh (u, v) or Ψh (u,Xt−h) can be given. However, an
important special case where this is possible is the Compound Autoregressive (CAR) process
introduced by Darolles, Gourieroux, Jasiak (2002). The CAR process is a Markov process
with an exponentially affine Laplace transform [see section 3.2.2]:

E
h
exp (−uXt) | Xt−1

i
= exp [−a(u)Xt−1 − b(u)] ,

where a et b are one-dimensional functions. Let us now compute the conditional Laplace
transform at horizon h. We have:

E [exp (−uXt) | Xt−h] = E
n
E
h
exp (−uXt) | Xt−1

i
| Xt−h

o
= exp [−b(u)]E {exp [−a(u)Xt−1] | Xt−h} .

By iteration we get:

E [exp (−uXt) | Xt−h] = exp
©−a◦h(u)Xt−h − b(u)− b [a(u)]− ...− b

£
a◦(h−1)(u)

¤ª
,

where a◦h denotes function a compounded h times with itself. From this formula we deduce
that the Markov process Xt, t ∈ N, is stationary when limh→∞ a◦h(u) = 0, ∀u, since the
transition at large horizon no longer depends on the initial value of the process. The Laplace
transform exp (−c) of the marginal distribution is related to functions a and b by:

c (u) = c [a(u)] + b(u).

Thus two different parameterizations are possible for stationary CAR processes: either in
terms of functions a and b defining the conditional Laplace transform, or in terms of function
a and function c, which is related to the marginal distribution. In particular the conditional
Laplace transform at horizon h can be written in terms of a and c as:

E [exp (−uXt) | Xt−h] = exp
©−a◦h(u)Xt−h − c(u) + c

£
a◦h(u)

¤ª
.

By using similar arguments we can also derive the joint conditional Laplace transform at
horizon h:

E

"
exp

Ã
−

hX
s=1

usXt+s

!
| Xt

#
= exp [−A (u, h)Xt −B(u, h)] , (1.36)

where u = (u1, ..., uh) and:

A(u, h) = a {u1 + a [u2 + ....+ a(uh−1 + a(uh))]} ,
B(u, h) = b(uh) + b [uh−1 + a(uh)] + b {u1 + a [u2 + ...+ a(uh−1 + a(uh))]} .

In many applications (see section 6), we need to evaluate conditional expectations such as:
E [exp (−γXt+h − δXt+h−1 − ...− δXt+1) | Xt]. The vector u is given by: u = (δ, ..., δ, γ),
and the coefficients Ah = A (u, h) and Bh = B(u, h), h ∈ N, satisfy the recursion formulae:

Ah = a (δ +Ah−1) , A1 = a(γ),

Bh = Bh−1 + b (δ +Ah−1) , B1 = b(γ). (1.37)
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Finally, unconditional joint Laplace transforms are easily obtained from (1.36):

E

"
exp

Ã
−

hX
s=1

usXs

!#
= exp {−c [A (u, h)]−B(u, h)} . (1.38)

1.5.3 Examples

Different examples are provided in this section to see how the nonlinear dependence pattern
affects the dynamics of the process.

1.5.3.1 Markov processes with gaussian copula

Let Xt, t ∈ N, be a stationary Markov process, whose joint density is characterized by a
gaussian copula Cρ, |ρ| < 1, [see section 2.3.i)] and a marginal distribution F . Then process
Xt, t ∈ N, is a nonlinear transformation of a gaussian autoregressive process X∗

t , t ∈ N:

Xt = F−1 [Φ (X∗
t )] ,

X∗
t = ρX∗

t−1 + εt, εt ∼ IIN(0, 1− ρ2).

i) Simulated trajectories

We report in Figure 6, Figure 7, and Figure 8 simulated trajectories of length T = 200 of
Markov processes with Gaussian copula, correlation parameter ρ = 0, ρ = 0.5, and ρ = 0.95,
respectively, and different marginal distributions.

[insert Figure 6: simulated trajectory, Gaussian copula, ρ = 0]

[insert Figure 7: simulated trajectory, Gaussian copula, ρ = 0.5]

[insert Figure 8: simulated trajectory, Gaussian copula, ρ = 0.95]

For each figure, Panel A reports the standardized process Ut with uniform marginal distri-
bution, Panel B the gaussian process X∗

t , whereas Panel C and D report Markov processes
with Gaussian copula and Pareto39 or Cauchy40 marginal distribution, respectively. The
Pareto and Cauchy distributions have fat tails, and Markov processes with these marginal
distributions may represent for instance the durations between consecutive trades, and the
returns, respectively, of a financial asset.
When ρ = 0 the process is iid, and positive dependence increases with ρ. Moreover different
behaviour of extremes can be seen according to the tail and skewness of the marginal distri-
bution.
39The marginal cdf is given by: F (x) = 1− 1/ (1 + ax)

τ , with a = 4, τ = 2.
40The marginal cdf is given by: F (x) = (1/π) arctan (ax) + 1/2, with a = 10.
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ii) Autocorrelograms

Figure 9, Figure 10 and Figure 11 provide the autocorrelograms for Markov processes with
Gaussian copula considered above41.

[insert Figure 9: ACF, Gaussian copula, ρ = 0]

[insert Figure 10: ACF, Gaussian copula, ρ = 0.5]

[insert Figure 11: ACF, Gaussian copula, ρ = 0.95]

Since the canonical correlations at horizon h are λj,h = ρhj, j varying, the autocorrelo-
grams decrease geometrically with lag h, for any marginal distribution. However, although
all Markov processes with Gaussian copula and same ρ parameter have the same copula,
their autocorrelograms strongly differ. Indeed the correlation is not invariant by nonlin-
ear transformation and the magnitude of the autocorrelation depends on the pattern of the
marginal cdf. Since the first canonical directions of the gaussian distribution are affine, the
transformed process with gaussian marginal distribution has the larger autocorrelogram [see
Example 2].

iii) Isodensity curves

Since
¡
X∗

t , X
∗
t−h
¢
has a gaussian distribution with linear correlation ρh, the copula of (Xt,Xt−h)

at horizon h is gaussian, with correlation parameter ρh. When ρ = 0, Ch is the independent
copula at any horizon. In Figure 12 and Figure 13 we plot isodensity curves for the distribu-
tion of

¡
X∗

t , X
∗
t−h
¢
for correlation parameters ρ = 0.5 and ρ = 0.95, respectively, at different

horizons.
[insert Figure 12: isodensity curves, Gaussian copula, ρ = 0.5]

[insert Figure 13: isodensity curves, Gaussian copula, ρ = 0.95]

The sequence Ch is monotone decreasing, and converges geometrically to the long-term in-
dependent copula.

iv) Clustering of extremes

In Figure 14 we plot a time series of indicator variable It = I(Ut ≥ λ) and of the counting
process Nt =

Pt
s=1 I(Us ≥ λ) for observations above the λ-quantile in a simulated trajectory

of length T = 2000 of a Markov process with Gaussian copula and ρ = 0.5. Panels A and
B correspond to 1% upper quantile λ = 0.99, and Panels C and D to 0.5% upper quantile
λ = 0.995.

[insert Figure 14: Extremes, Gaussian copula, ρ = 0.5]

Most of the large observations do not cluster, but instead are isolated in time. This is
consistent with the tail independence featured by Gaussian copula.

41Autocovariances are computed by Monte Carlo simulation whenever necessary.
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1.5.3.2 Markov process with Archimedean copula

Let us now consider a stationary Markov process (Xt) with a copula in the Archimedean
family [see Bouyé, Gaussel, Salmon (2000)]. For instance, let us assume a Gumbel copula
Cα, α ≥ 1 [see section 2.3.2 v)].

i) Simulated trajectories

Simulated trajectories of length T = 200 of a Markov process with Gumbel Copula Cα are
reported in Figure 15 and Figure 16 for α = 1.5, and α = 4.946, respectively. The choices of
α parameter ensure that the Kendall’s tau of (Xt,Xt−1) is equal to that of Gaussian copulas
with ρ = 0.5 and ρ = 0.95, respectively42. Moreover the marginal distributions are the same
as in the previous section.

[insert Figure 15: simulated trajectory, Gumbel copula, α = 1.5]

[insert Figure 16: simulated trajectory, Gumbel copula, ρ = 0.95]

Serial dependence is stronger for the process with the larger α parameter [α = 4.946]; this is
consistent with the fact that the Gumbel family is positively PQD ordered with respect to
α. Moreover, compared to Markov processes with Gaussian copula, trajectories of Markov
processes with Gumbel copula feature clusters (that are patches) of large observations.

ii) Autocorrelogram

The autocorrelograms of Markov processes with Gumbel copula are reported in Figure 17
and Figure 18.

[insert Figure 17: ACF, Gumbel copula, α = 1.5]

[insert Figure 18: ACF, Gumbel copula, α = 4.946]

These autocorrelograms differ in several aspects compared with the ones derived for Markov
process with Gaussian copula. Firstly, since the first canonical directions of a Markov process
with Archimedean copula and standard gaussian marginal distribution are not affine, the
transformed process with standard gaussian marginal distribution has no longer the largest
autocorrelation. Among the transformed processes considered here, the Markov process with
Pareto marginal distribution has the largest autocorrelation function.
Secondly, the Markov process with Gumbel copula has more persistent autocorrelograms.
For instance, let us compare the autocorrelation function of a Markov process with Gaussian
copula with ρ = 0.95 and Pareto marginal distribution (Figure 11, Panel C) with that of a
Markov process with Gumbel copula with α = 4.946 and Pareto marginal distribution (Fig-
ure 18, Panel C). Both processes, Xt and Xt−1 have the same Kendall’s tau, but different
copula patterns. The autocorrelation function of the Markov process with Gumbel copula
is larger at any lag, and decays more slowly with the horizon. However, since Archimedean
copulas are symmetric, Markov process with Gumbel copula is time reversible, and thus

42The choice α = 1 would correspond to an iid process.
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canonical correlations and autocorrelograms decrease asymptotically with the lag at a geo-
metric rate, as in the Gaussian case.

iii) Clustering of extremes

Figure 19 provides the time series of indicator variable It = I(Ut ≥ λ) and of the counting
process Nt =

Pt
s=1 I(Us ≥ λ) for observations above the λ-quantile in a simulated trajectory

of length T = 2000 of a Markov process with Gumbel copula and α = 1.5. Panels A and B
correspond to λ = 0.99, and Panels C and D to λ = 0.995.

[insert Figure 19: Extremes, Gumbel copula, α = 1.5]

Comparing with the Markov process with Gaussian copula (Figure 14), we see that large
observations for the Markov process with Gumbel copula have a tendency to cluster, that
is to come in patches. This is consistent with the evidence from the simulated trajectories
discussed in i), and with the upper tail dependence featured by Gumbel copula.

1.5.3.3 Markov processes with finite dimensional dependence

Let us consider a stationary Markov process with one-dimensional dependence and canonical
directions a(u) = (2α+ 1)1/2 |2u− 1|α sign (u− 1/2), α = 2, b(v) = (2β + 1)1/2 |2v − 1|β sign (v − 1/2),
β = 0.5, and canonical correlation λ = 0.3.

[insert Figure 20: canonical directions]

Current and lagged canonical directions are plotted in Figure 20 for different marginal distri-
butions, that are the uniform, gaussian, Pareto and Cauchy distribution. Since current and
lagged canonical directions a and b are both monotonically increasing, this Markov process
with one-dimensional dependence features PQD (see section 3.1.4 43).

i) Simulated trajectories

In Figure 21 we plot simulated time series of length T = 200 of Markov process with one-
dimensional dependence. As usual, the standardized Markov process Ut, the Markov process
X∗

t with standard gaussian marginal distribution, and Markov process with Pareto and
Cauchy marginal distributions are reported.

[insert Figure 21: simulated trajectories]

The processes feature weak positive serial dependence and absence of clustering of extremes.

ii) Autocorrelograms

The autocorrelograms of the Markov processes with one-dimensional dependence are reported
in Figure 22.

[insert Figure 22: autocorrelograms]

43This Markov process features even SI dependence, see Example 9 in section 5.2.
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Since the canonical correlation at horizon h is given by λh = λρh−1, where ρ = λ
R 1
0
a(w)b(w)dw '

0.27, the autocorrelation function converges quickly to zero with the lag. The standardized
Markov process Ut and theMarkov process with standard gaussian marginal distribution have
the largest and most persistent autocorrelograms. Indeed, for these processes the canonical
directions (especially the current canonical direction a and ϕ) are approximately linear on a
relevant part of the sample space. For instance, let us compare the present canonical direc-
tion of the Markov process with standard gaussian marginal distribution (Figure 20, Panel
B) with that of a Markov process with Pareto marginal distribution (Figure 20, Panel C).
For the latter one, the canonical directions involve a stronger downweighting of the upper
half of observations44. Consequently, the autocorrelation function of the process with Pareto
marginal distribution is smaller and converges more quickly to zero.

iii) Reversed time autocorrelograms

Since the current and lagged canonical directions are different, a 6= b, the Markov process
with one-dimensional dependence is not time reversible. Therefore the correlations are dif-
ferent in calendar and reversed time. For instance, let us consider the correlation between
X∗

t with standard gaussian marginal distribution and the lagged transformation g(X∗
t−h) =

sign(X∗
t−h)

¯̄
X∗

t−h
¯̄1/10

, for h = 0, 1, 2, .... When process X∗
t is observed in reversed time,

the corresponding correlations are: corr
¡
X∗

t , g(X
∗
t+h)

¢
= corr

¡
g(X∗

t ), X
∗
t−h
¢
, h = 0, 1, 2, ....

Calendar and reversed time autocorrelations are reported in Figure 23, solid and dashed line,
respectively.

[insert Figure 23: reversed time autocorrelograms]

The autocorrelations in reversed time are smaller. This is easy to understand from the
patterns of the canonical directions, since transformation g is more correlated with the
lagged canonical direction than with the current canonical direction.

iv) Isodensity curves

Isodensity curves of
¡
X∗

t ,X
∗
t−h
¢
for Markov process with one-dimensional dependence and

standard Gaussian marginal distribution are reported in Figure 24, for different horizons.

[insert Figure 24: isodensity curves]

The copula Ch(u, v) of Xt and Xt−h is not symmetric in u and v, which is consistent with
the time irreversibility of this Markov process. More precisely, if we compare with Markov
processes with Gaussian or Gumbel copula (Figure 12 and Figure 3, Panel B, respectively),
the isodensity curves are distorted, for Xt and Xt−h large in absolute value, in directions of
smaller |Xt−h|. This is due to the fact that the lagged canonical direction downweigths large
observations (in absolute value) more than the present canonical direction doe.

44The 0.95-quantile of the marginal distribution is 0.86.
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1.5.3.4 The Compound Autoregressive process

Let us consider the Autoregressive Gamma (ARG) process introduced by Gourieroux and
Jasiak (2000), which is a discrete time counterpart of the Cox, Ingersoll, Ross diffusion
process [Cox, Ingersoll, Ross (1985)]. The ARG process is a positively valued Markov
process, whose conditional distribution of Xt given Xt−1 is a noncentral gamma distribu-
tion γ (δ, βXt−1), with δ, β > 0 45. The ARG process is a CAR process characterized by
functions a(u) = βu/(1 + u) and b(u) = −δ log (1 + u). It is stationary when |β| < 1, and
the marginal distribution is such that (1− β)Xt follows a gamma distribution γ (δ). Para-
meters β and δ have different interpretations. Indeed, parameter β characterizes function a,
and thus the dynamics of the process. Parameter δ is related to the under- or overdispersion
of the marginal and conditional distribution of the process [δ > 1 or δ < 1, respectively].

i) Simulated trajectories

In Figure 25 we report simulated trajectories of length T = 200 of the ARG processes with
δ = 0.5, β = 0.5 (Panel A), δ = 1.5, β = 0.5 (Panel B), δ = 0.5, β = 0.95 (Panel C), and
δ = 1.5, β = 0.95 (Panel D).

[insert Figure 25: ARG process, simulated trajectories]

The pdf of the marginal distribution is reported in Figure 26 for the different values of the
parameters β and δ.

[insert Figure 26: ARG process, marginal pdf]

The process with the largest β parameter [β = 0.95] features stronger positive dependence.
This is consistent with the fact that function a is proportional to β [see discussion in section
3.2.2 ii)]. The marginal distributions of the processes with δ > 1 [δ = 1.5] are hump-shaped,
and their trajectories rarely come close to zero.

ii) Autocorrelograms

The autocorrelogram of the ARG process is given by corr(Xt, Xt−h) = βh, h ∈ N, and
decays geometrically [Gourieroux, Jasiak (2000)]. Therefore the autocorrelograms of the
ARG processes with β = 0.5 and β = 0.95 are the same as those of Gaussian autoregressive
processes with ρ = 0.5 and ρ = 0.95, respectively (Figure 10, Panel B, and Figure 11, Panel
B). Parameter δ does not affect the autocorrelogram.

iii) Isodensity curves

Isodensity curves of the ARG process with standard gaussian marginal distribution are re-
ported in Figure 27, for the different values of the parameters.

[insert Figure 27: ARG process, copula isodensity lines, h = 1]

45Let us recall that Xt follows a noncentral gamma distribution γ (δ, βXt−1) given Xt−1 if there exists
an intermediary factor Zt such that the conditional distribution of Xt given Zt is a gamma distribution
γ (δ + Zt), and the conditional distribution of Zt given Xt−1 is a Poisson distribution P (βXt−1).
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Both parameters β and δ affect the density. In particular, the density is more concentrated
along the 45 degree line when β increases, and it is more wedge shaped in the upper quadrant
for smaller δ. The density is symmetric since the ARG process is time reversible.
The copula at larger horizons may be easily derived since the conditional distribution of Xt

givenXt−h is such thatXt/
1−βh
1−β follows a noncentral gamma distribution γ

³
δ, βhXt−h/

1−βh
1−β

´
.

Isodensity curves of the copula at horizon h of the ARG process with β = 0.95 (with stan-
dard gaussian marginal distribution) are reported in Figure 28 (h = 5, h = 10) and Figure
29 (h = 20, h = 50).

[insert Figure 28: ARG process, copula isodensity lines, h = 5, 10]

[insert Figure 29: ARG process, copula isodensity lines, h = 20, 50]

1.6 Applications: dynamic framework

These applications involve time series (Xt), which can be observable, or introduced as latent
factors. For expository purpose, we consider Markov processes and the functional dependence
parameters characterize the transition distribution. We first explain how copulas can be
used for trend correction, or for specifying a dynamic proportional hazard model, useful for
liquidity analysis.
The conditional Laplace transform seems appropriate for a number of different problems

concerning duration models with stochastic intensity, derivative pricing, as well as the term
structure of interest rates.
Finally we explain how the basis of eigenfunctions appearing in nonlinear canonical analy-

sis can be used to identify the drift and volatility function of a diffusion equation, or to
approximate option pricing, in particular to define the price of skewness and kurtosis, as a
complement to the price of volatility.

1.6.1 Trend correction

Let us consider the standard gaussian autoregressive model with drift:

yt = αt + ρyt−1 + ut,

where the error terms are iid. Nonstationary features can be introduced by means of either
the drift (such as a deterministic linear trend), or the autoregressive coefficient (by a unit
root ρ = 1). These types of trend effects are of different nature. Indeed we can write:

yt = βt + eyt,
where βt is the solution of the deterministic equation:

βt = αt + ρβt−1,
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and eyt is the zero mean autoregressive process satisfying:
eyt = ρeyt−1 + ut, ut ∼ IIN(0, σ2).

Equivalently we get:
Ft(yt) = ρFt−1(yt−1) + ut, (1.39)

where Ft(yt) = yt−βt. If αt = at+b, say, and |ρ| < 1, the variable of interest is transformed by
a nonstationary transformation Ft, whereas the copula coincides with the gaussian copula
corresponding to |ρ| < 1, which is stationary. Symmetrically if αt = α, say, and ρ = 1,
the transformation Ft becomes stationary, whereas the gaussian copula corresponds to a
nonstationary standardized process. This example shows that it can be useful to distinguish
marginal nonstationarity (through the transformation Ft) and serial nonstationarity (through
the copula).
The principle can be applied to the comparative analysis of the results of firms of a given

industrial sector, or of the performances of fund managers. Indeed, it can be interesting to
distinguish the nonstationary evolution of the industrial sector (resp. the financial market)
and the more stationary comparative rankings of the firms (resp. fund managers). A panel
model distinguishing these features can be:

Xit = G (Zt, Uit) , i = 1, ..., n, (1.40)

where the processes (Zt), (U1t), ...., (Unt), are independent, and:

(Zt) is nonstationary,

(U1t), ...., (Unt), have the same stationary distribution on [0, 1],
associated to the same stationary copula C (ut, ut−1), say,

G is increasing with respect to U for any Z.

In panel model (1.40)Xit denotes the profit of firm i in period t (resp. a performance measure
for fund manager i in period t) , Markov process (Uit) represents a latent quality of the firm
(resp. of the fund manager), which may be interpreted as a comparative ranking of the firm
(resp. of the fund manager), and (Zt) denotes a nonstationary common factor, representing
the trend of the industrial sector (resp. of the financial market).

1.6.2 Dynamic duration model with proportional hazard

Liquidity phenomena can be analyzed from intertrade duration data. The idea is to study the
dynamics of the successive intertrade durations, for instance to detect clustering effects, that
is the existence of subperiods with large durations, corresponding to weak liquidity [resp.
small durations, corresponding to high liquidity]. Different dynamic specifications have been
introduced in the literature on high frequency data, such as the autoregressive conditional
duration (ACD) models [see Engle, Russell (1998)], which extends the ARCH approach to
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durations analysis, or the stochastic volatility duration (SVD) model [see Ghysels, Gourier-
oux, Jasiak (2002)], which is the analogue of the stochastic volatility model. However these
specifications are introduced by analogy with models usually considered for returns and are
not very easy to reconcile with standard models used for durations in the microeconomic
framework. The later line can also be followed. Let us denote (Xt) the series of intertrade
durations and assume that (Xt) is a Markov process. The dynamics is defined by the transi-
tion probability, which explains how the lagged durations Xt−1 will influence the current one
Xt. Thus we get a standard econometric duration model, in which the explanatory variable
is the lagged duration. For instance let us consider a specification with proportional hazard
in which the conditional hazard function of Xt given Xt−1 is written as:

λ (xt | xt−1) = a(xt−1)h0 (xt) ,

where h0 is the baseline hazard function, and a is a positive function describing the effect
of the lagged duration [see Gagliardini, Gourieroux (2002a) 46]. From the invariance prop-
erty of the proportional hazard specification by increasing transformation of the variables,
the proportional hazard constraint concerns the copula only. In particular, the standard-
ized Markov process Ut = F (Xt), where F is the stationary distribution of (Xt), features
proportional hazard:

P [Ut ≥ ut | Ut−1 = ut−1] = exp [−A(ut−1)H0(ut)] , say,

and the condition of uniform marginal distribution identifies functionH0 in terms of A. Thus
the functional parameter A characterizes the copula of the Markov process with proportional
hazard. Gagliardini, Gourieroux (2002a) relate the serial dependence patterns of Markov
process with proportional hazard (Xt) to different properties of function A. For instance,
the strength of positive serial dependence is related to the elasticity of functional parameter
A.

1.6.3 Derivative pricing

i) The principle

In this section we consider the pricing of derivative assets within a discrete time stochastic
discount factor approach [Harrison, Kreps (1979), Garman, Ohlson (1980), Hansen, Richard
(1987)]. It is known that, if agents make their investment decisions at date t (t ∈ N) based
on the available information set, then the prices of actively traded assets are conditional
expectations of the payoffs, discounted by means of an appropriate stochastic factor. More
precisely, if there are no arbitrage opportunities in the market, there exists a positive random
variable Mt,t+1 such that the price at time t of a derivative asset with payoff gt+1 at time
t+ 1 is given by:

C(t, g) = Et [Mt,t+1gt+1] ,

46In the Cox (1972) model function a is exponential linear. See Hautsch (1999) for an application to
intertrade durations.
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where Et denotes expectation conditional to the information at time t. Variable Mt,t+1 is
known as the stochastic discount factor (sdf, or pricing kernel) between t and t+1; it accounts
for both risk adjustment and time discount. Moreover, the price at time t of a derivative
with maturity h and payoff gt+h is given by recursive discounting:

C(t, h, g) = Et [Mt,t+1Mt+1,t+2...Mt+h−1,t+hgt+h] = Et [Mt,t+hgt+h] , (say).

In discrete time, markets are incomplete and the no-arbitrage opportunity condition does
not identify a unique stochastic discount factor. The latter may be selected by imposing
additional restrictions. A natural specification ensuring the positivity of the sdf is that
of exponential affine sdf [Stutzer (1995,1996), Gourieroux, Monfort (2001a,b), Gourieroux,
Monfort, Polimenis (2002)]:

Mt,t+1 = exp [−αtXt+1 − βt] , (1.41)

where (Xt) is a state variable, and αt and βt are functions of the information at time t
47.

An exponential affine sdf is consistent with several econometric specifications and financial
equilibrium models considered in the literature [see Gourieroux, Monfort (2001a,b), and
Polimenis (2002)]. It has the advantage to allow departures from time independence and
conditional normality, which underlie usual models, such as the Black-Scholes model.

ii) Stock derivatives

The importance of the conditional Laplace transform of the state variable to summarize
serial dependence is due to the exponential form of the sdf. Indeed let us assume that the
state variable Xt is the return of a stock with price St, Xt = log (St/St−1), and assume for
simplicity a zero riskfree rate. Then the no-arbitrage restrictions are:

1 = Et [Mt,t+1] ,

1 = Et [Mt,t+1 exp (Xt+1)] .

From (1.41) they can be written in terms of the conditional Laplace transform Ψt(u) =
Ψ (u,Xt) = E [exp (−uXt+1) | Xt] of the state variable:

βt = logΨt(αt),

Ψt(αt) = Ψt(αt + 1). (1.42)

The no-arbitrage restrictions (1.42) have in general a unique solution, which identifies a
unique sdf. The corresponding risk neutral distribution Q of the returns Xt is characterized
by the conditional Laplace transform:

Q

Et [exp (−uXt+1)] =
Et [Mt,t+1 exp (−uXt+1)]

Et [Mt,t+1]
=

Ψt(αt + u)

Ψt(αt)
. (1.43)

47The exponential affine specification corresponds to the approach based on the Esscher transform [see
Esscher (1932), Buhlman et al. (1996), Shyraev (1999)].
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Thus the risk neutral distribution is deduced from the historical distribution by a shift in
the Laplace transform.

Example 11: Black-Scholes model in discrete time.
Let us assume that returns Xt are IIN (µ− σ2/2, σ2). Then the conditional Laplace trans-
form is independent of Xt, and given by Ψ (u) = exp [− (µ− σ2/2)u+ σ2u2/2]. The no-
arbitrage restrictions imply:

α =
µ− σ2

σ2
,

β = −µ
2

µ
µ− σ2

σ2

¶
.

In particular, the coefficient α depends on the ratio of expected returns to variance, and
the sdf does not depend on the information at time t, due to time independence of the
returns. From (1.43), the dynamics of the returns (Xt) under the risk neutral distribution
Q is characterized by the conditional Laplace transform:

Q

Et [exp (−uXt+1)] = exp
¡−σ2u/2 + σ2u2/2

¢
.

Thus under the risk neutral distribution Q the returns (Xt) are IIN (−σ2/2, σ2), and, as
well-known, the correction for risk corresponds to a change of drift, the historical drift µ
being replaced by the riskfree rate r = 0.

iii) Interest rate derivatives

Let us now consider the pricing of interest rate derivatives. Let the state variable Xt be the
short rate between time t and t + 1, denoted by rt+1, and assumed to be predetermined at
t. The no-arbitrage condition is given by:

exp (−rt+1) = Et [Mt,t+1] .

If the sdf is exponential affine in the future short rate:

Mt,t+1 = exp (−αrt+2 − βt) ,

and the short rate follows a CAR process: Ψt(u) = Et [exp (−urt+2)] = exp [−a(u)rt+1 − b(u)],
then the restricted sdf becomes:

Mt,t+1 = exp {−αrt+2 − [1− a(α)] rt+1 + b (α)} .

In particular, any α ∈ R is admissible, and the restriction of exponential affine sdf does not
select a unique pricing kernel. From the analogue to (1.43) we deduce that the short rate
follows a CAR process also under the risk neutral distribution Q. The CAR dynamics is
characterized by functions aQ(u) = a(u+ α)− a(α), bQ(u) = b(u+ α)− b(α), deduced from
functions a and b by an appropriate drift.
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Example 12: The Cox, Ingersoll, Ross model in discrete time.
Let us assume that the short rate (rt+1) follows an Autoregressive Gamma (ARG) process
with parameters β and δ [see section 5.3.4]. Under the risk neutral distribution Q the func-
tional parameters characterizing the CAR dynamics of (rt+1) are given by:

aQ(u) =

µ
β

1 + α

¶
u/ (1 + α)

1 + u/ (1 + α)
, bQ(u) = −δ log [1 + u/ (1 + α)] .

Thus, under the risk neutral distribution Q, the rescaled short rate (1 + α) rt+1 follows an
ARG process with parameters βQ = β/ (1 + α)2, δQ = δ. In particular, the coefficient α of
the sdf is such that α > −1. The short rate (rt+1) is stationary under Q if α > −1 +√β,
and for α ∈ ¡−1 +√β, 0¢ serial dependence is larger under the risk neutral distribution Q
than under the original historical probability.

Let us now consider the pricing of interest rate derivatives with exponential payoff48. The
price at time t of a derivative with residual maturity h and payoff g (rt+h+1) = exp (−urt+h+1)
is given by:

C(t, h, u) = Et [Mt,t+1...Mt+h−1,t+h exp (−urt+h+1)]
=

Q

Et {exp [− (rt+1 + ...+ rt+h)] exp (−urt+h+1)} .
Using results (1.36), (1.37) under the risk neutral dynamics, we get:

C (t, h, u) = exp [−Ah(u)rt+1 −Bh(u)] , h ∈ N,
where Ah(u), Bh(u), h ∈ N, satisfy the recursion formulae:

Ah(u) = a [Ah−1(u) + α]− a(α) + 1, A1 (u) = a(u+ α)− a(α) + 1,

Bh (u) = Bh−1 (u) + b [Ah−1 (u) + α]− b(α), B1 (u) = b(u+ α)− b(α).

(1.44)

iv) Term structure of interest rate

Let us finally derive the term structure of interest rates. Let B (t, t+ h) denote the price
at time t of a zero-coupon bond with residual maturity h. The payoff g (rt+h+1) = 1 of the
bond is exponential with u = 0, and its price B(t, t + h) may be deduced from the results
of the previous section. Thus the term structure of interest rates (rt,t+h, h ∈ N) at time t is
given by:

rt,t+h = −1
h
logB (t, t+ h)

=
Ah

h
rt+1 +

Bh

h
, h ∈ N,

48They can be used as a basis for pricing more general derivatives [see e.g. Bakshi, Madan (2000), Duffie,
Pan, Singleton (2000), Gourieroux, Monfort, Polimenis (2002)]
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where Ah, Bh, h ∈ N, satisfy the recursion formulae:
Ah = a (Ah−1 + α)− a(α) + 1, A1 = 1,

Bh = Bh−1 + b (Ah−1 + α)− b(α), B1 = 0. (1.45)

For any given value of the state variable rt+1, the shape of the term structure (rt,t+h, h ∈ N)
at time t is determined by the patterns of the sequences Ah/h, Bh/h, h ∈ N. Under mild
conditions on function a, we can prove that:
i) Ah/h is decreasing in h ∈ N, Bh/h, is increasing in h ∈ N;
ii) the smoother function b, the smoother the sequence Bh/h, h ∈ N; the smoother function
a, the smoother Bh/h, h ∈ N, and the steeper Ah/h, h ∈ N.

Thus the patterns of functions a and b allow for a large variety of term structures.

Finally, the long term interest rate is given by [see Gourieroux, Monfort, Polimenis (2002)]:

lim
h→∞

rt,t+h = b (A∗ + α)− b(α) ≡ r∞,

where A∗ is defined by: A∗ = a (A∗ + α)− a(α) + 1. The flatter b, the lower r∞. Similarly,
the flatter a, the lower A∗ and thus the lower r∞.

1.6.4 Prediction and pricing of default risk

In this section we consider prediction and pricing of default risk in intensity based models
[see e.g. Duffie, Singleton (1999) in continuous time]. In this approach the probability
of default of the borrowers is affected by a latent factor, called intensity, which changes
randomly in time. We analyse how serial dependence of the intensity process characterizes
the distributions of times to default, the patterns of default correlation, and the way the
latter change with the age of the credits.

i) One-dimensional survivor functions

Let τ be a discrete variable (τ ∈ N) denoting the time to default of a firm created at time 0,
and assume a survivor intensity process (λt) [Brémaud (1981)]:

P [τ > t | τ > t− 1, (λt) , (Xt)] = exp (−λt) ,
where (Xt) denotes the whole path of the state variable. The survivor function of time to
default, conditionally to (λt) , (Xt), is given by:

P [τ > t | (λt) , (Xt)] = P [τ > 0 | (λt) , (Xt)]
tY

s=1

P [τ > s | τ > s− 1, (λt) , (Xt)]

= exp

Ã
−

tX
s=1

λs

!
.
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The unconditional survivor function of time to default is deduced by integrating out the
intensity (λt). The survivor function of τ at age h is given by:

Sh(x) = P [τ > h+ x | τ > h]

=
P [τ > h+ x]

P [τ > h]
=

E
h
exp

³
−Ph+x

s=1 λs
´i

E
h
exp

³
−Ph

s=1 λs
´i .

The patterns of the survivor function x→ Sh(x) at age h, and the way it changes with age
h, depend on the serial dependence of the intensity process (λt). For instance, if (λt) is an
iid process, the survivor function corresponds to a geometric distribution: Sh(x) = Ψ (1)x,
x = 0, 1, ..., where Ψ is the marginal real Laplace transform of λt, and is age independent.
At the opposite, when the intensity (λt) is perfectly persistent, λt = Z, ∀t (Z a random
variable), we get: Sh(x) = Ψ (x+ h) /Ψ (h), and the pattern of Sh and its age dependence
are related to the Laplace transform Ψ of Z.
More generally, if the intensity process (λt) follows a CAR process with parameters a, b,
the survivor function Sh(x) at age h admits an analytical expression [see results (1.37),
(1.38)], and its patterns and age dependence are related to the functional parameters a, b
characterizing the CAR dynamics of the intensity process [see Gourieroux, Monfort (2002)c].

ii) The term structure of defaultable bonds

The survivor function Sh (x) is also related to the prices of defaultable bonds. Indeed, let
us consider a zero-coupon bond with residual maturity h issued by the firm. The payoff at
time t+ h is I (τ > t+ h) [where for simplicity we assume a zero recovery rate]. If at time t
the firm has not yet defaulted, the price of the bond at time t is given by:

B∗ (t, t+ h) = E
£
Mt,t+hI (τ > t+ h) | Xt, τ > t

¤
=

E
£
Mt,t+hI (τ > t+ h) | Xt

¤
E
£
I (τ > t) | Xt

¤
Let us assume that the intensity process (λt) is independent of the state variable (Xt). Then
we get:

B∗ (t, t+ h) = B (t, t+ h)St(h).

Thus the price at time t of a defaultable bond with maturity h is equal to the price of a
riskfree bond with the same maturity times the survivor probability for h periods at time t.
In particular the term structure of the spread between defaultable bonds and riskfree bonds
is given by:

st,t+h = −
µ
1

h
logB∗ (t, t+ h)− 1

h
logB (t, t+ h)

¶
= −1

h
logSt(h).

Under the assumption of independence between intensity and state variables (the so-called
actuarial assumption), the default spread is a deterministic function of the historical survivor
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function. For instance, when the intensity process (λt) is iid, the term structure of the spread
is flat, and constant during the life of the firm: st,t+h = − logΨ (1) > 0. In general, the
patterns and dynamics of the spread are related to serial dependence of the intensity process.

iii) Term structure of default dependence

Let us now consider two firms and study the dependence between their default events. Let
τ 1 and τ 2 be discrete variables denoting times to default of the two firms. We can generalize
the specification in section 4.3 and assume that times to default τ 1 and τ 2 are conditionally
independent given a common intensity process (λt):

P [τ 1 > t1, τ 2 > t2 | (λt) , (Xt)] = exp

"
−
Ã

t1X
s=1

λs +
t2X
s=1

λs

!#
.

Then the joint survivor function at age h when both firms are still alive is given by:

Sh (x, y) = P [τ1 > h+ x, τ 2 > h+ y | τ 1 > h, τ 2 > h]

=
E
n
exp

h
−
³
2
Px∗+h

s=1 λs +
Py∗+h

s=x∗+h+1 λs
´io

E
h
exp

³
−2Ph

s=1 λs
´i ,

where x∗ = min (x, y), y∗ = max (x, y). In particular the marginal survivor function of time
to default τ 1 of firm 1, say, at age h when both firms are still alive is given by:

Sh (x, 0) =
E
n
exp

h
−
³
2
Ph

s=1 λs +
Px+h

s=h+1 λs
´io

E
h
exp

³
−2Ph

s=1 λs
´i ;

it differs in general from the one-dimensional survivor function Sh(x) computed in i) since it
takes into account information on both firms.
When the intensity process (λt) is perfectly persistent, λt = Z ∀t, we get the discrete time
analogue of the results in section 4.3:
Sh (x, y) = E {exp [− (x+ y + 2h)Z]} /E [exp (−2hZ)] = Ψ (x+ y + 2h) /Ψ (2h).

iv) Distribution of the first-to-default time

Several credit derivatives involve the first (resp. the second, ...) to default time in a basket
of borrowers [see section 4.2 and the next section]. Therefore it is important to study the
distribution of the order statistics. Let us for instance consider the first-to-default time
τ = min (τ 1, τ 2). Its survivor distribution at age h is given by:

P [τ > h+ x | τ > h] = P [τ 1 > h+ x, τ 2 > h+ x | τ 1 > h, τ 2 > h]

= Sh(x, x) =
E
n
exp

h
−
³
2
Px+h

s=1 λs
´io

E
h
exp

³
−2Ph

s=1 λs
´i .
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It corresponds to the one-dimensional survivor function Sh(x) of paragraph i), with a doubled
intensity49, and is written in terms of conditional Laplace transform of the intensity process.

v) Derivative pricing

Let us consider the pricing of credit derivatives when information about default events of
both firms is available. Let us first consider a bond with residual maturity h issued by firm
1, say. If at time t both firms have not yet defaulted, the price B∗1 (t, t+ h) of this bond is
given by:

B∗1 (t, t+ h) = E
£
Mt,t+hI (τ 1 > t+ h) | Xt, τ 1 > t, τ 2 > t

¤
=

E
£
Mt,t+hI (τ 1 > t+ h) I (τ 2 > t) | Xt

¤
E
£
I (τ 1 > t) I (τ 2 > t) | Xt

¤
= B (t, t+ h)St (h, 0) .

Since the payoff depends on default of firm 1 only, the marginal survivor distribution of
duration τ1 is involved. However, since the default intensity of the two firms are linked, the
conditional information at time t on both firms matters.
Let us now consider a first-to-default basket, that is a derivative which pays 1 $ if the

first default τ = min (τ 1, τ 2) occurs after maturity t+h. The payoff at maturity is given by:
I (τ > t+ h). If no default has occurred at time t, the price at time t of such a derivative
with residual maturity h is given by:

C (t, t+ h) = E
£
Mt,t+hI (τ > t+ h) | Xt, τ > t

¤
=

E
£
Mt,t+hI (τ > t+ h) | Xt

¤
E
£
I (τ > t) | Xt

¤
= B (t, t+ h)St (h, h) ,

and involves the survivor probability of the first-to-default time.

1.6.5 Continuous time models

Nonlinear canonical analysis can be useful, when a dynamics is specified in continuous time
and assumed to satisfy a one-dimensional diffusion equation:

dyt = µ (yt) dt+ σ (yt) dWt, (1.46)

where µ and σ are the drift and volatility function, respectively. Indeed it is known that the
transition at horizon 1 admits a reversible nonlinear canonical decomposition:

f (yt | yt−1) = f (yt)

"
1 +

∞X
j=1

exp (−λj)ϕj(yt)ϕj(yt−1)

#
, (1.47)

49Indeed in this conditional independence framework the intensity process corresponding to τ =
min (τ1, τ2) is the sum of the intensities of the two durations, that is (2λt).
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where λj, j = 1, 2, ..., ϕj, j = 1, 2, ... are eigenvalues and eigenfunctions of the infinitesimal
generator associated with the diffusion equation50. The generator A is defined by:

Aϕ (y) = µ (y)
dϕ

dy
(y) +

1

2
σ (y)2

d2ϕ

dy2
(y), (1.48)

and underlies the well-known Ito’s formula.

1.6.5.1 Nonparametric identification of the drift and volatility functions

In practice the volatility function is useful to compute the price of a derivative written on
y, whereas both the drift and volatility functions have to be known for predicting the future
value of a portfolio of derivatives, in particular for computing the Value at Risk of this
portfolio. The spectral properties of the infinitesimal generator can be used as the basis for
identifying nonparametrically the drift and volatility function. Indeed let us assume known
the nonlinear canonical decomposition (1.47). Then we get:

µ (y)
dϕ1
dy
(y) +

1

2
σ (y)2

d2ϕ1
dy2

(y) = λ1ϕ1(y), ∀y,

µ (y)
dϕ2
dy
(y) +

1

2
σ (y)2

d2ϕ2
dy2

(y) = λ2ϕ2(y), ∀y. (1.49)

For any value y, the system can be solved to get µ (y) and σ2 (y) as functions of λ1, λ2, ϕ1,
ϕ2. This interpretation has been used to construct a nonparametric estimation method of
µ, σ2 [Darolles, Florens, Gourieroux (2001)]. In a first step the joint density of (yt, yt−1)
is estimated nonparametrically by a kernel estimator, and nonlinear canonical analysis is
performed on the estimated joint density to deduce estimates of the first two canonical
directions ϕ1, ϕ2 and canonical correlations exp (−λ1), exp (−λ2). In a second step equations
(1.49) are used to derive a non parametric estimator for the drift and volatility functions µ,
σ.

1.6.5.2 Derivative pricing

Nonlinear canonical analysis can also be used for approximate derivative pricing. Indeed
let us assume that the stochastic differential equation (1.46) provides the dynamics of (yt)
under the risk neutral probability and that the riskfree interest rate is zero. The price at t
of a payoff g(yt+h) is:

Ct(g, h) = Et [g (yt+h)] .

The derivative price is easily computed for the payoff corresponding to the eigenfunction of
the infinitesimal operator, since:

Ct(ϕj, h) = exp (−λjh)ϕj(yt), for any j, h, t.

50See Demoura (1993), Hansen, Scheinkman, Touzi (1998), Chen, Hansen, Scheinkman (1999), Darolles,
Florens, Gourieroux (2001).
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Approximated pricing formulas can be deduced for a general payoff g by approximating the
payoff by its projection on the first eigenfunctions ϕ1, ϕ2, ... . In particular several continuous
time models used in applied finance, such as the Black-Scholes model, the Vasicek model,
the Cox-Ingersoll-Ross model are such that the eigenfunction ϕj is a polynomial of degree
j. Thus the idea is to price ϕ1 that is the expected value, ϕ2 that is the volatility, ϕ3 that
is the skewness, ϕ4 that is the kurtosis, and to deduce an approximate price for g from the
valuation of the first moments [Madan, Milne (1994)]. Loosely speaking the usual basis of
payoffs (y − k)+ proposed on the market by means of European call is not necessarily the
most appropriate for pricing and hedging with a limited number of basis derivatives.
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Appendix 1
Dependence ordering in the compound model

i) Dependence ordering

Let us introduce a dependence ordering in the compound model. We have the following
Lemma.

Lemma A.1: Let (X1, Y1) and (X2, Y2) be pairs of positive variables satisfying compound
models, with functions a1 and a2 respectively, and same pair of marginal distributions. Then:

cov [− exp (−uX1) ,− exp (−vY1)] ≥ cov [− exp (−uX2) ,− exp (−vY2)] ,
∀u, v ≥ 0, (a.1)

if and only if:
a1(u) ≥ a2(u), ∀u ≥ 0.

Proof: By the restriction of identical marginal distributions, condition (a.1) is equivalent
to:

E [exp (−uX1 − vY1)] ≥ E [exp (−uX2 − vY2)] , ∀u, v ≥ 0.
Using the expression (1.24) for the joint Laplace transform of a compound model, we get:

ΨY [a1(u) + v]

ΨY [a1(u)]
≥ ΨY [a2(u) + v]

ΨY [a2(u)]
, ∀u, v ≥ 0.

Since − logΨY is concave, function s 7−→ logΨY [s+ v] − logΨY [s] is increasing, for any
v ≥ 0. Therefore (a.1) is equivalent to:

a1(u) ≥ a2(u), ∀u ≥ 0.

Q.E.D

Condition (a.1) is equivalent to a condition involving more general transformations of
X,Y . Indeed, let us assume that cov [g(X1), h(Y1)] ≥ cov [g(X2), h(Y2)], for any increasing
exponential transformations g(X) = − exp (−uX), h(Y ) = − exp(−vY ). Then, by consid-
ering the limit u, v −→ 0, the inequality is valid for increasing affine transformations g, h of
X,Y . Moreover, by a continuity argument, the inequality applies to any increasing trans-
formations g, h, which are limit of positive combinations of increasing affine or exponential
functions.

ii) PQD ordering

The ordering introduced in the previous section is weaker than PQD ordering. However any
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pair (X,Y ) following a compound model and satisfying the conditions of Example 5 features
PQD. Indeed, for any increasing transformations g, h we get:

Cov [g(x), h(Y )] = Cov (E [g(X) | Y ] , h(Y )) ≥ 0,

since the conditional distribution of X given Y is increasing in Y for first order stochastic
dominance, and thus E [g(X) | Y ] is an increasing funtion of Y .
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Appendix 2
The copula of (min (U, V ) ,max (U, V ))

i) The cdf of (min (U, V ) ,max (U, V ))

Let us compute P [min (U, V ) ≤ x∗,max (U, V ) ≤ y∗]. Two cases can be distinguished.
If x∗ ≤ y∗, we get:

P [min (U, V ) ≤ x∗,max (U, V ) ≤ y∗]
= P [min (U, V ) ≤ x∗]− P [min (U, V ) ≤ x∗,max (U, V ) ≥ y∗]

= 1− P [min (U, V ) ≥ x∗]− P [U ≤ x∗, V ≥ y∗]− P [V ≤ x∗, U ≥ y∗]
= {1− P [U ≥ x∗, V ≥ x∗]− P [U ≤ x∗]− P [V ≤ x∗]}

+P [U ≤ x∗, V ≤ y∗] + P [U ≤ y∗, V ≤ x∗]
= C(x∗, y∗) + C (y∗, x∗)− C (x∗, x∗) , by Poincaré formula.

If x∗ > y∗, we get:

P [min (U, V ) ≤ x∗,max (U, V ) ≤ y∗] = P [max (U, V ) ≤ y∗]

= C (y∗, y∗) .

ii) Marginal distributions

The marginal distributions of min (U, V ) and max (U, V ) are given by:

P [min (U, V ) ≤ x∗] = 2x∗ − C (x∗, x∗) =: ϕC(x
∗),

P [max (U, V ) ≤ y∗] = C (y∗, y∗) =: ψC(y
∗).

Since min (U, V ) ≤ max (U, V ), we have ϕC ≥ ψC .
iii) The copula

Let us denote by C∗ (u, v) the copula of (min (U, V ) ,max (U, V )). Two cases have to be dis-
tinguished, according to whether ϕ−1C (u) ≤ ψ−1C (v) or ϕ

−1
C (u) ≥ ψ−1C (v). The first condition

is equivalent to:

u ≤ ϕC

£
ψ−1C (v)

¤
= 2ψ−1C (v)− C

£
ψ−1C (v), ψ

−1
C (v)

¤
= 2ψ−1C (v)− v,

that is (u+ v) /2 ≤ ψ−1C (v), or C [(u+ v) /2, (u+ v) /2] ≤ v. Thus for u, v ∈ [0, 1] such that
C [(u+ v) /2, (u+ v) /2] ≤ v we get:

C∗ (u, v) = C
¡
ϕ−1C (u), ψ

−1
C (v)

¢
+ C

¡
ψ−1C (v), ϕ

−1
C (u)

¢
−C ¡ϕ−1C (u), ϕ−1C (u)¢

= C
¡
ϕ−1C (u), ψ

−1
C (v)

¢
+ C

¡
ψ−1C (v), ϕ

−1
C (u)

¢
+u− 2ϕ−1C (u).

For u, v ∈ [0, 1] such that C [(u+ v) /2, (u+ v) /2] ≥ v we get:

C∗ (u, v) = v.
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Figure 1.1: Gaussian copula with t4-margins. Scatterplot of (X,Y ) and (U, V ) with corre-
lation parameter ρ = 0.2 in Panel A and Panel B, respectively. Scatterplot of (X,Y ) and
(U, V ) with correlation parameter ρ = 0.8 in Panel C and Panel D, respectively.
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Figure 1.2: Gaussian copula. In Panel A and B we report density plots for correlation para-
meters ρ = 0.2 and ρ = 0.8, respectively. Isodensity curves of variables (X,Y ) with standard
gaussian margins are reported in Panel C and D, for ρ = 0.2 and ρ = 0.8, respectively.
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Figure 1.3: Archimedean Copulas. Scatterplot of variables (U, V ) with Gumbel (Clayton)
copula in Panel A (Panel C, respectively), and isodensity curves of (X,Y ) with Gumbel
(Clayton) copula and standard normal marginal distributions in Panel B (Panel D, respec-
tively). Copula parameters are chosen such that Kendall’s tau is equal to that of a Gaussian
copula with ρ = 0.8.
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Figure 1.4: Asymmetric logistic copula. Scatterplot of variables (U, V ) (Panel A), and
isodensity curves of variables (X,Y ) with standard normal marginal distributions (Panel B).
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Figure 1.5: Upper and lower bounds for the spread option price C(g) as a function of the
strike price K, for marginally lognormal distributed assets. In Panel A the initial prices are
S01 = 90, S

0
2 = 100, in Panel B S01 = 100 = S02 , in Panel C S01 = 110, S

0
2 = 100, in Panel D

S01 = 120, S
0
2 = 100.
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Figure 1.6: Simulated trajectories of Markov process with Gaussian copula and ρ = 0. Panel
A corresponds to the standardized process Ut, Panel B to the gaussian process X∗

t , Panel C
to a Pareto marginal process, and Panel D to a Cauchy marginal process.
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Figure 1.7: Simulated trajectories of Markov process with Gaussian copula and ρ = 0.5.
Panel A corresponds to the standardized process Ut, Panel B to the gaussian process X∗

t ,
Panel C to a Pareto marginal process, and Panel D to a Cauchy marginal process.
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Figure 1.8: Simulated trajectories of Markov process with Gaussian copula and ρ = 0.95.
Panel A corresponds to the standardized process Ut, Panel B to the gaussian process X∗

t ,
Panel C to a Pareto marginal process, and Panel D to a Cauchy marginal process.
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Figure 1.9: ACF of Markov process with Gaussian copula and ρ = 0. Panel A refers to the
standardized process Ut, Panel B to the gaussian process X∗

t , Panel C to a Pareto marginal
process, and Panel D to a Cauchy marginal process.
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Figure 1.10: ACF of Markov process with Gaussian copula and ρ = 0.5. Panel A refers
to the standardized process Ut, Panel B to the gaussian process X∗

t , Panel C to a Pareto
marginal process, and Panel D to a Cauchy marginal process.
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Figure 1.11: ACF of Markov process with Gaussian copula and ρ = 0.95. Panel A refers
to the standardized process Ut, Panel B to the gaussian process X∗

t , Panel C to a Pareto
marginal process, and Panel D to a Cauchy marginal process.
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Figure 1.12: Isodensity curves for the distribution of
¡
X∗

t , X
∗
t−h
¢
with ρ = 0.5. Panels A, B,

C, and D correspond to horizon h = 1, h = 3, h = 5 and h = 10, respectively.



87

Figure 1.13: Isodensity curves for the distribution of
¡
X∗

t ,X
∗
t−h
¢
with ρ = 0.95. Panels A,

B, C, and D correspond to horizon h = 1, h = 10, h = 50 and h = 100, respectively.
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Figure 1.14: Extremes for Markov process with Gaussian copula with ρ = 0.5. Panels
A and B correspond to the indicator variable It = I (Ut ≥ 0.99) and the counting process
Nt =

Pt
s=1 I (Us ≥ 0.99), respectively, for the observations above the 0.99-quantile in a

simulation of length T = 2000. Panels C and D correspond to observations above the
0.995-quantile in the same simulated trajectory.
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Figure 1.15: Simulated trajectories of Markov process with Gumbel copula and α = 1.5.
Panel A corresponds to the standardized process Ut, Panel B to the gaussian process X∗

t ,
Panel C to a Pareto marginal process, and Panel D to a Cauchy marginal process.



90

Figure 1.16: Simulated trajectories of Markov process with Gumbel copula and α = 4.946.
Panel A corresponds to the standardized process Ut, Panel B to the gaussian process X∗

t ,
Panel C to a Pareto marginal process, and Panel D to a Cauchy marginal process.
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Figure 1.17: ACF of Markov process with Gumbel copula and α = 1.5. Panel A refers to the
standardized process Ut, Panel B to the process with standard gaussian marginal distribution,
Panel C to a Pareto marginal process, and Panel D to a Cauchy marginal process.
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Figure 1.18: ACF of Markov process with Gumbel copula and α = 4.946. Panel A refers to
the standardized process Ut, Panel B to the process with standard gaussian marginal process,
Panel C to a Pareto marginal process, and Panel D to a Cauchy marginal process.
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Figure 1.19: Extremes for Markov process with Gumbel copula and α = 1.5. Panels A
and B correspond to the indicator variable It = I (Ut ≥ 0.99) and the counting process
Nt =

Pt
s=1 I (Us ≥ 0.99), respectively, for the observations above the 0.99-quantile in a

simulation of length T = 2000. Panels C and D correspond to observations above the
0.995-quantile with the same simulated trajectory.
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Figure 1.20: Current and lagged canonical directions of Markov process with one-dimensional
dependence (solid and dashed line, respectively). Panel A corresponds to the standardized
Markov process, Panel B to the Markov process with standard gaussian distribution, Panels
C and D to the Markov process with Pareto and Cauchy marginal distributions, respectively.
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Figure 1.21: Simulated series of length T = 200 of Markov process with one-dimensional
dependence. Panel A corresponds to the standardized Markov process, Panel B to the
Markov with standard gaussian marginal distribution, Panels C and D to the Markov process
with Pareto and Cauchy marginal distributions, respectively.
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Figure 1.22: Autocorrelograms of Markov process with one-dimensional dependence. Panel
A corresponds to the standardized Markov process, Panel B to the Markov process with
standard gaussian marginal distribution, Panels C and D to the Markov process with Pareto
and Cauchy marginal distributions, respectively.
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Figure 1.23: Cross-correlations between X∗
t and sign (X∗

t ) |X∗
t |1/10: in calendar time (solid

line) and in reversed time (dashed line).
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Figure 1.24: Isodensity curves of
¡
X∗

t ,X
∗
t−h
¢
for Markov process with one-dimensional de-

pendence and standard gaussian marginal distribution, at different horizons. In Panel A
h = 1, in Panel B h = 2, in Panel C h = 3, and in Panel D h = 4.
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Figure 1.25: Simulated time series of length T = 200 of the ARG process. In Panel A
δ = 0.5, β = 0.5, in Panel B δ = 1.5, β = 0.5, in Panel C δ = 0.5, β = 0.95, and in Panel D
δ = 1.5, β = 0.95.
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Figure 1.26: Marginal pdf of the ARG process. In Panel A δ = 0.5, β = 0.5, in Panel B
δ = 1.5, β = 0.5, in Panel C δ = 0.5, β = 0.95, and in Panel D δ = 1.5, β = 0.95.
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Figure 1.27: Isodensity curves at lag h = 1 for the ARG process with standard marginal
distribution. In Panel A δ = 0.5, β = 0.5, in Panel B δ = 1.5, β = 0.5, in Panel C δ = 0.5,
β = 0.95, and in Panel D δ = 1.5, β = 0.95.
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Figure 1.28: Isodensity curves at horizon h for the ARG process with β = 0.95 and standard
gaussian marginal distribution. Horizon h = 5 in Panel A and B (δ = 0.5 and δ = 1.5,
respectively), horizon h = 10 in Panels C and D (δ = 0.5 and δ = 1.5, respectively).
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Figure 1.29: Isodensity curves at horizon h for the ARG process with β = 0.95 and standard
gaussian marginal distribution. Horizon h = 20 in Panel A and B (δ = 0.5 and δ = 1.5,
respectively), horizon h = 50 in Panels C and D (δ = 0.5 and δ = 1.5, respectively).
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Chapter 2

Duration Time Series Models with
Proportional Hazard

Abstract

The analysis of liquidity in financial markets is generally performed by means of the dy-
namics of the observed intertrade durations (possibly weighted by price or volume). Various
dynamic models for such duration data have been introduced in the literature, the most
famous being the ACD (Autoregressive Conditional Duration) model. However these mod-
els are often excessively constrained, introducing for example a deterministic link between
conditional expectation and variance in the case of the ACD model. Moreover the station-
arity properties and the potential forms of the stationary distributions are not satisfactorily
known. The aim of this paper is to solve these difficulties by considering the properties of a
duration time series satisfying the proportional hazard property. We describe in detail this
class of dynamic models, discuss various representations, and give ergodicity conditions. The
proportional hazard copula can be specified either parametrically, or nonparametrically. We
discuss estimation methods in both contexts, and explain why they are efficient, that is they
reach the parametric (respectively, nonparametric) efficiency bound.

Keywords: Duration, Copula, ACD model, Nonparametric Estimation, Proportional Haz-
ard, Nonparametric Efficiency.
JEL classification: C14, C22, C41
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2.1 Introduction.

Series of durations between consecutive trades of a given asset have been recently the object
of a considerable body of research in financial econometrics (see e.g. Engle [2000], and
Gourieroux and Jasiak [2001]a). The interest in this topic, supported by the increasing
availability of (ultra-)high-frequency data, is motivated from a financial point of view along
several lines. In addition to the links with microstructure theory and with the literature on
stochastic time deformation1, the dynamics of intertrade durations is an important aspect
for the management of liquidity risk. Indeed, durations between consecutive trades are a
natural measure of market liquidity, and their variability is related to liquidity risk (risk
on time). The aim of this paper is to introduce a class of dynamic models for intertrade
durations which are suitable for the analysis of liquidity risk.
Empirical investigations of series of intertrade durations report several stylized facts which

must be taken into account in the specification of econometric models2. Among the most
significant ones are: a positive serial dependence, in the form of positive autocorrelations
and tendency of extremely large durations to come in clusters (clustering effects); persis-
tency, with autocorrelations decreasing slowly with horizon, and in some cases featuring
long memory; underlying strong nonlinearities in the dynamics, as emerging from the analy-
sis of nonlinear autocorrelograms; path dependent (under-)overdispersion in the conditional
distribution; significant departures from exponentiality of the marginal distribution, with
negative duration dependence and fat tails. In addition to consistency with these stylized
facts, flexible specifications for conditional mean and conditional variance are desirable for
the management of liquidity risk. If extreme liquidity risks have to be taken into account,
the first conditional moments may not be sufficient, and measures based on the entire con-
ditional distribution may be more appropriate. This is the case of Time at Risk (TaR), that
is the minimal time without a trade that may occur with a given probability (see Ghysels,
Gourieroux, and Jasiak [1998]b). These measures require flexible specifications for the entire
conditional distribution of the duration process.
The Autoregressive Conditional Duration (ACD) model introduced by Engle and Russell

[1998] is presently the most successful dynamic model for intertrade durations. It is based
on an accelerated hazard specification, where the conditional mean follows a deterministic
autoregression3. The ACD is able to replicate various stylized effects observed in the data.
However, as pointed out in Ghysels, Gourieroux, and Jasiak [1998]b, one limitation of this
specification is to impose quite restrictive assumptions on the conditional distribution of
the duration process. The dynamics of conditional moments of any orders and of measures
like TaRt are all implicitly determined by the dynamics of the conditional mean. These
restrictions are not supported by empirical evidence, since they imply for instance path

1see Clark [1973], Stock [1988], Ghysels and Jasiak [1994], Ghysels, Gourieroux and Jasiak [1998]a, Ané
and Geman [2000], and references therein.

2See Engle, Russell [1998], Jasiak [1998], Ghysels, Gourieroux, and Jasiak [1998]b, Giot [2001], Gourier-
oux, Jasiak [2001]b.

3Various extensions of the basic specifications have been considered in the literature. As an example,
Jasiak (1998) introduces fractionally integrated ACD (FIACD); Bauwens and Giot (2000) apply the GARCH
dynamics on the log-durations and log expected durations; Zhang, Russell and Tsay (2001) introduce a
nonlinear dynamics by means of a deterministic threshold autoregression.
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independent conditional dispersion, and, more importantly, they are not desirable for man-
agement of liquidity risk. In order to overcome these difficulties, alternative specifications
to accelerated hazard may be considered. As an example, Ghysels, Gourieroux, and Jasiak
[1998]b propose the stochastic volatility duration (SVD) model, where conditional mean and
conditional variance are allowed to follow independent dynamics due to the introduction of
two underlying factors.
In this paper we introduce a Markov process for intertrade durations which is based

on a proportional hazard specification. In this model, the conditional hazard function for
duration Xt given the past durations Xt−1 is the product of a baseline hazard function λ0
times a positive function a of the lagged duration4:

λ
³
x | Xt−1

´
= a (Xt−1)λ0(x), x ≥ 0,

where a and λ0 are unconstrained, up to identifiability conditions. This specification improves
on the accelerated hazard specification of the ACDmodel in two directions. First, it provides
a flexible specification for the conditional distribution of the duration process, which does
not impose restrictive assumptions on the joint dynamics of conditional moments. Since
the past information scales the conditional hazard function instead of the duration variable
itself, the effect of the lagged duration on the conditional moments, and in general on the
conditional distribution, is not tied down by the specification of the conditional mean. On
the contrary, the effect of the conditioning variable is determined by the interplay of the two
functional parameters a and λ0. The second advantage of our specification is that it allows to
separate marginal characteristics and dependence properties of the process. Specifically, we
show that the bivariate copula between two consecutive durations Xt and Xt−1 is completely
characterized by a univariate functional parameter A (say) on [0, 1]. The copula is defined
as the c.d.f. of the variables Xt and Xt−1 after they have been transformed to get uniform
marginal distributions on the interval [0, 1]. The copula summarizes the serial dependence
between Xt and Xt−1 which is invariant to monotonous transformations. This result implies
that our model can be parameterized in terms of the marginal distribution of the process and
the functional parameter A which characterizes serial dependence. The marginal properties
of the process are fixed by choosing the marginal distribution. By focusing on parameter
A, the serial dependence properties of the process are controlled, by letting its marginal
distribution unaltered. We discuss how the shape of function A influences the patterns
and the strength of serial dependence in the process, both in the whole distribution and
in the tails, by introducing appropriate (functional) concepts and measures of dependence.
Specifically, it is shown that the duration process features positive dependence when the
functional parameter A is decreasing, whereas its negative elasticity −d logA/dv can be
used as an ordinal measure of serial dependence. In addition, the behaviour of A at v = 1
characterizes dependence in the tails of the process, which is responsible for clusterings of
extreme large durations. We provide sufficient conditions on the behaviour of functional
dependence parameter A in neighborhoods of the boundary points v = 0 and v = 1 ensuring
ergodicity and mixing properties of the process.

4In the Cox (1972) model function a is exponential linear. See Hautsch (1999) for an application to
intertrade durations.
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The rest of the paper is organized as follows. In section 2 we define the first order Markov
process with transition density satisfying the proportional hazard property. In section 3
the temporal dependence properties of the Markov process with proportional hazard are
discussed, and in section 4 sufficient conditions for geometric ergodicity and mixing are
provided. Section 5 reports several examples of Markov processes with proportional hazard.
Section 6 is concerned by statistical inference. Finally, section 7 concludes. The proofs are
gathered in appendices.

2.2 StationaryMarkov processes with proportional haz-
ard.

In this section we introduce the stationary Markov process with proportional hazard.

2.2.1 A Markov Process of Durations.

Let Xt, t ∈ N, denote the sequence of consecutive intertrade durations. We assume that Xt,
t ∈ N, is a stationary Markov process of order one and features proportional hazard. The
conditional hazard function is the product of a baseline hazard function λ0 times a positive
function a of the lagged duration:

λ
³
x | Xt−1

´
≡ lim

h→0
P [Xt ≤ x+ h | Xt ≥ x,Xt−1]

h
= a (Xt−1)λ0(x), x ≥ 0.

Thus the effect of the lagged duration is a parallel shift of the conditional hazard function.
The transition density of the process is characterized by the conditional survivor function:

P [Xt ≥ xt | Xt−1 = xt−1] = exp [−a(xt−1)Λ0(xt)] , t ∈ N, (2.1)

where Λ0 is the baseline cumulated hazard corresponding to λ0: Λ0(x) =
R x
0
λ0(u)du, x ≥ 0.

Thus the distribution of the process is characterized by two functional parameters: the
baseline cumulated hazard Λ0, which corresponds (up to a multiplicative constant) to the
cumulated hazard of the conditional distribution of Xt given Xt−1 = xt−1, and the positive
function a on R+, which describes the effect of the lagged duration Xt−1 on the conditional
distribution5.
The proportional hazard specification satisfies an invariance property with respect to

increasing transformations, that is any increasing transformation Yt = h(Xt), t ∈ N, of a
Markov process Xt, t ∈ N, with proportional hazard features proportional hazard. This
suggests alternative representations of Xt, t ∈ N, in which the distribution of the process
features simpler characteristics. Two such representations are considered in the following
sections.

5The restriction on parameters a and Λ0 implied by stationarity is derived later in this section.



109

2.2.2 The transformed nonlinear autoregressive representation.

In this section we are interested in transformations of process Xt, t ∈ N, which follow
autoregressive dynamics. In order to derive them, we consider the nonlinear autoregressive
(NLAR) representation with exponential innovations of Markov process Xt, t ∈ N, (see Tong
[1990]), which is given by:

Xt = Λ−10

µ
1

a(Xt−1)
εt

¶
, t ∈ N, (2.2)

where εt, t ∈ N, is a white noise, independent of Xt−1, with a standard exponential distribu-
tion γ (1). Thus, the duration processXt, t ∈ N, can be represented (up to the transformation
Λ−10 ) as a stochastic time deformation of an i.i.d series of exponential durations εt, t ∈ N.
The time deformation factor is function of past duration.
In the NLAR representation (2.2) the error term εt, t ∈ N, does not enter in an additive

way. An autoregressive representation with additive noise can be derived if we consider
another transformation of the duration variable Xt, t ∈ N . Let us introduce the transformed
process:

Yt = log (Λ0(Xt)) , t ∈ N.
Then we have:

Yt = − log a(Xt−1) + log εt
= ϕ (Yt−1) + ηt, t ∈ N,

where ϕ (y) = − log a £Λ−10 (exp y)
¤
, y ∈ R, and ηt = log εt follows a Gompertz distribution.

Proposition 2.1 The stationary Markov process Xt, t ∈ N , features proportional hazard if
and only if there exists an increasing transformation of Xt: Yt = h(Xt), t ∈ N , (say) such
that:

Yt = ϕ (Yt−1) + ηt, t ∈ N, (2.3)

where ηt, t ∈ N , is a white noise independent of Yt−1 with a Gompertz distribution.

The additive NLAR representation (2.3) is characterized by two functional parameters,
that are the autoregression function ϕ of the transformed process, and the transformation
function h 6. It is equivalent to representation (2.1), since the functional parameters (a,Λ0)
and (h, ϕ) are in a one to one relationship:

h(x) = logΛ0(x), x ∈ [0,∞), (2.4)

ϕ (y) = − log a £Λ−10 (exp y)
¤
, y ∈ (−∞,∞). (2.5)

6The restriction on functional parameters h and ϕ, implied by stationarity, is considered later on in this
section.
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2.2.3 The copula representation.

We may also use the invariance property of the proportional hazard specification to obtain
processes with given marginal distribution. Indeed, let F be a c.d.f. on R+ with strictly
positive density, and let Xt, t ∈ N, be a stationary Markov process with proportional hazard
and a marginal c.d.f. F . Then Ut = F (Xt), t ∈ N, is a stationary Markov process with
proportional hazard and uniform marginal distribution on [0, 1]. Thus, the entire class of
stationary Markov processes with proportional hazard can be obtained as transformation of
processes with uniform margins on [0, 1]: Xt = F−1(Ut), t ∈ N.
Functions A and H0 in the conditional survivor of process Ut, t ∈ N:

P [Ut ≥ ut | Ut−1 = ut−1] = exp [−A(ut−1)H0(ut)] , ut, ut−1 ∈ [0, 1] ,
are constrained by the given form of the marginal distribution of Ut. Indeed we have:

P [Ut ≥ u] = E [P [Ut ≥ u | Ut−1]] , ∀u ∈ [0, 1] , t > 1,

or equivalently:

1− u =

Z 1

0

exp (−A(v)H0(u)) dv, ∀u ∈ [0, 1] .
This condition identifies H0 in terms of A:

H−1
0 (z) = 1−

Z 1

0

exp (−A(v)z) dv, z ∈ [0,∞),

and thus the functional parameter A characterizes the distribution of the process Ut, t ∈ N.
Proposition 2.2 i. Let F be a c.d.f. on R+ with strictly positive density. Stationary

Markov processes Xt, t ∈ N, with proportional hazard and unique marginal distribution
F can be written as:

Xt = F−1(Ut), t ∈ N, (2.6)

where process Ut, t ∈ N, is a stationary Markov process with proportional hazard and
uniform marginal distribution on [0, 1].

ii. The conditional survivor function of process Ut, t ∈ N, with uniform margins is given
by:

P [Ut ≥ ut | Ut−1 = ut−1] = exp (−A(ut−1)H0(ut, A)) , t ∈ N, (2.7)

where A is a positive function on [0, 1], and :

H−1
0 (z, A) = 1−

Z 1

0

exp (−A(v)z) dv, z ∈ [0,∞). (2.8)

iii. The parameters (a,Λ0) of process Xt, t ∈ N, in (2.6) are obtained from the correspond-
ing ones (A,H0) of process Ut, t ∈ N, by compounding with F :

a = A ◦ F, Λ0 = H0 ◦ F. (2.9)
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Let Xt, t ∈ N, be a stationary Markov process defined by (2.6), with transformed process
Ut, t ∈ N. The copula of (Xt,Xt−1) is defined as the c.d.f. of the joint distribution of
(Ut, Ut−1) (see Joe [1997], and Nelsen [1999]). It is given by:

CA(u, v) = v −
Z v

0

exp (−A(y)H0(u,A)) dy, u, v ∈ [0, 1] , (2.10)

where H0(., A) is defined by (2.8). The copula summarizes all serial dependence between
Xt and Xt−1, which is invariant to increasing transformations. Thus, in the proportional
hazard model, the copula is characterized completely by a univariate functional parameter
A on [0, 1]. Copula CA is called proportional hazard copula.
From (2.8) and (2.9) the two sets of parameters (a,Λ0) and (A,F ) are in a one to

one relationship. Thus stationary Markov processes with proportional hazard and strictly
positive marginal density can be uniquely characterized by the two functional parameters F
and A. F is the marginal distribution, and can be any c.d.f. on R+ with strictly positive
density. A is any positive function on [0, 1], and characterizes the copula of (Xt,Xt−1), and
hence the serial dependence of the process which is invariant to monotonous transformations7.
This justifies the interpretation of A as a functional dependence parameter. It is identified
up to a multiplicative constant. Indeed, from (2.8) and (2.10) two functions A which differ by
a multiplicative constant define the same copula. The representation in terms of functional
parameters (F,A) is called copula representation. It separates marginal characteristics from
serial dependence properties of the process.

Finally we can relate the parameterizations (F,A) involving the copula and (ϕ, h) cor-
responding to the nonlinear autoregressive representation with additive noise. From (2.4),
(2.5), (2.8) and (2.9) we get:

ϕ(y) = − logA
·
1−

Z 1

0

exp (−A(v) exp y) dv
¸
, y ∈ (−∞,∞), (2.11)

h(x) = logH0 [F (x)] , x ∈ [0,∞). (2.12)

Note that ϕ depends on A only. This is not surprising, since the copula of (Xt,Xt−1) is the
same as that of (Yt, Yt−1), and the latter depends on the autoregression function ϕ only. Thus
CA is the copula of a nonlinear autoregressive Markov process with Gompertz innovations,
where the autoregressive function is restricted by (2.11) to ensure stationarity.

2.2.4 Equivalent parameterizations of the copula.

When the functional dependence parameter A is monotonous, equivalent parameterizations
of the copula CA are available. We consider explicitly the case where A is decreasing8. Then
copula CA can also be characterized by 1−A−1, which is the c.d.f. of the variable A(Ut−1),

7Equations (2.9) give in explicit form the restrictions on the parameters a and Λ0 implied by the station-
arity.

8This corresponds to the case where process Xt, t ∈ N, features positive serial dependence, as will be
shown in the next section. The case where A is increasing is similar.
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that is the transformation of the past transformed duration Ut−1 having a proportional hazard
effect on Ut

9. In addition, restriction (2.8) can be written as:

1−H−1
0 (z) =

Z
⊗
exp (−wz) d ¡1−A−1

¢
(w), z ∈ [0,∞), (2.13)

where Ω denotes the range of A. Thus function 1−H−1
0 is the real Laplace transform (also

called moment generating function) of the distribution with c.d.f. 1−A−1, and satisfies the
property of complete monotonicity [see Feller (1971)]. In this case it is equivalent to know
A or H0, and thus copula CA is also characterized by the Laplace transform 1−H−1

0 , or the
cumulated hazard H0.

Proposition 2.3 The copula of a proportional hazard process with monotonically decreasing
functional dependence parameter A can be equivalently defined in terms of:
i) either the functional dependence parameter A itself, or
ii) the c.d.f. 1−A−1, with support Ω ⊂ R+, or
iii) its Laplace transform 1−H−1

0 , or
iv) the baseline cumulated hazard H0, or
v) the baseline survivor function S0 ≡ exp (−H0).

2.2.5 An example.

In this section we consider an example of stationary Markov process with proportional haz-
ard, and we plot simulated trajectories, copula’s p.d.f. and autocorrelograms. This allows us
to have a first qualitative idea of the serial dependence properties of these processes, which
will be discussed extensively in the next section.
Let us assume that 1 − A−1 is a gamma distribution with parameter 1/δ, δ > 0. Thus,

1 − A−1 is given by the incomplete gamma function P (1/δ, .) (see Abramowitz, Stegun
[1965]):

1−A−1(w) = P (1/δ, w) =
1

Γ (1/δ)

Z w

0

exp (−u) u1
δ
−1du, w ∈ [0,+∞), (2.14)

which has no closed form expression, but can be efficiently computed numerically. Then:

A(v) = A (v; δ) = P−1 (1/δ, 1− v) , v ∈ [0, 1] ,

where inversion is with respect to the second argument. An analytic expression is available
for H0. Indeed:

H−1
0 (z) = 1−

1

(1 + z)
1
δ

, z ∈ [0,+∞),

9The copula is invariant to scale transformations of the distribution 1−A−1.
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and the baseline cumulated hazard is:

H0(u) =
1

(1− u)δ
− 1, u ∈ [0, 1] .

Let us first consider the case δ = 1
10
. A simulated trajectory of 500 observations of process

Ut, t ∈ N, (Figure 1),

[insert Figure 1: simulated path for U , δ = 1/10]

features modest positive serial dependence, with a tendency to clustering effects, which are
stronger at the upper boundary (large durations). The associated copula p.d.f. (Figure 2)

[insert Figure 2: copula p.d.f., δ = 1/10]

confirms the presence of positive dependence. The copula p.d.f. diverges at points u = v = 0
and u = v = 1. Intuitively, the rate of divergence is related to the strength of serial
dependence in the tails, and thus to clustering. The asymmetry of the density reveals that
the process is not time reversible. The autocorrelogram of duration process Xt = F−1(Ut),
t ∈ N, with Pareto marginal distribution F (x) = 1 − (1 + x)−τ , τ = 1.05, based on a
simulation of length S = 35000 is reported in Figure 3.

[insert Figure 3: autocorrelogram for X, δ = 1/10]

Let us increase the parameter δ to δ = 1. A simulated trajectory of the process (see
Figure 4)

[insert Figure 4: simulated path for U , δ = 1]

features an increased positive serial dependence, with strong clustering effects, especially at
upper boundary. The copula p.d.f. (see Figure 5)

[insert Figure 5: copula p.d.f., δ = 1]

is more concentrated in a region close to the line u = v, and diverges more strongly at the
corner points. Note the different limiting behaviour of the copula at the points u = v = 0
and u = v = 1. The autocorrelogram of corresponding process Xt = F−1(Ut), t ∈ N, with
the same marginal distribution as before, is reported in Figure 6.

[insert Figure 6: autocorrelogram for X, δ = 1]

In the next two sections we introduce statistical tools that are useful to understand the
observed qualitative features.
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2.3 Positive Dependence.

The aim of this section is to discuss serial dependence for stationary Markov processes with
proportional hazard. Several approaches have been proposed in the literature to analyse
serial dependence in nonlinear time series10. We focus on notions of dependence, which are
invariant by increasing transformations and thus involve only the copula.
We first recall two standard notions of positive dependence based on the conditional

survivor function and conditional hazard function, respectively. They coincide for stationary
processes with proportional hazard, and the condition is easily written in terms of either
functional dependence parameter A, or autoregressive function ϕ. The notions of positive
dependence are used to construct dependence orderings and introduce functional measures
of dependence. Then, we discuss tail dependence properties, and report a sufficient condition
which ensures that the process features positive dependence in the tails. Finally we discuss
how the dependence between Xt and Xt−h varies with lag h, as an introduction to ergodicity
properties of the process.

2.3.1 Notions of positive dependence.

Different notions of positive bivariate dependence can be defined, which are invariant by
increasing transformations of Xt and Xt−1. We describe below two standard definitions and
discuss their interpretation.

Definition 2.1 (Lehmann [1966], Barlow and Proschan [1975]): Xt is stochastically in-
creasing (SI) in Xt−1 iff

S(x | y) ≡ P [Xt ≥ x | Xt−1 = y] is increasing in y, for any x ∈ R+.
Definition 2.2 (Shaked [1977]): Xt is hazard increasing (HI) in Xt−1 iff

λ(x | y) is decreasing in y, for any x ∈ R+,
where λ(. | y) denotes the conditional hazard rate of Xt given Xt−1 = y.

Since S(x | y) = exp
¡− R x

0
λ (x∗ | y) dx∗¢, the condition of increasing hazard (HI) is

stronger than condition (SI)11. Moreover both dependence conditions are invariant by in-
creasing transformation of process (Xt, t ∈ N). In particular they can be written in terms of
the copula.
10Beyond traditional methods based on autocorrelograms, considerable attention has been devoted in

recent years to nonlinear autocorrelograms (see e.g. Gourieroux and Jasiak [2001]b), conditional Laplace
transforms (see e.g. Darolles, Gourieroux and Jasiak [2000]) and copulas (see e.g. Bouyé, Gaussel and
Salmon [2000], Rockinger and Jondeau [2001] and reference therein; see also chapter 8 in Joe [1997], and
section 6.3 of Nelsen [1999]) .
11A link with the literature on nonlinear autocorrelograms is provided by the fact that condition (SI)

implies that any monotonous transformation h(Xt), t ∈ N, of the process has positive correlation (if it
exists):

corr [h(Xt), h(Xt−1)] ≥ 0.
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Proposition 2.4 Let Xt, t ∈ N, be a stationary Markov process with proportional hazard
and dependence parameter A. Then Xt is hazard increasing in Xt−1 if and only if it is
stochastically increasing in Xt−1. This condition is equivalent to the decrease of A (or a).
Proof. It is a direct consequence of the relations:

logS(u|v) = −A(v)H0(u),

λ(u|v) = A(v)h0(u),

for u, v ∈ [0, 1], where S(u|v) [resp. λ(u|v)] denotes the conditional survivor function (resp.
conditional hazard function) of (Ut, Ut−1).

Q.E.D.

Thus both notions of positive dependence coincide for proportional hazard models.
Finally, the condition can be written in terms of nonlinear autoregression with additive

noise (see Proposition 1): Yt = ϕ(Yt−1)+ηt. Indeed from equation (2.11), the autoregressive
function ϕ is increasing iff the functional dependence parameter A is decreasing.

Corollary 2.5 For a stationary Markov process with proportional hazard, the positive de-
pendence (HI) or (SI) is satisfied iff the autoregressive function ϕ is increasing.

2.3.2 Dependence Orderings.

Let (Xt, t ∈ N) and (X∗
t , t ∈ N) be two stationary processes with proportional hazard and

dependence parameter A and A∗, respectively. The aim of this section is to introduce de-
pendence orderings in order to compare the strength of dependence between Xt and Xt−1
with that between X∗

t and X∗
t−1, or equivalently between transformed processes (Ut, Ut−1)

and
¡
U∗t , U

∗
t−1
¢
.

Let us first recall two definitions proposed in the statistical literature (see Yanagimoto
and Okamoto [1969], Kimeldorf and Sampson [1987,1989], Capéràa and Genest [1990]). For
v < v

0
, v, v

0 ∈ [0, 1], let us denote:

Sv,v0 (u) = S
h
S−1(u | v)

¯̄̄
v
0
i
, u ∈ [0, 1],

where S(. | v) is the survivor function of Ut conditionally to Ut−1 = v, and similarly for
S∗
v,v0 (u), u ∈ [0, 1]. Intuitively, Sv,v0 measures the effect on the conditional distribution of an
increase of the conditioning variable from v to v

0
.

Definition 2.3 : Xt is more stochastically increasing in Xt−1 than X∗
t is in X∗

t−1 if for any
v, v

0 ∈ [0, 1], v < v
0
:

Sv,v0 (u)

S∗
v,v0 (u)

≥ 1, for any u ∈ [0, 1].
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Definition 2.4 : Xt is more hazard increasing in Xt−1 than X∗
t is in X∗

t−1 if for any v, v
0 ∈

[0, 1], v < v
0
:

Sv,v0 (u)

S∗
v,v0 (u)

is decreasing in u ∈ [0, 1].

These pre-orderings are denoted by º(SI), º(HI), respectively12. They satisfy various
axioms, desirable for dependence orderings (see Kimeldorf and Sampson [1987,1989], and
Capéràa and Genest [1990] for a discussion). Moreover, since Sv,v0 (1)/S

∗
v,v0 (1) = 1, the

ordering º(HI) is stronger than º(SI)13. Intuitively, (Xt, Xt−1) º(SI)
¡
X∗

t ,X
∗
t−1
¢
holds if the

effect on the conditional distribution of an increase in the conditioning value is stronger for
(Xt,Xt−1) than for

¡
X∗

t ,X
∗
t−1
¢
. If in addition this is more and more true as we move towards

the tail of the distribution, then (Xt, Xt−1) º(HI)

¡
X∗

t , X
∗
t−1
¢
.

For two stationary processes with proportional hazard, (Xt, t ∈ N) and (X∗
t , t ∈ N), the

following proposition characterizes the orderings in terms of functional dependence parame-
ters A and A∗.

Proposition 2.6 Let (Xt, t ∈ N) and (X∗
t , t ∈ N) be two stationary Markov processes with

proportional hazard and dependence parameters A and A∗, respectively. Then the conditions
(Xt,Xt−1) º(SI)

¡
X∗

t , X
∗
t−1
¢
, and (Xt,Xt−1) º(HI)

¡
X∗

t , X
∗
t−1
¢
are equivalent. They are also

equivalent to the condition
A/A∗ decreasing.

Proof. See Appendix 1.

For the proportional hazard model, λ (u | v) /λ ¡u | v0¢ is independent of u and is equal to
A (v) /A

¡
v
0¢
. This implies that the conditions (Xt,Xt−1) º(SI)

¡
X∗

t ,X
∗
t−1
¢
and (Xt,Xt−1) º(HI)¡

X∗
t ,X

∗
t−1
¢
are also equivalent to:

λ (u | v) /λ∗ (u | v) is decreasing in v, for any u ∈ [0, 1] .

Finally, when the dependence parameters A and A∗ are differentiable, the ordering con-
ditions involve the elasticity of the dependence parameter A, or equivalently the elasticity
of the hazard function with respect to the conditioning variable.

12The orderings º(SI) and º(HI) are derived from the (SI) and (HI) concepts of dependence: if X∗t and
X∗t−1 are independent, then (Xt,Xt−1) º(SI)

¡
X∗t ,X∗t−1

¢
iff Xt is SI in Xt−1, and similarly for º(HI).

13(Xt,Xt−1) º(HI)

¡
X∗t ,X

∗
t−1
¢
or (Xt,Xt−1) º(SI)

¡
X∗t ,X

∗
t−1
¢
implies that the Kendall’s tau of

(Xt,Xt−1) is larger than that of
¡
X∗t ,X

∗
t−1
¢
; moreover, if (Xt, t ∈ N) and (X∗t , t ∈ N) have the same margins,

then:
corr [g (Xt) , g (Xt−1)] ≥ corr

£
g (X∗t ) , g

¡
X∗t−1

¢¤
,

for any monotonous transformation g such that the correlations exist.
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Corollary 2.7 Let (Xt, t ∈ N) and (X∗
t , t ∈ N) be two stationary Markov processes with pro-

portional hazard and differentiable dependence parameters A and A∗, respectively. Then the
conditions (Xt, Xt−1) º(SI)

¡
X∗

t ,X
∗
t−1
¢
and (Xt,Xt−1) º(HI)

¡
X∗

t , X
∗
t−1
¢
are equivalent to:

d

dv
logA(v) ≤ d

dv
logA∗(v), ∀v ∈ [0, 1] ,

or
∂

∂v
log λ (u | v) ≤ ∂

∂v
log λ∗ (u | v) , ∀u, v ∈ [0, 1] .

As an illustration, the functions:

A(v;α) = exp (−αv) , A(v;α) =
1

(1 + v)α
, and A(v;α) = (1− v)α ,

induce three families of distributions such that temporal dependence is increasing with re-
spect to parameter α, in both the SI and HI sense.

2.3.3 Measures of Dependence.

The previous discussion shows that, for the proportional hazard model, the appropriate
functional dependence measure is not A itself, but preferably:

∆A(v) = − d

dv
logA(v), v ∈ [0, 1] .

The properties above can be summarized as follows:

i. ∆A(v) = 0, ∀v ∈ [0, 1]⇐⇒ Xt and Xt−1 are independent, t ∈ N;
ii. ∆A(v) ≥ 0, ∀v ∈ [0, 1]⇐⇒ Xt is SI and HI in Xt−1, t ∈ N;
iii. ∆A(v) ≥ ∆A∗(v), ∀v ∈ [0, 1] ⇐⇒ (Xt, Xt−1) º

¡
X∗

t ,X
∗
t−1
¢
, where º is any of the

orderings º(SI) or º(HI).

2.3.4 Tail dependence

In this section we provide sufficient conditions on the functional dependence parameter A
that ensure that process Xt, t ∈ N, features positive dependence in the tails. The coefficient
of upper tail dependence is defined by (see Joe [1993], [1997]):

λ = lim
u→1

P [Ut ≥ u | Ut−1 ≥ u] .

If λ > 0, the process is said to have positive tail dependence. For a process with proportional
hazard, the coefficient of upper tail dependence is given by:

λ = λA = lim
u→1

1

1− u

Z 1

u

exp [−A (v)H0 (u,A)] dv.

If limv→1A(v) > 0, then λA = 0, and the process is independent in the tail. Hence tail
dependence is possible only if limv→1A(v) = 0, that is if the conditional hazard function of
Ut given Ut−1 = v converges to 0 as v → 1.
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Proposition 2.8 Assume the functional dependence parameter A is such that:

A(v) ∼ C(1− v)δ, v ∼ 1,
for some δ > 0 and C > 0. Then:

λA = λ(δ) = P
³
1/δ,Γ (1 + 1/δ)δ

´
,

where P denotes the incomplete gamma function (see the example in section 2.5).
Proof. See Appendix 2.

Function λ(δ), δ ≥ 0, is increasing, and ranges from 0 to 1.

2.3.5 Dependence at larger lag

Let (Xt, t ∈ N) be a stationary Markov process with proportional hazard and dependence
parameter A. Generally the pair (Xt,Xt−h) does not satisfy the property of proportional
hazard. However, the dependence between Xt and Xt−h, h ∈ N, can still be summarized by
its copula, CA,h, defined as the joint c.d.f. of Ut, Ut−h. By Chapman-Kolmogorov, the copula
p.d.f. cA,h is given by:

cA,h(u, v) =

Z 1

0

...

Z 1

0

cA(u,w1)...cA(wi−1, wi)...cA(wh−1, v)dw1..dwh−1.

The analytic expression of cA,h is not available in general. However, some dependence prop-
erties can be deduced from a theorem by Fang, Hu and Joe (1994). They show that, for a
stationary Markov chain (Xt, t ∈ N), if Xt is stochastically increasing in Xt−1, then Xt is still
stochastically increasing in Xt−h, h ∈ N, and corr [g(Xt), g(Xt−h−1)] ≤ corr [g(Xt), g(Xt−h)],
h ∈ N, for any monotonous transformation g such that these correlations exist.

Proposition 2.9 Let (Xt, t ∈ N) be a stationary Markov process with proportional hazard
and dependence parameter A. If A is decreasing, then

Xt is stochastically increasing in Xt−h, h ∈ N,
and

corr [g(Xt), g(Xt−h−1)] ≤ corr [g(Xt), g(Xt−h)] , h ∈ N,
for any monotonous transformation g such that the correlations exist.

Thus, when A is decreasing, dependence is positive at any lag, and decreases with the
horizon.

2.4 Ergodicity Properties.

The aim of this section is to study the ergodicity properties of stationary Markov processes
with proportional hazard.
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2.4.1 Geometric ergodicity.

Let us first recall the definition of geometric ergodicity.

Definition 2.5 Let V be a function on R+, such that V ≥ 1. The Markov process (Xt, t ∈ N)
is said to be V -geometrically ergodic if there exists ρ < 1, a probability measure π and a finite
function C such that: °°P t(x, .)− π

°°
V
≤ ρtC(x), x ∈ R+,

where kµkV = supf :|f |≤V
¯̄R

fdµ
¯̄
.

For a stationary Markov process with proportional hazard, geometric ergodicity can be
equivalently discussed in any of the representations of the process introduced in section 2. In
particular, conditions for geometric ergodicity will involve only either functional dependence
parameter A, or functional autoregressive parameter ϕ. The NLAR representation with
additive noise is the most appropriate to discuss geometric ergodicity, since the required
drift conditions (see Meyn and Tweedie [1993]) are easy to derive, and have been already
extensively investigated in the literature. Equivalent conditions can then be derived for the
other representations.

Proposition 2.10 Let Xt, t ∈ N, be a stationary Markov process with proportional hazard,
with dependence parameter A. Assume A is continuous on (0, 1). Denote by γ the expectation
of a Gompertz distributed variable. Then the following conditions are equivalent and any of
them implies geometric ergodicity of process Xt, t ∈ N :
i. the autoregressive function ϕ is such that there exists constants

ε > 0, R <∞, satisfying:
|ϕ(y) + γ| ≤ |y|− ε, for |y| ≥ R;

ii. the functional dependence parameter A is such that there exists constants 0 < R1 <
R2 <∞, and c < exp (−γ) < C, satisfying:

Cy ≤ 1

A
h
1− R 1

0
exp (−A(v)y) dv

i ≤ c
1

y
, for 0 < y ≤ R1,

C
1

y
≤ 1

A
h
1− R 1

0
exp (−A(v)y) dv

i ≤ cy, for y ≥ R2.

Proof. See Appendix 4.

Let us briefly discuss the ergodicity conditions14. Condition i. restricts the absolute value
of the autoregressive function (including the expectation of the innovation), |ϕ(y) + γ|, to
14A geometric ergodicity condition for the functional parameters (a,Λ0) in the transition density repre-

sentation is immediately derived from condition ii. by noting that:

1

A
h
1− R 1

0
exp (−A(v)y) dv

i = 1

a
£
Λ−10 (y)

¤ , y ≥ 0.
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be strictly bounded by |y|, as |y| → +∞. This ergodicity condition is intuitive. Note that
it is less stringent than the condition which is usually reported in the literature (see e.g.
Doukhan [1994] and references therein): |ϕ(y) + γ| ≤ ρ |y|, as |y| → +∞, for some ρ < 1.
The weakening of the restriction on ϕ is possible since the innovation ηt in the additive
NLAR representation has a distribution with sufficiently thin tails (see Proposition A.1 in
Appendix 3).
Let us now consider the conditions given in ii.15. They define restrictions on the de-

pendence parameter A, and specifically on the behaviour of A(v) as v → 0 and v → 1,
respectively. They are not immediately satisfied only if limv→0A(v) or limv→1A(v) are ei-
ther 0 or +∞. The intuition beyond this condition is that when A(v) approaches 0 (resp.
+∞), the distribution of duration Ut, conditionally on Ut−1 = v, concentrates the mass close
to the upper (lower) boundary. Thus geometric ergodicity imposes restrictions on the func-
tional dependence parameter A in a neighborhood of v = 0 and v = 1 in order to prevent the
process to diverge to infinity or to be absorbed by 0. Let us now investigate these restrictions
more precisely and focus on the restriction at v = 116, when limv→1A(v) = 0. For simplicity,
let us consider functions A which are continuous on (0, 1), decreasing near v = 1, and such
that ∀δ > 0 : limv→1

A(v)

(1−v)δ exists (in [0,+∞]). Any such function belongs to one of the
following categories:

I ∃δ > 0 : limv→1
A(v)

(1−v)δ ∈]0,+∞[;

II ∀δ > 0 : limv→1
A(v)

(1−v)δ = +∞;

III ∀δ > 0 : limv→1
A(v)

(1−v)δ = 0.

A function A in class I converges to 0 as (1− v)δ, for some δ > 0, when v → 1, that is the
elasticity δ of A(1− v) with respect to v at v = 1 is strictly positive and finite17. Functions
in class II (resp. III) dominate (resp. are dominated by) any function in class I, when v → 1.

Proposition 2.11 When function A is either in class I, or in class II such that for some
C > 0: A(v) ≥ −C

log(1−v) , for v close to 1, then the second restriction in condition ii. of
Proposition 10 is satisfied.
Proof. See Appendix 5.

15Note that:
1

A
h
1− R 1

0
exp (−A(v)y) dv

i = 1

A
£
H−10 (y)

¤ , y ≥ 0,
is the conditional expectation of the transformed process Zt = H0(Ut), t ∈ N, with constant conditional
hazard.
16The symmetric case v = 0 is analogous.
17In appendix 5 it is shown that functions A in class I imply autoregressive functions ϕ such that ϕ(y)

y → 1
as y → +∞.
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2.4.2 Mixing properties

By discussing mixing properties of a stochastic process we are concerned by the decay rate of
the dependence between the σ-fields up to time s, σ (Xt; t ≤ s), and from time s+h onward,
σ (Xt; t ≥ s+ h), as the horizon h goes to infinity (see e.g. Bosq [1990]). Let us recall the
definition of β-mixing with geometric decay for a Markov process.

Definition 2.6 A Markov process Xt, t ∈ N, is β-mixing with geometric decay if the mixing
coefficients βh, defined by:

βh = E

"
sup

C∈σ(Xt;t≥h)
|P (C)− P (C | X0)|

#
, h ∈ N,

decay geometrically:
βh ≤ Cρh, h ∈ N,

for some constants ρ < 1, C <∞.

The next proposition provides sufficient conditions for β-mixing with geometric decay of
a stationary Markov process Xt, t ∈ N, with proportional hazard.

Proposition 2.12 Under the ergodicity conditions of Proposition 10, a stationary Markov
process Xt, t ∈ N, with proportional hazard is β-mixing with geometric decay.
Proof. See Proposition A.2 in Appendix 3.

2.5 Examples.

In this section we discuss various examples of stationary Markov processes with proportional
hazard. The associated dynamic models can be parametric or nonparametric. It is important
to note that i) sufficient ergodicity conditions are easily written, ii) the invariant distribution
(that is the uniform distribution) is known. This is an important advantage of these models
compared to the dynamic duration models previously introduced in the literature (such as
ACD models) for which neither the ergodicity conditions, nor the stationary distribution are
known.

2.5.1 Constant measure of dependence.

When the measure of dependence ∆A is constant, we get:

∆A(v) = − d

dv
logA(v) = α, ∀v ∈ [0, 1] =⇒ A(v) = exp (−αv + c) , v ∈ [0, 1] ,

and without loss of generality, we can set c = 0, to obtain:

A(v) = exp (−αv) , v ∈ [0, 1] , α ∈ R.
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The distribution features (SI) and (HI) positive dependence when α ≥ 0, whereas the inde-
pendence case corresponds to α = 0. Moreover, since A(0) and A(1) are finite and nonzero,
the process is geometrically ergodic.
When α > 0, the c.d.f. 1−A−1 is given by:

1−A−1(w) = 1 +
1

α
logw, w ∈ Ω =

£
e−α, 1

¤
,

and admits the density 1
αw
, w ∈ Ω. The inverse of the baseline cumulated hazard H0 is

obtained by computing the Laplace transform of 1−A−1:

H−1
0 (z) = 1− 1

α

Z 1

exp(−α)

exp (−zw)
w

dw

= 1− 1
α

Z z

z exp(−α)

exp (−y)
y

dy.

2.5.2 Analytic examples.

Simple examples can be derived by considering standard distributions for which the Laplace
transform admits an analytic expression (see Abramowitz, Stegun [1965] or Joe [1997], Ap-
pendix A.1, for an extensive list). In this section we consider only continuous distributions.

i) Exponential distribution.

Let us assume an exponential distribution with parameter λ: A−1(w) = exp (−λw), w ∈ R+,
λ > 0. Without loss of generality, we can set λ = 1, and get:

A(v) = − log(v), v ∈ [0, 1] . (2.15)

Then:

H−1
0 (z) = 1−

Z +∞

0

exp (−zw) exp (−w) dw

= 1− 1

1 + z
=

z

1 + z
, z ∈ [0,+∞),

and the baseline cumulated hazard is:

H0(u) =
u

1− u
, u ∈ [0, 1] .

The corresponding copula is:

CA(u, v) = v − (1− u)v
1

1−u , u, v ∈ [0, 1] ,

with density:

cA(u, v) = − 1

(1− u)2
(log v) v

u
1−u , u, v ∈ [0, 1] .
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The associated proportional hazard process is geometrically ergodic. Indeed:

A(v) = − log v = − log [1− (1− v)] ∼ 1− v, for v ∼ 1,
(see Proposition 11),

A
£
H−1
0 (y)

¤
= − log

µ
y

1 + y

¶
∼ − log y, as y → 0,

and limy→0 yA
£
H−1
0 (y)

¤
= 0, (see Proposition 10).

ii) Gamma distribution

The exponential distribution is a special case of gamma distribution. In the general gamma
case, the functional dependence parameter A and the baseline cumulated hazard H0 were
derived in section 2:

A(v) = A (v; δ) = P−1 (1/δ, 1− v) , v ∈ [0, 1] ,

H0(u) =
1

(1− u)δ
− 1, u ∈ [0, 1] .

Various qualitative features featured by the simulations provided in section 2.5 are conse-
quences of the results derived in sections 3 and 4. These processes feature positive dependence
since A is decreasing. The functional dependence measure is given by:

∆A(v) ≡ ∆(v; δ) =
Γ
¡
1
δ

¢
e−A(v;δ)A (v; δ)

1
δ

, v ∈ [0, 1] .

It is U-shaped and diverges at the boundaries v = 0 and v = 1 [see Figure 7 where ∆(.; δ) is
plotted for δ = 1 (dashed line) and δ = 0.1 (solid line)].

[insert Figure 7: functional dependence parameter]

Since ∆(.; 1) ≥ ∆(.; 0.1), the process corresponding to parameter δ = 1 is more dependent.
For w ∼ 0, we have:

P (1/δ, w) =
1

Γ (1/δ)

Z w

0

exp (−u)u 1
δ
−1du

∼ 1

Γ (1/δ)

Z w

0

u
1
δ
−1du

=
w1/δ

Γ (1 + 1/δ)
,

and thus:
A(v) = P−1 (1/δ, 1− v) ∼ Γ (1 + 1/δ)δ (1− v)δ , v ∼ 1.

It follows from Proposition 8 that the process features positive tail dependence.
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iii) Power distributions.

When:
1−A−1(w) = w

1
δ , w ∈ [0, 1] ,

with δ > 0, we get:
A(v) = (1− v)δ , v ∈ [0, 1] . (2.16)

Note that the Cox model (Cox [1955], [1972]) with a(y) = exp (−αy), y ≥ 0, and an expo-
nential marginal distribution F (x) = 1− exp (−λx), x ≥ 0, is in this class, with δ = α

λ
.

The Laplace transform is:

1−H−1
0 (z) =

Z 1

0

exp (−wz) w
1
δ
−1

δ
dw

=
1

δz
1
δ

Z z

0

exp (−y) y 1
δ
−1dy

=
Γ (1/δ + 1)

z
1
δ

P (1/δ, z) , z ≥ 0,

and H0 is derived by inversion. In the special case δ = 1, which corresponds to the uniform
distribution U[0,1], we get:

H−1
0 (z) = 1−

1− exp (−z)
z

, z ≥ 0.

The functional measure of dependence is given by:

∆A(v) = ∆ (v; δ) =
δ

1− v
, v ∈ [0, 1] .

It is increasing, and diverges at v = 1. Moreover, positive dependence is increasing in δ.
Since A(0) = 1, it follows from Propositions 10 and 11 that processes in this class are

geometrically ergodic.

iv) α-stable distributions.

For some distributions neither the density, nor the c.d.f. are known explicitly, but an ana-
lytical expression for the Laplace transform can be available. As an example, let us assume
a positive α-stable distribution. Then:

1−H−1
0 (z) = exp

³
−z 1

α

´
, z ≥ 0,

with α ≥ 1, and
H0(u) = [− log (1− u)]α , u ∈ [0, 1] .

This type of serial dependence is compatible with Weibull marginal and conditional distrib-
utions for process Xt, t ∈ N. More precisely, let us assume:

Λ(x) ≡ − log (1− F (x)) = xαm, Λ0(x) = xαc, x ≥ 0,
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where αm < αc, then:

H0(u) = Λ0
£
F−1(u)

¤
= [− log (1− u)]

αc
αm , u ∈ [0, 1] ,

and 1− A−1 corresponds to a positive α-stable distribution with parameter α = αc/αm. In
particular, the larger is parameter α (that is the larger the mass of the distribution 1−A−1

in a neighbourhood of 0), the larger is the duration dependence in the marginal distribution
with respect to that in the conditional distribution.

2.5.3 Endogenous switching regimes.

Let us consider a stepwise functional dependence parameter:

A(v) =
JX

j=0

ajI(uj ,uj+1](v), v ∈ [0, 1] , (2.17)

where 0 = u0 < u1 < ... < uj < ... < uJ+1 = 1, aj ≥ 0, j = 0, ..., J , and J ∈ N ∪ {+∞}.
Then the conditional distribution is characterized by the survivor function:

S(ut|ut−1) = P [Ut ≥ ut | Ut−1 = ut−1]

=
JX

j=0

exp [−ajH0 (ut)] I(uj ,uj+1](ut−1).

Thus the proportional hazard process Ut, t ∈ N, features endogenous regimes, induced by
qualitative thresholds in lagged duration Ut−1, and characterized by hazard functions which
differ by a scale factor.
The stationarity condition with uniform U[0,1] margins is:

1− u =
JX

j=0

exp [−ajH0 (u)] (uj+1 − uj) , ∀u ∈ [0, 1] . (2.18)

When aj > 0, for at least one j ∈ {0, ..., J}, condition (2.18) characterizes the baseline
cumulated hazard H0, whose inverse is given by:

H−1
0 (z) = 1−

JX
j=0

exp (−ajz) (uj+1 − uj)

= 1−
JX

j=0

πj exp (−ajz) , z ≥ 0, (2.19)

where πj ≡ uj+1 − uj, j = 0, ..., J . Equation (2.19) is a discrete analogue of equation (2.8),
and it represents 1−H−1

0 as the Laplace transform of a discrete distribution on R+, weighting
aj, j = 0, ..., J , with probabilities πj, j = 0, ..., J .
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i) Uniform series.

Assume J = N − 1 < +∞, and

aj = N − j, πj =
1

N
, j = 0, 1, ..., N − 1.

Thus the function A is regularly decreasing and:

H−1
0 (z) = 1−

1

N

1− exp (−Nz)

exp (z)− 1 , z ≥ 0.

ii) Power Series.

When:
1−H−1

0 (z) = 1− [1− exp (−z)]
1
θ , z ≥ 0,

with θ ≥ 1, the corresponding baseline cumulated hazard is:

H0(u) = − log
¡
1− uθ

¢
, u ∈ [0, 1] .

By using the binomial series expansion, we get (see Joe [1997], Appendix A.1):

1−H−1
0 (z) =

∞X
j=0

πj exp (−ajz) , z ≥ 0,

with

aj = j + 1, πj =
1

θj+1 (j + 1)!

jY
k=1

(kθ − 1) , j = 0, 1, ....

This defines an increasing step function (2.17), with thresholds at:

uj+1 =

jX
l=0

πl, j = 0, 1, ....

A decreasing step function, with the same baseline cumulated hazard, is obtained by
considering v 7→ A(1− v).

iii) Logarithmic Series.

When:
1−H−1

0 (z) = −
1

θ
log
£
1− ¡1− e−θ

¢
exp (−z)¤ , z ≥ 0, (2.20)

with θ > 0, the corresponding baseline cumulated hazard and survivor function are:

H0(u) = − log
µ
1− e−θ(1−u)

1− e−θ

¶
, u ∈ [0, 1] ,
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and:

S0(u) =
1− e−θ(1−u)

1− e−θ
, u ∈ [0, 1] ,

respectively. The corresponding discrete distribution is found by expanding the logarithmic
series in (2.20) to get (see Joe [1997], Appendix A.1):

1−H−1
0 (z) =

∞X
j=0

πj exp (−ajz) , z ≥ 0,

with

aj = j + 1, πj =
1

θ (j + 1)

¡
1− e−θ

¢j+1
, j = 0, 1, ....

Again, a decreasing step function, with the same baseline cumulated hazard, is obtained
by considering v 7→ A(1− v).

2.5.4 Proportional hazard in reversed time.

In this section we consider stationary Markov processes whose distribution features propor-
tional hazard both in the initial and reversed time. The joint density of Ut and Ut−1 will
satisfy:

A(u)h0(v;A) exp [−H0 (v;A)A(u)] = A∗(v)h0(u;A∗) exp [−H0 (u;A
∗)A∗(v)] ,

u, v ∈ [0, 1], for some functions A and A∗.
In Appendix 6 it is shown that the functional dependence parameter of a stationary

Markov process with proportional hazard in both time directions is characterized by:

A(v) =
Ψ−1 (γv + δ)

Ψ−1 (δ)
, v ∈ [0, 1] , (2.21)

where Ψ is a primitive on R+ of the function y 7→ exp (−y) /y, and γ and δ are constants
such that:

γ ≥ 0,

γ + δ = Ψ (+∞) .

In particular, these processes are either independent process (γ = 0), or processes with nega-
tive dependence (γ > 0). There exist no Markov process which features jointly proportional
hazard in both time directions and positive serial dependence.
Since function A∗ associated with functional dependence parameter A in (2.21) is A∗ = A

(see Appendix 6), these processes satisfy the stronger condition of time reversibility: the
density of the process is the same in both time directions, that is the copula is symmetric,
cA(u, v) = cA(v, u), u, v ∈ [0, 1]. There exists no reversible process with proportional hazard
and positive serial dependence.
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2.6 Statistical Inference

In this section we assume available observations X1, ..., XT , and discuss efficient estimation
of the dependence functional, when the marginal distribution F is unconstrained. The
functional parameter A can be parametrically specified, or let unconstrained.
In practice it is generally proceeded in two steps. First the marginal c.d.f. can be

estimated by its empirical counterpart bF , say and bUt = bF (Xt), t = 1, ..., T provide approx-
imations of the uniform variables Ut. bUt, t = 1, ..., T , are simply the ranks of the variables
Xt, t = 1, ..., T . In a second step we can look for an estimator of the dependence functional
A from the observed bUt and study the asymptotic properties of the estimator as if Ut = bUt,
t = 1, ..., T , were observed. Clearly this approach neglects the information on the copula,
which is contained in the level of the initial variables Xt. Firstly a joint estimation of F
and A can improve the accuracy of a copula estimator. Secondly the asymptotic properties
of the estimated copula can be influenced by the replacement of Ut by bUt, at least when
the functional dependence parameter is let unconstrained18 [see Genest, Werker (2001), and
Gagliardini, Gourieroux (2002) for more precise discussion].
However, since the aim of this section is just to give a flavour of estimation on copula,

we will assume that the transformed variables Ut, t = 1, ..., T , are observed. We first
consider the parametric framework, derive the expression of the score and of the efficiency
bound. Then we consider the nonparametric estimation of functional parameterA. In section
6.2 we describe two nonparametric estimation methods, that are the minimum chi-square
method and the Sieve method. These methods are nonparametrically efficient. We essentially
provide the main ideas, which underlie the estimation approaches and the derivation of their
asymptotic properties. Detailed proofs can be found in Gagliardini, Gourieroux (2002).

2.6.1 Parametric framework.

i) General results

When the dependence functional is parameterized, the conditional pdf is:

c(ut, ut−1;A (θ)) = A(ut−1; θ)h0(ut; θ) exp[−H0(ut; θ)A(ut−1; θ)]
= At−1(θ)h0,t(θ) exp[−H0,t(θ)At−1(θ)].

The parameter θ can be estimated by maximum likelihood, that is by:

bθT = argmax
θ

TX
t=1

log c(ut, ut−1; θ) =
TX
t=1

lt(θ), say.

The score ∂lt
∂θ
and the Cramer-Rao bound can be expressed in terms of backward conditional

expectations. The results below are proved in Appendix 7.

18More precisely, the replacement of Ut by bUt does not influence the pointwise asymptotic distribution of a
nonparametric estimator of A, but it influences the asymptotic distribution of estimators of linear functionals
of A.
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Proposition 2.13 :

i. The score is given by:

∂lt
∂θ

= (1−At−1H0,t)

µ
∂

∂θ
logAt−1 − E

·
∂

∂θ
logAt−1 | Ut

¸¶
−E

½
(1−At−1H0,t)

µ
∂

∂θ
logAt−1 −E

·
∂

∂θ
logAt−1 | Ut

¸¶
| Ut

¾
,

where At−1 = A (Ut−1; θ), and H0,t = H0 (Ut; θ).

ii. The Cramer-Rao bound is:
B (θ) = I (θ)−1 ,

where

I (θ) = V

µ
∂lt
∂θ

¶
= E

·
V

µ
∂lt
∂θ
| Ut

¶¸
= E V

·
(1−At−1H0,t)

µ
∂

∂θ
logAt−1 −E

·
∂

∂θ
logAt−1 | Ut

¸¶
| Ut

¸
.

It is interesting to note that the process (Ut) is also a Markov process in reverse time.
The expression of the score given in Proposition 13 has the form of an expectation error
(martingale difference sequence) in reverse time.
The log-derivatives of functions A and H0 are related by:

∂

∂θ
logH0(Ut; θ) = −E

·
∂

∂θ
logA(Ut−1; θ) | Ut

¸
. (2.22)

ii) Stepwise functional parameter.

Let us consider the endogenous switching regime model (see section 5.3), with a regular grid.
The dependence parameter is:

A(v; θ) =
NX
j=1

ajI( j−1
N

, j
N
](v), (2.23)

where θ = (a1, a2, ..., aN)
0
. Let us introduce a vector of indicators Zt = (Z1t, ..., ZNt)

0
such

that Zjt = I( j−1
N

, j
N
](Ut−1), j = 1, ..., N . Then the score is given by:

∂lt
∂θ

= diag (a)−1 {(1−At−1H0,t) (Zt−1 −E [Zt−1 | Ut])

−E [(1−At−1H0,t) (Zt−1 − E [Zt−1 | Ut]) | Ut]} ,
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where diag (a) is a diagonal matrix with the elements a1, a2, ..., aN on the diagonal. In
addition, from equation (2.22), we deduce that:

∂

∂θ
logH0(Ut; θ) = −diag(a)−1E [Zt−1 | Ut] ,

that is:
∂

∂aj
logH0(Ut; θ) = − 1

aj
P

·
j − 1
N

< Ut−1 <
j

N
| Ut

¸
, j = 1, ..., N .

Thus the score and the derivatives of the log baseline cumulated hazard are directly related
to the backward predictions of the state variables.
In order to identify the model, we impose the following identification constraint on pa-

rameter θ 19:
1

N

NX
j=1

aj=1. (2.24)

Then the information matrix is given by:

I (θ) =

µ
idN − ee

0

N

¶
diag (a)−1EV [(1−At−1H0,t) (Zt−1 − E [Zt−1 | Ut]) | Ut]

·diag (a)−1
µ
idN − ee

0

N

¶
,

where e = (1, ..., 1)
0
. In Appendix 10 it is shown that:

I (θ0) =
1

N
diag (a0)

−2 +ON(
1

N2
).

Thus, under regularity conditions, the maximum likelihood estimator bθT = (ba1T ,ba2T , ...,baNT )
0

under identification constraint (2.24) is asymptotically normal when T converges to infinity,
with asymptotic variance-covariance matrix such that 20:

Covas
h√

T (bak,T − ak,0) ,
√
T (baj,T − aj,0)

i
= N

£
a2j,0δk,j +ON(1/N)

¤
. (2.25)

19It is necessary to impose an identification constraint since functions A and kA, where k is a constant,
define the same copula (see section 2.3).
20In order to get intuition on these results, assume that function H0(.) = H0(.;A0) is known. Define the

transformed variables: Wt = H0(Ut), t = 1, ..., T . Then the likelihood of Wt, t = 1, ..., T , is the sum of N
independent exponential models:

TX
t=1

f (Wt|Wt−1) =
NX
j=1

"
TX
t=1

(log aj − ajWt) IZjt−1=1

#
,

and I (θ0) = (1/N) diag(a0)
−2 follows.
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2.6.2 Nonparametric estimation methods.

We consider below two estimation methods for the functional A. The first approach considers
the constrained nonparametric copula which is the closest to a kernel estimator of the copula
for the chi-square proximity measure. The second one is based on a stepwise approximation
of function A with the number of terms in the grid tending to infinity.

2.6.2.1 Minimum chi-square method.

i) Definition of the estimator.

Let us introduce a kernel estimator of the copula density bcT (u, v) (say), defined by:
bcT (u, v) = 1

T

TX
t=2

KhT (u− Ut)KhT (v − Ut−1) ,

where K is a kernel, KhT (.) = (1/hT )K (./hT ), and hT is a bandwidth tending to 0. Under
standard regularity conditions, including strict stationarity of (Ut):

i. this estimator converges to the true copula p.d.f. c (u, v) = c (u, v;A0), and is
p
Th2T -

asymptotically normal:q
Th2T (bcT (u, v)− c (u, v))

d−→ N

Ã
0, c(u, v)

µZ
K2(w)dw

¶2!
.

ii. The integrals of the type
R
g(u, v)bcT (u, v)du and R R g(u, v)bcT (u, v)dudv are also as-

ymptotically normal, but at higher nonparametric rate, and parametric rate, respec-
tively:

Vas

·p
ThT

Z
g(u, v)bcT (u, v)du¸ = E0

£
g (Ut, Ut−1)

2 | Ut−1 = v
¤ Z

K2(w)dw,

(2.26)

Vas

·√
T

Z Z
g(u, v)bcT (u, v)dudv¸ =

∞X
h=−∞

Cov [g (Ut, Ut−1) , g (Ut−h, Ut−h−1)] .

(2.27)

The minimum chi-square estimator is defined by:

bAT = min
A

Z Z
[bcT (u, v)− c (u, v;A)]2bcT (u, v) dudv, (2.28)

where the optimization is performed under the identifying constraint:Z
A(v)dv = 1. (2.29)
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ii) Asymptotic properties of the estimator

The asymptotic properties of the minimum chi-square estimator bAT defined in (2.28) and
(2.29) are reported in Proposition 14 below. In order to formulate this proposition we
need some preliminary concepts [see Gagliardini, Gourieroux (2002)]. The derivation of
the asymptotic properties of minimum chi-square estimators is based on the possibility to
(Hadamard) differentiate the copula density with respect to the functional parameter. The
differential of log c(., .;A) with respect to A in direction h is given by (see Appendix 7):

hD log c (Ut, Ut−1;A) , hi = (1−At−1H0t) (ht−1/At−1 −E [ht−1/At−1 | Ut])

−E {(1−At−1H0t) (ht−1/At−1 −E [ht−1/At−1 | Ut]) | Ut}
= γ0(Ut, Ut−1)h (Ut−1) +

Z
γ1 (Ut, Ut−1, w)h(w)dw,

where:
γ0(u, v) = [1−A(v)H0(u)] /A(v),

and γ1 is given in Appendix 7, formula (a.13). Let ν be a measure on [0, 1] such that
D log c (., .;A) is a bounded linear operator from L2(ν) to L2 (PA). Let us denote by H the
tangent space of

©
A ∈ L2 (ν) :

R
A(v)dv = 1

ª
at A0:

H =

½
h ∈ L2(ν) :

Z
h(x)dx = 0

¾
.

The asymptotic distribution of the minimum chi-square estimator is characterized by the
information operator IH , which is the bounded linear operator from H into itself defined by:

(g, IHh)L2(ν) = E0 [hD log c (Ut, Ut−1;A0) , gi hD log c (Ut, Ut−1;A0) , hi] ,

for g, h ∈ H. For the proportional hazard copula the information operator IH satisfies:

(g, IHh)L2(ν) = ECov0 {(1−At−1H0t) (gt−1/At−1 − E [gt−1/At−1 | Ut]) ,

(1−At−1H0t) (ht−1/At−1 − E [ht−1/At−1 | Ut])}
=

Z 1

0

g(w)α0(w)h(w)dw +

Z 1

0

Z 1

0

g(w)α1(w, v)h(v)dwdv,

where:
α0(w) =

1

A0(w)2
,

and α1 is defined in Appendix 8. The two components of the information operator IH have
different interpretations. The ”local” component α0(w) comes from differentiation of those
parts of the density which depend from the value of A at point w, w ∈ [0, 1]. The ”functional”
component α1 derives from differentiation of those parts of the density which depend from
continuous functionals of A.
We are now able to formulate the following Proposition (see Appendix 9).
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Proposition 2.14 Under standard regularity conditions:

i. The estimator bAT is consistent in L2(ν)-norm.

ii. We have the following asymptotic equivalence:

α0 (v) δ bAT (v) +

Z
α1 (v, w) δ bAT (w) dw

=

Z
δbcT (u, v)γ0 (u, v) du+ Z Z

δbcT (u,w)γ1 (u,w, v) dudw + rT ,

where δ bAT = bAT−A0, δbcT = bcT−c, and the residual term rT is such that (h, rT )L2(ν) ' 0
for any h ∈ H.

iii. The estimator bAT is pointwise asymptotically normal:p
ThT

³ bAT (v)−A0 (v)
´

d−→ N

µ
0, A0 (v)

2

Z
K2(w)dw

¶
, λ-a.s. in v ∈ [0, 1] .

iv. Continuous linear functionals of bAT are asymptotically normal:
√
T
³
g, bAT −A0

´
L2(ν)

d−→ N
h
0,
¡
g, I−1H PHg

¢
L2(ν)

i
, for any g ∈ L2(ν),

where PH is the orthogonal projection on H.

Let us now consider the nonparametric efficiency of the minimum chi-square estima-
tor. The nonparametric efficiency bound for functional A is defined by the semiparametric
efficiency bounds BA(g) for linear functional

R
g(v)A(v)ν(dv), g varying, which can be con-

sistently estimated at rate 1/
√
T (see e.g. Severini, Tripathi [2001]). The nonparametric

efficiency bound BA(g) is given by (see Gagliardini, Gourieroux [2002]):

BA(g) =
¡
g, I−1H PHg

¢
L2(ν)

, g ∈ L2(ν).

From Proposition 14 the minimum chi-square estimator reaches the efficiency bound, and is
nonparametrically efficient.

iii) Estimation of H−1
0 .

Finally note that H−1
0 (z, A) = 1 − R 1

0
exp [−A(v)z] dv is a differentiable functional of A.

More precisely we have:

H−1
0 (z, A+ δA) = H−1

0 (z, A)−
Z 1

0

z exp [−A(v)z] δA(v)dv + o (δA) .

Therefore:

H−1
0

³
z, bAT

´
' H−1

0 (z, A)−
Z 1

0

z exp [−A(v)z]
³ bAT (v)−A0(v)

´
dv.

Asymptotically the estimator dH−1
0 (z) = H−1

0

³
z, bAT

´
is equivalent to a continuous linear

functional of bAT , and thus converges at rate 1/
√
T [see Proposition 14]:
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Corollary 2.15 Under regularity conditions:

√
T
³dH−1

0 (z)−H−1
0 (z,A0)

´
d−→ N

h
0, z2

¡
e−zA0 , I−1H PHe

−zA0¢
L2(ν)

i
, z ∈ (0, 1) .

In Appendix 7 it is shown that H0 and h0 are both differentiable functionals of A. There-
fore the corresponding pointwise estimators converge at parametric rate 1/

√
T 21. The higher

convergence rate of H0 and h0 sheds light on the pointwise asymptotic distribution of the
minimum chi-square estimator given in Proposition 14, iii. Indeed for pointwise estimation
of A, functions H0 and h0 can be assumed to be known, in which case the information op-
erator IH only consists in the local component α0 . The asymptotic variance of bAT (v) is
(essentially) its inverse.

2.6.2.2 Sieve method.

Other nonparametric estimation methods can be considered. For instance it is possible to
approximate the function A by a stepwise function: A(v; θ) =

PN
j=1 ajI( j−1

N
, j
N
](v), where

θ = (a1, ..., aN), and to estimate the parameter under the identifiability constraint:

1

N

NX
j=1

aj = 1,

which is the analog of (2.29). For any given N , we get maximum likelihood estimators baj,N ,
j = 1, ..., N , with properties described in section 6.1. This approach can be extended to a
nonparametric framework, if we allow for a number NT of intervals depending on the number
T of observations. If NT tends to infinity with T at an appropriate rate, this sieve method
is expected to provide another nonparametrically efficient estimator of A, rather easy to
implement22.

2.7 Conclusion.

In this paper we have introduced duration time series models with proportional hazard.
These models allow to separate the marginal characteristics from the serial dependence
properties. The latter are described by a copula with proportional hazard, characterized
by a functional parameter A. This has two important consequences from a modelling point
of view. On the one hand, the marginal distribution of the process can be chosen freely,
and we can then focus on serial dependence by considering function A. On the other hand,

21The fact that the pointwise estimator for the baseline hazard function h0 converges at a parametric rate
may seem unusual. This result is due to the restriction on uniform margins of the copula, which implies that
h0 can be expressed as an integral of function A.
22Rewrite equation (2.25) with N = NT as:

Covas

hp
T/NT (bak,T − ak,0) ,

p
T/NT (baj,T − aj,0)

i
= a2j,0δk,j +ON (1/NT ),

and compare with Proposition 14 iii. See also Appendix 10, ii).
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since parameter A is functional, this class of models is flexible enough for allowing various
nonlinear and nongaussian dependence features, such as dependence in the extremes, serial
persistence, nonreversibility, as confirmed in simulated examples.
We have related the pattern and strength of serial dependence to the shape of functional

parameter A by using well-known concepts from copulas’ theory. More precisely various
characteristics of functional parameter A give rise to different forms of dependence, influence
dependence in the tails, and imply ergodicity conditions.
Finally we have discussed the estimation of the dependence parameter A, both in para-

metric and nonparametric frameworks. A nonparametric estimator of A can be obtained
by minimizing a chi-square distance between the nonparametric constrained copula and an
unconstrained kernel estimator of the copula density. This minimum chi-square estimator
is consistent and asymptotically normal. In addition it reaches the nonparametric efficiency
bound computed under the assumption that the uniform variables Ut are observed.
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Appendix 1
Dependence Ordering

For u, v, v
0 ∈ [0, 1] we have:

S(u | v) = exp (−A(v)H0(u)) ,

Sv,v0 (u) = S
h
S−1(u | v) | v0

i
= uA(v

0
)/A(v),

and:
Sv,v0 (u)

S∗
v,v

0 (u)
= uA(v

0
)/A(v)−A∗(v0)/A∗(v).

Thus, for any v < v
0 ∈ [0, 1]:

Sv,v0 (u)

S∗
v,v0 (u)

≥ 1, ∀u ∈ [0, 1]⇐⇒ Sv,v0 (u)

S∗
v,v0 (u)

decreasing in u ∈ [0, 1]

⇐⇒ A(v
0
)

A(v)
≤ A∗(v

0
)

A∗(v)

⇐⇒ A(v
0
)

A∗(v0)
≤ A(v)

A∗(v)
.
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Appendix 2
Coefficient of upper tail dependence

Without loss of generality we can set C = 1. It will be proved in Appendix 5 [equation
(a.3)] that:

A

·
1−

Z 1

0

exp [−yA(v)] dv
¸
' Γ (1 + 1/δ)δ

y
, as y → +∞.

Using A (v) ' (1− v)δ, v → 1, it follows:Z 1

0

exp [−yA(v)] dv ' Γ (1 + 1/δ)

y1/δ
, as y → +∞.

Thus:

H−1
0 (z,A) ' 1−

Γ (1 + 1/δ)

z1/δ
, z → +∞,

and

H0(u,A) ' Γ (1 + 1/δ)δ

(1− u)δ
, u→ 1.

It follows:

λA = lim
u→1

1

1− u

Z 1

u

exp [−A (v)H0 (u,A)] dv

= lim
u→1

1

1− u

Z 1

u

exp

"
− (1− v)δ

Γ (1 + 1/δ)δ

(1− u)δ

#
dv

=
1

Γ (1/δ)

Z Γ(1+1/δ)δ

0

exp (−w)w1/δ−1dw

= P
³
1/δ,Γ (1 + 1/δ)δ

´
.
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Appendix 3
Nonlinear Autoregressions

In this Appendix we report some probabilistic properties of nonlinear autoregressions
with additive noise:

Yt = ϕ(Yt−1) + ηt,

where the innovation ηt is a white noise, independent of Yt−1, with strictly positive density
g on R, and E [ηt] = 0.
The conditional density of Yt given Yt−1 = y is given by:

f(x | y) = g (x− ϕ(y)) , x, y ∈ R,

and is strictly positive. Thus Yt, t ∈ N, is λ-irreducible, λ-Harris recurrent (see Feigin and
Tweedie [1993]) and aperiodic (see Proposition A1.2 of Tong [1990]).
We assume the autoregression function ϕ is continuous. Then Yt, t ∈ N, is a Feller chain

(see Feigin and Tweedie [1993]). Indeed, if V is a bounded, continuous function defined on
R, by applying Lebesgue theorem it follows that:

y 7→ E [V (Yt) | Yt−1 = y] =

Z
V (x+ ϕ(y)) g(x)dx,

is continuous.

The following proposition provides a sufficient condition for geometric ergodicity.

Proposition A.1 Assume that the real Laplace Transform (LT) of the innovation ηt is
defined in an open neighbourhood of 0. Assume further that the autoregression function ϕ
satisfies:

|ϕ(y)| ≤ |y|− ε, |y| ≥ R,

for some constants ε > 0, R <∞. Then (Yt, t ∈ N) is geometrically ergodic.
Proof. Let r0 > 0 be such that the LT of ηt:

Ψ (k) = E [exp (−kηt)] ,

is defined for k ∈ (−r0, r0). For k ∈ (0, r0) define the functions:

Vk(y) = 1 + exp (k |y|) , y ∈ R.

We now show that for some k sufficiently small, the function Vk satisfies the following drift
condition:

∃γ < 1 : E [Vk(Yt) | Yt−1 = y] ≤ γVk(y), for |y| large enough. (a.1)

Since Yt, t ∈ N, is an irreducible, aperiodic Feller chain, and Vk is continuous, condition
(a.1) implies geometric ergodicity (see Theorem 1 of Feigin, Tweedie [1993]). Let us now
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prove the inequality (a.1). We have:

E [Vk(Yt) | Yt−1 = y] = 1 +E [exp (k |ϕ(y) + ηt|)]
= 1 +

Z −ϕ(y)

−∞
exp [−k (ϕ(y) + η)] g(η)dη

+

Z +∞

−ϕ(y)
exp [k (ϕ(y) + η)] g(η)dη

= 1 + exp (−kϕ(y))
Z −ϕ(y)

−∞
exp [−kη] g(η)dη

+exp (kϕ(y))

Z +∞

−ϕ(y)
exp (kη) g(η)dη.

It is sufficient to consider the case where |ϕ(y)|→ +∞ as |y|→ +∞. Then we have:

E [Vk(Yt) | Yt−1 = y] = 1 + o(1) + (1 + o(1))Ψ [−k · sign (ϕ(y))] exp [k |ϕ(y)|] ,

where o(1)→ 0 as |y|→ +∞. It follows:

E [Vk(Yt) | Yt−1 = y] ≤ O(1) + (1 + o(1)) exp

·
k |y|− k

µ
ε− ψ [−k · sign (ϕ(y))]

k

¶¸
,

where ψ(k) = lnΨ (k). Since:

lim
k→0

µ
ε− ψ [−k · sign (ϕ(y))]

k

¶
= ε− sign (ϕ(y))E [ηt] = ε > 0,

there exists δ > 0, such that for k small enough:

E [Vk(Yt) | Yt−1 = y] ≤ O(1) + (1 + o(1)) exp [k |y|− δ] .

Therefore there exists γ < 1 such that for k small enough:

E [Vk(Yt) | Yt−1 = y] ≤ γVk(y), |y| large enough,

and the result follows. Q.E.D.

Finally, let us consider mixing properties. Using the results of Davydov (1973), it is seen
that geometric ergodicity23 implies β-mixing with geometric decay (see e.g. chapter 2.4 in
Doukhan [1994]).

Proposition A.2 Under assumptions of Proposition A.1, (Yt, t ∈ N) is β-mixing with geo-
metric decay.

23with integrable function C
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Appendix 4
Proof of Proposition 10

Condition i. implies geometric ergodicity

Let us consider the transformed process Yt = h(Xt), t ∈ N, which follows the nonlinear
autoregression with additive noise in (2.3), where innovations are Gompertz distributed,
with density:

g(η) = exp (η) exp (−eη) , η ∈ R.
This density is strictly positive on R. From Appendix 3, it follows that Yt, t ∈ N, (and hence
Xt, t ∈ N) is irreducible, Harris recurrent and aperiodic. Moreover, since the continuity of
A on (0, 1) implies the continuity of the autoregressive function ϕ, Yt, t ∈ N, (and hence Xt,
t ∈ N) is a Feller chain. Finally, note that the density g of the innovation admits a real LT:

Ψ(k) = [exp (−kηt)] =
Z ∞

0

1

εk
exp (−ε) dε,

defined for k ∈ (−∞, 1). From Proposition A.1 in Appendix 3, geometric ergodicity of Yt,
t ∈ N, and hence of Xt, t ∈ N, follows.
Conditions i. and ii. are equivalent

By using relation (2.11), condition i. can be written as:¯̄̄̄
log

µ
e−γA

·
1−

Z 1

0

exp (−A(v) exp y) dv
¸¶¯̄̄̄
≤ |y|− ε, |y| ≥ R. (a.2)

Let us first consider the case y → +∞, and discuss the inequality (a.2) depending on the
behaviour of the functional dependence parameter at v = 1.

Case I: limv→1A(v) < exp [γ]

Condition (a.2) becomes:

− log
µ
e−γA

·
1−

Z 1

0

exp (−A(v) exp y) dv
¸¶
≤ y − ε, y ≥ r2,

for some r2 <∞, that is:
1

A
h
1− R 1

0
exp (−A(v) exp y) dv

i ≤ e−ε−γ exp (y) , y ≥ r2,

which is equivalent to:

1

A
h
1− R 1

0
exp (−A(v)y) dv

i ≤ cy, y ≥ R2,
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for c < e−γ, and R2 = exp (r2).

Case II: limv→1A(v) > exp [γ]

Condition (a.2) becomes:

log

µ
e−γA

·
1−

Z 1

0

exp (−A(v) exp y) dv
¸¶
≤ y − ε, y ≥ r2,

for some r2 <∞, that is:

A

·
1−

Z 1

0

exp (−A(v) exp y) dv
¸
≤ e−ε+γ exp (y) , y ≥ r2,

which is equivalent to:

1

A
h
1− R 1

0
exp (−A(v)y) dv

i ≥ C
1

y
, y ≥ R2,

for C > e−γ, R2 = exp (r2).

Case III: limv→1A(v) = exp [γ]

In this case the inequality (a.2) implies no restrictions on the functional dependence para-
meter.

Case I and II give the second restriction in condition ii. The case y → −∞ is similar, and
provides the first restriction.
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Appendix 5
Proof of Proposition 11.

i) Let us first assume that A is in class I. The following lemma will be used in the proof.

Lemma A.3 Let us assume that function A is strictly positive, continuous on (0, 1), de-
creasing at v = 1, and satisfies limv→1A (v) = 0. Then for any ε > 0 small enough:

lim
y→+∞

R 1
1−ε exp [−yA(v)] dvR 1
0
exp [−yA(v)] dv = 1.

Proof. For any ε > 0 small enough, and 0 < γ < A(1− ε), there exists δ < ε such that:

A(v) ≥ A(1− ε), on [0, 1− ε] ,

A(v) ≤ A(1− ε)− γ, on [1− δ, 1] .

Thus: R 1−ε
0

exp [−yA(v)] dvR 1
1−ε exp [−yA(v)] dv

≤ exp [−yA(1− ε)]R 1
1−δ exp [−yA(v)] dv

≤ exp [−yA(1− ε)]R 1
1−δ exp [−y (A(1− ε)− γ)] dv

≤ 1

δ exp (yγ)
→ 0,

as y → +∞. Q.E.D.

Without loss of generality, we can assume that for some δ > 0

lim
v→1

A (v)

(1− v)δ
= 1.

Let us now consider the function involved in the second restriction of ii. For any ε > 0 we
have:

lim
y→+∞

yA

·
1−

Z 1

0

exp (−yA(v)) dv
¸

= lim
y→+∞

A
h
1− R 1

0
exp (−yA(v)) dv

i
³R 1

0
exp (−yA(v)) dv

´δ y

µZ 1

0

exp (−yA(v)) dv
¶δ

= lim
y→+∞

y

µZ 1

0

exp (−yA(v)) dv
¶δ

=

µ
lim

y→+∞
y
1
δ

Z 1

1−ε
exp (−yA(v)) dv

¶δ

=

Ã
lim

y→+∞
1

δ

Z +∞

0

1z≤εδy exp

"
−yA

Ã
1−

µ
z

y

¶1
δ

!#
z
1
δ
−1dz

!δ

.
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Let us now check that the limit and integral can be commuted by using Lebesgue theorem.
Since:

lim
y→+∞

yA

Ã
1−

µ
z

y

¶ 1
δ

!
= lim

y→+∞
z

A

µ
1−

³
z
y

´ 1
δ

¶
z
y

= z,

we get:

lim
y→+∞

1z≤εδy exp

"
−yA

Ã
1−

µ
z

y

¶ 1
δ

!#
z
1
δ
−1 = exp (−z) z 1δ−1, for all z > 0.

Moreover, let r < 1 be such that:

A(v)

(1− v)δ
≥ 1
2
, for any v ≥ r,

then:

yA

Ã
1−

µ
z

y

¶ 1
δ

!
≥ 1
2
z, for any z ≤ (1− r)δ y.

Therefore by choosing ε < 1 − r, we show that the integrand admits an integrable upper
bound:

1z≤εδy exp

"
−yA

Ã
1−

µ
z

y

¶1
δ

!#
z
1
δ
−1 ≤ exp

µ
−1
2
z

¶
z
1
δ
−1, for any z, y ≥ 0.

Thus, Lebesgue theorem applies:

lim
y→+∞

Z +∞

0

1z≤εδy exp

"
−yA

Ã
1−

µ
z

y

¶ 1
δ

!#
z
1
δ
−1dz =

Z +∞

0

exp (−z) z 1δ−1dz

= Γ (1/δ) .

Therefore:

lim
y→+∞

yA

·
1−

Z 1

0

exp (−yA(v)) dv
¸
= [(1/δ)Γ (1/δ)]δ = Γ (1 + 1/δ)δ . (a.3)

In particular, we deduce from (2.11) that the autoregressive function ϕ corresponding to A
is such that:

ϕ(y) ∼ y − δ logΓ (1 + 1/δ) , y → +∞.
From (a.3), it follows that the second restriction in condition ii. is satisfied iff:

Γ (1 + 1/δ)δ > exp (γ) , for any δ > 0,

where γ is the expectation of a Gompertz distributed variable:

γ =

Z ∞

0

(ln ε) exp (−ε) dε.
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The conclusion follows by using the following lemma.

Lemma A.4 The function
δ 7→ Γ (1 + 1/δ)δ , δ ≥ 0,

is decreasing, with:
lim

δ→+∞
Γ (1 + 1/δ)δ = exp (γ) .

Proof. Define
ψ(x) ≡ logΓ(1 + x), x ≥ 0.

Then δ 7→ Γ (1 + 1/δ)δ, δ ≥ 0, is decreasing iff x 7→ ψ(x)
x
is increasing, that is iff: xψ

0
(x) ≥

ψ(x), x ≥ 0. Since
Γ(1 + x) =

Z +∞

0

exp (−z) exp (x log z) dz

is the real LT of the negative of a Gompertz variable, ψ is convex and such that ψ(0) = 0 24.
It follows:

ψ(x) =

Z x

0

ψ
0
(z)dz ≤

Z x

0

ψ
0
(x)dz = xψ

0
(x),

and the first part of the Lemma is proved. Finally, we show the second part:

lim
δ→+∞

Γ (1 + 1/δ)δ = lim
δ→+∞

µZ ∞

0

exp (−z) z 1δ dz
¶δ

= lim
δ→+∞

µZ ∞

0

exp (−z) (1 + 1/δ ln z + o (1/δ)) dz

¶δ

= lim
δ→+∞

µ
1 +

1

δ

Z ∞

0

exp (−z) ln zdz
¶δ

= exp

µZ ∞

0

(ln z) exp (−z) dz
¶
= exp (γ) .

Q.E.D.

ii) Let us assume now that A is in class II, and that there exists C <∞ with:

A(v) ≥ − C

log(1− v)
, for v close to 1.

Since limv→1A (v) = 0, for any λ ∈ (0,+∞) there exists K = K(λ) such that A (v) ≤ λ for
v ≥ 1−K. Then: Z 1

0

exp [−yA(v)] dv ≥
Z 1

1−K
exp [−yA(v)] dv

≥ K exp (−λy) , y ≥ 0.
24We use that if ψ(x) = logE [exp (−xZ)], then ψ

00
(x) = VQx [Z], where distribution Qx is defined by

dQx(z) = {exp (−xz) /E [exp (−xZ)]} dFZ(z).
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Since A is decreasing near 1,

A

·
1−

Z 1

0

exp (−yA(v)) dv
¸
≥ A [1−K exp (−λy)] , for y large.

Then:

yA

·
1−

Z 1

0

exp (−yA(v)) dv
¸
≥ yA [1−K exp (−λy)]

= −1
λ
log

µ
1− [1−K exp (−λy)]

K

¶
A [1−K exp (−λy)]

=
C

λ
+ o(1) > exp (γ) , for y large enough,

if we choose λ < C exp (−γ).
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Appendix 6
Proportional hazard in reversed time.

The condition for proportional hazard in both time directions is:
∃A∗, H∗

0 such that:

A(u)h0(v) exp [−A (u)H0(v)] = A∗(v)h∗0(u) exp [−A∗ (v)H∗
0 (u)] , (a.4)

for u, v ∈ [0, 1]. By taking the logarithm of both sides, and deriving with respect to u and v
we get:

∂A(u)

∂u

∂H0(v)

∂v
=

∂A∗(v)
∂v

∂H∗
0 (u)

∂u
.

If Ut is not the independent process, we have:

∂H∗
0(u)

∂u
/
∂A(u)

∂u
=

∂H0(v)

∂v
/
∂A∗(v)
∂v

, ∀u, v. (a.5)

Thus these ratios are constant, equal to α (say). It follows, by using H0(0) = H∗
0(0) = 0,

and the normalizations A(0) = A∗(0) = 125:

H0(v) = α [A∗(v)− 1] , v ∈ [0, 1] ,
H∗
0(u) = α [A(u)− 1] , u ∈ [0, 1] .

Note in particular that A and A∗ are monotonous. By replacing in equation (a.4), we get:

αA(u)a∗(v) exp [−αA (u)A∗(v)] exp [αA (u)]
= αA∗(v)a(u) exp [−αA∗ (v)A(u)] exp [αA∗ (v)] ,

where a(u) = dA(u)/du and a∗(v) = dA∗(v)/dv. Thus:

a(u)

A(u)
exp [−αA (u)] = a∗(v)

A∗(v)
exp [−αA∗ (v)] , ∀u, v.

In particular, function A is such that:

a(u)

A(u)
exp [−αA (u)] = γ, where γ is a constant.

Let us denote y(u) = αA (u), u ∈ [0, 1]. Then function y satisfies the separable differential
equation:

exp (−y)
y

dy

du
= γ.

25These normalizations are admissible, since ∂H∗0 (u)
∂u = α∂A(u)

∂u implies that ∂A/∂u is integrable, and thus
A(0) < +∞ , and similarly for A∗(0) < +∞.
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Let Ψ be a primitive of the function y 7→ exp(−y)/y on R+. Ψ is continuous, strictly
increasing such that Ψ (+∞) < +∞, and the solution is:

y(u) = Ψ−1 (γu+ δ) , u ∈ [0, 1] ,

where δ is such that:
δ ≤ Ψ (+∞) , if γ ≤ 0, (a.6)

and
γ + δ ≤ Ψ (+∞) , if γ > 0. (a.7)

Therefore function A is such that:

A(u) =
Ψ−1 (γu+ δ)

Ψ−1 (δ)
, u ∈ [0, 1] ,

and α = Ψ−1 (δ). SinceA∗ satisfies the same differential equation asA, we have by symmetry:

A∗ = A.

We now use restriction (2.8) of uniform margins. The function H0 and its inverse are given
by:

H0(u) = α [A∗(u)− 1] = α

·
Ψ−1 (γu+ δ)

Ψ−1 (δ)
− 1
¸

= Ψ−1 (γu+ δ)−Ψ−1 (δ) , u ∈ [0, 1] ,

and:
H−1
0 (z) =

1

γ

©
Ψ
£
Ψ−1 (δ) + z

¤− δ
ª
, z ≥ 0.

Thus the restriction is:

1

γ

©
Ψ
£
Ψ−1 (δ) + z

¤− δ
ª
= 1−

Z 1

0

exp

·
−zΨ

−1 (γv + δ)

Ψ−1 (δ)

¸
dv, z ≥ 0. (a.8)

After the change of variable:

ξ =
Ψ−1 (γv + δ)

Ψ−1 (δ)
,

the integral in the RHS becomes:Z 1

0

exp

·
−zΨ

−1 (γv + δ)

Ψ−1 (δ)

¸
dv =

1

γ

Z Ψ−1(γ+δ)
Ψ−1(δ)

1

exp
£−ξ ¡z +Ψ−1 (δ)

¢¤ dξ
ξ

=
1

γ

Z Ψ−1(γ+δ)
Ψ−1(δ) (z+Ψ

−1(δ))

z+Ψ−1(δ)

exp (−ξ)
ξ

dξ

=
1

γ

½
Ψ

·
Ψ−1 (γ + δ)

Ψ−1 (δ)

¡
z +Ψ−1 (δ)

¢¸−Ψ
£
z +Ψ−1 (δ)

¤¾
.
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Thus restriction (a.8) becomes:

γ + δ = Ψ

·
Ψ−1 (γ + δ) +

Ψ−1 (γ + δ)

Ψ−1 (δ)
z

¸
, ∀z ≥ 0.

This equation cannot be satisfied with values of δ and γ such that Ψ−1 (γ + δ) < +∞ and
Ψ−1 (δ) < +∞, but is satisfied if either Ψ−1 (γ + δ) = +∞ or Ψ−1 (δ) = +∞ holds. The
case Ψ−1 (δ) = +∞ is not admissible. When Ψ−1 (γ + δ) = +∞, condition (a.6) cannot be
satisfied, whereas (a.7) is trivially satisfied. Thus, any pair of constants δ and γ such that:

γ ≥ 0, γ + δ = Ψ (+∞) ,

satisfies the restriction.
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Appendix 7
Computation of the differential of c (u, v;A) with respect to A

The aim of this appendix is to derive different expressions of the differential of the copula
with respect to the functional parameter. In a first step we derive the differential with respect
to A, by taking into account that H0 is a functional of A, due to the relationship implied by
the condition of uniform marginal distribution. In a second step we provide interpretations
in terms of backward expectations. Finally the results are particularized to the parametric
framework.

i) The general expression.

Let us derive the first order expansion of the copula log density:

log c (u, v;A) = logA (v) + log h0 (u,A)−A (v)H0 (u,A) ,

with respect to functional parameter A. We get:

log c (u, v;A+ δA) = log [A (v) + δA (v)] + log h0 (u,A+ δA)

− [A (v) + δA (v)]H0 (u,A+ δA)

' log c (u, v;A) +
δA (v)

A (v)
+ hD log h0 (u,A) , δAi

−H0 (u,A) δA (v)−A (v) hDH0 (u,A) , δAi
= log c (u, v;A) +

1−A (v)H0 (u,A)

A (v)
δA(v)

+ hD log h0 (u,A) , δAi−A (v) hDH0 (u,A) , δAi ,
(a.9)

where the expansions are in terms of Hadamard derivatives and the sign ' means that the
residual terms are negligible. We have now to get the expressions of the derivative of H0 and
h0 with respect to A.

Expression of DH−1
0 (z, A)

We have:

H−1
0 (z,A+ δA) = 1−

Z 1

0

exp [−A (v) z − δA (v) z] dv

' 1−
Z 1

0

[1− δA (v) z] exp [−A (v) z] dv

= H−1
0 (z, A) +

Z 1

0

zδA (v) exp [−A (v) z] dv,
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hence: ­
DH−1

0 (z,A) , δA
®
=

Z 1

0

z exp [−A (v) z] δA(v)dv.

Expression of DH0(u;A)

By applying the implicit function theorem we get:

hDH0 (u,A) , δAi = −h0 (u,A)
­
DH−1

0 (H0 (u,A) , A) , δA
®

= −h0 (u,A)
Z 1

0

H0 (u,A) exp [−A (v)H0 (u,A)] δA(v)dv

(a.10)

Expression of D log h0(u;A)

We get:

h0 (u,A) =

Ã
d

dz
H−1
0 (z, A)

¯̄̄̄
z=H0(u,A)

!−1

=

µZ 1

0

A(v) exp [−A(v)H0 (u,A)] dv

¶−1
.

Let us introduce the functional:

q (u,A) ≡ 1

h0 (u,A)
=

Z 1

0

A(v) exp [−A(v)H0 (u,A)] dv,

and derive its first order expansion. We get:

q (u,A+ δA) =

Z 1

0

[A(v) + δA(v)] exp {− [A(v) + δA(v)]H0 (u,A+ δA)} dv

' q(u,A) +

Z 1

0

δA(v) exp [−A(v)H0 (u,A)] dv

−H0 (u,A)

Z 1

0

δA(v)A(v) exp [−A(v)H0 (u,A)] dv

− hDH0(u), δAi
Z 1

0

A(v)2 exp [−A(v)H0 (u,A)] dv

' q(u,A) +

Z 1

0

δA(v) [1−A(v)H0 (u,A)] exp [−A(v)H0 (u,A)] dv

− hDH0(u), δAi
Z 1

0

A(v)2 exp [−A(v)H0 (u,A)] dv.
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It follows:

hD log h0 (u,A) , δAi = −h0 (u,A) hDq (u,A) , δAi
= −h0 (u,A)

Z 1

0

δA(v) [1−A(v)H0 (u,A)] exp [−A(v)H0 (u,A)] dv

+h0 (u,A)

µZ 1

0

A(v)2 exp [−A(v)H0 (u,A)] dv

¶
hDH0(u), δAi

= −h0 (u,A)
Z 1

0

δA(v) [1−A(v)H0 (u,A)] exp [−A(v)H0 (u,A)] dv

−h0 (u,A)2
µZ 1

0

A(v)2 exp [−A(v)H0 (u,A)] dv

¶
·
Z 1

0

H0 (u,A) exp [−A (v)H0 (u,A)] δA(v)dv.

(a.11)

Explicit expression of the copula’s derivative

By inserting (a.10) and (a.11) into (a.9), we see that the expansion of log c(u, v;A) is of the
form:

log c (u, v;A+ δA) ' log c(u, v;A) + γ0(u, v,A)δA(v) +

Z
γ1(u, v, w;A)δA(w)dw,

where:

γ0(u, v,A) =
1−A(v)H0(u,A)

A(v)
, (a.12)

and:

γ1(u, v, w;A)

= −h0(u,A) exp [−A(w)H0(u,A)]

·
½
1−H0(u,A)

·
A(v) +A(w)−

Z 1

0

A(z)2h0(u,A) exp [−A (z)H0 (u,A)] dz

¸¾
.

(a.13)

The expression of the differential of log c(u, v;A) follows:

hD log c(u, v;A), δAi = γ0(u, v,A)δA(v) +

Z
γ1(u, v, w;A)δA(w)dw. (a.14)

ii) Conditional expectations in reverse time.

Various functional derivatives with respect to A can be written as expectations in reverse
time. From (a.10) we get:

hDH0 (u,A) , δAi = −H0 (u,A)E [δA (Ut−1) /A(Ut−1) | Ut = u] ,
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or equivalently:
hD logH0t, δAi = −E [δAt−1/At−1 | Ut] ,

where H0t = H0 (Ut, A) and At−1 = A (Ut−1). Similarly, from (a.11) we get:

hD log h0t, δAi = −E [(1−At−1H0t) δAt−1/At−1 | Ut]

−E [At−1H0t | Ut]E [δAt−1/At−1 | Ut] .

Then from (a.9) the score of the model can be written as an expectation error in reverse
time:

hD log c (Ut, Ut−1;A) , δAi
= (1−At−1H0t) (δAt−1/At−1 −E [δAt−1/At−1 | Ut])

−E {(1−At−1H0t) (δAt−1/At−1 −E [δAt−1/At−1 | Ut]) | Ut} .
(a.15)

iii) The parametric case.

When function A is parameterized:

A(v) = A(v, θ),

the score of the model is obtained from (a.15) with:

δA(v) =
∂A

∂θ
(v, θ)δθ.

We get:

∂lt
∂θ
(θ) =

∂

∂θ
log c (Ut, Ut−1;A (θ))

= (1−At−1H0t)

µ
∂

∂θ
logAt−1 (θ)−E

·
∂

∂θ
logAt−1 (θ) | Ut

¸¶
−E

½
(1−At−1H0t)

µ
∂

∂θ
logAt−1 (θ)−E

·
∂

∂θ
logAt−1 (θ) | Ut

¸¶
| Ut

¾
.

Similarly, the derivatives of logH0 (u,A (θ)) and log h0 (u,A (θ)) with respect to θ are given
by:

∂

∂θ
logH0t (θ) = −E

·
∂

∂θ
logAt−1 (θ) | Ut

¸
,

and:

∂

∂θ
log h0t (θ) = −E

·
(1−At−1H0t)

∂

∂θ
logAt−1 (θ) | Ut

¸
−E [H0tAt−1 | Ut]E

·
∂

∂θ
logAt−1 (θ) | Ut

¸
.
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Appendix 8
The information operator

i) The expression of the information operator

Let us derive the information operator IH . From (a.14) in Appendix 7, the differential
D log c (., .;A0) admits a measure decomposition with both a discrete and a continuous part
[see Gagliardini and Gourieroux (2002)]. Therefore:

(g, IHh)L2(ν) =

Z
g(v)α0(v;A0)h(v)dv +

Z
g(w)α1(w, v;A0)h(v)dwdv, (a.16)

for g, h ∈ H, where:

α0(v;A0) = E0
£
γ0 (Ut, Ut−1)

2 | Ut−1 = v
¤
=

1

A0(v)2
,

and:

α1(w, v;A0) =

Z
γ0(u,w;A0)γ1(u,w, v;A0)du

+
1

2

Z
γ1(u, y, w;A0)γ1(u, y, v;A0)dudy + (w←→ v) .

Let us now derive an expression for IHh, h ∈ H. From (a.16) we get:Z
g(w)

·
IHh(w)

dν

dλ
(w)− α0(w;A0)h(w)−

Z
α1(w, v;A0)h(v)dv

¸
dw = 0, ∀g ∈ H.

Thus there exists a constant k such that:

IHh(w)
dν

dλ
(w) = α0(w;A0)h(w) +

Z
α1(w, v;A0)h(v)dv + k.

Constant k is determined by the condition IHh ∈ H, that is:
R
IHh(w)dw = 0. We get:

IHh(w) =
α0(w;A0)

dν/dλ (w)
h(w) +

Z
α1(w, v;A0)

dν/dλ (w)
h(v)dv

−
µZ

dw

dν/dλ (w)

¶−1 ·Z µ
α0(w;A0)h(w)

dν/dλ (w)
+

Z
α1(w, v;A0)h(v)

dν/dλ (w)
dv

¶
dw

¸
· 1

dν/dλ (w)
.

(a.17)

Thus IH admits the representation:

IHh(w) =
α0,H(w;A0)

dν/dλ (w)
h(w) +

Z
α1,H(w, v;A0)

dν/dλ (w)
h(v)dv, say,
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with α0,H = α0.

ii) Boundedness and invertibility of IH

We assume that, for any A, there exists a positive definite matrix αH(.;A) such that:Z Z
α1,H(w, v;A)

2

αH(w;A)αH(v;A)
dwdv < +∞.

Further let us introduce the measure ν such that:

∀A : ∃CA > 0 : CA
dν

dλ
(v) ≥ max

½
1

A(v)2
, αH(v;A)

¾
, ∀v.

Then, from Proposition 22 in Gagliardini, Gourieroux (2002), IH is a bounded operator from
H in itself. Let us now consider the invertibility of IH . We first show that the differential
D log c (., .;A0) has a zero null space. Indeed:

hD log c (Ut, Ut−1;A0) , hi = 0 a.s., h ∈ H,

implies that:

(1−A0t−1H0t) (ht−1/A0t−1 −E [ht−1/A0t−1 | Ut]) is a function of Ut, h ∈ H,

that is:

ht−1/A0t−1 is a constant, and
Z

h(v)dv = 0,

which can only be the case if h = 0. Thus IH has zero null space and it is positive.
Let us assume that ν is such that:

∀A : ∃ eCA > 0 : eCA
dν

dλ
(w) ≤ 1

A (w)2
, ∀w.

Then Proposition 22 in Gagliardini, Gourieroux (2002) implies that IH is invertible.
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Appendix 9
Asymptotic distributions

In this appendix we derive the asymptotic distribution of the minimum chi-square esti-
mator reported in Proposition 14. To prove the result we use Proposition 23 in Gagliardini,
Gourieroux (2002).

i) The efficient score ψT .

The efficient score ψT ∈ L2 (ν) is defined by:

(h, ψT )L2(ν) =

Z Z
δbcT (u, v) hD log c (u, v;A0) , hi dudv, ∀h ∈ L2 (ν) .

From Gagliardini, Gourieroux (2002) we get:

dν

dλ
(w)ψT (w) =

Z
δbcT (w, v)γ0 (w, v) dv + Z Z

δbcT (u, v)γ1 (u, v, w) dudv.
(a.18)

ii) The first order condition.

From Gagliardini, Gourieroux (2002) the first order condition is given by:

IHδ bAT ' PHψT ,

where PH is the orthogonal projection on the tangent space H, which is given by:

PHh(v) = h(v)−
µZ

dw

dν/dλ (w)

¶−1µZ
h(w)dw

¶
1

dν/dλ (v)
.

From (a.17) and (a.18) we get:

α0(w)δ bAT (w) +

Z
α1(w, v)δ bAT (v)dv

−
µZ

dw

dν/dλ (w)

¶−1 Z µ
α0(w)

dν/dλ (w)
δ bAT (w) +

Z
α1(w, v)

dν/dλ (w)
δ bAT (v)dv

¶
dw

'
Z

δbcT (w, v)γ0 (w, v) dv + Z Z
δbcT (u, v)γ1 (u, v, w) dudv

−
µZ

dw

dν/dλ (w)

¶−1 Z
1

dν/dλ (w)

µZ
δbcT (w, v)γ0 (w, v) dv+Z Z

δbcT (u, v)γ1 (u, v, w) dudv¶ dw,

(a.19)
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which is the asymptotic expansion reported in Proposition 14 ii.

iii) Pointwise asymptotic distribution

Let us consider the pointwise asymptotic distribution of the minimum chi-square estimatorbAT . Intuitively it can be derived from the asymptotic expansion (a.19), by noting that

the second and third terms in the RHS are Op

³
1/
√
T
´
[see (2.27)], and similar orders are

expected for the second and third terms in the LHS, leading to:p
ThT δ bAT (v) ' α0 (v)

−1
Z

δbcT (w, v)γ0 (w, v) dv.
From (2.26) it follows:p

ThT δ bAT (v)
d−→ N

µ
0, α0 (v)

−1
Z

K2(w)dw

¶
, λ-a.s. in v ∈ [0, 1] .

The complete proof of this result is given in Proposition 23 of Gagliardini, Gourieroux (2002).

iv) Asymptotic distribution of linear functionals of A

The asymptotic distribution of linear functionals
R
g(v)A(v)ν (dv), g ∈ L2 (ν) is derived from

Proposition 23 of Gagliardini, Gourieroux (2002).
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Appendix 10
The efficiency bounds for the stepwise model

i) Determination of the parametric efficiency bound

We have:

I (θ0) =

µ
idN − ee

0

N

¶
diag (a0)

−1E0V0 [ξt (Zt−1 −E [Zt−1 | Ut]) | Ut]

·diag (a0)−1
µ
idN − ee

0

N

¶
,

where ξt = 1 − A0t−1H0,t ∼ iid(0, 1), ξt independent of Ut−1 [see equation (2.2)]. Let us
transform the terms in the conditional variance. We have:

E0V0 [ξt (Zt−1 −E0 [Zt−1 | Ut]) | Ut]

= E0E0
h
ξ2t (Zt−1 − E0 [Zt−1 | Ut]) (Zt−1 −E0 [Zt−1 | Ut])

0 | Ut

i
−E0

n
E0 [ξt (Zt−1 −E0 [Zt−1 | Ut]) | Ut]E0 [ξt (Zt−1 − E0 [Zt−1 | Ut]) | Ut]

0o
= E0

£
ξ2t
¤| {z }

=1

E0 [diag(Zt−1)]| {z }
IdN/N

− E0
n
E0
£
ξ2tZt−1 | Ut

¤
E0 [Zt−1 | Ut]

0o
−E0

n
E0 [Zt−1 | Ut]E0

£
ξ2tZt−1 | Ut

¤0o
+E0

h
E0
£
ξ2t | Ut

¤
E0 [Zt−1 | Ut]E0 [Zt−1 | Ut]

0i
−E0 {(E0 [ξtZt−1 | Ut]− E0 [ξt | Ut]E0 [Zt−1 | Ut])

(E0 [ξtZt−1 | Ut]− E0 [ξt | Ut]E0 [Zt−1 | Ut])
0o
.

An expression for the parametric efficiency bound B (θ0) = I (θ0)
−1 follows. Let us investi-

gate its expansion for large N , and develop it in powers of 1/N . By using:

ξtZt−1 = [IdN − diag(a0)H0t]Zt−1,

ξ2tZt−1 = [IdN − diag(a0)H0t]
2 Zt−1,

E0 [ξt | Ut] = S
0
[IdN − diag(a0)H0t]E0 [Zt−1 | Ut] ,

E0
£
ξ2t | Ut

¤
= S

0
[IdN − diag(a0)H0t]

2E0 [Zt−1 | Ut] ,

and the fact that:
E0 [Zt−1 | Ut]

0
x = O (1/N) ,

for any vector x which is not a constant vector, we get:

I (θ0) =
1

N
diag (a0)

−2 +
1

N2
M + o

µ
1

N2

¶
,
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where M is a N ×N matrix. Thus the parametric efficiency bound for the stepwise model
is such that:

B (θ0) = N
£
diag (a0)

2 +O (1/N)
¤
.

The asymptotic distribution for the maximum likelihood estimator bθT = (ba1,T , ...,baN,T ) fol-
lows:

Covas

h√
T (bak,T − ak,0) ,

√
T (baj,T − aj,0)

i
= N

£
a2j,0δk,j +ON(1/N)

¤
.

(a.20)

ii) Pointwise asymptotic distribution.

A pointwise estimator of A can be defined by:

bAT (v) =
NX
j=1

baj,T I( j−1
N

, j
N
] (v) .

We deduce from (a.20) the asymptotic variance of the estimator bAT (v), where T tends to
infinity and N = NT tends to infinity at a much smaller rate:

Covas

"r
T

NT

³ bAT (v)−A0(v)
´
,

r
T

NT

³ bAT (w)−A0(w)
´#

=
NX
i=1

NX
j=1

I( i−1N , i
N )
(v) I( j−1N , j

N )
(w)

£
a2i δi,j + o (1/NT )

¤
'

½
A0(v)

2, v = w
0 v 6= w

.

This result can be directly compared with the pointwise asymptotic distribution of the min-
imum chi-square estimator given in Proposition 14 iii.
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Figure 2.1: Simulated path for process Ut, t ∈ N, with proportional hazard and functional
dependence parameter A such that 1−A−1 is a gamma distribution with parameter δ = 0.1.
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Figure 2.2: Copula p.d.f. for process Ut, t ∈ N, with proportional hazard and functional
dependence parameter A such that 1−A−1 is a gamma distribution with parameter δ = 0.1.
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Figure 2.3: Autocorrelogram for process Xt, t ∈ N, with functional dependence parameter A
such that 1−A−1 ∼ γ (δ), δ = 0.1, and marginal distribution F (x) = 1− (1 + x)τ , τ = 1.05.
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Figure 2.4: Simulated path for process Ut, t ∈ N, with proportional hazard and functional
dependence parameter A such that 1−A−1 is a gamma distribution with parameter δ = 1.



166

Figure 2.5: Copula p.d.f. for process Ut, t ∈ N, with proportional hazard and functional
dependence parameter A such that 1−A−1 is a gamma distribution with parameter δ = 1.
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Figure 2.6: Autocorrelogram for process Xt, t ∈ N, with functional dependence parameter A
such that 1−A−1 ∼ γ (δ), δ = 1, and marginal distribution F (x) = 1− (1 + x)τ , τ = 1.05.
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Figure 2.7: Functional dependence measure for process Ut, t ∈ N, with 1 − A−1 ∼ γ (δ):
δ = 0.1 (solid line), δ = 1 (dashed line).



Chapter 3

Efficient Nonparametric Estimation of
Models with Nonlinear Dependence

Abstract

In this paper we introduce models with constrained nonparametric dependence, which
specify the conditional distribution or the copula in terms of a one-dimensional functional
parameter. They provide a convenient framework for the analysis of nonlinear dependence in
financial applications. As such they can be viewed as an approach that lies in between stan-
dard parametric specifications (which are in general too restrictive) and the fully unrestricted
approach (which is not well-suited for the interpretation of the patterns of nonlinear depen-
dence and suffers from the curse of dimensionality). A natural nonparametric estimator is
defined by minimizing a chi-square distance between the constrained densities in the family
and an unconstrained kernel estimator of the density. We derive the asymptotic properties
of this estimator and of its linear functionals. We show that, under an appropriate choice of
the functional parameter, the expected nonparametric one-dimensional rate of convergence
of the estimator is obtained. Finally we derive the nonparametric efficiency bound and show
that the minimum chi-square estimator is nonparametrically efficient.

Keywords: Nonlinear Dependence, Copula, Nonparametric Estimation, Efficiency.
JEL classification: C14, C51

169



170

3.1 Introduction

The modeling of nonlinear dependence is a topic of crucial importance in applied finance. In
addition to traditional problems, such as the dependence between returns of different assets
for portfolio analysis, recent developments in risk management in finance emphasize the need
to carefully assess the nonlinear dependence between risks. Typical examples are the study
of dependence:
i) between the default risk of different firms to capture the so-called default correlation,

that is some clustering in corporate failure [see e.g. Duffie, Singleton (1999), Li (2000),
Schönbucher, Schubert (2001), and Gourieroux, Monfort (2002a)],
ii) between the risk on interest rate and the default risk to analyze the term structure of

the spread between T-bonds and corporate bonds,
iii) between the extreme risks in different budget lines of a bank’s balance sheet, in order

to aggregate the Value at Risk (VaR), and the required capital, computed per line [see e.g.
Durrleman, Nikeghbali, Roncalli (2000), and Embrechts, Höing, Juri (2001)],
iv) between intertrade durations (durations between consecutive trades of an asset) to

detect clustering effects in trade activity and analyse the liquidity risk.
In most of these problems the nonlinear dependence relates to the whole joint distribution of
the variables (not only the first conditional moments) and the main concern is often about
the tail of the joint distribution, as when the required capital is introduced to hedge extreme
risks. Moreover, these problems generally involve a rather large number of variables. Indeed
in example i) above the number of firms may run well over hundred, and in example iii) the
number of budget lines is typically between ten and twenty.
Different approaches have been proposed in the econometric and statistical literature to

describe nonlinear dependence. They can conveniently be classified in two broad groups:
parametric and nonparametric approaches.
Among the class of parametric specifications, beyond the traditional approaches such as

ARCH or switching regimes models, a considerable attention has been recently devoted to
methods based on the joint distribution of the risk variables, such as copulas1, especially in
the framework of financial risk management. Let us briefly recall the definition of a copula,
focusing for expository purpose on a pair of continuous variables X and Y , even if the
definition can be extended to any multidimensional framework [see Joe (1997), and Nelsen
(1999) for general presentations and the references therein]. Let F (x, y) denote the bivariate
cumulative distribution function (c.d.f.), FX(x) and FY (y) the two marginal c.d.f. The joint
c.d.f. can always be written as [Sklar (1959)]:

F (x, y) = C [FX(x), FY (y)] ,

where C is the c.d.f. of a distribution on [0, 1]2, with uniform marginal distributions. C
is called the copula c.d.f., and is the c.d.f. of the standardized variables U = FX(X),
V = FY (Y ) which are uniformly distributed on [0, 1]. The associated density

c(u, v) =
∂2C

∂u∂v
(u, v) ,

1Other methodologies involve for instance real Laplace transforms, or nonlinear canonical analysis [see
Gagliardini, Gourieroux (2002a) for a survey].
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is the copula p.d.f. (simply called copula in the rest of the paper). Copulas present several
advantages for modeling nonlinear dependence. First, they allow to specify the joint distri-
bution by separating the marginal features (included in FX and FY ) and some dependence
features (included in the copula). The dependence features are those which are invariant by
increasing transformations of either X or Y . Second, they are a functional representation
of dependence, providing a rich description of the patterns of nonlinear dependence in the
different regions of the bivariate distribution.
There exists a large literature on copulas, which focuses on the analysis of positive de-
pendence and on the search for parametric families of copulas [Joe (1997), Nelsen (1999)].
However, the dependence between financial variables such as returns, volatility or times to
default is not well-captured by standard parametric copulas. Indeed the standard paramet-
ric copulas are often excessively constrained, which causes a poor fit to the data. Moreover,
they are not appropriate for separate analysis of the dependence between low, medium and
high risk [as required in example iii)], since copula parameters typically affect dependence
in the whole sample space. In addition, they are not well suited for describing the depen-
dence between quantitative and qualitative risks [as in example ii)]. Finally, it is rare that a
standard parametric family of copulas admits a clear structural interpretation for financial
applications.
The alternative approach to the modeling of nonlinear dependence consists in estimating

nonparametrically the unrestricted joint density [see e.g. Silverman (1986), Härdle (1990),
Scott (1992) for surveys on density estimation]. The method has been used by Deheuvels
(1980) and Fermanian, Scaillet (2002) to deduce a nonparametric estimate of the associated
unrestricted copula. The advantage of this approach is that it does not require any additional
assumption on the nonlinear dependence. However it also has some drawbacks. Indeed,
the absence of any structure complicates the interpretation of the patterns of nonlinear
dependence, especially when more than 2 variables are considered, since the joint density
is hard to visualize. Moreover this approach suffers from the curse of dimensionality when
the number of variables of interest is larger than 4 or 5. Even in the bivariate case, it
can provide inaccurate and erratic results for the VaR [see example iii)]. Indeed the Value
at Risk is evaluated by considering rather extreme observations; the number of extreme
observations is typically small even if the total number of observations is large and sufficient
to apply bivariate nonparametric techniques for the estimation of the central part of the
density function.
In this paper we explore the intermediate approach in which the joint density is con-

strained and depends on a small number of one-dimensional functional parameters (that
are functions of one variable). Our aim is to provide efficient nonparametric estimators
for the one-dimensional functional parameters that characterize nonlinear dependence. Our
approach has several advantages. First, by using functional parameters instead of scalar
parameters, we achieve high flexibility, while maintaining a clear structural interpretation of
nonlinear dependence in terms of latent factors, or omitted heterogeneity. Second, the graph-
ical representation of the one-dimensional functional parameters highlights the patterns of
nonlinear dependence. For instance, in the example of dynamic proportional hazard models
used for the analysis of liquidity risk [see example iv) above, and example iv) in section
3.2], the serial dependence in the whole sample depends on the elasticity of the functional
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parameter, while tail dependence is revealed by its behaviour close to the boundary points
of its support. Third, we show in the paper that the rate of convergence of the estimators,
both for the functional parameters and for the joint density, is the standard one-dimensional
nonparametric rate, and is independent of the number of underlying variables of interest.
Constrained nonparametric densities have already been analyzed in the literature, under

various restrictions. A typical example is the transformation model, in which an unknown
transformation of the endogenous variable satisfies a linear regression model with iid errors
[see Han (1987a,b), and Horowitz (1996); see Gorgens, Horowitz (1999) for the case with
censoring], or the location-scale model in which the mean and the volatility are unrestricted
functions of a set of regressors [see e.g. Härdle, Tsybakov (1997)]. To avoid the curse of
dimensionality when the number of regressors is high, these models typically adopt additivity
assumptions [see e.g. Hastie, Tibshirani (1990)], or assume an index structure [see e.g. Här-
dle, Stocker (1989), Powel, Stock, Stocker (1989), Ichimura (1993), Horowitz, Härdle (1996)],
that is the endogenous variable is explained by the set of regressors only by means of an
unknown scalar transformation (called index). These nonparametric constrained regressions
are suitable for describing dependence between an endogenous variable and a set of regres-
sors, but not for instance for modeling dependence between several endogenous variables,
such as times to default for several borrowers [as in example i)]. Moreover, they have been
introduced as extensions of the standard linear model, which explains the form of the index
function, which is often linear and therefore neglects cross effects. Moreover they assume
that the same index matters for the extreme and standard values of the endogenous variable.
Our purpose is to consider other types of nonparametric constraints better suited for finan-
cial or duration analysis, and admitting structural interpretations, for instance in terms of
factors, or omitted heterogeneity.
For expository purpose, we discuss the case of bivariate distributions, even if the results

of the paper can be extended to any multidimensional framework. We consider two alter-
native ways to specify the nonlinear dependence between two variables by introducing a
one-dimensional functional parameter a into the conditional distribution, or the copula. In
the latter case the parameterized copula is denoted by c(u, v; a), where a is a function defined
on [0, 1]. Such a constrained copula can be used for different purposes. In cross-sectional
studies, it will be used to specify the joint distribution F (x, y) of two risk variables, such
as corporate lifetimes in the joint analysis of default. This amounts to parameterize the
bivariate density f(x, y;A) by three one-dimensional functional parameters:

A = (fX , fY , a) ,

where fX and fY are the unconstrained marginal densities and a the one-dimensional para-
meter, which characterizes the copula.
In a time series framework, it can be used to study the risk dynamics. If (Xt) is a station-
ary Markov process, the dynamics is fully characterized by the joint bivariate distribution
F (xt, xt−1), whose marginal distributions are identical because of stationarity. In this case
the bivariate distribution f(xt, xt−1;A) is parameterized by two one-dimensional functional
parameters: A = (f, a), where f is the p.d.f. of the stationary distribution and a the func-
tional parameter which characterizes the copula. Such a dynamic specification is relevant for
liquidity analysis [see example iv) above], where (Xt) measures intertrade durations, or in
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term structure models where the variables correspond to underlying factor processes which
influence both the dynamics and patterns of the term structure.
Since the functional parameters are one-dimensional, we can expect that the estimators con-
verge at the one-dimensional nonparametric rate

√
ThT , where hT is a bandwidth2. However

it is well-known that the rate of convergence is not invariant by one to one changes of the
functional parameter. For instance a nonparametric estimator of a marginal p.d.f. converges
generally at rate

√
ThT , whereas the corresponding estimator of the c.d.f. converges at a

parametric rate
√
T . To ensure the expected rate, it is necessary to assume that the joint

density f (x, y;A) is first order differentiable with respect to functional parameter A, and
the differential is nondegenerate.
The paper is organized as follows. In section 2 we introduce the differentiability assump-

tion, define the information operator and discuss identifiability. Various representations of
the information operator are introduced, and its invertibility is discussed. In section 3 we
consider several examples of constrained nonparametric families of bivariate densities, for
which the joint p.d.f. is specified either by means of the conditional density and a mar-
ginal distribution, or by the copula and the two marginal distributions. For each example
we discuss the structural interpretations, the parameter choice, and provide the closed form
expression of the first order differential and of the information operator. In section 4, we con-
sider a natural nonparametric estimator of functional parameter A. In the cross-sectional
framework the idea is to minimize a chi-square distance between the constrained density
f (x, y;A) and an unconstrained kernel estimator of the density, whereas in the time series
framework the conditional densities are used. We derive the asymptotic properties of the
estimator and of its linear functionals. Intuitively the estimator will take account of the
whole information included in the observations, since the unconstrained kernel estimator
of the joint density provides semi-parametric efficient estimators for any marginal or cross-
moment of (X,Y ). Thus we can expect some efficiency property of the chi-square estimator.
The nonparametric efficiency of the minimum chi-square estimator is proved in section 5,
where the nonparametric efficiency bounds are also derived for the cross-sectional and time
series framework. In many examples the functional parameter A is subject to restrictions,
which are due either to the natural constraint on the marginal density to sum up to 1, or to
identification restrictions. The extension of the results to these cases is considered in section
6. Proofs are gathered in Appendices.

3.2 The information operator

In this section we discuss the local identification of the functional parameter by introducing
the information operator I. The main ideas are similar to those in the usual parametric
framework, but they are generalized to take into account the functional nature of the pa-
rameters. As mentioned before the basic notions are presented in dimension 2, but their
extension to any dimension is straightforward.

2Note that this argument is independent of the initial number of variables.
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3.2.1 Differentiability condition

Let f (x, y;A) be a nonparametric family of bivariate densities, where the functional parame-
ter A belongs to an open set A of Rq-valued one-dimensional functions, with a norm k.kL2(ν),
where the measure ν will be specified later on in the text [see section 2.3 ii)]. The family
f (x, y;A) can be parameterized in different ways. For instance, if A is differentiable, we can
replace the initial function A by its derivative dA/dw, which provides the same information
(up to a scalar parameter). However it is well-known that nonparametric estimators of A
and dA/dw can have very different rates of convergence [see e.g. Silverman (1978), Stone
(1983)]. This explains why it is necessary to standardize the functional parameter A. This
standardization is introduced by means of the derivative of the density with respect to A.

Assumption A.1 The distributions of interest are continuous with respect to the Lebesgue
measure λ2, with p.d.f. f(x, y;A). We denote by PA the distribution associated to f(x, y;A).

Assumption A.2 The Hadamard derivative of log f(x, y;A) with respect to A exists:

log f(x, y;A+ h)− log f(x, y;A) = hD log f(x, y;A), hi+R(x, y;A, h),

for A,A+ h ∈ A, where:

i. D log f(., .;A) : L2 (ν)→ L2(PA) is a bounded linear operator, for any A ∈ A;

ii. the residual term R(x, y;A, h) is such that kR(X,Y ;A, h)kL2(PA) = o
³
khkL2(ν)

´
, uni-

formly on h in the class of compact sets, for any A ∈ A 3.

3.2.2 Identification and Information.

Let A0 ∈ A denote the true value of the functional parameter, and f(., .) = f(., .;A0) the
corresponding true p.d.f.. In this section we discuss the identification of A0 as a minimizer
of the chi-square proximity measure:

Q(A) =

Z Z
[f(x, y)− f(x, y;A)]2

f(x, y)
dxdy, A ∈ A.

Under Assumption A.2 and an additional technical condition4, Q is well-defined in a neigh-
borhood of A0 (w.r.t k.kL2(ν)) and it is locally equivalent to the Kullback proximity measure
K(A) = E0 log [f(X,Y ;A)/f(X,Y )] (see Appendix 2).

i) Global identification

3Precisely: ∀A ∈ A, K ⊂ A compact: kR(X,Y ;A, h)kL2(PA) / khkL2(ν) → 0, uniformly in h ∈ K [see
Aït-Sahalia (1993), Van der Vaart, Wellner (1996)].

4See Assumption A.2.bis in Appendix 2.
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Under the global identification condition:

f(x, y;A) = f(x, y;A0) λ2-a.s., A ∈ A =⇒ A = A0,

A0 is the unique minimizer of Q over A.
ii) Local identification.

Under Assumption A.2 we can introduce the information operator I defined by5:

(g, Ih)L2(ν) = E0 [hD log f(X,Y ;A0), gi hD log f(X,Y ;A0), hi] , (3.1)

for g, h ∈ L2 (ν). Under Assumption A.2 the information operator I is a bounded, nonneg-
ative, self-adjoint operator from L2 (ν) in itself.
Let us consider the following assumption:

Assumption A.3. i. Local identification: the differential operator has zero null space:

hD log f(X,Y ;A0), hi = 0 P0-a.s., h ∈ L2 (ν) =⇒ h = 0.

Assumption A.3 i. is equivalent to any of the following conditions on the information operator
(see Appendix 2):

i. the information operator I has a zero null space:

Ih = 0, h ∈ L2 (ν)⇒ h = 0;

ii. I is a positive operator:

(h, Ih)L2(ν) = 0, h ∈ L2 (ν) ⇒ h = 0.

Under Assumption A.3. i. and an additional technical condition6, A0 is locally identified
in the following sense (see Appendix 2): A0 is the unique minimizer of Q over any sufficiently
small compact set Θ ⊂ A that contains A0, and:

∀ε > 0 : inf
A∈Θ\Bε(A0)

Q(A) > Q(A0) = 0,

where Bε (A0) is a L2 (ν)-ball of radius ε centered at A0. Assumption A.3 i. is weaker
than invertibility of the information operator I. In the next section we show that, if the
information operator admits a specific representation, then Assumption A.3 i. is sufficient
for invertibility of I.
The identification of A0 over noncompact subsets requires a stronger assumption:

5See e.g Begun, Hall, Huang, Wellner (1983), Bickel, Klaassen, Ritov, Wellner (1993), Gill, Van der Vaart
(1993), Holly (1995). In Appendix 1 we relate definition (3.1) to those adopted in the literature.

6See Assumption A.3.* in Appendix 2.
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Assumption A.3. ii. Local identification:

inf
h:khkL2(ν)=1

(h, Ih)L2(ν) > 0.

Under Assumption A.3. ii. A0 is the unique minimizer of Q over any sufficiently small subset
Θ ⊂ A containing A0, and:

∀ε > 0 : inf
A∈Θ\Bε(A0)

Q(A) > Q(A0) = 0.

Assumption A.3 ii. implies in particular that operator I is invertible7.

3.2.3 Decompositions of the information operator

The differential operator and the information operator admit different forms in the appli-
cations. We consider in this section a particular decomposition of the information operator
which is common in applied examples [see section 3.2], and discuss in this framework the
choice of the measure ν and the invertibility of the information operator.

i) A decomposition of the information operator.

A case of particular importance for the applications is when the information operator I
admits the representation:

(g, Ih)L2(ν) =

Z
g (w)

0
α0(w;A0)h(w)dw +

Z Z
g (w)

0
α1(w, v;A0)h(v)dvdw, (3.2)

where α0 and α1 are matrix-valued functions, such that α0(w;A0) = α0(w;A0)
0, α1(v, w;A0) =

α1(w, v;A0)
0
, ∀v, w. Thus the information operator I is given by:

Ih (w) =
α0(w;A0)

dν/dλ(w)
h(w) +

Z
α1(w, v;A0)

dν/dλ(w)
h(v)dv,

and admits a decomposition in two components, corresponding to functions α0 and α1,
respectively. This decomposition is valid for the applied examples presented in section 3.2.
To provide some insights, let us consider the case where the joint density f(x, y;A) depends
both on the value of function A at points x, y and on functionals of A. Then the differential
operator admits the form:

hD log f(x, y;A), hi = γ0(x, y;A)
0
h(x) + γ1(x, y;A)

0
h(y)

+

Z
γ2(x, y, w;A)

0
h(w)dw, (3.3)

7Since I is a bounded self-adjoint operator, we have: infh:khkL2(ν)=1(h, Ih)L2(ν) = infλ∈σ(I) λ, where
σ(I) ⊂ R+ is the spectrum of I [see Yosida (1995), Theorem 2, p. 320]. Thus Assumption A.3. ii. is
equivalent to infλ∈σ(I) λ > 0, whereas the invertibility of I just requires 0 /∈ σ(I).
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where γ0, γ1, γ2 are Rq-valued functions. The information operator admits decomposition
(3.2) with:

α0(w;A) =

Z
γ0(w, y;A)γ0(w, y;A)

0
f(w, y)dy

+

Z
γ1(x,w;A)γ1(x,w;A)

0
f(x,w)dx

≡ E
h
γ0,tγ

0
0,t | Xt = w

i
fX(w) +E

h
γ1,tγ

0
1,t | Yt = w

i
fY (w),

(3.4)

α1(w, v;A) = γ0(w, v;A)γ1(w, v;A)
0
f (w, v)

+

Z
γ0(w, z;A)γ2(w, z, v;A)

0
f(w, z)dz

+

Z
γ1(z, w;A)γ2(z, w, v;A)

0
f (z, w) dz

+
1

2

Z Z
γ2(z, y, w;A)γ2(z, y, v;A)

0
f(z, y)dzdy + sym (w↔ v)

0

(3.5)

where γ0,t = γ0 (Xt, Yt;A), γ01,t = γ1 (Xt, Yt;A). The component α0 of the information
operator arises from differentiation of those parts of the joint density f(x, y;A) which depend
on the value of the parameterA at some point. α0 is called local component. The components
of the density which depend on functionals of A contribute only to term α1

8.

ii) Choice of the measure ν

Let us assume that the information operator satisfies decomposition (3.2), and discuss the
choice of the measure ν to ensure that the differential operator D log f(x, y;A) is a bounded
operator from L2 (ν) to L2(PA).

Proposition 3.1 : Assume that the information operator satisfies the decomposition (3.2).
For any A ∈ A, let α(.;A) be a positive definite matrix function such that:Z Z °°°α (x;A)−1/2 α1(x, y;A)α (y;A)−1/2°°°2 dxdy <∞,∀A, (3.6)

where k.k is a matrix norm on Rq×q. Let the measure ν be such that:

∀A : ∃CA > 0 : CA
dν

dλ
(v)Idq ≥ max {α0(v;A), α(v;A)} , ∀v. (3.7)

Then D log f(., .;A) is a bounded operator from L2 (ν) to L2(PA), for any A ∈ A.
Proof. See Appendix 1.
8A more complete discussion of the link between representations of the differential operator and repre-

sentations of the information operator is provided in Appendix 1.
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The choice of a measure ν which satisfies the conditions in Proposition 1 depends in gen-
eral on the parameterization. In order to illustrate this point, let us consider an independent
family: f (x, y;A) = fX(x;A)fY (y;A).
i) If parameter A consists of the marginals themselves, A = (fX , fY ), we get:

hD log f(x, y;A), hi = hX(x)

fX(x;A)
+

hY (y)

fY (y;A)
, h = (hX , hY )

0
,

and:

E0 [hD log f(X,Y ;A0), gi hD log f(X,Y ;A0), hi] =
Z

gX(x)hX(x)

fX(x;A0)
dx

+

Z
gY (y)hY (y)

fY (y;A0)
dy +

Z Z
gX(x)hY (y)dxdy +

Z Z
hX(x)gY (y)dxdy.

Thus:

α0(w;A0) =

µ
1/fX(w;A0) 0

0 1/fY (w;A0)

¶
, α1(w, v;A0) =

µ
0 1
1 0

¶
.

The choice α = α0 satisfies condition (3.6) in Proposition 1. Condition (3.7) becomes:

∀A : ∃CA : CA
dν

dλ
(v) ≥ max

½
1

fX(v;A)
,

1

fY (v;A)

¾
, ∀v.

ii) If instead we choose A =
³
f
1/2
X , f

1/2
Y

´
, we get:

E0 [hD log f(X,Y ;A0), gi hD log f(X,Y ;A0), hi] = 4
½Z

gX(x)hX(x)dx

+

Z
gY (y)hY (y)dy +

Z Z
[gX(x)hY (y) + hX(x)gY (y)] fX(x;A)

1/2fY (y;A)
1/2dxdy

¾
,

that is α0(v;A0) = 4Id2 and:

α1(w, v;A0) = 4

µ
0 fX(w;A)

1/2fY (v;A)
1/2

fX(v;A)
1/2fY (w;A)

1/2 0

¶
.

Conditions (3.6) and (3.7) are satisfied by α = Id2, ν = λ.

iii) Finally, if A = (log fX , log fY ), we get:

E0 [hD log f(X,Y ;A0), gi hD log f(X,Y ;A0), hi] =
Z

gX(x)hX(x)fX(x;A)dx

+

Z
gY (y)hY (y)fY (y;A)dy +

Z Z
[gX(x)hY (y) + hX(x)gY (y)] fX(x;A)fY (y;A)dxdy,
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that is:

α0(v;A0) =

µ
fX(v;A0) 0

0 fY (w;A0)

¶
,

α1(w, v;A0) =

µ
0 fX(w;A)fY (v;A)

fX(v;A)fY (w;A) 0

¶
.

The choice α = α0 satisfies condition (3.6) in Proposition 1. Condition (3.7) is equivalent
to:

∀A : ∃CA : CA
dν

dλ
(v) ≥ max {fX(v;A), fY (v;A)} , ∀v,

that is the measure ν dominates both marginal distributions in the family.

iii) Invertibility of the information operator

When the information operator satisfies decomposition (3.2) with additional restrictions on
α0, a zero null space of the information operator I is sufficient for its invertibility9.

Proposition 3.2 : Assume the conditions of Proposition 1, and in addition let α0(v;A) be
invertible, ∀v,∀A, such that:

∀A : ∃ eCA > 0 : eCA
dν

dλ
(v)Idq ≤ α0(v;A), ∀v.

Assume further that the information operator I has a zero null space. Then the information
operator is continuously invertible.
Proof. See Appendix 1.

3.3 Examples

3.3.1 Differentials of the copula and of the conditional and mar-
ginal densities.

A family of bivariate joint densities can be specified in various ways. One possibility is to
parameterize the conditional density and one marginal distribution. Alternatively we can
parameterize the copula and the marginal distributions. In both cases, the differential of the
joint density can be recovered from the differentials of its components.

i) Conditional density and marginal density.

Assume fX|Y (x | y;A) [resp. fY (y;A)] is a differentiable family of conditional distributions
of X given Y [resp. of marginal distributions of Y ], parameterized by function A. Let

9The following proposition uses the theory of Fredholm operators [see Van der Vaart (1994) for similar
results].
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D log fX|Y , and D log fY denote their differentials with respect to A. A family of bivariate
densities is defined by:

f(x, y;A) = fX|Y (x | y;A)fY (y;A).
We have (see Appendix 3) 10:

Proposition 3.3 : The differential of log f(x, y;A) is given by:

D log f(x, y;A) = D log fX|Y (x | y;A) +D log fY (y;A).

Moreover:

D log fY (y;A) = E
A
[D log f(X,Y ;A) | Y = y]

=

Z
D log f(x, y;A)fX|Y (x | y;A) dx.

Thus D log fX|Y (x | y;A) is the residual in the projection of D log f(x, y;A) on Y ; in
particular it is orthogonal to D log fY (y;A):

E
A

£­
D log fX|Y (X | Y ;A), h® hD log fY (Y ;A), gi¤ = 0, ∀h, g ∈ L2 (ν) . (3.8)

As a consequence the information operator I is the sum of a conditional and a marginal
information operator:

I = IX|Y + IY ,

where IX|Y and IY are defined by:

(g, IX|Y h)L2(ν) = E0
£­
D log fX|Y (X | Y ;A0), g

® ­
D log fX|Y (X | Y ;A0), h

®¤
,

(g, IY h)L2(ν) = E0 [hD log fY (Y ;A0), gi hD log fY (Y ;A0), hi] ,

for h, g ∈ L2 (ν).
An interesting special case occurs in the stationary time-series framework when there

exists a unique stationary distribution. Then the conditional and marginal distributions are
linked by the Chapman-Kolmogorov equation:

f (x;A) =

Z
fX|Y (x | y;A) f (y;A) dy. (3.9)

By differentiating this equation, we get the relationship satisfied by the associated differen-
tials.
10The differential D log fY (y;A) is an operator indexed by y. Its integral

R
ϕ (y)D log fY (y;A) dy with

respect to a function ϕ is defined in the usual distributional sense as:¿Z
ϕ (y)D log fY (y;A) dy, h

À
:=

Z
ϕ (y) hD log fY (y;A) , hi dy.

Similarly for the other differentials.
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Proposition 3.4 : If the marginal distribution satisfies the Chapman-Kolmogorov condi-
tion, the differential Df satisfies the integral equation:

Df(x;A) =

Z
DfX|Y (x|y;A)f(y;A)dy +

Z
fX|Y (x|y;A)Df(y;A)dy.

ii) Copula and marginal distributions

A family of bivariate densities for (X,Y ) can also be defined by specifying the copula
c(u, v;A), and the marginal distributions fX(x;A), fY (y;A):

f(x, y;A) = c [FX(x;A), FY (y;A);A] fX(x;A)fY (y;A) .

Proposition 3.5 : The differential of the density f(x, y;A) is given by:

D log f(x, y;A) = D log c [FX(x;A), FY (y;A);A]

+D log fX(x;A) +D log fY (y;A)

+
∂ log c

∂u
[FX(x;A), FY (y;A);A]

Z x

−∞
fX(z;A)D log fX(z;A)dz

+
∂ log c

∂v
[FX(x;A), FY (y;A);A]

Z y

−∞
fY (z;A)D log fY (z;A)dz.

(3.10)

Proof. See Appendix 3.

In a cross-sectional framework the functional parameter A is often chosen as:

A = (fX , fY , a),

where a characterizes the copula. The differential of log f(x, y;A) is given in the following
corollary, where the effects of the different functional parameters are distinguished.

Corollary 3.6 : The differential of the density f(x, y;A) is given by:

Da log f(x, y;A) = D log c [FX(x), FY (y); a] ,

hDfX log f(x, y;A), hi =
∂ log c

∂u
[FX(x), FY (y); a]

Z x

−∞
h(z)dz +

h(x)

fX(x)
,

hDfY log f(x, y;A), hi =
∂ log c

∂v
[FX(x), FY (y); a]

Z y

−∞
h(z)dz +

h(y)

fY (y)
.

Let us define the information operator Icop associated with the copula density:

(g, Icoph)L2(ν) = E0 [hD log c(U, V ;A0), gi hD log c(U, V ;A0), hi] ,
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for h, g ∈ L2 (ν). Since:

EA [hD log c (U, V ;A0) , hi | U ] = EA [hD log c (U, V ;A) , hi | V ] = 0,
∀h ∈ L2 (ν), the first term in the decomposition of the differential [see equation (3.10)] is
orthogonal to the second and the third ones. Let IX and IY be the marginal information
operators [defined in i)], and IXY , IY X the cross operators, defined by (g, IXY h)L2(ν) =
E0 [hD log fX(X;A0), gi hD log fY (Y ;A0), hi], and similarly for IY X . Then the information
operator I can be decomposed as:

I = Icop + IX + IY + IXY + IY X + J ,

where the term J comes from the last two terms in (3.10).
In particular when the parameter is A = (fX , fY , a) [see Corollary 6], the information

operator I has a block decomposition, with univariate versions of IX , IY , and Icop on the
diagonal. The elements out of the diagonal corresponding to (fX , a) and (fY , a) are not zero
due to the first terms in the differentials with respect to the marginal distributions given in
Corollary 6. These terms arise since the efficient copula estimator provides information on
the marginal distributions (see Genest, Werker [2001]).

3.3.2 Examples.

We consider below different constrained nonparametric families of bivariate densities, and
give the expressions of the differential of the copula or of the conditional density (see Appen-
dix 4 for some derivations). We provide an appropriate choice of the functional parameter in
each example, in order to ensure that Assumption A.2 is satisfied and the information oper-
ator admits the representation (3.2). As seen from the examples, this choice is the difficult
part when specifying nonlinear dependence.

i) Truncated model

Let us consider a latent variable X∗ with p.d.f. f∗, f∗ > 0, and assume that, for any value
of Y = y, the value of X is drawn in the conditional distribution of X∗ given X∗ < y. This
situation occurs in models with truncation, where the truncation variable Y is independent
of the latent variable X∗ of interest. The parameter of interest is the pdf f∗ of the latent
variable. The conditional p.d.f. of X given Y is:

f (x | y) = f∗(x)R y
−∞ f∗(z)dz

Ix≤y.

By choosing the parametrization A = log f∗, the differential of log f (x | y;A), for x ≤ y, is
given by:

hD log f (x | y;A) , hi = h(x)−
Z

f (z | y;A)h(z)dz
= h(x)− EA [h(X) | Y = y] .
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Let us now consider the conditional information operator IX|Y . By definition we have:¡
g, IX|Y h

¢
L2(ν)

= E0 {(g(X)− E0 [g(X) | Y ]) (h(X)−E0 [h(X) | Y ])}
= E0Cov0 (g(X), h (X) | Y ) .

It admits the decomposition (3.2) with:

α0 (x;A) = fX(x;A),

α1(x, y;A) = −
Z

f (x | z;A) f (y | z;A) fY (z;A)dz.

Let us finally discuss the boundedness of the differential operator (Proposition 1). If we
choose α(x;A) = fX(x;A) we get:Z Z

α1(x, y;A)
2

α(x;A)α(y;A)
dxdy =

Z Z £R
f (x | z;A) f (y | z;A) fY (z;A)dz

¤2
fX(x;A)fX(y;A)

dxdy.

Thus condition (3.6) of Proposition 1 requires11:Z Z £R
f (x | z;A) f (y | z;A) fY (z;A)dz

¤2
fX(x;A)fX(y;A)

dxdy <∞. (3.11)

Moreover the measure ν has to satisfy:

∀A : ∃CA > 0 : CA
dν

dλ
(x) ≥ fX(x;A), ∀x. (3.12)

The measure ν must dominate the marginal density of X, for any distribution in the family.

ii) Truncated dynamic models.

Let S be a differentiable survivor function on R+ and let a be a positive function on R+.
The positive valued Markov process (Xt) follows a truncated dynamic model if its transition
survivor function satisfies:

P (Xt ≥ xt | Xt−1 = xt−1) =
S [xt + a(xt−1)]
S [a(xt−1)]

.

Thus the distribution of Xt given Xt−1 = xt−1 is the distribution of the excess X∗− a(xt−1),
where X∗ is truncated at a(xt−1), X∗ ≥ a(xt−1), and X∗ ∼ S. The patterns of serial
dependence in Markov process (Xt) are characterized by functional parameter a.

11Note that
R
f (x | z;A) f (y | z;A) fY (z;A)dz is the joint density of two observations of X having the

same (unknown) conditioning value Y . This distribution has marginals equal to fX(.;A), and the expression
in the LHS of (3.11) is the sum of its squared canonical correlations, see e.g. Dunford, Schwartz (1968), and
Lancaster (1968).
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Let us denote by g (resp. λ) the density (resp. the hazard function) corresponding to S.
The conditional distribution is given by:

f (xt | xt−1;A) = g [xt + a(xt−1)]R +∞
a(xt−1)

g(z)dz
, A = (a, log g)

0
.

The differential is:

hDa log f (x | y;A) , hi =

µ
d log g

dz
[x+ a(y)] + λ [a(y)]

¶
h(y),

hDlog g log f (x | y;A) , hi = h (x+ a(y))−EA [h (Xt + a(Xt−1)) | Xt−1 = y] .

The information operator admits the representation (3.2), with local component:

α0 (w;A) =

Ã
EA

h¡
d log g
dz

[Xt + at−1] + λ [at−1]
¢2 | Xt−1 = w

i
f(w;A) 0

0 fXt+at−1(w;A)

!
,

where at−1 = a (Xt−1) and f [resp. fXt+at−1] is the stationary density of Xt [resp. Xt +
a(Xt−1)].

iii) Stochastic unit root.

The stochastic unit root model has been introduced by Gourieroux and Robert (2001) to
study the links between long memory, endogenous switching regimes and heavy tails, often
encountered in financial time series. The process is defined by:

Xt =

½
Xt−1 + εt , with prob. π (Xt−1),
εt , with prob. 1− π (Xt−1),

where the εt are i.i.d. errors independent from Xt−1, with density g, g > 0, and π is a
function with values in ]0, 1]. This is a Markov process with two possible stochastic regimes,
corresponding to either a random walk, or a white noise12. A latent binary variable Zt can
be introduced, with Zt = 1 (resp. Zt = 0) when the process is in the random walk (resp.
white noise) regime. Such a specification underlies the analysis of purchasing power parity
(PPP), when it is assumed that unit roots can exist inside a band for the PPP equilibrium,
whereas mean-reverting effects exist outside the band [see e.g. Bec, Salem, Carrasco, (2001,
2002), and Rahbek, Shephard, (2002)]. Function π characterizes nonlinear serial dependence
properties of Markov process (Xt) [see Gourieroux, Robert (2001)]. For instance, the tail
behaviour of π (y) when y → ∞ characterizes the durations of (Xt) in the random walk
regime.
The conditional density is given by:

f (x | y) = π(y)g (x− y) + [1− π(y)] g (x) .

12The specification is easily extended to a second regime which is a stationary autoregression.
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For parameterization A = (log π, log g)
0
, the differential is given by:

hDlog π log f (x | y;A) , hi = r (x, y;A)h(y),

hDlog g log f (x | y;A) , hi = p1(x, y;A)h (x− y) + p0(x, y;A)h (x) ,

where r (x, y;A) = [f(x | y;A)− g(x;A)] /f(x | y;A), and p0, p1 are the filtering probabili-
ties:

p1(xt, xt−1;A) = PA

£
Zt = 1 | xt

¤
= PA [Zt = 1 | xt, xt−1]

= π (xt−1) g (xt − xt−1) / [π (xt−1) g (xt − xt−1) + (1− π (xt−1)) g (xt)] ,

and:
p0(xt, xt−1;A) = PA

£
Zt = 0 | xt

¤
= 1− p1(xt, xt−1;A).

The information operator admits representation (3.2) with:

α0(z;A0) =

 E0 [r
2
t | Xt−1 = z] f(z) 0

0
E0
£
p21,t | Xt −Xt−1 = z

¤
fXt−Xt−1(z)

+E0
£
p20,t | Xt = z

¤
f(z)


and α1 given in Appendix 4, where rt = r (Xt,Xt−1;A0), p0,t = p0 (Xt,Xt−1;A0), p1,t =
p1 (Xt,Xt−1;A0), f (resp. fXt−Xt−1) is the stationary density of Xt (resp. Xt −Xt−1), and
all functions are evaluated at A0. The component of α0(z;A0) relative to log π depends
on E0 [r

2
t | Xt−1 = z], which is the conditional chi-square distance between the conditional

distribution and the density of the innovation. The component relative to log g depends on
conditional expectations of the squared filtering probabilities, p21,t and p

2
0,t, givenXt−Xt−1 =

z and Xt = z respectively. The filtering probabilities are conditional to the innovation, since
the innovation εt is either equal toXt−Xt−1, when the process is in the random walk regime,
or to Xt when it is in the white noise regime.

iv) Dynamic models with proportional hazard.

This specification describes time series (Xt) of duration variables, where the lagged values are
explanatory variables with proportional hazard effect. Such models are used for measuring
liquidity risk from intertrade duration data [see Gagliardini, Gourieroux, (2002b)]. Since the
proportional hazard condition is invariant by increasing transformation, it only concerns the
copula of the process, and any stationary distribution can be imposed by an appropriate
marginal transformation. The distribution of the Markov process (Ut) with proportional
hazard and uniform marginal distribution can be written as:

P [Ut ≥ u | Ut−1 = v] = exp [−a (v)H0(u)] ,

where a is a positive function on [0, 1], and H0 is a baseline cumulated hazard on [0, 1].
Functions a and H0 are restricted by the condition of uniform margins:

1− u = E [P [Ut ≥ u | Ut−1]] , ∀u ∈ [0, 1] ,
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that is:

H−1
0 (z) = 1−

Z 1

0

exp [−za(v)] dv, z ≥ 0. (3.13)

Thus the proportional hazard copula of (Ut, Ut−1) is characterized by the functional parame-
ter a and it is given by:

c (u, v; a) = a(v)h0(u; a) exp [−a(v)H0(u; a)] ,

where H0(u; a) is defined by (3.13), and h0 = dH0/du. The distribution of Markov process
Xt = F−1(Ut) with proportional hazard and marginal cdf F is characterized by the two one-
dimensional functional parameters (f, a). In Gagliardini, Gourieroux (2002b) it is shown
that the strength of serial dependence in Markov process (Xt) is related to the elasticity
of function a, whereas the behaviour of the latter close to the boundary points v = 0,
v = 1 characterizes the tail dependence properties of the process. Note finally that two
functional parameters differing by a multiplicative constant, a and ka (say), define the same
proportional hazard copula.
The differential of the copula density is given by [see Gagliardini, Gourieroux (2002b)]:

hD log c (Ut, Ut−1; a) , hi = (1− at−1H0t) (ht−1/at−1 −E [ht−1/at−1 | Ut])

−E {(1− at−1H0t) (ht−1/at−1 −E [ht−1/at−1 | Ut]) | Ut}
= γ0(Ut, Ut−1)h (Ut−1) +

Z
γ1 (Ut, Ut−1, w)h(w)dw,

where at−1 = a(Ut−1), H0t = H0(Ut, a),

γ0 (u, v; a) =
1− a(v)H0(u; a)

a(v)
,

and γ1 is given in Gagliardini, Gourieroux (2002b), formula (a.13), Appendix 7. From (3.4),
(3.5) the copula information operator admits the form (3.2) with local component:

α0(w; a) =
1

a(w)2
,

and α1 given in Appendix 8 of Gagliardini, Gourieroux (2002b) 13 14.

13It is possible to consider the example of general distributions (X,Y ) with proportional hazard:

P [X ≥ x | Y = y] = exp [−a (y)Λ(x)] ,
where a is a positive function, and Λ is the baseline cumulated hazard.
14The results on proportional hazard copula can be extended to more general transformation copulas,

corresponding to the c.d.f. of variables (Ut, Vt) with uniform margins, satisfying:

H0(Ut) =
εt

a(Vt)
,

where a is a positive function, H0 is increasing, and the innovation εt is independent from Vt, with a distri-
bution with support in R+. The case where εt has an exponential distribution corresponds to proportional
hazard.
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v) Archimedean copula.

The family is usually defined by [see Genest and Mc Kay (1986)]:

C(u, v) = φ
£
φ−1(u) + φ−1(v)

¤
, (3.14)

where the (strict) generator φ−1 is a convex, decreasing function defined on (0, 1], such that
φ−1(1) = 0, and φ−1(0) = +∞. Many of the most well-known archimedean copulas are de-
rived from factor models. Typically they correspond to duration models, where the duration
variables X and Y are independent identically distributed conditionally to an omitted factor
Z, and the factor Z has identical proportional hazard effects on the duration distributions
[see e.g. Van der Berg (2001)] 15. In this case φ is the Laplace transform of the positive
random variable Z:

φ(s) = E [exp (−sZ)] , s ≥ 0. (3.15)

This specification is useful for modeling default correlation, with heterogeneity Z being a
latent economic factor with a common proportional hazard effect on the durations until
default X, Y of two firms. The patterns of the nonlinear dependence between X and Y are
characterized by the Laplace transform φ of the omitted factor Z. For instance, the strength
of the dependence is related to the dispersion of factor Z, whereas the tails of Z characterize
tail dependence and the age structure of default correlation in the distribution of X and Y
16.
Assume φ is twice continuously differentiable. The copula p.d.f. is:

c(u, v) =
φ
00 £
φ−1(u) + φ−1(v)

¤
φ
0 £
φ−1(u)

¤
φ
0 £
φ−1(v)

¤ .
Even if the generator φ (or φ−1) is a natural functional parameter for the Archimedean
copula, it does not satisfy the differentiability condition given in Assumption A.2. The
proposition below introduces an equivalent functional parameter in one-to-one relationship
with φ. Let us consider the transformed variables:

W = C(U, V )

Z = V .

Proposition 3.7 : The joint p.d.f. of W and Z is given by:

f(w, z) =
f∗(w)R z

0
f∗(v)dv

1w≤z, w, z ∈ (0, 1) ,

15The Archimedean copula admits a direct extension to multidimensional framework as φ
£Pn

i=1 φ
−1(ui)

¤
.

This is a typical example of symmetric copula with large dimension depending on a single one-dimensional
functional parameter. Clearly such symmetric copulas, useful in default correlation analysis, do not belong
to the class of index models.
16See Gagliardini, Gourieroux (2002a) and Gourieroux, Monfort (2002b).
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where the latent measure density f∗ is given by:

f∗(w) = −φ
00 £
φ−1 (w)

¤
φ
0 £
φ−1 (w)

¤ , w ∈ (0, 1) . (3.16)

Moreover we have a one-to-one relationship between the measure F ∗ and the generator φ−1

since:

F ∗ (w) = −φ0 £φ−1 (w)¤ ⇐⇒ φ−1 (y) =
Z 1

y

dw

F ∗ (w)
,

under the condition
R 1
0
1/F ∗(w)dw =∞ 17.

Proof. See Appendix 4.

The generator φ−1 and the function f∗ are identifiable up to a multiplicative constant.
This identification problem can be solved by imposing that f∗ is a p.d.f., as we will do in the
following. Then variables W and Z follow a truncation model [see example i)], with latent
density f∗ in (3.16) and Z ∼ U(0, 1).
We choose to parameterize the copula density by means of function

a = f∗. Thus the copula density is:

c(u, v; a) = a [C(u, v; a)]
F ∗ [C(u, v; a); a]
F ∗ (u; a)F ∗ (v; a)

,

where functional parameter a is a positive function defined on [0, 1] and such that:Z 1

0

a(v)dv = 1.

The differential is given by:

hD log c(u, v; a), hi = h [C(u, v; a)]

a [C(u, v; a)]
+

Z 1

0

γ (u, v, w; a)h(w)dw,

where function γ is given in Appendix 4. The information operator is of the form (3.2),
where the local component is given by:

α0(w, a) =
fW (w; a)

a(w)2
=

φ−1(w; a)
a(w)

,

17By the mean value theorem: F ∗(v) ' f∗(0)v, for v ' 0, and thus condition
R 1
0
1/F ∗(v)dv = ∞ is

satisfied if f∗(0) <∞. Since:
f∗ (0) = lim

w→0
f∗ (w) = lim

w→∞−
φ
00
(w)

φ
0
(w)

,

this condition is equivalent to:

lim
w→∞−

φ
00
(w)

φ
0
(w)

<∞.
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where fW (.; a) is the p.d.f. of variable W , and α1 is reported in Appendix 4.

vi) Extreme value copula

Let (Zi,Wi), i = 1, ..., n be independent pairs of random variables. Extreme value bivariate
copulas are associated with the limiting joint distribution of marginal maxima (maxi Zi,maxiWi),
as n tends to infinity. Extreme value copulas are of the form [see e.g. Joe (1997)]:

Cχ(u, v) = exp

½
(log u+ log v)χ

µ
log u

log u+ log v

¶¾
,

where the generator χ is a function defined on [0, 1], is convex, and satisfies:

max(v, 1− v) ≤ χ(v) ≤ 1.

Assume function χ is differentiable. The copula p.d.f. is given by:

cχ(u, v) =
C(u, v)

uv

½
− euev
log u+ log v

χ
00
(eu)

+
h
χ (eu) + evχ0

(eu)i hχ (eu)− euχ0
(eu)io ,

where eu = log u/ (log u+ log v), ev = log v/ (log u+ log v). The functional parameter χ does
not satisfy Assumption A.2. As in the example of the archimedean family, we look for a
parameter which is related to χ

00
. In order to get intuition, let us consider an alternative

characterization of function χ. The generator χ of an extreme value copula can be written
as (see e.g. Joe [1997], and Appendix 4):

χ (v) = 2

Z 1

0

max {(1− z) v, z (1− v)} dF ∗(z),

where F ∗ is a c.d.f. on [0, 1] such that:
R 1
0
zdF ∗(z) = 1/2. When F ∗ admits a density f∗,

we get:
χ
00
= 2f∗.

Thus, an extreme value copula can be parameterized by the functional parameter a = f∗ =
χ
00
/2:

c(u, v; a) =
C(u, v; a)

uv

½
− 2euev
log u+ log v

a (eu)
+
h
χ (eu; a) + evχ0

(eu; a)i hχ (eu; a)− euχ0
(eu; a)io ,

and the functional parameter a is a positive function defined on [0, 1] satisfying the con-
straints: Z 1

0

a(v)dv = 1,
Z 1

0

va(v)dv = 1/2.
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The differential of the copula density is of the form:

hD log c (u, v; a) , hi = γ0 (u, v; a)h (eu) + Z 1

0

γ1 (u, v, w; a)h(w)dw,

where:

γ0 (u, v; a) =

½
a (eu)− log u+ log v

2euev
·
1−

Z eu
0

wa(w)dw

¸ ·Z eu
0

a(w)dw −
Z eu
0

wa(w)dw

¸¾−1
.

The copula information operator admits representation (3.2) with local component:

α0 (w; a) = Ea

h
γ0 (U, V ; a)

2 | eU = w
i
feU (w; a) ,

where eU = logU/ (logU + log V ), and feU is the density of eU .
vii) Markov processes with finite dimensional canonical decomposition

Nonlinear canonical analysis provides a decomposition of a stationary Markov process Xt,
t ∈ N, in orthogonal functional directions ϕj(Xt), ψj(Xt−1), j ∈ N varying, of decreasing
nonlinear dependence18. Functions ϕj, ψj, j varying, are called canonical directions, and λj =
corr

£
ϕj(Xt), ψj(Xt−1)

¤
, j varying, are the associated canonical correlations. The canonical

decomposition of Markov process (Xt) is characterized, up to increasing transformations of
the canonical directions, by the canonical decomposition of the copula.
A stationary Markov process with one dimensional canonical decomposition is obtained

when λj = 0, j ≥ 2, and λ1 = λ > 0 [see Gourieroux, Jasiak (2001)]. Its copula is given by:

c(u, v) = 1 + λϕ (u)ψ (v) ,

where the canonical directions ϕ and ψ satisfy the conditions:Z 1

0

ϕ (u) du =

Z 1

0

ψ (v) dv = 0,

with the normalization: Z 1

0

ϕ (u)2 du =

Z 1

0

ψ (v)2 dv = 1,

and are such that the copula density is positive. Let us for simplicity consider the case of
reversible Markov processes, that is ϕ = ψ. Then the copula density can be parameterized
by a =

√
λϕ, and we get:

c(u, v) = 1 + a(u)a(v),

where the functional parameter a satisfies the constraint:Z 1

0

a(v)dv = 0.

18See Lancaster (1968), and Dunford, Schwartz (1968); see also Gourieroux, Jasiak (2002) for an application
to intertrade durations.
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The canonical correlation λ and the canonical direction ϕ are deduced from a by the equa-
tions:

λ =

Z 1

0

a(v)2dv, ϕ(u) =
1√
λ
a(u).

The differential of the copula is given by:

D log c(u, v; a) =
a(v)

1 + a(u)a(v)
h(u) +

a(u)

1 + a(u)a(v)
h(v),

and from (3.4), (3.5) the information operator admits representation (3.2), with local com-
ponent:

α0(w; a) =
2

a (w)2
Ea

"µ
c(U, V ; a)− 1
c(U, V ; a)

¶2
| V = w

#
,

and:

α1(w, v; a) = 2
a(w)a(v)

1 + a(w)a(v)
.

Thus the local component α0 involves the conditional chi-square distance between the copula
c(., .; a) and the independent copula.

3.4 Minimum chi-square estimators.

In this section we study the properties of minimum chi-square estimators. We first consider
the cross-sectional framework, where the observations (Xt, Yt), t varying, are i.i.d., define
the estimator, prove its consistency and derive its asymptotic distribution. Then we provide
similar results in the time series framework.

3.4.1 Definition of the estimator.

Let us consider the cross-sectional framework:

Assumption A.4: The variables (Xt, Yt), t varying, are i.i.d., with distribution f (x, y;A).
The support of the p.d.f. is [0, 1]2.

It is always possible to transform variables (X∗
t , Y

∗
t ) with values in R into variables with

values in [0, 1] for instance by applying the logit transformation. Therefore the assumption
of compact support [0, 1]2 is not restrictive.
Let us introduce a kernel estimator of the unconstrained bivariate density function [Rosen-

blatt (1956), Parzen (1962)]:

bfT (x, y) = 1

Th2T

TX
t=1

K

µ
x−Xt

hT

¶
K

µ
y − Yt
hT

¶
, (3.17)
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where K is a kernel and hT is a bandwidth. Under standard regularity properties (see
Appendix 5, Assumptions B.1-B.4), the estimator is consistent and asymptotically normal:q

Th2T

h bfT (x, y)− f(x, y;A)
i

d−→ N
¡
0, σ2 (x, y;A)

¢
, (3.18)

where σ2 (x, y;A) = f(x, y;A)
¡R

K2(w)dw
¢2
. Moreover, we have also the consistency and

asymptotic normality of linear functionals of f , that are conditional and cross-moments, at
rates depending on the number of integrations:

p
ThT

·Z
g(x) bfT (x, y)dx− Z g(x)f(x, y;A)dx

¸
d−→ N

¡
0, σ2 (y, g;A)

¢
, (3.19)

where σ2 (y, g;A) = E
A
[g(Xt)

2 | Yt = y] fY (y)
R
K2(w)dw, and

√
T

·Z Z
g(x, y) bfT (x, y)dxdy − Z Z

g(x, y)f(x, y;A)dxdy

¸
d−→ N

¡
0, σ2 (g;A)

¢
, (3.20)

where σ2 (g) = VA [g (Xt, Yt)].

The unconstrained estimator of the bivariate density can be used to derive a minimum
chi-square estimator of A:

bAT = argmin
A∈Θ

QT (A) =

Z 1

0

Z 1

0

h bfT (x, y)− f(x, y;A)
i2

bfT (x, y) ωT (x, y)dxdy, (3.21)

where Θ is a subset of A, ωT is a smooth weighting function, converging pointwise to the
identity function on (0, 1)2, when T tends to infinity. Estimator bAT is well defined under the
assumption:

Assumption A.5 Either:

i. the criterion QT is continuous and the set Θ is compact with respect to the norm
k.kL2(ν); or

ii. the criterion QT is weakly lower semicontinuous and the set Θ is bounded and closed
with respect to the norm k.kL2(ν) 19.

19Let (X, k.k) be a normed linear space. A sequence (xn) ⊂ X converges weakly to x ∈ X, noted xn
w→ x,

if for every linear functional l in the dual space X∗: l (xn) → l(x). A function Φ on X is weakly lower
semicontinuous (w.l.s.c.) if: xn

w→ x implies Φ(x) ≤ lim inf Φ (xn). Assume that the space X is reflexive,
that is the bidual space X∗∗ is in one-to-one relationship with X under the canonical isomorphism (this is
the case if X is an Hilbert space). Let function Φ be w.l.s.c., and let M ⊂ X be closed and bounded. Then
function Φ reaches a minimum over M [see Theorem S.6 of Reed, Simon (1980), p. 356].



193

The constrained estimator of the bivariate density is given by:

bf0T (x, y) = f(x, y; bAT ). (3.22)

The aim of this paper is not to discuss the practical implementation of a nonparametric
minimum chi-square estimator, but to prove the existence of nonparametrically efficient es-
timators. However, even if the optimization problem involves functionals, it is interesting to
note that in practice two general approaches can be followed.

i) We can optimize over a finite dimensional vector space of functions A and then use the
usual optimization software. When the dimension of the space tends to infinity sufficiently
fast with T the asymptotic properties of the estimator will be the same.

ii) Since the derivative of the chi-square criterion are related to the information operator,
and explicit expressions of the derivative are available for the examples, we can compute re-
cursively the solution by a Newton-Raphson type algorithm, or apply a step of the algorithm
from a consistent, but inefficient functional estimator.

Finally, some concentration with respect to a part of the functional parameters is possible
on some examples.

Remark: The chi-square measure is invariant by one to one transformation Φ of the basic
variables X∗, Y ∗. Thus it is equivalent to minimize a chi-square distance between f andbf or a distance between f∗ and the transformation of bf by Φ. Similarly, the information
operators corresponding to the families induced by f and f∗ are the same. However it can be
noted that the transformation of the kernel estimator of f is not a kernel estimator of f∗.

3.4.2 Consistency of the estimators

Let us consider the consistency of the minimum chi-square estimator bAT . In Appendix 6 it
is shown that under the following two assumptions and additional regularity conditions (see
Assumptions A.8 - A.11 in Appendix 6), QT converges to the chi-square proximity measure
Q, uniformly in A ∈ Θ, and that Q is continuous.

Assumption A.6 There exists compact sets eΩT ,ΩT such that eΩT ⊂ ΩT ⊂ [0, 1]2, ωT has

support in ΩT , is smaller than 1 with restriction ωT |eΩT = 1, T ∈ N, and λ2
³eΩT

´
→ 1, as

T →∞, where λ2 is the Lebesgue measure.

Assumption A.7 D log f(X,Y ;A) is a bounded operator from L2(ν) in L2(P0), for any
A,A0 ∈ Θ.
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In particular, under Assumption A.7, the information operator IA at A, defined by:

E0 [hD log f(X,Y ;A), gi hD log f(X,Y ;A), hi] = (g, IAh)L2(ν),

for h, g ∈ L2(ν), is a bounded operator from L2(ν) in itself, for any A,A0 ∈ Θ.

We have the following proposition.

Proposition 3.8 : Under Assumptions A.1-A.11 20 the chi-square estimator bAT is consis-
tent in norm: °°° bAT −A0

°°°
L2(ν)

p−→ 0.

Let us now consider the constrained density estimator bf0T , and show its consistency in
L1-norm21. Convergence of bAT to A0 and continuity of Q implies convergence of Q( bAT ) to
Q (A0) = 0. By using the Cauchy-Schwarz inequality:°°°f(., .; bAT )− f(., .)

°°°
L1
≤
°°°°°f(., .; bAT )− f(., .)p

f(., .)

°°°°°
L2

°°°pf(., .)
°°°
L2
= Q( bAT )

1/2,

we deduce the following proposition.

Proposition 3.9 : Under Assumptions of Proposition 8, the constrained density estimatorbf0T is consistent in L1 norm: °°° bf0T − f
°°°
L1

p→ 0.

3.4.3 Asymptotic expansion of the minimum chi-square estimator

In this section we derive asymptotic expansions of the minimum chi-square estimator. We
assume that the minimum chi-square estimator satisfies the first order condition in the fol-
lowing sense22.

Assumption A.12 For any g ∈ L2 (ν): bAT + tg ∈ Θ with probability approaching to 1, for
t in a neighborhood of 0 small enough.

Then it is possible to derive a set of first order conditions along the one-dimensional paths
defined in Assumption A.12. The expansion of the first order condition satisfied by the mini-
mum chi-square estimator is performed in Appendix 8 under additional regularity conditions
(Assumptions A.13-A.15) described in this Appendix.

20We assume that either A.3 i. and A.5 i., or A.3 ii. and A.5 ii. hold.
21Let Ω ⊂ [0, 1]2 be λ2-measurable. We denote by Lp (Ω), p ≥ 1, the space of p-integrable functions with

respect to the Lebesgue measure restricted on Ω, and Lp ≡ Lp([0, 1]2).
22This assumption is immediately satisfied when A0 is an interior point of Θ, in the sense that a L2 (ν)-ball

Br(A0) centered at A0 is contained in Θ. This is typically the case under Assumption A.5 ii.
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Proposition 3.10 : Under Assumptions A.1-A.15 the minimum chi-square estimator bAT

is such that:
I
³ bAT −A0

´
' ψT , (3.23)

where the efficient score ψT ∈ L2 (ν) is defined by23:

(ψT , h)L2(ν) =

Z Z
δ bfT (x, y)ωT (x, y) hD log f(x, y;A0), hi dxdy, h ∈ L2 (ν) ,

where δ bfT = bfT − f .

As an example, when the differential operator is of the form (3.3), function ψT is given
by:

dν

dλ
(w)ψT (w) =

Z
δ bfT (w, y)ωT (w, y)γ0 (w, y) dy +

Z
δ bfT (x,w)ωT (x,w)γ1(x,w)dx

+

Z Z
δ bfT (x, y)ωT (x, y)γ2(x, y, w)dxdy. (3.24)

Moreover when the information operator admits the representation (3.2), the first order
condition is equivalent to:

α0(w)δ bAT (w) +

Z
α1(w, v)δ bAT (v)dv ' dν

dλ
(w)ψT (w), (3.25)

where δ bAT = bAT −A0. To deduce the asymptotic expansion of the estimator itself, we have
to assume that the information operator is invertible and that its inverse is continuous at
zero [see section 2.3 iii) for sufficient conditions].

Corollary 3.11 : When I is invertible and continuous at zero:bAT −A0 ' I−1ψT . (3.26)

Since I = D log f∗0D log f0 and ψT = D log f∗0
³
ωT δ bfT/f´, where D log f∗0 denotes the

adjoint of the differential operator D log f0 ≡ D log f(., .;A0), the asymptotic expansion in
(3.26) can be written as:bAT −A0 ' [D log f∗0D log f0]−1D log f∗0

³
ωT δ bfT/f´ ,

that is a regression of the ”errors” δ bfT/f on the score D log f0.
Let us finally consider the expansion of the constrained estimator of the density [see

Appendix 8, v)]:

Proposition 3.12 : The constrained estimator is such that:bf0T (x, y)− f(x, y) '
D
Df(x, y;A0), δ bAT

E
.

23The differential operator D log f(x, y;A0) smoothed by the kernel density estimator, that isR R
δ bfT (x, y)ωT (x, y)D log f(x, y;A0)dxdy becomes a linear functional on L2 (ν). Function ψT ∈ L2 (ν)

corresponds to the Riesz representation of this functional. See Appendix 7.
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3.4.4 The asymptotic distribution of the minimum chi-square es-
timator

The asymptotic distribution of the minimum chi-square estimator bAT is derived from the
asymptotic expansion given in Corollary 11. To simplify the presentation we assume de-
composition of both differential and information operators [see section 2.3 i)]. We distin-
guish the pointwise estimation of A and the estimation of linear functionals of A, such asR 1
0
g(w)

0 bAT (w)ν (dw), for which different orders are expected 1/
√
ThT and 1/

√
T , respec-

tively.

i) Pointwise estimation

To give some intuition on the asymptotic distribution let us consider equation (3.25), and
assume α0(w) is invertible for any w. For pointwise estimation, the second term of order
1/
√
T can be neglected leading to [see Appendix 8 iv)]:p

ThT δ bAT (w) ' α0(w)
−1pThT

dν

dλ
(w)ψT (w).

When the differential operator admits the representation (3.3) we directly deduce from (3.24),
(3.19), and (3.20) that

√
ThTψT (w) is pointwise asymptotically normal (see Appendix 9

24).

Lemma 3.13 : When the differential admits the decomposition (3.3):p
ThT

dν

dλ
(w)ψT (w)

d−→ N

·
0,

µZ
K2(x)dx

¶
α0(w)

¸
, λ-a.s. in w.

The asymptotic distribution of bAT follows.

Proposition 3.14 : Under Assumptions A.1-A.15 the estimator bAT is λ-a.s. pointwise
asymptotically normal:p

ThT
³ bAT (w)−A0(w)

´
d−→ N

µ
0,

µZ
K2(x)dx

¶
α0 (w)

−1
¶
,

λ-a.s. in w.

The intuition beyond this result is the following: since functionals of A converge at a
parametric rate 1/

√
T (see below), for pointwise estimation we can neglect differentiation

of those parts of the density which depend on functionals of A. The relevant component
of the information operator is the local component α0, and the asymptotic variance of the
estimator is essentially its inverse.
When the differential operator admits the representation (3.3), the asymptotic variance

is given by:µZ
K2(x)dx

¶³
E
h
γ0,tγ

0
0,t | Xt = w

i
fX(w) +E

h
γ1,tγ

0
1,t | Yt = w

i
fY (w)

´−1
.

Finally we get from Proposition 12 the asymptotic distribution of the constrained estimator.
24Representation (3.3) is valid in example i), iv) and vii) in section 3.2. It is possible to extend the result

to more general cases including the other examples.



197

Corollary 3.15 : The constrained estimator
√
ThT

³ bf0T (x, y)− f(x, y)
´
is asymptotically

normal, with asymptotic variance:µZ
K2(x)dx

¶
f (x, y)2

h
γ0 (x, y)α0 (x)

−1 γ0 (x, y)
0
+ γ1 (x, y)α0 (y)

−1 γ1 (x, y)
0i
.

In particular the constrained estimator has a one-dimensional nonparametric convergence
rate, and: q

Th2T

h bfT (x, y)− bf0T (x, y)i '
q
Th2T

h bfT (x, y)− f(x, y)
i

d−→ N

"
0, f(x, y)

µZ
K2(w)dw

¶2#
.

The discrepancy
p
Th2T

h bfT (x, y)− bf0T (x, y)i, x, y varying, between the unconstrained and
the constrained estimators can be used as a basis for a (pointwise) misspecification test.

ii) Estimation of linear functional

Let us now consider the estimation of a linear functional G =
R
g(v)

0
A0(v)ν (dv), with

g ∈ L2 (ν). We expect the estimator bGT =
R
g(v)

0 bAT (v)ν (dv) to have a parametric rate, so
that the second term of equation (3.25), which is of order 1/

√
T , can no longer be neglected.

We deduce from Corollary 11 [see also Appendix 8 iii)]:
√
T
³ bGT −G

´
=
√
T

Z
g(v)

0
δ bAT (v)ν (dv) =

√
T
³
g, δ bAT

´
L2(ν)

'
√
T
¡
g, I−1ψT

¢
L2(ν)

, from (3.26)

=
√
T
¡
I−1g, ψT

¢
L2(ν)

, since I−1 is self-adjoint on L2 (ν) .

The following Lemma provides the asymptotic distribution of
√
T (g, ψT )L2(ν), g ∈ L2 (ν).

Lemma 3.16 For g ∈ L2 (ν):
√
T (g, ψT )L2(ν)

d−→ N
h
0, (g, Ig)L2(ν)

i
.

Proof. We have:
√
T (g, ψT )L2(ν) =

√
T

Z Z
δ bfT (x, y)ωT (x, y) hD log f(x, y;A0), gi dxdy

'
√
T

Z Z
δ bfT (x, y) hD log f(x, y;A0), gi dxdy.

By using (3.20), the latter expression is asymptotically normal. Its variance is given by:

σ2 (g) = V0 [hD log f(Xt, Yt;A), gi]
= E0

£hD log f(Xt, Yt;A), gi2
¤

= (g, Ig)L2(ν) .



198

The asymptotic distribution of a linear functional follows.

Proposition 3.17 Under Assumptions A.1-A.15 the estimator bGT =
R
g(v)

0 bAT (v)ν (dv) of
a linear functional of A is asymptotically normal, with parametric rate of convergence:

√
T
³ bGT −G

´
d→ N

³
0,
¡
g, I−1g

¢
L2(ν)

´
.

3.4.5 Time series framework.

The previous results are easily extended to the time series framework. We need some mixing
condition.

Assumption A.4.TS Process Xt, t varying, is strictly stationary, Markov, with transition
distribution f (x | y;A), and β-mixing coefficients such that: βk = O

¡
k−δ
¢
, δ > 1. The

support of the marginal p.d.f. is [0, 1].

Moreover the minimum chi-square estimator is now defined by minimizing a chi-square di-
vergence between the conditional distribution in the family and its unconstrained kernel
estimator:

bAT = argmin
A∈Θ

QT (A) =

Z 1

0

Z 1

0

h bfT (x|y)− f(x|y;A)
i2

bfT (x|y) ωT (x, y) bfY,T (y)dxdy. (3.27)

We also need some assumptions similar to A.1-A.3, A.5-A.15, valid for the time series frame-
work. They are deduced by considering the conditional distribution f(x|y;A), instead of
the joint one, and the conditional differential operator D log f(x|y;A). They are denoted by
adding TS.

Proposition 3.18 : Under Assumptions A.1.TS-A.11.TS the minimum chi-square estima-
tor bAT is consistent.

The asymptotic expansion of the chi-square estimator in the time series framework is
given by [see Appendix 10]:

IX|Y
³ bAT −A0

´
' eψT ,

where the function eψT ∈ L2 (ν) is defined by:

³eψT , h
´
L2(ν)

= E0

"
δ bfT (X | Y )
f (X | Y ) ωT (X,Y ) hD log f(X | Y ;A0), hi

#
, h ∈ L2 (ν) .

In particular, when the conditional information operator IX|Y admits a representation witheα0, eα1, say, the asymptotic expansion becomes:
eα0(w)δ bAT (w) +

Z eα1 (w, v) δ bAT (v)dv ' dν

dλ
(w) eψT (w).
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The asymptotic distribution of bAT is immediately deduced from that of eψT :p
ThT

dν

dλ
(w) eψT (w)

d−→ N

·
0,

µZ
K2(x)dx

¶ eα0(w)¸ , λ-a.s. in w,

√
T
³
g, eψT

´
L2(ν)

d−→ N
h
0,
¡
g, IX|Y g

¢
L2(ν)

i
, for g in L2 (ν) .

Note that the asymptotic variance
¡
g, IX|Y g

¢
L2(ν)

= V0 [hD log f(Xt | Xt−1;A0), gi] includes
no cross-term, since hD log f(Xt | Xt−1;A0), gi is a martingale difference sequence.
We deduce:

Proposition 3.19 : Under Assumptions A.1.TS-A.15.TS we have:

p
ThT

³ bAT (v)−A0(v)
´

d−→ N

µ
0,

µZ
K2(x)dx

¶ eα0 (v)−1¶ , λ-a.s in v,

and: √
T
³
g, bAT −A0

´
L2(ν)

d−→ N

·
0,
³
g, I−1X|Y g

´
L2(ν)

¸
, for g in L2 (ν) .

3.5 Nonparametric efficiency.

The aim of this section is to show that a minimum chi-square estimator is nonparametrically
efficient. We first review the approach to derive the nonparametric efficiency bound.

3.5.1 Nonparametric efficiency bound

The nonparametric ”efficiency bound” for functional A is defined in the usual way from
the parametric efficiency bound. The idea is to consider continuous linear functionals of
function A, such as

R
A(v)

0
g(v)ν (dv), which can be consistently estimated at rate 1/

√
T ,

and to construct the semi-parametric bound B(g), say, for this parameter [see e.g. Severini,
Tripathi (2001)].
More precisely the approach consists in two steps:

i. First introduce a one dimensional parametric modelA (.; θ), and derive the Cramer-Rao
lower bound BA(g, θ) for

R 1
0
A(v; θ)

0
g(v)ν (dv) in this model.

ii. Then the nonparametric efficiency bound is defined by:

BA(g) = maxBA(g, θ), g varying,

where the maximization is performed on all possible parametric specifications A(., θ).
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Since a parameter is defined up to an invertible transformation, for any parametric spec-
ification we can select the parameter θ such that:Z

A(v; θ)
0
g(v)ν (dv) = θ.

In a neighbourhood of θ0, this condition is equivalent to:Z
g(v)

0 ∂A

∂θ
(v; θ0) ν (dv) = 1.

Then the nonparametric efficiency bound is given by:

BA(g) = maxBA(g, θ), (3.28)

s.t :

Z
g(v)

0 ∂A

∂θ
(v; θ0) ν (dv) = 1,

g varying, where maximization is performed over all parameterizations A (., θ).

Proposition 3.20 : i) In the cross-sectional framework the nonparametric efficiency bound
is given by:

BA(g) = (g, I
−1g)L2(ν),

where:
(g, Ih)L2(ν) = E0 [hD log f(X,Y ;A0), gi hD log f(X,Y ;A0), hi] .

ii) In the time series framework the nonparametric efficiency bound is given by:

BA(g) = (g, I
−1
X|Y g)L2(ν),

where: ¡
g, IX|Y h

¢
L2(ν)

= E0 [hD log f(Xt | Xt−1;A0), gi hD log f(Xt | Xt−1;A0), hi] .
Proof. : See Appendix 11.

3.5.2 Nonparametric efficiency of the minimum chi-square esti-
mator

FromPropositions 17 and 19, we immediately deduce that the estimator bGT =
R
g(v)

0 bAT (v)ν (dv)
reaches the nonparametric efficiency bound.

Corollary 3.21 : The minimum chi-square estimator bAT is nonparametrically efficient.

The efficiency property of the minimum chi-square estimator is important in practice.
Indeed a number of inefficient nonparametric estimation methods have been introduced for
some specific copulas (see e.g. Genest, Rivest [1993] for archimedean copulas, Abdous,
Ghoudi, Khoudraji [2000] and references therein for extreme value copulas). Similarly the
usual estimator of the transformation in transformed regression model, based on the ratio
of partial derivatives of the conditional distribution due to the nonparametric identifica-
tion constraint suggested by Ridder [Ridder (1990)], is consistent, asymptotically normal
[Horowitz (1996), Gorgens, Horowitz (1999)], but in general inefficient. However these in-
efficient nonparametric estimators can be used as a first step of a Newton-Raphson type
algorithm.
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3.6 Constrained estimation. Identifying restrictions.

Until now we have assumed that the functional parameter A is free to vary over an open
ball of L2 (ν). However this condition is not met in some examples described in section 3.
We consider therefore in this section the case of a constrained functional parameter. From
the examples, two sources of constraints can be distinguished. First, when one component
of A is a marginal distribution, fY say, this component satisfies the unit mass restrictionR
fY (y)dy = 1. Second, some parameters may be not identified unless additional restrictions

are imposed. This is the case for the copula parameter a in the proportional hazard and
archimedean copulas [examples iv) and v)], since a and ka, where k is a positive constant,
define the same copula. A possible identifying restriction is:

R
a(v)dv = 1.

3.6.1 Restricted information operator.

Let us assume that functional parameter A satisfies n linear constraints:Z
A(v)

0
gi(v)ν (dv) = (A, gi)L2(ν) = ki, i = 1, ..., n,

where gi ∈ L2(ν), ki ∈ R, i = 1, ..., n. Let us denote by eA ⊂ A the subset of functional
parameters satisfying these restrictions. The tangent space H of eA at A0 ∈ eA does not
depend on A0, has a finite codimension, and it is given by:

H = {h ∈ L2 (ν) : (h, gi)L2(ν) = 0, i = 1, ..., n}.

The differential operator D log f (., .;A0) can be restricted to the linear space H ⊂ L2 (ν),
and we assume that D log f (., .;A0) : H → L2 (P0) is a bounded operator. The information
operator IH is the bounded linear operator from H in itself defined by:

(g, IHh)L2(ν) = E0 [hD log f (X,Y ;A0) , gi hD log f (X,Y ;A0) , hi] , h, g ∈ H.

Then the definitions of identification and decomposition of the information operator can be
extended to the constrained framework.

i) Local identification

Let us introduce the following local identification condition:

Assumption A.3. i. Local identification:

hD log f (X,Y ;A0) , hi = 0 P0-a.s., h ∈ H =⇒ h = 0.

Assumption A.3. i. is equivalent to the assumption that IH has a zero null space or that
IH is positive, and implies that A0 is locally identified over any sufficiently small compact
subset eΘ ⊂ eA containing A0.
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Local identification over non-compact subsets requires a stronger assumption:

Assumption A.3. ii. Local identification:

inf
h∈H, khkL2(ν)=1

(h, IHh)L2(ν) > 0.

ii) Decomposition of the information operator

When the information operator IH admits a decomposition:

IHh (w) =
α0,H(w)

dν/dλ(w)
h(w) +

Z
α1,H(w, v)

dν/dλ(w)
h(v)dv, h ∈ H,

it is possible to characterize boundedness and invertibility of IH in terms of α0,H and α1,H
25 [see Appendix 12].

Proposition 3.22 :

i. Assume that for any A there exists a positive definite matrix αH(., A) such that:Z Z °°°αH (x;A)
−1/2 α1,H(x, y;A)αH (y;A)

−1/2
°°°2 dxdy <∞, ∀A, (3.29)

where k.k is a matrix norm on Rq×q. Let the measure ν be such that:

∀A : ∃CA > 0 : CA
dν

dλ
(v)Idq ≥ max {α0,H(v;A), αH(v;A)} , ∀v. (3.30)

Then IH is a bounded operator from H in itself.

ii. Assume further that α0,H(v;A) is invertible, ∀v, ∀A, and such that:

∀A : ∃ eCA > 0 : eCA
dν

dλ
(v)Idq ≤ α0,H(v;A), ∀v. (3.31)

Assume finally that IH has a zero null space. Then IH is invertible, with bounded
inverse.

Let us consider the example of the proportional hazard copula [example iv) in section
3.2]. The functional parameter a of the copula is subject to the identifying constraint:R 1
0
a(v)dv = 1. The corresponding tangent space H is given by:

H =

½
h ∈ L2 (ν) :

Z 1

0

h(v)dv = 0

¾
.

25Let I : L2(ν) → L2(ν) denote the unrestricted information operator defined by the differential
D log f(., .;A0) with domain L2(ν). Since IH = PHIPH = I − PH⊥I − IPH⊥ − PH⊥IPH⊥ , where PH
(resp. PH⊥) denotes the orthogonal projector on H (resp. H⊥), and H⊥ has finite dimension, it follows that
IH has a decomposition of the form (3.2) if I has such a decomposition. Moreover, both decompositions
have identical local component: α0,H = α0.
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Boundedness and invertibility of the copula information operator IcH on H is discussed in
Gagliardini, Gourieroux (2002b) using Proposition 22. Let us for instance show that IcH has
a zero null space on H. Indeed let us consider a function h ∈ H such that:

hD log c (Ut, Ut−1; a0) , hi = 0 a.s.

Then by using the differential of the proportional hazard copula [see section 3.2 iv)], we
deduce that:

(1− a0t−1H0t) (ht−1/a0t−1 − E [ht−1/a0t−1 | Ut])

= [1− a0 (Ut−1)H0 (Ut)] {h (Ut−1) /a0 (Ut−1)−E [h (Ut−1) /a0 (Ut−1) | Ut]}
is a function of Ut only.

This implies that h/a0 is a constant. Since
R 1
0
h(v)dv = 0, it follows that h = 0. Thus IcH

has a zero null space and is a positive operator. The copula information operator is not
invertible when defined on the entire space L2 (ν), since the differential D log c (., .; a0) has a
non zero null space, consisting in functions ka0, where k is a constant.

3.6.2 The minimum chi-square estimator.

Let eΘ be a subset of eA. The minimum chi-square estimator is obtained by minimizing the
chi-square divergence under the constraints:

bAT = argmin
A∈eΘQT (A) =

Z 1

0

Z 1

0

h bfT (x, y)− f(x, y;A)
i2

bfT (x, y) ωT (x, y)dxdy. (3.32)

The consistency of the constrained estimator is proved in complete analogy with section
4. Here we focus on the asymptotic expansion. We modify Assumption A.12 and assume
that bAT satisfies the first order condition in the sense that bAT + th ∈ eΘ with probability
approaching to 1, for t small enough, for any h ∈ H. The first order condition is equivalent
to (see Appendix 12): ³

h, IHδ bAT − ψT

´
' 0, ∀h ∈ H,

that is:
IHδ bAT ' PHψT .

If the operator IH is invertible, the asymptotic expansion of bAT is:

bAT −A0 ' I−1H PHψT .

By using: √
T (h, ψT )L2(ν)

d−→ N
h
0, (h, IHh)L2(ν)

i
, h ∈ H,

we get (see Appendix 12):



204

Proposition 3.23 : Under Assumptions A.1-A.15:

√
T
³
g, bAT −A0

´
L2(ν)

d−→ N
h
0,
¡
g, PHI

−1
H PHg

¢
L2(ν)

i
, g ∈ L2 (ν) .

When the differential operator admits a decomposition (3.3):p
ThT

³ bAT (v)−A0(v)
´

d−→ N

µ
0,

µZ
K2(x)dx

¶
α0,H (v)

−1
¶
,

λ-a.s in v.

3.6.3 The nonparametric efficiency bound.

The following proposition reports the efficiency boundBA(g) for linear functionals (g,A)L2(ν),

g ∈ L2 (ν), under the constraint A ∈ eA.
Proposition 3.24 : The nonparametric efficiency bound is given by:

BA(g) = (g, PHI
−1
H PHg)L2(ν), g ∈ L2 (ν) .

The constrained minimum chi-square estimator is therefore nonparametrically efficient.

3.7 Concluding remarks.

The analysis of nonlinear dependence is crucial for financial applications and requires an
appropriate specification of the joint density for often a rather large dimension. To avoid
the curse of dimensionality and to select models with structural interpretations the density
cannot be let unconstrained. At the opposite a standard parametric specification is generally
too restrictive to get the expected fit. In this paper we have considered the intermediate case
in which the conditional distribution or the copula depends on one-dimensional functional
parameters. The functional parameter is defined up to a one to one transformation. We
have explained what representation of the functional parameter has to be selected to get
results on the information operator, efficiency bound, and efficient estimators similar to the
standard results of the pure parametric framework. The approach has been illustrated by
discussing different families of constrained nonparametric densities, useful for financial and
duration analysis.
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Appendix 1
The information operator

i) Definition.

Let us relate the definition of the information operator given in (3.1) with those normally
adopted in the literature. For functions h such that A0 (1 + h)2 ∈ A, denote by f1/2(h) the
square root density:

f1/2(h) =

"
f(., .;A0 (1 + h)2)

f(., .;A0)

#1/2
∈ L2 (P0) .

Assume there exists a measure ν such that the mapping f1/2 : L2 (ν) → L2 (P0) is differen-
tiable at h = 0, with continuous derivative:

df
1/2
0 : L2 (ν)→ L2 (P0) .

Then, following Begun, Hall, Huang, Wellner [1983], and Gill, Van der Vaart [1993], the
information operator can be defined as:

I = df
1/2∗
0 df

1/2
0 : L2 (ν)→ L2 (ν) .

Operator I is bounded, nonnegative, self-adjoint, and satisfies:

E0
hD

df
1/2
0 , g

ED
df
1/2
0 , h

Ei
= (g, Ih)L2(ν) , h, g ∈ L2(ν).

Under the differentiability Assumption A.2, df1/20 is equal to the differential operator
D log f(., .;A0). Indeed:

f1/2(th) '
·
f(., .;A0 (1 + 2th))

f(., .;A0)

¸1/2
'
·
1 +

2t hDf(., .;A0), hi
f(., .;A0)

¸1/2
' 1 + t hD log f(., .;A0), hi , t small,

and the mapping f1/2 : L2 (ν)→ L2 (P0) is differentiable at h = 0, with continuous derivative
df
1/2
0 = D log f(., .;A0). The information operator reduces to I = D log f(., .;A0)

∗D log f(., .;A0),
and satisfies:

E0 [hD log f(X,Y ;A0), gi hD log f(X,Y ;A0), hi] = (g, Ih)L2(ν) , h, g ∈ L2(ν).

This is the definition adopted in our paper, and in Holly (1995).

ii) Representations by measures

The differential operator and the information operator can often be represented in terms of
measure. We discuss here the link between the two representations.
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The differential operator can generally be written in terms of a measure:

hD log f(x, y;A), hi =
Z

h(w)
0
µ(x, y,A; dw), (a.1)

where µ(x, y, A; .) is a q-vector of measures, ∀x, y. When this measure µ(x, y, A; .) has both
a discrete and a continuous part, we get for instance:

hD log f(x, y;A), hi = γ0(x, y;A)
0
h(x) + γ1(x, y;A)

0
h(y)

+

Z
γ2(x, y, w;A)

0
h(w)dw, (a.2)

where γ0, γ1 and γ2 are Rq-valued functions, that is:

µ(x, y, A; dw) = γ0(x, y;A)δx(dw) + γ1(x, y;A)δy(dw) + γ2(x, y, w;A)λ(dw).

This corresponds to representation (3.3) in the paper. We can deduce the form of the in-
formation operator I when the differential operator D log f(X,Y ;A0) admits representation
(a.1). We get:

(g, Ih)L2(ν) =

Z
g(w)

0
Ih(w)ν (dw) ,

where26:

Ih(w)ν (dw) =

Z
E0
h
µ (X,Y ;A0; dw)µ (X,Y ;A0; dv)

0i
h(v).

Ih is an Rq-valued function in L2(ν), and ν is a scalar measure.
A case of particular importance is when the measure µ is such that:

E0
h
µ (X,Y ;A0; dw)µ (X,Y ;A0; dv)

0i
= α0(w;A0)δw(dv)λ (dw)

+ α1(w, v;A0)λ2 (dv, dw) ,

where α0 and α1 are matrix-valued functions, such that α0(w;A0) = α0(w;A0)
0, α1(v, w;A0) =

α1(w, v;A0)
0
, ∀v, w. In this case the information operator is such that:

(g, Ih)L2(ν) =

Z
g (w)

0
α0(w;A0)h(w)dw +

Z Z
g (w)

0
α1(w, v;A0)h(v)dvdw,

corresponding to representation (3.2) in the paper. This decomposition is valid for instance
when the measure µ admits both a discrete and a continuous part as in (a.2) [resp. (3.3)],
and the corresponding function α0, α1 are given in (3.4), (3.5) in the text.

iii) Choice of the measure ν

Let us prove Proposition 1. We have:

khD log f (X,Y ;A) , hik2L2(PA) = EA

£hD log f (X,Y ;A) , hi2¤
=

Z
h(v)

0
α0 (v;A)h(v)dv +

Z Z
h(v)

0
α1 (v, w;A)h(w)dvdw.

26We assume that the integrals with respect to µ and P0 can be commuted.
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Both terms are easily bounded. For the first one we get:Z
h(v)

0
α0 (v;A)h(v)dv ≤ CA

Z
h(v)

0
h(v)ν (dv) = CA khk2L2(ν) .

Let us now consider the second one, and denote:

kA =

µZ Z °°°α (v;A)−1/2 α1 (v, w;A)α (w;A)−1/2°°°2 dvdw¶1/2 <∞.
We get:Z Z

h(v)
0
α1 (v, w;A)h(w)dvdw

=

Z Z ³
α (v;A)1/2 h(v)

´0 h
α (v;A)−1/2 α1 (v, w;A)α (w;A)

−1/2
i
α (v;A)1/2 h(w)dvdw

≤
Z Z °°°α (v;A)1/2 h(v)°°°°°°α (v;A)−1/2 α1 (v, w;A)α (w;A)−1/2°°°°°°α (w;A)1/2 h(w)°°° dvdw

≤
µZ Z °°°α (v;A)−1/2 α1 (v, w;A)α (w;A)−1/2°°°2 dvdw¶1/2µZ °°°α (v;A)1/2 h(v)°°°2 dv¶ , by applying twice Cauchy-Schwarz inequality,

= kA

Z
h(v)

0
α (v;A)h(v)dv

≤ kACA

Z
h(v)

0
h(v)ν (dv)

= kACA khk2L2(ν) .
Thus:

khD log f (X,Y ;A) , hik2L2(P0) ≤ CA (1 + kA) khk2L2(ν) ,
and Proposition 1 is proved.

iv) Invertibility

Let us prove Proposition 2. The information operator can be decomposed in two components:

Ih(w) =
1

dν/dλ(w)
α0(w;A0)h(w) +

Z
1

dν/dλ(w)
α1(w, v;A0)h(v)dv

≡ I0h(w) + I1h(w).

The invertibility of I is proved by using results on Fredholm operators, as in Van der Vaart
(1994). In particular, let us consider the following Lemma [see e.g. Rudin (1973), p. 99-
103].

Lemma A.1. Let H be a Banach space. Let I0 : H → H be a continuously invertible
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operator, and let I1 : H → H be a compact operator. Assume that I = I0 + I1 has a zero
null space. Then I is continuously invertible.

Let us verify that the conditions of this Lemma are satisfied by operators I0 and I1 defined
above. In the previous paragraph it has been shown that they are both bounded operators
of L2 (ν) into itself. In addition:°°°I0−1h°°°2

L2(ν)
=

Z µ
dν

dλ
(v)

¶2
h(v)

0
α0 (v)

−2 h(v)ν (dv)

≤ eC−2A

Z
h(v)

0
h(v)ν (dv) = eC−2A khk2L2(ν) ;

thus I0 is continuously invertible. Let us now consider the operator I1. We have:

I1h(w) =

Z
K (w, v;A0)h(v)ν(dv),

where
K (w, v;A0) =

1

dν/dλ(w)

1

dν/dλ(v)
α1(w, v;A0).

We have: Z Z
kK (w, v;A0)k2 ν(dw)ν(dv)

≤
Z Z kα (x;A)k

°°°α (x;A)−1/2 α1(x, y;A)α (y;A)−1/2°°°2 kα (x;A)k
(dν/dλ(x) dν/dλ(y))2

ν (dx) ν (dy)

≤ C2
A

Z Z °°°α (x;A)−1/2 α1(x, y;A)α (y;A)−1/2°°°2
dν/dλ(x) dν/dλ(y)

ν (dx) ν (dy)

= C2
A

Z Z °°°α (x;A)−1/2 α1(x, y;A)α (y;A)−1/2°°°2 dxdy <∞.
It then follows from Hilbert-Schmidt theorem [see e.g. a generalization of Theorem VI.23 in
Reed, Simon (1980)] that I1 is a compact operator. Then all conditions of Lemma A.1 are
satisfied, and Proposition 2 is proved.
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Appendix 2
Local Identification

i) Local equivalence of the minimum chi-square and Kullback proximity mea-
sures.

The Kullback proximity measure between f(x, y;A) and f(x, y) is defined by:

K(A) = E0 log

·
f(X,Y )

f(X,Y ;A)

¸
.

Its second order expansion in a neighbourhood of A = A0 is:

K(A) = −E0 log
·
1 +

f(X,Y ;A)− f(X,Y )

f(X,Y )

¸
' −E0

·
f(X,Y ;A)− f(X,Y )

f(X,Y )

¸
+
1

2
E0

"µ
f(X,Y ;A)− f(X,Y )

f(X,Y )

¶2#
=

1

2
Q (A) .

ii) Local expansion of the minimum chi-square proximity measure.

In Appendix 6 we will derive expansions of the minimum chi-square proximity measure. In
particular, it will be shown that the expansion around A0 is given by [see equation (a.8) in
Appendix 6 ii)]:

Q(A0 + h) = (h, Ih)L2(ν) +

Z Z
R(x, y;A0, h)

2

f(x, y)
dxdy

+O

"µZ Z
R(x, y;A0, h)

2

f(x, y)
dxdy

¶1
2

(h, Ih)
1
2

L2(ν)

#
,

where R(x, y;A0, h) denotes the residual term in the first-order expansion of the density:
f(x, y;A0 + h) = f(x, y;A0) + hDf(x, y;A0), hi+R(x, y;A0, h). Let us assume:

Assumption A.2.bis. For any A0 ∈ A, there exists a neighborhood N0 of A0 such that:Z Z
R(x, y;A0, h)

2

f(x, y)
dxdy = O

³
khk4L2(ν)

´
, A0 + h ∈ N0.

We get:
Q(A0 + h) = (h, Ih)L2(ν) + r(h), A0 + h ∈ N0,
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where r(h) = O
³
khk2L2(ν) (h, Ih)1/2L2(ν)

´
= O

³
khk3L2(ν)

´
. In particular, Q is well-defined on

N0.

iii) Local identification over compact sets.

Let Θ ⊂ N0 be a compact set containing A0. Let us first give an upper bound for the residual
term r(h). For h such that A0 + h ∈ Θ we have:

|r(h)|
(h, Ih)L2(ν)

≤ C khk2L2(ν)
(h, Ih)

1/2
L2(ν)

,

for some constant C.

Assumption A.3*:

inf
h∈(Θ−A0)

h 6=0

1

khk2L2(ν)
(h, Ih)L2(ν)

khk2L2(ν)
> 4C2.

Thus: |r(h)| ≤ 1
2
(h, Ih)L2(ν), h ∈ Θ−A0, and we get:

Q(A0 + h) = (h, Ih)L2(ν) + r(h) ≥ 1
2
(h, Ih)L2(ν) , h ∈ Θ−A0.

Let us now show that A0 is locally identified. We get:

Q(A0 + h) ≥ 1
2
(h, Ih)L2(ν) > 0, for any h ∈ Θ−A0, h 6= 0,

since I is positive, and

inf
A∈Θ\Bε(A0)

Q(A) = inf
h∈(Θ−A0)\Bε(0)

Q(A0 + h)

≥ 1

2
inf

h∈(Θ−A0)\Bε(0)
(h, Ih)L2(ν)

=
1

2
(h∗, Ih∗)L2(ν) > 0, say,

since (Θ−A0) \Bε(0) is compact.

iv) Local identification over non-compact sets.

Let Θ ⊂ N0 contain A0. Under Assumption A.3 ii., Assumption A.3* is immediately satisfied
if Θ is small enough. Thus r(h) can be bounded and for any h ∈ Θ−A0 we get:

Q(A0 + h) ≥ 1
2
(h, Ih)L2(ν) .
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Let us now show that A0 is locally identified. We get:

Q(A0 + h) ≥ 1
2
(h, Ih)L2(ν) > 0, for any h ∈ Θ−A0, h 6= 0,

since I is positive, and:

inf
A∈Θ\Bε(A0)

Q(A) = inf
h∈(Θ−A0)\Bε(0)

Q(A0 + h)

≥ 1

2
inf

h∈(Θ−A0)\Bε(0)
khk2L2(ν)

(h, Ih)L2(ν)

khk2L2(ν)
≥ 1

2
ε2 inf

h6=0

(h, Ih)L2(ν)

khk2L2(ν)
> 0.

v) Equivalence of Assumption A.3 i. and the conditions on the information
operator.

ii) =⇒ i): Let h ∈ L2 (ν) such that Ih = 0. It follows (h, Ih)L2(ν) = 0 and thus h = 0.
i) =⇒A.3 i.: Let h ∈ L2 (ν) such that hD log f(X,Y ;A0), hi = 0 P0-a.s. Then for any
g ∈ L2 (ν): (g, Ih)L2(ν) = 0. It follows Ih = 0, and thus h = 0.

A.3 i.=⇒ ii): Let h ∈ L2 (ν) such that (h, Ih)L2(ν) = 0. Then E0
£hD log f(X,Y ;A0), hi2

¤
=

0. Therefore hD log f(X,Y ;A0), hi = 0 P0-a.s., and thus h = 0.

Appendix 3
Differential of the copula and of the conditional and marginal densities

i) Proof of Proposition 3.

The first equation is clear. To derive the second one, let us differentiate the relationship:

fY (y;A) =

Z
f(x, y;A)dx.

We get:

fY (y;A+ h) =

Z
f(x, y;A+ h)dx '

Z
f(x, y;A)dx+

Z
hDf (x, y;A) , hi dx

= fY (y;A) +

Z
hD log f (x, y;A) , hi f(x, y;A)dx.

Thus:

hD log fY (y;A), hi =
Z
hD log f (x, y;A) , hi fX|Y (x|y;A)dx.
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ii) Proof of Proposition 5.

By taking the logarithm of the joint density we get:

log f (x, y;A) = log c [FX(x;A), FY (y;A);A] + log fX(x;A) + log fY (y;A) .

Let us derive the expansion of the first term with respect to A. We have:

log c [FX(x;A+ h), FY (y;A+ h);A+ h]

' log c [FX(x;A) + hDFX(x;A), hi , FY (y;A) + hDFY (y;A), hi ;A+ h]

' log c [FX(x;A), FY (y;A);A]

+
∂ log c

∂u
[FX(x;A), FY (y;A);A] hDFX(x;A), hi

+
∂ log c

∂v
[FX(x;A), FY (y;A);A] hDFY (y;A), hi

+ hD log c [FX(x;A), FY (y;A);A] , hi .
Thus the differential of log f (x, y;A) with respect to A is:

∂ log c

∂u
[FX(x;A), FY (y;A);A] hDFX(x;A), hi

+
∂ log c

∂v
[FX(x;A), FY (y;A);A] hDFY (y;A), hi

+ hD log c [FX(x;A), FY (y;A);A] , hi
+ hD log fX(x;A), hi+ hD log fY (y;A), hi .

Moreover the differentialsDFX(x;A) andDFY (y;A) can be expressed bymeans ofD log fX(x;A)
and D log fY (y;A), respectively. For instance:

FX(x;A+ h) =

Z x

−∞
fX(z;A+ h)dz

'
Z x

−∞
[fX(z;A) + hDfX(z;A), hi] dz

= FX(x;A) +

Z x

−∞
fX(z;A) hD log fX(z;A), hi dz,

and thus:

hDFX(x;A), hi =
Z x

−∞
fX(z;A) hD log fX(z;A), hi dz.

The proposition follows.
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Appendix 4
Examples

ii) Truncated dynamic models

Let us first derive the differential with respect to a. The first order expansion is given by:

log f(x|y; a+ h, log g) = log g [x+ a(y) + h(y)]− log
µZ +∞

a(y)+h(y)

g(z)dz

¶
' log f(x | y; a, log g) + d log g

dz
[x+ a(y)]h(y)

+
g [a(y)]R +∞

a(y)
g(z)dz

h(y).

Thus we get:

hDa log f(x | y;A)i =
µ
d log g

dz
[x+ a(y)] + λ [a(y)]

¶
h(y).

Let us now derive the differential with respect to log g. The first order expansion is given
by:

log f(x|y; a, log g + h) = log g [x+ a(y)] + h [x+ a(y)]− log
µZ +∞

a(y)

g(z)eh(z)dz

¶
' log f(x | y; a, log g) + h [x+ a(y)]−

R +∞
a(y)

g(z)h(z)dzR +∞
a(y)

g(z)dz
,

and thus:

hDlog g log f(x | y;A)i = h [x+ a(y)]−EA [h (Xt + a(Xt−1)) | Xt−1 = y] .

iii) Stochastic unit roots

Let us first compute the differential of f(x | y;π, g) with respect to π and g. By linearity,
we have:

hDπf(x | y;π, g), hi = [g (x− y)− g(x)]h(y),

hDgf(x | y;π, g), hi = π (y)h(x− y) + [1− π (y)]h(x).

Thus the differential of log f(x | y;A) with respect to A = (log π, log g) is given by:

hDlog π log f(x | y;A), hi =
[g (x− y)− g(x)]π(y)

f(x | y;A) h(y)

=
f(x | y;A)− g(x)

f(x | y;A) h(y)

= r (x, y;A)h(y),

hDlog g log f(x | y;A), hi =
π (y) g(x− y)

f(x | y;A) h(x− y) +
[1− π (y)] g(x)

f(x | y;A) h(x)

= p1(x, y;A)h(x− y) + p0(x, y;A)h(x).
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Let us now derive the information operator. We compute separately each block. We get:³eh, Ilog π,log πh´
L2(ν)

= EA

hD
Dlog π log f(X | Y ;A),ehE hDlog π log f(X | Y ;A), hi

i
= EA

h
r (X,Y ;A)2 eh(Y )h(Y )i

= EA

h
EA

£
r (X,Y ;A)2 | Y ¤eh(Y )h(Y )i

=

Z
EA

£
r (X,Y ;A)2 | Y = z

¤
fY (z;A)eh(z)h(z)dz,

³eh, Ilog g,log gh´
L2(ν)

= EA

hD
Dlog g log f(X | Y ;A),ehE hDlog g log f(X | Y ;A), hi

i
= EA

h
EA

£
p1(X,Y ;A)2 | X − Y

¤eh(X − Y )h(X − Y )
i

+EA

h
p1(X,Y ;A)p0(X,Y ;A)eh(X − Y )h(X)

i
+EA

h
p1(X,Y ;A)p0(X,Y ;A)eh(X)h(X − Y )

i
+EA

h
EA

£
p0(X,Y ;A)2 | X¤eh(X)h(X)i

=

Z
EA

£
p1(X,Y ;A)2 | X − Y = z

¤
fX−Y (z)eh(z)h(z)dz

+

Z eh(x)µZ p0(z, z − x;A)p1(z, z − x;A)f(z, z − x;A)h(z)dz

¶
dx

+

Z eh(x)µZ p0(x, x− z;A)p1(x, x− z;A)f(x, x− z;A)h(z)dz

¶
dx

+

Z
EA

£
p0(X,Y ;A)2 | X = z

¤
fX(z)eh(z)h(z)dz,

and finally:³eh, Ilog π,log gh´
L2(ν)

= EA

hD
Dlog π log f(X | Y ;A),ehE hDlog g log f(X | Y ;A), hi

i
= EA

h
r (X,Y ;A)eh(Y )p1(X,Y ;A)h(X − Y )

i
+EA

h
r (X,Y ;A)eh(Y )p0(X,Y ;A)h(X)

i
=

Z eh(x)µZ [f(z + x | x;A)− g(z + x)] p1(z + x, x;A)h(z)dz

¶
fY (x)dx

+

Z eh(x)µZ [f(z | x;A)− g(z)] p0(z, x;A)h(z)dz

¶
fY (x)dx.

Thus the information operator admits a measure decomposition with:

α0(z;A0) =

 E0 [r
2
t | Xt−1 = z] f(z) 0

0
E0
£
p21,t | Xt −Xt−1 = z

¤
fXt−Xt−1(z)

+E0
£
p20,t | Xt = z

¤
f(z)





220

and:

α1(x, z;A0) =

 0
f(x) {[f (x+ z|x)− g(x+ z)] p1(x+ z, x)

+ [f (z|x)− g(z)] p0(z, x)}
0 p0(x, x− z)p1(x, x− z)f (x, x− z)


+ (x ←→ z)

0
.

v) Archimedean Copulas

a) Proof of Proposition 7.

The Jacobian of the transformation is:

det
∂ (w, z)

∂ (u, v)
=

φ
0 £
φ−1 (u) + φ−1 (v)

¤
φ
0 £
φ−1 (u)

¤ ≡ J(u, v).

Thus:
c (u, v)

J(u, v)
=

φ
00 ©

φ−1 [C (u, v)]
ª

φ
0 ©
φ−1 [C (u, v)]

ª
φ
0 £
φ−1 (v)

¤ ,
and the joint p.d.f. of W and Z is given by:

f(w, z) =
φ
00 £
φ−1 (w)

¤
φ
0 £
φ−1 (w)

¤
φ
0 £
φ−1 (z)

¤Iw≤z.
Let us define the function:

f∗(w) = −φ
00 £
φ−1 (w)

¤
φ
0 £
φ−1 (w)

¤ = − d

dw
φ
0 £
φ−1 (w)

¤
, w ∈ [0, 1] .

Since φ
0 £
φ−1 (0)

¤
= φ

0
[+∞] = 0, we have:

φ
0 £
φ−1 (z)

¤
= −

Z z

0

f∗(v)dv = −F ∗(z), say.

Thus the joint p.d.f. of W and Z can also be written as:

f(w, z) =
f∗(w)R z

0
f∗(v)dv

Iw≤z.

Let us now show that φ and f∗ are in one-to-one relationship. We have:

F ∗ (w) = −φ0 £φ−1 (w)¤ ,
or equivalently:

− 1

F ∗ (w)
=

dφ−1 (w)
dw

.
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By integration, with φ−1(1) = 0:

φ−1(y) =
Z 1

y

dvR v
0
f∗(w)dw

, y ∈ (0, 1) .

Let us finally check that this function satisfies the properties of a (strict) archimedean gen-
erator. The properties φ−1(1) = 0 and φ−1(0) =∞ are evident. Moreover:

d

dy
φ−1(y) = − 1R y

0
f∗(w)dw

≤ 0,

d2

dy2
φ−1(y) =

f∗(y)¡R y
0
f∗(w)dw

¢2 ≥ 0,
and thus φ−1 is decreasing and convex.

b) Differential of the copula.

The log copula density is given by:

log c(u, v; a) = log a [C(u, v; a)] + logF ∗ [C(u, v; a); a]
− logF ∗ (u; a)− logF ∗ (v; a) ,

where:
a = f∗.

The general expression

Let us derive the differential with respect to a. We get:

hD log c(u, v; a), hi =
h [C(u, v; a)]

a [C(u, v; a)]
+

d log a

dw
[C(u, v; a)] hDC(u, v; a), hi

+ hD logF ∗ [C(u, v; a); a] , hi+ a [C(u, v; a)]

F ∗ [C(u, v; a); a]
hDC(u, v; a), hi

− hD logF ∗(u; a), hi− hD logF ∗(v; a), hi
=

h [C(u, v; a)]

a [C(u, v; a)]
+ hD logF ∗ [C(u, v; a); a] , hi

− hD logF ∗(u; a), hi− hD logF ∗(v; a), hi
+

µ
d log a

dw
[C(u, v; a)] +

a [C(u, v; a)]

F ∗ [C(u, v; a); a]

¶
hDC(u, v; a), hi .

(a.3)

Let us now derive the differentials of C (u, v; a) and F ∗(u, v; a) with respect to a.

Differential of C(u, v; a)
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We get:

hDC(u, v; a), hi =
­
Dφ

£
φ−1 (u; a) + φ−1 (v; a) ; a

¤
, h
®

+φ
0 £
φ−1 (u; a) + φ−1 (v; a) ; a

¤ ©­
Dφ−1 (u; a) , h

®
+
­
Dφ−1 (v; a) , h

®ª
=

­
Dφ

¡
φ−1 [C(u, v; a); a] ; a

¢
, h
®

+φ
0 ¡
φ−1 [C(u, v; a); a] ; a

¢ ©­
Dφ−1 (u; a) , h

®
+
­
Dφ−1 (v; a) , h

®ª
.

By the implicit function theorem we have:­
Dφ

£
φ−1 (y; a) ; a

¤
, h
®
= −φ0 £φ−1 (y; a) ; a¤ ­Dφ−1 (y; a) , h

®
,

and thus we get:

hDC(u, v; a), hi = F ∗ [C(u, v; a); a]
©­
Dφ−1 [C(u, v; a); a] , h

®
− ­Dφ−1 (u; a) , h

®− ­Dφ−1 (v; a) , h
®ª
. (a.4)

Differential of F ∗(y; a)

Let us now derive the differential of F ∗(y; a). We get:

hD logF ∗ (y; a) , hi =
1

F ∗ (y; a)

Z y

0

h(v)dv

= Ea [h(W )/a(W ) | Z = y] . (a.5)

By inserting (a.4) and (a.5) in (a.3) we get:

hD log c(u, v; a), hi =
h [C(u, v; a)]

a [C(u, v; a)]
+Ea [h(W )/a(W ) | Z = C(u, v; a)]

−Ea [h(W )/a(W ) | Z = u]− Ea [h(W )/a(W ) | Z = v]

+

½
a [C(u, v; a)] +

d log a

dw
[C(u, v; a)]F ∗ [C(u, v; a); a]

¾
·©­Dφ−1 [C(u, v; a); a] , h

®− ­Dφ−1(u; a), h
®− ­Dφ−1(v; a), h

®ª
.

(a.6)

Let us finally compute the differential of φ−1(y; a) with respect to a.

Differential of φ−1(y; a)

We have:

φ−1(y; a) =
Z 1

y

dwR w
0
a(v)dv

.
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Let us consider the first order expansion:

φ−1(y; a+ h) =

Z 1

y

dwR w
0
a (v) dv +

R w
0
h(v)dv

'
Z 1

y

1R w
0
a (v) dv

·
1−

R w
0
h(v)dvR w

0
a (v) dv

¸
dw

' φ−1(y; a)−
Z 1

y

R w
0
h(v)dv

F ∗(w; a)2
dw.

Thus:­
Dφ−1(y; a), h

®
= −

Z 1

y

1

F ∗(w; a)2

µZ w

0

h(v)dv

¶
dw

=

µZ 1

w

dv

F ∗(v; a)2

¶µZ w

0

h(v)dv

¶
|1y −

Z 1

y

µZ 1

w

dv

F ∗(v; a)2

¶
h(w)dw

= −
µZ 1

y

dv

F ∗(v)2

¶Z y

0

h(v)dv −
Z 1

y

µZ 1

w

dv

F ∗(v; a)2

¶
h(w)dw.

= k(y; a)

Z y

0

h(v)dv +

Z 1

y

k(w; a)h(w)dw,

(a.7)

where k(y; a) = − R 1
y
(1/F ∗(v)2) dv.

By inserting (a.7) in (a.6), we get the differential of the copula density, which is of the
form:

hD log c(u, v; a), hi = h [C(u, v; a)]

a [C(u, v; a)]
+

Z 1

0

γ (u, v, w; a)h(w)dw, say.

c) The information operator.

Let us now compute the information operator Ic of the copula. We get:

E0 [hD log c(U, V ; a0), gi hD log c(U, V ; a0), hi]
= E0

©
g [C0(U, V )]h [C0(U, V )] /a0 [C0(U, V )]

2ª
+

Z
E0 {g [C0(U, V )] γ (U, V, y) /a0 [C0(U, V )]}h(y)dy

+

Z
E0 {γ (U, V, y)h [C0(U, V )] /a0 [C0(U, V )]} g(y)dy

+

Z Z
E0 {γ (U, V, x) γ (U, V, y)} g(x)h(y)dxdy.

Let us consider the four terms separately. The first one is:

E0
©
g [C0(U, V )]h [C0(U, V )] /a0 [C0(U, V )]

2ª = Z g(w)h(w)
fW (w; a0)

a0(w)2
dw,
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where fW (.; a0) is the density of W . The second term is:Z
E0 {g [C0(U, V )] γ (U, V, y) /a0 [C0(U, V )]}h(y)dy

=

Z
E0 {g(W )eγ (W,Z, y) /a0(W )}h(y)dy, say,

=

Z Z
g(w)

E0 {eγ (W,Z, y) |W = w} fW (w, a0)
a0(w)

h(y)dy.

Similarly we get for the third and fourth terms:Z
E0 {γ (U, V, y)h [C0(U, V )] /a0 [C0(U, V )]} g(y)dy

=

Z Z
g(y)

E0 {eγ (W,Z, y) |W = w} fW (w, a0)
a0(w)

h(w)dw,

and: Z Z
E0 {γ (U, V, x) γ (U, V, y)} g(x)h(y)dxdy

=

Z Z
g(x)E0 {eγ (W,Z, x) eγ (W,Z, y)}h(y)dxdy.

Thus the information operator Ic admits representation (3.2), with local component:

α0(w; a) =
fW (w; a)

a0(w)2
,

and:

α1(x, y; a) = Ea {eγ (W,Z, y) |W = x} fW (x, a) /a(x)
+Ea {eγ (W,Z, x) |W = y} fW (y, a) /a(y)
+E0 {eγ (W,Z, x) eγ (W,Z, y)} .

d) The density of the variable W

The c.d.f. of W is given by [see Genest, Rivest (1993)]:

FW (w) = P [C(U, V ) ≤ w] = w − φ−1(w)
dφ−1(w)/dw

= w − φ−1(w)φ
0 £
φ−1(w)

¤
= w + φ−1(w)F ∗(w).

Thus the density of W is given by:

fW (w) = 1 +
1

φ
0 £
φ−1(w)

¤F ∗(w) + φ−1(w)f∗(w)

= φ−1(w)f∗(w).
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vi) Extreme value copula

a) Copula p.d.f.

Let us introduce the variables x = log u, y = log v, and the function:

D(x, y) = (x+ y)χ

µ
x

x+ y

¶
.

Then we have:
C(u, v) = exp [D(x, y)] ,

and thus:
∂C(u, v)

∂u
=

C(u, v)

u

∂D(x, y)

∂x
,

and:
∂2C(u, v)

∂u∂v
=

C(u, v)

uv

½
∂D(x, y)

∂x

∂D(x, y)

∂y
+

∂2D(x, y)

∂x∂y

¾
.

The derivatives of function D are:

∂D(x, y)

∂x
= χ

µ
x

x+ y

¶
+

y

x+ y
χ
0
µ

x

x+ y

¶
,

∂D(x, y)

∂y
= χ

µ
x

x+ y

¶
− x

x+ y
χ
0
µ

x

x+ y

¶
,

∂2D(x, y)

∂x∂y
= − xy

(x+ y)3
χ
00
µ

x

x+ y

¶
.

By substitution, the expression of the copula p.d.f. follows.

b) Characterization of the generator χ

By the Pickands representation (see e.g. Joe [1997], Theorem 6.3), a c.d.f. C with uniform
margins is an extreme value copula iff function A(x, y) = − logC (e−x, e−y) admits the
representation:

A(x, y) =

Z
S1
max {q1x, q2y}σ (dq) ,

where σ is a finite measure on the one-dimensional simplex S1 = {q = (q1, q2) ∈ R2+ :
q1 + q2 = 1}. Thus the generator χ of an extreme value copula is such that there exists a
measure F ∗ on [0, 1] with:

χ (v) = 2

Z 1

0

max {(1− z) v, z (1− v)} dF ∗(z),
χ(0) = χ(1) = 1.

The boundary conditions on χ are equivalent to:Z 1

0

(1− z) dF ∗(z) =
Z 1

0

zdF ∗(z) =
1

2
,
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that is F ∗ is a c.d.f. such that
R 1
0
zdF ∗(z) = 1/2.

c) Expression of the generator and of its derivatives

When F ∗ admits a density f∗, we get:

χ (v) = 2v

Z v

0

(1− z) f∗(z)dz + 2 (1− v)

Z 1

v

zf∗(z)dz.

Let us now compute the derivatives of χ. We get:

χ
0
(v) = 2

Z v

0

(1− z) f∗(z)dz − 2
Z 1

v

zf∗(z)dz

= 2

Z v

0

f∗(z)dz − 1,

and:
χ
00
(v) = 2f∗(v).

Let us introduce functional parameter a = f∗. Using the restrictions on f∗, we deduce the
expressions of χ and χ

0
in terms of functional parameter a:

χ (v) = v

Z v

0

a(w)dw −
Z v

0

wa(w)dw + 1− v,

χ
0
(v) =

Z v

0

a(w)dw − 1.

Appendix 5
Kernel estimators

Let us consider the following assumptions.

Assumption B.1: Zt = (Xt, Yt), t varying, is a strictly stationary process, with β-mixing
coefficients β (k) such that: β (k) = O

¡
k−δ
¢
, δ > 1.

Assumption B.2: The stationary density f has compact support [0, 1]2, vanishes at its
boundary, and is of class Cs.

Assumption B.3: The kernel K is of class Cr, with derivatives in L2 (R). Further K is
of order m = s.



227

We have the following theorem [see Theorem 3 of Aït-Sahalia (1993)].

Theorem. Consider a functional Φ from an open subset of Cs to R. Suppose that Φ
is Hadamard differentiable at the true c.d.f. F with Hadamard derivative hDΦ (F ) ,Hi =R
ϕ [F ] (x, y)dH(x, y):

Φ(F +H) = Φ (F ) +

Z
ϕ [F ] (x, y)dH(x, y) +R [F,H] ,

with |R [F,H]| = O
¡kHk2∞¢, uniformly on H in the class of compact set. Assume the

bandwidth hT is such that hT →∞, Th2T →∞. Then under Assumptions B.1-B.3:

i. if ϕ [F ] is a cadlag function, and Th2mT → 0:

√
T
h
Φ
³ bFT

´
− Φ (F )

i
d−→ N [0, VΦ (F )] ,

where:

VΦ (F ) =
∞X

k=−∞
cov (ϕ [F ] (Zt) , ϕ [F ] (Zt−k)) .

ii. If ϕ [F ] is of the form ϕ [F ] (x, y) = γ0 (x, y) δx0 (x)+γ1 (x, y) δy0 (y)+γ2 (x, y), where
γ0, γ1 ∈ C0, γ2 ∈ C1, and Th2m+1T → 0:p

ThT
h
Φ
³ bFT

´
− Φ (F )

i
d−→ N [0, VΦ (F )] ,

where:

VΦ (F ) =

µZ
K(z)2dz

¶¡
E
£
γ0 (Zt)

2 | Xt = x0
¤
fX(x0)

+E
£
γ1 (Zt)

2 | Yt = y0
¤
fY (y0)

¢
.

iii. If ϕ [F ] is of the form ϕ [F ] (x, y) = α (x, y) δ(x0,y0) (x, y), and Th2m+2T → 0:q
Th2T

h
Φ
³ bFT

´
− Φ (F )

i
d−→ N [0, VΦ (F )] ,

where:

VΦ (F ) =

µZ
K(z)2dz

¶2
α (x0, y0) f (x0, y0) .

Let us introduce the last assumption:

Assumption B.4: The bandwidth hT is such that hT →∞, Th2T →∞, Th2mT → 0.

i) Density estimators.



228

Let us consider the kernel estimator for the density at (x0, y0), bfT (x0, y0). The func-
tional Φ (F ) = f (x0, y0) is Hadamard differentiable, with ϕ [F ] (x, y) = δ(x0,y0) (x, y), and
R [F,H] = 0. Thus, under Assumptions B.1-B.4:

q
Th2T

³ bfT (x0, y0)− f (x0, y0)
´

d−→ N

"
0, f (x0, y0)

µZ
K(z)2dz

¶2#
.

ii) Conditional moment estimators.

Let us consider a conditional moment of the type:

g(x0, y0) =

Z
γ0 (x0, y) f (x0, y) dy +

Z
γ1 (x, y0) f (x, y0) dx

+

Z Z
γ2 (x, y) f(x, y)dxdy,

where γ0, γ1 ∈ C0, γ2 ∈ C1, and x0, y0 ∈ R. The functional Φ (F ) = g(x0, y0) is Hadamard
differentiable, with ϕ [F ] (x, y) = γ0 (x, y) δx0 (x)+γ1 (x, y) δy0 (y)+γ2 (x, y), and R (F,H) =
0. Then the conditional moment estimator:

gT (x0, y0) =

Z
γ0 (x0, y) bfT (x0, y) dy + Z γ1 (x, y0) bfT (x, y0) dx

+

Z Z
γ2 (x, y) bfT (x, y)dxdy,

is asymptotically normal, with:p
ThT [gT (x0, y0)− g(x0, y0)]

d−→ N (0, VΦ (F ))

where:

VΦ (F ) =

µZ
K(z)2dz

¶¡
E
£
γ0 (Zt)

2 | Xt = x0
¤
fX(x0)

+E
£
γ1 (Zt)

2 | Yt = y0
¤
fY (y0)

¢
.

Formula (3.19) is a special case.

iii) Moment estimators.

Finally let us consider a moment estimator
R R

g(x, y) bfT (x, y)dxdy, where g is cadlag. The
functional Φ(F ) =

R R
g(x, y)f(x, y)dxdy is Hadamard differentiable, with ϕ [F ] (x, y) =

g(x, y) and R [F,H] = 0. Thus, under Assumptions B.1-B.4:

√
T

µZ Z
g(x, y) bfT (x, y)dxdy − Z Z

g(x, y)f(x, y)dxdy

¶
d−→ N (0, VΦ (F )) ,



229

where:

VΦ (F ) =
∞X

k=−∞
cov [g (Zt) , g (Zt−k)] .

Appendix 6
Consistency

It is well-known that the estimator is consistent under the following assumptions:
i) QT converges in probability to a deterministic limit Q∞, uniformly in A;
ii) Q∞ is continuous with respect to A;
iii) ∀ε > 0: infA∈Bε(A0)c∩ΘQ∞(A) > Q∞(A0), where Bε(A0) denotes a ball of radius ε around
A0, w.r.t. the norm k.kL2(ν).
In the proof of these three points we use the following technical assumptions.

Assumption A.8: There exist p > 1 such that:

sup
A∈Θ

°°°°f(., .;A)2f(., .)

°°°°
Lp

<∞.

Assumption A.9: For q > 1 such that 1/p+ 1/q = 1:

°°°°° bfT (., .)− f(., .)bfT (., .)
°°°°°
Lq(ΩT )

p→ 0.

Assumption A.10:

Z 1

0

Z 1

0

h bfT (x, y)− f(x, y)
i2

f(x, y)
dxdy = Op(1).

Assumption A.11: Let R(x, y;A, h) be the residual term in the first order expansion of
the density with respect to A:

f(x, y;A+ h) = f(x, y;A) + hDf(x, y;A), hi+R(x, y;A, h).

For any A ∈ Θ: Z Z
R(x, y;A, h)2

f(x, y)
dxdy = O

³
khk4L2(ν)

´
, h ∈ L2 (ν) .

i) Uniform Convergence.
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We have:

QT (A) =

Z Z bfT (x, y)ωT (x, y)dxdy

−2
Z Z

f(x, y;A)ωT (x, y)dxdy

+

Z Z
f(x, y;A)2bfT (x, y) ωT (x, y)dxdy,

and:

Q∞(A) = Q(A) =

Z Z
f(x, y;A)2

f(x, y)
dxdy − 1.

Thus:

QT (A)−Q∞(A) =

Z Z bfT (x, y)ωT (x, y)dxdy − 1

−2
µZ Z

f(x, y;A)ωT (x, y)dxdy − 1
¶

+

Z 1

0

Z 1

0

f(x, y;A)2

Ã
1bfT (x, y) − 1

f(x, y)

!
ωT (x, y)dxdy

+

Z 1

0

Z 1

0

f(x, y;A)2

f(x, y)
(ωT (x, y)− 1) dxdy

≡ S1,T + S2,T + S3,T + S4,T , say.

Let us now check that each term converges in probability to 0, uniformly in A ∈ Θ. We
have:

|S1,T | =
¯̄̄̄Z Z bfT (x, y) (ωT (x, y)− 1) dxdy

¯̄̄̄
≤

Z Z bfT (x, y) |ωT (x, y)− 1| dxdy

≤
Z Z bfT (x, y)IeΩcT (x, y)dxdy

≤
°°°°° bfT√f

°°°°°
L2

°°°pfIeΩcT
°°°
L2

≤
ÃZ 1

0

Z 1

0

bfT (x, y)2
f (x, y)

dxdy

! 1
2 µZ 1

0

Z 1

0

IeΩcT (x, y)f (x, y) dxdy
¶1

2

≤

Z Z h bfT (x, y)− f(x, y)
i2

f (x, y)
dxdy + 1


1
2

P0
h
(Xt, Yt) ∈ eΩc

T

i1/2 p→ 0 ,

due to Assumptions A.6 and A.10.
The proof is similar for S2,T :
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|S2,T | ≤
Z Z

f(x, y;A)IeΩcT (x, y)dxdy
≤

µZ Z
f(x, y;A)2

f (x, y)
dxdy

¶ 1
2
µZ Z

IeΩcT (x, y)f (x, y) dxdy
¶ 1

2

≤
µ
sup
A∈Θ

Q(A) + 1

¶1
2

P0
h
(Xt, Yt) ∈ eΩc

T

i1/2
→ 0, in probability uniformly in A ∈ Θ,

due to Assumption A.6, whenever supA∈ΘQ(A) < ∞. Under Assumption A.5. i. Θ is
compact, and supA∈ΘQ(A) < ∞ since Q is continuous [see ii) below]. Under Assumption
A.5. ii. Θ is bounded, and supA∈ΘQ(A) <∞ since:

Q(A0 + h) = C1 khk2L2(ν) + C2 khk3L2(ν) + C3 khk4L2(ν) ,

for some constants C1, C2, C3 [see ii) below].
Let us now consider S3,T :

|S3,T | ≤
Z 1

0

Z 1

0

f(x, y;A)2

f(x, y)

¯̄̄̄
¯ bfT (x, y)− f(x, y)bfT (x, y)

¯̄̄̄
¯ωT (x, y)dxdy

≤ sup
A∈Θ

°°°°f(., .;A)2f(., .)

°°°°
Lp

°°°°° bfT − fbfT
°°°°°
Lq(ΩT )

→ 0, in probability uniformly in A ∈ Θ,

due to Assumptions A.8 and A.9.
Finally, the last term S4,T is such that:

|S4,T | ≤
Z Z

f(x, y;A)2

f(x, y)
|ωT (x, y)− 1| dxdy

≤
Z Z

f(x; y;A)2

f(x, y)
IeΩcT (x, y)dxdy

≤
°°°°f(., .;A)2f(., .)

°°°°
Lp

°°°IeΩcT°°°Lq ,
≤ sup

A∈Θ

°°°°f(., .;A)2f(., .)

°°°°
Lp
· λ2

³eΩc
T

´1/q
,

→ 0, in probability uniformly in A ∈ Θ,

due to Assumptions A.6 and A.8.
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ii) Continuity of the chi-square criterion.

To show the continuity of the limit criterion Q∞ = Q , we have to prove:

lim
h→0

Q(A+ h) = Q(A), ∀A ∈ Θ,

where h → 0 denotes convergence in norm k.kL2(ν). For this purpose let us consider the
expansion of the chi-square criterion:

Q(A+ h) =

Z Z
[f(x, y)− f(x, y;A+ h)]2

f(x, y)
dxdy

=

Z Z
[f(x, y)− f(x, y;A)− hDf(x, y;A), hi−R(x, y;A, h)]2

f(x, y)
dxdy

= Q(A) +

Z Z
hD log f(x, y;A), hi2 f(x, y)dxdy

+

Z Z
R(x, y;A, h)2

f(x, y)
dxdy

−2
Z Z

[f(x, y)− f(x, y;A)] hD log f(x, y;A), hi dxdy

+2

Z Z
hD log f(x, y;A), hiR(x, y;A, h)dxdy

−2
Z Z

f(x, y)− f(x, y;A)

f(x, y)
R(x, y;A, h)dxdy.

Let us now bound the terms in the last three lines. For the first one we have:¯̄̄̄Z Z
[f(x, y)− f(x, y;A)] hD log f(x, y;A), hi dxdy

¯̄̄̄
=

¯̄̄̄
E0

·
f(X,Y )− f(X,Y ;A)

f(X,Y )
hD log f(X,Y ;A), hi

¸¯̄̄̄

≤ E0

"µ
f(X,Y )− f(X,Y ;A)

f(X,Y )

¶2#1/2
E0
£hD log f(X,Y ;A), hi2¤1/2

= Q(A)1/2 (h, IAh)
1/2
L2(ν) .

Similar upper bounds can be obtained for the last two terms. Thus the expansion of Q is:

Q(A+ h) = Q(A) + (h, IAh)L2(ν) +

Z Z
R(x, y;A, h)2

f(x, y)
dxdy

+O
h
(h, IAh)

1/2
L2(ν)Q(A)

1/2
i

+O

"µZ Z
R(x, y;A, h)2

f(x, y)
dxdy

¶1/2
(h, IAh)

1/2

L2(ν)

#

+O

"µZ Z
R(x, y;A, h)2

f(x, y)
dxdy

¶1/2
Q(A)1/2

#
. (a.8)
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Under Assumptions A.7 and A.11 we get:

Q(A+ h) = Q(A) +O
³
khk2L2(ν)

´
,

and the continuity follows.

iii) Identification.

Under Assumption A.3 i. or ii. we have (see Appendix 2):

inf
A∈Θ\Bε(A0)

Q(A) > 0 = Q (A0) .

iv) Sufficient conditions for compactness.

In Assumption A.5 i. the setΘ is supposed to be compact in L2 (ν). We report here a theorem
providing sufficient conditions for compactness in Lp spaces [see e.g. Yosida (1995)].

Theorem. (Fréchet-Kolmogorov). Let Θ be a subset of the Banach space Lp of p-integrable
functions with respect to the Lebesgue measure on R. Assume:

i. Θ is bounded: sup
A∈Θ

kAkLp <∞;

ii. supA∈Θ kA(.+ u)−A(.)kLp −→ 0, as u→ 0;

iii. limα→∞ supA∈Θ
R
|x|>αA(x)

pdx = 0.

Then Θ is precompact, that is its closure is compact.

Generalizations of this theorem when the Lp-space is defined with respect to a general mea-
sure are possible.

Appendix 7
The efficient score ψT

Let g be a function on [0, 1]2, such that g(., .)/f(., .;A0) ∈ L2(P0). By Riesz representation
theorem, there exists ψ (g) ∈ L2 (ν) such that:

(ψ (g) , h)L2(ν) = E0

·
g(X,Y )

f(X,Y )
hD log f(X,Y ;A0), hi

¸
, ∀h ∈ L2 (ν) .
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It is given by ψ (g) = hD log f(., .;A0)∗, g/fi. When the differential admits a decomposition
(3.3), function ψ (g) is given by:

ψ (g) (z) =
1

dν/dλ(z)

·Z
g(z, y)γ0 (z, y) dy +

Z
g(x, z)γ1(x, z)dx

+

Z Z
g(x, y)γ2(x, y, z)dxdy

¸
.

Let us now apply these results to function gT =
h³ bfT − f

´
/f
i
ωT =

³
δ bfT/f´ωT . For

any T ∈ N,
³
δ bfT/f´ωT ∈ L2(P0) with probability 1. Thus there exists ψT ∈ L2 (ν) such

that:

(ψT , h)L2(ν) = E0

"
δ bfT (X,Y )

f(X,Y )
ωT (X,Y ) hD log f(X,Y ;A0), hi

#
, ∀h ∈ L2 (ν) .

When the differential admits a decomposition (3.3), function ψT is given by:

ψT (z) =
1

dν/dλ(z)

·Z
δ bfT (z, y)ωT (z, y) γ0 (z, y) dy +

Z
δ bfT (x, z)ωT (x, z) γ1(x, z)dx

+

Z Z
δ bfT (x, y)ωT (x, y) γ2(x, y, z)dxdy

¸
.

Appendix 8
Asymptotic expansion of first order conditions

i) Expansion of the first order condition

From Assumption A.12, bAT satisfies the set of first order conditions:Z Z bfT (x, y)− f(x, y; bAT )bfT (x, y)
D
Df

³
x, y; bAT

´
, g
E
ωT (x, y)dxdy = 0, ∀g ∈ L2(ν).

Let us denote δ bAT = bAT − A0. We can expand the functions involved in the first order
condition. We get:

f
³
x, y; bAT

´
= f(x, y) +

D
Df (x, y;A0) , δ bAT

E
+R

³
x, y; δ bAT

´
,D

Df
³
x, y; bAT

´
, g
E
= hDf (x, y;A0) , gi+ eR³x, y; δ bAT , g

´
.
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The behaviour of the residual terms R and eR has to be constrained to ensure that they are
negligible for small δ bAT . This is achieved for R by Assumption A.2.bis. For eR we assume:

Assumption A.13: The residual term eR is such that:

Z Z eR (x, y;h, g)2
f(x, y)

dxdy = O
³
khk2L2(ν) kgk2L2(ν)

´
.

By writing:

1bfT (x, y) = 1

f(x, y)

Ã
1− δ bfT (x, y)bfT (x, y)

!
,

where δ bfT = bfT − f , the first order condition becomes:

0 =

Z Z
δ bfT (x, y)ωT (x, y) hD log f (x, y;A0) , gi

Ã
1− δ bfT (x, y)bfT (x, y)

!
dxdy

−
Z Z D

Df (x, y;A0) , δ bAT

E
hDf (x, y;A0) , gi

f(x, y)

Ã
1− δ bfT (x, y)bfT (x, y)

!
ωT (x, y)dxdy

−
Z Z

R
³
x, y; δ bAT

´ hDf (x, y;A0) , gi
f(x, y)

Ã
1− δ bfT (x, y)bfT (x, y)

!
ωT (x, y)dxdy

+

Z Z
δ bfT (x, y)
f(x, y)

eR³x, y; δ bAT , g
´Ã

1− δ bfT (x, y)bfT (x, y)
!
ωT (x, y)dxdy

−
Z Z D

Df (x, y;A0) , δ bAT

E
f(x, y)

eR³x, y; δ bAT , g
´Ã

1− δ bfT (x, y)bfT (x, y)
!
ωT (x, y)dxdy

−
Z Z R

³
x, y; δ bAT

´
f(x, y)

eR³x, y; δ bAT , g
´Ã

1− δ bfT (x, y)bfT (x, y)
!
ωT (x, y)dxdy.

The leading terms are the first one [where we recognize (g, ψT )L2(ν), see Appendix 7] and the

second one [with
³
g, Iδ bAT

´
L2(ν)

]. Thus the first order condition can be rewritten as:

³
g, ψT − Iδ bAT

´
L2(ν)

+R
³
δ bAT , g

´
= 0, ∀g ∈ L2 (ν) ,
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where the residual term R
³
δ bAT , g

´
is:

R
³
δ bAT , g

´
= −

Z Z
δ bfT (x, y) hD log f (x, y;A0) , gi δ bfT (x, y)bfT (x, y) ωT (x, y)dxdy

−
Z Z D

D log f (x, y;A0) , δ bAT

E
hD log f (x, y;A0) , gi f(x, y)

·
"Ã
1− δ bfT (x, y)bfT (x, y)

!
ωT (x, y)− 1

#
dxdy

−
Z Z

R
³
x, y; δ bAT

´
hD log f (x, y;A0) , gi

Ã
1− δ bfT (x, y)bfT (x, y)

!
ωT (x, y)dxdy

+

Z Z
δ bfT (x, y)
f(x, y)

eR³x, y; δ bAT , g
´Ã

1− δ bfT (x, y)bfT (x, y)
!
ωT (x, y)dxdy

−
Z Z D

Df (x, y;A0) , δ bAT

E
f(x, y)

eR³x, y; δ bAT , g
´Ã

1− δ bfT (x, y)bfT (x, y)
!
ωT (x, y)dxdy

−
Z Z R

³
x, y; δ bAT

´
f(x, y)

eR³x, y; δ bAT , g
´Ã

1− δ bfT (x, y)bfT (x, y)
!
ωT (x, y)dxdy

≡ R1
³
δ bAT , g

´
+R2

³
δ bAT , g

´
+R3

³
δ bAT , g

´
+R4

³
δ bAT , g

´
+R5

³
δ bAT , g

´
+R6

³
δ bAT , g

´
.

ii) A bound for the residual term

The following Lemma provides a bound for the residual termR
³
δ bAT , g

´
under the additional

assumption:

Assumption A.14: There exists p > 1 such that:

khD log f(., .;A0), gi hD log f(., .;A0), hi f(., .)kLp = O
³
kgkL2(ν) khkL2(ν)

´
.

Lemma A.2: Under Assumptions A.13 and A.14 the residual term R
³
δ bAT , g

´
is such that:

R
³
δ bAT , g

´
= kgkL2(ν) Op

·
τ 2T,1 + (τT,1 + τT,2)

°°°δ bAT

°°°
L2(ν)

+
°°°δ bAT

°°°2
L2(ν)

¸
,

where

τT,1 =

°°°°°δ bfTbfT
°°°°°
L∞(ΩT )

, τT,2 = λ2
³eΩc

T

´1/q
, 1/p+ 1/q = 1,
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and p is defined as in Assumption A.14.
Proof. We bound each of the six terms in the expression of R

³
δ bAT , g

´
.

i) The first term is such that:

¯̄̄
R1
³
δ bAT , g

´¯̄̄
≤

°°°°°δ bfTbfT
°°°°°
2

L∞(ΩT )

Z
|hD log f (x, y;A0) , gi|

p
f(x, y)

bfT (x, y)p
f(x, y)

dxdy

≤
°°°°°δ bfTbfT

°°°°°
2

L∞(ΩT )

E0
£hD log f (X,Y ;A0) , gi2

¤1/2ÃZ bfT (x, y)2
f(x, y)

dxdy

!1/2

=

°°°°°δ bfTbfT
°°°°°
2

L∞(ΩT )

(g, Ig)
1/2

L2(ν)

Z Z h bfT (x, y)− f(x, y)
i2

f(x, y)
dxdy + 1


1/2

= Op

h
kgkL2(ν) τ 21,T

i
,

by continuity of the information operator I and Assumption A.10.

ii) The second term is such that:¯̄̄
R2
³
δ bAT , g

´¯̄̄
≤

Z Z ¯̄̄D
D log f (x, y;A0) , δ bAT

E
hD log f (x, y;A0) , gi

¯̄̄
f(x, y) |ωT (x, y)− 1| dxdy
+

Z Z ¯̄̄D
D log f (x, y;A0) , δ bAT

E
hD log f (x, y;A0) , gi

¯̄̄
f(x, y)

¯̄̄
δ bfT (x, y)¯̄̄bfT (x, y) ωT (x, y)dxdy

≤
°°°hD log f(., .;A0), giDD log f(., .;A0), δ bAT

E
f(.; .)

°°°
Lp
kωT − 1kLq

+

°°°°°δ bfTbfT
°°°°°
L∞(ΩT )

°°°hD log f(., .;A0), giDD log f(., .;A0), δ bAT

E
f(., .)

°°°
L1

= Op

·
kgkL2(ν)

°°°δ bAT

°°°
L2(ν)

¸λ
³eΩc

T

´1/q
+

°°°°°δ bfTbfT
°°°°°
L∞(ΩT )


= Op

·
kgkL2(ν)

°°°δ bAT

°°°
L2(ν)

(τ 1,T + τ 2,T )

¸
,

by Assumption A.14, where we used that kϕkL1 ≤ kϕkLp, p > 1, for a function ϕ defined on
[0, 1]2, by Hölder inequality.
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iii) The third term satisfies:

¯̄̄
R3
³
δ bAT , g

´¯̄̄
≤ (1 + τ 1,T )

Z Z
|hD log f (x, y;A0) , gi|

p
f(x, y)

¯̄̄
R
³
x, y; δ bAT

´¯̄̄
p
f(x, y)

dxdy

≤ (1 + τ 1,T ) (g, Ig)
1/2

L2

Z Z R
³
x, y; δ bAT

´2
f(x, y)

dxdy


1/2

= Op

µ
kgkL2(ν)

°°°δ bAT

°°°2
L2(ν)

¶
,

by Assumption A.2.bis.

iv) The term R4 is such that:¯̄̄
R4
³
δ bAT , g

´¯̄̄
≤ (1 + τ 1,T ) τ 1,T

Z Z ¯̄̄ eR³x, y; δ bAT , g
´¯̄̄

p
f(x, y)

bfT (x, y)p
f(x, y)

dxdy

≤ (1 + τ 1,T ) τ 1,T

Z Z eR³x, y; δ bAT , g
´2

f(x, y)
dxdy


1/2ÃZ bfT (x, y)2

f(x, y)
dxdy

!

= Op

µ
τ 1,T kgkL2(ν)

°°°δ bAT

°°°
L2(ν)

¶
,

by Assumptions A.10, A.13.

v) The fifth term is bounded by:

¯̄̄
R5
³
δ bAT , g

´¯̄̄
≤ (1 + τ 1,T )

³
δ bAT , Iδ bAT

´1/2
L2(ν)

Z Z eR³x, y; δ bAT , g
´2

f(x, y)
dxdy


1/2

= Op

µ
kgkL2(ν)

°°°δ bAT

°°°2
L2(ν)

¶
.

vi) Finally, the last term:

¯̄̄
R6
³
δ bAT , g

´¯̄̄
≤ (1 + τT )

Z Z R
³
x, y; δ bAT

´2
f(x, y)

dxdy


1/2

·

Z Z eR³x, y; δ bAT , g
´2

f(x, y)
dxdy


1/2

= Op

µ
kgkL2(ν)

°°°δ bAT

°°°3
L2(ν)

¶
.
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By gathering the dominant terms, the bound for R
³
δ bAT , g

´
is proved.

Q.E.D.

iii) Negligibility of the residual term.

Finally we have to introduce an additional assumption to ensure that the residual term is
negligible with respect to the other terms.

Assumption A.15:

τT,1 =

°°°°°δ bfTbfT
°°°°°
L∞(ΩT )

= op(T
−1/4).

Lemma A.3: Under Assumptions A.1-A.15:

i. °°°δ bAT

°°°
L2
= Op

³
1/
√
T
´
.

ii. √
T
³
g, δ bAT

´
L2(ν)

=
√
T
¡
g, I−1ψT

¢
L2(ν)

+ op (1) , g ∈ L2 (ν) .

Proof. From Lemma A.2, Assumptions A.6 and A.15 we get:

R
³
δ bAT , g

´
= op

³
kgkL2 /

√
T
´
+ op

µ
kgkL2

°°°δ bAT

°°°
L2(ν)

¶
.

Then the first order condition is such that :³
g, Iδ bAT

´
L2
= (g, ψT )L2 + op

³
kgkL2 /

√
T
´
+ op

µ
kgkL2

°°°δ bAT

°°°
L2(ν)

¶
,

for any g ∈ L2 (ν), and since I−1 is bounded we get:³
g, δ bAT

´
L2(ν)

=
¡
g, I−1ψT

¢
L2(ν)

+ op
³
kgkL2 /

√
T
´

+op

µ
kgkL2(ν)

°°°δ bAT

°°°
L2(ν)

¶
,

(a.9)

for any g ∈ L2 (ν).
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Let us now deduce a bound for
°°°δ bAT

°°°
L2(ν)

. Since
√
T (I−1g, ψT )L2(ν)

d→ N [0, (g, I−1g)L2(ν)]

(see Lemma 16 in the text) and I−1 is bounded:

¡
g, I−1ψT

¢
L2(ν)

= Op

³
kgkL2 /

√
T
´
.

Thus: ³
g, δ bAT

´
L2(ν)

= Op

³
kgkL2 /

√
T
´
+ op

µ
kgkL2(ν)

°°°δ bAT

°°°
L2(ν)

¶
, g ∈ L2 (ν) .

We get: °°°δ bAT

°°°
L2(ν)

= sup
g∈L2(ν):kgkL2(ν)=1

³
g, δ bAT

´
L2(ν)

= Op

³
1/
√
T
´
+ op

µ°°°δ bAT

°°°
L2(ν)

¶
,

that is
°°°δ bAT

°°°
L2(ν)

= Op

³
1/
√
T
´
. From (a.9) we deduce ii.

Q.E.D.

iv) Pointwise expansion.

Let us now focus on pointwise expansions. Intuitively, these are derived from the first order
condition corresponding to a variation g of the functional parameter A which involves only
a point x0 ∈ [0, 1]. We use an approach by localization, and consider variations g which
are more and more concentrated around x0 as T → ∞, at an higher speed than kernel
localization. For simplicity we consider the case where A has one component.
Let ϕ ∈ C∞0 be a symmetric kernel with compact support, and let ehT be a bandwidth

converging to 0. For any x0 ∈ [0, 1], define the function:

gT,x0(x) =
1qehT ϕ

µ
x− x0ehT

¶
, x ∈ [0, 1] .

Then:

kgT,x0k2L2(ν) =

Z
1ehT ϕ

µ
x− x0ehT

¶2
dν

dλ
(x)dx

=

Z
ϕ (u)2

dν

dλ
(x0 + ehTu)du ' µZ ϕ (u)2 du

¶
dν

dλ
(x0).
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Thus gT,x0 ∈ L2 (ν) λ-a.s. in x0, and kgT,x0kL2(ν) converges to a constant as T → ∞. In
addition, for any h ∈ L2 (ν):

(gT,x0, h)L2(ν) =

Z
1qehT ϕ

µ
x− x0ehT

¶
h(x)

dν

dλ
(x)dx

=

qehT Z ϕ (u)h(x0 + ehTu)dν
dλ
(x0 + ehTu)du

=

qehTh (x0) dν
dλ
(x0)

+

qehT Z ϕ (u)

·µ
h
dν

dλ

¶
(x0 + ehTu)−µhdν

dλ

¶
(x0)

¸
du.

The idea is to apply Lemma A.3 ii. to g = gT,x0. Since function gT,x0 depends on T , it is
important to know the rate of the residual term in Lemma A.3 ii) and for this purpose we
have to strength Assumption A.15.

Assumption A.15’:

τT,1 = Op

¡
T−1/4−β1

¢
, τT,2 = Op

¡
T−β2

¢
, β1, β2 > 0.

Lemma A.4: Let gT ∈ L2 (ν) for any T , such that kgTkL2(ν) ≤ const, independent of T ,
for T sufficiently large. Then under Assumption A.15’:

√
T
³
gT , Iδ bAT

´
L2(ν)

=
√
T (gT , ψT )L2(ν) +Op

¡
T−β

¢
,

where β = min{2β1, 1/4 + β1, β2, 1/2} > 0.
Proof. Since the first order condition holds for any given T , and gT ∈ L2 (ν):³

gT , Iδ bAT

´
L2(ν)

= (gT , ψT )L2(ν) +R
³
δ bAT , gT

´
.

From Lemma A.2, Lemma A.3 i., and using A.15’, we get:

R
³
δ bAT , gT

´
= kgTkL2(ν)Op

£
T−1/2−2β1 +

¡
T−1/4−β1 + T−β2

¢
T−1/2 + T−1

¤
= Op

¡
T−1/2−β

¢
.

Q.E.D.

Let us apply Lemma A.4 to gT = gT,x0, where the bandwidth for localization ehT is selected
such that: ehT = o (hT ) , hT = o(ehTT 2β).
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We get:q
ThT/ehT ³gT,x0 , Iδ bAT

´
L2(ν)

=

q
ThT/ehT (gT,x0 , ψT )L2(ν) +Op

µ
T−β

q
hT/ehT¶ .

(a.10)

Let us consider the RHS of (a.10). We get:q
ThT/ehT (gT,x0, ψT )L2(ν) +Op

µ
T−β

q
hT/ehT¶

'
p
ThT

dν

dλ
(x0)ψT (x0)

+
p
ThT

Z
ϕ (u)

·µ
dν

dλ
ψT

¶³
x0 + ehTu´−µdν

dλ
ψT

¶
(x0)

¸
du.

Let us now consider the LHS of (a.10). We get:q
ThT/ehT ³gT,x0 , Iδ bAT

´
L2(ν)

=
p
ThT

dν

dλ
(x0) Iδ bAT (x0)

+
p
ThT

Z
ϕ (u)

·µ
dν

dλ
Iδ bAT

¶³
x0 + ehTu´−µdν

dλ
Iδ bAT

¶
(x0)

¸
du

'
p
ThTα0(x0)δ bAT (x0)

+
p
ThT

Z
ϕ (u)

h³
α0δ bAT

´³
x0 + ehTu´− ³α0δ bAT

´
(x0)

i
du.

Thus, from (a.10) we get:p
ThTα0(x0)δ bAT (x0)

+
p
ThT

Z
ϕ (u)

h³
α0δ bAT

´³
x0 + ehTu´− ³α0δ bAT

´
(x0)

i
du

'
p
ThT

dν

dλ
(x0)ψT (x0)

+
p
ThT

Z
ϕ (u)

·µ
dν

dλ
ψT

¶³
x0 + ehTu´−µdν

dλ
ψT

¶
(x0)

¸
du.

Let us now show that the second term on the RHS is negligible, since ehT = o(hT ). We have:p
ThT

Z
ϕ (u)

·µ
dν

dλ
ψT

¶³
x0 + ehTu´−µdν

dλ
ψT

¶
(x0)

¸
du

'
p
ThT

eh2T
2

d2

dx2

µ
dν

dλ
ψT

¶
(x0)

Z
u2ϕ (u) du, (since the kernel ϕ is symmetric),

= op(1). (a.11)
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Indeed, since dν
dλ
ψT (x0) involves conditional moments of kernel estimators of a density [see

(3.24)], we have dν
dλ
ψT (x0) = Op

h
(ThT )

−1/2
i
(see Lemma 13), and since each differentiation

diminishes the rate of convergence of a kernel estimator by the factor hT (see Theorem 3 in

Aït-Sahalia [1993]), we deduce d2

dx2

¡
dν
dλ
ψT

¢
(x0) = Op

h
(ThT )

−1/2 h−2T
i
. Thus we get:p

ThTα0(x0)δ bAT (x0)

' −
p
ThT

Z
ϕ (u)

h³
α0δ bAT

´³
x0 + ehTu´− ³α0δ bAT

´
(x0)

i
du

+
p
ThT

dν

dλ
(x0)ψT (x0) , λ-a.s. in x0 ∈ [0, 1] .

This is an integral equation for
√
ThTα0δ bAT which has a unique solution [see e.g. Theorem

5.2.3 in Debnath, Mikusinski (1998)]. By subsitution and using (a.11), we see that the
solution is of the form

√
ThTα0δ bAT =

√
ThT

dν
dλ
ψT +op(1). We conclude:p

ThTα0(x0)δ bAT (x0) '
p
ThT

dν

dλ
(x0)ψT (x0) , λ-a.s. in x0 ∈ [0, 1] .

v) Expansion of the constrained estimator.

Let us now consider the asymptotic expansion of the constrained estimator bf0T (x, y). We get:bf0T (x, y)− f(x, y) = f(x, y; bAT )− f(x, y;A0)

=
D
Df(x, y;A0), δ bAT

E
+R(x, y; δ bAT ).

Let us now derive a bound for R(x, y; δ bAT ). By Assumption A.2.bis and Lemma A.3.i. we
get: ÃZ Z

R(x, y; δ bAT )
2

f(x, y)
dxdy

!1/2
= Op

µ°°°δ bAT

°°°2
L2(ν)

¶
= Op(1/T ). (a.12)

For any x0, y0 ∈ [0, 1] let us introduce the function:

gT,x0,y0(x, y) =
1ehT ϕ

µ
x− x0ehT

¶
ϕ

µ
y − y0ehT

¶
,

where ϕ ∈ C∞0 is a symmetric kernel with compact support and the localization bandwidthehT is selected such that ehT = o(hT ) and
p
hT/T = o

³ehT´ 27. Then:

kgT,x0,y0k2L2(P0) =

Z
1eh2T ϕ

µ
x− x0ehT

¶2
ϕ

µ
y − y0ehT

¶2
f(x, y)dxdy

'
µZ

ϕ (u)2 du

¶2
f(x0, y0).

27This is possible since ThT →∞ by Assumption B.4 in Appendix 5.
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Thus gT,x0,y0 ∈ L2 (P0) with kgT,x0,y0kL2(P0) ≤ C independent of T , for T sufficiently large.
Then by Cauchy-Schwarz inequality:Z Z

gT,x0,y0(x, y)R(x, y; δ bAT )dxdy ≤ kgT,x0,y0kL2(P0)
ÃZ Z

R(x, y; δ bAT )
2

f(x, y)
dxdy

!1/2
= Op(1/T ), [from (a.12)]. (a.13)

On the other hand:Z Z
gT,x0,y0(x, y)R(x, y; δ bAT )dxdy =

Z Z
1ehT ϕ

µ
x− x0ehT

¶
ϕ

µ
y − y0ehT

¶
R(x, y; δ bAT )dxdy

= ehT Z Z
ϕ (u)ϕ (v)R(x0 + ehTu, y0 + ehTv; δ bAT )

' ehTR(x0, y0; δ bAT ), (a.14)

since ehT = o(hT ). In particular, from (a.13) and (a.14) we get:

R(x0, y0; δ bAT ) = Op(1/TehT ).
Since 1/ehT = o(

p
T/hT ) it follows:

R(x, y; δ bAT ) = Op(1/TehT ) = op
³
1/
p
ThT

´
, λ-a.s. in x, y.

Thus: bf0T (x, y)− f(x, y) =
D
Df(x, y;A0), δ bAT

E
+ op

³
1/
p
ThT

´
, λ-a.s. in x, y.

Appendix 9
Asymptotic distribution of ψT

Let us consider the case where the differential operator admits the decomposition (3.3).
From Appendix 7, function ψT is such that:

dν

dλ
(w)ψT (w) =

Z
δ bfT (w, y)ωT (w, y) γ0 (w, y) dy +

Z
δ bfT (x,w)ωT (x,w) γ1(x,w)dx

+

Z Z
δ bfT (x, y)ωT (x, y) γ2(x, y, w)dxdy

'
Z

δ bfT (w, y)γ0 (w, y) dy + Z δ bfT (x,w)γ1(x,w)dx
+

Z Z
δ bfT (x, y)γ2(x, y, w)dxdy.
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From Appendix 5, point ii), it follows that:p
ThT

dν

dλ
(w)ψT (w)

d−→ N
¡
0, σ2 (w)

¢
,

where:

σ2 (w) =

µZ
K(z)2dz

¶³
E
h
γ0tγ

0
0t | Xt = w

i
fX(w)

+E
h
γ1tγ

0
1t | Yt = w

i
fY (w)

´
=

µZ
K(z)2dz

¶
α0 (w) .

Appendix 10
Asymptotic expansion in the time series framework

In this Appendix we essentially derive the first order expansions to understand the form
of the asymptotic distribution. The first order condition is:

0 =

Z Z h bfT (x|y)− f
³
x|y; bAT

´i
bfT (x|y)

D
Df

³
x|y; bAT

´
, g
E
ωT (x, y) bfY,T (y)dxdy,

∀g ∈ L2 (ν). Let us expand this condition. We get:

0 '
Z Z h bfT (x|y)− f (x|y)

i
f(x|y) hDf (x|y;A0) , gi fY (y)dxdy

−
Z Z D

Df (x|y;A0) , δ bAT

E
f(x|y) hDf (x|y;A0) , gi fY (y)dxdy

=

Z Z h bfT (x|y)− f (x|y)
i

f(x|y) hD log f (x|y;A0) , gi f(x, y)dxdy

−
Z Z D

D log f (x|y;A0) , δ bAT

E
hD log f (x|y;A0) , gi f(x, y)dxdy

=
³eψT , g

´
L2(ν)

−
³
IX|Y δ bAT , g

´
L2(ν)

.

Thus the first order condition is equivalent to:³
g, IX|Y δ bAT − eψT

´
L2(ν)

' 0, ∀g ∈ L2 (ν) .
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Appendix 11
Nonparametric information bound

i) Cross-sectional framework.

Let us introduce a one dimensional parametric model A(., θ) and derive its Cramer-Rao
bound. The score is given by:

∂ log f

∂θ
(x, y;A (θ0)) =

¿
D log f(x, y;A0),

dA

dθ
(θ0)

À
.

The Fisher information is:

E0

"µ
∂ log f

∂θ
(Xt, Yt;A (θ0))

¶2#
= E0

"¿
D log f(X,Y ;A0),

dA

dθ
(θ0)

À2#

=

µ
dA

dθ
(θ0), I

dA

dθ
(θ0)

¶
L2(ν)

.

Thus the Cramer-Rao bound is given by:

BA(g, θ) =

µ
dA

dθ
(θ0), I

dA

dθ
(θ0)

¶−1
L2(ν)

.

The parametric specification can be chosen such that:Z
g(v)

0
A (v, θ) ν (dv) = θ,

which is equivalent (in a neighborhood of θ0) to the constraint:Z
g(v)

0 dA

dθ
(v, θ0)ν (dv) = 1,

that is: µ
g,
dA

dθ
(θ0)

¶
L2(ν)

= 1. (a.15)

Thus both the Cramer Rao bound and the constraint (a.15) depend on the parameterization
only by means of the function δ (.) = dA/dθ(., θ0). Therefore problem (3.28) in the text is
equivalent to:

min
δ∈L2(ν)

(δ, Iδ)L2(ν) ,

s.t : (g, δ)L2(ν) = 1.

By Cauchy-Schwarz inequality we have:

1 = (g, δ)2L2(ν) =
¡
I−1/2g, I1/2δ

¢2
L2(ν)

≤ ¡I−1g, g¢
L2(ν)

(δ, Iδ)L2(ν) .
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Therefore (δ, Iδ)L2(ν) ≥ (I−1g, g)−1L2(ν) and the bound is reached for
δ∗ = I−1g ∈ L2 (ν). Thus we deduce:

BA(g) =
¡
g, I−1g

¢
L2(ν)

.

ii) Time-series framework.

In this case the score is given by:

∂ log f

∂θ
(x | y;A (θ0)) =

¿
D log f(x | y;A0), dA

dθ
(θ0)

À
.

and the Fisher information is:

E0

"µ
∂ log f

∂θ
(Xt | Xt−1;A (θ0))

¶2#
= E0

"¿
D log f(Xt | Xt−1;A0),

dA

dθ
(θ0)

À2#

=

µ
dA

dθ
(θ0), IX|Y

dA

dθ
(θ0)

¶
L2(ν)

.

Thus the Cramer Rao bound is given by:

BA(g, θ) =

µ
dA

dθ
(θ0), IX|Y

dA

dθ
(θ0)

¶−1
L2(ν)

.

The solution of the maximization problem is similar to that of the cross-sectional framework,
and the nonparametric efficiency bound is immediately derived.

Appendix 12
Constrained estimation

i) Asymptotic expansions.

By arguments similar to those in Appendix 8, the first order condition is given by:³
h, IHδ bAT − ψT

´
L2(ν)

= op
³
khkL2(ν) /

√
T
´
, h ∈ H.

This is equivalent to:³
g, IHδ bAT

´
L2(ν)

= (g, PHψT )L2(ν) + op
³
kgkL2(ν) /

√
T
´
, g ∈ L2 (ν) . (a.16)
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Let us first consider the asymptotic expansion of linear functionals. Since IH is continuously
invertible we get:³

g, δ bAT

´
L2(ν)

=
¡
g, I−1H PHψT

¢
L2(ν)

+ op
³
kgkL2(ν) /

√
T
´
, g ∈ L2 (ν) .

Thus for any g ∈ L2 (ν):

√
T
³
g, δ bAT

´
L2(ν)

'
√
T
¡
g, I−1H PHψT

¢
L2(ν)

=
√
T
¡
I−1H PHg, ψT

¢
L2(ν)

, since I−1H and PH commute,

d−→ N
h
0,
¡
PHg, I

−1
H PHg

¢
L2(ν)

i
.

Let us now consider pointwise expansions. Equation (a.16) can be generalized to the case
where g = gT ∈ L2 (ν), such that kgTkL2(ν) ≤ C independent of T , for T large enough (see
Appendix 8):

√
T
³
gT , IHδ bAT

´
L2(ν)

=
√
T (gT , PHψT )L2(ν) +Op

¡
T−β

¢
, for any gT . (a.17)

Let us apply (a.17) with gT = gT,x0, x0 ∈ [0, 1], as defined in Appendix 8. Let us consider
gi, i = 1, ..., n, an orthonormal basis of H⊥. We have:

√
T (gT,x0, PHψT )L2(ν) ' const

q
TehT dν

dλ
(x0)PHψT (x0)

= const

q
TehT dν

dλ
(x0)

"
ψT (x0)−

nX
i=1

(gi, ψT )L2(ν) gi(x0)

#

' const

q
TehT dν

dλ
(x0)ψT (x0) ,

where the last equivalence is due to (gi, ψT )L2(ν) = Op

³
1/
√
T
´
. Thus we can neglect in

condition (a.17) the effect of the projector PH on ψT and deduce with similar arguments as
in Appendix 8 iv):p

ThTα0,H (x0) δ bAT (x0) '
p
ThT

dν

dλ
(x0)ψT (x0) , λ-a.s. in x0.

Therefore:p
ThT δ bAT (x0) ' α0,H (x0)

−1pThT
dν

dλ
(x0)ψT (x0)

d−→ N

·
0,

µZ
K(x)2dx

¶
α0,H(x0)

−1
¸
.

ii) The constrained nonparametric efficiency bound.
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Let A (.; θ) be a one-dimensional parametric model satisfying the constraints. Then we
have dA/dθ (θ0) ∈ H. It follows that the Fisher information is given by:µ

dA

dθ
(θ0) , IH

dA

dθ
(θ0)

¶
L2(ν)

,

and the constraint:
(g,A (θ))L2(ν) = θ, θ ' θ0,

is equivalent to: µ
PHg,

dA

dθ
(θ0)

¶
L2(ν)

= 1.

Problem (3.28) becomes:

min
δ∈H

(δ, IHδ)L2(ν) ,

s.t : (PHg, δ)L2(ν) = 1.

As in Appendix 11 it follows:

BA(g) = (g, PHI
−1
H PHg)L2(ν).

iii) Proof of Proposition 22.

The proof of the boundedness is the same as the proof of proposition 1. Let us now discuss
the invertibility of the information operator IH . Operator IH can be written as:

IHh(w) =
α0,H(w)

dν/dλ(w)
h(w) +

Z
α1,H(w, v)

dν/dλ(w)
h(v)dv

= I0Hh(w) + I1Hh(w).

As in the proof of Proposition 2, operators I0H and I1H extend to continuous operators on
L2 (ν), such that I0H is continuously invertible, and I1H is compact. Let eI be the operator
with domain L2 (ν) defined by: eI = IHPH + PH⊥ .

Then H and H⊥ are invariant subspaces of eI, such that eI|H = IH , and eI|H⊥ = Id|H⊥ . Thus,
if we show that eI is invertible, invertibility of IH will follow. We have:eI =

¡
I0H + I1H

¢
PH + PH⊥

= I0H − I0HPH⊥ + I1HPH + PH⊥.

Now, using that: i) the product of a compact and a bounded operator is compact: ii) the
sum of two compact operators is compact; iii) an operator with finite dimensional range is
compact, we get that −I0HPH⊥+I

1
HPH+PH⊥ is compact. Thus eI is the sum of a continuously
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invertible operator and a compact operator. In addition, operator eI has a zero null space.
Indeed:

eIh = 0 =⇒ IHPHh+ PH⊥h = 0 =⇒ IHPHh = PH⊥h = 0

=⇒ PHh = PH⊥h = 0, since IH has zero null space,

=⇒ h = 0.

By applying LemmaA.1 in Appendix 1, eI is invertible, and the proof is concluded.
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