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“... there is one elementary truth that ignorance of which kills countless ideas and

splendid plans: that the moment one definitely commits oneself, then Providence

moves too. All sorts of things occur to help one that would never otherwise have

occurred. A whole stream of events issues from the decision, raising in one’s favor

all manner of unforeseen incidents and meetings and material assistance, which no

man could have dreamed would have come his way. Whatever you can do, or dream

you can do, begin it. Boldness has genius, power, and magic in it. Begin it now.”

W. H. Murray
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Chapter 1

Introduction

1.1 Motivation and structure of the thesis

Since the last decade, the electricity markets are constantly growing in importance

all around the world. The shift to competition, from a vertically integrated and

monopolistic structure, is still quite recent and in many countries not completed yet.

However, looking at the pioneering and old tradition electricity marketplaces, the

time series data start to be quite relevant. This, together with the inapplicability

of the main results of other well established financial and commodity markets, has

enormously stimulated and challenged the research. Many open issues are still present

however, and no unanimous consensus has been still achieved in literature.

The main purpose of the following research is the attempt to answer to these open

questions. The chosen market to retrieve data from and to test the proposed modelling

features, is the Nord Pool, the Scandinavian electricity market, the oldest and largest

European deregulated electricity marketplace.

In this first introductory chapter, a general overview of the nature of the electricity as

a very special and unique commodity is given together with a more detailed insight

of the Nord Pool market.

In the second chapter we deal with the spike feature, which is the crucial and dis-

tinguishing aspect we observe in the electricity price time series. Complex to model,

spikes have to be first clearly defined and detected. We borrow wavelet methodologies

from signal processing and we propose an ‘ad hoc ’algorithm to automatically detect

the electricity spikes.

In the third chapter we propose a partially parametric regime switching model for
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the spot price. Exploiting the spike detection algorithm, we manage to preserve

Markovianity.

In the fourth chapter we deal with the American option pricing.

In the fifth chapter we investigate the existence and the nature of the Futures risk

premium in the Nord Pool market. This in-depth analysis lead us to observe the

inadequacy of the Futures price definition commonly accepted in the financial liter-

ature. Hence we propose a new Futures pricing model coherent with the spot price

dynamic already described, which takes into account the physical peculiarities of the

Scandinavian electricity production system.

Concluding remarks and hints for further research follow in the sixth chapter.

1.2 The electricity in the financial markets

The act of offering electricity to the end-user requires an integrated electricity system

constituted by generation, transmission and distribution facilities. Because of the

huge amount of fix investments to make the whole system work, the electricity sector

was ever since considered a natural monopoly, and so relegated to vertical integrated

structure usually owned by the central authority. This held all the generating plants,

decided which ones had to operate to meet load requirements and fixed how much

consumers had to pay for power and physically distributed the electricity.

In the last twenty years, several deregulation experiences have been carried on world-

wide. To allow and ease the entrance of multiple private competitors in the system

production, the three main sectors of generation, transmission and distribution, were

split. A supporting regulation, which ensures the free admission to the transmission

line, completed the creation of a competitive electricity generation market. Whereas

before the central planning aimed to match the required load to the total minimum

cost of the entire production system, now the individual producers’ maximization

profit criterion is leading to the competition. In deregulated markets the producers

offer specific amount of electricity to the wholesale market at a specific cost per unit;

then, an independent system operator equilibrates the aggregate market supply with

the total demand, setting a spot price that clears the market. All those who offer to

generate electricity at or below the spot price, are partially or fully dispatched and

they receive the same spot price for each generated unit.

From a price point of view this transformation process has brought to an extraordinary
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increase in volatility, which implies an increase in risk for all the market participants.

Hence follows the key role, played by the electricity spot price evolution for every one

who deals with the electricity market.

The generating-companies profit equation relies on spot price. In the short run, for

instance, they have to make decisions regarding unit commitment: they only want

their generators to be dispatched if it is going to be profitable and, as these decisions

are often required hours or days in advance, spot price evolution is the starting point.

Again, plants need periodic maintenance and in order to determine the minimum

impact time, relatively to profit level, to take off-line plants, spot price knowledge is

crucial.

Potential investors in new or existing power plants also need to model the spot price

evolution to determine their own profitability. Many industries use and pay for elec-

tricity as an important input for their operations; their risk management decision

cannot preclude from spot price modelling.

Aside from generators, investors and consumers, also the regulatory bodies, require

models for the spot price. Due to unavoidable characteristics such as market segmen-

tation and fragmentation because of transmission constraints, electricity markets are

subject to the risk of exercising of market power, that is the ability of a firm to offer

its generation for sale at a price above its marginal cost, yet still be dispatched. So,

these markets need to be scrutinized regarding imperfect competition. Once again,

in order to test hypothesis regarding market behaviour, a model that is able to mimic

market price accurately is the key requirement.

Last but not least, all the pricing of financial derivatives written on electricity, relays

on a good price modelling.

Summing up, the liberalization process has opened the doors of financial markets

to electricity, transforming it in a very special traded commodity. Commodity price

modelling is not a new area of research. However as it is explained in the sequel,

electricity spot price exhibits a range of characteristics that renders the traditional

pricing models unsuitable.

1.3 The electricity price features

Before tackling with any kind of modelling ambition we have to clearly understand

the nature of this commodity and consequently the implication for its price behaviour.
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Non-storability

The crucial aspect of electricity is undoubtedly the fact that it cannot be stored. The

main implication is that electricity has to be consumed as soon as it is produced.

This is a total novelty in the financial trading markets and the consequences are

remarkable. No inventories, no storage, but a hour by hour perfect match of load

and generation has to be planned. Here, the complexity of the market organization

mechanisms arises too. Among differently generated types of electricity however,

some distinction may be outlined. For instance, any unit of water in the reservoirs,

is electricity waiting to be generated. Also large availability of a given fuel or a

gas storage represent potential electricity. Nevertheless, the limit of the generating

capacity and the time required to generate it has to be considered. Further, if a sort

of storage, in terms of means to produce, is feasible, this is expensive, logistically

complex and moreover not accessible to everyone. A net asymmetry, which is not

present in other financial markets, is unavoidable.

All the distinguishing features that will be analysed in the sequel may be seen as

consequences of this physical limit.

Multiple prices

If the goods cannot be stored, neither can they be easily transported. So, not only

electricity has to be consumed and produced simultaneously, but in order to receive

a unit of electricity from a given generator, one has to be connected to the physical

distribution grid, otherwise there is no means to receive such unit of electricity exactly

from that producer. Hence a MWh delivered in France is physically the same MWh

delivered in Finland, or in California, but their prices are not expected to be equal;

they are different prices for what are actually different goods, as no arbitrage, in space,

can be performed. Therefore, there are several geographical regions between which

moving electricity is either physically impossible or non-economical when feasible.

This is a unique feature of the electricity, not shared with other financial markets nor

other commodity market: an ounce of gold, regardless market frictions, has essentially

the same price wherever. Not surprisingly, substantial price differences in electricity

prices are observed in different regions. Electricity is a localized market.

Spikes

One of the most pronounced features of electricity markets are the abrupt and gen-

erally unanticipated extreme changes in the spot prices known as spikes. Within a

very short period of time, the price can increase substantially and then drop back to
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the previous level. Regulation however, plays a major role as, for instance, spikes are

almost absent in UK and in Italy as well.

The spiky nature of spot prices is once again an effect of non-storability of electric-

ity. Electricity to be delivered at a specific hour cannot be substituted for electricity

available shortly after or before. As currently there is no efficient technology (at a

reasonable price) for storing vast amounts of power, it has to be consumed at the

same time as it is produced. Hence spikes frequently occur during high consump-

tion periods of the year and, in between these, during on-peak hours of business

days. Extreme load fluctuations indeed, caused by severe weather conditions often

in combination with generation outages or transmission failures, can easily lead to

price spikes. However, they are usually quite short-lived, and as soon as the weather

phenomenon or outage is over, prices fall back to a normal level. These temporary

price escalations account for a large part of the total variation of spot prices changes,

driving the price series volatility to extraordinary high level with respect to other

commodity and financial markets. Tremendous are the implications in terms of risk

burden: firms that are not prepared to manage the risk arising from price spikes can

see their earnings for the whole year evaporate in a few hours. There are also cases

of power companies having to file for bankruptcy after having underestimated the

risks related to price spikes. A textbook example is the bankruptcy of the Power

Company of America, a well established power-trading company, in 1998. So, despite

their rarity, price spikes are the very reason for designing insurance protection against

electricity price movements.

Obviously, the increase in the horizon at which the price data are aggregated, may

easily smooth away the spikes. For weekly or monthly averages, the effects of price

spikes are less and less apparent and eventually neutralized. One should refrain to

follow these easy shortcut, as the smoothing is just apparent, due to the ‘convenient’

representation of the time series. Neither a producer, nor an investor, nor a consumer

and not even a speculator, who really operate in the electricity markets, may profit

of this ‘smoothing’. Only derivatives instruments conveniently written on electricity

price may offer a sort of smoothing, but their pricing once again have to refer to the

spiked price series to be reliable.

Inelastic demand

Customers reaction to pricing signals, or stated differently, ‘demand response ’ is an

economic-financial standard. Efficiency in markets increases when customers can ad-
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equately react to price changes that result from resource scarcity and market power.

The liberalization process has gone in this direction increasing the competition. How-

ever the essential nature of the electricity for our society, makes almost inelastic its

demand curve. This, in conjunction with the other aforementioned reasons, may be

seen as another cause to spikes formation. Put it differently, if the demand for elec-

tricity were highly elastic, in presence of shortages and congestion grid for instance,

when the price quickly rises, no one would accept such a price, preferring to wait.

But basically no one can refrain from consuming electricity on a short notice: every-

thing in everyday life works with electricity; business activity, factories cannot stop

working just to wait for a better price, as the economic cost to stop the production is

extremely high, hence whatever price is accepted in the short run. This inelastic de-

mand is not so common to other financial activities and cooperate to make electricity

a very special commodity.

Negative Prices

Even if rarely observed, negative price cannot be excluded. Once again this possibility

is closely related to the nature of the electricity and is also particulary sensible to the

kind of generated electricity. Some generators have high start-up and shut-down costs,

and are slow to rump up. This is the case of coal-fuelled, natural gas steam turbine

or nuclear plants, for instance. Therefore in order to ensure to be dispatched in peak

periods, taking advantage of high spot prices, they must also ensure to generate in

off-peak periods. If there is enough competition among producers to be dispatched,

it can be economically rational to offer negative prices. So, when energy load is very

low or near zero, negative prices can truly result with consumers (at least at the

wholesale level) that are getting paid for using power, and the more power consumers

use the more they get paid.

Just to refer to a real market, in the first half of 2008, prices at ERCOT1 market

were below zero nearly 20% of the time; during March, when negative prices were

most frequent, the 33% of the time. After mostly taking the summer off, negative

power prices were back to near 10% in October. The Texas case is reported also

because it offers the witness of how negative prices may arise also for different and

new reasons each time. The Texas negative prices indeed, appear to be the result of

the large installed capacity of wind generation. Wind generators face very small costs

of shutting down and starting back up, but they do face another cost when shutting

1The Electric Reliability Council of Texas
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down: loss of the Production Tax Credit and state Renewable Energy Credit revenue

which depend upon generator output. It is economically rational for wind power

producers to operate as long as the subsidy exceeds their operating costs plus the

negative price they have to pay the market. Even if the market value of the power is

zero or negative, the subsidies encourage wind power producers to keep churning the

megawatts out.

Price-dependent volatility

It has just been stressed how extremely volatile is the price series in the electricity

markets. But we can go a bit further observing how the volatility itself vary through-

out the price series. In most financial markets, a decrease in the price of an asset

leads to an increase in the volatility of the asset’s price, which is referred to as the

‘leverage effect’ (Black 1976) . However the opposite occurs in the electricity market

due to the convexity of the supply stack function. This curve is almost flat for low

levels of load, but steeper as more expensive generating capacity is offered. When

load is low, and the market clears at low prices, small fluctuations in demand level,

are unlikely to change the price significantly, as the offer curve is virtually flat for

low demand. On the contrary, as the demand increases, the marginal cost of an extra

unit of electricity becomes more and more expensive to generate; mathematically the

convexity at that point (the intersection of offer and demand) becomes more and

more pronounced. Consequently a small shift in demand leads to a bigger variation

in price, hence an increase in volatility, with respect to an equal load variation in the

left part of the supply stack function.

This market structure leads to prices which are naturally more volatile for higher

prices (‘inverse leverage effect’), leading to clustering volatility effects for high demand

levels.

Regardless of hypothetical market power, in a competitive market, the critical level

where the convexity of the supply stack function starts to become pronounced is

strictly related to the structural design of the different source of electricity generation.

Seasonality

Spot prices time series, are likely to exhibit strong seasonality, on account of both

supply and demand displaying periodicity. Patterns can be distinguished over three

different length of time: intra-day and intra-week, mainly lead by demand needs, and

annual patterns driven both from demand and supply. Intra-day pattern has a clear

morning peak, when people turning on heating, showering and cooking breakfast; a
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higher general level is then reached during the day on account of commercial activity

increasing needs, and an evening peak occurs when people dine and use appliances.

On weekend the required load collapses dramatically, mainly because of the closure

of most of the business activities. Load also varies according to the period of the

year. This annual pattern is strictly correlated with climatic variations, which may

both influence the demand behaviour and the capability generation of the producers

that may be extremely sensible to the type of electricity produced (especially green

energy is highly subjected to weather variations). In Europe the demand rises in

winter, when electricity is required for heating; in the American countries instead, as

well as in the north of Australia, the yearly peak is reached in summer due to the

extraordinary high air conditioning usage. Especially in North American countries, as

well as in some Asian countries, a second peak during severe winters is also displayed.

Mean reversion

Price mean-reversion, widely tested on a general commodity market base, is present

in the electricity market too. Regardless the market specific seasonal patterns, we

commonly observe price fluctuations throughout the years, which sooner or later

revert back to such a seasonal structural pattern, a kind of hidden non liner trend. In

competitive markets the underlying level, which represent an ideal long-term mean,

is supposed to be determined by the marginal cost of generation. However, factors

such as transmission and plant outages cause prices to fluctuate away from the mean

level. Nevertheless, as the transmission constraints and generation outages are short

term effects, once expired, the price level is expected to revert to its structural trend.

1.4 The Nord Pool market

The outline

In the present research we analyse the Nord Pool electricity market. Nord Pool ASA

is the Nordic Power Exchange, recognized as the world’s only multinational electric

power exchange and one of the oldest European deregulated market. Designed to serve

24-million-customer system, the Nordic region comprises Norway, Sweden, Finland,

Denmark and Iceland (although, as an island, Iceland must be treated as a separate

part of the Nordic market-integration effort). Even if small in terms of population,

the Nordic countries have a quite high per capita level of consumption, especially

in Norway and Sweden. Thus in 2005 the total consumption of electricity was 402
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TWh. This is less than the corresponding for Germany (545 TWh) and France

(451 TWh), but greater to the consumption in UK (348 TWh) and considerably

more than the consumption of electricity in Italy (307 TWh) and Spain (243 TWh).

In other words the Nordic electricity market is both one of the major electricity

markets in Europe in absolute terms as well as the biggest in terms of per capita

consumption, which spans from the 28 MWh of Norway to the 7 MWh of Denmark,

with an outstanding average of the entire region of 16 MWh per capita a year; these

data may be compared with the about 7 MWh per capita of Germany and France,

6 MWh of United Kingdom and Spain and the 5.7 MWh of Italy. Further, Nord

Pool is also one of the oldest and pioneering electricity market. A power exchange

had been in operation in Norway since 1971, but the only exchange participants

were power generators. It was Norway to pave the way to the liberalization and

the integration of the electric power market with its adoption in 1991 of the Energy

Act. This low introduced competition as the chosen mechanism to deliver a reliable,

efficient electricity supply. The legislative intent was both to reduce electric power

prices for consumers and businesses and to remove the price-setting from the hands

of municipal councils. The initial beneficiaries were the heavy industry and other

businesses, later a little residential-market was open to competition; finally a market

fully opened to households, where customers could change power supplier without

incurring any charges, was the target. In order to guarantee the access to the grid

line, the Act imposed that authorities require network owners to make transmission

capacity available to others under third-party agreements (TPAs) and to offer equal

(non-discriminatory) tariffs to electricity suppliers and end users.

The Nord Pool ElSpot market was established in 1992. Sweden joined this market

1996, Finland in June 1998, Western Denmark in July 1999, and Eastern Denmark in

October 2000. It is owned by the two national grid companies, Statnett SF in Norway

(50%) and Affrsverket Svenska Kraftnt in Sweden (50%). Nord Pool influence spreads

up to Germany, with its 35% ownership of Leipzig Power Exchange (LPX), which has

merged with EEX in 2002, showing clear evidence of the Nord Pool plans for foreign

expansion. Furthermore Powernext, the French electricity exchange, has also chosen

Nord Pool knowhow and has signed a licence agreement for the Nordic system and

technical services.

Strict regulation of the network service ensures that third-party access works. But

the market is largely assumed to be able to take care of itself under the supervision
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Figure 1.1: Finnish, Norwegian, and Swedish players trade on equal terms (Black
bullets). From outside the free trade area Danish participants trade on special terms
(gray bullets).

of national competition authorities. This approach differs from that adopted for

instance, in England and Wales, another old electricity European market, where the

pool is heavily regulated. Because the Nordic countries already had a large number of

players, the reform was easier to implement. The spot market operated by Nord Pool

is working well so far and it is one of the most stable. In contrast to the English and

Welsh pool, where only the producers can participate in the bidding, the Nordic pool

is a market for both sellers and buyers. Another difference is that the generators in the

Nordic system are not obligated to offer their power to the pool. So, to keep business

from going elsewhere, the pool must ensure that it is an attractive marketplace.

Nord Pool plays a complementary role to the grid owners and the transmission system

operators (TSOs) of the four countries. The grid owners are monopolies responsible

for building and maintaining the grid in their own local area, setting grid transmission

tariffs, connecting customers, metering and topping up energy lost in the system.

The TSOs are responsible for system balancing in real time and financial settlements,

subject to overriding quality, reliability and safety criteria. The regulators, which

have different powers in each country, ensure that an equitable, efficient and level

playing field is achieved, with reduced costs to the consumer.
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Figure 1.2: Electricity generation in Nordic countries 2007

Power generation is mixed: Denmark uses 85 − 90% fossil fuel-based generation and

10−15% wind power. Norway has nearly 100% hydropower production. Sweden and

Finland rely on a mix of hydropower, nuclear power, and conventional thermal gen-

eration. The overall electricity generation in the region is ‘green’ in comparison with

other developed economies, with Norwegian hydro-electric power providing almost a

third of the region capacity.

Hence, the Nord Pool’s role is to: market a price reference point, operate the spot

and financial markets, provide counterpart security and a market mechanism to tackle

with grid bottlenecks, record and report power deliveries for each TSO.

The traded contracts

Broadly speaking, the Nord Pool market may be divided into a physical market,

which operates trough Elspot and Elbas platforms in order to determine the one-

hour contracts spot price, and a separate financial market for derivatives trading.

This market segmentation finds its counterpart in the Nord Pool group division.

There is indeed the Nord Pool Spot AS, running the physical delivery spot markets;

Nord Pool ASA, running the financial market; and Nord Pool Clearing ASA, running

the power contract clearing services. Nord Pool Clearing, clears all contracts traded

on the Nordic Power Exchange.

The physical-delivery spot market consists of two branches: the one day ahead spot
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market, Elspot, and a continuous balancing spot market, Elbas. On Elspot, hourly

power contracts are traded daily for physical delivery in the next day’s 24-hour pe-

riod. The price calculation is based on the balance between bids and offers from

all market participants. Bids for the following day, split into hourly segments, are

submitted by noon on the previous day. Bids and offers are aggregated into sup-

ply and demand curves and the intersection of the two, neglecting grid congestion,

determines the market clearing price or the so called System Price. To be precise

indeed, the total geographic market is divided into bidding areas; these may generate

separate price areas if the contractual flow of power between bid areas exceeds the

capacity allocated for Elspot contracts by the transmission system operators. When

such grid congestion develops, two or more area prices are created. So, the Elspot

market’s system price, also denoted as ‘the unconstrained market clearing price ’, is

the price that balances sale and purchase in the exchange area while not considering

any transmission constraints. When there are actually no constraints between the

bidding areas, the area prices are all equal to the system price.

The day-ahead Elspot market operates in competition with the over-the-counter

(OTC) bilateral unregulated market, even if the System Price has become a ref-

erence point for the OTC trade as well. Nord Pool estimates that 25% of Nordic

power generation is traded through Elspot, which uses an auction system.

Elbas instead, is the Nord Pool component that allows for real time trading. It works

as an aftermarket to Elspot, giving backup in case actual demand differs from its

expected value. The Elbas market provides continuous power trading 24 hours a day,

7 days a week covering individual hours, up to one hour prior to delivery. The traded

products are one-hour long power contracts 2. .

At present, the contract types traded at Nord Pool Financial Market comprise of

power derivatives, European Union Allowance (EUA) and Certified Emission Reduc-

tion (CER) contracts. The derivatives are base- and peak-load futures and forwards,

options, and Contracts for Difference. They are all cash-settled throughout the trad-

ing and/or the delivery period, starting at the due date of each contract (depending

on whether the product is a future or a forward). Hence, there is no physical delivery

of financial market power contracts with the exception of the EUAs and the CERs.

Different lengths such as days, weeks, months, quarters and years are offered with

2Throughout the rest of this work, we will use however a daily time step since the finest time
scale available for all the data is the daily one.
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a maximum trading time horizon of currently five years. The reference price is the

System Price of the total Nordic power market.

Let us briefly go trough the main specifications of the available power derivatives.

Futures are among the first derivatives to be introduced for trading in 1995 in the Nord

Pool financial markets. They are currently listed as base-load day and week contracts.

Their settlement procedure involves both a daily mark-to-market settlement and a

final spot reference cash settlement, once the contract has reached its due date. Mark-

to-market settlement covers gains and losses from day to day changes in the market

price of each contract. The final settlement instead, which begins at maturity, covers

the difference between the final closing price of the futures contract and the System

Price in the delivery period.

For longer time horizon, Forward base load contracts are listed for each calendar

Month, Quarter and Year. They are subject to a splitting procedure for trading: Year

contracts are split into Quarter contracts, Quarters are split into month contracts and

Month contracts are listed on a 6 month continuous rolling basis, and are not subject

to any further splitting. The reference price for the Nordic Forward contract is the

Nord Pool Spot System Price, as it is for the Futures. Apart from the different time

horizon, the main difference, with respect to Futures contracts regards the settlement

mechanism. In the trading period prior to the due date for forward products, there

is no mark-to-market settlement. The mark-to-market amount is cumulated as daily

loss or profit, but not realised, along the trading period. It is throughout the delivery

period instead, starting at the due date, that cash is required in the Clearing Members

pledged or non-pledged cash accounts, and that the settlement is carried out. The

non-pledged cash account must be supported by a bank guarantee.

The option contracts at Nord Pool are European-style. The underlying contracts are

quarters and year forwards. Nord Pool lists for trading the nearest 2 Quarters and

2 Years respectively available for trading up to 6 months and 2 years in advance.

Asian-style options were issued in the past, but without success.

Another power derivative which is strictly peculiar to the electricity market, is the

Contract for Difference (CfD). It is been pointed out how different area prices may

arise because of physical constraints in the transmission grid. As actual physical-

delivery purchase costs are determined by actual area prices, a specific price risk is

present. A perfect hedge using forward or futures instruments is possible only in

situations when there is no transmission grid congestion in the market area, that is,
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area prices are equal to the System Price.

CfDs allow Exchange Members, Clearing Members or whoever is exposed to potential

difference in area price, to hedge against this basis risk.

A CfD is a forward contract with reference to the difference between the Area Price

and the Nord Pool Spot System Price. The market price of a CfD during the trading

period reflects the markets prediction of the price difference during the delivery period.

The market price of a CfD can be positive, negative or zero. CfDs trade at positive

prices when the market expects a specific area price to be higher than the System

Price, (that is, the selected market area is in a net import situation). CfDs will trade

at negative prices if the market anticipates an area price below the System Price (the

market area is in a net export situation). They were first introduced in 2000.

In recent times new products have been introduced: the ‘green ’certificates. The

EUAs and CERs are both forward contracts with physical delivery and Nord Pool

was the first exchange to list such contracts. In February 2005, Nord Pool launched

physical forward contracts for EUAs. The EU Emission Trading Scheme is the main

policy being introduced across Europe to handle emissions of carbon dioxide and

other greenhouse gases, in order to counter the threat of climate change. Nord Pool

also has a EUA Spot product which started in October 2005. In June 2007 Nord

Pool launched a standardised Certified Emission Reduction (CER) contract, which is

an emission credit obtained through the clean development mechanism, implemented

by the United Nations. The recipient has achieved a reduction corresponding to one

tonne of carbon dioxide or carbon equivalent greenhouse gas in a developing country.

The contract is designed in accordance with the requirements of the European Union

Emission Trading Scheme (EU ETS) directives. Hence it enables European companies

to comply with such requirements and governments to fulfil their obligations under

the Kyoto protocol. To date Nord Pool offers both products up to year 2012, covering

the entire Kyoto Period.

The traded volume at Nord Pools financial market has increased considerably since

the first products were launched and at in the 2007 the record of 1060 TWh of total

turnover was reached with a net increase of 38% with respect to the previous year.

Spot Price statistics

We conclude this overview of the of the Nord Pool market and of the electricity

features with a roughly statistical description of the spot price time series in the

Nord Pool. In figure (1.3) the daily System Price for the entire Nordic area is plotted
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from 1992 to 2005. Spikes, mean reversion and seasonality may be immediately

perceived. In the following chapters we will deal with the modelling conundrums of

these features and in particular with the fitting of the price time series.
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Figure 1.3: Arithmetic average of hourly System Price in the Nord Pool market from
the 4th of May 1992 to the 29th of September 2005 at daily resolution.

In table (1.1) the main descriptive statistics are reported for the whole sample of

observations and for individual subsamples of one year length. Our first result is the

high value of the moments of the price distribution. High volatility is not a surprise,

but the main characterization of the market and even looking at small subsamples,

extraordinary high values are reported at several order of magnitude greater than any

other financial asset or commodity. A special mention goes to the 2002-2003 period

during which a big drought caused turbulent price variations with record levels of

price and volatility. The skewness values witness a right asymmetry for the price

distribution that is, the right tail is longer: the mass of the distribution is concentrated

on the left of the figure with few relatively high values (namely the positive spikes),

hence the mean is larger than the median. It is however worth mentioning that such

an asymmetry does not seem to be so characteristic as among the several observed

years, we shift from positive to negative skew. The interpretation is straightforward.
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We are used to talk about electricity as characterized from large and more or less, rare

positive spikes (which lead to a positive skewness in the price distribution), however

negative spikes also occur and their predominance over a sample induces left-skew

distribution. If we look closer figure (1.3) in correspondence of years 1995, 1998, 2004

and 2005 we can clearly observe the presence of negative spikes. Anyway the price

distribution, whatever results to be more right- or left-skewed, is leptokurtic. The

whole observed sample denotes a huge kurtosis, definitely higher than the normal

distribution (which has a value of 3). This means that the distribution is fat-tailed

and extreme values have higher chance with respect to the bell-shape distribution.

However, even for the kurtosis we can observe wide variation through the subsamples.

Similar results are obtained also for the relative price increments as reported in table

(1.2).
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Period Obs Min Mean Max Std Skewness Kurtosis

1992-2006 4897 1,48 166,31 831,41 87,51 1,54 10

1992 242 1,48 58,09 143,60 44,01 0,512 1,698

1993 365 14,80 80,26 172,36 40,72 0,182 2,077

1994 365 66,64 182,65 423,38 48,87 1,037 6,627

1995 365 29,73 117,67 204,28 38,13 -0,564 2,742

1996 366 157,73 253,63 370,02 41,65 0,335 3,073

1997 365 58,21 134,99 261,79 38,19 0,870 4,065

1998 365 21,27 116,35 266,46 35,59 -0,275 3,219

1999 365 50,43 112,11 225,55 27,38 0,133 3,464

2000 366 31,85 103,33 387,78 32,10 1,819 18,828

2001 365 119,07 186,50 633,36 39,95 4,811 48,486

2002 365 80,65 201,02 685,63 122,20 2,189 7,367

2003 365 128,91 290,60 831,41 103,39 3,166 15,265

2004 366 139,25 242,05 296,11 22,63 -0,790 4,849

2005 272 139,20 228,11 306,96 28,01 -0,266 3,035

Table 1.1: Descriptive statistics for daily System Price in the Nord Pool market from
1992 to 2005

Period Obs Min Mean Max Std Skewness Kurtosis

1992-2006 4896 -0,94 0,01 11,20 0,21 32,33 1633

(1992-2006)* 4896 -0,94 0,01 3,00 0,14 6,99 121,2489

1992 241 -0,94 0,09 11,20 0,81 11,255 151,350

1993 364 -0,49 0,01 0,90 0,14 1,821 13,541

1994 364 -0,29 0,00 0,77 0,07 4,300 49,044

1995 364 -0,45 0,01 1,02 0,13 2,314 18,092

1996 365 -0,19 0,00 0,35 0,06 1,146 8,283

1997 364 -0,24 0,00 0,69 0,10 2,050 13,836

1998 364 -0,51 0,01 0,74 0,13 1,962 12,958

1999 364 -0,31 0,00 0,73 0,08 2,534 23,320

2000 365 -0,51 0,01 2,17 0,18 5,803 66,127

2001 364 -0,54 0,01 2,29 0,18 6,672 81,257

2002 364 -0,29 0,01 0,82 0,09 3,202 26,659

2003 364 -0,22 0,00 0,69 0,09 2,351 17,285

2004 365 -0,29 0,00 0,58 0,07 3,249 33,387

2005 271 -0,24 0,00 0,38 0,08 1,263 7,602

Table 1.2: Descriptive statistics for daily relative increments of the System Price in
the Nord Pool market from 1992 to 2005. * One extreme observation, corresponding
to a variation of 1120%, has been removed.
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Chapter 2

Spike detection

One of the main features of the electricity market is the presence of spikes: the sudden

explosion and an as well sudden consequent burst in the price level (positive jump

‘immediately’ followed by a negative one).

Our purpose is to exactly define when a spike occurs. If we roughly look at a whatever

price time series of a whatever electricity market, we may feel quite confident to

localize simply by sight where a spike has taken place and in most of the cases this

identification is quite obvious. Anyway, looking more carefully, we will encounter

several non trivial and confusing situations and, moreover, this manual detection

results to be too far from any scientific methodology and any kind of objectiveness,

being extremely observer dependent.

We would like to derive a methodology, as much as possible objective, that can be

automatically implemented, totally non parametric and model independent; we intend

to avoid any kind of consideration about the generating process of the prices and of

the spikes themselves.

Let us consider the price time series as a generic and unknown function f(x), in

other words a signal evolving through time of which we want to exactly identify the

time location of spikes. It is a matter of fact that any spike may be thought as a

sequence of singularities. This quite obvious observation suggests we have to deal

with singularities detection. In achieving this task we borrow the well established

techniques developed in the signal processing field. In particular we will make use of

wavelet transforms. The use of this framework in financial time series analysis is not

new. However its use has been so far focused on other issues such as price forecasting

and time series denoising [see, e.g., Conejo et al.(2005)] and outlier detection [see,
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e.g., Struzik and Siebes (2002)].

The idea of identifying spike like a sequence of singularities is of course, far from being

complete; it is a necessary and not a sufficient condition, that simply enlightens a

possible way to follow.

Now, before explaining the suggested algorithm for spike detection, we briefly outline

the mathematical concept of singularity and we introduce the non familiar reader to

wavelets as a tool for singularity detection. The reader, already acquainted with the

wavelet transform modula maxima technique, may safely jump to the spike detection

algorithm, described in section 2.4.

2.1 Singularities

Singularities, irregular structures and points of sharp variations often carry the most

important information about a signal. A singularity can be defined as a point where

the derivative of a given function of a complex variable does not exist, but every

neighbourhood contains points for which the derivative exists. A function is singular

when it contains a singular point and this results in a breakdown of the Taylor series:

the function contains an edge, a point of rapid variation.

In mathematics, singularities are generally characterized by their Lipschitz / Hölder

exponents. To be precise the Lipschitz attribute is used to defined the regularity of

functions in terms of an integer, whereas the Hölder exponent refers to non-integer

values, even though they are sometimes used as synonymous. The formal definition

follows:

Definition 1 Regularity. A function f is pointwise Lipschitz (local Hölder) α ≥ 0

at ν if there exist K > 0 and a polynomial Pν of degree m = ⌊α⌋, where ⌊α⌋ is defined

as the largest integer less than or equal to α, such that

∀x ∈ R, |f(x) − Pν(x)| ≤ K|x− ν|α.

A function f is uniformly Lipschitz (global Hölder) α over an interval [a, b] if it

satisfies the pointwise condition ∀ν ∈ [a, b], with a constant K that is independent of

ν.

The Lipschitz (Hölder) regularity of f at ν or over the interval [a, b], is the sup of the

α such that f is Lipschitz (Hölder) α.

20



The above definition refers only to functions; the formal extension of Hölder regularity

to tempered distributions1 is not straightforward.

As a first step, we extend the concept of global Hölder regularity.

Definition 2 Let f(x) be a tempered distribution on an interval (a, b). The distri-

bution f(x) is said to have a global Hölder exponent α on (a, b) if and only if its

primitive has a global Hölder exponent α + 1 on (a, b).

This apparently arbitrary definition is inherited from an equivalent rule which applies

to functions. Indeed, in the function realm, it has been proven that the Hölder regu-

larity is increased by one consequently to integration operation. With this definition

of Hölder regularity, it is clear that a tempered distribution may have a negative α.

The same definition can be used to characterize discontinuous and not-differentiable

functions, which, thus, can also exhibit negative α. However, it is possible to show

that values of α less than -1 are only found in distributions.

To get an equivalent extension for the local Hölder exponent is not trivial and, a

sophisticated theory proposed by Bony (1983), Meyer (1989) and Jaffard (1991),

called 2-microlocalization, is needed for the purpose. Without going into details

(we refer for the interested readers to the afore mentioned literature) we report the

alternative definition for isolated singularities.

Definition 3 A distribution f(x) is said to have an isolated singularity with Hölder

exponent α at x0, if and only if f(x) is global Hölder α over an interval (a, b), with

x0 ∈ (a, b) and if f(x) is global Hölder (uniformly Lipschitz) 1 over any subinterval

(a, b) that does not include x0.

Briefly summarizing, α ≥ 1 denotes a continuous and differentiable function; 0 <

α < 1 represents the continuous but non-differentiable case; −1 < α ≤ 0 is valid for

discontinuous and non-differentiable functions and finally for α ≤ −1 we are dealing

with tempered distribution, like the Dirac one.

A classical tool to measure the regularity of a function is to look at the asymptotic

decay of its Fourier transform. A function f results to be bounded and globally

Hölder α over R if
1Distributions are generalizations of functions. Intuitively whereas in a function one defines the

punctual value, in a distribution only the local average has a well defined value. In a similar fashion,
slow-growing locally-integrable functions can be generalized to tempered distributions. A remarkable
property of tempered distributions is that they all admit a Fourier transform. For a more rigorous
treatment refer to functional analysis and distribution theory.
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∫ +∞

−∞
|f̂(x)|(1 + |ω|α)dω < +∞ (2.1)

where we define f̂ to be the Fourier transform of a function f .

In so doing we can obtain a global regularity condition or to be precise, the minimum

global regularity of functions, no more, as we can see from (2.1), the decay of |f̂(x)|
depends on the worst singular behaviour of f ; we cannot derive whether the function

is locally more regular at a particular point. This is due to the fact that the Fourier

transform unlocalises the information around the spatial variable, shifting the trans-

formed information in a frequency-amplitude plane; so or there is not any localization

purpose or, the signal is completely stationary, carrying the same frequency content

along the entire observed signal. This is obviously not informative.

On the other hand, as we will show formally in the following section, wavelets seem

to be the natural choice because of their ability to provide a localized information of

the frequency content of the function f(x).

2.2 Continuous Wavelet Transform

Continuous wavelets theory finds a huge space in the literature and they are the

main choice of this thesis too. Obviously when we go down to the calculus, we work

with finite number of convolutions, with discrete signals and sampling intervals; but

it is a matter of fact that in discrete theory everything becomes more complicated,

sometimes untractable and many nice properties and features are lost. Just to quote

a few examples, in L2(R) a wavelet basis, as we will see below, is constructed by

dilating and translating a single function, whereas dilations are not even defined over

a discrete sequence; several important theorems relate the amplitude of wavelet coef-

ficients to the local regularity of the signal f . The regularity of a discrete sequence

is not well defined either, which leads to interpretation problems for the amplitude

coefficients themselves. The theory of continuous time functions gives asymptotic re-

sults for discrete sequences with sampling intervals decreasing to zero, precise enough

to understand the behaviour of discrete algorithm. Of course, the transition between

continuous and discrete signals must be done with great care; this discretization is

obtained by means of a fast numerical algorithm over finite signals.

Let ψ(x) be a complex valued function. The function ψ(x) is said to be a wavelet if
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and only if its Fourier transform ψ̂(ω) satisfies

∫ +∞

−∞

|ψ̂(ω)|2
ω

dω < +∞. (2.2)

The condition (2.2) is called the admissibility condition and implies that we will

work with functions spanning in L2(R) space. A sufficient condition to guarantee

that this integral is finite, is that ψ̂(ω) has to be continuously differentiable and has

to be ensured that ψ̂(0) = 0; this last requirement straightforward implies another

property: a wavelet is a function with zero mean

∫ +∞

−∞
ψ(x)dx = 0. (2.3)

It is normalized ‖ψ(x)‖ = 1, and centered in the neighbourhood of x = 0. A whole

family of space-scale components is obtained by scaling the function ψ(x) by s and

translating by u, respectively the scale and the position parameter.

ψs,u(x) =
1

s
ψ

(
x− u

s

)
. (2.4)

All these components remain normalized as well: ‖ψs,u(x)‖ = 1. As all these func-

tions, with different region of support, are obtained from one main function, ψ(x) is

called the mother wavelet, to stress its generating property.

The wavelet transform of a real value function f , is defined as the convolution product

of the scaled and translated kernel ψ with f ,

Wf(s, u) =
1

s

∫

ℜ
f(x)ψ

(
x− u

s

)
dx (2.5)

or more compactly

Wf(s, u) = f ⋆ ψ̄s(u) where ψ̄s(y) =
1

s
ψ(

−y
s

).

In (2.5) the scale parameter appears at the denominator and therefore the resulting

multiplicative factor, has to be read in terms of frequency. Low frequencies (high

scales) correspond to a global information of the signal, a non-detailed view that may

span the entire signal; whereas high frequencies (low scales) correspond to a detailed

information of an otherwise hidden pattern, that usually lasts a relatively short time
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(like spikes).

The definition of wavelet transform in terms of a convolution, suggests that the

wavelet analysis is a measure of similarity between the basis functions (wavelets)

and the signal itself; here the similarity has to be intended in the sense of the fre-

quency content. The calculated coefficients refer to the closeness of the signal to the

wavelet at the resolution given by the scale parameter and in a neighbourhood of the

position parameter.

The transformed signal in (2.5) is a function of scale and spatial position and this is

the reason why we are used to refer to the scale-space (or equivalently frequency-time)

plane generated by a wavelet transform. From now onwards we will refer to a wavelet

transform indistinguishably as a scale-space or a frequency-time representation of a

given signal, depending on which aspect we prefer to stress; as already underlined, if

the frequency is the inverse of the scale parameter, the location parameter may be

interchangeably interpreted as location in space or in time domain.

Any function F (s, u) turns out to be the wavelet transform of some function f(x) if

and only if satisfies the reproducing kernel equation

F (s0, u0) =

∫ +∞

0

∫ +∞

−∞
F (s, u)K(s0, s, u0, x)duds (2.6)

with

K(s0, s, u0, u) =

∫ +∞

−∞
ψs(x− u)ψs0(u0 − x)dx. (2.7)

Therefore a wavelet transform is intrinsically redundant, as it is directly expressed by

the reproducing kernel itself (2.7), which measures the correlation of the two wavelets

ψs and ψs0 or, loosely speaking, the degree of redundance between the value of the

wavelet transform at (s, u) and at (s0, u0).

Henceforth, if we think that wavelet transform is a two dimensional representation

of a one dimensional signal, it may result obvious the existence of some redundancy,

reducible and even removable by sub-sampling the parameters of these transform;

this would be equivalent to building a basis in signal space.

Hence, wavelets analysis acts as a mathematical microscope which allows to zoom in

the fine structure of a signal; the usage of different time-frequency components of the

chosen wavelet family, enables to analyse signal structures of very different sizes. To

be more precise, we are referring to the resolution properties of the wavelet transform,

and exactly to the contextual time and frequency resolution.
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Since the Fourier transform is not suitable at all to localize different frequency con-

tents, a very popular solution to overcome this limitation is to apply the Short Therm

Fourier Transform (STFT)2. This methods enables to keep track of both the position

and the frequency. The wavelet transform however, goes really further ahead, adding

a lot of flexibility which we cannot obtain by mere STFT application. Let us try to

give some intuition. The bottom line is essentially how differently the time-frequency

domain is partitioned by the two methods under analysis. A visual representation

of such domain may help to get a straightforward understanding. The usual box

representation of the time-frequency plane will perfectly fit.

Figure 2.1: Time-frequency plane structure: a typical example for wavelet trans-
form (left) and STFT (right). Horizontal axis represents time whereas vertical axis
represents frequency.

Let us observe the left panel of figure (2.1) where each box corresponds to a value of

the wavelet transform in the frequency-time space.

The fact that these boxes have a non zero area, means exactly that we cannot know

the value at a particular point in the frequency-time plane, or better, with punctual

precision of both variables, as all the points that fall in a certain box are represented by

the same wavelet transform value. The main property is that, although the widths

and heights of the boxes change, the area remains constant, representing an equal

portion of the time-frequency plane, but with different proportion (read it: different

precision) of the two indeed. If we get on one side shorter heights (better frequency

resolution) we will have longer widths (poor time resolution) on the other side. This

is the bottom line, this fixed area value is characteristic of each mother wavelet and

trying and changing we could arrive to better and better resolution, but only up to

2STFT is a revised Fourier transform to overcome the need to analyse non-stationary signal. The
key idea is to consider the non-stationary signal stationary over a short interval of time. A window

function is defined, which determines the width of the segment inside which we assume valid the
stationary hypothesis. The STFT results to be the Fourier transform of the signal multiplied by the
window function. The choice of the window is crucial and carries the trade-off of Physics.
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a certain point. All the possible areas we can construct are lower bounded by 1/4π

(Heisenberg’s inequality)3 as the Heisenberg uncertainty principle cannot be violated.

On the right panel, there is the corresponding representation for the Short Term

Fourier Transform (STFT). Although a time frequency representation is provided

there is a fixed resolution at all times.

A crucial role in measuring the local regularity of a signal is represented by the number

of vanishing moments the wavelet we have chosen, has.

Definition 4 A wavelet is said to have n vanishing moments, if and only if for all

positive integer m < n, it satisfies

∫ +∞

−∞
xmψ(x)dx = 0.

The number of vanishing moments expresses the polynomial order to which the

wavelets are orthogonal; a wavelet with n vanishing moments results to be orthogonal

to polynomials up to degree n − 1. So up to this degree, the wavelet is somewhat

blind, enabling to filter out the ”regular” noise and to concentrate on the eventu-

ally residual structure. To be clearer, let’s think at a Taylor expansion; it expresses

local polynomial approximations by means of the differentiability properties of func-

tions. The differentiability order gives an upper bound on the approximation error,

an integer one of course; the Hölder regularity refines this bound with a non integer

exponent.

f(x)ν = c0 + c1(x− ν) + ... + cn(x− ν)n +K|x− ν|α. (2.8)

Now, in order to characterize the Hölder regularity of f ∈ Cn, we will need a wavelet

ψ so that
∫
xmψ(x)dx = 0, for m = 0, 1, ..., n (i.e. n+ 1 vanishing moments ). If f is

a function which is a little bit more than n times differentiable at a point ν, than it

3In quantum physics, the Heisenberg uncertainty principle expresses a limitation on accuracy of
simultaneous measurement of observables such as the position and the momentum of a particle. It
furthermore precisely quantifies the imprecision by providing a lower bound for the product of the
dispersion of the measurements. It could be measured as the product between the standard deviation
∆x of the position measurements and the standard deviation ∆p of the momentum measurements.
Then we will find that ∆x∆p ≥ h

(4π) where h is the Planck’s constant; it denotes a physical constant

used to describe the size of quanta. Note the time and the frequency of a wave in time are the
analogous to the position and momentum of a wave in space, although their products is dimensionless;
that’s why the h constant disappear in our setting.
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can be approximated by a polynomial of degree n plus an error. A uniform estimate

of this error provides a tool for regularity analysis and, the wavelet transform is a

strong candidate. The wavelet transform of this polynomial is zero, whereas around

ν its order is that of the error between the polynomial and the function.

So, to be more specific, the number of vanishing moments constraints the maximum

order of the detectable Hölder scaling exponent to αmax < n. The wavelet’s regularity

on the other hand, restricts the accessible negative singularities to αmin > −N where

N denotes the wavelet’s regularity, ψ ∈ CN(Muzy et al. 1994); namely the smoother

the wavelet is, the lesser are its localization capabilities, while the larger the number

of vanishing moments are, the larger too are the number of extrema.

A key result so, is the explicit relation between the differentiability of f and the

asymptotic decay of its wavelet transform (as s approaches zero), which indicates the

order of the singularities. Assume that the wavelet ψ(x) has n vanishing moments

and n continuous derivatives ψ(k)(x) ∈ Cn where k = 1, 2, ..., n, with a fast decay, this

is that

∀x ∈ R, |ψ(k)(x)| ≤ Cm

1 + |x|m wherem ∈ N (2.9)

We can derive a necessary and sufficient condition on the wavelet transform to esti-

mate the Hölder regularity of the function f at a point ν.

Theorem 1 Pointwise condition.If f ∈ L2(R) has a local Hölder exponent α ≤ n

at ν, then there exists A such that

∀(u, s) ∈ R × R
+ |Wf(u, s)| ≤ Asα+1/2

(
1 +

∣∣∣∣
u− ν

s

∣∣∣∣
α)

. (2.10)

Conversely, if α < n is not an integer and there exist A and α′ < α such that

∀(u, s) ∈ R × R
+ |Wf(u, s)| ≤ Asα+1/2

(
1 +

∣∣∣∣
u− ν

s

∣∣∣∣
α′
)
. (2.11)

then f has a local Hölder exponent α at ν.

The whole theorem can be extended to an interval and to the entire real axis.

Theorem 2 Uniform condition.If f is global Hölder α ≤ n over [a, b], then there

exists A > 0 such that

∀(u, s) ∈ [a, b] × R
+, |Wf(s, u)| ≤ Asα+1/2. (2.12)
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Conversely, if f is bounded and Wf(s, u) satisfies the above condition (2.12) for an

α < n, not integer, f is global Hölder α on [a + ǫ, b+ ǫ] for any ǫ > 0.

In most of the cases the wavelet ψ(x) is the nth derivative of a smoothing kernel

θ(x). A smoothing function is any function θ(x) whose integral is equal to 1 and

that converges to 0 at infinity. When the scale s is large, the convolution with the

dilated kernel θ(x) removes small signal fluctuations. Therefore it only detects the

sharp variations of large structures. It can be proven that if the function ψ is the

nth derivative of a fast decaying function, such as θ, this is a necessary and sufficient

condition to state that the wavelet ψ has n vanishing moments; moreover, if the

integral of θ over the real (read also as its Fourier transform at zero, θ̂(0)) is different

from zero, as it happens for smoothing functions, n turns out to be also the maximum

number of vanishing moments affordable by the wavelet ψ.

2.3 The Wavelet Transform Modula Maxima

(WTMM)

For an in-depth analysis of the Wavelet Transform Modula Maxima (WTMM), we

refer the interested reader to Mallat and Hwang (1992) and for a comprehensive

exposition to Mallat (1998). In the following we will expose the main related concepts

and intuitions.

We have already emphasized the intrinsic redundancy provided by the wavelet trans-

formed information. The Wavelet Transform Modula Maxima is essentially a proce-

dure that enables to filter out the redundant information in the wavelet coefficients’

matrix, in other words an efficient partition of the space-scale plane. By definition a

modulus maximum of the continuous wavelet transform is a strict local maximum of

the modulus at a fixed scale s and either on the left- and on the right-hand side of a

given point u0. As formally stated by Mallat and Hwang (1992):

Definition 5 Let Wf(s, u) be the wavelet transform of a function f(x).

• Call a wavelet transform modulus maximum, a WTMM, any point (s0, u0) such

that |Wf(s0, u)| < |Wf(s0, u0)| when u belongs either to the right or to the

left neighbourhood of u0, and |Wf(s0, u)| ≤ |Wf(s0, u0)| when u belongs to the

other side of the neighbourhood of u0.
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• Call a wavelet transform modula maxima line, a WTMML, any connected curve

in the scale space (s, u) along which all points are modula maxima.

To give full meaning to this definition, in order to measure the singularity strength,

we need to introduce the concept of cone of influence. Let’s assume to have a wavelet

with a symmetric support on the closed interval [−K,K], then the cone of influence

with respect to x0 in the scale-space plane, is the set of points (s, x) such that

|x− x0| ≤ Ks. (2.13)

It is the set of point (s, x) for which Wf(s, x) is influenced by the value of f(x) in

the neighbourhood of x0.

The WTMML interconnects the maxima for the modula of the wavelet transform

within the cone of influence and across the scale-space plane; they emanate from the

abscissa where the singularities are located and proceed towards coarser scales, until

they possibly arrive at a bifurcation. This bifurcation indicates the point where the

cone of influence of two WTMML starts to overlap. This typically happens when the

singularities are not isolated and at coarser resolution they may appear like a unique

point of sharp variation, whereas as we approach to finer scales the ultimate structure

has been revealed, for example two distinct singularities may appear evident.

When detecting local maxima, we can only record the values of the corresponding

wavelet transform coefficients at the selected maxima locations; at this step we cannot

differentiate between small amplitude fluctuations and important discontinuities.

It has been rigorously proven by Mallat and Hwang (1992) that the local maxima

of a wavelet transform detect the locations of irregular structures. More precisely, it

has been proven that there cannot be a singularity without a local maximum of the

wavelet transform at finer scales; in the general case a sequence of modula maxima is

detected which converges to the abscissa where the singularity occurs.

Theorem 3 Suppose that ψ is Cn with a compact support, and ψ = (−1)nθn with∫∞
−∞ θ(x)dx 6= 0. Let f ∈ L1. If there exists s0 > 0 such that |Wf(s, u)| has no

local maximum for u ∈ [a, b] and s < s0, then f has global Hölder exponent n on

[a+ ǫ, a− ǫ], for any ǫ > 0.

This theorem implies that f can be singular at a point ν only if there is a sequence
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of wavelet maxima points (sp, up)p∈N that converges towards ν at fine scales:

lim
p→+∞

up = ν and lim
p→+∞

sp = 0.

A computational observation is due; to be precise when we perform the numerical

estimation of these exponents, whatever method is chosen, we obviously have a dis-

crete sequence, a finite resolution approximation of an unknown continuous function.

Strictly speaking it is not meaningful to speak about singularities, discontinuities and

Hölder exponents. We cannot compute the asymptotic decay of the wavelet transform

amplitude since the wavelet transform is not available at arbitrarily small scales up to

zero: it might happen that we detect a discontinuity at a given point, when instead

the function might be continuous at that point and have a sharp transition at a point

not visible given the available resolution. So, whatever singularity characterization

we state by means of wavelet transform, it is precise at the adopted resolution. Our

concern will be to check that the WTMM remain approximately constant over a large

range of scale in the neighbourhood of the candidate discontinuity point.

From a practical point of view the theorem 3 dictates that all singularities may be

detected by following the wavelet transform modulus maxima at fine scales. Now we

should wonder how these maxima may propagate at finer and finer scale. Generally

it is not guaranteed that a modulus maximum belongs to a line of maxima that

propagates towards finer scale: as s approaches to zero there might not be no more

maxima in the corresponding neighbourhood. We would require instead, that a signal

feature, once present at some scale, should persist all the way through scale-space up

to the zero-scale. Otherwise the feature in hand would be spurious, caused by the

filter and not the original signal. This behaviour is termed the causality property

(Koenderink 1984), in the sense that features at a higher level of smoothing are

caused by features at finer level of resolution. The following proposition (Theorem

4) due to Babaud et al. (1986) and Yuille and Poggio (1989), states the remarkable

result that derivatives of Gaussian filters are the unique convolution kernels which

posses the causality property for one-dimensional signal and therefore they are the

unique family of wavelets (that act as filters) which may assured for modula maxima

lines never interrupting through finer and finer scales.

Theorem 4 Let ψ = (−1)nθn where θ is a Gaussian. For any f ∈ L2(R), the modula

maxima of Wf(s, τ) belong to connected curves that are never interrupted when the
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scale decreases.

The fact that maxima may not disappear when s decreases is, of course, a strong

argument in favour of the choice of Gaussians’ derivatives as mother wavelet. The

procedure of chaining together maxima lines brings indeed, to the elimination of

spurious modulus maximum created by numerical errors, which are more likely to

happen in those regions where the wavelet transform is approaching to zero.

Following the maxima lines propagation up to the finest scale available, we end up

with a set of singularity points. In order now, to estimate the corresponding strength,

we need to have a closer look to condition (2.10); it can be equivalently written in

logarithmic terms

log |Wf(u, s)| ≤ logA+

(
α +

1

2

)
log s. (2.14)

This formulation in the log-log plane makes easier the interpretation and makes im-

mediate the estimation procedure: in (2.14) the Hölder regularity at ν is thus the

maximum slope of log |Wf(u, s)| as a function of log s along the maxima lines con-

verging to ν.

For many purposes, the wavelet transform isn’t required to keep a continuous scale

parameter s. To allow a faster numerical implementation4, we assume that the scale

varies only along a dyadic sequence (2j)j∈Z .

Loosely speaking, in place of the generic scale value s we set the factor 2j, introducing

a discretization device that turns out to be very useful and efficient in practice. The

resulting Dyadic Wavelet Transform maintains translation invariance by sampling

only the scale parameter s of a continuous wavelet transform and not the translation

parameter u. Moreover, if the frequency axis is completely covered by dilated dyadic

wavelets, it may be proved they define a stable and complete representation.5 We can

thus characterize the regularity of a function from the behaviour of its dyadic wavelet

transform local maxima and all the above theorems of this section are still valid if we

restrict the scale parameter s to dyadic scales.

4Refer to Filter Banks literature.
5For more detailed explanation and proofs refer to Frame Theory.
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2.4 The Algorithm

We propose a recursive wavelet transform procedure in order to identify the spike

location. Let f(t) be the finite one-dimensional signal that we observe at equally

spaced time coordinates t1, t2, ..., tN , in this case the spot price time series in the

Nord Pool electricity market, daily measured. The basic steps are the following.

Variables set up. In order to simplify the exposition, let us follow a vectorial approach.

Let us represent the discrete function f(t), with the couple of vectors (T,P), where

T = {ti}i=1,...N is the vector of dates to which is associated P = {pi}i=1,...N the

corresponding vector of the observed prices; the dimension of the two is obviously the

same, N .

Continuous Wavelet Transform. Let us perform the CWT on the discrete price series

constituted indeed by the couple of points {(i, pi)}i=1,...N . Note that the x-coordinate

is simply the index of the price entry in the vector P and it can be interpreted as a

position indicator; this is a formal choice for coherence with the following step.

In figure (2.2) we show the image of the continuous wawelet transform applied to the

spot price time series for different scale values.
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Figure 2.2: Continuous Wavelet Transform of Spot NordPool Electricity Prices. Hor-
izontal axis is the position parameter; vertical axis is the base two logarithm of the
scale parameter.

We adopt as mother wavelet the second derivative of the Gaussian kernel θ(x) =

e−x2/2, normalized in order to get the L2 norm equal to 1. In so doing we obtain the
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Mexican Hat6 function

ψ(x) =
2√
3
π−1/4(1 − x2)e−x2/2. (2.15)

This function has an infinite support; nevertheless for this family of wavelets, it is

common practice to define the so called ‘effective support ’, fixing an upper and a lower

bound in order to force the wavelet to be compactly supported. The usual Mexican

Hat effective support, is the interval [−5, 5] as shown in figure (2.3). (It is an isotropic
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Figure 2.3: Mexican Hat mother

wavelet

function in high-order dimension.) The

choice of a gaussian’s derivative brings a

legacy of a lot of nice features, first of all the

continuous and regular maxima propagation

(i.e without any interruption at finer scales)

when chaining the local modula maxima, as

stated by theorem 4. The Mexican Hat func-

tion has two vanishing moments which indi-

cate that correlations with constant or lin-

ear functions will be zero. In other words the

wavelet function is orthogonal to polynomial

up to order 1, i.e., n = 2. The number of

vanishing moment adopted is supposed to be sufficient; basically we are advocating

that computing the continuous wavelet transform the portion of the price series that

is step by step convolved with the scaled and translated Mexican Hat wavelet, is well

approximated by up to linear functions. This assumption sounds quite reasonable

considering henceforth, the smaller and smaller portion of the signal under analy-

sis as the scale decreases. One could advocate that, using a wavelet with an higher

number of vanishing moments, could be better in order to be sure to be orthogonal

to the polynomial of the order needed. The point is that in theory the observation

may work, but we face a trade-off in order to perform computational tasks: the more

vanishing moments the analysing wavelet has, the heavier the computation is. The

number of maxima at a given scale increases linearly with the number of vanishing

moments of the wavelet, consequently also the number of maxima lines results to be

increased. This is not in the spirit of the WTMM procedure, that is designed to be

6The name is due to the fact that if we plot the function ψ(x) as defined and we rotate it around
its symmetry axis, we obtain a shape similar to a Mexican Hat.
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indeed, an efficient representation of a redundant partitioning of the scale-space plane

due to the wavelet transform; we thus want to have the minimum number of maxima

necessary to detect the interesting irregular behaviour of the signal. So our ability

will also be to select the right number of moments. Basically no exact criterion exists,

apart from trying different configuration.

Wavelet Transform Modula Maxima. We proceed with the identification, at every

available scale, of the modula maxima of the wavelet transforms depicted in figure

(2.2). Loosely summarizing, we check, respectively for every points of the signal, for

all the modula maxima belonging to the corresponding cone of influence determined

by the chosen wavelet, as explained in section (2.3), and if any, we chaining them

together on the base of an euclidian distance minimization criterion. In so doing we

obtain the WTMML of Definition 5. In the following figure we plot the maxima lines

we have identified for the continuous wavelet transform of the spot price time series

of figure (2.2).
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Figure 2.4: Maxima lines evolution across scales of the Nord Pool spot price time se-
ries. Horizontal axis is the position parameter; vertical axis is the base two logarithm
of the scale.

The final output is a vector collecting the x-coordinates, in the transformed scale-

space plane detected as point of sharp variation in the analysed discrete signal or, to

be precise, the position indexes of the singular prices with respect to the vector P.
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Figure 2.5: NordPool Spot Price Series with the detected singularities by the WTMM.
The green star represent the elements of the vector S1.

Let us define by S1 = {s1
i }i=1,...n1 this output vector, where n1, indicates the number

of detected singularities.

From the consideration that spikes can be seen as sequence of singularities we argue

that inside S1 there should be the exact spikes’ location too.

S1 shrinkage. The problem now is how to retrieve only the spike coordinates. A

series of considerations applies. A first observation, as shown in figure (2.6), is that

we expect to find inside S1, for every spike (i.e the location of the on-peak value) at

least other two x-coordinates corresponding to the base-values. So, in the easiest

bases on-peak 

Figure 2.6: Schematization of the

basic configuration of a spike in

terms of singularities and the cor-

responding triplet of coordinates.

and simplest case, we would have a triplet of coor-

dinates, although a more complex situation with

other singularities in the middle is likely to occur.

Of course to identify the spike-triplet from a what-

ever triplet of x-coordinates of a sequence of sin-

gularities, one should look at the signal value (the

corresponding price); it is indeed a sequence of sin-

gularities together with a huge gap in value, to de-

note properly a spike. When a spike occurs, there

is a point of sharp variation, this causes a singular-

ity and, being in the discrete realm , generates two

x-coordinates: one indicating the starting point,

let’s say when the normality breaks down and the

other one the proper spike location; finally another

significant point marks the expiry of the spike-feature, representing the coming back
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to normality. In between the two bases there is the anomalous behaviour carried by

the spike occurrence and the term coming back to normality has to be intended in

term of shape, behaviour, volatility and not simply in terms of price level, even if the

price value for the two bases is very often essentially the same. This fact bears out

the hypothesis that spikes are anomalies that as they come they go, without leaving

any track of them. The need to reduce the set S1 derived also from the fact that it

includes all the sharp transitions of the signal and, as the electricity price time series

is for its nature a very jagged one, many singularities will be detected even if the

value’s transition is not significant with respect to the normal volatility of this partic-

ular market. Observe that in the complete series of the detected singularities, apart

from the spiky transitions, we have disentangled, to some extent, the most highly

volatility movements of the price series; in other words all the points of sharp transi-

tion. These consideration reveal the lack of effectiveness of the WTMM algorithm in

detecting spikes. Spikes are not mere singularities, they are not simply outliers; the

peculiar nature of this object requires a specific analysis. That’s why we proposed an

additional step to the regular WTMM algorithm.

Recursive Wavelet Transform. The idea is to perform a progressive filter on the

vector of singularities S1 in order to extract step by step, the abrupt variations. This

filtering is obtained once again by means of a wavelet transform but this time, no

more on the original price time series, but on the signal defined by the set of points

{(j, p1
j)} (2.16)

where

j = 1, 2, ...dim(S1) and p1
j = P(s1

i )

with P1 = {p1
j} the vector of ”singular” prices. Now the WTMM-tool will detect a

new vector S2 of singularities (in terms of position-indexes w.r.t. P1), of strictly lower

dimension than S1. We can thus define a new signal by the set of points {(j, p2
j)},

but where j = 1, 2, ...dim(S2) and p2
j = P1(s2

i ). Repeat the procedure n times. At

every step one remains with the most significant singularities in term of variations,

going in such a way in the spike direction identification. This simple procedure from

now on will be named Recursive Wavelet Transform Modula Maxima of order n, in

short Rn-WTMM. After the n-th step is being computed, our new information set

is constituted by the vector Sn, assumed to be the vector of the spikes’ coordinates,
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and by the associated vector of on-peak prices Pn = {Pn−1(sn
i )}. To be precise

the spikes locations given by the final vector Sn, are not expressed in a time measure

immediately intelligible. So to retrieve exactly the dates of occurrence of the detected

spikes, we have to follow backward the nested structure defined by the step by step

constructed vectors Si, starting from the Sn one, up to the original time vector T

defined by the available observations. Therefore the properly vector of dates of spike

occurrences, detected by the proposed algorithm, will be

St = {T(S1(S2(...(Sn−1(sn
i ))...))}. (2.17)

The key point of the algorithm can be read in (2.16). As already pointed out, the

basic idea is to recursively repeat the wavelet transforms, in order to select step by

step the abrupt variations. But to make our procedure to work, we need somehow

to emphasize the detected structure to make more ”singular-relevant” certain points

with respect to other. Remember that the tool we have is to detect singularities,

whatsoever singularities, non matter the excursion value, which indeed represents the

difference with a spike. We want, in someway to force this instrument to detect what

we need and the solution we proposed is to construct the synthetic signals {(j, pi
j)}.

The peculiarity is that apart from picking only the ”singular” prices, we totally ignore

their time location considering the selected prices equally and unitary spaced by the

unit of time: a day in our case. It can be seen as a kind of time change to flatten the

time order at each step.

As spikes can be thought as the most abrupt variations identified by the WTMM, it

is naturally therefore, to look for singularities by means of once again the WTMM,

applied to a series of ‘singular’ prices.

Interrupt. In the just outlined algorithm the only thing left undefined is how to

identify the previously called order n of the Rn-WTMM, in other words after how

many steps the wavelet transform iteration has to be interrupted. Of course, if no

criterion is specified the algorithm expires by itself, collapsing to a point, assumed to

be the most abrupt variation. The aim is to halt the iterations earlier in order to end

up with a non-trivial vector St. The suggested solution is to give up the iterations as

soon as the minimum of the variations between the step by step identified singular

values and the nearest previous one, detected in the first step, is greater than a given

threshold, say the five per-cent or two per-cent percentile of the empiric distribution
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of the related variations. A detailed description of our procedure follows.

Once the first WTMM is been computed and the gained information is represented

by the vector S1, we determine the empiric distribution Fm(where m is the sample

size equal to the dim(S1)) of the absolute variations among the corresponding prices

values

{P(s1
i ) −P(s1

i−1)}i=2,...,m. (2.18)

This new variable gives us the increment or decrease between the hypothetical base

and peak value of the spike; That’s why we are not interested in the increments or

decrements in the original prices series. Take as a reasonable threshold the 5% or

better the 2%-percentile both on the right tail and on the left one. At every step of

the recursive procedure, before going on, just perform a simple test. If we are at the

iterated step j and we are wondering if we need to go on or we can stop, take the

difference among the corresponding price values, {P(sj
i )}, and the price values that

correspond to the previous singularity detected at the first step, i.e. the supposed

spike base-value {P(s1
p−1|s1

p = sj
i )} where i = 1, ..., dim(Sj) and p = 1, ..., dim(S1).

If all these differences are in the tails of the empirical distribution afore defined, we

stop, otherwise we keep going. Formally we stop at j-step if ∀i = 1, ..., dim(Sj)





min({P(sj
i ) − P(s1

p−1|s1
p = sj

i )}| P(sj
i ) − P(s1

p−1|s1
p = sj

i > 0) > th+

max({P(sj
i ) − P(s1

p−1|s1
p = sj

i )}| P(sj
i) −P(s1

p−1|s1
p = sj

i < 0) < th−
(2.19)

where respectively with th+ and th− we indicate the right- and left-tail threshold.

Graphical Results. The above procedure, applied to the Nord Pool data set, generates

the result outlined in figure (1.7). It can be noticed as the procedure quickly con-

verges to a meaningful output, displaying a strong decrease of the number of detected

singularities. The algorithm has been iterated up to the sixth order, depending on the

adopted threshold: with a selected percentile of 2% both on the left and on the right

tail, the sixth step is required; otherwise with a choice of 5% the fifth is sufficient.

We’ve collected in table (2.1) the most relevant information concerning the detected

spikes from the fifth step onward. We have reported the date of the spikes and the

related base occurrences and price values. On average, the time elapsed from base to

base is about a week ranging from a minimum of 4 days up to 9 days. This result

supports the belief that the spike is a very short-lived feature. A particular mention
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Figure 2.7: Graphical results of the R6-WTMM. The star-symbol marks the detected
singularities.
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Table 2.1: Numerical information about the relevant spikes selected from the fifth
steps onward.

is due to the 6-Jan-03 spike. It represents the very peak value of an anomalous spike:

in that period the North of Europe was facing a big drought and consequently the

aforementioned spike constitutes just the abrupt peak of a wider spike which lasted

for more than a month. Finally in the last four columns we have reported the upward

and downward price variations relative to the corresponding bases and the related

daily price variation.
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Chapter 3

The Electricity price modelling

3.1 Literature review of modelling approach

It is a matter of fact that electricity markets rank among the most challenging and

complex of all markets operating at present. Electricity may be assumed as a com-

modity but its very nature makes it singular. The established financial literature

in commodity pricing cannot be easily transposed. At the same time, the pressure

for reliable tools of modelling and forecasting is constantly increasing, together with

the establishment and widespread consolidation of deregulated and competitive elec-

tricity markets all around the world. In the last fifteen-twenty years indeed, a clear

separation between services and infrastructures has taken place in the name of the

liberalization process and now, with markets more or less mature, the power indus-

try in several countries is no longer a centralized and vertically integrated structure.

Hence, the need to understand the price formation mechanisms is stronger, as the re-

quirement for a tractable approach to transform the available data together with the

developed theory of the market mechanisms into simulated prices to be used as inputs

for models for investment, production and risk management decisions. However, it is

still a quite young market, at least in terms of the length of available for inference

time series. It is indeed , in the last years that we have observed an increasing interest

toward the electricity markets in the financial literature.

We can broadly summarize the several electricity pricing models, in two main ap-

proaches: a pure financial approach and a more economic-orientated one.

We refer as a pure financial approach, to the stream of literature which treats the
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price of electricity as a stochastic variable without attempting to model the actual

electricity system itself. A process is specified, which is totally independent of the

underlying physical system state variables. These kinds of models focus only on

past realizations of the prices and attempt to infer aspects such as price trends and

volatility directly from those price series.

The other main stream of literature instead, the economic approach, concentrates

itself more on the price formation mechanisms, on the fact that the short-term price

for every period is set by some intersection of demand and supply. Hence it tries

to analyse the decision making process of both the supply and the demand side,

studying the interaction of factors such as generating capacities, marginal costs, loads,

transmission constraints, with the market rules. It tries to mimicking the market, to

calculate the prices in much the same way as do the actual market mechanisms: spot

prices and their distributions are achieved endogenously. As a first consequence of

course, a huge amount of physical system information is required.

Without any intent of completeness, we now briefly review the the main contributions

to the two approaches. Let us first review the pure financial approach.

A price process has to be defined and the first natural candidate might be the ge-

ometric Brownian motion so widely and successfully used to model securities. The

linear diffusion models of the type underlying Black and Scholes however, cannot cap-

ture the behaviour of the electricity trajectories such as spikes and mean reversion.

Kaminski (1997) was the first to add jumps to geometric Brownian motion in order to

consider the spiky behaviour of the observed trajectories, but still not mean reversion.

Schwartz (1997) widely discuss why the mean reversion for commodities is reason-

able on general economic grounds, but we have to wait Johnson and Barz (1999) for

a mean reverting model. Comparing different models (Geometric Brownian motion

and mean-reversion with/without jumps) across several deregulated markets, they

suggest a mean-reverting model with an exponentially distributed (hence positive)

jump component as a more adequate specification. Although crucial characteristics

of price dynamics are captured, a deterministic price volatility is still assumed, which

clearly contradicts empirical evidence.

Although to add a jump component looks like the natural solution to model spikes, it

is not so straightforward how to perform this task. A pure jump model in the spirit of

Merton (1976) is inadequate, as the effect of each jump is supposed to be permanent:

the diffusion starts again from the new level of price once the jump has occurred and
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no reversion to a normal (previous) level of prices is contemplated. It is quite simple

to obtain large upward jumps, by making the positive tail of the jump measure fat

enough, but because the times of the large positive and negative jumps have to be

independent Poisson processes, it is not possible to ensure that a large upward jump

will be followed by a large downward jump. Hence in order to reproduce a spike

and not a simple jump in the trajectories, the main issue is how to quickly reverse

back the level of price after a jump. The first possible solution is to use the mean

reversion machinery as it happens in the Braz-Johnson (1999) or Clewlow-Strickland

(1999) models. The fact is that, to efficiently damp out the big shocks in the level

of price after a jump the small price movements result to be unreliable flattened

by the high speed of mean reversion required to do a good job on the price jumps.

Lucia-Schwartz (2002) even drop out the jump component and suggest that prices

could be decomposed as the sum of two components: a deterministic component

which represents the underlying mean level of prices and a stochastic component in

the form of an autoregressive process, which accounts for decaying movement away

from that level. This choice leads to simple pricing formulas. Villaplana (2004)

specifies a price process that is the sum of two processes: one continuous and the

other one with jumps with different speeds of mean reversion. Geman and Roncoroni

(2006) introduced a threshold, estimated in order to preserve moment matching of

the observed and the simulated trajectories, beyond which the simulated process is

supposed to reverse down. In these settings however no successive up jumps are

feasible once the threshold is reached and the intensity of the jump process does not

depend on the fact that a jump has just occurred. Jump-type models, moreover,

present some difficulties in the estimation procedure. An electricity model to be

reasonable should include seasonalities which affect the intensity and the magnitude

of a jump. Hence, estimating such a model on the limited time series available, is

extremely challenging. Geman and Roncoroni (2006) perform the estimation but they

have to specify the parameters of the non-homogeneous jump intensity function based

on a priori considerations instead of estimating it from the data. Further, it has to be

noted that jump risk is not hedgeable and hence the electricity market is incomplete.

However, the non storability of the electricity, makes impossible to hold an hedging

position in spot power, making the market incomplete even with continuous prices.

An alternative modelling framework to jump-diffusion is regime-switching. This can

replicate the price discontinuities, observed in practice, by disentangling mean rever-
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sion from spikes. The latter are truly time specific events and therefore independent

from the mean reverting price process. Hence jumps occurrence may be considered as

a change to another regime that follows a totally different stochastic process in terms

of parameters values or even in terms of its nature. In these models a key point is

the definition of the switching mechanism, which can be assumed to be governed by

a random variable. Usually this is a Markov chain with two or more possible states.

Ethier and Mount (1999) assume two latent market states and an AR(1) price process

under both the normal and the abnormal regime; constant transition probabilities and

constant mean prices, estimated for each season separately, and stationarity in the ir-

regular spike process are imposed. Barone Adesi and Gigli (2001) proposed a discrete

regime switching time model which define additively the changes in electricity prices;

spikes are assumed to happen at random times with a distribution of sizes following

a lognormal distribution. Their duration and frequency are independent, but they

cannot cumulate.

The model suggested by Huisman and Mahieu (2003), allows an isolation of the two ef-

fects assuming three market regimes; a regular state with mean-reverting price, a jump

regime that creates the spike and finally, a jump reversal regime that ensures with

certainty reversion of prices to their previous normal level. This regime-transition

structure is however restrictive, as it does not allow for consecutive irregular prices.

This additional feature, not so infrequent, would required an extremely large number

of switching probabilities. This constraint is relaxed in Huisman and de Jong (2003).

The two-state model proposed assumes a stable mean-reverting regime and an inde-

pendent spike regime of log-normal prices. Regime independence allows for multiple

consecutive jumps.

It is worth to mention a further split in the literature between researchers who model

the spot price and the ones who privilege the futures price. Most of the time the

motivation of the choice between the two is the pricing purpose. It is a common

practice to model the underlying of the contingent claim to be priced. This may be

both the spot and the futures price, although based on modelling approach sometimes

the reason behind a futures price seems to be the nicer shape of the futures term

structure, with less volatile price and no such an extreme spiky behaviour as the

spot price trajectories. We believe that the basic liquid market which is needed to

be modelled is the spot price. The spot price is the principal underlying of many

electricity derivatives and the availability of a well suited modelling process is of
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primary importance for every risk management and hedging strategy in the electricity

sector. Being aware, however, of the importance of the futures quotations, it will be

our concern to propose a futures pricing model based on spot price evolution.

The alternative stream of literature, the economic approach, tries to make explicit

the economic forces that, interacting with each other, lead to the formation of the

observed price series, which is the given and exogenous starting point of the financial

approach. This goal may be carried on at several degrees of detail. We have essentially

supply/demand-oriented models, which try to simulate the operation of generating

units aiming to satisfy demand at minimum cost. Hence, prices are derived from the

intersection of the expected production costs of electricity and expected consumption.

In other terms they aim to determine the theoretical equilibrium price of the whole

market, see Fleten and Wallace (1998) for instance. This can be pursuited as an

optimization problem for only one firm, or considering the market equilibrium for all

the firms (Cournot equilibrium type or supply function equilibrium). Moreover this

can be performed ignoring strategic bidding practices or accounting for them both

in a static and a dynamic way. Such equilibrium models rely on the assumptions

that prices are determined by industry participants rather than outside speculators,

and that power companies are concerned with both the mean and the variance of

their profits. Under this different shade of light the unique features of the electricity

price trajectories, which has challenges us so far with the pure financial approach,

find here an exquisite economic motivation which we want to model. Let us take

spikes. Non-storability of electricity means that if a positive demand shock takes

place in a given period of time (hourly, daily or monthly market), that is the demand

surpasses production, there is no upper bound on price levels. Therefore in those

situations where the demand level is near the maximum capacity of the system, the

behaviour of electricity prices can be quite abrupt, since electricity must be generated

trough inefficient plants with a higher marginal cost. This is a spike. It is a reflex

of the convexity of the supply function. Another possible reason behind spikes is a

reduction in supply. This reduction in generation capacity may be given by a decrease

in the number of generators of a system or, in the case of interconnected systems, a

reduction in the capacity to import from other electric markets, see for instance the

analysis for the New England spikes June 1999, in Krapels (2000). Birnbaum et al.

(2002) have empirically shown there exist an important relationship between price

level and generation capacity.
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To identify the relevant observable state variables mainly associated to supply and

demand variables, is one of the main issue for the economic modeler. Pirrong and Jer-

makyan (1999 and 2000) propose to model the equilibrium price as a function of two

state variables, electricity demand and the futures price of the marginal fuel. By in-

troducing the futures price of the marginal fuel, the authors are trying to introduce an

(observable) state variable related to the supply side. The authors postulate that elec-

tricity price should be an increasing and convex function of demand. Bessembinder

and Lemmon (2002) derived an equilibrium model of electricity prices, in which the

price volatility depends on the volatility of system demand and production cost. They

explicitly model the economic determinants in the forward market. Producers face

marginal production costs that may increase steeply with output. Aggregate demand

is exogenous and stochastic, but generation capacity is not a random variable. They

show, in case of increasing marginal costs, how price distribution exhibits positive

skewness even in the case of symmetric electricity demand distribution.

The papers of Barlow (2002), Skantze et al. (2000) and Skantze and Ilic (2001)

commonly impose a functional form for the relationship between price and the state

variables. State variables are demand and a non-specified variable related to the sup-

ply side. Barlow (2002) proposed a non-linear Ornstein-Uhlenbeck process for the

description of observed electricity prices. Basically the author consider the demand

as the relevant state variable, and model it as a mean-reverting process incorporating

a non-constant mean given by a deterministic seasonal function. From empirical ob-

servation he considers electricity price to be a convex function of electricity demand.

In his empirical analysis shows how effectively the model is able to generate spikes,

trough a non-linear filter that connects diffusive demand with electricity prices. The

convexity between demand and prices is the element that generates jumps in electric-

ity prices although demand is modelled as a diffusive process.

In Skantze et al. (2000) and Skantze and Ilic (2001), the authors impose an ex-

ponential functional form between electricity spot price and state variables. State

variables are demand and a non-observable residual variable, related to supply con-

ditions. Hence, electricity prices would be governed by a combination of demand and

supply states. The parameters describing the load state dynamics can be estimated

directly from the time history of the market demand. The non-observability of the

supply variable (generation capacity), is overcome by the authors by an extracting

procedure, in other words supply is considered a residual variable and this may be
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seen as weakness of the approach. Any change in price that is not directly related

to a demand shock will be captured by this residual variable. It also must be noted

the relationship between price and demand is less clear at higher prices (or level of

demand).

In order of better explaining the hidden market mechanism of price formation, many

authors rely on an enlarged set of driving factors, not just a simple proxy for the

demand and the supply, but many other collateral variable which may influence the

decisions. These variables, called fundamentals, affect the spot prices. They are

modelled as stochastic factors that follow statistical processes which result to be

definitely more stable than the price process. Fundamentals factors may be climate

data like hydro-inflow, temperature, snow levels and precipitations; alternatively fuels

prices; penalties for production interruption introduced by law and many others.

However, the data set is usually hard to collect and maintain and it is often labori-

ous to use such a models to create numerous spot price scenarios. Moreover these

models are not particulary well suited for day to day market operations. Vahviläinen-

Pyykkönen (2005) calibrated as many as 27 fundamental variables in their model of

the Nordic market. These variables are typically collected only with low frequency,

that is weekly, monthly and even quarterly.

The electricity sector, and the economy in general are characterized by difficult real-

world aspects, such as asymmetric information, imperfect competition, strategic in-

teraction, collective learning, and the possibility of multiple equilibria (Tesfatsion,

2006). Many of these factors cannot, or only with difficulties, can be accounted for

with traditional economic modelling techniques. When the concept of complexity

came up, the focus in economic analysis shifted from rational behaviour and equilib-

rium towards heterogeneity and adaptivity. Agent-based modelling is one appealing

new methodology that has the potential to overcome some shortcomings of tradi-

tional methods. The actors are modelled as computational agents goal-oriented and

adaptive, that is able to learn. A key word is heterogeneity. Agent-based models are

not restricted to equally-sized or symmetric firms, or to other constraints that arise

from the limits of analytical modelling. There are however extreme difficulties in the

validation of the model outcomes against empirical data. For a detailed survey we

refer to Weidlich-Veit (2008).

The choice between the two approach is not obvious. Researchers are always facing the

trade-off of simplicity, computational tractability and realistic representation of the
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complex market decision mechanisms. It is a matter of fact that even if the economic

driving factors of the electricity price process may be on their own of greater simplicity

to model, it is true as well that the simultaneous consideration of everyone of them

may lead to an high degree of complexity. Consequently, reading between the lines

of Green (2003) we choose the road of the pure financial models, where however, the

preference for the stochastic approach does not mean we cannot understand the very

origin of each period’s price. Maybe explaining every price in turn is too cumbersome,

and randomness should be taken as a shortcut for ‘things that we could explain, but

don’t have time for in this application’

3.2 The price model

3.2.1 The setting

As we have emphasized in the previous chapter, one of our main objectives is to

minimize the extent of the necessary parametric assumptions. To this end, some

considerations are worthwhile. We notice that but for the ‘singular’ behaviour due

mainly to spikes, the spot price can be sensibly approximated by a process with

continuous trajectories. This is the classical assumption widely accepted for most

of the financial markets, but now we are dealing with a very peculiar commodity,

electricity supply, which breaks down the core of the no-arbitrage re-balancing price

effect, due to its peculiar non-storable nature. This turns into impressive prices

movements up to a sudden burst and explosion, namely the spike. The continuous

sample paths hypothesis loses then any reliability. In the financial literature we

have just reviewed, we find many different model proposals which try to mimic the

electricity price behaviour.

We define Pt as the electricity price at time t and we take the stance of postulating

a clear distinction between two different price regimes, the interbases regime and the

spike regime. In so doing, we assume that the price process increments may be led by

completely different equations both in shape and in the parameters values, depending

on the regime in which we are. We decide to model directly the price level of the

electricity Pt and we intentionally refrain from modelling the log-price, even if the log-

transformation is common practice in financial literature and in electricity financial

literature too. This is mainly done to ensure strict positiveness and to stabilize
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statistical estimations. There are however, several supporting reasons for our choice.

First of all, both Escribano et al. (2002) and Lucia and Schwartz (2002), widely test

the better performance of price processes formulations rather than their logs in the

Nord Pool market; further Villaplana (2003) remarks how log-transformation lowers

the skewness of a series and so it may affect the estimation and the weight of the

spike component too. Last but not least, it cannot be ignored the recent tendency of

possible negative prices, which however may always be excluded in a second moment

by different methods like barrier at zero, for instance.

The occurrence of interbases regimes and spike regimes is dictated by a Markovian

model of time durations -which implies a sequence of stopping times as spike events-

and jump amplitudes. This feature of the model will be fully clarified in the sequel.

For what concerns the interbases regimes - ‘normal’ evolution periods - we believe

that a continuous sample path hypothesis still provides a reasonable description of

the price dynamics. By ‘normal’ evolution periods we mean situations where the

peculiarities of electricity prices do not arise. As of spike regimes, we refrain from

postulating any parametric probabilistic assumptions about the price evolution and

we propose a non parametric method to reproduce its main features: the occurrence

of spikes, the price jumps implied by them and their lengths.

In order to identify those periods where the peculiarity of electricity impacts the

most in the price evolution, we believe that the wavelet transform may give useful

insights. The recursive application of the wavelet transform to the price series enables

to disentangle, at different levels, the abrupt changes, the high volatility movements,

that is the failure of continuity: the ‘singular’ prices.

Furthermore, the price increments due to distinct spikes may be considered to be

i.i.d. observations. This is embedded in the concept of spike itself, as we have already

notice there is no past influence and no future resemblance once the spike is ended:

as it comes it goes, without leaving any track of it. If any kind of predictability were

present we would have observed completely different shapes in the price evolution: no

sudden burst, but a smoother growth of the prices that points towards the on-peak

value. So, independence and spiky behaviour, at least at a first definition level, are

two aspects of the same feature.

Therefore, a possibility is to bootstrap the spike price increments detected by the Rn-

WTMM and assume a continuous sample path process in between. In other words,

we propose a diffusion model, where the more extreme jumping part of the process
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itself, is object of the bootstrapping procedure, which is extensively explained in the

next section.

The first step is to select the set of spike/singular price occurrence. The output of the

Rn-WTMM may vary depending on the order of iteration chosen. To select where

the recursive algorithm should be optimally stopped we have to keep in mind the

two main assumptions we have to preserve in order to justify the procedure, that

is: independent prices increments of the selected observations and reliability of the

continuous trajectories hypothesis for the branches in between. Looking carefully

at the output figure (1.7) we realize that we are facing a trade-off. If we aim at

the continuous sample path hypothesis, the more singular points we exclude the

more sensible the assumption is. So, for the sake of diffusion hypothesis, the first

scenario is indeed the best choice. On the other hand the assumption of independent

observations would be seriously jeopardized if we stopped at the first iteration. As we

have already pointed out, in the complete series of singularity points there are many

different features; there are of course all the high volatile points, there are all the

spikes and regarding the last ones not only the on-peak values but the corresponding

bases too. This is just an example and represents by itself a first easy violation of

the independence requirement: the two bases of the same spike result to be obviously

correlated. Concerning the independence assumption indeed, the last scenario would

be the best one: we retrieve just the abrupt on-peak values, namely the spikes, and

there is no reason to believe in any correlation between the corresponding price jumps.

In this case-study we suggest to halt the Rn-WTMM at the third iteration, with a total

number of 159 detected singularities over more than four thousand observations. This

middle step assures us a good degree of independence among the selected observations,

that in the sequel we test, while allowing us to exclude a remarkable number of strong

singularities to make the continuity assumption reliable.

3.2.2 The Bootstrap

The purpose of this section is to derive the spike regimes structure together with their

occurrences.

The Rn-WTMM algorithm up to the selected order of iteration n, provides us with

an output vector of singularities Sn. In excess of the ‘genuine’ spikes, Sn is expected

to include points of abrupt price variation , which are characterized by a very similar
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behaviour, though not spikes according to a reasonable confidence level for the Rn-

WTMM algorithm. The ‘spiky’ behaviour of these additional points of abrupt changes

shows up in the strong correlation with the nearby prices. That is, we believe that

we are able to find the same base-peak-base structure of a genuine spike. This highly

volatile generalized behaviour is due to the very nature of the electricity market: its

non storability feature makes the price very frenetically react to any kind of event,

resulting in a price series not just jagged, but made up of spike-like reactions of any

order. Some event occurs, a sharp transition follows and as soon as the adverse

or favourable events are passed by, the price tends to revert back to the preceding

level, losing somehow memory of the event. According to this reasoning, although a

medium order Rn-WTMM does not detect pure spike alone, we feel confident to state

that the independence of the price transitions corresponding to singular points in Sn

is preserved.

To clarify the notation, let us define the following vectors:

bn
left := {s1

p−1|s1
p = sn

i } i = 1, ..., dim(Sn)

bn
right := {s1

p+1|s1
p = sn

i } where

spkn := Sn p = 1, ..., dim(S1).

(3.1)

This way, in the spirit of the recognized structure base-peak-base, we have disentan-

gled the left and the right bases, bn
left and bn

right, from the detected spike1 locations

spkn. Let us further define Jn
left and Jn

right to be respectively, the vectors of the

price jumps from the left, (i.e. the difference in the corresponding prices between

the spkn and the bn
left elements) and from the right (i.e. the same price differ-

ence between the bn
right and the spkn elements) corresponding to the n-th order.

Let us denote by Dn
left and Dn

right the vectors of days elapsed from the left base to

peak and from the peak to right base respectively. We say that the i-th quadru-

plet (J n
left(i),J

n
right(i),D

n
left(i),D

n
right(i)) represents an independent observation. It is

quite reliable to believe that, given a sudden jump-up of the price, the immediately

jump-down is strictly correlated in terms of price excursion and in terms of days

elapsed. So, to be precise all the jump-up and the jump-down defined by the singular

1Remember that in this section, the word spike has to be intended in a wide sense. It refers not
only to the proper spikes, but more generally to a spike-like behaviour, in short to the base-peak-base
structure.
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points detected by the Rn-WTMM are not independent between each other as such,

but the aggregation of the relative jumps, up and down together with the related

distances occurred, define an independent object. It is exactly the ensemble of all

these quantities that we bootstrap in order to obtain all the needed trajectories, in

the spirit of an historical filtration by means of a very general re-sampling procedure.

We decide to adopt a non parametric bootstrap. We do not hypothesize any model

for the evolution of this price jumps considering them pure i.i.d. observations. Let Qi

represent the i-th quadruplet (Jn
left(i),J

n
right(i),D

n
left(i),D

n
right(i)) just defined and, let

χn := {Q1,Q2, ...Qm} be the corresponding random sample of size m.

The bootstrap method enables us to generate a generic number, say M , of sequences

of quadruplets.

In order to retrieve the trajectories of the electricity price process, we need to locate

temporally the information of the quadruplets (i.e. a given price jump in a given

interval of time). To accomplish this task we define the vector In to be the vector

of the distances between each left base and the right one of the preceding spike.

We assume these interbase distances to be a sequence of i.i.d observations; there is

no reason indeed, to assume that these distances may affect each others. The spike

turbulence, as we have previously emphasized, expires in between the period bounded

by the two corresponding bases. In light of this consideration, the independence of

the interbase time sounds reasonable. Given this, a possibility is to bootstrap this

sample of observations in order to obtain G bootstrap samples of interbase distances.

This information by it self does not provide the dates of occurrence of the spikes; to

retrieve the complete time grid, the two independent bootstrap outcomes have to be

combined. From the price jumps bootstrap we get also the distance from the left and

the right base of the spike location and this completes the temporal grid. The only

requirement is that we need to retrieve all the new time axis from the beginning of

the data we have available. Only afterward we are able to select the time interval we

need for the pricing and to simulate only the trajectory portion that we need.

The Monte Carlo trajectories have to be indeed constructed dynamically. Now the

bootstrap of the interbase distances gives us additional information regarding the

temporal allocation of the bases, but it says nothing about spikes allocation. It

is only performing the trajectory simulation itself (i.e. performing the jump price

bootstrap too), that the complete temporal grid becomes known. So, to be precise,

each trajectory of this Monte Carlo will have a different sequence of spikes and bases.
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This does not mean we are simulating something different each time, that otherwise

would violate the basic Monte Carlo convergence principle. Ours is a non para-

metric way of simulating an undefined price generating model, where the spike-base

sequences are endogenously determined. This exactly what we want to accomplish.

It is worthwhile stressing that this double bootstrap procedure gives an extraordi-

nary flexibility in the possible combination of spike and interbase regime without

increasing modelling complexity. Just to quote same of the main restrictions usually

encountered in the regime-switching specifications, the proposed model may easily

generate multiple spikes (i.e more than one spike in a row) of different lengths, both

positive and negative.

Our double bootstrap procedure, by the way, provides us only with disconnected

portions of the desired trajectories of the spot electricity price we need, or better

with disconnected points: three for each bootstrapped quadruplet, that is the left

base, the peak value and the right base. To connect all these points in order to

obtain a full path we make a distinction between the kind of path’s portion we are

implementing. We distinguish between an interbase regime and a spike regime as it

is exemplified in the following scheme:

Interbases regime Spike regime Spike regime 

b
left

 spk b
rght

 b
left

 spk b
right

 

Figure 3.1: Schematization of the price series in terms of the base-spike-base structure.

Let us denote by spike regime the price evolution between the two bases of a detected

spike (i.e. between the couples {bn
left(i),b

n
right(i)}) and on the other hand, with

interbase regime the price evolution from, for instance, the second base of the i-th

spike, bn
right(i) to the first base of the following spike detected, bn

left(i+ 1).

In the next subsection we illustrate the interbase process. For what concern the

spike regime process instead, in the spirit of the bootstrap choice we have made, we

intentionally refrain to specify any parametric dynamic. We stress once again that the

adoption of the bootstrap technique is exactly to avoid any parametric specification.

We believe that the information the double bootstrap procedure gives us is more than

satisfactory in most cases: we know the extreme values taken by the price and we know
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when these happen. So, from our point of view the price process is essentially fully

defined. By the way for more demanding pricing purposes, such as path dependent

options for instance, where we have to be able to simulate the price process for every

future time, we propose a modelling solution in the next chapter where we deal with

the American option pricing. That solution will be just a simulation tool to overcame

the problem of getting continuous trajectories, neglecting the hidden and unknown

dynamic of the spike process regime.

3.2.3 The interbase regime process

Let us now focus on the evolution of the electricity price Pt followed during the inter-

base period, the so called period of normality. In this case we will specify a parametric

model. This process has to take into account as much as possible the peculiarities of

the electricity market regardless its spiky feature, which our bootstrapping procedure

accounts for. First of all we focus on the price-proportional volatility feature.

This behaviour is directly induced by the supply stack function, in other terms the

graph of the marginal cost of the electricity supply. The exact shape of the curve will

vary from market to market depending on the characteristic of the different plants,

on the local industry structure and consequently on the related cost for an additional

unit of electricity, however the leit-motiv of all markets is the convex shape of the

supply stack. The relationship between demand and price is non-linear, it is expen-

sive to bring supplementary power stations into operation for a short time of high

demand. When the usual base load power stations are working up to their capacity,

prices start to increase quickly; on the other hand when the demand is unusually

low, electricity prices fall suddenly. In order to further reduce supply, power stations

would have to be turned off: that is expensive. Thus, it is preferable to stimulate

demand by lowering the prices. This non-linear relationship between demand and

supply explains the price-dependent volatility property: when demand rises, prices

reach the steeper part of the supply stack, where even small demand fluctuations

cause large price changes and, thus, a high volatility. (This result holds for seasonal

fluctuations and price spikes too.)

Another important aspect to be reproduced is the price mean-reversion. The

tendency for fluctuating prices to return to some mean price over time is observable

in all the electricity market. Such behaviour is consistent with the fact that the
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overall supply must match the overall demand that is, prices should be related to

the long run marginal production cost. Spot electricity prices are perhaps the best

example of anti-persistent data. This statement may be easily verified by calculating

the corresponding Hurst exponent H of the spot price series. The Hurst exponent is

indeed, a measure of self-affinity: if the timescale is zoomed by a factor n, then the

process looks statistically identical by scaling the series by a factor nH where H is the

Hurst exponent2. It is a powerful tool in detecting long range dependence. The Hurst

exponent is equal to 1/2 for Brownian motion (classical example of self-affine time

series) indicating uncorrelated Gaussian increments with finite variance (just recall

that random walk diffuses as σ ∼ t1/2), while H < 1/2 or H > 1/2 indicate anti-

persistent and persistent series, respectively. Anyway, we refer the interested readers

to Malamud and Turcotte (1999) for a plain and detailed presentation of the main

concept behind the Hurst exponent and the principle methods for its estimation.

To our purpose, in order to estimate H , we apply the Average Wavelet Coefficient

(AWC) method of Simonsen et al. (1998). The idea is to use the wavelet transform

in order to measure the temporal self-affine correlations, the Hurst exponent indeed.

Once the price series is been shifted to the wavelet domain (the scale-space plane) we

look, for every location, for the representative amplitude (wavelet coefficient) simply

taking the arithmetic average across all the scale values available. The application

to the Nord Pool data gives an estimate of H = 0.4 ± 0.02 for time interval ranging

from a day up to five years, indicating mean reversion, whereas for time intervals of

less than 24 hours, H results above 0.5. Our results are perfectly in line also with

the extensive Hurst estimation research performed by Erzgräber et al. (2008) on the

Nord pool price series.

In light of these considerations, during the interbases periods, we proposed the fol-

lowing diffusion for the electricity price Pt.

dPt = K(θ − Pt) dt+ PtσdWt (3.2)

2The Hurst exponent was first introduced by Hurst (1951) analysing the record of floods and
droughts of the Nile River. He introduced empirically the concept of rescaled-range (R/S) analysis.
Given a discrete time series of length N , let us consider its cumulative sum relative to its mean. The
range R is defined as the difference between the maximum and the minimum value of the cumulative
sum series and S denotes the standard deviation of the same series. There is a power low dependence
between the different n R/S ratios that may be calculated for all the n subintervals of the total
length N and their frequency n. The exponent which identifies this power low is exactly the Hurst
exponent.
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where the parameters θ and K represent respectively the long-term mean and the re-

version speed. The proposed model results to be a mixture of an arithmetic Ornstein-

Uhlenbeck process, from which inherits its drift and of a geometric brownian motion,

for the diffusion term. In so doing we are able to match both the requirements of

mean reversion and price-proportional volatility.

Another well established and recognized feature is the presence of strong seasonal

fluctuations. Regarding the demand side, they mostly arise due to changing climate

conditions, such as temperature and the number of daylight hours and business-

industrial activity. The supply side too may display seasonal variations in its output,

this is mainly evident in markets where the hydroelectric production is predominant,

like the Nord Pool indeed. Hydro units are heavily dependent on precipitations,

drought and snow melting, which vary from season to season. All these fluctuations

both in the demand and in the supply side obviously translate in the well known

seasonal behaviour of the spot electricity prices. Typically we recognized in the Nord

Pool spot price series an annual cycle, with low prices in summer, and a weekly one,

with low prices during the weekend. A daily cycle is also evident if we consider

hourly data; price is low at night with two peaks during the day: before noon and

in the late afternoon. The obvious solution is to embed these predictable features

in the parameter of mean reversion θ, the long term mean, letting it become time

varying instead of keeping it constant. The seasonal fluctuations are then modelled

by letting the level of the mean reversion to follow a deterministic sinusoidal function

plus a linear trend to better fit the long run trend in total production cost, typically

increasing. In other words we can define

θ := θt = θ̄ + βt+
∑

ν∈F
θνsin(ωνt+ φν) (3.3)

where the set F is constituted by the ν values corresponding to the frequency cycles

one wants to embed, say yearly, weekly and even daily; the parameters θν represent

the amplitude of the corresponding fluctuations, ων is chosen such that the relative

ν frequency is achieved. If for example the time is expressed in years and ν is set to

yearly cycle, ων should consequently be 2π. Moreover the phase φν has to be chosen

such that the maximum occurs when the prices are actually peaking. Consequently,

in order to account for seasonality too, the process in (3.2) simply becomes

56



dPt = K(θt − Pt) dt+ PtσdWt (3.4)

Given the initial condition Ps with s < t, the strong solution to the SDE (3.4), is

Pt = e
σ(Wt−Ws)−

“

σ2

2
+K

”

(t−s)

(
Ps +K

∫ t

s

θu e
−σ(Wu−Ws)+

“

σ2

2
+K

”

(u−s)
du

)
(3.5)

The above solution may be easily retrieved by means of a suitable integrating factor.

Let us define a new variable Zt := e−σWt+
σ2

2
t Pt and rewrite (3.2) in terms of the new

variable. Applying Ito’s lemma we obtain the following SDE

d(e−σWt+
σ2

2
t Pt) = e−σWt+

σ2

2
t dPt

+Pt

{
e−σWt+

σ2

2
tσ2dt− e−σWt+

σ2

2
tσ dWt

}

−e−σWt+
σ2

2
t σ2 Pt dt.

(3.6)

Substituting the dynamic for Pt, after simplification we obtain

d
(
e−σWt+

σ2

2
t Pt

)
=
(
e−σWt+

σ2

2
t K θt − e−σWt+

σ2

2
t Pt K

)
dt (3.7)

In terms of Zt, (3.7) results to be a linear ODE

Z ′ +K Z = Kθt e
−σWt+

σ2

2
t (3.8)

with solution

Zt = e−K (t−s)

(
Zs +K

∫ t

s

θu e
K(u−s)−σWu+ σ2

2
u du

)
(3.9)

which exactly matches equation (3.5).

Concerning the distributional behaviour of (3.5), little can be said because of the

time-varying term θt. The long term mean indeed, being inside the integral, affects

the limit distribution of the process Pt in a non trivial way. However, if we restrict

ourselves to the simpler case of a constant mean reversion term, we can retrieve the

limit distribution of the process, that in this case is the one given in equation (3.2).

Its solution, has the form of equation (3.5), but with the now constant term θ, out of

the integral. Dufresne (1990) shows that the limit distribution of the integral of the
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exponential of the brownian motion is the Inverse Gamma. In particular he proves

that

∫ ∞

0

eaWs+bsds 
2

a2Z2b/a2

(3.10)

where Zν is a gamma variable with shape parameter ν, a 6= 0 and b > 0 in order to

insure stationarity. Hence, as the limit distribution of the process Pt , with constant

θ, depends only on the behaviour of

Kθ

∫ ∞

0

e
−σWu+

“

σ2

2
+K

”

u
du, (3.11)

we can easily conclude that, given K > −σ2/2, the stationary distribution of (3.5)

is an Inverse Gamma distribution with parameter 1 + 2K/σ2, up to a multiplicative

constant. In other words:

Pt  
2Kθ

σ2

1

Z1+2K/σ2

. (3.12)

Moreover Dufresne (2001) derives a general formula for all the moments of a larger

class of mean-revering processes, from which can be easily derived the corresponding

moments for the process (6.1). Let us define mq(t) = EP q
t to be the q-moments of

the process Pt, with q = 0, 1, ... and let p̄ ≥ 0 be the initial value of the process. It is

shown that the moments satisfy the following system of ODEs:

{
m′

q(t) = aqmq(t) + bqmq−1(t) q ≥ 1 t > 0

mq(0) = p̄q q ≥ 0
(3.13)

where

aq = q(−K) +
q(q − 1)σ2

2
bq = qKθ (3.14)

If the {aq} are all distinct, the solution of (3.13) is
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mq(t) =

q∑

j=0

dqje
aj t q = 0, 1, ...Q

with (3.15)

dqj = q!

j∑

i=0

p̄i(Kθ)q−1

i!

q∏

l=i ,l 6=j

bl
aj − al

j = 0, ...q

In particular we report the expressions for the mean, Mt and the variance Vt, condi-

tional to Ps.

Mt = θ + (Ps − θ)e−k(t−s)

Vt = e(σ
2−2K)(t−s)

(
P 2

s − 2θ(Ps−θ)

1−σ2

K

− θ2

1− σ2

2K

)
− e−2k(t−s)(Ps − θ)2 + e−k(t−s) 2θ(Ps−θ)

K

σ2 −1
+ θ2

2K

σ2 −1

Summing up, we have proposed a regime-switching spot price model which is able to

reproduce the main features of the observed electricity-price time series, such as price

dependent volatility, mean-reversion, seasonality and spikes occurrences. The latter,

in particular, has not been achieved by mean reversion neither by adding a jump

component, but with a non parametric approach: a double bootstrap procedure based

on the outcome of the Rn-WTMM applied on the spot price time series. This proposed

solution provide us with a lot of flexibility in terms of possible trajectories shapes:

both positive and negative spikes are allowed, with different duration; multiple spikes

are contemplated as well, contrary to many of the models proposed so far in the

literature (see the review in Section 3.1). Moreover, a small number of parameters are

needed, and Markovianity is preserved (for a detailed discussion on the Markovianity

issue, refer to Section 4.3).
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Chapter 4

American Option Pricing

American option pricing is one of the most challenging problems in modern derivative

finance and its goal is even more valuable in an electricity market setting. As we have

shown so far, the peculiarity of the electricity prices are the high volatility movements

in conjunction with a spiky behaviour. This intuitively implies that the early exercise

feature of an American-style derivative to be extremely valuable; even a deep out-of-

the-money option may lead to high gains if a spikes occurs.

Let us consider an American option contract on spot electricity supplies f(t) and

consider as illustration the put case.1 Given an underlying complete probability

space (Ω,F , P ) and finite time horizon [t, T ], the theoretical price is

PA(t, T,K) = sup
τ∈St,T

E
∗
[
e−

R τ

t
r(s)ds(K − f(τ))+|Ft

]
(4.1)

where K is the strike, St,T the set of Ft-stopping times no grater than T and the

adapted filtration Ft, represents the current information. The mathematical problem

then is an optimal stopping problem. From the theory it is well known that the

value process of the optimal stopping problem can be characterized as the smallest

supermartingale majorant to the discounted reward (Snell envelope).

So far an analytical closed-form solution is not available and several different ap-

proaches may be followed. For a recent and detailed review, we refer to Barone-Adesi

(2005).

We decide to adopt numerical methods based on Monte-Carlo techniques in the light

1For positive spikes American calls are more interesting. However, we illustrate here the put case
to give relevance to the unusual presence of negative spikes in the analysed time series.
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of Longstaff and Schwartz (2001) pricing algorithm. The starting point is to replace

the time interval of exercise dates by a finite subset, approximating in so doing the

American option by a so called Bermudan option; the finer is the time discretization,

the better the original American option is approximated. A control of the error due

to the restriction of the stopping time is generally easily obtainable. [See Clement

et al. (2003) for instance]. The solution of the discrete optimal stopping problem

reduces to an effective implementation of the dynamic programming principle. The

key quantity to determine is the conditional expectation involved in the iteration of

dynamic programming, that is we need to determine at each exercisable date the

expectation under the risk neutral measure of the discounted future cash-flows, con-

ditional to the adapted filtration at the time of valuation; in short the continuation

value of the option. The Longstaff-Schwartz solution is to approximate this value

by projecting future cash-flows on a set of orthonormal basis functions and by cross-

sectionally regressing the projections on the state variables. The formal justification

of this procedure relies on Hilbert space theory; assuming that the conditional expec-

tation we are looking for, is an element of the L2 space of square-integrable functions

relative to some measure, it has a countable orthonormal basis, henceforth the con-

ditional expectation can be represented as a linear function of the elements of the

basis. As of the basis choice, several alternatives can be distinguished, ranging from

the simple power polynomial to Laguerre, Hermite, Legendre, Chebyshev, Jacobi and

even Fourier series. The robustness of the Longstaff-Schwartz algorithm, relatively

to the choice of the basis function and the order of approximation, has been widely

confirmed.

To summarize, once we have simulated a given number, say M , of trajectories of

the underlying price process under the risk-neutral measure, the core of the pricing

algorithm starts: the backward induction procedure. Starting from the maturity date

and at each exercisable time up to the date of valuation, we compute the cash-flow

from immediate exercise and the continuation value as just explained. Now, for each

path, the comparison between the intrinsic value and the continuation one triggers the

exercise decision. At the end of the backward procedure, our information consists of

all the optimal exercise dates and their corresponding cash-flows. The sample average

of these suitably discounted cash-flows is the option value.

In order to apply the Longstaff-Schwartz procedure, the first problem we have is how

to simulate the needed trajectories of the underlying (i.e. spot electricity price). To
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this purpose we still have to specify how the electricity price process evolves inside

the spike regimes. This is the content of the next section.

4.1 The spike regime process

So far we have specified a spike regime in terms of occurrence times and peaks ampli-

tudes. Those being the fundamental characteristics of a spike, we decide to describe

the detailed price evolution in this regime only for simulation trajectories rather than

price modelling purposes. To this end, we need a process that, if on one side re-

spects the general features of the electricity market, on the other is bounded with

respect to the final value. Once it will be the spike on-peak value and the other it

will be the coming-back-to-normality price, both indeed obtained by the bootstrap

procedure previously illustrated. In light of these considerations we propose to use an

Ornstein-Uhlenbeck Brownian Bridge. Widely used in finance in several context, the

standard Brownian Bridge is constructed in order to converge to zero at the endpoint

T . Given an arithmetic O-U process we can define the corresponding bridge towards

zero simply introducing a time varying drift parameter K(t) = α/(T − t), with α

strictly positive. Now in order to get the convergence to a given value different from

zero, we introduce another parameter, θ(t), in the drift. Given the dynamics

dPt = (θt −
α

T − t
)Ptdt+ σdWt (4.2)

the solution conditional to an initial value Ps is

Pt = Ps

(
T − t

T − s

)α

+

∫ t

s

e−
R t

u
α

T−q
dq θudu+ σ

∫ t

s

(
T − t

T − u

)α

dWu (4.3)

with s < u < t. In order to force the convergence of Pt to a constant value, say Q, as

t→ T , we need to solve the following integral equation

∫ t

s

(
T − t

T − u

)α

θu du = Q. (4.4)

Simply differentiating with respect to the upper integration bound t we obtain

−α
∫ t

s

(T − t)α−1

(T − u)α
θu du+ θt = 0 ⇒ θt =

α

T − t
Q (4.5)
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which immediately leads to the solution

Pt =

(
T − t

T − s

)α

(Ps −Q) +Q+ σ

∫ t

s

(
T − t

T − u

)α

dWu (4.6)

As it can be easily verified for t→ s Pt = Ps and for t→ T , the diffusion vanishes and

the drift converge to Q, giving exactly Pt = Q as we want. Pt is normally distributed,

with mean and variance conditional to the initial value Ps respectively equal to At

and Bt

At =
(

T−t
T−s

)α
(Ps −Q) +Q

Bt = σ2(T−s)
2α−1

[
T−t
T−s

−
(

T−t
T−s

)2α
]

4.2 The simulated electricity price process

From all the consideration done so far let us resume all the assumptions and let us

outline the overall structure of the simulated electricity process.

The state variable to simulate is the spot price evolution Pt. It is assumed to follow

a two-regimes process. The transition from a regime to another is identified by a

sequence of stopping times, represented by the left and right basis of the spike events

detected by the Rn-WTMM algorithm. In the spirit of the definition given in (3.1),

we are referring to the set of couples {b n
left(j), b

n
right(j)}j=1,...,N/2, a couple for each

detected spike. For simplicity, we indistinguishably call the generic stopping time τi,

where

{τi}i=0,...,N with the convention that τ0 = 0 , τN = T.

Let us note moreover that at this stage, for simulation purpose, we are not focusing

anymore on the iteration order n of the spike detection algorithm, that is why we

have drop it in the stopping times definition as well as in all the following quantities.

So, for a fixed order of iteration n fo the spike detection algorithm, the double boot-

strap procedure illustrated in the previous chapter, creates dynamically two sets of

information
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{Ip}p=1,...,N/2

{Dj
left, D

j
right, J

j
left, J

j
right}j=1,...,N/2

respectively the interbases times lengths and the quadruplets of the spikes configura-

tions. The size of the stopping times set, is obviously double with respect to the length

of the bootstrapped samples: one bootstrap indeed provides us with N/2 interbases

times, that is determines the interbases regimes, while the other bootstrap output is

needed to determine other N/2 spike regimes, for a total amount of N regimes plus

the initial time instant τ0, set for convention equal to zero. Finally, in order to flag

each regime, we define a two-value function rt such that

rt =





0, if τ2j−2 < t ≤ τ2j−1 (interbases regime)

1, if τ2j−1 < t ≤ τ2j (spike regime)
(4.7)

Now, we have all the information to simulate the price Pt, which is obtained as

dPt =

{
K(θ − Pt)dt+ σPtdWt , if rt = 0

α
γt−t

(wt − Pt)dt+ σ̃dWt , if rt = 1
(4.8)

Under the interbases regime however, we need two further pieces of information, which

are derived by the bootstrapped quadruplet values. The Brownian bridge dynamic

to be fully defined required also the end value wt and the end time γt towards it

is directed. It has to be stressed that these values are not constant throughout the

spike regime, but depending on whether we are to the left or to the right of the spike

location, they assumed a different value. In details we have that

γt =

{
τ2j−1 +Dj

left t ≤ τ2j−1 +Dj
left

τ2j−1 +Dj
left +Dj

right = τ2j t > τ2j−1 +Dj
left

(4.9)

wt =

{
Pτ2j−1

+ J j
left t ≤ τ2j−1 +Dj

left

pτ2j−1
+ J j

left + J j
right = τ2j t > τ2j−1 +Dj

left

(4.10)

In the aforementioned setting, we assume that we always start with an interbase
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regime (i.e a period of normality). This is only apparently restrictive for at least two

main reasons: it is sufficient to have in the interbase times sample, just one length

equal to zero (as it happens in our sample) to give full generality to the possible

starting regimes; further, in the simulation procedure, we can assume to start the

creation of the temporal grid in an indefinite far away time in the past and then

choose as starting point a time instant in the middle. This gives full generality, in

consideration also of the fact that in so doing, it is highly probable that the starting

point may fall in the middle of an already started regime, which is indeed, the most

reliable assumption. Never the less, if with a new regime we have to start, the

interbases regime, given its average length, definitely larger than the average spike

regime length, is the obvious choice. In figure (4.1) a schematization of the typical

time grid follows.

!0 !1 !2 !3 !4 !2j-2 !2j-1 !2j !N

r=1
r=0 r=0

r=1
r=0

r=1

Figure 4.1: Regimes structure and stopping times.

4.3 Markovianity issue

Now, we know how to simulate a continuous trajectory of the Pt process but, in order

to apply the Longstaff and Schawartz algorithm, we still have to clearly identify, which

is the set of information required to our knowledge, to consider the Pt price evolution

a Markov process. The variables which carry such information will define the basis

onto which we will project the discounted future payoffs to estimate the continuation

value of the American contingent claim. The continuation value, as we have already

remarked, is the decision triggering quantity to select the optimal exercise strategy,

which in turn solve the free-boundary problem.

Let us defined a variable βt to be the countdown of the length of the generic regime

in hand at time t. Under the spike regime this variable is already defined as the de-

nominator of the Brownian bridge drift. Under the interbases regime instead, as soon

as the interbases length, the generic extraction Ip, is bootstrapped, the countdown

variable decrease linearly as the process evolves. Hence in symbols

66



βt =

{
Ip − t , rt = 0

γt − t , rt = 1
(4.11)

In between each regime, the βt variable is a continuous and monotonically decreasing

linear positive function with a discontinuity in correspondence of each change of

regime. The width of the jump is the total length of the new regime that is going to

start. From an operational point of view, if we observe a βt grater than zero, we know

that in the following time instant its value will be decreased by one; if we observe

instead, a βt equal to zero we know we are at the end of a regime and we have to

perform a new bootstrap extraction.

∆βt := βt+1 − βt =





−1 , βt > 0 ∀rt

Ip − 1 , βt = 0 , rt = 1

Dj
left +Dj

right − 1 , βt = 0 , rt = 0

(4.12)

The Pt process, as described in equation (4.8), given the knowledge of the regime

status, the rt value, and the countdown variable βt just defined, is a Markov process.

In first approximation this is true, however if we are under the spike regime, rt =

1, further information are required to distinguish between the different Brownian

bridges, namely the end value variable wt defined in equation (4.10) is required.

Hence in a rigorous way, the set of variables {Pt, rt, βt, wt} define univocally the

evolution of the process Pt. This, in terms of the Longstaff and Schwartz algorithm,

means that at every step of the backward induction procedure, we can estimate the

continuation value of the option as a linear combination of the elements of the chosen

basis functions up to a certain order, evaluated for all the observed realizations of

the state variables, in our case Pt conditional to rt, βt and eventually wt. Just as an

example, we may choose as possible functional form of the basis functions, the power

polynomials, say up to the second degree. In this case we have to fit a constant, and

the coefficients for the terms in P , P 2, β, β2 and for the cross term Pβ for all the

sample paths that in the given instant are in the interbases regime, for which rt = 0;

for all the other sample paths which have a value of rt = 1 we have to estimate

another set of coefficients, but this time for an extra variable too, that is we have

a constant and terms in P , P 2, β, β2, w, w2 and for the cross terms Pw, Pβ, wβ.

A total of six basis functions for the interbases regime paths and ten basis functions

for the spike regime paths. This is relatively cumbersome and still nicely tractable.
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Obviously we can add more terms to improve the estimation, even if it is been widely

tested by Longstaff and Schwartz (2001) that additional basis add little or no effect

on the result.

4.4 The Simulation Method

The Monte Carlo simulation of the Longstaff-Schwartz pricing technique, as any back-

ward induction procedure, is a very memory intensive procedure, requiring to store

the entire matrix of all the simulated values of all the trajectories; in order to have a

good accuracy the dimension grows very fast, obliging us to work with very ‘heavy’

objects. A nice trick to overcome this problem is been suggested by Chan et al.

(2004). The key idea is to simulate the random process that moves your underly-

ing, not in the traditional way, in the time-increasing direction, but instead backward

moving: in the same direction of the pricing procedure. This results in a very efficient

allocation of the memory storage: moving as the pricing induction moves, there is no

need to save all the price values and at every valuation time instant, we can simply

overwrite the new values. So, we do not work any more with matrices, but just with

vectors of dimension given by the number of desired trajectories for the Monte Carlo,

say M , and the storage requirement shrinks from O(MN) to O(M) given N to be the

order of the discretization time grid. In short the properties of a whatsoever random

number generating algorithm used, are been exploited . As we know, to generate a

proper random number by means of an algorithm, is in itself a contradiction with

the inner essence of randomness. By the way we are not questioning at all on the

goodness of the random number generating algorithms, commonly accepted as such,

but we simply want to exploit them. The key is the so called seed, a sort of starting

point; giving as input the same seed, we will obtain the same random number as

output on any computer. This means we can pilot the generating algorithm to give

us what we want. The idea is simple and logical, but the question is if it is possible

and how we simulate backward the random process that leads our underlining. Chan

et al. (2004), in their paper, address the case of a geometric brownian motion, which

results to be the perfect candidate to be backward simulated as it has a closed form

solution and the random shocks enter the solution in an order-invariant way, as a sim-

ple summation. These two features simplify the procedure, even if we can generalize

the backward simulation technique to any random process.
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Let us now, shortly review the methodology for the geometric brownian motion as

an easy benchmark. The strategy to follow is: to simulate one shot, the entire

trajectories in the usual way in order to obtain (i) the final value, the starting point

in the backward simulation; (ii) the seed that has generated the trajectory in hand;

(iii) the cumulative sum of all the random shock needed to get the final value. Now

the backward simulation could start, simply imposing the current seed equal the one

corresponding to a given paths and at each step subtracting a random number to

the cumulative sum. In formula what happens can be schematize as follow. Let us

analyse the generic j-th trajectory and assume to discretize the time horizon into N

time steps of equal length; in the traditional time marching situation the simulated

price, after the i-th time step is:

Forward Path: Pi = P0e
i(µ−σ2

2
)ν+σ

√
ν(ǫ1+ǫ2+...+ǫi) (4.13)

where the ǫi are independent and identically distributed standard normal random

numbers. Now starting from the final value up to the first one our backward path

will evolve like this:

Backward Path: PN = P0e
N(µ−σ2

2
)ν+σ

√
ν(ǫN+ǫN−1+...+ǫ1)

...

Pi = P0e
i(µ−σ2

2
)ν+σ

√
ν(ǫN+ǫN−1+...+ǫN−i+1)

...

P1 = P0e
(µ−σ2

2
)ν+σ

√
νǫN .

(4.14)

Let us observe that the random shocks subtracted step by step are exactly in reverse

order with respect to the traditional forward path generation. Nevertheless, this

upsidedown order, does not compromise the nature of the random process in hand:

we still obtain a brownian motion, a different one of course, but with the same

behaviour and with a ‘final’ value coinciding with the true initial one. This is what

we call the time order-invariance property of the random process solution, relatively

to the random shocks themselves. This property makes our simulation easier, as we,

having stored the initial seed, can generate only one random number at each step,

disregarding indeed, the original order. Unfortunately it is not always the case, and

processes with much more complicated solution form than the brownian motion one

require to preserve the order of the shocks, to not modify their intrinsic nature. This
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is the case of the process (4.8) we are interested in. To preserve the order of the

shocks, has obviously a time-computational cost, as we are forced at each step to

draw the entire sequence of random number up to that date in order to use only the

last one. To give an idea of the slowing effect, for the process (4.8), we obtain in

average a 0.06 seconds extra time for each year of simulated trajectory.

For completeness, we mention that, even if the process we could be interested to

simulate backwards, does not possess a closed form solution, we can still get rid of

the problem. Given indeed, any discretization scheme, the Euler or the Milstein ones

for instance, of the corresponding dynamic, we simply have to express the preceding,

in order of time, state variable as a function of the following one.

Summing up, to apply correctly the backward simulation technique, we have to dis-

tinguish first between processes with closed form solution or not and, with functional

form which possesses the time order-invariance property or not. By the way , the

memory reduction, obtained in all the cases, will be achieved at a different com-

putational cost. It can be objected that there is no interest in slowing down the

procedure, but the gain in terms of memory storage requirement is considerable, and

to our opinion worthwhile adopting, considering moreover that the gain may be even

more valuable also in terms of time; the more you increase the M and N parameters

indeed, the higher is the chance to have to turn to the out-of-core memory2 in storing

the intermediate prices in the traditional forward simulation procedure.

4.5 Tests and numerical results

4.5.1 Independence tests

In the preceding sections we have performed a non parametric bootstrap , simply justi-

fying the crucial independence assumption by intuition, independence which however

sounds reasonable. Let us check the reliability of this hypothesis first for the selected

sample of interbases time and then for the quadruples of the prices jumps. For the

following numerical tests we are refereing to the output of the third order of iteration

of the recursive wavelets transform modula maxima which leads to 159 detected sin-

gularities and consequently to the same number of interbase regimes; let us denote

2It is well known that the usage of this memory strongly slow down the computational time. It
intervenes only to make up CPU’s deficiencies.
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the vector I3 to be the corresponding vector of the interbase time distances as already

defined in the previous section. In the sequel, some statistics and the corresponding

min(I3) = 0

max(I3) = 56

mean(I3) = 19

median(I3) = 16

histogram, of I3 follow. Let us note that also interbase

regime of length zero are likely to occur, meaning that it

is reliable to observe more than a spike regime in a row,

feature that is generally not captured by traditional regime-

switching solution. On average the length of the interbase

regime is two weeks, stressing the very turbulent nature

of this market given moreover that the longest, period of normality detected is less

than two months. In figure (4.3) are shown the lengths of the interbase regimes as

they come in a row. Our impression is that there is no time correlation between such

lengths; in other words after a short interbase regime it is not obvious that another
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Figure 4.2: Histogram of the

length of the interbases regimes

expressed in days.

short one follows, which would have meant that

after a spike the chance of having another spike

would have been greater. So even a very first look

of the data seems to clearly suggest intrinsic in-

dependence. From the Box-Jenkins representation

of the autocorrelation function in figure (4.4) in-

deed, we can conclude that there are no significant

autocorrelations and we can assume a randomness

in the data. Almost all of the autocorrelations fall

within the 95% confidence bounds. In addition,

there is no apparent pattern, exactly as we expect

to see for random data. A few lags slightly outside the 95% and 99% confidence

bounds, do not necessarily indicate non-randomness. For a 95% confidence interval,

we might expect about one out of twenty lags to be statistically significant due to

random fluctuations. Absence of correlation is a first step, but it is not sufficient to

assure the independence of the observations. Furthermore, we cannot say that our

sample is drawn from a Normal distribution, and neither that it looks like normally

distributed. A rough look at its histogram in figure (4.2) shows an evident positive

skewness.

To test the i.i.d. hypothesis we perform a BDS3 test. The test is based on the es-

3W.Brock, D. Dechert, J. Scheinkman originally developed the test in 1987.
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Figure 4.3: Sequence of the interbases time lengths.

timation of the correlation integral4 at various dimensions. The correlation integral

of dimension m measures the spatial correlation of a sample of N scattered points

in m-dimensional space and picks up the fraction of m-dimensional pairs of points in

that sample whose distance from each other is less than a fixed radius ǫ. Where the

observations are truly i.i.d., there is a power relationship between the correlation in-

tegral for dimension 1 and the m-dimensional correlation integral. Brock et al. (1988)

showed that the standardized difference between the correlation integral for dimen-

sion m and the 1-dimensional correlation integral to the power m is asymptotically

normally distributed regardless of the ǫ and the dimension m chosen.
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Figure 4.4: Sample ACF. Confidence

bounds at 95%, blue lines and at 99%
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The question is that we are dealing with

a small sample (159 observations) and

the standardized normal probabilities may

lead to reject the independence hypothe-

sis. To this purpose we adopt the small

sample quantiles tabulated by Kanzler

(1999). Even though Brock et al. (1992)

point out that ‘even with 50 to 200 ob-

servations, BDS test performs fairly well

compared to the other tests’. Kanzler

clearly showed that the finite sample dis-

tribution is fat-tailed, always displaying

excessive kurtosis increasing so the error

with which one would reject the null hypothesis of independence when the data was,

4The concept of correlation integral was used for the first time in Grassberger and Procaccia
(1983) in tests for chaos and non-linearity
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in fact, independent. Furthermore, the size of this error varies considerably not only

with the sample size, obviously, but also with the embedding dimension and the

dimensional distance. So an appropriate choice of these two parameters becomes cru-

cial. It’s been shown that better results are obtained with the radius ǫ of the order

of 1.5-2 times the standard deviation of the tested data, with a correlation integral

for the 1 dimension ranging from 0.7 to 0.84. We report below the obtained results

for up to the sixth dimension.

Panel  1: c1=~ 0.7 ε = 1.5 σ

Dimension w c c1 p-value

2 -0.8375 0.5117 0.7193 0.4023

3 -1.6472 0.3655 0.7265 0.0995

4 -0.8994 0.2669 0.7267 0.3684

5 -0.1774 0.1979 0.7251 0.8592

6 -0.5864 0.1434 0.7302 0.5576

Panel  2: c1=~ 0.84 ε = 2 σ

Dimension w c c1 p-value
2 -0.5521 0.7102 0.8443 0.5809
3 -1.9243 0.5982 0.8510 0.0543
4 -1.5217 0.5041 0.8510 0.1281
5 -0.7609 0.4318 0.8503 0.4467
6 -1.1183 0.3658 0.8537 0.2634

Figure 4.5: Output of the BDS test. w is the BDS statistic, c is the correlation integral
at different dimensions, c1 represents the first-order correlation integral estimate computed
over the last N −m+ 1 observations (where N = sample length, m = dimension). Finally
the p-value indicates the two side probability of the failure to reject the null hypothesis for
the standard Normal distribution.

In both the performed cases reported in Panel 1 and Panel 2, we do not reject the

null hypothesis at considerable high probabilities, on a two-side test. Only the 3-

dimension case, in Panel 1, appears slightly under the 5% probabilities (one side),

and the 3- and 4-dimension cases in Panel 2 denote a low significance level. But, if we

take account of the non exact convergence to the Normal distribution, because of the

small sample under analysis, we can conclude that the BDS statistic estimated leads

to a failure to reject the independence assumption, at all the dimension considered,

at a level definitely grater than the 5% (one side hypothesis test). We are not able to

invert exactly the percentiles represented by the w values, but the tabulated quantiles

up to the 5% show clearly this tendency.

In the sequel, given the BDS test results, we feel confident to consider the set of the

interbases distances retrieved from R3-WTMM, independent observations.

Apart from the interbases distances, we claim the independence also of the quadruples

{Qi}i=1,...n defined as the set of variables (Jn
left,J

n
right,D

n
left,D

n
right), for a given sample

size n, that we retrieve from stopping the recursive wavelet transform modula maxima,
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Dimension left 5% right 5%

2 -1.9799 1.9413

3 -1.992 1.9413

4 -2.0199 1.9292

5 -2.0099 1.9553

6 -2.0202 1.9531

Dimension left 5% right 5%
2 -2.1345 2.1105
3 -2.1687 2.0784
4 -2.1969 2.0481
5 -2.203 2.0481
6 -2.1969 2.0441

Figure 4.6: The left table refers to the case of ǫ ≃ 1.5σ ≃ 16, whereas the right table
concerns the ǫ ≃ 2σ ≃ 23 case.

J159
left J159

right D159
left D159

right

min -93 -83 2 2
mean 43∗ 38∗ 3 3
max 431 450 14 11

Table 4.1: * The jump average is been calculated for the absolute value, as both
positive and negative jumps are present.

at the third step. The main statistics of the selected quadruples are listed in table

(4.5.1).

To test the independence we can perform the BDS test indifferently on the Jn
right, or

the Jn
left. What we claim indeed, is that the variables in the quadruples are highly

correlated between each other, but that they represent i.i.d. observation on its own.

In the following table (figure 4.7) the BDS test is performed for the Jn
left; for the other

variables the results are very similar and so we have not reported them.

As in the previous output table the p-value is referred to the standardized Normal

distribution, hence to check for the appropriate small sample quantiles, we can refer

to the left table in figure (4.6) being the sample length the same. By the way in

this case also the row approximation given by the standard Normal quantiles shows

a very strong level of significance, safely leading us to conclude the independence of

the variable in hand, Jn
left.

Dimension w c c1 p-value

2 -0.7841 0.4807 0.6980 0.4330

3 -0.3177 0.3341 0.6968 0.7507

4 0.0012 0.2342 0.6956 0.9990

5 0.1139 0.1702 0.7002 0.9093

6 0.2643 0.1204 0.6987 0.7915

Figure 4.7: BDS statistic output for J
159
left (ǫ ≃ 1.5σ).
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4.5.2 Option prices

Let us investigate now some numerical results obtained applying the bootstrapped

version of the Longstaff and Schwartz pricing method and an electricity spot price

evolving as described in the previous chapter with trajectories simulated according to

equation (4.8). The table below, figure (4.8), shows the price of a Bermudan option

with different times to maturity and spanning from deep-out of the money to deep-

in the money cases. The allowed exercise frequency is a daily, and the clock of the

brownian motions used is set to 5 minutes, that is every five minutes the brownian

motion is calculated to better approximate continuity, even if the price is registered

only once a day. The Rn-WTMM has been halted at the third order (n = 3) leading

to a set of 159 singular points detected, which implies 159 relevant price jumps and

159 interbase times for the double bootstrap procedure. The volatility of the interbase

regime is been set to σ = 0.2, whereas the volatility of the spike regimes is been set

to σ̃ = 0.3; the long-term mean θ and the speed of mean reversion K are respectively

been set to 80 and 0.1. The numerical results shown, are been obtained combining

each of the G = 100 bootstrap samples of In, with N = 500 every time different

bootstrap samples of χn, for a total number of 50′000 trajectories simulated under

the risk neutral measure.

American Put Prices European Put Prices
tau / K 70 90 105.09 119 140

1 m 6.0142 9.765 15.27 24.198 41.926

3 m 11.295 16.709 23.022 31.019 46.774

6 m 17.831 24.006 30.464 37.726 51.977

9 m 22.641 29.759 36.106 43.223 56.043

tau / K 70 90 105.09 119 140

1 m 4.0603 7.008 11.827 20.48 38.079

3 m 9.0478 13.243 18.756 26.05 40.68

6 m 15.127 20.127 25.642 32.218 44.761

9 m 20.172 26.129 31.452 37.557 48.947

Figure 4.8: American and European prices at different strike K and different time to
maturity tau. The moneyness is enlighten in blue: K = 105.09.

The prices trends are perfectly coherent with what we are used to find; the option

prices both in the European and in the American case are increasing functions of the

time to maturity and of the strike price as well (being Put options), furthermore the

American option prices strictly dominate the European ones. What is interesting is

the huge degree of dominance. This is obviously due to the electricity prices evolution

for which the right to choose when to exercise, has an incredible value, as in the length

of few days, the market conditions may turn to be unfavourable.
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Looking carefully the American percentage premia, we can do further considerations

relative to the different impact of the strike and the time to maturity.

tau / K 70 90 105.09 119 140

1 m 0.324881 0.282335 0.225475 0.153649 0.091757

3 m 0.198955 0.207433 0.185301 0.160192 0.130286

6 m 0.151646 0.161585 0.158285 0.146 0.138831

9 m 0.10905 0.12198 0.128898 0.131088 0.126617

Figure 4.9: Percentage Premia. (A−E)/E

A first observation concern a certain degree of convergence of the premia as the ma-

turity becomes longer and longer and the strike indeed, seams to be totally irrelevant,

even if we have allowed for a wide variability of the strike itself. The conclusion that

the strike matters really little, is perfectly in accordance with the spirit of electricity

market. For prices with so high volatility, even a huge gap in the strike price is a

tiny difference with respect to tremendous variation that could very likely happen in

a short time; consequently having more time to our disposal has a really high value,

which tends to be a characteristic of the price process itself and to converge to a

given value. Only at very short maturity the different strikes play a stronger role:

the more you are out of the money the higher is the advantage in holding an Ameri-

can option, as , given the particular nature of the electricity market, it is very likely

to witness in the middle to a sharp price transition to profit from, whereas exactly

at the maturity day we expect to be more or less at the same price level. For the

same reasoning, the more we are in the money, the more our advantage in holding

an American option becomes evident in the middle maturities, as the longer horizon

allows to encounter such a favourable situation to overcome the intrinsic value of the

option already positive.
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Chapter 5

Electricity Futures market analysis

5.1 Nord Pool Futures Market

In the following analysis we refer to a database of daily futures quotations in the Nord

Pool market, spanning from September 1995 to October 2005. During this decade

many changes took place in the issuing and trading rules of the futures contracts in

response to changing market requirements and consequently to increase liquidity and

promote trade.

Mainly, we have witnessed to a progressive shortening of the available time horizon

for trading. At the beginning futures contracts were issued up to three years in ad-

vance, they were classified in Season (four months), Block (four weeks), week and day

contracts, deriving one from the other in a cascading structure: as the corresponding

maturity approaches, the season contract were split in block ones, the block in week,

the week in day contracts and so on up to maturity.

Since the end of 1999 the Season futures were no longer issued and the maximum

time horizon was reduced to 8 − 12 months. As of Fall 2003 the Block futures were

suspended in favour of forward month contracts and now only Week and Day futures

contracts are listed with 8 consecutive contracts in a continuous rolling cycle, without

any cascading mechanism. This results in a further shortening of the futures horizon,

now up to 8 weeks.

The market thus, seems to prefer short-term futures close to maturity and long term

forwards at the far end of the time horizon. The main reason lays in the different

settlement mechanism: financial settlement of futures includes daily mark-to-market
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settlement which requires a large amount of cash for the margin account updating,

whereas the financial settlement of forwards involves no daily cash movements but re-

quires posting cash collateral only during the delivery period starting at the contract’s

due date.

In order to overcome the substantial lack of homogeneity of the data, we decide to

consider only the quotations in line with the present rules of issuing and trading; hence

we take into account only week futures contracts from 1995 to 2005, consequently with

a maximum time horizon of 8 weeks.

The futures prices evolution shows a clear convergence towards the spot price at

delivery as the time to maturity approaches to zero, a behaviour perfectly in line

with the futures theory, but exactly at the maturity date the coincidence dictated

by the theory for the two prices, fails. In figure (5.1) we show this divergence. The

average spread is around 0.9 unit of currency (NOK), but it spans from a minimum, in

absolute value of 0.016 up to interesting peaks of 322 or −161 as well. Not surprisingly

we have the wildest behaviour when the maturity of a futures contract falls within

a spike regime: the futures market is a bad forecaster of the spot market. The

explanation for this anomalous behaviour has to be searched, partially in the market

clearing mechanisms.

Financial electricity contracts are cash-settled, they do not involve any physical de-

livery of traded volumes at the maturity. The settlement of financial contracts is

based on changes between the underlining product price and the member’s exposure

in the market. In particular the Futures contract settlement has two components: (i)

the daily mark to market settlement (obviously financially settled) and (ii) the final

spot reference cash settlement. The last settlement on the delivery period means the

financial settlement of the difference between the contract’s last closing price before

its maturity and the spot reference price for the corresponding hours in the deliv-

ery period, typically one week. This daily settlement occurs throughout the delivery

period.

The futures clearing procedure implies that the futures and the spot prices refer to

different objects; on one side the spot contract refers to a load in MWhours during a

given hour, whereas on the other side the futures refers to an electricity supply for an

entire week. Let us define F (t, T ) as the futures price at time t for maturity T and

P (t) the electricity price at time t. So, in the electricity market there is a structural

misalignment regarding the underlying object when we check if F (T, T ) = P (T ).
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Figure 5.1: Future-Spot divergence at maturity (blue line) compared with the System
Prices time series (black line)

In general we have that

F (t, T ) = E
Q[P (T )|Ft]

F (t, T ) = E
Q[F (T, T )|Ft] (5.1)

where Q is the risk-neutral pricing measure. Now as we know that F (T, T ) = P (T )

does not hold anymore, we want to determine F (T, T ) such that

E
Q

{
7∑

i=1

[F (T, T ) − P (T + i)]|FT

}
= 0 (5.2)

This straightforward implies that

F (T, T ) =
1

7
E
Q

[
7∑

i=1

P (T + i)|FT

]
(5.3)

Substituting F (T, T ) in (5.1), the general price of a futures contracts results to be:
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F (t, T ) =
1

7
E
Q

[
7∑

i=1

P (T + i)|Ft

]
(5.4)

Note that this contract may be considered a forward start, in T , Asian option with

strike zero.

The considerations conducted so far, lead to the theoretical price of a futures contract

traded in the Nord Pool and moreover, give new insights regarding the advocated

convergence futures-spot at maturity: it is no more F (T, T ) = P (T ) to be verified,

but rather equation (5.3). In order to estimate the expected value over the future

spot realizations in the week following the maturity, we should introduce a model for

the required simulations. At a simple data analysis stage, we just can take as a proxy

the ex-post spot prices realizations. The financial implications are not trivial and

shed new light on the futures-spot relation. The futures at maturity has to embed

the expected evolution of the spot prices system over the next week, and we know

that in an extremely volatile market as electricity, the risk of a spike has to be taken

seriously into consideration.

The observed divergence futures-spot at maturity moreover, casts doubts over the

forecasting ability of the futures prices states by the classical theory. Let us define

the basis Ft(T ) − Pt as the contemporaneous futures-spot spread for a given time to

maturity T − t of the futures contract; if the futures prices were unbiased forecasts

of the subsequent spot prices, we would expect the basis to perfectly anticipate the

future variation in the spot price between t and T . In order to test this hypothesis

we perform a conventional OLS-test which enlightens indeed, the poor forecasting

capabilities of the futures quotations. We just have to regress the absolute change in

the spot price over a given time period, as a function of the absolute basis measured

at the beginning of the reference period or, even better, we can use relative measures

for both variables. Below, the exact regression we have performed follows

log

(
P̄T

Pt

)
= α + β

Ft(T ) − Pt

Pt

+ εT (5.5)

Note that, for coherence with the aforementioned peculiarity of the electricity futures

settlement, the spot price change realized from t to T has to be calculated not with

respect to the spot price PT at maturity, but with respect to the average spot price

that will prevail during the delivery period, which we denote by P̄T . According to the
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Nord Pool settlement rules, as the delivery period starts three days after the futures

end of trading, for the week-futures contracts we have that

P̄T =
1

7

7∑

i=1

P(T+3)+i (5.6)

We test equation (5.5) both for the one week to maturity basis that for the four

weeks. From the available data set of week-futures we collect respectively 521 and

464 observations for the one week to maturity and the four weeks to maturity variables

weekly spaced indeed, but for the regression analysis we pick only one observation

a month in order to avoid overlapping trading and consequently serial correlation in

the variables themselves. We end up with sample sizes of 131 and 116 respectively.

By the way, before performing the regressions, a careful look to the variables plot

provide us with useful insights.
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Figure 5.2: Graph of the relative basis (per cent) and of the relative spot price change
in logarithm terms. One week to maturity (left) and four weeks to maturity (right).

In figure (5.2) respectively the one and four weeks basis have been plotted along with

the relative change in the spot price. As stressed by the different mark-style, we

witness an evident change during the last five years regarding the explanatory power

of the basis over the spot price changes; whereas up to the end of 2000 the basis

actually anticipates the spot price movements to a good extent, afterwards the things

change drastically and the basis, which exhibits even a lower volatility, explains very

little of the spot price changes. In light of these considerations we split in two our
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sample to estimate separately the equation (5.5). A table of the regression outcome

follows.

Time horizon: 1 week to maturity

Sep-95/Sep-00 Oct-00/Sep-05 Full sample
Obs 65 66 131
α -0.0413 (-2.4777) -0.0515 (-2.4595) -0.0444 (-3.09)
β 0.4749 (11.4035) 3.022 (4.7781) 0.4965 (9.7327)
R2

adj 0.68 0.26 0.42
DW † 2.05 2.21 2.18
Lilliefors‡ 0 0 0

Time horizon: 4 weeks to maturity

Sep-95/Sep-00 Oct-00/Sep-05 Full sample
Obs 58 58 116
α -0.032 (-0.8373) -0.0219 (-0.8744) -0.0177 (-0.7981)
β 0.2661 (5.5102) 1.3403 (2.9871) 0.2679 (6.6337)
R2

adj 0.36 0.1 0.27
DW † 1.7 1.5 1.6
Lilliefors‡ 0 0 0

† For a sample size of about 65 the interval to not reject the null hypothesis is [1.45,2.55], while for a sample size around 100 is [1.6,2.3]

‡ We set 0 in case of not rejection of the null hypothesis of normal distribution and 1 otherwise

Table 5.1: Spot price change versus relative Futures basis regression outcome. 1 week
and 4 weeks to maturity time horizon.

It is worth mentioning that in the Nord Pool market, more than 55% of the generated

electricity is based on hydropower, therefore reservoir technology plays a substantial

role. If electricity as a commodity cannot be stored in general, hydroelectricity may

be stored to some extent keeping water in the reservoirs. This is a clear advan-

tage, which creates an asymmetry between producers’ and consumers’ spot/futures

arbitrage possibilities via storage. The available reservoir data consists of weekly reg-

istration of the percentage of filling of the global reservoir capacity. Let us define Rt

the reservoir time series. In figure (5.3) we show the relative basis between futures

and spot prices, compared with the corresponding reservoir level Rt.
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Figure 5.3: Relative percentage basis futures-spot with 4 weeks to maturity from
September 1995 to December 2000 (solid blue line) and from January 2001 to Septem-
ber 2005 (dotted blue line), compared with the reservoirs level (thin blue line).
Monthly observations

It can be noticed that the higher values of the basis are observed in accordance with

extreme levels of the reservoirs. When the futures price is much lower than the

spot we always observe reservoirs are almost at their minimum, whereas when the

futures price widely exceeds the spot the reservoirs level lays mostly over the half

reservoirs capacity. By the way the converse is not verified all the times; there are

many situation where even if the reservoirs level is extremely low or almost at its

maximum, we do not witness to a similar strong divergence between futures and spot

prices. As an example figure (5.3) shows the basis for the futures with 4 weeks to

maturity, but basically the same behaviour may be observed for all the available time

to maturity.

Similar considerations indeed, have leaded Gjolberg and Johnsen (2001) to advocate

the presence, even in the electricity market, of a convenience yield induced by the wa-

ter reservoir levels. In short, when the water level is low, the cost of additional ‘water

storing’ (i.e. to not increase the spot supply) is zero. The construction of reservoirs

requires very large investments, but once the reservoir is built, the marginal cost of

water storage is zero as long as the reservoir capacity is not fully utilized. Conse-
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quently the convenience yield is high: to maintain a good level of reservoir filling

assure several benefits to the producers like potential profits from temporary short-

ages, ability to keep the production process running, avoiding penalty for production

interruptions. As soon as the reservoir is full, additional inflow is lost trough over-

flow, making the marginal opportunity cost jumping from zero to the value lost for

not having produced electricity with the overflowing water. The convenience yield

results obviously to be zero or even negative in the case of concern of excess supply.

The reasoning is perfectly in line with the interpretation that the convenience yield

reflects the market expectations concerning the future availability of the commodity,

in this case of the water to produce it.

A closer look to figure (5.3) suggests once again that a deep change in the relation

between the reservoirs level and the futures-spot basis has taken place: if across

the first part of the available sample (1995-2000) the positive relation is evident,

supported even by a mild seasonality of the relative basis, from 2001 onward, the

correlation between the two variables is drastically reduced. The regression analysis

clearly shows the measure of this different attitude across time.

Sep-95/Dec-00 Jan-01/Sep-05 Full sample
Obs 59 57 116
α -21 (-4.83) -5.85 (-1.51) -34.5 (-4.67)
β 0.6 (5.52) 0.12 (1.94) 0.39 (5.77)
R2

adj 0.35 0.003 0.22
DW † 2.2 1.92 2.08
Lilliefors‡ 0 1 1

† ‡ Same confidence levels and considerations as in table (5.1).

Table 5.2: Relative Futures basis versus reservoirs level regression outcome. 4 weeks
to maturity time horizon.

In order to avoid serial correlation we take only one observation each month and then

we estimate a linear relationship of the relative basis versus the reservoirs level.

Ft(T ) − Pt

Pt

= α + βRt + εt where T − t = 4weeks

This results to be positive and statistically significant throughout the sample, even if

from 2001 the reservoirs level were able to explain just a 2% (R-square) of the observed
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variation of the basis, resulting, de facto, uncorrelated. The big gap between the two

subsample cannot be a chance and clearly denote a structural change. It seems that

from a certain moment onward the market has started to embed the information

about reservoir capacity in the price formation and price expectation mechanism,

denoting an upgrading in terms of efficiency.
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5.2 The future risk premium

Futures contracts are growing in importance as both financial risk management tools

for hedgers as well as liquid investment vehicles for electricity trading firms. In order

to efficiently use these instruments, it is important for the power industry to gain

knowledge about the hidden information in the futures term structure.

We know from the theory that under the risk-neutral pricing measure Q, the expected

rate of change in the futures price is zero, as the futures price is a Q-martingale pro-

cess. Under the objective measure P, however, this expected return may be different

from zero and may provide us with preliminary insights regarding the existence and

the nature of the futures risk premium. Let us define the observed expected return δ

like

δ(τ) = E
P
[
F (t, T ) − F (t− 1, T )

F (t− 1, T )
|Ft−1

]
where τ = T − t (5.7)

As a proxy of E
P [F (t, T )|Ft−1], we can take its ex-post realization. In figure (5.4) we

plot the estimated δ̂(τ) = (F (t, T ) − F (t − 1, T ))/(F (t − 1, T )) and we find strong

evidence (the p-value is equal to 0.0015) against the null hypothesis that δ̂ = 0.
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Figure 5.4: The blue line represents the estimated futures daily return δ̂ as a function
of the time to maturity expressed in days; the green smooth line is the corresponding
second order polynomial fit.

The first observation is that we find an expected return that is negative in mean

across all the available time to maturity (see figure 5.4). This preliminary empirical
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result suggests the classical contango market equilibrium, characterized by futures

prices which exceed the expected future spot prices. To verify this we estimate the

spread between the futures prices and the expected spot prices during the settlement

week and in figure (5.5) we plot a cross-sectional mean of this spread as a function of

the time to maturity.
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Figure 5.5: Estimate of the spread between futures and expected spot at delivery
versus time to maturity.

The observed negative futures returns suggest the existence of a negative risk pre-

mium. An easy way to verify the supposed negativeness of the risk premium is to

estimate the risk premium as the needed adjustment to the expectation, under the

physical measure, of the spot price at maturity in order to match the futures prices ,

which are supposed to be simply the expectation of the future spot prices at maturity,

but under the Q measure. Assuming that

F (t, T ) = E
P [PT |Ft]e

−p(τ) where τ = T − t (5.8)

the premium p may be estimated using again the spot ex-post realization at the

maturity.
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p(τ) = log
E
P [PT |Ft]

F (t, T )
and p̂(τ) = log

PT

F (t, T )
(5.9)

Given the δ̂ values estimated in figure (5.4) we expect to find at least a decreasing p̂

as a function of the time to maturity. The figure below confirms the intuition.
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Figure 5.6: p̂ plot as a function of the time to maturity expressed in days.

Once again a negative estimate of p̂ indicates futures quotations that exceed the ex-

pectation, under the physical measure P, of the future spot prices at maturity. A

reason for this evidence may be found in the conditions within the specific commodity

market. A risk premium could arise if either the hedging demand on the supply side

differs substantially from the demand side, or if the degree of risk aversion varies sub-

stantially between the two sides. For example an overweight of a risk averse demand

with respect to the producers side, may lead to a negative risk premium p̂, or let us

better say a discount for risk. The key explanation may be the consistent asymmetry

in the flexibility of adjusting the quantity between the two sides. If generators may

adjust the production on a very short notice, the demand side may vary its load

needs very little and consequently hardly profit from the price fluctuations. So it is

reasonable for the buyers to lock as much as possible of the expected futures demand
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(given that buyers are risk averse)using the futures market. This is a peculiarity of

the electricity market, that may lead to an excess hedging demand in the futures

market. In order to further analyse the behaviour of the premia across the year, in

figure (5.7) we disentangle the effects month by month.
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Figure 5.7: Estimated futures risk premium per month. Panel (a) refers to months
with positive premia prevailing and panel (b) to the negative.

A seasonal pattern is indeed evident. Even if the majority of the year is characterized

by a negative premium , more or less pronounced, during spring months we detect

significant positive premia. The classical backwardation equilibrium is verified, where
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hedgers go short and speculators, who require a premium, go long. The very low con-

sumption and low demand risk characterize this period of the year; furthermore the

snow melting reduces the producers’ flexibility who, in order to hedge their produc-

tion, accept to fix a future selling price under the expectations. Let us suppose the

premium to be a linear function of the time to maturity, p(τ) := qτ , an estimate of

the daily premium q is plotted in figure (5.8).
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Figure 5.8: Daily contribution to the estimated futures risk premium. Panel (a) refers
to months with positive premia prevailing and panel (b) to the negative.
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This daily premium seams indeed to be almost a constant across time to maturity

supporting the linearity hypothesis. An estimate of the daily percentage premium

follows.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

-0,888 -0,508 -0,117 0,119 0,020 0,349 -0,834 -0,249 -0,345 -0,526 -0,276 -0,441

For each month of the year, a typical value is so detected, but the premium results

still time varying across the year. If we observe the evolution of the reservoir levels

across the year compared with the premium q above defined, a negative correlation

(ρ = −0.5) between the two variables is quite evident, figure (5.9).

jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

20

40

60

80

100
Reservoirs level (monthly average)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
−1

−0.5

0

0.5

1
 Futures risk premium (daily percentage per month)

Figure 5.9: Average reservoirs level across all the data sample (above); average daily
premia for all the available contracts (below).

To further investigate the correlation, and hence the explicatory power of the reser-

voirs level with respect to the futures risk premia, it would be interesting to regress

for each futures contract the time series of the related premia versus the time se-

ries of the reservoirs level as the maturity approaches. Unfortunately, because of the

contracts specifications, we are not supplied with time series of statistically relevant

length. On one side, we remember that each futures contract is available for trad-

ing for no more than 8 weeks, that is a maximum of 40 daily observations, on the

other side we are provided with only one observation a week for the the reservoirs
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levels, generating time series of eight observations each. Nevertheless, just to have

an idea, even if perfectly conscious of the statistical poorness of the exercise, we per-

form the aforementioned independent regressions. We select, out of the full sample

of available futures contracts, 120 contracts with a recorded trading period of eight

weeks. We disregard the regressions which produce autocorrelated and non normally

distributed residuals according respectively to the Durbin-Watson and the Lilliefors1

tests; finally we end up with 86 significant regressions. The slope of the estimated

premia-reservoirs relation in the 60% of the cases is positive with an average value

of 0.0188, in the remaining cases the average slope is -0.0186. The average R-square

detected is of 65% , but with a 47% largely over 70%.

By the analysis conducted so far, we have been able to observe the evolution of

the futures risk premium up to a maximum of 35 days to maturity. In order to

investigate a longer term behaviour we need to look at the forward market. Once we

assume no significant correlation between the electricity prices and the interest rates

evolution, we can consider equivalently the two markets. As for the futures contracts,

the forwards market is in a transition phase. The old Season contracts Winter 1

(January-April), Summer (May-September) and Winter 2 (October-December), with

a delivery period respectively of four, five and three months, are substituted by the

new Quarters contracts: four contracts each year, with equal delivery period of three

months each and a trading period spanning from two year for the first quarter up to

33 months for the last one. Moreover a completely new forward contract is introduced

in 2003, the Month one, this contract issued one for each month of the year, in which

the delivery takes place, is traded up to six months in advance. Finally Year contracts

are issued up to three years in advance.

Unfortunately, due to the relatively recent market (the forward financial market starts

in October 1997) in conjunction with the longer trading period with respect to the

futures contracts, we are provided with thin samples, which prevent us from reaching

strong conclusions. We have 24 Month and 23 Season forward contracts with ended

delivery and only 4 year contracts. Obviously disregarding the Year contracts we try

to retrieve at least a tendency behaviour from the Month and the Season contracts

price series.

Keeping in mind the average reservoir cycle of figure (5.9), what emerges from figure

(5.10), is that the clear negative premium tendency observed in the forward market

1The significance level is been set to α = 5%
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Figure 5.10: Forward risk premium for the Forward Month contracts.
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Figure 5.11: Forward risk premium for the Forward Season contracts.

from September to February has to be explained with the usual seasonal decrease

of the reservoirs level in conjunction with the high winter consumption demand.

From May to August instead, even if we observed a negative premium for short time
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to maturity, the trend is of an increasing and positive premium. The water level

even if quite low at the beginning is expected to increase together with the natural

consumption decrease experienced during the summer in the northern Europe. Hence

the producers are inclined to accept a forward price even below the expected future

spot quotation (positive premium). The March and April behaviour instead, looks

quite weird at first glance: a clear inversion of the premium sign is observed as long

as the time to maturity increase. What we can observe is that these are probably

crucial and difficult months, in the sense that the usual reservoirs level is very low,

the minimum of the year, and the consumption is hardly predictable and may vary

a lot depending on weather variations. A mild spring for instance, may influence a

lot the electricity demand, making it decreasing and may increase instead the water

inflows anticipating the seasonal snow melting or the rain season. On the other way

round, a severe and prolonged cold winter may boost up the demand, which has to

be faced with the lowest availability of water of the year. Finally in figure (5.11) the

three season contracts are plotted. Stressing once again the sample thinness, they

show a clear positive premium with relative few exceptions for the Winter and the

Summer contracts close to the maturity.

5.3 A reservoirs based model for the Futures prices

The market data analysis conducted so far puts clearly in evidence that the peculiarity

of the hydroelectric production strongly influences the price formation mechanism to

such an extent that a specific model for electricity futures price has to be taken

into consideration. Availability of water is the only way to produce electricity as no

other storage is feasible, hence reservoirs level is a key variable to understand this

market and the behaviour of the producers. Water is a scarce resource, that has to

be optimally allocated. To sell a futures contract, the needed water to produce the

underlining supply of electricity, has to be already available in the reservoirs. If it

is not so, it means that it’s betting on a future water inflow. There is no way to

go on the market and buy the water as we would have done for any other financial

asset, storable commodities or electricity produced with resources easier to transport

and/or easier to recruit.

Water inflows obviously are a variable with a very strong seasonality as figure (5.12)

puts in evidence. Even if each year it denotes huge variations in absolute value, the
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Figure 5.12: Percentage level of the overall reservoirs belonging to the Nord Pool area
spanning from 1995 to 2006

tendency is always predictable: a minimum in April, after the high winter consump-

tion, then the spring rain and the following snow melting, as the temperature becomes

milder and milder, refill the almost empty reservoirs, bringing the water level at its

utmost after the summer season. This means that afterwards, no significantly water

inflows are expected and that, the amount of available water is fixed up to the new

spring; this water hence, has to be optimally distributed between the spot and the

futures market as the intrinsic time dilation of the futures market doesn’t bring the

usual advantage from a supply point of view.

Reasoning in this direction, the electricity producers result to be natural owners of

an American call option on each unit of water, that is to be precise, on the electricity

amount producible with such unit of water. The strike price of the option is zero,

as they already own the water. The time horizon of the option is given by the

aforementioned water cycle: each April let us say, a cycle ends and hence an option

comes to maturity and a new one starts. So, the option’s maturity is fixed and it

is only one every year. Therefore, the time horizon of the American option changes

time by time according to the period of the year in which the futures is issued. So,

according to the suggested pricing equation, the time horizon of the American option

involved, may span from one year to few weeks.
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The reason why this optimal water allocation is so important in the hydroelectric

market is essentially because of the spike possibility. The future occurrence of a posi-

tive spike in the spot market, would represent a unique opportunity for the producers

to make an extra profit: the same electricity that in the previous week was economi-

cally profitable to supply at a given price, now the spot market is willing to pay, let us

say, a double price. This represent for the producers a unique chance that they have

to be able to exploit, without running the risk to have their hands tied because they

are too much exposed on the futures market and do not have enough available water

to profit from the spot market. The issuing of a futures contract will be convenient

for the producers only at a price which maximize the expected return of the needed

unit of water from the issuing date up to the beginning of a new water cycle. Let us

note that, this time horizon has nothing to do with the contractual maturity of the

futures itself and it is totally independent on this. It is an economic consequence due

to the nature of the commodities and to its production system.

On the other hand, from equation (5.4) we have inferred that the futures contract in

the Nord Pool, because of its contractual specifications, is a one week forward start

Asian option with strike zero on the spot electricity price.

Now, let us define FT (t, S) the futures price observed in t with maturity S belonging

to the water cycle that ends in T . Hence we have t ≤ S ≤ T . We state that the

futures price is given by a linear combination of two options written on the spot

electricity price: a one week Asian option and an American option. In formulas

FT (t, S) := α E
Q
t

{
1

7

S+10∑

i=S+3

Pi

}
+ (1 − α) sup

τ∈(t,T ]

E
Q
t

{
e−r(τ)Pτ

}
(5.10)

So, the futures price observed in the market is the result of two different components,

the contribution of which is normalized to one. The predominance of one of the two is

led by the scarcity of water and by its optimal allocation. If, on one side, the futures

contract is simply an Asian option and its price formation should be influenced by the

expectation on the future spot price only during the settlement week, on the other

side, depending on the level of the reservoirs, the water optimal allocation becomes

more urgent, leading to the prevalence of the American components.

So, we expect to find abrupt changes from one component to another and not a

mild transition. Obviously, there will be present mixed situations in which both the

components contribute to the price formation, but they would be short period with a
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very fast adjustment. This, in terms of α, means that we expect ideally, to estimate

values alternatively very close to one and to zero.

Let us now estimate the proposed pricing equation (5.10) on the available futures

market data. In order to simulate the underlining spot price Pt we refer to the

dynamics in equation (4.8). Historical calibration is used to estimate the parameters

required for the interbases regime dynamic. In order to get a parameter estimate more

meaningful and coherent with the proposed pricing model, we need to estimate the

interbases regime parameters, not from the entire available time series, but only from

the portion of it that we recognized as generated from the supposed interbases regime

price process. In order to do so, we exploit once again the Rn-WTMM algorithm. We

chose as order of iteration a value of n = 3; this provide us with the location of the

spikes for the n level chosen; we then remove from the entire spot price time series

the portions in between the left- and the right- bases associated with the detected

spikes. The so ‘cleaned’ time series has been used to calibrate the interbases regime

parameters. Let us note that the empty spaces left by the removed spikes regimes,

have been substituted with a simple linear interpolation, as we believe that adding

more sophistication is pointless. In the following figure (5.13 and 5.14), we plot

both the spot price time series, with the spike regimes removed, and the estimated

long term mean θt as describe in equation (3.3). We decide to calibrate an annual

component together with a week component, resulting in a long term mean of the

form:

θt = θ̄ + βt+ θ1sin(ω1t+ φ1) + θ2sin(ω2t+ φ2) (5.11)

As the time is expressed in days counted from the beginning of the available time

series, we have an angular frequency ω1 = 2π/365 to take account for the annual

component and ω2 = 2π/7 for the week component. For the other parameters we

have θ̄ = 60 for the intercept, β = 0.02 for the linear trend, θ1 = 55 for the annual

wave amplitude, φ1 = 3.6 for the annual phase, whereas we have θ2 = −8.2 for the

week amplitude and φ2 = 8.4 for the week phase.

We then obtain a volatility of σ = 0.1147 and a speed of mean reversion of K = 0.01.

Now we can simulate the spot price process Pt. For each futures market price avail-

able we estimate the corresponding Asian option simply by simulation. In order to

determine the American component we estimate three different prices. As reference

price we adopt the Monte Carlo least square method proposed by Longstaff and
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Figure 5.13: Deterministic component calibration. Long term mean θt, given by
a linear trend plus an annual and a week seasonal component (in green) together
with the spot price time series (in blue) with the spike regimes removed. The linear
interpolation among the several interbases regime has been plotted in yellow.
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Figure 5.14: Same of figure(5.13), zoomed as indicated, so as to better appreciate the
contribution of the week component.

Schwartz combined with the double independent bootstrap as illustrated in the pre-

vious chapter. With little computational effort, we then calculate as well an upper

and a lower bound to the American price. To determine the lower bound we follow
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this strategy: in order to price an American option the key point is to determine

the optimal stopping time, to this end as soon as we encounter a spike we exercise

the option otherwise we wait up to the maturity as it was an European option. The

rationale is that being the American option a call one, we want to exercise at the

maximum price; if we encounter a spike is sensible to bet that in the remaining life

of the option we cannot expect to find a more favourable situation. If no spike , that

is no extreme high values2, is encountered it is always more convenient to wait up to

the final maturity. This is a simple and very sensible strategy which however risks to

underestimate all those situations where there are not evident spikes occurrences; the

decision so, to wait until the final maturity, might imply the loss of intermediate good

occasions. Furthermore, the lower bound strategy is not expected to perform very

well during period of market turbulence, as the first spike may not be the largest. As

upper bound we choose the maximum ex post, that is we simulate all the trajectories

up to the maturity of the option and then, knowing the history, we simply exercise

when the highest spot value is reached.

Let us analyse now, in more details, the performance of the proposed futures pricing

model. In the sequel we plot several graphs of the futures term structure together with

the two components and other involved variables in order to focus on the economic

implications of the pricing model. But, before going ahead, a mention has to be

done regarding the way the futures term structure has been drawn. Because of the

Nord Pool futures market specifications, we never have more than 8 and less than

4 different futures contracts contemporarily quoted; henceforth with a time horizon

spanning over ten years, the representation of the term structure as a surface, would

be ineffective, as it would result too squeezed, looking like a line and not like a surface.

So, as in this section we are focusing on the performance of the pricing model and

not on the eventual interpretation of the shape of term structure, we decide to plot

it in an unconventional way, that is with all the quotations in a row, ending up with

a simple line. This is the reason why, in the following figures, the term structure

appears to be a one-dimensional object.

In figure (5.15) we show the simulation results of the entire futures term structure

only for the American component, that is we plot the lower and the upper bound

together with the Monte Carlo least square pricing. As expected, the bootstrapped

2The definition of what is an high value is crucial of course
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Figure 5.15: American component pricing. B-MCLS estimate together with the lower
and the upper bound.

Longstaff and Schwartz price always lays in between the two mentioned bounds,

generally much closer to the upper bound that to the lower, even if sometimes the

reverse is also true. We cannot expect, of course, a perfect performance from these

two easy bounds. On average, the width of the band, traced by the two bounds

with respect to the corresponding Longstaff and Schwartz price level, is around the

15% even if in almost the 40% of the cases, the band width is under the 8%. The

corresponding histogram follows in figure (5.16).

Let us now analyse the performance of the two bounds separately. Let us take the

Longstaff and Schwartz price (from now on the B-MCLS price) as the reference price,

and let us calculate the distance in relative price terms of the two bounds with respect

to such a price. In figure ( 5.17) we plot indeed, the histogram of this distance for

the two bounds. At a first sight, we observe a huge dispersion of the lower bound

with respect to the upper bound. The latter indeed, denotes a values’ range which

spans from 1% to 22% in contrast to a maximum value of almost 81% of deviation of

the lower bound. This huge dispersion anyway, is not so relevant in frequency terms

and is more than compensated by the high concentration of very small values: more

than 50% of the occurrences is indeed, under the 4% deviation from the B-MCLS
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Figure 5.16: Histogram of the relative width of the upper-lower bound band with
respect to the corresponding B-MCLS price. The y-axis indicates the relative quote
for each bin

price and more than 70% is under the 8% deviation. What we wonder is, if it exists

some relation between the reservoirs level and the major or minor closeness of the

upper bound estimates to the B-MCLS, and what we find out is that for deviations

grater than 16% the reservoirs are mainly (89% of the cases) over the 70% level. This

seams to suggest that the lower bound may work worse with reservoirs almost full.

On the other hand the upper bound shows the bigger deviation from the B-MCLS

with reservoirs mostly empty: in 90% of the cases, deviations larger than 15% happen

with reservoirs below 30% of level of fulfillment. Because of its definition, the upper

bound efficiency has to be interpreted on the other way round, that is, as it represents

the ex-post optimal stopping strategy, its deviation from the B-MCLS price gives us

insight about the performance of the B-MCLS price itself. So the bottom line is that

the modified Longstaff and Schwartz procedure risks to underestimate the future

revenues, with very low reservoirs levels.

With this consideration in minds, from now onwards, let us adopt the B-MCLS price

as the reference price for the American option component.

In figure (5.18), we plot the same simulated term structure of figure (5.15), focusing

on the two price components: the Asian and the American one. Plotting together

the two components, it is evident that the Asian is always smaller than the American

one. This is not surprising as we are comparing an option on the average (the Asian)

101



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) Lower Bound

0 0.05 0.1 0.15 0.2 0.25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

(b) Upper Bound

Figure 5.17: Histogram of the discrepancy of the two bounds with respect to the
B-MCLS price. The y-axis indicates the relative quote for each bin
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Figure 5.18: Two components

with an option on the supremum (the American), even if not strictly obvious, as the

American and the Asian options in hand are not written on the same underlying, at

least from a time point of view. On one side we have a one week Asian option and

on the other side we have an American option with a life spanning from one year to

few weeks.

Hence in figure (5.19), we finally compare the simulated model pricing components
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Figure 5.19: Two components and Futures market

with the observed market futures prices. In figure (5.20) the reservoirs level series is

added in the background. The reservoir percentage level is multiplied by a factor 10

in order to make the time series comparable and the graph readable.

It is interesting to note that it is during decreasing reservoir level periods, or in any

case for low reservoir levels, that the American component futures price estimation,

reaches the highest values. This suggests that when the water is perceived as scarce,

at a low level, the American option held by the electricity producers becomes more

and more valuable.

The plots observed so far, give us just the flavour of the role played by the two compo-

nents in the overall pricing model. We can clearly deduce that both the components

follow the trend and the ups and downs of the observed market price, but that none

of the two alone is sufficiently close to the market price.

As implied by the pricing equation (5.10), to understand in more details the role of

the two components, the parameter α is crucial. For each available futures price an

α is estimated as function of the specific time to maturity of the futures contract in

hand, and of the observed reservoir level at those date. In figure (5.21) the entire

surface of the α values is shown.
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Figure 5.20: The two components, Futures market price and Reservoirs level.

At a first glance the behaviour of α appears quite smooth and clear at least in function

of the reservoir level: very high α values for full reservoir and very low α for reservoir

almost empty. Reminding the meaning of α assigned in equation (5.10), it means we

have a strong predominance of the American component over the Asian one when

the reservoir are low, whereas the American component becomes almost negligible

when the water is plentiful. This behaviour moreover, seems to be preserved and

not significantly modified, through the life of the futures contracts, that is across the

several values of the time to maturity. Hence, averaging across the time to maturity

we plot the estimated α just as a function of the reservoir level. The result is shown

in figure (5.22) where the reservoirs level is expressed by an integer n ∈ [0, 10], where

for n = i it means that the observed percentage of fulfillment may span from (i ·10)%

included, to (i + 1) · 10% excluded. The resulting logistic type shape is perfectly in

line with what we have predicted, that is a predominance of extreme values, ranging

from zero to one, with a sharp transition in between.

Ideally, taking to the extreme the implication of the proposed futures pricing model,

we might have desired to observe a step-like function taking just the value 0 and 1

with a discontinuity for a precise value of reservoir level which would have represented

a kind of break-even point of the hydroelectric futures market. The fact that we
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Figure 5.21: α surface as function of the futures time to maturity expressed in days
and of the reservoir level.
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Figure 5.22: Average α across the futures time to maturity in function of the reservoir
level.
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have estimated a milder transition from one component to the other is anyway quite

reasonable; we can think of a critical reservoir level that may slightly change time by

time depending on several external condition implying a smoother transition when

we try to estimate this value. For reservoirs level up to 40% excluded we observe an α

value almost negligible ,just above 0.1, but from 40% to 60% excluded, we observe a

slight increase even if the real jump is observed after the 60% where the α estimation

suddenly jumps from 0.3 to 0.74; for higher reservoirs level a consolidation of the

Asian component is reached with an increasing value of the estimated α up to 0.92.

Coming back to the α surface of figure (5.21), the time to maturity influence is less

strong and evident with respect to the reservoirs level. Nevertheless some consid-

erations may be outlined. To better disentangle the effects of the time to maturity

we plot, separately, the α as a function of the time to maturity for each given level

of reservoirs. Looking through the panels of figure (5.23) we observe at glance, an

inversion of the sign of the estimated relationship: up to a 60% of the reservoirs

level the data seems to exhibit a positive correlation of the estimated α with the

time to maturity length, in terms that, ceteris paribus, the longer the time horizon

of the futures contracts, the stronger the Asian component is, in the futures price

formation. From a strategic point of view, this is quite reasonable: the further is

the futures maturity, the less strong is the pressure for the producer regarding the

water’s unit allocation, hence it is sensible to estimate a weaker concern regarding the

optimization over the entire water cycle; maybe some moderate water inflows may

still happen. This situation seems to persist up to a certain point: when the reser-

voirs level is high, the data support exactly the opposite situation and the α value

becomes a decreasing function of the time to maturity. This structural change ap-

pears less straightforward to interpret. Anyway, it is relevant to underline that there

seems to be a connection between the predominance of the Asian component to the

futures price formation, and the negative correlation of α and time to maturity. The

turning point in both of the cases is represented by the level 6 of the reservoirs. So,

summarizing, when futures are close to maturity if there is plenty of water the Asian

component is the leading contribution to price formation whereas, if there is little

water in the reservoirs the need to optimally allocate the available water overwhelms

other considerations. When the maturity date of the contract in hand is further, this

shift ahead of the due date, seems to have the effect to mitigate the situation, giving

more weight to the non-leading component. In other words, a grater importance is
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given to the hypothetical events that may happen during this time horizon. Relevant

events may be spikes, chance of overflow and the risk to face a decreasing demand,

for instance. This attitude of the data confirms even more the idea the futures price

formation in this market is two-folds, fully supporting equation (5.10).
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Figure 5.23: α estimate for fixed level of reservoirs as function of the time to maturity
expressed in days.

Assuming the proposed pricing model for the futures contract is satisfying, we wonder

which implications may have. Maybe the strongest consequence is about the contrac-

tual specification of the futures. If it is true that the market futures price takes into

account also an optimization of the available water over the entire reservoirs cycle,
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the natural conclusion is that a futures contract in the Nord Pool is too expensive for

what it offers. The typical week-futures contract enables to fix the electricity spot

price during a well-defined week, say a month from now. What the proposed model

predicts, is that the producer and in this case the futures seller, agree to sell only

at a price which optimizes his revenues over an horizon which is potentially much

more longer than the one defined by the futures maturity, that is over the next six

months, for instance. Hence, if the seller is selling at a price that for his forecasts

is the optimum price for a week futures in the next six months, why we do not let

the buyer exercises the futures whenever she prefers during the following six months?

It would be more efficient to the buyer, while to the seller little would change as far

as he has already optimized the price. This would mean that the strong asymmetry

that we face in this market, would be rewarded by an higher degree of freedom, may

choosing when to receive the electricity supply underlying the futures contract. This

might be an interesting suggestion for further research. We could imagine to issue

a new futures type, where Ft(τ, S), with t < S and τ ≤ S − t, would be the price

at time t, of a futures contract of length τ , that is entailing an electricity supply for

a period of length τ to be fixed in between t and S. S would represent the end of

the water cycle inside of which the futures contract would be issued. This would be

a kind of American option on electricity futures, with the crucial difference that the

buyer of such a contract should exercise within the final maturity. Obviously some

restriction may be thought about the exercise of the futures rights, upon a certain

time notice. The issuing of a more flexible futures contract, such as the one suggested,

may also provide an answer to why the futures trading in a very hydro-dependent

market like the Nord Pool electricity market, is not so much widespread as expected

and as observed in other commodity markets. Anyway, this is just a topic which

might be worthwhile to investigate and test in further research.
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Chapter 6

Conclusion

We have provided an in-depth analysis of Nord Pool electricity price. This market is

the oldest and one of the largest European electricity exchange, allowing us to observe

a consistently long time series.

Our main contributions are the following:

- we have defined a wavelet-based algorithm, named Rα-WTMM, to automati-

cally detect spikes on a time series. We believe that spikes are one of the most

distinguishing features of the electricity commodity, more or less frequent and

pronounced in the several markets, but in any case always present. We cannot

ignore them if we want to deal with electricity modelling. The starting point is

to put it clearly what they are and how to detect them in an as much as possible

objective way. Observing that spikes may be seen as a particular sequence of

singularities, we modified the WTMM algorithm, used in signal processing to

detect singularities, in order to identify only the spikes locations.

- we have proposed a spot price model which enables to reproduce the main

features of the observed price trajectory as price-dependent volatility, mean re-

version and spikes without adding any jump component. We have chosen a

regime-switching configuration, between a diffusion and a non parametric com-

ponent defined by a double bootstrap procedure. In so doing we have managed

to give to the adopted model an high level of freedom in the possible trajec-

tories shapes, although with very few parameters: both positive and negative

spikes are allowed for instance, and different length and multiple spikes are
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also contemplated. Moreover, thanks to the nice probabilistic properties of our

bootstrap, a sensible Markovianity is preserved.

- we have applied the proposed model to the pricing of American options. We

have adopted Monte Carlo techniques and starting from the established Monte

Carlo Least Square procedure, we should have overcome some difficulties in

order to simulate our regime-switching process. By introducing an OrnsteinUh-

lenbeck Brownian Bridge we manage to consistently generate continuous sample

paths for the electricity price, needed to perform backward induction to evalu-

ate American contingent claims. Further, to reduce the high memory storage

required by dynamic programming, we have simulated in a backward time-

moving direction the underlying process, generalizing this backward simulation

technique to any random processes.

- we have provided an extensive empirical analysis of the Futures term structure

in the Nord Pool markets aimed to understand the futures risk premium be-

haviour. We have derived a Futures pricing formula based on reservoirs optimal

allocation, given the predominance of the hydropower generated electricity. We

have defined each Futures contract as a linear combination of an Asian option

and an American option both written on the electricity spot price. The market

data support this hypothesis, suggesting interesting economic interpretations.
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Appendix

MRPV process: conditional variance calculation

Given the following process

Pt = e
σ(Wt−Ws)−

“

σ2

2
+k

”

(t−s)

(
Ps +Kθ

∫ t

s

e
−σ(Wu−Ws)+

“

σ2

2
+k

”

(u−s)
du

)
(6.1)

in order to determine the second centered moment with the initial condition Ps we

compute the following quantities:

E[P 2
t |Ps] = E

[
e2σ(Wt−Ws)−(σ2+2k)(t−s)P 2

s + 2KθPs

∫ t

s
e
−σ(Wu+Ws−2Wt)+

“

σ2

2
+k

”

(u+s−2t)
du

+ e2σ(Wt−Ws)−(σ2+2k)(t−s)K2θ2
∫ t

s
e
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“

σ2

2
+k

”

(u−s)
du
∫ t

s
e
−σ(Wµ−Ws)+

“

σ2

2
+k

”

(µ−s)
dµ

]

(6.2)

Let us note that given the ordering s < u < t, Wu+Ws−2Wt = 2(Wt−Wu)+Wu−Ws,

represents the sum of two independent intervals of the Wiener process. So, computing

the expectations we get

E[P 2
t |Ps] = P 2

s e
(σ2−2K)(t−s) + 2PsKθe

σ2t+K(s−2t)
∫ t

s
e(K−σ2)udu+

+E

[
e2σ(Wt−Ws)−(σ2+2k)(t−s)K2θ22!

∫ t

s

∫ u

s
e
−σ(Wu+Wµ−2Ws)+

“

σ2

2
+k

”

(u+µ−2s)
dµdu

]

= P 2
s e

(σ2−2K)(t−s) + 2Ps
Kθ

K−σ2e
−K(t−s) − 2Ps

Kθ
K−σ2e

(σ2−2K)(t−s)+

E

[
K2θ22!
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s

∫ u

s
e

σ(2Wt−Wu−Wµ)+
“

σ2

2
+k

”

(u+µ−2t)
dµdu

]

(6.3)
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The key substitution, widely exploited in similar context by Yor (1992), consists in

splitting the domain of integration [s, t]2 in 2! subdomain each of which corresponds

to some particular ordering of µ and u, (the set where the two variables are equal

has measure 0 and can be safely forgotten). This rearrangement of the mentioned

integral has the desirable outcome of making the brownian motion intervals non

more overlapping. So now, similarly substituting once again 2Wt − Wu − Wµ =

2(Wt −Wu) +Wu −Wµ, as µ < u < t we can calculate the expectation left. So the

last expectation in (6) is:

2K2θ2
∫ t

s

∫ u

s
e
2σ2(t−u)+ σ2

2
(u−µ)+

“

σ2

2
+k

”

(u+µ−2t)
dµdu =

2K2θ2
∫ t

s
eσ2(t−u)+K(u−2t)

(∫ u

s
ekµdµ

)
du =

2Kθ2
{∫ t

s
e(σ

2−2k)(t−u)du−
∫ t

s
eσ2(t−u)+K(u+s−2t)du

}
=

2Kθ2

2k−σ2 − 2Kθ2

2k−σ2 e
(σ2−2k)(t−s) − 2Kθ2

k−σ2e
−K(t−s) + 2Kθ2

k−σ2 e
(σ2−2k)(t−s)

(6.4)

Substituting this result in (6) we can calculate the conditional variance of the process

Pt given Ps

V[Pt|Ps] = E[P 2
t |Ps] − E

2[Pt|Ps]

= P 2
s e

(σ2−2K)(t−s) + 2Ps
Kθ

K−σ2 e
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