Defining Model Transformations for Property Templates

Jochen Wuttke

University of Lugano
Faculty of Informatics
Technical Report 2009/05
August 2009

Abstract

We defined the notion of property templates after we observed that many
system failures can be clustered according to their symptoms, and the design
constraints these failures violate [PW09]. In this technical report we document
the semantics of property templates, and how we implemented these semantics
in AspectJ code templates that support assertion generation for Java programs.

1 Introduction

In previous work we introduced the idea of property templates and outlined a method-
ology that uses property templates to facilitate automatic translation of design-level
properties into code-level assertions [PW09]. Property templates encode best prac-
tice assertions similar to design patterns, which encode best practices for structural
design problems. Defining correct and complete assertions is not trivial. Defining
assertions for design-level properties is particularly difficult, because such properties
often affect large parts of the code, and hence require a holistic view of the system to
be able to decide which assertions are needed, and where they are needed. Providing
developers with property templates solves this problem, and automatic code gener-
ation and update also make the maintenance of assertions easier when the system
evolves.

The foundation of the automated translation are formal semantics for the prop-
erties captured in property templates, and code templates that encapsulate the nec-
essary assertions and the rules for where to place assertions in the code. In this
technical report, we document the semantics of a selected set of property templates,
outline the research process we followed to define the code templates, and document
the code templates implemented in LuMiNous. The development of both, the formal
semantics and the concrete implementation of assertions, has been guided by several
considerations and trade-offs.

To be acceptable as a monitoring technique deployed in production systems, au-
tomatic failure detectors (1) cannot rely on human operators to arbitrate the validity

of detected problems, (2) must have only limited performance overhead, (3) must
detect failures precisely and produces only few, if any, false alarms, and (4) must
detect failures as early as possible, to enable efficient automatic fault localization.

The development of property templates and LuMiNous is situated in the scope
of a larger project. Our group aims at developing techniques that enable self-healing
systems to recover from software failures. Self-healing mechanisms are built to op-
erate transparently for the users, who should not be involved in the diagnosing and
fixing process. Thus, failure detection mechanisms cannot rely on partial oracles
or on repeated test executions that require human participation. Additionally, exe-
cuting repair actions is often computationally expensive. False alarms that trigger
adaptation mechanisms may badly affect the performance of the system, and thus
should be avoided. Fault damage often tends to amplify and worsen if the software
continues executing under the effect of a fault, because the initial impact of faults
may propagate and corrupt the system state permanently and extensively. Thus, de-
tecting failures as early as possible enables diagnosing and fixing faults before major
damage.

We previously argued that a consistent set of well tailored assertions can meet
the requirements above, and yet be precise and effective enough to avoid negative
impacts on the running software, and that current practice can only give insufficient
assurance of the quality of assertions [PW09]. This is because in current practice,
assertions are either added directly to the code by programmers [Ros95, Das06], or
are generated from formal specifications that describe invariants of data-structures
and algorithms [Mac00, RAO92]. In both cases, getting the specification right is a
non-trivial issue, and thus highly error prone [CMOP08, VM94]. Additionally when
writing specifications, the developers focus on the implementation details, hence they
might miss constraints stemming from the larger context in which the code will be
used. Concentrating on code-level specifications also makes it difficult to express
constraints that are not directly related to how the system is implemented, but are
imposed by domain specific limitations the system has to adhere to. Our property
template-based approach tackles this problem by encoding best practices developed
by expert programmers into templates for assertions. As such, property templates
are an abstract problem solving concept similar to design patterns [GHJV94].

In this technical report we briefly discuss related work in Section 2 and then
outline the technique and prototype implementation in Section 3. We document
the formal semantics of property templates in Section 4, and the code templates
developed for them in Section 5. Section 6 summarizes and overviews ongoing and
future work.

2 Related Work

Runtime monitoring covers a wide range of applications, for example monitoring
service-level agreements or structural and architectural constraints of systems. Us-
ing models and constraint patterns to derive oracles or validate systems occurs in

different contexts. Froihofer et al. provide an overview and a taxonomy of constraint
evaluation approaches, focused on Java [FGOGO07]. Wang and Shen describe an ap-
proach to detect violations of constraints intrinsic in UML class diagrams [WS07].
They instrument Java programs with calls to a monitoring infrastructure that uses
assertion-like statements to check if the running system maintains invariants like as-
sociation multiplicities. Dzidek et al. translate explicitly given OCL constraints into
aspects that encode assertions matching the OCL constraints [DBLO05]. Stirewalt and
Rugaber present an approach to enforce OCL invariants at runtime [SR05]. They
use specified invariants to generate wrappers around the classes that are referred to
in the invariants. These wrappers notify all classes involved in the constraints about
changes in values, and suitably update the related objects. Raimondi et al. com-
bine the idea of specification patterns with the SLAng language to specify certain
types of timing constraints that typically appear in the Service Level Agreements
(SLA) of service-oriented applications [RSE08]. They translate typical patterns into
timed automata and execute the automata together with the services to determine
if events violate the SLA. Clark proposes a diagrammatic approach to express heap
invariants, and suggests that diagrams can serve as the input for validation and ver-
ification [Cla09]. Clark’s work indicates interesting research directions, but is in a
preliminary stage, and is not yet supported by evidence.

These approaches show different ways to utilize models and constraints expressed
over these models to generate runtime monitors. The approach by Stirewalt and
Rugaber has a strong impact on the development and deployment of applications.
Since their monitors deliberately produce side-effects, these effects have to be taken
into account while developing systems. Hence the approach is not applicable to third-
party components used during development. The approach by Raimondi et al. shows
how extensions to standard modeling languages can be used for application or task
specific specification and monitoring. The work makes strong assumptions about
the checked properties, which effectively limits its applicability to timing constraints.
The monitoring approaches closest to ours are those by Wang and Shen and by
Dzidek et al. Wang and Shen’s approach monitors the maintenance of constraints
implicit in UML models, while our approach targets properties that constrain UML
models, but cannot be expressed in UML models themselves. Further, Wang and
Shen make strong assumptions about the models and their implementations. These
assumptions make the approach hard to generalize and difficult to apply to third-
party components. The approach by Dzidek et al. aims to monitor OCL constraints,
while we focus on design constraints that are not expressible in OCL.

Using specifications to automatically derive oracles is one of the objectives of
specification- or model-based testing. However, the approaches in that field that at-
tempt to derive oracles usually require a complete and formal specification [AHO00].
Furthermore, most practical approaches require the developer to specify constraints
on the level of individual methods or classes, which makes it hard to keep the bigger
picture of system level requirements in mind [BLS05, CL04]. Our property template-
based methodology explicitly addresses this issue by providing a link from the end
user requirements all the way down to assertions in the code. The approach only

requires a partial, annotated structural model of the parts of the system that should
be augmented with failure detectors.

There are several fully or partially automated failure detection approaches that do
not require formal specifications, but using capture and replay techniques or dynamic
invariant inference to build models of the system. Hangal and Lam use dynamic
invariant inference to build a model of system executions [HL02]. Since their goal
is complete automation of the model building and monitoring process, their system
only issues warnings to be analyzed off line by developers. Approaches the explicitly
try to solve the oracle problem usually rely on a separate training phase to learn the
model [BGHO06, LMPO08]|. After the learning phase this model remains fixed and serves
as the oracle to distinguish between valid and invalid executions. The approaches
by Baah et al. and Lorenzoli et al. combine trace information with static invariants
to improve the quality of the models prediction. However, since dynamic behavior
inference relies only on the implementation of a system, it is not able to incorporate
notions expressed in end-user requirements.

3 The LuMiNous Prototype

To assess how well property templates address the challenges outlined in the in-
troduction, we developed LuMiNous, a prototype tool that uses property templates
based on the formal semantics defined in the previous section to generate runtime
checkers for Java programs. LuMiNous facilitates the specification of the design-level
properties that have to be monitored at run-time and automatically generates the
necessary code-level assertions.

For the LuMiNous prototype we made some design decisions about third-party
tools and target platforms. As the modeling and transformation framework we chose
techniques associated with the Model-Driven Architecture (MDA) [MDAO03]. Models
are written in UML, augmented with a profile for property annotations, and the
assertion generation is implemented as a JET! model transformation. The LuMiNous
model transformation generates AspectJ code that combines both assertions and
placement rules targeting the Java platform.

We chose to use profiles instead of the Object Constraint Language (OCL) to
express the property constraints, because our properties are very hard or even im-
possible to express in OCL. Consider for example the immutable property, which
requires that the state of the annotated object does not change. Even assuming
that class attributes are only accessed by well-defined accessor methods, expressing
this property requires that every method of the class be annotated with a post-
condition requiring that the state has not changed. Since OCL cannot predicate over
meta-model elements, that means it cannot iterate over all attributes, we have to
formulate this post-condition explicitly listing every attribute of the class in the form
attribute@post = attribute@pre. Adding or removing attributes to or from such
an annotated class requires changing all post-conditions. Instead, with our property

"http://www.eclipse.org/modeling/m2t/?project=jet

()
LuMiNous
Transform
g
E LuMiNous
AT Profile

D LuMiNous comp.

D Strictly required comp.

@ replaceable comp.

Figure 1: The LuMiNous architecture.

templates, either the transformation or the generated assertion can iterate over all
attributes implicitly and are thus robust against model evolution.

The prototype is implemented as two Eclipse? plugins, one containing the UML
profile representing the annotation language and one for the model transformation.
Figure 1 shows the architecture of the LuMiNous prototype, including the prerequisite
components for it to work. Since the profile is encapsulated within an Eclipse plugin,
it is easy to use LuMiNous within Eclipse, for example by using the Eclipse UML
tools or Papyrus? to create and annotate system models. We implemented the model
transformation using Java Emitter Templates (JET), and we compile and deploy
assertions with the AspectJ compiler and weaver.

Developers use the LuMiNous prototype following three basic steps: (1) annotat-
ing a design model using the UML profile provided by LuMiNous, (2) running the
model transformation to generate assertion code, and (3) compiling the assertions
into the application before running the application.

Step 1: Developers annotate design models with their favorite UML design tool
that supports profiles. The LuMiNous profile defines stereotypes that can annotate
classifiers, methods, parameters, and attributes of classes. Each property in Table 2
corresponds to a stereotype in the profile. Some of the stereotypes accept additional
parameters to specify the annotation semantics more precisely. Notice that with
LuMiNous we did not intend to develop a new assertion language. Rather we provide
an easy way to place pre-defined constraints in models. Hence the language we provide
offers only simple declarative means to express these constraints. To further reduce
the requirements for using the approach, LuMiNous works with partial models of the
system and does not require complete or formal specifications.

Step 2: The second step is fully automated by the LuMiNous prototype. LuMiNous
parses the annotated model and instantiates a set of concrete assertions for every

2http://www.eclipse.org
3http://www.papyrusuml.org/

property annotation by using the assertion templates and deployment rules imple-
mented in the transformation. Assertions and their respective deployment locations
are encoded in aspects.

Step 3: The third step is semi-automatic and depends on deployment decisions
developers have to make. By using AspectJ to compile and deploy our assertions,
we can exploit the powerful static analysis of AspectJ to weave the aspects into all
relevant locations in the target application. Using AspectJ has two further technical
advantages. First, AspectJ’s ability to weave aspects into binary code allows us to
instrument not only applications for which we have source code, but also purely binary
distributions. Second, generated assertions can be woven into the application using
either of the weaving techniques provided by AspectJ. Static weaving optimizes the
startup time of the instrumented system, while load-time weaving does not change
the target application and weaves assertions on demand.

4 Classes of Runtime Failures

In our research to develop reliable automatic failure detectors for self-healing software
systems, we have studied runtime failures as opposed to failures observed during unit
and system testing. Doing this, we have observed that many runtime failures can be
clustered into relatively few groups related to violated design-level properties. This
observation led us to hypothesize that the commonalities between failures within a
cluster can be exploited to automatically generate detectors for the associated failures.

To reach a better understanding of this hypothesis’ impact, we carried out several
explorative studies on medium and large software systems (Section 4.1). The results
of these studies confirm our hypothesis about the existence of clusters of failures
associated with design-level properties. Towards the goal of automating the creation
of runtime checks for such design-level properties we have to formally define what
constitutes a design-level property, what assertions can detect violations, and where
such assertions have to be evaluated.

In this chapter we first discuss the research methodology we applied to identify
candidate properties, and then present a definition of the formal semantics of these
properties.

4.1 Research Methodology

To answer the question if there are high-level properties in system requirements that
can be traced to typical classes of failures and faults in systems we have to identify
candidate properties in requirements on the one hand. On the other hand we have
to cluster failures and faults that occur in actual systems into groups exhibiting
similar behavior. A thorough analysis can then clarify if one or more of these failure
clusters can be mapped to one or more of the properties identified in the requirements.
A further step required to facilitate automatic failure detection is to define failure
detector templates for each class of failures, so that tools can generate the detectors
based on knowledge of where a property associated with the failure class should hold.

We have designed our study in two steps. The first step is the analysis of require-
ments, such as end-user documentation or API specifications, to identify recurrent
properties that are often used. For example, API specifications often refer to pat-
terns for component initialization and mutability. More complex examples that can
be found in end user documentation are requirements referring to domain specific in-
put languages, like special regular expressions for searches. The second step consists
of understanding and clustering problem reports for the applications and software
systems we studied in the first step. Whenever clusters can be mapped to one or
more property, we have established an important link between the high-level require-
ments and the code implementing those requirements. A further question that we will
be able to answer with the collected data is if and how the type of application influ-
ences the failure classes occurring. It seems likely that a highly multi-treaded server
application exhibits failure patterns different from those in a computation-oriented
library.

To have a consistent set of inputs for our studies we selected applications where
specifications, code, and issue reports are available. For practical reasons we limit
the scope of our study to applications developed in Java. The projects hosted by
the Apache Foundation® provide a rich source for many types of applications from
big commercial quality servers like Tomcat, through various frameworks, to highly
optimized libraries like Lucene.

To our knowledge there is no mining tool that is able to process bug databases
and extract sets of reports based on semantic criteria of the text content. After a
brief study of how bugs are reported, and how symptoms and fixes are discussed, we
came to the conclusion that a manual analysis of the reports was the only way to
obtain reliable information about the semantic content of bug reports. Unfortunately,
the large amount of time required for manual analysis limits our ability to do larger
studies.

4.1.1 Requirements Analysis

The goal of the requirements analysis during our study was twofold: (1) determine
recurring patterns that imply constraints on possible implementations in the spec-
ifications, and (2) determine in how many cases an identified pattern or constraint
directly relates to a cluster of problems identified during the fault analysis in the
second step.

It turns out that complete requirements specifications are hard to come by for
open-source projects. However, in all cases API specifications and some end-user
documentation are available. We analyzed these specifications, which reflect black-
box requirements and high-level design of the system.

Spotting patterns (not design patterns, but patterns defining less well-formed
relationships between parts of the system) and recurring constraints in API speci-
fications and end-user documentation is difficult and relies on the judgment of the

‘http://www.apache.org

person doing the analysis. Therefore, it is difficult to describe this process in a way
to make it easily reproducible. However, there are some general conclusions that we
believe can be drawn from the studies we did.

With respect to pattern in specifications, well designed and documented API
specifications yield results more easily, and as a consequence, it may be easier to
reproduce the results of such studies. For example the Java Servlet and Java Server
Pages API documentation directly specifies many instances of the initialized and
unique properties. On the other hand, the API documentation for Lucene is very
sparse and gives barely any information about constraints on the use of the library.
In most cases end-user documentation was less yielding than API specifications and
required more in-depth study to obtain useful results.

4.1.2 Failure Analysis

Because all the software systems we analyzed are still under development the issue
databases are constantly changing. To have a stable set of issues to address through-
out the time of our study we chose to study issues reported for older versions of
each software. This not only gives us a stable set of reports to analyze, but also
means that most of the issues have been resolved by the developers, easing our task
of determining root cause and fixes.

Bug reports for projects hosted by Apache are maintained either using Bugzilla or
JIRA. In both cases an issue report refers to a specific release version of the software
where the issue was first noticed and each issue has a status. We used the release
version to select only small subsets of issues clearly associated with a particular
version of the code. The issue status or resolution indicates how the developers
consider the problem. In all cases we discarded issues that were marked as invalid,
non reproducible, or as issues that won’t be fired. Our rationale for discarding these
issues from our statistics is that if the developers do not consider something a bug,
then neither should we.

After filtering those non-issues out of the result sets returned by queries to the
issue databases, we studied every remaining issue in detail. Questions we had to
answer about each issue before we could assign it to a cluster, create a new cluster,
or discard the issue are:

e What are the failure symptoms? For example, does the failure crash the system,
return an illegal value, or fails to return an expected result?

e What kind of fault causes the failures? For example, is it a simple null pointer
exception, a concurrency problem due to incorrect locking, or an incorrect al-
gorithm to compute a result?

o Is there a clear statement in the requirements that is being violated by this
failure? For example, an API call returns null even though the specification
claims that a method never returns null.

Table 1: Properties identified during requirements analysis. For each application, the
first column represents the number of properties found during requirements analysis,
the second column represents the number of reported failures.

Property Cocoon Lucene Tomcat
Total instances 151 85 - 63 14 109
caching - 2 - 1 - -
explicit<I> 19 - - 3 1 -
concurrency 47 5 - 2 1 4
immutable 22 - - - 3 2
initialized 32 3 — 1 4 6
language<L> 1 5) - 1 2 3
resource mgmt 8 3 - -

unique 22 - - - 3 -

The first two questions define the dimensions along which issues are clustered.
The third question connects the failure clusters to the results from the requirements
analysis: an issue for which we cannot identify a clear requirement that is violated will
not help us in defining property templates. The numbers of relevant issues reported
in Table 1 reflect this last filtering step.

The more detailed analysis of the classes listed in Table 1 revealed two important
facts:

e Not all classes are homogeneous enough to be amenable to formalization and the
definition of a matching property template. For example, resource management
problems typically refer to low-level locking and allocation problems that are
case specific and not easily generalized.

e Some classes, even though conceptually different, can be captured by others.
For example, most caching problems I identified could be detected by a check
that the involved classes explicitly implement necessary interfaces instead of
just inheriting the required methods.

Consequently, the catalog of property templates in Section 4.3 lists semantics and
templates only for those properties that are general and not subsumed by others.

4.2 Definitions

The property template catalog in this section lists all available property templates,
describes their semantics, and defines the assertions used to detect violations of the
properties. We also discuss the stereotypes used to implement the annotations to
UML models. In many cases annotations require parameters to fine-tune their be-
havior. These parameters are provided as attributes to the stereotypes.

Throughout the discussion we make use of several conventions to simplify the
notation:

(1) We use UML terminology when discussing model elements and stereotypes.
Classifier refers to classes and interfaces. Attributes and operations map to fields and
methods in Java.

(2) We use JavaBeans terminology when talking about the interfaces exposed by
classifiers. Hence, a property of a classifier is a data value exposed through getter
and/or setter methods.

(3) Since the LuMiNous prototype is based on Java, we use names and class
hierarchies from the Java standard library to naturally classify commonalities among
groups of classes. Further, the assertion templates use standard idioms and patterns
to identify relevant code locations to place assertions.

Unfortunately, this leads to some overloading of terms. A property of a Java
class is not the same as a property in the sense of the system-level properties we are
discussing in the context of this catalog. However, usually the usage should be clear
from the context.

Each catalog entry consists of a summary table and a more detailed textual de-
scription of the template. The summary table contains two sections: the top section
contains information relevant to developers using the template during requirements
analysis. It contains the name of the property, which equals the name of the stereo-
type, a short description of the purpose of the template, a list of model elements the
annotation may be applied to, and if applicable a list of parameters. The bottom part
of the table contains information relevant to the model transformation. It lists the
context elements relevant to a given annotation, the target location of the generated
assertions, and a list of assertion templates.

Developers are not required to understand the contents of the transformation
section to be able to annotate system models. However, the assertion templates
represent the most formal definition of a properties semantics, and detailed under-
standing of the translation process is required to customize the transformations and
to provide application specific assertion templates.

To precisely define the semantics of the properties in the catalog, and the addi-
tional constraints implied (for example observability constraints), we require some
definitions and conventions. This section defines precise notation to augment the
natural language definitions of property semantics.

Definition 4.1 (Classifier). A classifier C is a type that consists of a set of methods,
denoted C.methods, and a set of attributes, denoted C.attributes. Attributes may be
read-only, in which case the expression attribute.isReadOnly has the boolean value
true.

Definition 4.2 (Subtype). For classifiers C' and D, C' <: D denotes that C is a
subtype of D.

Definition 4.3 (Weak Implementation). A classifier C is said to weakly implement
a method m, in symbols C|m, if there is a classifier D such that C' <: D and the
concrete implementation of D provides a concrete implementation of m.

10

Property Description

explicit<I> A constrained class must implement a comparison operation
matching interface I.

immutable A constrained entity may not change its visible state once
it is created.

initialized A constrained entity must complete all custom initialization
before becoming accessible to clients.

language <L> The constrained entity must be a string and must match a
regular expression defining the language L.

unique A constrained entity must be unique within its context. If
the constrained entity is a relation, tuples in the relation
must be unique.

Table 2: Classes of constraints for property templates.

Definition 4.4 (Strong Implementation). A classifier C' is said to strongly implement
a method m, in symbols C||m, if and only if the concrete implementation of C' provides
a concrete implementation of m. Obviously, C|jm — C|m.

The first four definitions are defining notation for common concepts found in
object-oriented languages. The concepts of subtypes, classifiers, and strong and weak
implementation are necessary to reason about the semantics and the applicability of
properties.

Definition 4.5 (Pre- and Post-State). For a given attribute a € C.attributes and a
method m € C.methods of a classifier C, a@pre,,, denotes the value of the attribute a
directly before the execution of m, and a@post,, denotes the value of a directly after
the execution of m.

Access to system states before and after methods are executed is a prerequisite
for assertion languages to be able to assert over state changes.

Definition 4.6 (Assertion). An assertion is a first-order logic formula. Expressions
comprising the formula may be subtype, implementation, classifier, and state expres-
sions, as well as common mathematical expressions.

To reason about where assertions should be inserted into systems, and under
which conditions they must be evaluated, we need notation to describe program
locations and execution conditions. Our definitions and terminology for program lo-
cations is a generalized form of the terminology common in aspect-oriented languages,
such as AspectJ [AJ09, Lad09].

Definition 4.7 (Pointcut). A pointcut describes either a method call site or a field
access site in the code.

11

Property: comparable

Description: Annotated classifiers must directly implement equals and
hashCode.

Elements: Classifier

Generalization: explicit<I>

Context: annotated entity

Location: annotated entity

Assertions: C.new(..){Vm € M : C|lm}

Table 3: Catalog entry for comparable.

The syntax for method call sites is:

T.m(p1y...,pn)

where T' is a type, m a method name, and p; are parameter types. T and m may
contain ‘*’ as a wildcard matching arbitrary strings. Any p;, may be replaced by
the wildcard ‘) matching an arbitrary number of parameters of arbitrary type. The
special method name new signifies constructors.

The syntax for field access sites is :

set|get(T.f)

where set and get refer to write and read access respectively. T is a type name, f
is a field name, and both T and f may contain the ‘*’ wildcard to match arbitrary
strings.

To define complete assertion templates, assertions have to be associated with
pointcuts describing which part of the code they belong to.

Definition 4.8 (Assertion language). Assertion templates are defined as
(pointcut {assertion+})+

Following conventions for regular expressions, ‘+’ signifies that each specified pointcut
must be associated with at least one assertion.

Definition 4.9 (Execution Event). When stuff is executed.

4.3 Property Catalog
comparable

The comparable property is a special case of explicit<I>. It addresses the case
where language frameworks and libraries provide consistent sets of container classes

12

Property: explicit <I>

Description: Annotated classifiers must directly implement interface I.
Elements: Classifier

Refinement: comparable

Context: annotated entity

Location: annotated entity

Assertions: C.new(..){Vm € I.methods : C|jm}

Table 4: Catalog entry for explicit.

following a common super interface, or as is more often the case, assume that classes
using the framework implement a set of well-defined comparison methods, denoted
M.

For example, in the Java Collection Framework M would contain equals() and
hashCode(). The precise contents of M are language and framework dependent,
hence they have to be specified by the transformation (see chapter ??), and not as
part of the high-level semantics.

explicit <I>

The explicit property declares that annotated classifiers must directly implement
the interface I. By directly we mean that the classifier must provide its own imple-
mentation of the interfaces methods. This property is violated if the classifier only
inherits the interface’s methods from a superclass.

A good example for when this property is useful is in implementations of the Ab-
stractFactory or FactoryMethod design patterns [GHJV94]. The patterns are centered
around the concept of concrete classes explicitly implementing an abstract method
or interface that decouple concrete implementations from client code.

This property is particular in the sense that at a first glance it appears that checks
for implicit implementation would best be done statically by a compiler. However,
even though technically this is possible, to my knowledge no programming language
provides declarative means to specify this property. Furthermore, it would be even
harder to statically enforce this property across library and component boundaries.
The compiled binaries would have to contain enough information to enable static
checking of clients, which requires additional infrastructure to be used by the devel-
opers of the components and the final system, while runtime checks of this property
only require additional infrastructure deployed together with the final system.

immutable

The immutable property declares that instances of annotated classifiers must not
change their visible state after their creation.

13

Property:

immutable

Description: Annotated classifiers must not change their visible state.
Elements: Classifier
Parameters: lock (optional, default: constructor)
Context: annotated entity
Location: annotated entity
Assertions: Cm(..){m € C.methods \ {new(..)} : Va € C.attributes :
aQpre,, = aQpost,, }
Table 5: Catalog entry for immutable.
Property: initialized
Description: Annotated entities must not be null, and classifier specific ini-
tialization must have occurred when entities are accessed.
Elements: Classifier
Parameter initializer (optional, default: constructor)
Context: annotated entity
Location: clients of annotated entity
Assertions: C.initializer(..){initQpost « true}
Cm(..){m € C.methods \ {new(..),initializer(..)}
initQpre = true}
Table 6: Catalog entry for initialized.
initialized

An initialized annotation on a classifier implies that classifier specific initialization
has completed before any references to instances of the classifier are used.

The semantics for a classifier C' annotated with initialized state that when-
ever a method that is not a constructor or the specified initializer is executed, then
initialization must have occurred. Note that this refers only to method executions,
not to field accesses. The rationale for this is that typical idioms in object-oriented
languages suggest that fields be only accessible through dedicated accessor methods.
Many languages, for example Objective C [App08] and Groovy [K07], even generate
accessor methods automatically if developers do not specify them explicitly, hence
making direct field access unnecessary.

To explicitly declare that calling a method results in classifier specific initialization
the method can be specified with the initializer parameter to the annotation. If
we are dealing with static singletons the semantics of initialized remain the same
conceptually, but since static methods cannot refer to instance objects the tracking
is implemented slightly differently.

14

Property: language <L>

Description: Annotated strings must conform to regular language L.
Elements: String values

Parameters: regexp (required)

Context: annotated entity

Location: annotated entity

Assertions: cm(..,S,.){S~L}

C.set(S){S ~ L}

Table 7: Catalog entry for language <L>.

language <L>

The language property declares that a visible string value must match a regular
language L. Formally, the annotation language<L> on a method parameter or class
attribute a denotes that a € L. Since we require that L be a regular language, we use
common regular expressions to specify L. The assertions shown in Table 7 should be
considered an exclusive choice. If and only if the annotation is placed on a parameter,
then the assertions with the method-call pointcut is used, and vice versa.

unique

The unique property declares that instances of a given type must be unique within
some context. The context is determined by the annotated model element. An an-
notation on a classifier declares that instances of this type must be globally unique.
An annotation on a navigable association declares that instances must be unique
within the context of the annotated association relation. Uniqueness of an instance
is determined by an attribute of the involved classifiers. By default the hashCode of
instances is used. If this is not appropriate, the stereotype defines an additional at-
tribute, declaring which property of the classifier determines uniqueness. Intuitively,
monitoring tracks potential changes to the uniqueness attribute and evaluates the
assertions every time a change occurred. For unique annotations placed on classi-
fiers, the context, and thus the container is the entire heap rather than a specific
association®.

Treatment of annotated classifiers is straightforward. Instance creation and de-
struction are monitored, and every new instance is compared against all currently
existing instances.

Handling of annotated associations is more involved, because the context of the
association must be included. First, associations may only be annotated if the repre-
sent a 1-to-n or a n-to-m relationship. Instances participating in 1-to-1 relationships

®The unique property on associations is so far the only property that can be directly specified in
OCL using the implicit semantics of OCLs Set collection.

15

Property: unique

Description: Annotated classes must be globally unique. Tuples in annotated
relations must be unique within that relation.

Elements: Association, Classifier

Parameters: uniquenessProperty (optional, default: hashCode)

Context: annotated entity, association ends, container

Location: annotated entity or container

Assertions: for globally unique objects
Canew(..){o— Cnew(..)A
{x € heap@postyey|r.uniquenessProperty =
o.uniquenessProperty}| < 1}

Assertions: per-relation unique objects
A.add(..,o0,..){|{x € AQpostyqq|r.uniquenessProperty =
o.uniquenessProperty A z}| < 1}

Assertions: attribute change
C. * (..){uniquenessPropertyQpre #
uniquenessProperty@Qpost —
|{x € A|r.uniquenessProperty = o.uniquenessProperty}| < 1}

Table 8: Catalog entry for unique.

are obviously unique and no monitoring is necessary. Additionally, the container must
explicitly expose operations to query its contents, or to add elements. Defaults can
be inferred from the association’s name. Furthermore, in collections that allow null
values, we ignore them in the comparison. This is necessary to avoid unnecessary
exceptions for example in arrays that may be initialized with null values.

5 Template Implementation

The second contribution we discuss in this report is the definition of effective and
efficient oracles that can detect violations of the properties defining the failure classes
of the previous chapter. From a high-level point of view, the assertions defined in the
property template catalog provide the basis for these oracles. However, in practice
many factors, for example the deployment platform and language, and the idioms
used to translate UML specifications to code, impact on how the high-level assertion
have to be realized, and how and where they have to be placed in the system code.
In this section we discuss the challenges of defining efficient and effective oracles
for property templates. The effectiveness of oracles is impacted strongly by the
precision of placement and the detail and amount of monitoring data available. The
challenge here is to find the best trade-off between runtime overhead of monitoring
and checking, and the precision and recall of the generated checks. The efficiency
of the oracles in terms of runtime overhead is a cross-cutting concern. The incurred

16

overhead is partially due to the inherent complexity of the assertion, and partially
may be fine-tuned and improved by exploiting idioms and making assumptions about
the system structure. All these considerations must be viewed in the light that
the goal is automatic generation of oracles from annotated system models. Most
importantly, this means that we must make assumptions about idioms and design
patterns used for translating UML models to code. The simplest such assumption
is that names of classes and associations in models match the names of classes and
collection variables in the implementation. If these assumptions do not hold, a fully
automatic mapping from model annotations to assertions is impossible.

To obtain an implementation of property templates that not only matches the
formal definitions in Section 4, but also meets the non-functional requirements of
performance and maintainability discussed above we followed these steps:

1. For every property, select an application with a known fault that leads to vio-
lations of that property.

2. Manually implement assertions that successfully detect the violation.
3. If necessary, decide on trade-offs between performance and precision.

4. Abstract the concrete implementation into a template that can be instantiated
automatically from model annotations.

Early results in our ongoing work clearly indicate that the aspects developed this
way work well also with other applications and can reveal failures due to previously
unknown faults.

5.1 Templates

The implementation we discuss here refers to the transformation from models to As-
pectd code. Hence, the templates contain a lot of platform specific information. The
templates shown contain placeholders of the form <Placeholder>. The transforma-
tion replaces these with the concrete model elements relevant for each annotation
in the model. Table 9 lists possible placeholders and what they expand to in the
transformation. Since the transformation always views these placeholders within the
scope of a single annotation, they unambiguously resolve to model elements that are
relevant to this annotation.

comparable

The code template for comparable is very straightforward. The joinpoint attaches
the assertion check after static initialization of loaded classes completed. This is
typically the case before any instance of the class are created, and hence is the right
place to check the assertion that the two methods equals and hashCode are directly
implemented.

17

Placeholder

Expansion

Association
Attribute
Class
Classifier
ContainedClass

ContainerClass

Initializer
Interface

L
Method
MethodParameters

Parameter
Uniqueld

The name of an annotated association.

The name of an annotated class attribute.

The name of the annotated class.

The name of the annotated classifier.

The name of the classifier to which an annotated association
points.

The name of the classifier from which an annotated associ-
ation originates.

The initializer parameter to the initialized property.
The name of the interface required in explicit implemen-
tations.

The language parameter to the language<L> property.
The name of a method relevant to an annotation.

The list of all method parameters of an annotated method
with their types.

The name of an annotated method parameter.

The value of the uniquenessProperty parameter to the
unique property.

Table 9: Template placesholders and their expansions

public aspect <Class>_Comparablef
after(): !cflow(adviceexecution())
&% staticinitialization(<Class>) {

try{

<Class>.class.getDeclaredMethod ("hashCode",
new Class[] {3});
} catch (NoSuchMethodException e) {
logPropertyViolation("comparable", null,
"<Class>.hashCode", false);

}
tryq{

<Class>.class.getDeclaredMethod ("equals",
new Class[] {0Object.classl});
} catch (NoSuchMethodException e) {
logPropertyViolation("comparable", null,
"<Class>.equals", false);

Listing 1: Code template for comparable

18

public aspect <Class>_implements_<Interface>_explicitly {
after(): !'cflow(adviceexecution()) &&
staticinitialization(<Class>) {
Class<?> aClass=<Class>.class;
Class<?> anInterface=<Interface>.class;

for (Method m: anInterface.getDeclaredMethods ()){
try{
aClass.getDeclaredMethod (m. getName (),
m.getParameterTypes ());
} catch (NoSuchMethodException e) {
logPropertyViolation("explicit", null,
"<Class>." + m.getName (), false);

Listing 2: Code template for explicit<I>

public aspect <Class>_Immutable{
before(Object _this): !cflow(adviceexecution())
&& set (* <Class>.*) && !cflow(call(<Class>.new(..)))
&& this(_this){
logPropertyViolation("immutable", _this, null, false);
}

Listing 3: Code template for immutable

explicit<I>

The close relation between comparable and explicit<I> also extends to the imple-
mentation in AspectJ. Essentially the template is identical, except that it iterates over
all methods declared by the parameter interface, instead of the fixed set hard-coded
in the comparable template.

immutable

The code template for immutable attaches the advice to every attempt to set a value
to a class field. Notice that at the moment the possibility for an explicit locking
method is not implemented.

19

public aspect <Classifier>_Initialized
pertarget (target (<Classifier>)) {
private boolean initialized = false;

pointcut initMethod ():
call (¥ <Classifier>.<Initializer>(..));
after (Object target) returning: initMethod ()
&& this(target) {
initialized=true;

pointcut checkedMethods ():
call(* <Classifier>.x*(..))
&% 'call(* java.lang.Object.clone())
&% !'call(* java.lang.Object.getClass(..))
&& !'cflow(initMethod ()) ;

before(<Classifier> target, Object _this):
checkedMethods () && target(target) && this(_this)
&% if (_this!=target) {
if (!initialized) {
logPropertyViolation("initialized", target, null,
_this, false);

Listing 4: Code template for initialized

initialized

The code for initialized (Listing 4) is a straightforward realization of the formal
definition. The initMethod pointcut captures all calls to the initializer method,
which is either explicitly specified with the template parameter initializer, or
is any constructor of the annotated classifier. A call to the initializer sets the

initialization flag to true, so that consecutive calls to other methods, captured by the
checkedMethods pointcut, can proceed.

language<L>

The specification of the language property states that it can be applied to either
method parameters or class attributes. These different types of specification can be
combined in any way, as the example in figure 2 shows. Transforming this model
generates two instances of the aspect template shown in Listing 5, one for each

20

L =\d{4,6} :alpha:+ ...

AClass
<<language>>String address
int age
sendMail(<<language>>to: String, msg: String,
<<Ianguage>>sév§ar:8tring): void

N\
L = [:alpha:._%+-]+@][:alpha:_%+-]+.]+[:alpha:{2,4}

Figure 2: Multiple applications of language to the same classifier

public aspect <Classifier>_<Method>_<Parameter>_Language{
before(<Classifier> _target, <MethodParameters>):
call(* <Classifier>.<Method>(..))
&& args(<MethodParameters>)
&& target (_target) {
if (<Parameter>==null ||
!<Parameter>.toString () .matches (KL>)){
logPropertyViolation("language", _target,
<Parameter> ,false);

Listing 5: Code template for language<L> on method parameters

public aspect <Class>_<Attribute>_Language{
before(<Class> _target, Object arg):
lcflow(adviceexecution()) && set(* <Class>.<Attribute>)
&& args(arg) && target(_target) A
if (arg==null || !arg.toString().matches (<L>)){
logPropertyViolation("language", _target,
"<Attribute>", false);

Listing 6: Code template for language<L> on class attributes

21

annotated parameter (to and sender), and on instance of the aspect template shown
in Listing 6 for the address field.

The aspect for method parameters captures all method call to methods that have
an annotated parameter and checks the value before the method is executed. For
classifier attributes, only assignments are captured, since initially the value of any
String attribute is null and hence satisfies the constraint.

unique

The templates for unique are fully implemented as documented in Section 4.3.

The code in Listing 7 shows the relevant parts of the unique template. The first
before advice enables tracking of collection objects that represent instances of anno-
tated associations. This template assumes that 1-to-n associations are implemented
using appropriate implementations of java.util.Collection, and are referenced by
a local variable in the class representing the “1” end of the association. The second
before advice intercepts all calls to add () methods, and if the add method is called
on a monitored collection, checks if the assertion holds. The assertion checking the
elements in the association is completely encoded in the method assertUnique().

When the unique annotation is placed on a classifier, like in figure 7?7, we can-
not assume that there is an explicit collection object that will contain all instances
of the annotated classifier. Hence, monitoring this constraint requires tracking in-
stances across the entire program heap. The code in Listing 8 shows the differences to
the previous template. Instead of tracking collection objects and calls to their add ()
methods, here we monitor the creation and modification of instances of the annotated
classifier. The instances are kept as weak references in a global collection that per-
forms the assertion check when the addElement () method is called. The observant
reader will also notice that with global uniqueness, we also track changes to attribute
values of relevant objects, while we do not do this with association uniqueness. The
reason for this is that developers have the responsibility to maintain and update their
collections when relevant attributes of their collected classes change. For example,
many collections in that Java SDK use hashCode to identify individual objects. If
an object is already inside a container and then its attributes change such that its
hashCode changes, it is the developers responsibility to update the collection. These
updates are captured by the aspect as it is written.

Note that for a specified uniquenessProperty it is required that the annotated
class, or the class at the “n” end of the association, exhibits a pair of setter and
getter methods named set<UniquenessProperty> and get<UniquenessProperty>,
respectively. This is also expressed in the observability requirement in the specifica-
tion.

In practice, the global uniqueness variant where the unique annotation is placed
on a classifier is less useful, because it tends to generate many false positives due
the large grain of monitoring. The uniqueness within associations is more practical,
but requires that implementors use common idioms and naming conventions for the
generated code to match. Otherwise developers will have to adjust names in the

22

public privileged aspect <ContainerClass>_Unique {
before (Collection collection):
set (x <ContainerClass>.<Association>)
&& args(collection) {
if (collection != null) {
UniqueCollectionTracker.addCollection(collection);

}

pointcut addElement (<ContainedClass> param):
target (Collection+) && call(* add(..)) && args(param);

before(Collection collection, <ContainedClass> param, Object _this):
addElement (param) && target(collection)
&& !'this(UniqueCollectionTracker+) && this(_this) {

if (param == null) return;
if (!assertUnique(collection, param)) {
logPropertyViolation("unique", collection,
"<ContainerClass>.<AssociationName>", _this, true);
}

private boolean assertUnique(Collection collection,
<ContainedClass> param) {
if (UniqueCollectionTracker.contains(collection)) {
if (contains(collection, param)) {
return false;

}
}

return true;

private boolean contains(Collection ¢, <ContainedClass> object) {
for (Object comp : ¢) {

if (comp == null) break;
<ContainedClass> component = (<ContainedClass>)comp;
if (component != object

&& component.get<UniqueIld>.equals(object.get<UniqueId>()))
return true;

}

return false;

Listing 7: Code template for an association annotated with unique

23

public aspect <Classifier>_Unique
pertarget (instanceCreation(<Classifier>)
|| setUniqueProperty(<Classifier>)) {
private boolean lumi_uniquePropertySet = false;
private Object uniqueProperty = null;

pointcut instanceCreation(<Classifier> _consumer): this(_consumer)
&% execution(<Classifier>+.new(..));

after(<Classifier> _consumer) : instanceCreation(_consumer) {
safeAddObject (_consumer);
lumi_uniquePropertySet = true;

by

pointcut setUniqueProperty(<Classifier> _consumer): target(_consumer)
&% call(* <Classifier>+.setx*x(..));
before(<Classifier> _consumer): setUniqueProperty(_consumer) {
if (lumi_uniquePropertySet) {
uniqueProperty = _consumer.<UniqueId>();
}
}
after (<Classifier> _consumer): setUniqueProperty(_consumer) {
if (propertyHasChanged (uniqueProperty, _consumer.<UniqueId>())) {
lumi_uniquePropertySet = true;
updateContainer (uniqueProperty, _consumer);

}

// return true if uniqueProperty and newPropertyValue differ
private boolean propertyHasChanged(Object uniqueProperty,
Object newPropertyValue) {...}

//update container contents to match the new key value
private void updateContainer(Object oldKey,
<Classifier> updatedObject) {...}

private void safeAddObject(<Classifier> newValue) {
try {
<Classifier>_UniqueContainer.<<Classifier>>addElement (
newValue .<UniqueId>(), newValue);
} catch (AssertionViolatedException exception) {
<Classifier>_UniqueContainer.<<Classifier>>forcedAdd(
newValue.<UniqueId>(), newValue);
logPropertyViolation("unique", newValue, null , null, false);

} 24

Listing 8: Code template for unique classifier

generated aspects (see MyFaces example and DaTeC study).

e Discuss trade-offs and design decisions.
e Threats to validity.

e Justify choices and discuss tool support

6 Summary and Future Work

We introduced and defined the notion of property template in a previous paper [PW09].
In this technical report we document the formal semantics of property templates and
their realization as AspectJ code templates in our prototype tool LuMiNous.

To investigate the usefulness of property templates for capturing design-level prop-
erties and to generate effective and efficient code-level assertions to monitor them,
we used our prototype tool LuMiNous in several case studies. We assessed the gen-
erated assertions’ ability to detect failures cause by previously unknown faults, and
the assertion robustness with respect to changes in the applications. The results we
obtained indicate that the semantics and templates we documented here are effective
in detecting specific types of runtime problems.

In our ongoing work we are evaluating how well the assertions generated from
the templates can capture previously unknown failures, how to extend the set of
properties, and how to broaden the scope in which property templates can be applied.
Preliminary results indicate that property templates are a powerful abstraction that
makes it easy for developers to include runtime checks for design-level properties into
their applications.

References

[AHO0] Sergio Antoy and Richard Hamlet. Automatically checking an implemen-
tation against its formal specification. IEEE Transactions on Software
Engineering, 26(1):55-69, 2000.

[AJO9] 2009. http://www.eclipse.org/aspectj/.
[App08] Apple Inc. The Objective-C 2.0 Programming Language, 2008.

[BGHO06] George K. Baah, Alexander Gray, and Mary Jean Harrold. On-line
anomaly detection of deployed software: a statistical machine learning
approach. In Proc. 8rd Int. WS on Software Quality Assurance, SOQUA
'06, pages 70-77. ACM, 2006.

[BLS05] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec#
programming system: An overview. In Proc. Int. WS Construction and

25

[CLO4]

[Cla09]

[CMOPOS]

[Das06]

[DBLO5]

[FGOGOT]

[GHIV4]

[HLO2]

[K07)
[Lad09)

[LMPOS]

Analysis of Safe, Secure, and Interoperable Systems, CASSIS 2005, vol-
ume 3362 of Lecture Notes in Computer Science, pages 49—69. Springer,
2005.

Yoonsik Cheon and Gary T. Leavens. The JML and JUnit way of unit
testing and its implementation. Technical Report TR #04-02, Depart-
ment of Computer Science — lowa State University, 2004.

Tony Clark. Model based functional testing using pattern directed film-
strips. In ICSE Workshop on Automation of Software Test, AST 09,
pages 53-61. IEEE, 2009.

Ilinca Ciupa, Bertrand Meyer, Manuel Oriol, and Alexander Pretschner.
Finding faults: Manual testing vs. random testing+ vs. user reports.
Technical Report 595, Department of Computer Science, ETH Zurich,
Switzerland, 2008.

Manuvir Das. Formal specifications on industrial-strength code — from
myth to reality. In Proc. 18th Int. Conf. Computer Aided Verification,
CAV, 2006. Invited Talk.

Wojciech J. Dzidek, Lionel C. Briand, and Yvan Labiche. Lessons learned
from developing a dynamic ocl constraint enforcement tool for java. In
Satellite Fvents at the MoDELS 2005 Conference, volume 3844 of Lecture
Notes in Computer Science, pages 10-19. Springer Berlin/Heidelberg,
2005.

Lorenz Froihofer, Gerhard Glos, Johannes Osrael, and Karl M. Goeschka.
Overview and evaluation of constraint validation approaches in java. In

Proceedings of the 29th International Conference on Software Engineer-
ing, ICSE’07, pages 313-322. IEEE, 2007.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley Professional, 1994.

Sudheendra Hangal and Monica S. Lam. Tracking down software bugs
using automatic anomaly detection. In Proc. 24th Int. Conf. on SW Eng.,
ICSE 02, pages 291-301. ACM, 2002.

Dierk Koénig. Groovy in Action. Manning Publications, 2007.

Ramnivas Laddad. AspectJ in Action: Enterprise AOP with Spring. Man-
ning Publications, 2nd edition, 2009.

Davide Lorenzoli, Leonardo Mariani, and Mauro Pezze. Automatic gen-
eration of software behavioral models. In Proc. 30th Int. Conf. on SW
Eng., ICSE 08, pages 501-510. ACM, 2008.

26

[Mac00]

[MDAO3]

[PWO09]

[RAOY2]

[Ros95]

[RSE0S]

[SRO5]

[VMO94]

[WS07]

Patricia D. L. Machado. Testing from Structured Algebraic Specifications:
The Oracle Problem. PhD thesis, University of Edinburgh, 2000.

The Object Management Group. MDA Guide, version 1.0.1 edi-
tion, September 2003. Specification omg/03-06-01, downloaded from
www . omg.org on 2005-09-29.

Mauro Pezzé and Jochen Wuttke. Automatic generation of runtime fail-
ure detectors from property templates. In Betty H. C. Cheng, Rogerio
de Lemos, Holger Giese, Paola Inverardi, and Jeff Magee, editors, Soft-
ware Engineering for Self-Adaptive Systems, volume 5525 of Lecture Notes
in Computer Science, pages 229-264. Springer Verlag, 2009.

Debra J. Richardson, Stephanie Leif Aha, and T. Owen O’Malley.
Specification-based test oracles for reactive systems. In Proc. 14th Int.
Conf. on SW Eng., ICSE 92, pages 105-118, 1992.

David S. Rosenblum. A practical approach to programming with asser-
tions. IEEE Transactions on Software Engineering, 21(1):19-31, 1995.

Franco Raimondi, James Skene, and Wolfgang Emmerich. Efficient online
monitoring of web-service SLAs. In SIGSOFT '08/FSE-16: Proceedings
of the 16th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pages 170-180. ACM, 2008.

Kurt Stirewalt and Spencer Rugaber. Automated invariant maintenance
via OCL compilation. In 8th International Conference on Model Driven
Engineering Languages and Systems, MoDELS 2005, pages 616-632,
2005.

Jeffrey M. Voas and Keith W. Miller. Putting assertions in their place. In
Proceedings of the 5th International Symposium on Software Reliability
Engineering, pages 152-157, 1994.

Kun Wang and Wuwei Shen. Runtime checking of UML association-
related constraints. In Proceedings of the 5th International Workshop on
Dynamic Analysis. IEEE, 2007.

27

