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Many if not most computer systems are used by human users. The perfor-
mance of such interactive systems ultimately affects those users. Thus, when
measuring, understanding, and improving system performance, it makes sense
to consider the human user’s perspective.

Essentially, the performance of interactive applications is determined by the
perceptible lag in handling user requests. So, when characterizing the runtime
of an interactive application we need a new approach that focuses on the percep-
tible lags rather than on overall and general performance characteristics. Such a
new characterization approach should enable a new way to profile and improve
the performance of interactive applications.

Imagine a way that would seek out these perceptible lags and then investi-
gate the causes of these lags. Performance analysts could simply optimize re-
sponsible parts of the software, thus eliminating perceptible lag for interactive
applications. Unfortunately, existing profiling approaches either incur significant
overhead that makes them impractical for an interactive scenario, or they lack
the ability to provide insight into the causes of long latencies.

An effective approach for interactive applications has to fulfill several re-
quirements such as an accurate view of the causes of performance problems and
insignificant perturbation of the interactive application.

We propose a new profiling approach that helps developers to understand
and improve the perceptible performance of interactive applications and satisfies
the above needs.
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Part I

Prologue
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3

This part contains two chapters. Chapter 1 introduces the problem and for-
mulates the thesis statement. Chapter 2 discusses work related to our research.
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Chapter 1

Introduction

Should we take software performance for granted? As Millsap wrote in his article
“Thinking clearly about performance” [86], “we should treat it as a software
application feature, which like any other has to be designed and built”.

Interactive applications are prevalent on computer systems, from servers to
desktops all the way down to mobile devices. Developers of interactive appli-
cations and systems want to focus their performance efforts on aspects that are
actually perceptible by users. A body of research in human-computer interac-
tion has studied the connection between the human perception of system per-
formance and the response latency of interactive applications [103; 41]. They
found that human performance decreases with increase of a system response
time [82], and that lengthy or unexpected response time produces frustration,
annoyance, and eventual anger of the users [103].
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Figure 1.1. Method Hotness Profiles are Abstractions

Thus, given that human-computer interaction research has shown that the
key determinant of perceptible performance is the system’s lag in handling user
events, the “code hotness” profiles produced by traditional profiling tools [57;
108; 14; 7] do not necessarily reflect perceptible performance for interactive
applications. Figure 1.1 shows an illustration. The left part represents a tra-
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6 CHAPTER 1. INTRODUCTION

ditional hotness profile showing the three hottest methods (methods that spent
most CPU cycles). The right part represents a trace of the corresponding pro-
gram execution. The trace shows a significant number of idle-time intervals
(where the computer was waiting for user input). We use the term “episode” to
denote the intervals of computational activity in-between idle intervals. More
importantly, the trace shows that some (hot) methods were executed often but
each invocation completed quickly, while other (cold) methods were executed
rarely but an invocation might have taken a long time. This example highlights
that perceptible performance is not necessarily caused by the hottest methods in
a traditional profile.

The real-world hotness profile in Figure 1.2 confirms this point: The center of
the diagram represents the root of the tree (the application’s main method). The
tree grows inside out, and each stack frame is represented by a ring segment.
The angle of a ring segment is proportional to the hotness of the correspond-
ing calling context. The tree in Figure 1.2 represents the production use of a
real-world Java application (Eclipse). We use the non-traditional circular tree
visualization because it scales to large calling context trees. It has 224344 ring
segments (calling contexts)[88] in this example. The calling context tree con-
tains a node corresponding to a method that repeatedly (30 times) exhibited
an exceptionally long (at least 1.5 seconds) latency. However, that context (the
EditEventManager.mouseUp() method indicated with the arrow) is barely visi-
ble in the tree, because the invocations of this method make up less than 1%
of the application’s execution time. A developer looking at this profile would
never have considered tuning that method to improve performance. Instead, he
probably would have focused on hot methods that are frequently called but do
not necessarily contribute to perceptible lag.

We want to solve problems like the one above. We show a new profiling
approach, landmark latency profiling, that helps developers understand and im-
prove the perceptible performance of interactive applications.

A landmark latency profile consists of latency information for a small set of
“landmark” methods. The set of landmark methods has to be small enough to
keep profiling overhead low, but large enough to provide meaningful informa-
tion to the developer.

The remainder of the dissertation is structured as follows: The work related
to the dissertation is discussed in Chapter 2. Together with Chapter 1 they form
Part I of the dissertation. Part II consists of Chapter 3, Chapter 4, and Chapter 5.
They discuss the approach presented in the thesis. Further, Chapter 6, Chapter 7,
and Chapter 8 discuss the evaluations of the approach done in the lab and with
real developers out of the lab, and form Part III. Chapter 9 discusses additional
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mouseUp()

Figure 1.2. Perceptible Bug Hidden in Hotness Profile

applications of our approach while Chapter 10 discusses the limitations of the
approach and the implementation. Finally, we conclude our thesis in Chapter 11.
These chapters form the last Part IV of the dissertation.

1.1 Thesis Statement

We define our thesis as follows:

Landmark latency profiling helps developers to understand and to improve the
perceptible performance of their interactive applications.

To demonstrate the validity of the thesis statement, we will adress the fol-
lowing questions as well:

• What are relevant landmarks for interactive application performance? Re-
sponding to a user event, an interactive application updates its state, chang-
ing the data model and/or updating the output on screen. Input events
triggered by a user are usually just the initial ones followed by many in-
ternal events, until the application possibly updates the output and be-
comes again idle, ready to handle a new event. Questions that need to
be answered are: Which methods have to be monitored and marked as
landmarks? What information should be in a profile? Which metrics best
represent interactive application performance?



8 CHAPTER 1. INTRODUCTION

• How can the profiling approach be used in production? Having the imple-
mentation of the approach in production use requires its easy deployment,
seamless installation, and transparent profiles collection from the users.
Questions to answer on this level are: What is the acceptable slowdown
due to profiling? What information to collect, and how to represent that
information, to allow acceptable trace size? What to collect from users?

• How to validate the approach? Validation of the approach would require
both validation of collected data correctness and validation that the ap-
proach helps performance problem localization and resolution. Develop-
ing a set of micro-benchmarks to produce each event individually and val-
idating their presence in a profile would help answering the first part of
the question. Questions that need to be answered are: Which events have
to be validated? How much time does a developer need to locate the
problem, with and without the profiling approach? How much time does
a developer need to resolve the problem, with and without the profiling
approach?



Chapter 2

Related Work

Work related to perceptible performance measurement of interactive applica-
tions can be divided into four parts.

First we discuss the work which defines perceptible performance and impor-
tant metrics for our measurements. When time needed to handle user requests
is imperceptible to the user, performance can be considered good enough. Prob-
lems with the performance of interactive application appear with perceptibility.
Human-computer interaction researchers addressed many of these problems.
Results of their research, such as the establishment of a perceptibility thresh-
old, were instrumental for our approach. We discuss the relevant aspects of HCI
research in Section 2.1.

Second, important work comes from the existing approaches that deal with
software performance. Existing profiling approaches inspired us to come up with
our low overhead profiling approach for interactive applications. We discuss
them in Section 2.2.

An outcome of any profiling technique is either a trace or a profile. In both
cases their content is some profiled application runtime data. The third part is
the work related to behavioral data collection and their analysis. We discuss this
work in Section 2.3.

Finally, to understand the performance of interactive applications we should
understand their behavior and their internal characteristics. Section 2.4 de-
scribes the work related to the characterization of interactive applications.

2.1 Human-Computer Interaction

HCI research impacts our work from three perspectives. Relevant questions
which they try to answer are: How does a user perceive the change of system

9



10 CHAPTER 2. RELATED WORK

response? Second, how does anxiety of a user change due to system response
time? Third, how does performance of a user change with system response?

2.1.1 Human Perception

HCI researchers have studied the impact of system response time on the human
perception of system performance. Shneiderman [104] defined the response
time as the time it takes from the moment a user initiates an activity until the
computer presents results on the display. This is exactly what we think is impor-
tant to a user. Time the user thinks before entering the next action he defined
as user think time. Indeed, during this period of time a user can’t perceive an
application as sluggish because her doesn’t know if it hangs or it is ready to re-
act on action. Shneiderman further finds that unexpected long response time
can produce frustration, annoyance, and eventual anger. Moreover, he reports
that more experienced users expect shorter response times [103], and that while
users adapt their working style to the system’s response time, user productivity
decreases as response time increases. In a study of end-user frustration Ceaparu
et al. [37] found that users reported that they lost above third of their time
working on computers due to frustration. They identify time delays as a signif-
icant reason for such frustration. These results motivated our work to focus on
the performance in terms of response time, too. Moreover, just striving for better
performance is not often a goal as there we could always ask for more. In terms
of interactive applications, imperceptibility to a user is the goal. It means that
response time below the human perceptiblity threshold is the optimal one we
want to achieve.

HCI researchers have also studied the conrete thresholds of humans for var-
ious application responses. Dabrowski and Munson [41] studied the human de-
tection thresholds for interactive applications responses of keyboard and mouse
inputs. They showed that users notice response times for both greater than
150 ms, while for mouse input, the detection threshold is at 195 ms. On the
other hand, if the system response time is below any defined perceptiveness, a
user won’t be able to notice it. For example, the movie standard was set to 24
frames per second [10] as experimental research has shown that displaying 24
images per second a human eye perceives each as instantaneous. Hypothetically,
if system response time, by Shneiderman [104], is always within the 24th part
of second then an application would imperceptibly execute from the user per-
spective. Thus, these results of the researchers in the field helped us defining
the perceptibility threshold.
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2.1.2 Human Anxiety

Guynes [58] studied the relationship between system response time and human
anxiety. He classified subjects into two groups by patterns. The first pattern was
primarily of competitiveness, excessive drive, and an enhanced sense of time ur-
gency. The second pattern was defined as the relative absence of the first pattern
characteristics. He experienced that personality of the first group would exhibit
a greater change in anxiety than the second when system response time was
prolonged. McAdoo [83] found that physiological changes due to excitement
of the autonomic nervous system, include increased heart rate, systolic blood
pressure, respiration, and muscle tension. Some experienced a muscle tension
increase, while other a marked increase in heart rate and systolic blood pres-
sure. If users are exposed to poor or variable system response times for longer
period, they may even change the expectations. Turner [112] found an increase
in mental strain in workers who performed a task on an interactive system which
provided almost immediate response, versus workers who performed the same
task on a system with delayed response of a few minutes. He shows that system
response time is one of the most important factors that impact humans’ anxiety
and thus their response. Referring to this work we find perceptible performance
as even more important than it looks like. Many people employed in the in-
dustry perform their daily job on a computer in an office using an interactive
applications dedicated for the specific tasks. These studies showed that percep-
tibly long response time may impact negatively their productivity. How human’s
performance changes in the sluggish environments we discuss in Section 2.1.3.

2.1.3 Human Performance

As humans are affected by system response time, their performance may change
as well while performing the tasks. However, empirical measurements of ef-
fect of lag on human performance were rare. MacKenzie and Ware [82] stud-
ied lag as a determinant of human performance in virtual reality environments.
They found that user performance significantly decreased with increasing lag.
Gibbs [55] measured an effect of lag relating to the design of controllers for
remote manipulations systems. However, tested lags were extremely long (up
to several seconds) and were programmed as an exponential time constant pre-
venting the cursor from fully reaching a target. Sheridan et al. [102] conducted
the same type of experiment having a mechanical apparatus. In both cases move-
ment time increased due to lag.
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This work as well as the work related to human anxiety just confirmed that
response time is crucial metric for performance of interactive applications.

2.1.4 Challenges

Even though significant work has been done in the field, there are still many un-
certainties. As participants are necessary in this kind of research the experiment
outcome widely depends on them. The usual key issues are examinee structure,
their habits and expectations, their current condition, their previous experience,
but also validation of their answers. This information has to be precise and
accurate to enable statistically significant claims afterward as for the case of
keyboard and mouse latency perceptibility thresholds. The described work has
variable numbers of participants in the experiments, starting from 4 [103] up to
86 [58]. Thus, overall results and conclusions may highly depend on this factor,
too.

2.2 Software Performance

To deal with the performance of interactive applications we need tools that mea-
sure relevant metrics of their execution. Researchers tried to measure perfor-
mance on both hardware and software levels.

On the hardware level, modern processors usually have a few programmable
built-in counters allowing user to count instructions, branch miss-predictions,
cache misses, etc. Several library packages provide access to them such as the
HPM toolkit [99],PerfCtr [95], Perfmon [96], and PAPI [32]. These libraries pro-
vide interfaces to allow program instrumentation, to record hardware counter
data, and to analyze the results. The important aspect of using these libraries is
that we leave the application code intact. Thus, all the measures we take cor-
respond fully to the application runtime and not to our impact. Using these li-
braries to count available events during runtime will be surrogate measures that
we don’t need to help developers finding the cause of bad performance. Know-
ing that there is increased number of cache misses or any other overall measure
will mostly not be able to point developer to the right place in the code. The
application may have many cache misses and still suffer from complex drawing
or synchronization problems. Thus, giving the overall performance picture of
runtime can’t effectively and directly help as we need concrete information of
each perceptible action and in the first place their latency as crucial measure.
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Zaparanuks et al. [123] evaluated counters and found significant inaccura-
cies when using them to measure instructions and cycles especially when mea-
suring the behavior of short segments of code, hundreds or thousands of in-
structions. Even though there can be inaccuracy while measuring total number
of executed instructions, they are hard to use to understand the performance of
interactive applications where response time is the metric that matters.

On the software level, most of the approaches require interventions either in
the execution binary code or in the bytecode. There is a number of binary instru-
mentation tools developed for different platforms such as VTune [116] for Inter
processors, PIXIE [73] for MIPS architecture performing a basic block counting,
PIN [38] for Intel processors and ATOM [109] as a binary rewriting toolkit for
Alpha. Other tools work on the Java bytecode level such as BCEL [42]-Bytecode
Engineering Library, BIT [78]-Bytecode Instrumenting Tool, JikesBT [64]-Jikes
Bytecode Toolkit, and Soot [113] as Java compiler and optimization framework.
Moret et al. [87] presented polymorphic bytecode instrumentation which en-
ables complete bytecode coverage, that is, any method with a bytecode repre-
sentation can be instrumented.

Our approach requires lightweight instrumentation to modify only methods
marked as landmarks. Directly, these libraries and tools do not provide data we
would need to correctly measure interactive application performance. Indirectly,
we could use libraries to instrument important methods in the code. In another
words, we could write specific profiler for the domain of interactive application.

Generally, to deal with software performance developers use profilers or
build a specific one that fit their needs. Work in this area inspired us to come
up with our approach. Most of the work in this field we could split into a work
related to standard (non-distributed) and distributed applications on one side,
and a work about instrumentation techniques and sampling techniques on the
other side. How their work fits our needs and how we differ from them we
explain in the following subsections.

2.2.1 Standard Applications

Both industry and the academic literature have broadly described different method
profiling tools dedicated to this type of applications. On the level of Java virtual
machine, a number of profiling tools performs collection of data from applica-
tion run-time, such as CPU time or heap memory usage, trying to achieve more
accurate profiles with less overhead. We tried to find the closest approach which
could help developers to find causes of perceptible performance.
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Gprof [57] hooks into the compilation and adds profiling code to an appli-
cation. It builds caller/callee function pairs which allows a dynamic call graph
generation. This work was later extended to more precisely handle programs
with mutual recursion and dynamic method binding by Spivey [108]. However,
collecting of such metrics from the application runtime is not useful to us for
two reasons. First, overall CPU time distribution will not show to a developer
slow response time to a user requests. Second, these tools significantly perturb
the execution. The task we have requires the lightweight behaviour

DJProf [2] uses AspectJ to investigate heap and object lifetime, and time-
spent in methods. It is an interesting implementation but doesn’t fit our ap-
proach. HProf [13] works as dynamically-linked native library and uses JVM
TI [12]. It generates information through calls to JVM TI, through event call-
backs from JVM TI, and through byte code insertion (BCI) on all class file images
loaded into the VM. At the first place, this instrumentation approach doesn’t al-
low us to measure time spent in each call which we claim is necessary metric
to have. Java Memory Profiler [98], JMemProf [4], and Visual VM [11] trace
heap objects usage and visualize it during application execution and thus can
not directly help locating responsible code. Nevertheless, such approaches may
help revealing why already identified method cause a slow down. JRat [6] uses
AspectJ and weaves instrumentation instructions into an application. Using the
aspects may help instrumenting specific methods (landmarks). However, even
though it is possible to define landmark type with aspect, we couldn’t use these
approach for two main reasons. Current implementations do not allow us to
express all of the landmark types. Also, their generic approach reflects with
significant perturbation.

Some profiling tools fully instrument code capturing the time spent in each
method by wrapping every call. Both the NetBeans Profiler [7] and Eclipse
TPTP [14] profiler work in this way with thousand times application slowdown
when every method in application is instrumented. For this reason, these pro-
filers may only instrument the places explicitly specified by a user. Significant
slowdown they may cause during runtime disabled us to use them.

Still, there are many other commercial and non commercial profiling tools
such as JProfiler [5], Profiler4J [8], and Extensible Java Profiler [3]. Usually
they use sampling together with application code instrumentation to collect data
from the application run-time. Again, they mostly capture time spent in meth-
ods, create call graphs, and trace memory consumption, thus none of them we
could use in our approach.
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2.2.2 Distributed Systems

Work related to performance in the area of distributed systems has latency as
important metric to gather in profiles. Thus, it represents one of the crucial
research body that we studied to design our approach. Here, we present an
overview of the most important work that impact our approach which is based
on latency.

Miller et al. presented Paradyn [85] as a performance measurement tool
for parallel and distributed programs. It is based on a dynamic performance
instrumentation, thus the code is injected during execution. It counts events
and measures time spent in fragments of code. The idea they use is to add or
remove instrumentations on request to reduce the profiling overhead. Metrics
in Paradyn are everything countable or measurable in terms of time. Extensions
of this work have been done by Xu et al. [120] and Newhall et al. [92] to add
support for the multi-threaded applications and for Java, respectively. Kind of
measures this approach has is exactly what we need to collected and afterward
analyze to quickly locate slow parts.

Bakic et al. [21] presented BRISK, a distributed instrumentation system. It
has the built-in clock synchronization to align events and dynamic online sorting
algorithms to allow lower overhead. We find this work interesting as it shows a
way to align event order with extremely low overhead which is necessary in our
approach. Snelick’s presented S-Check [106], an automated program sensitivity
analysis tool for parallel and distributed programs. It predicts how changes in
parts of a program are going to affect performance. Spezialetti [107] presented
technique that exploit program and event semantics to reduce the overhead of
monitoring a distributed computation for ordered and concurrent events.

SCALEA [111] as a part of ASKALON [47], is a performance instrumenta-
tion, measurement, and analysis tool. It supports the automatic analysis of
a series of experiments, not just single runs. Kappa-PI [46] is a knowledge-
based performance analyzer for parallel MPI (Message Passing Interface) and
PVM (Parallel Virtual Machine) programs while a performance analysis environ-
ment Peridot [54] is designed to work teraflop computers. The idea presented
in these approaches to have an automatic analysis of multiple runs beside in-
strumentation, motivates our work to have our profiler distributed in the field.
Relevant performance problems may occur there but not in the lab. Also, a prob-
lem may manifest only on specific platform and context which we ca not create
artificially in the lab.

Focusing on latency, ETE [62] identifies key events that occur in transaction
execution. Events are routed to a separate component called the transaction
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generator, that uses external definitions of transactions to construct transactions
records from event streams. Nevertheless, one would need to identify events of
interest.

Barham et al. [23] developed Magpie, an approach to characterize the work-
load of a distributed system. Beside latency they observe concurrency and com-
munication focusing on responsiveness rather than throughput. Their goal was
to understand relationship between throughput and response time. Fonesca et
al. [50] developed an integrated tracing framework called X-Trace. It is a cross-
layer and cross-application tracing framework designed to reconstruct the user’s
task tree. A user invokes X-Trace when with a web request, by inserting X-Trace
metadata with in the request. This metadata is then propagated down to lower
layers through protocol interfaces and also along all recursive requests that re-
sult from the original task. The trace data generated by X-Trace is published to a
reporting infrastructure. Dapper [105], Google’s production distributed systems
tracing platform, conceptually shares similarities particularly with Magpie and
X-Trace.

In general, these approaches identify important events for the performance
of the distributed systems, but also try to measure their latencies. It motivated
us to identify important aspects for the performance of interactive applications
and to come up with the corresponding measurement approach.

2.2.3 Instrumentation

Researchers came up with the various ways to instrument the application code.
Instrumentation could be inserted manually, by assistance of a compiler, by bi-
nary translation using a tool to instrument compiled binary, by runtime instru-
mentation where code is instrumented before execution, or by runtime injection
where code is modified at runtime to jump at our functions. Depending on appli-
cation type, created profiles may contain different kinds of data about the behav-
ior of the application run-time. As discussed in Section 2.2, distributed applica-
tion profiles report latency beside other information while standard application
(non-distributed) profiles mostly report the hottest methods during run-time.

Previous work on instrumentation showed that a significant body of research
tried to focus on the important places of the control flow graphs. Ball and Larus
presented the algorithm [22] that picks places in methods using the spanning
tree to determine a minimal, low-cost set of edges to instrument in the control
flow graphs. Still, their idea tends to cover a complete code with lower overhead
no matter what it is. We claim that such an approach will not give benefits for
our domain. Later on Roy et al.[100] presented generalization covering loops
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in the paths. Using this work, Vaswani et al. [114] presented a preferential
path profiling to reduce the overhead of path profiling by observing only the
most consumed, interesting paths. Similarly, selective path profiling [19] is an
approach to profile only subsets of desired entities but also the execution of
other entities which they interact with. The idea of instrumenting only a desired
subset of entities fits into our approach but they do not provide a way to define
landmarks as we need. Bond et al. [29] presented a path profiling approach
that uses a bit-tracing where a 1-bit value is associated with the outcome of each
two-way branch. When branch executes, instrumentation code appends a bit
to a trace buffer that records branch outcomes. This idea brings up benefits in
terms of overhead but it is for general use and the outcome of the profile does
not provide with data we could use to recognize perceptible method execution.
Duesterwald et al. [44] showed that hot paths could be successfully predicted.
The goal is to predict what will be one of the most frequently executing paths
based on a limited amount of execution history. They had the hit rate average
is 97% when only 10% of execution was profiled but had a lot of false positives,
too. To reduce run-time overhead Sun’s JFluid [43] exploits dynamic bytecode
instrumentation and code hot-swapping to turn profiling on and off dynamically,
for the whole application or just a subset of it. All of these approaches showed
a significant decrease of the instrumentation cost when only specific parts of the
application code are instrumented.

Even though none of the approaches above target latency, the idea to in-
strument only part of the application code shows importance to instrument only
relevant part of the code. Less instrumentation leads to less overhead and may
bring more benefits.

Some of the existing dynamic profiling and tracing tools such as DTrace [36]
or BTrace [1] provide facilities to easily instrument running applications. But,
neither of the two low-overhead approaches supports arbitrary computations in
its trace actions (e.g. they disallow loops and recursion), and thus they would
be unable to do the online trace filtering necessary for a lightweight approach.

Pearce et al. [94] investigated whether aspect-oriented programming with
AspectJ can be used for efficient profiling of Java programs. He showed As-
pectJ’s limitations as inability of handling load-time weaving standard libraries,
state association, synchronization, or array allocation join point. Nevertheless,
Vilazon et al. [115] extended AspectJ to enable weaving of standard java class
libraries. As discussed in Section 2.2.1 we couldn’t use aspects due to the un-
acceptable overhead with such a generic approach and limitation to identify
landmarks correctly.
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Further, researchers developed the instrumentation frameworks such as FER-
RARI [28], a framework for Java that allows performance analysts to write in-
strumentation code on top of it. They tried to ease and simplify instrumenta-
tion having underneath framework to insert the instrumentation code correctly.
Instrumentation code snippets one can write in AspectJ [72], in BCEL [42],
ASM [33], or any other bytecode instrumentation library. Drawback of the ap-
proach is potential unnecessary overhead. Due to this reason we couldn’t use it
in our approach. Kerninst [110] as a framework for dynamic code injection into
a running kernel, allows programmers to work on OS level and construct their
own C++ tools for dynamic kernel instrumentation.

In summary, most of the approaches tried to reduce the overhead and still
to provide accurately hot methods information in a profile. Their focus on cap-
turing a profile that represents the execution time spent in each method is ir-
relevant for interactive applications. We argue that this data is insufficient for
performance tuning. Interactive applications respond to user events, such as
mouse clicks and key presses. The perceived performance of interactive applica-
tions is directly related to the response time (latency) of the program and not to
the measured CPU time or hot calling context tree paths.

2.2.4 Sampling

A common technique used to achieve lower overhead in comparison to instru-
mentation techniques is sampling. Unfortunately, sampling may decrease ac-
curacy. Usually, sampling is used to build a calling context and call path pro-
files. Walking the run-time call stack is one way to capture calling context. The
Shark [9] performance tool provides sampled stack walking to identify hot call
paths. Zhuang et al. [124] introduced an adaptive approach to sample only hot
call paths. They walk the runtime call stack and stop when they hit a part of
the calling context tree that they already have sampled. Mytkowicz et al. [90]
brought an inferred call path profiling to collect minimal information from the
running program using sampling and to infer the full call paths afterward of-
fline. Bond et al. [30] implemented probabilistic calling context that contin-
uously maintains a probabilistic unique value representing the current calling
context with low overhead. He reported that for millions of unique contexts, a
32-bit PCC value has few conflicts. These approaches shares the idea of being
standalone approach to detect slow part in the code. We think that such ap-
proach can’t help any better than full instrumentation. It only saves unnecessary
overhead while providing overall runtime picture. Sampling should happen only
while interesting parts of the code relevant to slow response execute.
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Moseley et al. [89] approximate the frequency of call paths, sampling long
traces of instrumented code in parallel with normal execution, taking advantage
of the trend of increasing number of cores. All the ideas above share one com-
mon thought that is to take samples only at the specific moments and not for
the whole runtime. This way overhead is drastically reduced. Driven by this
thought, we designed sampling profiler to take samples only if the response to
the user request is slow. Unnecessary overhead is avoided as samples are not
taken if a request handling is imperceptible.

Nevertheless, virtual machine takes samples in the safe points of execution
and a consequence is lower accuracy. Thus, a profile picture might be completely
wrong [91] if profiler accuracy is low. Imagine a profiler that produce a profile
always showing method m() consumes 100% of run-time, even though m() is
not invoked. One could classify this profiler as precise, but not as accurate.
Binder tried to develop high accuracy sampling profiler [27]. He did a periodic
sampling based on bytecode counting. The periodic invocation of the profiling
agent depends on the number of executed bytecodes and not on an external
timer. It profiles long running programs on application servers, where exact
profiling would not be feasible due to the extreme overhead. This technique
could be taken as trade-off between high accuracy of profiles and overhead.

Arnold and Grove worked on high accuracy call graph profiles [20] using
event based sampling (method counter) but had high overhead. Later, they
presented the work of combined timer and event based sampling where the
overhead was below 1% but accuracy was about 60%.

In addition to instrumentation of landmark methods a sampling based call
profiling approach would help us to complete the picture of taken path when
long latency episode occurs. In general, it is essential to reduce perturbation.
Experiences and findings in this area helps us with a design of our sampling
mechanism.

2.3 Collecting Behavioral Data in the Field

Capturing and analyzing profiling data from multiple users is highly beneficial
for discovering bugs and performance problems in the application run-time. Li-
blit et al. [79] showed how to gather random samples with very low overhead
for users in distributed program sampling, and how to make use of the gathered
information. They proposed an infrastructure where information of each user
execution is transmitted to the central database. Collected data from these exe-
cutions is analyzed to extract information that may help engineers to find and fix
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problems quicker. Moreover, some problems appear only in the specific context
which is impossible to predict and reproduce in the lab.

Gathering information from multiple user provides a more accurate picture
of how the software is actually used. It also allows better decisions about how
to spend scarce resources on modifications. In particular, bugs that affect a large
number of users are of higher priority than rare bugs. This kind of informa-
tion is almost impossible to obtain from anywhere else than from the actual
user executions. Automatically gathering data from the user executions allows
automated analysis and ease problem identification. An added benefit of this
approach might be that developers could easily see which application features
are most commonly used.

Hangal implemented DIDUCE [59] (Dynamic Invariants Detection with Check-
ing Engine) a system that extracts invariants dynamically from Java program
executions. It is used to identify the root causes of programming errors. In
particular, DIDUCE isolates timing dependent bugs. Google’s Dapper [105] is
a distributed systems tracing platform that collects and analyses data on their
server. Their developers find the platform very useful helping them to identify
and resolve problems they couldn’t do before.

2.3.1 Bug Repositories

To our knowledge, there are a few studies done on the quality of bug reports.
Bettenburg et al. [25] presented preliminary results for the Eclipse project using
their manual bug quality prediction model. Later on they trained prediction
models and did a survey with Apache and Mozilla as two additional projects.

Several studies used bug reports to automatically assign developers to bug
reports [18] [35], to assign locations to bug reports [34], to track features over
time [48], to recognize bug duplicates [101], or to predict effort for bug re-
ports [117]. Ko et al. [77] conducted a linguistic analysis of the bug report
titles. His results suggest that future bug tracking systems should collect data
in a more structured way. Antoniol et al. [52] stressed that version archives
and bug databases are detached. An integration would allow queries to locate
the most faulty places easier and Kersten presented Mylyn [71], the tool that
attaches a task context to bug reports. Bettenburg et al. [26] showed in his
survey that the inability to reproduce errors is one of the biggest problems for
developers. Implicitly, there is a need for tools that can capture the execution of
a program on the side of a user and replay the execution on the side of a devel-
oper [65; 93; 119]. Moreover, users could help developers to fix bugs without
creating bug reports and wasting time.
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Glerum et al. [56] described Windows Error Reporting (WER), a system for
collecting and classifying crash reports. It has been in operation for over ten
years and is running on over one billion client computers. Two main benefits
of post-deployment problem detection, which they demonstrate, are gathering
information about problems in the context in which they occur, and combining
the collective information from a large user base. Also, having information from
multiple runtimes allows random sampling techniques with extremely low fre-
quency and still high coverage of the runtime. We supported our approach with
exactly this sampling technique when it is deployed with an application.

Liblit et al. [81] presented statistical debugging, where they came up with
the idea to distribute their software slightly changed to report back about run-
time. Their approach works for crashes, and we could imagine a button that
sends the state of a slow program or even sends automatically generated re-
ports with recognized slow events using our approach. Still, it is unclear how to
extract sufficient information for rarely occurring bugs.

2.4 Interactive Application Characterization

To understand performance of interactive applications, a necessary component is
the understanding of their behavior and internal characteristics. Zaparanuks et
al. [121] studied whether real-world interactive applications have different char-
acteristics from existing benchmarks. They used dynamic and static platform-
independent metrics in addition to the micro-architectural metrics provided by
hardware performance counters. The platform independent approach by Dufour
et al. [45] proposes dynamic metrics for characterizing the behavior of Java ap-
plications but doesn’t work for interactive applications. In their case metrics
collection slows down program execution by several orders of magnitude, thus
any reasonable interaction between user and application is impossible.

Flautner et al. [49] studied thread-level parallelism in interactive applica-
tions. They inspected whether desktop users should use multiprocessor ma-
chines for everyday tasks. They reported that existing Linux workloads exhibit
thread-level parallelism, but also that more than 2 processors will not likely
improve performance of the interactive application. Further, they found that
shorter interactive episodes tend to have higher thread-level parallelism while
thread-level parallelism is higher in the interactive episodes than the average for
the entire run.
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We did initial studies to characterize interactive Java applications [16] show-
ing where application spent time, what is the average concurrency, how events
distribution looks like and of what type they are.

To obtain statistically correct results the experiments have to be repeated. As
it is impossible to manually repeat exact sequence it is hard to provide significant
claims. We believe that a capturing tool able to correctly replay recorded user
sessions [66] with interactive applications could be used to automate interactive
application performance testing using our approach.
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This part contains three chapters. Chapter 3 discusses the inception of the
idea presented in this dissertation. Chapter 4 discusses the characterization of
interactive applications. Finally, from the drawbacks learned in Chapter 3 and
from the performance insights of the interactive applications discussed in Chap-
ter 4, we discuss the final profiling approach in Chapter 5.
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Chapter 3

Concept

To investigate idea of landmark latency profiling in-depth we implemented im-
portant aspects of the approach within a profiling tool developed in Java. As
one of the most popular managed languages, Java runs on virtual machines
that introduce many layers of abstraction between the application and the un-
derlying hardware. Java supports agents which can transform the application
code during run-time, which further allows dynamic instrumentation and easy
deployment. However, a full-fledged implementation would require significant
optimizations to make the profiling tool useful with acceptably low perturba-
tion. That is why we have first implemented a static profiling tool to verify our
statements and avoid unnecessary suspects in the results caused by perturbation.

3.1 Java GUI Toolkits

Developers of interactive Java applications are faced with the choice between
two powerful GUI toolkits. While Swing is part of the Java platform, and can
thus be considered the default Java GUI toolkit, SWT is at the basis of the Eclipse
rich client platform, probably the dominant rich client platform for Java, which
forms the foundation of the well-known Eclipse IDE. In order to be useful for the
majority of GUI applications, we aim at providing a latency profiling approach
that works with both of those prevalent GUI toolkits.

Hereby, we identify the differences between these two toolkits that affect our
profiling approach. But before highlighting the differences, we first point out an
important commonality: Both toolkits allow only a single thread, the GUI thread,
to call into their code1. Thus, all GUI activities are essentially single-threaded.

1 There are a few exceptions to this rule, most notably Display.asyncExec() in SWT and Event-
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The GUI thread runs in a loop (the “event loop”). In each loop iteration it
dequeues an event from an event queue and dispatches that event to the toolkit
or the application. As part of this dispatching process, observers may be notified.
These invocations of the observers are the program points we instrument and
track with our profiler.

Besides these commonalities, the Swing and SWT toolkits differ in important
architectural aspects. They (1) use different approaches to event handling, they
(2) use different approaches to modality2, and they (3) delegate different kinds
of responsibilities to native code. Because these differences affect our profiling
approach, we briefly describe how Swing and SWT implement these aspects.

Swing takes on the responsibility of performing the event loop, calling back
to the application to handle each individual event. It automatically creates a
GUI thread that runs the event loop and thus executes all GUI-related code,
including the notifications of all observers. Swing handles modality automati-
cally, and does so in a “blocking” fashion: when the GUI thread makes a modal
component visible (such as a modal dialog that prevents interaction with the un-
derlying windows), that component’s setVisible() method does not return until
the modal component is made invisible. Finally, Swing reimplements all Swing
components on top of “empty” native components, and thus even “built-in” com-
ponents, such as message boxes or file dialogs are fully implemented in Java and
thus instrumentable by our approach.

SWT leaves the implementation of the event loop to the application. A typical
SWT event loop looks as follows:

while ( ! s h e l l . i sD i sposed ( ) ) {
i f ( ! d i s p l a y . readAndDispatch ( ) ) {

d i s p l a y . s l eep ( ) ;
}

}

It loops until the top-level component (shell) gets disposed. In each itera-
tion it reads and dispatches one event from the queue, or it sleeps if the queue
is empty, to be woken up when a new event gets enqueued. The application
developer decides which thread will be handling the GUI events: The first time
a thread enters the GUI toolkit, it is turned into the GUI thread. SWT, like
Swing, only supports a single GUI thread, no other thread is allowed to access
the GUI. SWT applications may, and indeed often do, contain multiple event

Queue.invokeLater() in Swing that allow other threads to enqueue a Runnable object for later
execution in the event thread.

2A modal dialog is a window that disables user interaction with other windows while it is
showing.
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loops. Besides the main event loop which often serves the main window of an
application, applications may mimic Swing’s behavior of “blocking” modal com-
ponents by placing an event loop right after the (non-blocking) open() method
call that opens the modal component. The thread can then remain in that loop
until the component is disposed. Finally, SWT uses the built-in components pro-
vided by the native platform. This means that components like message boxes or
file dialogs do not use Java observers in their implementation, and, in case these
components are modal, implement their own event loop in native code. Thus,
on the level of Java we cannot instrument their event loop or their observers to
include their behavior in the latency profile.

3.2 Landmarks

As discussed in Section 1, perceived performance of interactive applications is
directly related to the response time of the program in terms of latency. Our
approach, in general, is based on the concept of a latency profile. A latency
profile represents performance information from a single run of an interactive
application. The goal is to determine and to characterize responsiveness of the
application in the form of a cumulative latency distribution [67], and a latency
profile that shows long latency events of the application along with information
about their context.

Choice of methods is important in this approach. Their calls and returns thus
represent the points where we should measure latency because each of them
might represent a potential performance issue. As discussed in Section 1, we
call them landmarks. A chosen set of landmarks should fulfill several properties.

First, they need to cover most of the execution of the program. Given that we
only measure the latency of landmarks, we will be unaware of any long activity
happening outside a landmark.

Second, they need to be called during the handling of an individual user
event. We want to exploit the human perceptibility threshold (of roughly 100
ms) for determining whether a landmark method took too long, and thus such
a method needs to correspond to a major activity that is part of handling a user
event. A method executed in a background thread may take much longer than
100 ms, but it will not affect the responsiveness of the application, given that
the GUI thread will continue to handle user events. Moreover, top-level method
of the GUI thread (e.g. the main method of the application), may have a very
long “latency”, but it is not responsible for delaying the handling of individual
user events.
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Third, landmarks should be called infrequently. Tracing landmarks that are
called large numbers of times for each user event would significantly increase
the overhead.

Landmarks in our approach are similar to pointcuts in aspect oriented pro-
gramming. Pointcuts allow a programmer to specify join points which are de-
fined places in a program execution such as method calls. Further, advices allow
a programmer to specify code to run at a join point matched by a pointcut. The
actions can be executed before, after, or around the specified join point. Thus,
an advice corresponds to a code of our profiler which executes before each call
and after each return of a landmark, and a pointcut corresponds to a landmark.
However, we couldn’t use aspects for two reasons: First, general purpose aspect
weavers include overhead that may significantly perturb our results. Second, in
some cases aspects can’t precisely express a definition of a landmark. We discuss
this issue in Chapter 5.

To make a choice of landmarks we looked at the design of the interactive
applications. Modern interactive applications are based on component frame-
works. Components in such applications observe each other following the “ob-
server” design pattern. As a result, the sequence of operations happening during
a single episode usually looks as follows: A user event (e.g. pressing a keyboard
key) is dispatched to the focused GUI component. (e.g. a text field). When this
component receives the event, it updates its internal state, and it notifies any
registered observers of that state change. The observers then react to that notifi-
cation by updating their own state, and by notifying their own observers. Thus,
a single user event may percolate throughout the entire application, sometimes
triggering a snowslip effect of observer notifications.

Moreover, the observers can register and unregister their interests dynam-
ically. For example, as long as the “Outline View” in Eclipse is visible, it will
observe the “Java Editor”. As soon as the user disables the “Outline View”, it
will unregister and will not receive further notifications. The operations (and
method calls) that occur as a result of a user event thus depend on the user’s
current arrangement of windows and views. As a result, the same latency bug
(say, a slow “Java Editor” component) can lead to significantly different calling
context trees, depending on the set of additional components (e.g. the “Outline
View”) that were reacting to the event that triggered the bug. Thus, we classified
observers as important and good candidates for landmarks.

Nevertheless, observers are not the only promising candidates. Most inter-
active applications update their interfaces whenever something is changed. For
example, Java’s AWT/Swing toolkit GUI refresh is handled by a few methods of
the Component and JComponent classes. Swing always calls at least one of them
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whenever a component needs to be painted. If rendering of such a component is
complex, it may take a perceptibly long time to execute. Further more, all man-
aged languages often execute a part of the application code that reside in the
native libraries. Many of the standard library classes depend on JNI to provide
functionality to the developer, e.g. file I/O and sound capabilities. Execution of
these calls may take long and be the actual cause of perceptible performance.
Both GUI refresh and native methods are another good candidates to be classi-
fied as landmarks. Additionally, garbage collectors can cause significant pause
times. Tracing of garbage collections may denote which method execution time
was not due to the implementation but the stop-the-world activity.

As we discussed eariler in Section 3.1, developers of interactive Java appli-
cations are faced with the choice between two powerful GUI toolkits, Swing and
SWT, and we aimed at providing a latency profiling approach that works with
both.

The instrumentation consists of two parts instrumenting particular methods
which are marked as landmarks and instrumenting the toolkit’s event dispatch-
ing code. The main goal of our instrumentation is to capture all calls to and
returns from chosen set of landmarks. For this we automatically instrument all
corresponding call sites in the application and runtime library classes.

Further, not all GUI events are necessarily handled by some of the mentioned
landmarks, but all GUI events that reach Java are dispatched in a central loca-
tion. Thus, the event dispatch location with both toolkits is a crucial place to
mark as landmark. While instrumenting, this central dispatch code gives us a
more complete picture of the event handling latency but it does not provide us
with much information about the code that is responsible for the long latency.
That is why instrumenting other landmark calls is also of critical importance.

3.3 Stack Sampling

While discussed landmarks provide great insight into which components are re-
sponsible for the perceptible latency episodes, the relatively coarse granularity
of their profiles can make the identification of the precise cause of long latency
difficult. Using a finer granularity by instrumenting all method calls and re-
turns is too costly and can cause significant perturbation. Instrumenting only
the methods that are relevant for detecting latency bugs is hard to impossible.
Our solution is to augment the latency profile with a profile generated by peri-
odically sampling the call stack.
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Stack sampling of all the threads during run-time would allow calling context
tree construction. The offline analysis will then find all call stack samples that
took place during a long-latency episode, and merge them into a sampled calling
context tree. Like a traditional calling context tree, this tree would represent the
hotness of methods, showing only the hot methods that contributed to the given
long latency episode. Such a tree thus will combine the user-centric view of
episode latency with the developer-centric view of code hotness, and allows a
developer to find the methods responsible for perceptible latency.

Finally, because a given landmark calling context tree is built from the stack
samples taken during all of its notifications, this will allow us to reduce the sam-
pling rate, and thus the overhead and perturbation due to call stack sampling,
while still getting a realistic approximation of the complete calling context tree.

3.4 What data to collect?

Perceptible performance problems manifest themselves as long latency applica-
tion responses. A complete trace of each call and return of all methods of an
application would allow us to measure the latency of each individual method
call, and to determine all the callees of each method and their contributions to
the method’s latency. However, such an approach would slow down the program
by orders of magnitude and thus could not be used with deployed applications.
The challenge of any practical latency bug detection approach is to reduce this
overhead while still collecting the information necessary to find and fix bugs.
Moreover, the information needs to be collected in a way to enable a tool to
effectively aggregate a large number of session reports, each containing possibly
many occurrences of long-latency behavior, into a short list of relevant perfor-
mance issues.

call
stack

trace of landmark method calls and returns

call return

thread idle

sequence of randomly spaced, infrequent call stack samples

time

Figure 3.1. Session Report

Figure 3.1 shows part of the execution of an interactive application. The
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x-axis represents time. The three flash symbols represent three incoming user
requests (events) that need to be handled by the application. The call stack,
shown in light-grey, grows from bottom to top. Each rectangle on the stack
corresponds to a method activation. In our approach, the agent collects two
kinds of information. First, it captures calls and returns from so-called landmark
methods (black rectangles). This landmark trace contains the timing informa-
tion necessary to measure lag. Second, it captures rare, randomly spaced call
stack samples of the running threads. Each stack sample contains the complete
calling context of the thread at the time the sample was taken. This sequence of
stack samples provides information about what the thread was doing throughout
a long-latency landmark method invocation.

Figure 3.1 shows information for only one thread. We do collect the same
information for all threads. However, for many interactive applications, most
threads are blocked most of the time. Moreover, for most current GUI toolkits,
only one thread, the event dispatch thread, is allowed to interact with the user
(process user input and update the GUI). For many applications, if the user is
not interacting with the application, the GUI thread becomes idle, waiting for
new user requests3. The figure shows such an idle interval in the center. While
a thread is idle, the agent does not need to sample the thread’s stack. Once we
have instrumented the application and runtime library classes, we can run the
application to collect a profile. In order to use the instrumented version of the
Swing runtime library, we use the -Xbootclasspath/p command line argument
to java to prepend the instrumented classes to the boot classpath. Since the SWT
toolkit is not part of the Java library, we can just replace the normal SWT JAR
file with the instrumented version (e.g. by using the -classpath argument to
java). We include our Profiler class with the instrumented toolkit classes.

Once we run the application, each observer call, paint call, native call, and
each event dispatch will trigger two notifications to the Profiler, one before and
one after the call. Since Java supports multiple threads, and since observers
and native methods may be used even outside the single GUI thread, our pro-
filer has to be thread-safe. We thus keep track of information between profile
notifications in ThreadLocals.

The profiler is relatively straightforward. It basically writes a trace into a
simple text file. Each observer, paint, or native call and return and each start and
end of an event dispatch leads to one trace record that we represent as one line
in the trace file. Each such line consists of several tab-delimited fields. For each

3 For some applications, such as video players or games, the GUI thread receives periodic
requests from a timer, which cause it to update the GUI from time to time.
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of the eight kinds of trace records, we include a field with the trace record type
(e.g. “ObserverCall”), the thread that caused that record (using Thread.getId()),
and a timestamp (using System.nanoTime()). ObserverCall, ObserverReturn,
PaintCall, PaintReturn, NativeCall, and NativeReturn trace records also include
the class and method name of their call targets.

. . .
d i s p a t c h S t a r t 14 296380441352951
dispatchEnd 14 296380443289230
d i s p a t c h S t a r t 14 296380665901043

obse rve rCa l l 14 296380666001335 java . awt . Too lk i t$Se lec t iveAWTEventL i s tener eventDispatched
o b s e r s v e r C a l l 14 296380666030878 java . awt . L igh twe ightD i spa tcher eventDispatched
observerReturn 14 296380666055671 java . awt . L igh twe ightD i spa tcher eventDispatched

observerReturn 14 296380666080605 java . awt . Too lk i t$Se lec t iveAWTEventL i s tener eventDispatched
obse rve rCa l l 14 296380666120135 ch . u n i s i . i n f . performance . t e s t . awt . MouseButtonLatencyCanvas$1 mouseReleased
observerReturn 14 296381569377812 ch . u n i s i . i n f . performance . t e s t . awt . MouseButtonLatencyCanvas$1 mouseReleased

dispatchEnd 14 296381569494865
. . .

Figure 3.2. Segment of a trace

Figure 3.2 shows ten trace records from a trace of our “MouseButton” mi-
crobenchmark (Section 3.7). Each record shows the record type, followed by
the thread id and the timestamp in nanoseconds. The first two lines show that
an event was dispatched by thread 14, and that handling that event did not
involve any observers (dispatchStart is immediately followed by dispatchEnd).
The third line starts another dispatch, which ends with the last line. During the
handling of that event, three observers are notified. First we see a nesting of
two listeneners: while handling the eventDispatched observer notification, the
SelectiveAWTEventListener notifies the LightweightDispatcher observer. Both of
these classes are part of the Swing implementation. The third observer call, at
the bottom, represents part of the application (as can easily be seen from the
package name). It is implemented as an anonymous inner class ($1) in the
MouseButtonLatencyCanvas, and the method invoked is mouseReleased. This
observer has a particularly high latency of 903 milliseconds, as we can see from
the timestamp field. It is these kinds of calls we intend to identify with our
approach.

3.5 Trace Analysis

The trace analysis converts a trace into a cumulative latency distribution and a
latency profile. The profile shows, for each landmark, the maximum, average,
and minimum latency of all its invocations.

Analyzing the trace is relatively straightforward and is very similar to com-
puting a traditional method profile from a trace of method calls and returns. We
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compute the latency of each call to a landmark and we keep track of the number
of calls and their latencies for each landmark.

Legend dispatch interval

inclusive duration

exclusive duration

Time

S
ta

ck

DispatchStart
DispatchEnd

LandmarkCall

LandmarkReturn

landmark call interval

Figure 3.3. Trace Analysis

A slight complication arises from nested observer calls: the activity happen-
ing during a landmark call may itself lead to a calls of other landmarks. Fig-
ure 3.3 gives a visual representation of a trace. Time goes from left to right.
The y axis represents nesting (an abstraction of the call stack) of landmark calls
and/or event dispatches. The first dispatch (without annotations) includes a
nested landmark call, which itself includes another nested landmark call. We
will now focus on the landmark call (bold outline) within the second dispatch.
The annotations in the figure show how we compute its inclusive duration (end
minus start time stamp) and its exclusive duration (inclusive duration minus in-
clusive durations of its children). The figure also shows that traces can contain
dispatches that do not contain nested landmark calls.

Both inclusive and exclusive durations represent important information. The
inclusive latency shows how long that landmark (and all its nested landmarks)
took. It is the time noticed by the user. On another side, the exclusive time
helps to find the landmark responsible for the long latency. As observers are
usually loosely coupled, it means that an observer that triggers the notification
of another observer usually is not aware of who its nested observer is, and what
it does. Depending on the situation, blaming an observer for the latency caused
by nested observer might thus be wrong. Thus, exclusive duration might be more
important to a developer to understand better where the time is consumed.

As same observers may be invoked from different contexts executing through
the completely different paths it could end up with completely different behav-
ior. Thus, knowing information about observer’s ancestors can be crucial for
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overall analysis. One way is to instrument each method call in the application
code. Nevertheless, it would enormously perturb the execution and thus im-
pact all the latencies significantly. A promising compromise would be to use a
sampling technique to obtain calling context trees of landmarks.

3.5.1 Modal phase injection

Traditional call profilers provide information about inclusive and exclusive time
spent in each method. Unfortunately, in the context of our latency profiling of
interactive applications, the analysis is incomplete, because it does not address
the problem of modality. If an observer opens a modal dialog, the above ap-
proach may attribute the entire period where the modal dialog was open (and
the user interacted with it) to the latency of that observer. This clearly is wrong.

before modal phase injection after modal phase injection

user interacts with modal dialog

user triggers action to open dialog

dialog appears on screen

modal phase

Legend
dispatch interval

end-to-end duration

inclusive duration

exclusive duration

inclusive duration

exclusive duration

Time

S
ta

ck

landmark call interval

Figure 3.4. Trace Analysis and Injection of Modal Phases

Figure 3.4 shows, on the left side, an example of such a problem trace.
The annotations show when the user opened a modal dialog, when the dialog
actually appeared on the screen, and for how long the dialog stayed open. The
trace shows that the observer landmark that was responsible for opening that
dialog does not return until after the dialog is closed. This is because modal
dialogs contain their own event loop, and the thread opening the dialog enters
that nested event loop when the dialog is shown. It only returns after the dialog
disappears.

This is a problem for our accounting, as we will charge that observer (resp.
its inclusive and exclusive time) for all the time the dialog was showing. That
includes all the user’s thinking time in that interval (highlighted in Figure 3.4
with surrounding ovals). The observer should only be accountable for the time it
took to open up (and maybe close) the dialog, but not for the time during which
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the user interacted with it. We want to exclude such periods of modal activity.
However, detecting modal activity with instrumentation (e.g. to capture when
a modal dialog appears and disappears) is complicated, and in some cases is
impossible on the Java level. We thus use a simple heuristic to detect such
nested modal periods. This heuristic works with just the information available
in our traces. It makes use of the fact that during modal dialogs we encounter
dispatch intervals nested within the observer interval that opened the dialog.

Figure 3.4 shows how we use our heuristic to transform the original trace
into a trace including a new type of interval: a modal phase. We call this trans-
formation “modal phase injection”. The left side of the figure shows the trace
before phase injection. The right side shows the result of phase injection, consist-
ing of the same trace with one additional interval injected between the observer
call interval and its nested dispatch intervals. This modal phase interval repre-
sents the interval during which the modal dialog blocked our observer landmark,
starting with the start of the first nested dispatch interval and ending with the
last nested dispatch interval.

After modal phase injection we can compute the observer landmark call du-
ration in a new way: we compute end-to-end duration as the end minus start time
stamp, inclusive duration as end-to-end duration minus the duration of children
that are modal phases, and exclusive duration as end-to-end duration minus the
duration of all children.

3.5.2 Cumulative latency distribution

Given the transformed trace we compute the cumulative latency distribution.
This distribution represents how long the user had to wait for a response to a
user action. We compute it by measuring the latencies of all episodes. An episode
corresponds to an event dispatch interval or a landmark call interval. It either is
at the very bottom of the stack (in the trace), thus representing the handling of
an event in the main window, or it is a child of a modal phase, representing the
handling of an event in a modal dialog. The latency distribution is a histogram
that simply consists of the episode counts binned by inclusive latency. Example
distribution is shown on Figure 3.5. In this example 10 episodes are with an in-
clusive duration of 100 ms, approximately 5 episodes with an inclusive duration
of 300 ms, etc. We get the cumulative distribution from the basic distribution by
adding all counts of episodes with a latency as long or longer than the given bin.

The cumulative latency distribution allows us to quickly see how responsive
an application is: We want to have few episodes with a latency greater than 100
milliseconds, and even fewer episodes longer than 1 second.
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Figure 3.5. Cumulative Distribution

3.6 Trace Viewer

To visualize trace files we developed LagAlyzer. It is a standard Java applica-
tion JAR-ed in one file. To run the tool from terminal it is enough to type the
following command line:

java -Xmx2048m -jar LagAlyzer-4.jar

Figure 3.6 shows the interface of LagAlyzer. It is simple and straight forward
for use. It has a single File menu with a single open choice. It opens standard
file open dialog where we may navigate to a desired trace file.

LagAlyzer interface has 4 distinctive areas split horizontally. The first one
from the top represents full runtime of GUI thread for the chosen trace file. It is
shown separately in Figure 3.7.

The X axis represents the execution time. For example, Figure 3.7 shows a
very short run of an application. By looking at the x-axis value we may say that
the run length is roughly 13 seconds.

Not only one landmark can execute during some period of time. When an
observer method occurs which handles mouse clicks, it may trigger some other
observer notifications, like a dialog open action, which will cause a component
redraw handled by yet another landmark.

Y-axis shows stacked landmark methods in the order they were executing.
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Figure 3.6. LagAlyzer interface

Each landmark type is visualized with a different color. For example, event
dispatch intervals are colored red, observers are painted pink, asynchronous
calls are green, while methods that redraw AWT+Swing/SWT components are
shown in blue color.

A rectangle’s x-axis left corner corresponds to the x-axis time value when it
started with execution. Respectively, the rectangle’s x-axis right corner corre-
sponds to the x-axis time value when it finished with execution. We can zoom
into the specific region of the runtime. When the desired time range is selected,
we release the mouse button and it will zoom into the selected region. To zoom
out, we use the context menu which appears on the right mouse click on the
time line.

Note that the visualization does not show all the methods on the thread
stack but only landmark methods. Indeed to identify the root cause of some
landmark’s long latency, we may need the rest of the picture from the execution.
That is why periodically taken samples during runtime are used. On the top of
Figure 3.7 there is a horizontal strip of dark dots where each one corresponds
to a single stack dump. Their position along the x-axis shows when the stack
dump is taken. Thus, a stack trace contains both start and end times of land-
mark methods and stack dumps with information about all other methods. For
example, let our GUI thread start from the main method and call some observer
notification method which further calls other method. If the stack is dumped
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when our application was in that other method then the stack will contain all
three methods, while the runtime line will have only one rectangle shown for
the only landmark method which is in this case an observer.

Figure 3.7. LagAlyzer run-time time line

This information is very valuable when some landmark takes long to execute
but is actually not the “guilty one”. Not rare, landmarks are just the initial meth-
ods which handle some user actions and the root cause is actually some other
deeply nested method. Thus, combining the information for a slow landmark
execution together with the stack dumps taken while it was running may reveal
the real problem much easier.

Figure 3.8. LagAlyzer Landmarks

Figure 3.8 shows a table of all the landmarks executed at least once during
runtime. Each landmark row contains information related to its execution. The
first cell shows the icon which identifies landmark type. For example all GUI
repaint landmarks have a brush icon. The second cell shows the name of JAR
file where the class of the corresponding landmark resides. The third and the
fourth cells represent the landmark class and method name. The next cell shows
landmark occurrence count. This cell is followed by eight cells in two groups
of four. The first group shows information about landmark exclusive execution
time. The second group shows information about inclusive execution time. Each
group contains maximum, average, minimum and total time respectively for
landmark exclusive and inclusive time. In both cases the last cell shows the total
time consumed while handling all the invocations during runtime for a specific
landmark.

Figure 3.9 shows detailed information for occurred landmark calls during
runtime. Every table row stands for one call of the corresponding landmark.
This table is tightly connected to the previous table shown in Figure 3.8. Infor-
mation in this table always relates to a landmark selected in the table shown in
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Figure 3.8. It breaks down collected landmark information in one row per each
occurrance.

Figure 3.9. LagAlyzer Individual Landmark Execution

“Level” column tells how deep some landmark invocation was on the stack,
while “Depth” column tells how many more were nested. They are followed
by three columns related to the landmark’s children (other landmarks). The
column “Long children” shows how many were long, while “Short children” and
“Short child” show how many were short and their execution time. The terms
long and short come from the thresholds of 3 ms and 100 ms. If it ran longer
than 100 ms then it is treated as long. This threshold has been shown to be the
border of human perceptiblity. On the other hand, if it ran in less than 3 ms, then
that call is omitted from the trace (avoid space problems) but basic execution
information is saved to be shown in the table. “Max Branch” column shows the
total count of the landmark’s nested children. “End-to-End” column represents
time needed to handle the landmark. This time value represents the time needed
to execute the landmark method including its dispatch interval. The following
three columns are “Exclusive time”, “Inclusive time”, and “Thread” columns that
show exclusive execution time, inclusive execution time, and thread ID of the
thread that executed the landmark method. The last two columns are “Start”
and “End”. They show the exact time (in milliseconds) when a landmark method
execution started and ended.

In general, this table may help developers in a few aspects. For example,
let’s assume that there were 10 occurrences of some landmark with average
execution time of 1 s. It may easily happen that 9 of them took less than a
100 ms while only one took 10 s due to some external activity in the operating
system or due to garbage collection. The average will be high, which is not
exactly true. It may happen that the first execution is slow, while others are fast.
This is a sign of an initialization problem. For these reasons it is good practice
to first look at this table and individual call information, and to confirm the
suspects.

The bottom region of the interface is shown in the Figure 3.10. The left tab
shows a landmark call stretched to the whole screen which is selected either in
the table or on the runtime shown in the Figure 3.7. This way we can quickly
see concrete names of classes and methods at readable size. The right tab shows
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Figure 3.10. LagAlyzer Calling Context Tree

the calling context tree which is constructed from the stack dumps taken for the
selected landmark. The calling context tree is not constructed only from the
stack dumps of a landmark’s individual execution, but from all executions. It is
a tree where every path from the root to a leaf represents one context. Every
node represents one method and it contains aggregated information of its calls.
This tree is weighted. Our representation of the tree is given in Figure 3.10. The
width of a calling context’s rectangle corresponds to percetage of stack dumps
taken while being in that context as a fraction of the total number of stack dumps
taken in all the contexts. Thus, it is very important not mix this representation
with the one shown in Figure 3.7. The x-axes of the previous figures represent
time, while this x-axis represents hotness.

3.7 Validation

In this section we validate the approach on a set of micro-benchmarks. We used
our visualization tool, discussed in Section 3.6 to verify that content of the trace
files is as expected. More, we evaluate our approach for profiling real-world
applications.

3.7.1 Micro-Benchmarks

To determine the generality of our profiling approach, we implemented a set of
validation benchmarks on top of both Swing and SWT. Note that it is not the
goal of this evaluation to compare the performance of the Swing or SWT toolk-
its, nor of their respective widgets. The goal of this validation is to determine
the limitations of our profiling approach in measuring the responsiveness of ap-
plications in all situations on both frameworks. In particular, we are interested
to determine whether (and where) the profiler mistakenly reports a short activ-
ity as a long latency observer call, or where it is unable to capture and report
long-latency activities.
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Benchmark Swing Feature SWT Feature

Keyboard input KeyListener KeyListener
Mouse motion MouseMotionListener MouseMoveListener
Mouse button MouseListener MouseListener
Painting paint call PaintListener
Timer Timer/ActionListener Display.timerExec()/Runnable
Menu item JMenuItem/ActionListener MenuItem/SelectionListener
Combo box JComboBox/ItemListener Combo/SelectionListener
Two frames JFrame Shell
Non-modal dialog JDialog/ModalityType.MODELESS Shell/SWT.MODELESS
Modal dialog JDialog/ModalityType.APPLICATION_MODAL Shell/SWT.APPLICATION_MODAL
Built-in dialog JOptionPane.showMessageDialog() MessageBox/SWT.APPLICATION_MODAL

Table 3.1. Validation Micro-Benchmarks for Swing and SWT

Table 3.1 shows the different microbenchmarks. Each row shows one bench-
mark. The first column lists the benchmark name, while the second and third
columns present the features covered by that benchmark in Swing resp. SWT ter-
minology. The different microbenchmarks register different kinds of observers,
and the observers simulate expensive computations by waiting for a specifiable
delay (using a call to Thread.sleep()). We expect any delays occuring in these
observers to directly appear in the profile.

3.7.1.1 Handling keyboard and mouse events

The first three benchmarks test observers that handle mouse or keyboard input.
Such observers are common in custom components, and they may involve sig-
nificant computations (e.g. to find an item in a complex data model that corre-
sponds to the coordinates at which the mouse was clicked) causing a perceptible
delay. Our benchmarks involve a custom component with observers registered
for the respective mouse or keyboard events.

As expected, studying the traces from these benchmarks with the profiler we
find that the profiler points out the long-latency observers at the very top of its
profile.

3.7.1.2 Painting

The fourth benchmark covers painting. Painting a custom component can be
expensive, especially if the component renders a complex visualization based on
a large data model (such as the Viewer’s Trace Timeline).

This benchmark demonstrates that, unlike in SWT, painting a custom com-
ponent in Swing is not done by registering a observer, but by overriding a paint
method in the component’s class. Correspondingly, the profiler does not report
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any long-latency observer calls in its profile. However, thanks to our paint call in-
strumentations the profile correctly reports long-latency paint calls. For the SWT
version of this benchmark, the profiler shows all the PaintListener.paintControl()
notifications as expected.

3.7.1.3 Handling timers

The fifth benchmark is concerned with reacting to timer events. Timers are often
used for animations, where a component is periodically repainted. Both frame-
works provide support for setting up timers that periodically invoke a method in
the event handling thread.

The profile for SWT does not show any long latency observer invocations, but
only shows long-latency nondescript event dispatches. This is because SWT does
not use observers for handling timer firings, but uses a Runnable instead4. As
expected, the Swing version of this benchmark shows all the actionPerformed()
notifications corresponding to the timer firings.

3.7.1.4 Popups

The sixth and seventh benchmarks are concerned with widgets that possibly pop
up a modal window. A combo box can activate a drop-down list, and a menu
item can activate a pull-down menu. If these popups are modal and block the
event handling thread while that thread is inside a observer, they erroneously
inflate the lateny of that observer, a problem that our modal phase injection
might fix.

The traces for Swing’s JComboBox and JMenu show that they are not modal
and do not block the event handling thread, thus their use does not introduce
any error into our profiles. SWT’s Menu and Combo are modal, but they are
not opened from within a Java observer, and so do not introduce an error into
the observer profile either. However, the Menu blocks the event handling thread,
causing one single long dispatch interval (for the duration the menu is open). As
we have described in Section 3.5, the episode used for the latency distribution
include dispatch intervals. Thus, opening Menus in SWT negatively affects the
cumulative latency distribution (leading to a erroneously high count of long
episodes).

4 It would be possible to instrument calls by a timer to a Runnable to measure that time.
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3.7.1.5 Modality

The last four benchmarks constitute tests for examining different modalities of
top-level components (Swing JFrame and JDialog vs. SWT Shell).

Using two main windows (JFrame or non-modal Shell) or opening a non-
modal dialog, does not in any way affect us, as there is no modal activity at all.
While opening a Swing JOptionPane, modal JDialog, or a modal SWT Shell with
its own separate event loop, blocks the thread, our modal phase injection cor-
rects for this, and keeps the observer latency profile and the latency distribution
intact. The remaining benchmark, the SWT MessageBox, however, cannot be
detected using our heuristic. When we open it from within an observer (as is
normal), it blocks the thread and does not cause nested event dispatches visible
within Java. This affects the observer latency profile (our observer is charged for
the entire duration the user looked at the message box), as well as the latency
distribution (adding one overly long episode).

3.7.1.6 Accuracy

In all of our micro-benchmarks we deliberately introduced latencies between
10 ms and 1 second by calling Thread.sleep(). We thus approximately5 know
the actual latency. We have found that the latency reported by the profiler and
the requested sleeping time usually differ by less than 3 ms. This accuracy is
sufficient for our purposes, as we are interested in finding episodes with latencies
significantly longer than 100 ms.

3.7.1.7 Summary

In conclusion, the observer latency profile computed by the profiler provides
detailed information about most of the important interactive events. It lacks
detailed information about SWT timers, but still captures the latency of such
events because it reports all event dispatches, no matter whether they include
observer notifications or not. Our heuristic to infer intervals of modal activity
is successful, but it is not able to determine such periods when they happen
entirely in native code (such as when showing an SWT MessageBox). We thus
can mistakenly attribute the latency of showing a message box to the observer
that opened up that dialog. Since showing a message box is a relatively rare
event, and since it usually takes a user several seconds before she dismisses a

5 Thread.sleep() is not completely accurate, and observers also execute a minimal amount of
code, such as the call to Thread.sleep(), besides sleeping.
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message box, such long latency observer calls are easy to spot and skip by the
performance analyst. Moreover, SWT dialogs implemented in Java are properly
handled by our heuristic.

3.7.2 Real-World Applications

In this subsection we evaluate the applicability of our profiler to real-world ap-
plications. We picked our own trace viewer and the NetBeans IDE, which, with
its over 45000 classes is one of the most complex open-source interactive Java
applications.

3.7.2.1 Overhead

The slowdown due to our instrumentation is hard to quantify, because we would
need to measure the performance of the uninstrumented application. While we
could measure the end-to-end execution time of the uninstrumented application,
this would be meaningless (we argue in this work that the end-to-end execution
time of an interactive application is not a useful measure of its performance).
What we really would want to compare is the observer latency distribution of
the instrumented and the uninstrumented application. Unfortunately, we cannot
measure the observer latency distribution without our instrumentation, and thus
we cannot precisely evaluate the impact of our instrumentation on perceptible
performance.

However, the evaluation of the accuracy with our micro-benchmarks suggests
that for these programs the instrumentation does not significantly affect perfor-
mance. Moreover, we measured the rate at which the instrumented real-world
applications produced traces to quantify one relevant aspect of the overhead.
For the 18 runs we captured (9 of NetBeans, 9 of the trace viewer), we observed
data rates from 100 kB/s to 1.4 MB/s. Note that we could reduce these rates,
according to our experiments by about a factor of 15, by compressing the traces
before writing them to disk. In future work we plan to evaluate the overhead of
the profiler with a study of real users, and to use online analysis approaches to
further reduce the overhead where necessary.
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Figure 3.11. Cumulative Latency Distribution

3.7.2.2 Results

Figure 3.11 shows the perceptible performance of NetBeans and our trace viewer.
It includes three curves for each benchmark6. The x-axis corresponds to the la-
tency, and the y-axis corresponds to the number of episodes ≥ the given latency,
per second of working time. Working time is the time spent within episodes.
We normalize by working time to be able to compare different distributions.
We chose working time (instead e.g. end-to-end trace duration) for fairness: it
would be unfair to divide by a long end-to-end time, if most of that time the
system was idle, waiting for a user request. We notice that NetBeans has a bet-
ter performance than the profiler: Every second the profiler causes between 2
and 2.5 episodes that are longer than the 100 ms perceptibility threshold. Net-
Beans, on the other hand, only causes between 0.3 and 1 such episodes. These
results confirm our expectations: The professional-grade NetBeans application,
which had been especially optimized for interactive performance, outperforms
our prototype-quality the viewer. The profiler pointed out several causes for the
inferior performance of the trace viewer; the most significant was a observer re-
acting to changes in a table model. The observer was sorting the rows whenever
the underlying model changed, which was expensive with large models. Given
this information, we can now optimize this task to improve the perceptible per-
formance of the trace viewer.

6 For clarity we only include three of the nine runs for each benchmark in Figure 3.11. The
other runs have similar curves.
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3.8 Case Studies

The goal of our profiling approach is to support developers or performance engi-
neers in quantifying, understanding, and improving the perceptible performance
of their applications. In this section we present two concrete case studies high-
lighting the use of our approach. The first study is concerned with develop-
ing a responsive visualization of a large 2-dimensional heat map. The second
study shows the impact of different approaches to retrieving results produced by
querying a remote server for display in a large table.

3.8.1 Rendering a Heat Map

We want to visualize the data stored in the following straightforward data model.
The data model represents a rectangular matrix, and each cell represents a heat
value as an int.

pub l i c i n t e r f a c e HeatMap {
pub l i c i n t getWidth ( ) ;
pub l i c i n t getHeight ( ) ;
pub l i c i n t getValue ( i n t x , i n t y ) ;

}

The heat map visualization shall show each cell in the heat map using a
color representing its value. Dark colors represent small values, while bright
colors represent large values. Given that heat maps can be large (hundreds to
thousands of values along both axes), we want to place the visualization inside a
scroll pane, so the user can scroll to different regions of interest. We do not want
to provide support for zooming, and we map each value of the matrix to one
pixel on the screen. This simple problem has a surprisingly rich set of possible
solutions, and each solution has its specific impact on perceptible performance.

We create a GUI canvas (a subclass of Swing’s JComponent class) to visualize
the heat map, and we place that canvas inside a Swing JScrollPane. The canvas
does not need to know about scrolling, it just has to know the width and height
(in pixels) it needs in order to draw the entire heat map, and it has to be able
to paint its contents. The scroll pane handles the scrolling and clipping of the
visible part of the heat map canvas.

3.8.1.1 Naive implementation

We start with a naive implementation of the canvas, which, whenever it is asked
to paint itself, will iterate through the entire heat map and render each value
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pub l i c c l a s s NaiveMatrixCanvas extends JComponent {
p r i v a t e HeatMap map;
/ / . . .
p ro tec ted void paintComponent ( Graphics g) {

f o r ( i n t x=0; x<map . getWidth ( ) ; x++) {
f o r ( i n t y=0; y<map . getHeight ( ) ; y++) {

i n t value = map . getValue (x , y ) ;
Color c = new Color ( value , value , value ) ;
g . s e tCo lo r ( c ) ;
g . drawLine (x , y , x , y ) ;
}
}
}
}
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Figure 3.12. Naive Canvas and its Perceptible Performance

as a pixel. Figure 3.12 shows an excerpt of the source code and the resulting
perceptible performance for different map sizes. The perceptible performance,
is visualized in two ways, (1) in the form of a cumulative latency distribution on
the right, and (2) in the form of a trace at the bottom.

The x-axis of the cumulative latency distribution plot represents latency in
milliseconds. In this figure it extends to 10 seconds. The y-axis shows the ab-
solute number of episodes that took longer than x . We wrote a small program
that embeds the canvas inside a JScrollPane that has a visible area of 256 by
256 pixels, and adds that scroll pane into a JFrame. The program then program-
matically scrolls left and right by 256 pixels, thus triggering a total of 50 paint
requests. Given that, a program run will contain at least 50 episodes, and the
curves in the cumulative latency distribution extend to above 50 at x = 0. The
cumulative latency distribution plot shows 6 curves representing six program
runs with different heat map sizes. We fixed the height of the heat map to 512,
and we show one curve for each of the six widths we studied.

The trace at the bottom visualizes the run with the biggest heat map of 16384
by 512 pixels. The x-axis of the trace represents wall-clock time. The y-axis
represents an abstraction of the call stack. The listener, paint, and native calls
are represented as rectangles stacked up along the y-axis. The event dispatches
also show up as rectangles, usually towards the bottom of the stack. The bottom
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of the stack consists of one wide rectangle representing the entire lifetime of
the GUI thread. On top of this is a rectangle representing the modal phase that
corresponds to the lifetime of the main window. At the bottom of the trace we
indicate the end-to-end execution time with an arrow.

For this naive canvas, our program ran for 538.3 seconds for the biggest
heat map. The cumulative latency distribution in Figure 3.12 shows that the
responsiveness of the program clearly depends on the size of the heat map: The
curve for the 16384 pixel wide heat map extends past 10 seconds, meaning that
each of the 50 repaint requests took longer than 10 seconds. This is over 100
times above the 100 ms perceptibility threshold. Smaller maps lead to more
responsive behavior, but even the map that is 512 pixels wide takes a clearly
perceptible 514 ms for each paint request.

3.8.1.2 Using a pool of color objects

A look at the NaiveMatrixCanvas class shows that this naive widget creates a
new Color object for each pixel it paints. Given the large number of pixels (our
biggest heat map has eight megapixels), these object allocations may impact
perceptible performance. As a straightforward optimization, we thus introduce
a pool of 256 pre-allocated colors, one of each possible heat value.

Figure 3.13 shows this optimized variant of the canvas and the resulting
perceptible performance. Unfortunately this optimization has little effect on the
latency distribution. The six curves still extend to almost the same latency. The
average paint latency for the largest heat map only was reduced to 10382 ms
(from the 10933 ms for the naive version).

3.8.1.3 Clipping

The next optimization is based on the finding that we always only see a small
piece (the size of the scroll pane’s viewport, which we fixed to 256 by 256 pixels
in our experiments) of the large heat map. To render the entire map at every
paint request thus constitutes a large waste of time. Class ClippedColorPoolMa-
trixCanvas in Figure 3.14 thus uses the clipping information provided by the
scroll pane to focus the painting to only the pixels that can actually be seen.
Thus, in our usage scenario, instead of rendering 8 megapixels we render only
64 kilopixels per paint request.

The cumulative latency distribution in Figure 3.14 shows the big gain in per-
ceptible performance due to this simple optimization. It also shows, as expected,
that the latency does not depend on the size of the heat map anymore. The aver-
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pub l i c c l a s s NaiveColorPoolMatr ixCanvas extends JComponent {
p r i v a t e HeatMap map;
p r i v a t e Color [] co lo rPoo l ;

/ / . . .
p ro tec ted void paintComponent ( Graphics g) {

f o r ( i n t x=0; x<map . getWidth ( ) ; x++) {
f o r ( i n t y=0; y<map . getHeight ( ) ; y++) {

i n t value = map . getValue (x , y ) ;
Color c = co lo rPoo l [ value ] ;
g . s e tCo lo r ( c ) ;
g . drawLine (x , y , x , y ) ;
}
}
}
}
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Figure 3.13. Performance with Color Pool

age paint request latency for the largest heat map size now dropped to 367 ms.
While this is far better than the 10382 ms of the prior approach, it still is above
the 100 ms perceptibility threshold.

3.8.1.4 Image buffer

Each time we paint in ClippedColorPoolMatrixCanvas, we iterate through all
visible pixels and invoke Graphics.drawLine() to render each pixel. The Graphics
class does not provide any methods to set a pixel, thus we need to render some
shape to affect a pixel. We render a line from point (x,y) to point (x,y), causing
just one pixel to be affected. This approach seems potentially slow. We thus
use the following optimization: we render the entire map into an image buffer
(a color bitmap) in the beginning, and at each paint request we just copy the
necessary part of that bitmap to the screen. Given that copying pieces of bitmaps
is fast, this should drastically reduce latency.

Figure 3.15 shows this optimized widget and the resulting perceptible per-
formance. The latency curves now drop down to almost 0 already below the
100 ms perceptibility threshold. This means that the painting now essentially
became imperceptible. Indeed, our own interactions with this version of the
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pub l i c c l a s s Cl ippedColorPoolMatr ixCanvas extends JComponent {
p r i v a t e HeatMap map;
p r i v a t e Color [] co lo rPoo l ;
/ / . . .
p ro tec ted void paintComponent ( Graphics g) {

Rectangle b = g . getCl ipBounds ( ) ;
f o r ( i n t b . x=0; x<b . x+b . width ; x++) {

f o r ( i n t b . y=0; y<b . y+b . he ight ; y++) {
i n t value = map . getValue (x , y ) ;
Color c = co lo rPoo l [ value ] ;
g . s e tCo lo r ( c ) ;
g . drawLine (x , y , x , y ) ;
}
}
}
}
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Figure 3.14. Performance with Clipping

program, unlike with any of the prior versions, feel smooth and responsive.
However, as the trace at the bottom of Figure 3.15 shows, this optimization
comes at a cost: the first time we want to paint the canvas, we first have to
render the heat map into the background image buffer. This leads to the long
latency episode highlighted in the trace: while all subsequent paint calls take
less than 43 ms (many of them even take less than 10 ms and are thus omitted
from the trace visualization), this initial paint call takes 5479 ms for the largest
heat map.

3.8.1.5 Discussion

It was not the goal of this case study to produce a heat map visualization with
good perceptible performance. The goal was to demonstrate the use of our pro-
filing approach, and to relate the output of our latency profiler to the causes of
bad performance in the source code. One could obviously conduct the same case
study by manually instrumenting strategic points in the program (e.g. measur-
ing the time at the entry and exit of the paintComponent methods in the given
classes). However, our approach gathers and visualizes all that information au-
tomatically. It instruments all strategic points (observer notifications, paints,
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pub l i c c l a s s ImageDirectMatr ixCanvas extends JComponent {
p r i v a t e HeatMap map;
p r i v a t e BufferedImage image ;
/ / . . .
p r i v a t e void paintToImage () {
image = ( BufferedImage ) createImage (

map . getWidth ( ) , map . getHeight ( ) ) ;
/ / . . . pa in t e n t i r e map in to image
}
pro tec ted void paintComponent ( Graphics g) {

i f ( image==n u l l ) {
paintToImage ( ) ;
}
Graphics2D g2 = ( Graphics2D )g ;
g2 . drawImage ( image , nul l , 0 , 0) ;
}
}
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Figure 3.15. Performance with Image Buffer

and native calls), it measures the times, builds traces, latency distributions, and
profiles, without signifcantly perturbing the measurements. While for the pur-
pose of simplicity in this case study we discussed the performance problem (the
canvas widget) in isolation, our profiling approach would find the problem even
if this widget was embedded in a complex real-world application with hundreds
or thousands of other components.

3.8.2 Retrieving Query Results

The previous case study investigated the performance of a visualization appli-
cation. In this case study we investigate a different and possibly more common
type of interactive Java application, a client application that queries a database
and presents the results in a table. The database could run on a database server
accessed through JDBC, but for the purposes of this case study we implemented
a simple server as a Java RMI application. To keep the example simple, the
server does not actually provide a way to specify the query to be executed. It
only allows us to retrieve the results of a predefined hard-coded query.
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pub l i c i n t e r f a c e TableModel {
/ / . . .
Object getValueAt

( i n t row , i n t co l ) ;
}

Figure 3.16. Swing’s TableModel Interface and GUI for Browsing Query Re-
sults in Tabular Form

Figure 3.16 shows the GUI of such an interactive application. It essentially
consists of a JTable placed inside a JScrollPane. The table has a given number
of columns. The number of rows corresponds to the number of records in the
query’s result. In Swing, a JTable determines its contents by accessing a Table-
Model. The TableModel provides methods to determine the number of colums,
the title of each column, the data type of each column, the number of rows, and
the value of each cell. In this case study we provide multiple implementations of
TableModel and use our listener latency profiler to compare the perceptible per-
formance of different approaches for retrieving remote query results. The only
difference between the approaches is in the implementation of the TableModel
interface.

The usage scenario of our application consists of scrolling through the table
by paging down 100 rows at a time. We navigate a result set of 10000 rows,
and thus end up with 100 requests to scroll. This causes a sequence of 100
paint requests to the JTable, and on each request the table will query the model
for the data of each newly visible cell. We perform different runs, using 2, 4,
8, and 16 column-tables. Our scroll pane allows the table to show 35 rows
and all the 16 columns. With the 16-column table, one repaint thus needs to
render 16*35 cells, which means it invokes TableModel.getValueAt() 560 times
per paint request.

3.8.2.1 Naive approach

A common approach in software development is to keep the code as simple and
clean as possible, and to only introduce more complexity if there is a demon-
strated need. Following this philosophy, we first write the most straightforward
implementation of TableModel we can think of. This naive implementation,
shown in Figure 3.17, immediately forwards all getValueAt() calls to the remote
server. That is, for each table cell value a JTable requests from the TableModel,
there will be a separate remote request, which will gather just the value of that
cell. Before spending time (and possibly introducing errors) with an optimized
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i n t e r f a c e QueryResul tServer {
pub l i c i n t g e t C e l l ( i n t row , i n t co l ) ;
}

c l a s s RemoteTableModel implements TableModel {
p r i v a t e QueryResul tServer s e r ve r ;
/ / . . .
pub l i c Object getValueAt ( i n t row , i n t co l ) {

re turn se rve r . g e t C e l l (row , co l ) ;
}
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Figure 3.17. Naive TableModel

TableModel, we measure the performance of the naive implementation to see
whether there actually is a need for performance optimization.

The cumulative latency distribution on the right of Figure 3.17 shows the
perceptible performance of this approach. It contains one curve for each table
width (2, 4, 8, and 16 columns). The average latency for painting the 16-column
table is 6034 ms, and even the narrow 2-column table still requires 855 ms
per repaint on average. The fact that the 2-column table is significantly more
responsive points towards a possible optimization.

3.8.2.2 Row caching

Given that JTables render tables row-by-row, each row the table needs to paint
will cause a consecutive sequence of invocations to getValueAt() with the same
row number (one invocation for each cell in the row). We can improve the
performance, in particular of tables with many columns, by always fetching a
row from the server, and by caching the last accessed row. Figure 3.18 outlines
this implementation.

The cumulative latency distribution in Figure 3.18 shows a roughly 10-fold
improvement in perceptible performance for the 16-column table. The opti-
mization reduced the average latency for painting from 6034 ms to 593 ms. The
performance gain for the 2-column table, a reduction from 855 ms to 406 ms, is
less pronounced, as expected, because we only observe one hit for each cached
row we fetch.
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i n t e r f a c e QueryResul tServer {
pub l i c i n t [] getRow( i n t row ) ;
}

c l a s s RowBatchRemoteTableModel implements TableModel {
p r i v a t e QueryResul tServer s e r ve r ;
p r i v a t e i n t [] cachedRowFields ;
p r i v a t e i n t cachedRow ;
/ / . . .
pub l i c Object getValueAt ( i n t row , i n t co l ) {

i f ( row!=cachedRow) {
cachedRowFields = s e r ve r . getRow(row ) ;
cachedRow = row ;
}
re turn cachedRowFields [ co l ] ;
}
}
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Figure 3.18. TableModel with Row Caching

3.8.2.3 Table caching

To further reduce paint latency, we can drive the above idea to the extreme, and
retrieve the entire table instead of a single row from the server. This means that
the first getValueAt() call will be slow, requesting a potentially large amount
of data from the server, and subsequent getValueAt() calls will be fast, directly
returning the value from the locally cached table. Figure 3.19 shows this ap-
proach.

The cumulative latency distribution in Figure 3.19 shows a significant im-
provement in perceptible performance. The average latency for painting the
16-column table is 227 ms. However, the first time the table is painted, its entire
contents has to be fetched from the server, which causes a latency of 1872 ms for
that first paint. Subsequent paints take 210 ms on average. While the first paint
request does show up in the cumulative latency distribution, its visual impact is
relatively minor, as it only shifts the curve up by on unit (1 episode) along the
y-axis. However, the latency trace at the bottom of Figure 3.19 clearly shows
the problematic paint call (highlighted). This first paint operation is definitely
perceptible and significantly affects the user.
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i n t e r f a c e QueryResul tServer {
pub l i c i n t [][] getTable ( ) ;
}

c l a s s TableBatchRemoteTableModel implements TableModel {
p r i v a t e QueryResul tServer s e r ve r ;
p r i v a t e i n t [][] cachedTable ;
/ / . . .
pub l i c Object getValueAt ( i n t row , i n t co l ) {

i f ( cachedTable==n u l l ) {
cachedTable = s e r ve r . getTable ( ) ;
}
re turn cachedTable [row ][ co l ] ;
}
}
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Figure 3.19. TableModel with Table Caching

3.8.2.4 Row set caching

The previous optimization lead to a single very long latency episode. If, instead
of caching the entire table, we cached only the set of rows that are currently
visible, we could improve rendering speed without inducing such a long wait
time. Figure 3.20 shows the corresponding implementation.

The average latency for painting the 16-column table is 229 ms. While this is
higher than the 210 ms for the second and subsequent paints we observerd for
the prior approach, we now have eliminated the initial very long lantency paint
that copied the entire table, as we can see in the latency trace at the bottom of
Figure 3.20.

3.8.2.5 Discussion

It is interesting to note that the end-to-end exeuction time (shown at the bot-
tom of the latency traces), and even more importantly, the total time spent
in episodes (the sum of all episode latencies) did not significantly change be-
tween the last two approaches. The table caching approach spent 31147 ms in
episodes, while the row set caching approach spent 31181 ms. Nevertheless,
our profiler clearly shows a difference in perceptible performance between the
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i n t e r f a c e QueryResul tServer {
pub l i c i n t [][] getRows ( i n t startRow , i n t endRow ) ;
}

c l a s s RowSetBatchRemoteTableModel implements TableModel {
p r i v a t e QueryResul tServer s e r ve r ;
p r i v a t e i n t rowSetSize ;
p r i v a t e i n t [][] cachedRowFields ;
p r i v a t e i n t cachedSRow ; // startRow
p r i v a t e i n t cachedERow ; // endRow
/ / . . .
pub l i c Object getValueAt ( i n t row , i n t co l ) {

i f ( row<cachedSRow || row>=cachedERow) {
cachedSRow = row ;
cachedERow = row+rowSetSize ;
cachedRowFields =

s e r ve r . getRows (cachedSRow , cachedRow ) ;
}
re turn cachedRowFields [row−cachedSRow ][ co l ] ;
}
}
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Figure 3.20. TableModel with Row Set Caching

two approaches. This difference shows up in the tabular output of the profiler,
which we did not show in this paper, and it stands out in the latency traces we
showed at the bottom of the figures. Looking at average times spent in methods
would not reveal this difference in perceptible performance, and thus we need
a profiling approach such as ours to identify and eliminate such performance
issues.

3.8.3 Finding Perceptible Performance Problems in Large Appli-
cations

To see how our profiling approach can identify perceptible latency in the context
of a real-world application, we have picked NetBeans, with over 45000 classes
the biggest Java application we are aware of, and ported our two prior case
studies into a NetBeans module. The right side of Figure 3.21 shows that our
module adds two new views at the bottom of the NetBeans window, containing
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Figure 3.21. Performance of NetBeans Including Heat Map and Query Results

the two GUIs of our prior case studies. We then ran the complete NetBeans Java
SE development environment including our module under our LiLa profiler.

We performed three separate runs of NetBeans. In each run we performed
the same 17 minute long sequence of activities: We created a new project,
opened the project’s Main class, and programmed some array and list sorting
and printing routines. During this, we ran the program we developed, con-
figured the preferences, refactored class and method names, and searched for
code.

The first run (“Ordinary”) consist of exactly this normal interaction with Net-
Beans and does not use our module at all. The second run (“Fast”) consists of the
same interaction, interleaved with activities in the heat map and query results
views. In that run we only used the fastest implementations of our GUI (“Im-
ageDirect” for the heat map, and “RowSetBatchRemote” for the query results).
The third run (“Slow”) consists of the same interaction with the NetBeans proper,
and with interactions with our module using the various slow implementations.

The resulting cumulative latency distributions are shown on the right of Fig-
ure 3.21. They clearly show that the ordinary NetBeans session has the best
perceptible performance. The use of the fast version of our module slightly re-
duces the performance (dotted curve), while the slow version drastically impacts
perceptible performance (dash-dot curve), showing 21 episodes longer than 3
seconds.
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3.9 Summary

In this chapter we introduced the latency profiling approach as a way of dealing
with the perceptible performance of interactive applications. Also, we intro-
duced a way to characterize performance from the collected runtime data with
the cumulative latency distribution. The latency profile with carefully selected
landmarks highlights the code responsible for sluggish application behavior. We
discuss the applicability on both Swing and SWT platforms and validate it on a
new suite of microbenchmarks. We have shown that our approach works with
all of the complexities of real-world Java GUI applications by using it to profile
our own profile viewer as well as the professional-grade NetBeans IDE. Finally,
we demonstrate our new profiling approach in two performance tuning case
studies, and we show that we can identify performance problems even if they lie
deep inside a complex real-world application.



Chapter 4

GUI Application Characterization

Aspects such as garbage collection activity, concurrency, or thread contention
might influence the performance of interactive applications and cause percepti-
ble lag during run-time. In this chapter we study the prevalence of these phe-
nomena in interactive applications to ensure how crucial are the factors above.
We chose a suite of real-world Java applications and ran them under an ex-
tended version of our profiler to gather latency profiles. We then perform the
offline analyses needed to characterize the applications based on the recorded
latency profiles.

4.1 Platform

We ran all our experiments on MacBook Pro computers with Core 2 Duo proces-
sors with 4 MB of cache, 2 GB of RAM, and an NVidia 128-bit built-in graphics
card with 128 MB of RAM. We ran the benchmarks on Mac OS X 10.5 Leopard,
using the 64-bit version of Java 1.6.0_15 in server mode1.

4.2 Applications

We selected the 14 Swing applications shown in Table 4.1. They represent a
diverse selection of popular open-source Java GUI programs, spanning the range
from small and focused tools (like CrosswordSage) to large framework-based
applications (like NetBeans).

1 We used the server version of the virtual machine (instead of the client version, which would
be optimized for interactive applications), because some applications depend on Java 1.6, and
Apple only provides a server version of Java 1.6 (and only in 64-bit).

61
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Application Version Classes Description
Arabeske 2.0.1 222 Arabeske texture editor
ArgoUML 0.28 5349 UML CASE tool
CrosswordSage 0.3.5 34 Crossword puzzle editor
Euclide 0.5.2 398 Geometry construction kit
FindBugs 1.3.8 3698 Bug browser
FreeMind 0.8.1 1909 Mind mapping editor
GanttProject 2.0.9 5288 Gantt chart editor
JEdit 4.3pre16 1150 Programmer’s text editor
JFreeChart (Time) 1.0.13 1667 Chart library (time data)
JHotDraw (Draw) 7.1 1146 Vector graphics editor
Jmol 11.6.21 1422 Chemical structure viewer
Laoe 0.6.03 688 Audio sample editor
NetBeans (Java SE) 6.7 45367 Development environment
SwingSet 2 131 Swing component demo

Table 4.1. Applications

4.3 Characterization

In this section we introduce our approach to characterizing the perceptible lag
in interactive applications and we use our approach to characterize a set of real-
world Java applications. The fully automated analysis of about 7 1/2 hours
of interactive sessions (roughly 250’000 episodes) took 15 min, inclusive the
generation of MATLAB graphs.

4.3.1 Overview

Table 4.2 provides an overview of our 14 applications: it contains one row per
benchmark application and ends with a row with the mean across all applica-
tions. Each row represents the average over the four interactive sessions we
performed with each application. The table consists of two blocks: the name of
the benchmark, a quantification of session duration (“Exp. time”) and a charac-
terization of episode duration (“Episodes”).
Session duration. The “E2E” column shows the end-to-end execution time, this
is the time from the start to the end of a session. We see that the average session
durations range between 250 seconds and 630 seconds. These raw end-to-end
times, however, do not quantify to what degree we exercised the application:
they include all the user think time (potentially we could have started the ap-
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Exp. time Episodes
Benchmarks E2E [s] In-Eps [%] < 3ms ≥ 3ms ≥ 100ms Long/min
Arabeske 461 25 323605 6278 177 95
ArgoUML 630 35 196247 9066 265 75
CrosswordSage 367 8 109547 1173 36 80
Euclide 614 35 109572 9676 96 26
FindBugs 599 21 39254 6336 120 56
FreeMind 524 11 325135 3462 26 30
GanntProject 523 47 126940 2564 706 168
JEdit 502 9 117615 2271 24 33
JFreeChart 250 26 77720 1658 175 164
JHotDraw 421 41 246836 5980 338 114
JMol 449 46 110929 3197 604 180
Laoe 460 47 1241198 3174 61 18
NetBeans 398 27 305177 3120 149 82
SwingSet 384 20 219569 4310 70 57
Mean 470 28 253525 4447 203 84

Table 4.2. Overall statistics

plication, walked away from the computer, and come back after 8 minutes).
Column “In-Eps” thus shows the percentage of time spent in episodes (the total
time the system spent handling user requests). This value ranges from 8% to
47%. In most interactive applications, a user is unable to keep the system busy
at all times. For example, typing at a rate of 100 characters per second would
leave the system with 10 ms to process each entered character – if processing a
character only takes 1 ms, then the system is idle 90% of the time. We would
thus observe an in-episode time of 10% even if the user was continuously typing.

Episodes. To reduce measurement overhead and perturbation, our tracing tool
automatically filters out episodes that are shorter than 3 ms. LagAlyzer thus
never gets to see such episodes, it only is able to see how many such short
episodes occurred. We show this number in column “< 3ms”. The large counts
in this column, up to over 1.2 million for Laoe, show that most episodes are short
(and thus uninteresting for understanding perceptible lag). Column “≥ 3ms”
shows the number of episodes, between 1173 and 9676, that were explicitly
represented in our session traces. Most of these traced episodes are still not per-
ceptible. Column “≥ 100ms” thus shows how many episodes per session were
actually perceptible by the user. These are the episodes we need to characterize,
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because it is these episodes that one has to eliminate or shorten to improve the
perceptible performance of these applications. We observed between 24 and 706
perceptibly long episodes in each interactive session, which highlights a consid-
erable potential for performance optimizations. Column “Long/min” shows the
fraction of perceptibly long (≥ 100ms) episodes per minute of in-episode time2.
This number, between 18 to 180 perceptible episodes per minute, provides a
notion of how frequently a user becomes aware of the system’s lag, and it al-
lows a comparison of perceptible performance across applications and sessions
of different durations. While 180 perceptible episodes per minute (3 percepti-
ble episodes per second) seems high, a program rendering a complex animation
can easily reach this number, given that it would aim at repainting the screen
roughly 24 times per second. According to this measure of perceptible episodes
per minute, our sessions with JMol had the worst perceptible performance. This
conforms to our subjective experience: when we used JMol to perform three
dimensional animations of molecules with significant complexity and difficult
to compute surfaces, the animations exhibited a perceptible lag and their frame
rate dropped significantly.

4.3.2 Trigger: Input, Output, or Asynchronous Events

Lag can occur in handling input, e.g. by processing mouse and keyboard events.
It can occur in producing output, e.g. in rendering data to the screen. Finally, it
can occur in events triggered by asynchronous activity, such as when a back-
ground thread notifies the GUI thread of a state change in the application’s
model. In this section we characterize episodes according to these different
triggers.

To determine the trigger of an episode we perform a pre-order traversal of its
interval tree. The type of the first “listener”, “paint”, or “async” interval deter-
mines the trigger. A “listener” interval implies the episode was triggered by input
(listeners usually are responding to user input events such as mouse clicks). A
“paint” interval implies the episode was triggered by the system requesting an
update of the program’s output (paints represent activity that renders to the
screen). An “async” interval implies that an asynchronous event was triggering
the episode3. Finally, some episodes contain no children at all, or at least no

2 We divide by in-episode time, and not by end-to-end time, because in-episode time is a
more stable denominator. If a user was to think for a long time during an interactive session, the
end-to-end time would drastically increase, but the in-episode time would stay stable, while the
number of (short or long) episodes would also stay stable.

3 We found that the Swing GUI toolkit’s repaint manager sometimes causes “asynchronous”
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“listener”, “paint”, or “aysync” child that was long enough to pass the tracing
infrastructure’s filter (> 3 ms). We classify those episodes as unspecified in this
analysis.

Figure 4.1 categorizes all episodes according to their trigger. The figure con-
tains two graphs: the upper graph shows the data for all traced episodes and the
lower graph shows the data for only the perceptible episodes. A performance
analyst is mostly interested in the lower graph, because she needs to optimize
the episodes with perceptible latency and does not care about the large number
of imperceptible episodes. Each graph shows one stack of bars for each applica-
tion. The x-axes show the percentage of episodes (resp. of perceptible episodes)
grouped by their triggers.

On average across all benchmarks, 40% of the perceptible lag is due to input
processing, 47% due to output, and 7% due to the handling of asynchronous
notifications.

We now discuss the applications that exhibit particularly striking charac-
teristics. In Arabeske, 57% of the perceptible episodes have no specific trig-
ger. An investigation with LagAlyzer shows that many perceptible episodes are
empty (and therefore appear as unspecified). Most of these episodes consist
of a long garbage collection interval. A look at the call stack samples during
these episodes shows that the program calls System.gc() and thereby explicitly
triggers a major garbage collection. Explicitly requesting a garbage collection
during an interactive episode could be considered a performance bug.

For JMol, 98% of the perceptible episodes are output episodes. Most of these
episodes conform to a single pattern, which represents the rendering of the com-
plex three dimensional molecule visualization. Given that JMol shows a timer-
based animation, it triggers a repaint roughly every 40 ms, leading to a large
number of output episodes even without user input activity.

In ArgoUML, 78% of perceptible episodes are input episodes. These episodes
belong to many different patterns, representing the complexity of the applica-
tion. Most of these patterns are related to input that needs to update the UML
model maintained in the application, and some of these updates trigger expen-
sive computations and checks.

FindBugs shows the largest fraction of asynchronously triggered episodes
(42%). These episodes are mostly due to a background thread that periodically
triggers an update of the animated progress bar. One of the patterns of this

intervals, even though it does not run in a different thread, due to the way it enqueues requests
for repainting a component. We can identify these special episodes by their tree structure: they
contain an “async” interval containing a “paint” interval. We remove those episodes from the
group of asynchronous episodes and reclassify them as output episodes.
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kind represents episodes that spend a significant amount of time in the toolkit’s
progress bar animation code, and where, in each such episode, a garbage collec-
tion is triggered at that time. Given that the garbage collections in this pattern
often take several hundred milliseconds, it would be worthwhile for a perfor-
mance analyst to investigate the allocation behavior in the progress bar anima-
tion code.

4.3.3 Location: Application, Library, Garbage Collector, or Native
Code

Lag may be induced by the application, the runtime libraries, the garbage collec-
tor, or by native code. We first distinguish between the percentage of time spent
in application versus library code. We analyze the call stack samples taken in
Java code during episodes, and we partition them into application and runtime
library samples. We distinguish between application and library samples based
on the fully qualified class name of the method that was executing when the
sample was taken. We use a different approach to distinguish between garbage
collection, native code, and Java code time: Garbage collections and native calls
are explicitly represented in traces as intervals, and thus we can directly com-
pute the fraction of episode time spent in these two areas.

Figure 4.2 shows the results of this analysis. The upper graph shows the
data for all episodes and the lower graph focuses on the perceptible episodes.
For each benchmark a graph shows two stacks of bars. The first stack shows the
fraction of episode time spent in application versus runtime library code. The
second stack shows the fraction of episode time spent in GC and native code.

On average over all applications, 52% of perceptible lag occurs in the runtime
libraries and 48% in the application. The fact that more than half of the lag is
due to time spent in the runtime libraries shows the importance of an efficient
class library implementation for perceptible performance. 11% of perceptible
lag is due to garbage collections, and 5% due to native calls. The contribution
of native calls is thus relatively minor. The lag due to garbage collection is
significant, however the average is greatly affected by two outliers.

We now discuss the applications that stand out in this characterization. As
we have already discussed in Section 4.3.2, Arabeske explicitly triggers major
garbage collections. As we can see in Figure 4.2, these garbage collections are
responsible for about 60% of the perceptible lag.

Roughly 26% of the perceptible lag in ArgoUML is due to garbage collection.
A look at LagAlyzer shows that minor garbage collections are spread throughout
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many of the episodes in many of the patterns. The upper graph of Figure 4.2
shows that over all episodes, ArgoUML spends 16% of time in GC: thus, GC
is prevalent throughout program execution and is not uniquely concentrated
in long episodes. These findings indicate that ArgoUML has a generally high
allocation rate that necessarily leads to relatively frequent garbage collections.

24% of the perceptible lag in JFreeChart is due to native code. As we have
seen in Figure 4.1, a large fraction of JFreeChart’s lag is due to output. Using
LagAlyzer, we can see that many episodes contain calls to native rendering meth-
ods. While individual rendering calls complete quickly, the many calls add up to
the 24% contribution we see.

In Euclide, roughly 73% of perceptible lag is due to time spent in the runtime
library. A look at the call stack samples during these episodes shows that Euclide
was particularly slow in reacting to events in combo box controls. At the end of
Section 4.3.4 we will provide a more detailed explanation of the cause of this
long lag for Euclide.

96% of the perceptible lag in JHotDraw is due to time spent in application
code. LagAlyzer shows that a large fraction of the call stack samples were taken
in code related to drawing handles and outlines of bezier curves. In our JHot-
Draw session we drew bezier curves of considerable complexity, and it looks like
JHotDraw does not easily scale in that respect.

4.3.4 Cause: Concurrent Activity, Synchronization, Sleep, Work

In this section we characterize the causes of perceptible latency. We group these
causes into four categories: (1) concurrent activity in a background thread might
slow down the GUI thread, (2) the GUI thread might be blocked, (3) the GUI
thread might waiting in synchronization, (3) the GUI thread might voluntarily
sleep, or (4) the GUI thread might have a lot of work to do.

Concurrent Activity. Figure 4.3 shows, for each benchmark, the average
number of runnable (not necessarily running) threads during episodes. We com-
pute this measure of concurrency by analyzing each call stack sample taken dur-
ing episodes. For each sample we count the number of runnable threads.

A value of one means that exactly one thread was runnable, and given that
episodes execute in the GUI thread, this has to be the GUI thread. A value
below one means that the GUI thread sometimes was blocked, which might have
caused the observed lag. A value above one means that other Java threads were
competing with the GUI thread for the CPU core(s), and thus might have caused
the lag by limiting the progress of the GUI thread.
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The small amount of concurrency in these applications is surprising: only
1.2 threads are runnable on average over all episodes (left chart). We believe
this is due to the single-threaded design of modern GUI toolkits: all interactions
with the toolkit have to happen in the designated GUI thread. As a result, de-
velopers prefer to also perform all computation in the GUI thread, and will only
extract computation to background threads if absolutely necessary (if computa-
tion causes a perceptible lag). LagAlyzer helps to find exactly these cases.

For perceptible episodes, the average number of runnable threads is even
lower than 1. The only applications with a concurrency greater than one during
long-latency episodes were Arabeske, FindBugs, and NetBeans. These applica-
tions seem to make use of background threads. For example, we use FindBugs
to open a project containing more than 1600 classes. Loading that project takes
roughly 3 minutes, and given that loading happens in a background thread,
throughout the loading activity that thread competes with the GUI thread for
the CPU.

Synchronization, Sleep, and Work. Figure 4.4 shows synchronization and
sleeping time during episodes. The figure partitions the time the GUI thread
spent in episodes into four components represented in a stacked bar: time
blocked in monitor contention (first part of bar), time waiting in synchroniza-
tion (second part of bar), time sleeping (last part of bar), and time working (the
remainder).

Note that we zoomed the x-axis of the figure to 60% to better show the dif-
ferent parts of the bars: even though the bars seem big, the GUI thread spends
the majority of its time working. Also note that the upper graph in the figure,
which shows the same statistics for all episodes (not just the perceptibly slow
ones) shows almost no time spent in blocked, wait or sleep state. This demon-
strates that aggregate information across the entire program execution is not
necessarily helpful in pinpointing the causes of perceptible lag in interactive ap-
plications.

We measure the percentage of time in blocked, resp., waiting, resp., sleep-
ing state by counting the fraction of call stack samples where the GUI thread
was blocked in monitor contention, resp., waiting in Object.wait or LockSup-
port.park, resp., sleeping.

Synchronization cost does not seem to significantly affect perceptible perfor-
mance (usually less than 10% of the time of perceptible episodes is wasted in
synchronization). The most notable exception is jEdit, where over 25% of per-
ceptible lag is due to synchronization. Looking at the corresponding stack traces
in LagAlyzer, we can see that the synchronization is related to event processing
inside jEdit’s modal dialogs.
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We were surprised that voluntary sleep was responsible for a significant frac-
tion of the perceptible lag. For Euclide, over 60% of perceptible lag was due
to the GUI thread’s sleep. LagAlyzer pointed us to the cause of this call to
Thread.sleep: All stack traces where the GUI thread was sleeping were inside
a method in Apple’s GUI toolkit. That method caused a blinking effect in Apple’s
combo box implementation. The same issue appeared across all benchmarks: all
time spent in Thread.sleep was due to Apple’s implementation of this blinking
animation.

4.4 Summary

In this chapter we characterized a suite of real-world interactive applications,
monitoring their garbage collection activity, concurrency, or thread contention
impact. We find that they include significant time spent in the Java runtime
libraries, excessive time spent processing input or producing output, time spent
in garbage collection, in native code, and even time spent voluntarily sleeping.
We find surprisingly little concurrent activity in these applications and as a result
also only a minor impact of synchronization on perceptible performance.
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Figure 4.1. Triggers of (perceptible) episodes
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Figure 4.2. Location where time was spent during (perceptible) episodes
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Figure 4.3. Concurrency in episodes (average # of runnable threads)



4.4. SUMMARY 73

0 10 20 30 40 50 60

Arabeske
ArgoUML

CrosswordSage
Euclide

FindBugs
FreeMind

GanntProject
JEdit

JFreeChart
JHotDraw

JMol
Laoe

NetBeans
SwingSet

Episodes >100ms − Time [%]

B
en

ch
m

ar
ks

0 10 20 30 40 50 60

Arabeske
ArgoUML

CrosswordSage
Euclide

FindBugs
FreeMind

GanntProject
JEdit

JFreeChart
JHotDraw

JMol
Laoe

NetBeans
SwingSet

Episodes − Time [%]

B
en

ch
m

ar
ks

 

 
Blocked Wait Sleeping

Figure 4.4. Synchronization and sleep during episodes



74 CHAPTER 4. GUI APPLICATION CHARACTERIZATION



Chapter 5

Lag Hunting

The main goal of our approach is to identify latency bugs in interactive applica-
tions and pinpoints their causes. The implementation of the approach shown in
Chapter 3 has three key drawbacks:

• Requires manual instrumentation of the SWT or AWT event dispatch
code.

It means that a profiler based on that approach can only be used by de-
velopers with a detailed understanding of the runtime environment, as
they have to manually patch the runtime libraries of their virtual machine.
While this patch is small, it can be different for different versions of the
libraries.

• Requires static instrumentation of all program and library classes.

This means that in order to profile an application, a developer has to lo-
cate, instrument, and re-deploy all its class files. This is not an easy feat
for applications such as Eclipse, with dozens of plug-ins packaged in differ-
ent ways, and it is impossible for applications with dynamically generated
code. Moreover, the instrumentation of the entire code base of an appli-
cation like Eclipse can take up to an hour, and the instrumentation has
to be repeated every time a developer changes some code (e.g. to fix a
performance issue just discovered).

• Generates unreasonably large traces.

It leads to traces that are difficult to store for longer times and difficult
to ship from a tester to a developer, as they can grow to hundreds of MB
in size (at rates of up to 1.4MB/s, a one hour session will produce a 5GB

75
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trace). Moreover, the massive amount of data generated (and written to
disk) at runtime may perturb the actual measurement results.

Not only these three drawbacks prevent effective identification of the perfor-
mance problems. Many performance problems occur only in the field where an
application may run on different platforms, and under different contexts which
we could not anticipate in the lab. Thus, real performance testing of interactive
applications should involve multiple profiles from multiple end-users.

5.1 Post Deployment

As we discussed in Chapter 2 developers employ a host of powerful approaches
and tools to ensure and improve the quality of their software. They perform
static analyses to identify problems even before applications are run. Then they
perform testing sessions to find errors at runtime before shipping applications.
They employ approaches to find errors in applications already running in the
field. The former two approaches, static checking and testing, are invaluable for
improving software quality. However, the latter approach, post-deployment prob-
lem detection, is increasingly receiving attention in research and practice. For
example, Liblit et al. [80] introduce a bug finding approach that reduces the cost
of evaluating runtime assertions using sampling, Hauswirth and Chilimbi [61]
present an approach for low-overhead memory leak detection, or Glerum et
al. [56] describe Windows Error Reporting (WER), a system for collecting and
classifying crash reports.

Benefits of post-deployment problem detection. The success of WER,
which has been in operation for over ten years and is running on over one bil-
lion client computers, demonstrates the two main benefits of post-deployment
problem detection: (1) gathering information about problems in the context in
which they occur, and (2) combining the collective information from a large
user base. The first benefit is important because some problems only manifest
themselves in a specific context, and that context may differ from the artificial
environment used during testing. By different contexts we mean different hard-
ware platforms, operating systems, execution environments, different libraries
or a different set of enabled plug-ins, or different storage and network config-
urations. The second benefit is important because the large number of users
running an application enables the use of sampling. Potentially costly dynamic
analyses can be partitioned into small subsets (samples), and each application
session may run only a small, low-overhead subset of the analysis. The aggre-
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gation of the partial results from a large number of sessions can then provide
insights that would be difficult to gain from a limited number of testing runs.

Performance problems. We exploit these two benefits to address an issue
that has received relatively little attention so far: the detection of performance
problems in widely deployed applications. Probably even more than problems of
functional correctness, performance problems are highly dependent on the con-
text in which an application runs. Their manifestation heavily depends on (1)
the underlying platform, (2) the specific configuration of the application, and
the (3) size and structure of the inputs the application processes. For example,
applications may run on computers with different clock frequencies, numbers of
cores, amounts of memory, and different amounts of concurrent activity. Users
may configure applications by installing a variety of plug-ins, some of them
might not even be known to the application developer (e.g. they may install
a spell-checking plug-in into an editor, and that plug-in may perform unantici-
pated costly operations when getting notified about certain changes in the docu-
ment). Or users may use an application to process inputs that are unexpectedly
sized (e.g. they may browse a folder containing tens of thousands of files, they
may use a web server to serve mostly multi-gigabyte files, or they may want to
edit an MP3 file that contains 10 hours of audio). Without knowing the exact
usage scenarios of widely deployed applications, developers are unable to con-
duct representative performance tests in the lab. Thus, (in addition to gathering
usage information) we propose to also directly detect performance problems in
the deployed applications.

Widely deployed software. Post-deployment problem detection is particu-
larly relevant for widely deployed software, because the larger the number of
deployments, the larger the number of different contexts. We group software
into three classes, with increasing number of deployments: (1) hosted applica-
tions (e.g. cloud-based web mail), (2) installable services (e.g. web or database
servers), (3) installable client applications (e.g. web browsers or IDEs). While
all three classes may (directly or indirectly) be used by large numbers of users,
the last class has the largest number of deployments and their developers have
the least control or knowledge over the context in which the applications run.
Moreover, that class is rapidly expanding from the traditional applications run-
ning on powerful desktop computers to apps running on resource-constrained
notebooks, tablets, and smart phones, where performance grows in importance.
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Perceptible performance. Client applications directly interact with users.
Their performance is thus defined by the users’ perception. As a significant body
of research in human-computer interaction has shown, the key determinant of
perceptible performance is the system’s lag in handling user events [104; 103; 37;
41]. Thus, to detect perceptible performance bugs, one must detect perceptible
lag.

5.2 Advanced profiling

As discussed in Section 5.1 our approach targets widely-deployed applications by
gathering runtime information in the field. It targets interactive applications by
gathering information about perceptible lag.

We now present the improvements over the original profiling approach that
were necessary to realize our idea of lag hunting in the field.

• Data Size Reduction

Traces produced in an hour-long profiling session can reach several GB in
size. This is impractical. The simple finding that the latency is roughly
exponentially distributed, that is, that most intervals (e.g. most observer
calls) are short, indicates an effective optimization: We are only interested
in perceptible intervals, and they have a long latency; thus by filtering
out short intervals, we can drastically reduce trace size while keeping all
relevant information. Moreover, on-the-fly data compression would addi-
tionally decrease trace size by an order of magnitude.

• Instrumentation Caching

Interactive applications consist of hundreds or thousands of classes, and
the Java class libraries, which themselves make use of observers, add sev-
eral thousand classes more. Starting an interactive application means
loading many of its classes. With a dynamic approach to latency profil-
ing, class loading entails instrumentation, which can lead to a significant
overhead. In most scenarios, the vast majority of classes of an interactive
application do not change between runs. If we thus could cache the instru-
mented version of these classes, analog to existing approaches to persistent
code caching [97; 39], we would be able to reduce the instrumentation ef-
fort to a minimum.
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• Incremental Analysis

A crucial parameter in our approach is the choice of landmark methods.
Instrumentation of their calls during run-time is challenging in terms of
overhead. Performing the same analysis as with the static approach to
distinguish method calls might significantly increase latencies. Given that
many application classes inherit from other classes. Thus, when a class is
analyzed the results could be cached. If another class inherits from the
one already analyzed then redundant analysis could be avoided by reuse
of the cached result. Thus, we could perform an incremental analysis to
avoid unnecessary repetitions.

• Profiling Extension

Previously, we focused on certain landmarks as responsible for percepti-
ble performance of interactive applications. However, the causes of per-
ceptiveness might not be only there. Thread synchronization is another
potential cause of slow performance because many modern interactive ap-
plications are multithreaded. A thread may spend time in the blocked state
due to monitor contention, it could wait in synchronization, or sleep. Fur-
ther, modern virtual machines benefit from garbage collection which also
may cause perceptible lag during runtime. As mentioned in the approach
section, stack sampling of all the threads would allow construction of the
calling context tree. The cost of making such a tree is high. However,
collaborative profiling, which is discussed below, would allow the use of
sampling.

• Collaborative Profiling

Having a lightweight profiler that dynamically instruments the applica-
tion code enables one of the main goals: to have it deployed in the field.
The collection of profiling data is particularly relevant for widely deployed
software, because the larger the number of deployments, the larger the
number of different contexts. Gathering information about problems in
the context in which they occur is important because some problems only
manifest themselves in a specific context, and that context may differ from
the artificial environment used during testing. By different contexts we
mean different hardware platforms, operating systems, execution environ-
ments, different libraries or a different set of enabled plug-ins, or different
storage and network configurations. Gathering information from a large
user base allows aggregation of the partial results from a large number of
sessions to provide insights that would be difficult to gain from a limited
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number of testing runs. Moreover, combining the collective information
from a large user base is important because the large number of users run-
ning an application enables the use of sampling. Potentially costly dynamic
analysis can be partitioned into small subsets (samples) and each applica-
tion session may run only a small, low-overhead subset of the analysis.

Figure 5.1 shows an overview of the redesigned landmark latency profiling
approach. Applications are deployed with a small Java agent that collects per-
formance information about each session. At the end of a session, the agent
sends a session report to an analysis engine running on a central server. The
server collects, combines, and analyzes the session reports to determine a list of
performance issues. To the developers, the analysis engine appears like a tradi-
tional bug repository. The only difference is that the “bug reports” are generated
automatically, without any initiative from the users, that all equivalent reports
have been combined into a single issue, that related issues are automatically
linked together, and that issues contain rich information that points towards the
cause of the bug.
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Figure 5.1. Lag Hunting

5.3 Landmark methods

As we discussed in Chapter 3, a chosen set of landmarks should fulfill three
properties: First, they need to cover most of the execution of the program. Given
that we only measure the latency of landmarks, we will be unaware of any long
activity happening outside a landmark. Second, they need to be called during the
handling of an individual user event. We want to exploit the human perceptibility
threshold (of roughly 100 ms) for determining whether a landmark method took
too long, and thus such a method needs to correspond to a major activity that
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is part of handling a user event. A method executed in a background thread
may take much longer than 100 ms, but it will not affect the responsiveness of
the application, given that the GUI thread will continue to handle user events.
Moreover, a top-level method of the GUI thread (e.g. the main method of the
application represented by the bottom rectangle in Figure 3.1), may have a very
long “latency”, but it is not responsible for delaying the handling of individual
user events. Third, landmarks should be called infrequently. Tracing landmarks
that are called large numbers of times for each user event would significantly
increase the overhead.

5.3.1 Selecting good landmarks

We now describe how to select good landmarks. While our approach focuses on
interactive applications, just by changing the set of landmarks, many of its ideas
would also apply to the analysis of transaction-oriented server applications.

Event dispatch method. One possible landmark method is the single GUI
toolkit method that dispatches user events. This method will cover the entire
event handling latency. However, when using this method as the only landmark,
the analysis will result in a list with this method as a single issue. This means
that many different causes of long latency will be combined together into a
single report, which makes finding and fixing the causes more difficult. Even
though the event dispatch method is not very useful when used in isolation, it is
helpful in combination with other, more specific, landmarks. Any left-over issue
not appearing in the more specific landmarks (methods transitively called by the
dispatch method) will be attributed to the dispatch method.

Event-type specific methods. A more specific set of landmarks could be
methods corresponding to the different kinds of low-level user actions (mouse
move, mouse click, key press). However, these methods still are too general. A
mouse click will be handled differently in many different situations. Having a
single issue that combines information about mouse clicks in multiple contexts
is often not specific enough.

Commands. Ideally, the landmarks correspond to the different commands
a user can perform in an application. If the application follows the command
design pattern [53] and follows a standard implementation idiom, it is possible
to automatically identify all such landmarks.

Observers. Even an individual command may consist of a diverse set of
separate activities. Commonly, a command changes the state of the applica-
tion’s model. In applications following the observer pattern, the model (syn-
chronously) notifies any registered observes of its changes. Any of these ob-
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server may perform potentially expensive activities as a result. If the application
follows a standard idiom for implementing the observer pattern, it is possible to
automatically identify all observer notifications as landmarks.

Component boundaries. In framework-based applications, any call be-
tween different plug-ins could be treated as a landmark. This would allow the
separation of issues between plug-ins. However, the publicly callable API of
plug-ins in frameworks like Eclipse is so fine grained, that the overhead for this
kind of landmarks might be too large.

Application-specific landmarks. If application developers suspect certain
kinds of methods to have a long latency, they may explicitly denote them as
landmarks to trigger the creation of specific issues.

5.4 Profiling Optimizations

Our original profiling approach was impractical for use in the field. The new ap-
proach makes in-the-field-profiling practical by using dynamic instrumentation
and by employing several optimizations.

5.4.1 Persistent Instrumentation Caching

Interactive applications consist of hundreds or thousands of classes, and the
Java class libraries, which themselves make use of listeners, add several thou-
sand classes more. Starting an interactive application means loading many of
its classes. With our dynamic approach to latency profiling, class loading entails
instrumentation, which can lead to a significant overhead.

In most scenarios, the vast majority of classes of an interactive application
do not change between runs. If we thus could cache the instrumented version of
these classes, analog to existing approaches to persistent code caching [97; 39],
we would be able to reduce the instrumentation effort to a minimum.

We maintain a persistent code cache in a straightforward Java data struc-
ture, which we deserialize at the start of the application, and serialize when the
application terminates. The cache basically contains a map from class names to
class bytes (the instrumented version of the class file).

Given that a class, at runtime, is not uniquely identified by its name, but
by its name and its class loader instance, we cannot be sure that the mapping
from class name to instrumented code is correct in all cases. For this purpose we
also store the uninstrumented class bytes in the cache. This allows us to check
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whether the loaded class, that should now be instrumented, truly corresponds
to the class stored in the cache.

Listing 5.1 shows our caching approach. When we are asked for transform-
ing (instrumenting) a class, we lookup information in the class cache by class
name. If the class cache contains information about our class (line 4), we re-
trieve the instrumented bytes. If we use the safe approach (versionCheckEn-
abled), we also retrieve the uninstrumented bytes from the cache. We compare
the uninstrumented cached bytes with the loaded bytes we are supposed to in-
strument (line 10). If they are identical, we know that we can safely use the
instrumented bytes from the cache. If they differ, we reinstrument the loaded
bytes, and we update the cache.

We also support an unsafe but potentially faster approach, where we omit
the version check. We have noticed that in most cases, the version check is not
necessary. It is rare that two classes with the same name are loaded by different
class loaders, and that the two classes actually differ. However, we have noticed
cases where classes were dynamically generated on the fly, and where they used
artificially generated names. In these cases, the same names were often reused
for different classes in different runs. Moreover, one application of our profiling
approach is the profiling of an application during development. In that situation,
the code of some classes will change between runs, and it thus is important to
not use stale code from the cache. Our version check detects these changes and
reinstruments classes that have changed.

There is one limitation to our persistent instrumentation caching approach.
We do not reinstrument a class A, if a different class, say B, called by A, has
changed. This means that there could be cases where we trace presumed listener
calls from class A to class B, but where, due to changes in class B, the callee
method no longer is a listener. We could update our caching mechanism to
detect this situation by merging information from the decision cache into the
instrumentation cache. However, this case should rarely occur in practice (a
developer turning a listener method into a normal method, or vice versa), the
consequence of not detecting it are benign (the application still runs correctly),
and the remedy is straightforward (delete the cache after such a change), and
thus we omitted this check from our implementation. Note that this omission
does not lead to incorrect executions, because if class B changed in a way that
broke class A, then class A would also have been changed by the developer (and
we thus would have reinstrumented the new version).
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Listing 5.1. Persistent Instrumentation Cache
1 byte [] t ransform ( S t r ing className ,
2 byte [] loadedBytes ) {
3 i f ( conta ins ( className )) {
4 // c l a s s ( hope fu l l y the c o r r e c t one ) in cache
5 byte [] ins t rumentedBytes =
6 lookupInstrumented ( className ) ;
7 i f ( vers ionCheckEnabled ) {
8 uninstrumentedBytes =
9 lookupUninstrumented ( className ) ;

10 i f ( equals ( uninstrumentedBytes ,
11 loadedBytes )) {
12 re turn instrumentedBytes ;
13 } e l s e {
14 instrumentedBytes =
15 instrument ( loadedBytes ) ;
16 put ( className , loadedBytes ,
17 instrumentedBytes ) ;
18 re turn instrumentedBytes ;
19 }
20 } e l s e {
21 re turn instrumentedBytes ;
22 }
23 } e l s e {
24 // c l a s s not in cache
25 instrumentedBytes = ins trument ( loadedBytes ) ;
26 put ( className , loadedBytes ,
27 instrumentedBytes ) ;
28 re turn instrumentedBytes ;
29 }
30 }



5.4. PROFILING OPTIMIZATIONS 85

5.4.2 Incremental Observer Method Identification

Our profiler has to instrument two types of code: (I) the event dispatch method
in the GUI toolkit, and (II) any call site corresponding to a listener notification.
With our dynamic instrumentation approach, we need to decide where to place
instrumentations in a class A at the time class A is being loaded.

The decision for case (I) is simple, we always instrument entry and exit of
the event dispatch method, which is a well known method in a well known
class: dispatchEvent() in java.awt.EventQueue for AWT and readAndDispatch()
in org.eclipse.swt.widgets.Display for SWT.

The decision for case (II) is more complex. Class A may contain many meth-
ods, and each method may contain many call sites. Only some of these call sites
need to be instrumented. A listener notification corresponds to a call site in class
A, which calls a method B.m, where B.m is a observer method. The decision for
whether B.m is a listener method is based on the fact that listeners in AWT as
well as SWT implement the java.util.EventListener interface. We only consider
B.m a listener method if (1) the static type of the call target, B, is a subtype
of EventListener, and (2) the target method, m, is declared in an interface that
extends EventListener. The second clause prevents the instrumentation of calls
to non-listener methods of classes implementing EventListener.

This decision whether B.m is a listener method can be expensive (it requires
the traversal up the inheritance hierarchy involving multiple interface inheri-
tance), and may need to be taken many times during the instrumentation of a
program (e.g. there may be dozens or hundreds of call sites to a given method,
located in many different classes). Thus, instead of redeciding every time we
encounter a call site to B.m, we cache the decision the first time and look it up
in a decision cache in subsequent cases.

As stated before, we need to take the decision about B.m at the time class
A is being loaded. At that time, class B (and its supertypes) may not have been
loaded yet. In this situation, there are two options to determine whether B.m is
a listener method.

First, we could load class B (calling loadClass() on class A’s class loader), and
use reflection to query B (and B’s supertypes’) methods. Fortunately we know
class A’s class loader at the time we need to transform A, and it is exactly the
class loader which would eventually be used by the virtual machine to load B.
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So, finding B is not a problem. However, the need to fully load B at this early
time can lead to problems: B might depend on A, or even be equal to A, and
thus would recursively trigger the loading of A; and the use of reflection on B
will cause B to be resolved (and not just loaded), possibly triggering the loading
of other classes depending on A.

The second option, the option we chose to use, circumvents these problems.
We can load the bytes of class B and B’s supertypes by calling getResource() –
instead of loadClass() – on class A’s class loader. This allows us to get the bytes
without causing the class to be loaded. We then use a class file parser library (in
our case we use ASM, the same library we use for instrumentation) to parse the
bytes, find the supertype names, and traverse the methods.

Now that we have described how we take the decision whether B.m is a lis-
tener method, we can describe how we cache that decision. We could just keep
a cache mapping from “B.m” to “true” or “false”. However, since a listener type
may have many listener methods (e.g. java.awt.MouseAdapter has 8 such meth-
ods), we gather decisions about all methods of a class once we spend the effort to
load a class’ bytes. We thus cache, for each class, the list of its listener methods.
We also cache the negative result: if we encounter a class without listener meth-
ods, we cache the empty list. This is important for performance, because the
vast majority of call sites do not correspond to calls to listener classes, and de-
termining that a method is not a listener method requires an exhaustive traversal
of its supertypes. Moreover, given that we have to possibly parse several class
files to take the decision for B.m, we cache the lists of listener methods of all
supertypes of B along the way. Thus, if in the future some class C inherits from
a supertype it has in common with B, it can stop the traversal up the inheritance
hierarchy at that type and used the cached method list. This caching and reusing
of intermediate results essentially “incrementalizes” the identification of listener
methods.

5.4.3 Online Trace Filtering

Traces produced in an hour-long listener latency profiling session can reach sev-
eral GB in size. This is impractical. The simple finding that the latency is roughly
exponentially distributed, that is, that most intervals (e.g. most listener calls) are
short, indicates an effective optimization: We are only interested in perceptible
intervals, and they have a long latency; thus if we can filter out short intervals,
we can drastically reduce trace size while keeping all relevant information.

Figure 5.2 shows the effect of filtering. The unfiltered trace on the left con-
tains a large number of short intervals. After filtering, only intervals with a



5.4. PROFILING OPTIMIZATIONS 87

latency above a certain threshold remain (right). The information about the
short intervals is aggregated in the remaining intervals (e.g. by keeping track of
the number of their short children).
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Figure 5.2. Filtering of Short Latency Intervals

How can we filter out long intervals online? Given that we write out a trace
record at the begin and at the end of each interval, how can we know – at the
begin of an interval – that this interval will be short and should not be traced?
Obviously we have to somehow postpone the writing of a begin record until we
know that the corresponding interval is longer than the latency threshold.

Listing 5.2 shows our approach to online trace filtering. Our profiler is called
at the begin and at the end of each interval (e.g. before and after each call to a
listener, or before and after each dispatch of an event). It is supposed to write
a record to the trace for each begin and end. Instead of immediately writing
the corresponding begin and end records, we maintain a stack of all currently
open intervals (of all their begin records). This is similar to the call stack, which
contains a stack frame for each currently active method, except that we do not
have an element for each method invocation, but only for method invocations
corresponding to listener calls and event dispatches. This shadow stack thus
represents an abstraction of the call stack. Its purpose is to allows us to postpone
writing begin records into the trace until we are sure that the corresponding
interval is longer than a given threshold.

At the begin of an interval (method “beginInterval”), we just push a begin
record on the stack. At the end of an interval (method “endInterval”), we pop its
begin record from the stack, and we compute the interval’s latency. If the latency
was short, the interval is to be filtered out. In that case (line 22) we do not write
anything to the trace, but we aggregate the interval’s duration in a field of its
parent (the directly enclosing interval). The parent will thus know the number
and total duration of all its short child intervals. This information is relevant,
because a parent could contain a large number of short children, and the profile
should reflect that fact.
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Listing 5.2. Online Trace Filtering
1 c l a s s F i l t e r {
2 Stack s tack = new Stack ( ) ;
3 // po in te r in to s tack
4 i n t postponementBoundary = 0;
5 // min la t ency of t raced i n t e r v a l s
6 long thresho ld ;
7
8 F i l t e r ( i n t th resho ld ) {
9 t h i s . th resho ld = th re sho ld ;

10 Event th readS ta r t = new Event ( ) ;
11 s tack . push ( th readS ta r t ) ;
12 }
13
14 void b e g i n I n t e r v a l ( Event s t a r t ) {
15 s tack . push ( s t a r t ) ;
16 }
17
18 void end In te rva l ( Event end) {
19 Event s t a r t = s t a ck . pop ( ) ;
20 long la t ency = end . timeStamp−s t a r t . timeStamp ;
21 i f ( l a t ency < th re sho ld ) {
22 // shor t i n t e r v a l ,
23 // f i l t e r out ( keep aggregate in fo )
24 Event parent = s t a ck . top ( ) ;
25 parent . s k i p p e d I n t e r v a l s++;
26 parent . sk ippedLatency += l a t ency ;
27 } e l s e {
28 // long i n t e r v a l ,
29 // a l l enc lo s ing i n t e r v a l s are long , too
30 i f ( postponementBoundary<s t a ck . s i z e ( ) ) {
31 processPostponedBegins ( ) ;
32 } e l s e {
33 postponementBoundary = s t a ck . s i z e ( ) ;
34 }
35 traceEnd (end ) ;
36 }
37 }
38
39 void processPostponedBegins () {
40 while ( postponementBoundary<s t a ck . s i z e ( ) ) {
41 t r a c e S t a r t ( s t ack . get ( postponementBoundary ) ) ;
42 postponementBoundary++;
43 }
44 }
45 }
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In case the latency was above the threshold (line 28), the begin and end
records of the interval have to be written to the trace. Before we can write
an interval’s begin record, we have to ensure that the begin records of all its
enclosing intervals have already been written. We check this in line 30. The
“postponementBoundary” is an index into the shadow stack. All begin records
on the stack below this index have already been written to the trace. The records
above the index have not yet been written, because it was not yet clear whether
they corresponded to long intervals. Given that the current interval is long,
all enclosing intervals are long, too, and we can write their begin records to
the trace and move the “postponementBoundary” to the current top of stack
by calling “processPostponedBegins”. If, on line 30, the begin records of all
enclosing intervals have already been written, we just ensure, in line 33, that
the “postponementBoundary” corresponds to the new top of stack (it might have
pointed higher, to the prior top of stack, and thus might need to be moved down
by one). After this postponement processing, we finally write the end record of
the current interval to the trace (line 35).

The shadow stack always contains a sentinel at the bottom. This sentinel,
represented by the “threadStart” event (line 10), corresponds to the lifetime in-
terval of the thread. It is created when the thread is created, and it is consumed
when the thread or the system shuts down. It accumulates the aggregate infor-
mation about top-level short intervals (count and total latency) which otherwise
would be lost.

5.5 Trace Analysis

For each session report, the analysis engine extracts all landmark invocations
from the landmark trace. For each landmark invocation, it computes the inclu-
sive latency (landmark end time - landmark start time) and the exclusive latency
(inclusive latency - time spent in nested landmarks), and it updates the statistics
of the corresponding issue. The repository contains, for each issue, informa-
tion about the distribution of its latencies, the number of occurrences, and the
sessions in which it occurred. Moreover, to help in identifying the cause of the
latency of a given landmark, the repository contains a calling context tree re-
lated to that landmark. This tree is built from the subset of stack samples that
occurred during that landmark (excluding samples the occurred during nested
landmarks). The tree is weighted, that is, each calling context is annotated with
the number of samples in which it occurred.
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5.6 Overhead and Perturbation

Our profiling approach incurs a cost: dynamic instrumentation implies that we
have to spend some time, at runtime, instrumenting classes. Moreover, like
with traditional landmark latency profiling, when instrumented code is exe-
cuted, each instrumentation adds some cost. In our case, each individual in-
strumentation, placed before and after instrumented call sites, directly calls into
our profiler classes, where we capture, filter, buffer, and flush trace information
out to disk.

In this section we evaluate these runtime costs of our profiling approach. We
first analyze the cost of instrumenting the program, and then we study the cost
due to time spent in the profiler.

5.6.1 Methodology

We evaluated our profiling approach on the biggest interactive Java application
we are aware of: Eclipse. In fact, Eclipse is not a single application, but it is
a platform for rich client applications [84], based on a framework for which
many applications and plug-ins have been built. Figure 5.3 shows the number
of classes constituting the Eclipse SDK distribution, which ranges from about
19000 classes for version 3.0 to about 33000 classes for the latest version at
the time which was 3.4.1. In one of our experiments we use all the 5 different
versions, all other experiments were conducted with version 3.4.1.Eclipse version

5K 10K 15K 20K 25K 30K 35K# of classes

Eclipse 3.0Eclipse 3.1Eclipse 3.2Eclipse 3.3Eclipse 3.4.1 33,41031,29827,29022,72019,507

Figure 5.3. Number of Classes in Different Versions of the Eclipse SDK Distri-
bution

We ran Eclipse on different processors (Pentium 3, Pentium 4, Pentium Dual
Core, Core Duo, and Core 2 Duo) and different operating systems (Windows
XP, Windows Vista, and Mac OS X). Depending on the platform we either used
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Processor GHz RAM OS JVM
Pentium 3 0.8 256MB Windows XP Sun 1.6_07, mixed mode, sharing
Pentium 4 1.6 1GB Windows XP Sun 1.6_07, mixed mode, sharing
Pentium Dual Core 1.46 2GB Windows Vista Sun 1.6_07, mixed mode, sharing
Core Duo 2 2GB Windows XP Sun 1.6.0_07, mixed mode, sharing
Core 2 Duo 2.4 2GB Windows Vista Sun 1.6.0_07, mixed mode, sharing
Core 2 Duo 2.16 2GB Windows Vista Sun 1.6.0_07, mixed mode, sharing
Core 2 Duo 2.8 4GB Mac OS X Apple 1.5.0_16-133, mixed mode, sharing

Table 5.1. Platforms

Sun’s Java virtual machine (1.6.0_07), or the one from Apple (1.5.0_16); both
of them are based on the same source.

We recruited four undergraduate students who performed a prescribed set of
tasks in Eclipse on their own computers under our supervision. These tasks were
given to the students in writing and discussed before the start of the experiment.
They consisted of two short programming problems where the students had to
implement and test simple algorithms (bubble sort and minimum-cost spanning
tree) in Java. They had to start with an empty workspace, create and configure
a Java project, implement the algorithms in classes with a prescribed interface
given the pseudo-code of the solution, write unit tests for their implementations,
and run the tests and fix their code. The students repeated the same tasks for all
of the experiments in this section.

5.6.2 Benefits of Incremental Observer Method Identification

The cost of dynamic instrumentation consists of two components. First, we need
to decide whether or not to instrument a given call site. Second, if needed,
we have to rewrite the given method to inject calls to the profiler before and
after the call site. For deciding whether a given call site represents a observer
notification, we have to analyze the callee to determine whether it corresponds
to a observer method. This analysis requires the traversal of the inheritance
hierarchy, causing the lookup and analysis of a possibly considerable number of
classes. The prior static instrumentation approach performed this step whenever
it encountered a call site. Our lightweight approach needs to be fast, and thus
we have to reduce the time needed to take the decision. We do this by caching
and reusing past decisions.

Figure 5.4 shows that decision caching drastically reduces the instrumen-
tation latency. We ran the same 20 minute session with and without decision
caching on 4 different platforms. The x-axis represents the average latency
needed to instrument one class. Along the y-axis we show four different plat-
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Computer

0 50 100 150 200 250 300 350 400Latency in milliseconds

Core2Duo (2GB, Vista)CoreDuo (2GB, XP)P4 (1GB, XP)PIII (256MB, XP) 12.94.71.8 390.8208.156.644.1

Figure 5.4. Effect of Decision Cache on Class Transformer Latencies

forms, and for each platform we show the latency with (square) and without
(circle) decision caching. The figure shows that decision caching drastically
speeds up instrumentation, by up to a factor of 44 (for the Pentium 4). Achieving
this speedup is a major step in making dynamic latency profiling practical.

5.6.3 Benefits of Instrumentation Caching

While decision caching significantly reduced the cost of instrumentation, we still
observe latencies of several milliseconds for instrumenting a single class. Given
that classes are often loaded in bursts (e.g. a class with its superclasses), these
latencies can add up and lead to perceptible delays. We thus developed a further
optimization: we cache the instrumented code in a persistent instrumentation
cache.

Figure 5.5 shows the benefits of the instrumentation cache. The y-axis cor-
responds to the latency due to instrumenting a single class. The figure consists
of three box plots, summarizing the latencies of close to 74000 class transforma-
tions in 12 different interactive sessions. This data was collected with decision
caching enabled. There are three choices for how a class may be transformed:
(1) it is instrumented, (2) it is taken from the instrumentation cache, without
version check, (3) it is taken from the instrumentation cache, with version check.
Each of these choices is represented by a box plot.

The figure shows that the first approach, instrumenting the class, is the slow-
est. As we have seen previously, it can lead to latencies of a few milliseconds
(mean, per class, with 95% confidence interval: 1.76±0.07ms). The second
approach, caching without version check, is potentially unsound, but it is the
fastest (0.09±0.02ms). The third box plot shows that the version check slows
down transformation somewhat: the mean of 0.16±0.02ms is statistically signif-
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Figure 5.5. Effect of Instrumentation Cache on Class Transformer Latencies

icantly different from caching without version check, as the confidence intervals
do not overlap. However, it still is an order of magnitude faster than the ap-
proach without caching. While we so far have evaluated the cost of instrumen-
tation in isolation, Figure 5.6 shows which percentage of the episode latency
corresponds to instrumentation cost.Cache

0 5 10 15 20 25 30 35 40 45 50Instrumentation overhead in %
no cachecache 765.8 173.8817.6 497.3 417.0 118.0 380.3

Figure 5.6. Percentage of Episode Latency Caused by Instrumentation Activity

The top of the figure represents episodes of 6 sessions where instrumenta-
tion caching was disabled, the bottom shows the episodes of 6 sessions with
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enabled instrumentation cache. Each circle in the figure represents an individ-
ual episode. Overall in these 12 sessions, only 180 episodes were longer than
100ms, and only those episodes are shown. The numbers next to some episodes
show their duration in milliseconds. The x-axis shows the percentage of an
episode’s duration that is spent transforming classes.

The figure shows that only very few perceptible episodes (7 of 72) spend
more than 2% in our instrumentation framework. Moreover, the figure shows
that with instrumentation caching, that number is further reduced (1 of 108).
Finally, in all our traces, only one episode (the one taking 118ms) became per-
ceptible due to instrumentation (that is, it would have been shorter than 100ms,
had we not spent 40% of its time instrumenting classes). Overall, the percentage
of time, in perceptible episodes, spent instrumenting classes is 2.08% without in-
strumentation cache (average over top half of the figure), whereas with a cache,
that value significantly drops to 0.2%.

Besides affecting the latency of episodes, instrumentation also affects appli-
cation startup time. Figure 5.7 shows the startup time for four different config-
urations. We define startup time as the time from the initialization of our instru-
mentation agent to the first dispatched event. Since the first event is dispatched
very early, when the progress bar of the splash screen appears, our startup time
only includes the first part of application startup. This phase does, however,
include the deserialization of the persistent instrumentation cache, which is a
major cost factor we want to evaluate. Type

0 1 2 3 4 5 6Startup in seconds
Eclipse with cache and with version checkEclipse with cache and without version checkEclipse without cacheNormal Eclipse 1.95 5.522.22 4.81

Figure 5.7. Effect of Instrumentation Cache and Version Check on Startup
Time

The figure shows, for each configuration, the average startup time over 5
different runs. All runs were performed with Eclipse 3.4.1 on Windows XP on a
Core Duo. The bottom bar shows the startup time of Eclipse without our profiler.
The top bar shows that our recommended configuration, enabled class cache
plus version check, considerably slows down startup (4.81s instead of 1.95s).
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The second bar shows that this slowdown is mostly due to the version check:
without version check the startup time is reduced to 2.22s. The third bar shows
that at 5.52s, the startup time without cache is slower than the time with cache
and version check. We conclude that caching is beneficial, but the version check,
necessary for correctness, has a significant impact on startup time.

5.6.4 Benefits of Online Trace Filtering

We now focus on the cost of profiling. Before and after each instrumented call,
the instrumentation invokes the profiler, and the profiler gathers the necessary
information. For a single observer method call, for example, we thus perform
two calls to the profiler, and each of these two calls might append information
to the trace.

Given that most episodes take a short time (a few microseconds), and given
that we are only interested in perceptible episodes, it makes no sense to trace
information about short episodes. For this reason our online trace filtering ap-
proach allows the specification of a threshold. Episodes shorter than the thresh-
old are not traced, and we only keep aggregate information about them.

Threshold

0 1us 100us 1ms 10ms

10K20K
30K40K

# of epi
sodes

0M5M10M
15M

Trace s
ize

Figure 5.8. Trace Size vs. Latency Threshold

Figure 5.8 shows how the number of traced episodes (top) and the trace size
(bottom) changes depending on the threshold (x-axis). Each bar represents the
average over four traces, collected on four different platforms. The leftmost bar,
with a threshold of 0s, shows the amount of data generated without filtering.
The figure shows that setting the filter threshold to 10ms drastically reduces the
amount of generated data, and thus the overhead. Given this reduction in the



96 CHAPTER 5. LAG HUNTING

amount of data that needs to be written to disk by the profiler, we expect that
online trace filtering also will reduce the perturbation due to the time spent in
the profiler.

1 10 100 1000 10000 1000001000000Latency threshold in ns
510
1520
2530
3540
4550
5560

Averag
e latenc

y in us

PlatformCore2Duo (2GB, Vista)CoreDuo (2GB, XP)P4 (1GB, XP)Pentium Dual Core (2GB, Vista)    .
Figure 5.9. Latency of Individual Profiler Calls vs. Latency Threshold

We thus measured the time spent in the profiler for each of its invocations
(at the begin and at the end of each interval) by measuring the time at the entry
to and exit from the profiler, and by maintaining the average latencies of profiler
calls in a session. Figure 5.9 shows how the average profiler latency depends
on the threshold. The y-axis shows the average latency of calls to the profiler.
The x-axis shows the online trace filtering threshold, on a logarithmic scale from
1ns to 100ms. The figure shows four lines. Each line corresponds to a different
platform on which we repeated the same 5-minute interactive session 14 times,
once for each threshold (0ns, 1us, 100us, 1ms, 10ms, 20ms, ..., 100ms).

It is interesting to see that Figure 5.9 clearly follows Figure 5.8: at thresholds
over 10ms, the trace size as well as the time spent in the profiler remain at a low
value, while thresholds below 100us lead to orders of magnitude larger traces
and several times more profiler overhead. Setting the threshold somewhere
between 10ms and 100ms thus not only allows us to still capture all perceptible
episodes, it also eliminates the majority of the profiling overhead.
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5.6.5 Maximum Case Profiling Cost

Based on the previous findings, we have chosen two reasonable filter thresholds:
10 ms (more information) and 70 ms (lower overhead). We ran 10 sessions with
a 70 ms threshold and 15 sessions with a 10 ms threshold, and again measured
the time spent in the profiler by measuring the time at the entry to and exit from
the profiler, and we maintained the average and maximum times of profiler calls
in a session. Figure 5.10 gives an overview of this information.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Figure 5.10. Average (Diamond) and Maximum (Cross) Profiler Latency [ms]

The x-axis shows the latency of calls to the profiler, in milliseconds. The fig-
ure contains two marks for each of 25 interactive sessions: a diamond represents
the average time needed for each call to the profiler, while a cross represents the
longest profiler call observed in that session.

On average, a call to the profiler takes only a few microseconds. The max-
imum latencies of profiler activity go up to 38 ms. On its own, such a long-
duration profiler call is not perceptible. However, adding 38 ms to a previously
imperceptible episode might make it perceptible. It is thus possible that, in the
extreme case, our profiler perturbs our measurements.
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This part contains three chapters. The chapters discuss the evaluation of our
profiling approach. We evaluate our approach in the lab but also with real de-
velopers outside of the lab. Chapter 6 and Chapter 7 discuss evaluation with
real-world applications in the lab. Chapter 6 discusses the evaluation on two
real-world applications which we used in the lab. From the collected profiling
data we identify and resolve performance problems. On the other hand, Chap-
ter 7 discusses the evaluation with CodeBubbles. Profiling data used in this eval-
uation is collected both from the authors of this application and from the lab.
In this chapter we identify and resolve performance problems in CodeBubbles,
confirming with the authors that the problems and places in their code we found
with our profiling approach are relevant. Chapter 8 discusses the evaluation we
did out of our lab. In this evaluation, the authors used their own applications de-
veloped in Java on top of our profiling tool. Further, they analyzed the collected
profiling data to identify performance problems in their applications.



102



Chapter 6

Evaluation with Informa and Eclipse

Initially, we evaluate our approach ourselves. We divide this part of the eval-
uation into two sub-parts. First, we performed an initial case study using the
profiler ourselves in our research group. We tried to fix performance problems
with applications such as our Informa, a web-based classroom response system
[60], and afterward to validate if we successfully resolved them. In general, a
resolution means that the performance problem pointed out by the profiler is
perceptible and after the intervention becomes imperceptible and thus it is not
reported anymore by the profiler. Second, we implicitly involved students into
another case study. They implemented their course projects in the Eclipse envi-
ronment. We provided them with Eclipse modified to run with our profiler. At
the end of each runtime a new trace was uploaded into the central repository.
It allowed us to use the profiler with lower sampling rate and thus to minimize
unnecessary overhead. That way we also gathered more than one context in
which landmarks execute.

6.1 Informa

The Informa clicker tool consists of two interactive applications: The instructor
runs the instructor application on her computer to direct the learning activity,
while the students run instances of the clicker application on their computers.
The clicker applications communicate with the instructor over Java RMI. Our
tool is a non-trivial interactive application, consisting of 77000 lines of code in
387 classes. In this experiment we ran the clicker and the instructor applications
on top of LagHunter. While the applications communicate over Java RMI, each
application runs in a separate virtual machine, and thus also produces a sepa-
rate latency profile. We conducted clicker sessions where we used the instructor
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application to post problems that had to be solved with the clicker applications.
Given that both applications are based on the same code base, we performed
a single analysis combining latency profiles gathered on the instructor applica-
tion and on the clicker applications. The analysis was based on twenty latency
profiles.

List of bug reports. LagHunter produced 35 reports of observers that at least
once took longer than 100 ms, summarizing a total of 7251 captured observer
notifications. The number of notifications for any given bug ranged from 1580
to just 1 (four reported observers were notified only once, and two of those took
over 600 ms to respond). Given that this analysis is based on multiple traces,
a latency bug that occurs only once overall is most probably due to some back-
ground activity outside the profiled application, or due to a garbage collection.
The maximum exclusive latency of the reported observers ranges from 109 ms to
3094 ms, with a total of four observers exhibiting a worst-case response time of
over 1 second. The total exclusive latency, which corresponds to the overall ef-
fect a given observer has on the performance perceived by the entire community
of users, ranges from 109 ms all the way to 195 seconds. The number of stack
samples, which correlates with the total exclusive latency, ranges from 0 (for
one observer) to 14709. We believe that the total exclusive latency of 550 ms
for the one reported observer for which we have no stack samples was due to
garbage collection (during garbage collection, even the JVMTI stack sampling
thread is stopped). The observer CCTs, which are important for identifying the
cause of a bug, range in size from 15 nodes to 6978 nodes. This largest CCT
belongs to the observer with the largest number of samples and the largest total
exclusive latency. Fortunately, the size of the CCT does not reflect the difficulty
of identifying the cause of the long latency.

Case study. We now discuss four of the longest latency bugs in more detail.

6.1.1 Slow painting

The bug with the largest total exclusive time (195 seconds) manifests itself only
in the instructor application. This application uses hierarchical agglomerative
clustering to compare the solutions submitted by the different students. The
result of that comparison is visualized in a dendrogram.

This bug report indicated that the painting of that dendrogram was slow.
The report showed 788 requests that took up to 2284 ms. We first looked at
the source code of the observer method, ignoring the CCT available in the bug
report. This inspection of the observer’s source code showed that it uses an inef-
ficient implementation based on nested recursive traversals of the dendrogram.
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Fix: A simple refactoring that computes a result when the dendrogram is cre-
ated, instead of each time the dendrogram is traversed, allowed the elimination
of the inner recursion. However, when validating the fix, we found that it did
not significantly reduce the latency.

Root cause identification: Our failure to initially find the root cause of this
latency bug is what prompted us to combine latency profiling with call stack
samples. The observer’s CCT for this bug highlights its root cause. The time
is spent computing the size of the dendrogram nodes. Each node represents
a student’s solution, and computing the visual size of that node required the
evaluation of the solution, which, for the given type of clicker question, entailed
the compilation of the student’s submitted Java code. The CCT immediately
shows this non-intuitive call chain.

Fix #2. We fixed the problem by caching the result of the compiler invoca-
tion. This simple fix drastically reduced the perceptible latency.

6.1.2 Creating an RMI registry

The instructor application launches an RMI registry in which it registers its re-
mote objects. The clicker application then looks up these objects in that registry.

LagHunter produces a bug report for an observer in the session setup dialog,
with one occurrence for each run of the instructor application, and a maximum
latency of 1160 ms. This observer is triggered when the user clicks the OK button
of that dialog to start a session. A look at the report’s CCT immediately points
to a hot method that creates a local RMI registry.

Fix: Because there was no reason for waiting with creating an RMI registry
until the user confirmed the session setup dialog, we moved that computation
into a background task which we launch as soon as the session setup dialog is
shown. At the time the user confirms the dialog, we retrieve the registry created
in the background task. This relatively local change eliminated the majority of
the long latency and noticeably improved the perceptible performance.

t a b l e . changeSe lec t ion ( startRow , 0 , f a l s e , f a l s e ) ;
t a b l e . changeSe lec t ion (endRow , 0 , f a l s e , t rue ) ;

Fix: We quickly fixed the problem by replacing the two calls with one call to
set the selection, followed by a call to scroll to the last selected row.

t a b l e . getSe lec t ionModel ( ) . s e t S e l e c t i o n I n t e r v a l ( startRow , endRow ) ;
t a b l e . s c r o l l R e c t T o V i s i b l e ( t a b l e . ge tCe l lRec t (endRow , 0 , f a l s e ) ) ;

This simple fix sped up this action considerably.
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6.1.3 Synchronous lookup of remote object

The clicker application has to connect to the instructor application in order to
join a session. At startup, the clicker presents a dialog to prompt the user for the
host name of the instructor’s computer. Once the student clicks OK, the clicker
tries to establish a connection to the instructor’s remote object.

LagHunter produces a bug report for the observer responding to the OK but-
ton, with one occurrence in each trace, and an average latency of 591 ms, Be-
cause we originally had tested the application on a single machine, we had not
noticed this latency ourselves. However, in the deployed setting, with signifi-
cant network latencies, connecting to the instructor application turned out to
be excessively slow. A quick search in the observer’s CCT, starting at the root
(the observer node) and following the hottest path, directly leads to the cause:
a call to Naming.lookup() that is responsible for 76% of the observer’s call stack
samples. While designing the application, we had performed remote calls in
background threads to hide their latencies, however, we had overlooked this
naming service lookup, which corresponded to a remote call in our deployment.

Fix: While the identification of this problem, given the profile, took little
effort, the implementation of the solution, the asynchronous execution of the
lookup, including the showing of progress information to the user, took sev-
eral hours. The significant effort required for turning synchronous computations
into asynchronous background activities (including the necessary additions to
the GUI for dealing with incomplete ongoing background activities), is one of
the reasons why a profile-driven approach to eliminating long-latency activities
is beneficial. Asynchronous computations in GUI applications can lead to sig-
nificantly more complex code and increase the potential for concurrency-related
bugs. For this reason they should only be introduced if they truly improve the
perceptible performance.

6.1.4 Excessive creation of icons

The report with the second longest total exclusive latency represents calls to the
mouseDragged() method on a mouse observer. Its 253 captured calls had an av-
erage latency of 236 ms, with a maximum of 665 ms. LagHunter produced two
other, similar, bug reports about calls to mouseReleased() and mousePressed().
The source code of all three observer methods invokes other, relatively complex
methods, and an initial manual study did not reveal the cause of the lag. How-
ever, the observer’s CCT immediately highlighted the problem: the hottest call
path from the CCT root leads directly to the constructor of the ConfidenceBar
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class, and continues on to a native method related to image handling. A quick
look at the ConfidenceBar constructor showed that it loads three images files
and filters the loaded images to create icons. Loading and processing images is
relatively expensive. Furthermore, the resulting icons were the same for all in-
stances of ConfidenceBar, thus creating them for each instance was unnecessary.
Moreover, the CCT also revealed the caller of ConfidenceBar’s constructor, and a
look at its source code showed that it recreated new ConfidenceBar objects each
time they were called.

Fix: We moved the image loading and processing code from the construc-
tor into the static initializer. Our simple fix entirely eliminated all perceptible
latency in the three classes of episodes.

Validation. To validate that the above fixes indeed improved the overall
perceptible performance, we ran five clicker sessions with, and five without the
fixes. In each session we performed the same interaction, using one instruc-
tor and four clickers, and we focused on covering the functionality affected by
the bug fixes. We then computed the cumulative latency distribution over all
episodes. Figure 6.1 contains ten cumulative latency curves representing the
perceptible performance of the instructor application. We omit the cumulative
latency distributions of the clients, because the only bug we fixed in the client
was C3, a bug that only causes a single long-latency episode for each clicker
session.

The dashed curves in Figure 6.1 show the performance of the buggy version,
and the solid curves show the performance after fixing the above latency bugs.
The x-axis shows the latency. The y-axis shows how many episodes per second
had a latency longer than X. The vertical line at 100 ms shows the perceptiblity
threshold. An ideal distribution would have the shape of an “L”, with the vertical
line at or below 100 ms and the horizontal line at 0.

The area between the two sets of curves shows the significant improvement
of the perceptible performance: the bug fixes brought the curves much closer
to the ideal “L” shape. Thus, besides our subjective feeling of working with a
more responsive application, and the observer latency profiles that validated the
speedup due to each of the five bug fixes, also the cumulative latency distribu-
tions clearly reflect the benefit of tuning this real-world application using our
approach.



108 CHAPTER 6. EVALUATION WITH INFORMA AND ECLIPSE

0 200 400 600 800 1000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

latency [ms]

ep
is

od
es

/s
 lo

ng
er

 th
an

 X
 m

s

buggy
fixed

Figure 6.1. Clicker instructor application latency distribution

6.2 Eclipse

As we discussed at the beginning of this chapter, we implicitly involved students
into the case study with Eclipse. Implementing their course projects, they used
Eclipse modified to run on top of our profiler. At the end of each runtime a new
trace was uploaded into the central repository. We collected 1108 session reports
during a three-month experiment. The experiment involved 24 users working
for a total of 1958 hours with Eclipse. We configured LagHunter to take a call
stack sample every 500 ms on average, and to drop all samples taken during idle
time intervals.

6.2.1 Parameters

LagHunter’s analysis engine detected 881 issues in the given reports. Table 6.1
characterizes five key parameters of this set of issues. For each parameter it
shows the mean, first quartile, median, second quartile, 90-th percentile, and
maximum value. The first parameter, the average exclusive latency, represents
the severity of a given issue: the longer its latency, the more aggravating the
issue. The next three parameters describe how prevalent a given issue is. From
the perspective of a developer, the need to fix an issue increases when it is en-
countered by many users, occurs in many sessions, and occurs many times. The
last parameter, the number of collected call stacks, is indicative of the chance of
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fixing the issue. The more call stack samples available about a given issue, the
more information a developer has about the potential cause of the long latency.

Avg Q1 Med Q3 p90 Max

Avg.Excl.[ms] 320 4 11 31 119 38251
Users 5 1 2 8 19 24
Sessions 49 1 3 14 115 1069
Occurrence 896 2 6 48 449 338622
Stacks 65 0 0 3 42 28613

Table 6.1. Univariate characterization

The average exclusive time of an issue varies between less than a millisecond
and over 38 seconds. However, 90% of these issues take less than 119 ms.
This shows that most “issues” are benign. They can easily be filtered out in the
web-based front-end to our repository. We captured information about benign
issues on purpose1. This allowed us to see whether a given landmark always
had a long latency, or whether its long latency invocations were exceptional.
The number of users who encounter an issue, the number of sessions in which an
issue appears, and the number of overall occurrences of an issue follow equally
skewed distributions. Only a small minority of issues are prevalent, which means
that developer effort can be focused on fixing a small number of high-impact
performance bugs. The table also shows that the stack sample distribution is
equally slanted: half of the issues receive no stack samples, and 10% of the
issues receive 42 or more stack samples.

6.2.2 Landmark location

Most of the reported landmarks correspond to listener notifications. In which
parts of Eclipse are those listeners located? First, we noticed that a significant
fraction of them (275 of 881) are located outside the standard Eclipse classes.
Many of those are inside optional or 3rd party plug-ins, but some are also in
the class libraries, and a few are in dynamically generated proxy classes. The
majority of the 606 landmarks in the standard Eclipse distribution are located
in a few dominating plug-ins. Figure 6.2 shows the top-15 of these plug-ins.

1 To limit trace size and overhead, LagHunter’s online filtering approach does eliminate “very
short” landmark method invocations (in the configuration used for this experiment, invocations
with an inclusive time of less than 3 ms).
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Figure 6.2. Distribution of landmarks to plug-ins

The dominant plug-in (with 111 landmarks) implements the Eclipse workbench
user-interface. Moreover, given that the users in our experiment were devel-
oping software in Java, it is not surprising to notice many landmarks in the
Java Development Tools (JDT) user interface (84) and the JFace text editor (76)
plug-ins.

Notice that the above distribution does not quantify the latency encountered
at these landmarks. It just summarizes the landmarks that LagHunter instru-
mented, which were executed, and where the latency was at least 3 ms, so they
ended up in at least one session report. Moreover, the distribution does not spec-
ify where the causes of long latency were located, but it focuses on the locations
where long latency can be measured.

6.2.3 How prevalent are long-latency issues?

Figure 6.3 shows a bubble plot of issue occurrence vs. average exclusive latency.
Both scales are logarithmic. Each bubble corresponds to an issue. The size of
the bubble is proportional to number of users who encountered the issue.

Most issues are clustered below 100 ms. Eclipse is a mature product that
has been extensively tuned for performance, and the Eclipse team, explicitly or
implicitly, must have cared about the 100 ms perceptibility threshold. However,
that the y-axis corresponds to the exclusive latency of an issue, which means that
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Figure 6.3. Number of users encountering an issue

the application’s response time may have been significantly larger due to nested
landmarks. Moreover, the axis represents the issue’s average latency, and thus
some individual occurrences of an issue might have taken significantly longer.

Issues with few occurrences are encountered by a small number of users.
The same is the case for some of the long latency issues. We found that some
of these issues correspond to rare user operations (e.g. project creation), while
others correspond to activity in non-standard plug-ins (e.g. Android) installed
only by a small set of users.

6.2.4 Availability of stack samples

Figure 6.5 has the same axes as Figure 6.3, but the bubble size is proportional
to number of collected stack samples. This figure confirms that issues that occur
often or exhibit a long latency have a higher chance of being encountered by the
JVMTI stack sampler. These are precisely the issues developers want to fix, and
thus our approach automatically produces the information where it is needed
most, and omits it where it is irrelevant.
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Figure 6.4. Severity of issues (x/y), and benefit of fix (size)

6.2.5 Case Studies

In this subsection we describe case studies resolving three of the 881 reported
issues. We picked three interesting issues that occurred frequently and had a
non-negligible latency.

Figure 6.4 shows all issues in the repository and highlights the three case
study issues. In this figure, the x-axis represents the total number of episode
occurrences containing the issue. The y axis shows the average inclusive time of
episodes containing the issue. The circle size represents the fraction of inclusive
episode time due to the issue.

Like in Figure 6.3 and 6.5, each circle represents an issue. However, unlike in
those prior figures, the x and y axes both represent the episodes. This corresponds
to a user’s view of performance: users are not interested in the exclusive time
of issues, but they primarily perceive the inclusive time of complete episodes.
The x/y space of Figure 6.4 thus represents the user’s perspective (the severity
as perceived by the user). The x-axis represents how often a user is annoyed,
and the y-axis represents how much a user is annoyed each time. The third
dimension, the size, represents the developer’s perspective: a developer could
say “I know this circle represents a frequent (x) and big (y) annoyance for the



6.2. ECLIPSE 113

1 

10 

100 

1000 

10000 

1 10 100 1000 10000 100000 

Av
g.

 E
xc

lu
si

ve
 Is

su
e 

Ti
m

e 
[m

s]
 

Issue Occurrence 

2000 

1600 

1200 

800 

400 

Stack samples 

Figure 6.5. Number of stack samples per issue

user, but how much can I reduce this annoyance if I fix this issue?” The size of
the circle represents the answer to that question. A circle of 50% size (like the
three circles representing our three case studies) means that by fixing that issue,
the latency of the episodes that contain that issue can be reduced by 50% on
average.

Figure 6.4 shows that there is a relatively small number of issues a devel-
oper would want to explore. The most promising issues are those that occur
frequently (to the right), lead to long latency episodes (to the top), and can sig-
nificantly reduce the containing episodes’ latency when fixed (large circle). The
three issues we picked lie more or less on the frontier of Figure 6.4, which means
that they incurred significant latency or a significant number of occurrences.

6.2.5.1 Methodology

In each case study we followed the same methodology:

Identify. The web front-end to our LagHunter repository shows a table of all
known issues. We pick an issue and study the information provided in its
report, which includes the landmark method name, the latency distribu-
tion, the number of sessions, users, and occurrences, and the number of
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call stack samples. Moreover, each issue with at least one call stack sample
contains a calling context tree.

Reproduce. Given the information in the issue report, we try to reproduce the
problem on our own computer. The landmark name and the calling con-
text tree help greatly in this step. We reproduce each issue to confirm its
presence and to understand how to trigger it. During reproduction, we
run the application together with the LagHunter agent, collecting a ses-
sion report for analysis. Analyzing such an individual report helps us to
understand an issue in isolation.

Prune. Before fixing the bug, we try to speed up the application by pruning the
issue’s calling context tree. We rerun the application, and we instruct the
LagHunter agent to prune calls for that issue. This way, we do not have to
edit the source code and rebuild the application, but we can just rerun it
with an extra option to let the agent do the work.

Resolve. To fix the bug, we change the source code manually to decrease la-
tency. This is the most challenging step. We need to keep the expected
functionality while reducing execution time. This may require the use of
caching of prior computations, or the strengthening of conditions to elim-
inate computation that is not absolutely essential. It may also require
turning costly computations or synchronous input/output operations into
asynchronous background activities that do not block the user interface
thread. Due to the complexity of some of these fixes and our limited expe-
rience with the Eclipse code base, in the following case studies we some-
times eliminate or simplify a particularly costly application feature instead
of providing an optimized alternative implementation.

Verify. To verify the fix, we again rerun the application on top of the agent. We
repeat the same interaction we performed during reproduction. We should
already notice, even before looking at the collected session report, the
absence of any perceptible latency, and the analysis of the session report
should confirm that the latency fell below the perceptibility threshold.

6.2.5.2 Issues under study

Table 6.2 lists the three issues we fix in the following case studies. The first
column shows the name of the landmark method (we omit the class name for
brevity). The second column shows the average exclusive latency as identified
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Avg. Excl. Latency [ms]
Landmark Identified Reproduced Fixed
mouseDoubleClick 999 149 4
verifyText 16 458 13
keyPressed 46 30 <3

Table 6.2. Resolved issues

by LagHunter. The third column shows the same metric, but obtained during
the reproduction step. The last column shows the latency after applying our fix.
The small exclusive latency of only 16 ms for the second issue may be striking.
However, this value is an average, and a significant number of this issue’s oc-
currences were perceptibly long. More generally, the table shows a significant
difference between the latencies identified in the field and the latencies observed
during the reproduction in the lab. The goal of a reproduction in the lab is to
confirm the presence of a problem, and to gather initial hypotheses about the
causes. A reproduction in the lab thus is not necessarily a faithful reproduction
of all of a user’s activity. Moreover, it takes place in a different environment,
with a potentially different application configuration, and thus necessarily leads
to measurement results that can differ significantly from the average observed in
the field. The important aspect of Table 6.2 is the drastic reduction in latency be-
tween the reproduced and the fixed measurements. Moreover, in the real-world
use of our approach, the ultimate measure of success will be the reduction of the
latencies observed in the field, after the deployment of the fixed version of the
application.

The following three subsubsections describe each case study in detail.

6.2.5.3 Maximize and Restore

Sorting issues by their average time, one of the top ranked issues was the
mouseDoubleClick method in the AbstractTabFolder class. It occurred 355 times
and took 999 ms on average. Its latency distribution shows a wide range of la-
tencies starting from 46 ms up to more than 10 seconds.

Reproduciton. Eclipse implements a multi-page text editor. Maximizing or
restoring the active page tab is followed by an animation. This action is reported
as perceptible. To reproduce, we open a document from a workspace and per-
form the maximize and restore actions with a double-click on the document tab.

Pruning and Resolution. The calling context tree of this issue is shown in
the ring chart [15] of Figure 6.6. The root of the tree (the main method) is rep-
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smartUnzoom()

smartZoom()

mouseDoubleClick()

Figure 6.6. Maximize and restore

resented by the center, and the branches grow towards the outside. Each calling
context is represented by a ring segment. A segment’s angle corresponds to the
number of times the given calling context was sampled. The chart points out
two equally “heavy” branches: smartZoom and smartUnzoom. It shows that the
double-click executed both of these methods. One solution is to remove anima-
tions to simplify the zoom and unzoom actions. We eliminate lag by cutting the
animation from the source code. A redesign of the solution for the animation to
make it faster would require deeper changes.

Validation. We reran Eclipse on our agent and repeated the experiment
performing double-clicks on the page tabs. The latency decreased to only 4 ms,
as shown in Table 6.2.

6.2.5.4 Rename Refactoring

Sorting issues by their total exclusive latency, one of the top ranked issues is
the verifyText method in the TextViewer class. It occurred 22335 times and
appeared in 446 sessions.

Reproduction. A user of Eclipse can perform an in-place rename refactoring.
The name is directly editable in the text editor. Every key typed during such a
refactoring is immediately applied to all occurrences of that identifier in the open



6.2. ECLIPSE 117

text editor. Each key pressed causes a percetible lag. This behavior was easily
reproducible on our computer.

verifyText()

packPopup()

Figure 6.7. Rename refactoring

Pruning. Figure 6.7 shows the calling context tree of this issue. The black
ring segments towards the leaves of the tree represent the root cause of the
problem. They correspond to calls to the packPopup method of the RenameIn-
formationPopup class. As the most sampled method in this issue, it consumed
most of the time. Its class implements a tooltip-style popup that appears be-
low the identifier while in rename rafactoring mode. The popup has a special
shape of a callout. The packPopup method recomputes the shape of the non-
rectangular popup after each key press. We used call pruning to eliminate the
expensive method calls. This significantly reduced the latency, however, the
popup window did not appear anymore.

Resolution. To fix the bug, we cached the results after the first packPopup
invocation, which avoided the unnecessary computations.

Validation. After fixing this bug, in-place refactoring became much faster.
The perceptible lag disappeared, and the measured average latency was reduced
to 13 ms.
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Figure 6.8. Scrolling

6.2.5.5 Scrolling

The 100 ms perceptibility threshold applies to individual user requests. How-
ever, movies need to be rendered at a rate of roughly 25 frames per second to
appear smoothly. The same applies to animations, such as the scrolling of a
document. Thus, in these instances, the latency should be below 40 ms to be
imperceptible.

When sorting the issues by occurrences, the keyPressed method in the View-
portGuard class appears near the top of the list, with more than 343000 occur-
rences. It is called every time a key is pressed in the text editor. It took 46 ms on
average.

Reproduction. The calling context tree in Figure 6.8 shows that most of
the time in this issue is spent redrawing three components: LineNumberRuler,
AnnotationRuler, and ConflictAnnotationRuler. Knowing about the landmark
method and these three classes points us towards the action the user must have
performed: scrolling the viewport of the source code editor. To reproduce this
issue we open a long Java source file that can’t fit on the screen. We hold down
the arrow key to scroll. We notice that the scrolling is not as smooth as it could
be. The bigger the opened project and the more views we open, the bigger the
latency becomes.

Pruning. We used call pruning to eliminate the notifications of the various
rulers, which decreased the latency to 3 ms.
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Resolution. As a resolution, we decided to prevent the redraw of the rulers
only when the up or down arrow keys are pressed (but to allow repaints for all
other keys). This avoids redraws while scrolling, but it permits redraws in all
other situations.

Validation. We reran the fixed Eclipse and validated the reduced latency
when scrolling.

Discussion. The calling context tree in Figure 6.8 shows three rulers that
react to key presses. However, the calling context tree of the reproduced issue
contained only redraw invocations for two of those ruler classes. The reason for
this is that the ConflictAnnotationRuler class is not part of any standard Eclipse
plugin. Sometimes, such additional plug-ins installed by users may significantly
reduce the responsiveness of an application. Without the help of LagHunter,
developers would not be able to discover such issues.

6.2.5.6 Limitations of Study

Issue selection. We selected three issues for our case studies. Our selection
was not a blind, random process, and it was not based on strict, pre-determined
criteria. While we took care in selecting severe and interesting issues, we may
have been biased towards issues that are easier to understand or fix. We believe
that Figure 6.4 provides a good starting-point for methodologically selecting
issues to analyze in future empirical studies. Ideally, such studies would take
a random sample of issues with a pre-determined minimum number of episode
occurrences, average inclusive episode time, and percentage of inclusive episode
time due to the issue.

Self evaluation. We evaluated the benefits of our tool by using it ourselves.
Thus, our case studies may be biased by our desire to see our approach perform
well. Moreover, we were not familiar with the Eclipse code base, and thus our
approach to fixing a bug is not necessarily representative of the approach of an
experienced Eclipse developer.
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Chapter 7

Evaluation with CodeBubbles

Today’s integrated development environments (IDEs) mostly work with file-
based editing. A group of researchers from Brown University has implemented a
different interface paradigm that is based on collections of lightweight editable
fragments, called bubbles [31]. Their approach is founded on the metaphor of
a bubble which is a fully editable and interactive view of a fragment such as a
function, method documentation, or debugging display. In contrast to standard
windows, bubbles have minimal border decoration, avoid clipping their contents
by using automatic code reflow and elision, and do not overlap but instead push
each other out of the way. Bubbles are placed in a virtual space represented
on the screen with a strip, where a cluster of bubbles comprises a concurrently
visible working set.

With the authors of CodeBubbles, we discussed their complaints. The envi-
ronment was perceptibly slow. As the environment is interactive and developed
in Java, we decided to try our approach with it.

In collaboration with Professor Steven P. Reiss from Brown University, we
have integrated our profiling tool to be a part of CodeBubbles which enabled us
to collect traces on the server as CodeBubbles is used. This gave us a chance to
reveal more performance-relevant problems in the future.

During the month and a half we collected 88 traces, that is nearly 145 thou-
sand landmark method executions of 349 distinctive landmarks, during approx-
imately 20 hours of CodeBubbles use.

We first analyzed landmarks with perceptible average which repeat multiple
times, and which are present in most of the traces. Table 7.1 shows three such
examples. ComponentMoved(), componentResized(), and componentAdded()
correspond to methods that move, rearrange, and add bubbles respectively. We
discuss each of them in the remainder of this section.

121
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Issue Count Average [ms]
BudaBubbleArea$BubbleManager.componentMoved 180 174
BudaBubbleArea$BubbleManager.componentResized 993 190
BudaBubbleArea$BubbleManager.componentAdded 176 159

Table 7.1. Overview of the issue

7.1 Move Bubbles

The environment works imperceptibly to a user for a small working set of bub-
bles. With growth of the number of bubbles and relations between them, the
environment becomes sluggish as response times become perceptible. It par-
ticularly becomes perceptible when a user tries to move a group of bubbles.
The componentMoved() method takes more than 100 ms on average. If a new
bubble appears in the middle of a group of bubbles then the action of their re-
arrangement will occur in a burst of events to animate the movements until the
bubbles fit on the screen.

Figure 7.1 shows the cumulative calling context tree built for the component-
Moved() landmark from all the traces. The thicker the lines the more samples
are taken on that branch. The componentMoved() method in 96% of time calls
getShape() method. It maintains a model of the bubble group we want to move.
If a new bubble should belong to a group then the AWT geometry features are
used. AWT provides the Java 2D classes for defining and performing operations
on objects related to two-dimensional geometry. AWT maintains our bubbles in
a Vector. Each time it adds a new bubble into the vector, it creates a new vector
with one more spot, copies all the elements, and adds the new one. Finally, it
shows that 81% of time this action wastes in copying the elements of the vector.
Moreover, this may trigger additional garbage collections and further impact the
performance.

7.2 Resize Bubbles

This landmark call costs 190 ms on average, according to the traces we have
collected. Resizing of a bubble leads to several actions such as group split, group
merge, or bubble-add to an existing group. Figure 7.2 shows the cumulative
calling context tree of the corresponding landmark.

Following the left branch, which has the thickest line along the path toward
the leaf, we see that a bubble resize action may cause a bubble add action. This
happens when the bubble that is being resized, touches another bubble which
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AWT Geometry

getShape ()

System.arraycopy ()

Vector.toArray ()

componentMoved

Figure 7.1. Move Bubbles CCT

is single or in a group of bubbles. Thus, they will either form a new group of
two bubbles or the existing group will expand. Either way, it causes the bubble
add action. The analysis from the collected traces showed that more than 95%
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of samples were taken while handling this action. The getShape() method is on
the branch of the componentResized() method. It maintains the bubble model
using AWT geometry like in the case discussed in Section 7.1. Approximately
68% of time this branch spends in copying data array.

edu.brown.cs.bubbles.buda
BudaBubbleArea

access$1800
Descendants: 66

Height: 13, Depth: 2
Samples: 494 (95%)

edu.brown.cs.bubbles.buda
BudaBubbleArea

access$2000
Descendants: 70

Height: 34, Depth: 2
Samples: 25 (4%)

edu.brown.cs.bubbles.buda
BudaBubbleArea

�xupGroups
Descendants: 65

Height: 12, Depth: 3
Samples: 494 (95%)

edu.brown.cs.bubbles.buda
BudaBubbleArea

checkGroup
Descendants: 30

Height: 11, Depth: 4
Samples: 461 (88%)

edu.brown.cs.bubbles.buda
BudaBubbleGroup

isSplit
Descendants: 16

Height: 9, Depth: 4
Samples: 22 (4%)

edu.brown.cs.bubbles.buda
BudaBubbleGroup

shouldMerge
Descendants: 16

Height: 9, Depth: 4
Samples: 11 (2%)

edu.brown.cs.bubbles.buda
BudaBubbleGroup

shouldAdd
Descendants: 29

Height: 10, Depth: 5
Samples: 461 (88%)

edu.brown.cs.bubbles.buda
BudaBubbleGroup

getShape
Descendants: 28

Height: 9, Depth: 6
Samples: 461 (88%)

edu.brown.cs.bubbles.buda
BudaBubbleGroup

getBubbleShape
Descendants: 14

Height: 8, Depth: 7
Samples: 66 (12%)

java.awt.geom
Area
add

Descendants: 12
Height: 6, Depth: 7

Samples: 395 (76%)

java.awt.geom
Area

<init>
Descendants: 13

Height: 7, Depth: 8
Samples: 66 (12%)

java.awt.geom
Area

pathToCurves
Descendants: 12

Height: 6, Depth: 9
Samples: 66 (12%)

sun.awt.geom
AreaOp

calculate
Descendants: 11

Height: 5, Depth: 10
Samples: 66 (12%)

sun.awt.geom
AreaOp

pruneEdges
Descendants: 10

Height: 4, Depth: 11
Samples: 66 (12%)

java.util
Vector
toArray

Descendants: 1
Height: 2, Depth: 12
Samples: 57 (10%)

4 (0%) 4 (0%) 1 (0%)

java.lang
System

arraycopy
Descendants: 0

Height: 1, Depth: 13
Samples: 57 (10%)

sun.awt.geom
AreaOp

calculate
Descendants: 11

Height: 5, Depth: 8
Samples: 395 (76%)

sun.awt.geom
AreaOp

pruneEdges
Descendants: 10

Height: 4, Depth: 9
Samples: 395 (76%)

sun.awt.geom
AreaOp

resolveLinks
Descendants: 2

Height: 3, Depth: 10
Samples: 354 (68%)

java.util
Vector
toArray

Descendants: 1
Height: 2, Depth: 10

Samples: 27 (5%)

sun.awt.geom
AreaOp

�nalizeSubCurves
Descendants: 2

Height: 3, Depth: 10
Samples: 9 (1%)

5 (0%)

java.util
Vector
toArray

Descendants: 1
Height: 2, Depth: 11
Samples: 354 (68%)

java.lang
System

arraycopy
Descendants: 0

Height: 1, Depth: 12
Samples: 354 (68%)

java.lang
System

arraycopy
Descendants: 0

Height: 1, Depth: 11
Samples: 27 (5%)

java.util
Vector
toArray

Descendants: 1
Height: 2, Depth: 11

Samples: 9 (1%)

java.lang
System

arraycopy
Descendants: 0

Height: 1, Depth: 12
Samples: 9 (1%)

edu.brown.cs.bubbles.buda
BudaBubbleGroup

getShape
Descendants: 15

Height: 8, Depth: 5
Samples: 22 (4%)

java.awt.geom
Area
add

Descendants: 7
Height: 6, Depth: 6
Samples: 20 (3%)

2 (0%)

sun.awt.geom
AreaOp

calculate
Descendants: 6

Height: 5, Depth: 7
Samples: 20 (3%)

sun.awt.geom
AreaOp

pruneEdges
Descendants: 5

Height: 4, Depth: 8
Samples: 20 (3%)

sun.awt.geom
AreaOp

resolveLinks
Descendants: 2

Height: 3, Depth: 9
Samples: 17 (3%)

2 (0%)

java.util
Vector
toArray

Descendants: 1
Height: 2, Depth: 10

Samples: 17 (3%)

java.lang
System

arraycopy
Descendants: 0

Height: 1, Depth: 11
Samples: 17 (3%)

edu.brown.cs.bubbles.buda
BudaBubbleGroup

getShape
Descendants: 15

Height: 8, Depth: 5
Samples: 11 (2%)

java.awt.geom
Area
add

Descendants: 7
Height: 6, Depth: 6

Samples: 9 (1%)

2 (0%)

sun.awt.geom
AreaOp

calculate
Descendants: 6

Height: 5, Depth: 7
Samples: 9 (1%)

sun.awt.geom
AreaOp

pruneEdges
Descendants: 5

Height: 4, Depth: 8
Samples: 9 (1%)

sun.awt.geom
AreaOp

resolveLinks
Descendants: 2

Height: 3, Depth: 9
Samples: 7 (1%)

2 (0%)

java.util
Vector
toArray

Descendants: 1
Height: 2, Depth: 10

Samples: 7 (1%)

java.lang
System

arraycopy
Descendants: 0

Height: 1, Depth: 11
Samples: 7 (1%)

edu.brown.cs.bubbles.buda
BudaBubbleArea

�xupBubble
Descendants: 69

Height: 33, Depth: 3
Samples: 25 (4%)

edu.brown.cs.bubbles.buda
BudaSpacer

makeRoomFor
Descendants: 68

Height: 32, Depth: 4
Samples: 25 (4%)

edu.brown.cs.bubbles.buda
BudaSpacer

makeAMove
Descendants: 67

Height: 31, Depth: 5
Samples: 25 (4%)

edu.brown.cs.bubbles.buda
BudaSpacer

makeAMoveInternal
Descendants: 66

Height: 30, Depth: 6
Samples: 25 (4%)

edu.brown.cs.bubbles.buda
BudaSpacer

makeAMoveInternal
Descendants: 65

Height: 29, Depth: 7
Samples: 24 (4%)

edu.brown.cs.bubbles.buda
BudaSpacer

makeAMoveInternal
Descendants: 64

Height: 28, Depth: 8
Samples: 24 (4%)

edu.brown.cs.bubbles.buda
BudaSpacer

makeAMoveInternal
Descendants: 63

Height: 27, Depth: 9
Samples: 24 (4%)

edu.brown.cs.bubbles.buda
BudaSpacer

makeAMoveInternal
Descendants: 62

Height: 26, Depth: 10
Samples: 24 (4%)

edu.brown.cs.bubbles.buda
BudaSpacer

makeAMoveInternal
Descendants: 61

Height: 25, Depth: 11
Samples: 24 (4%)

1 (0%)

edu.brown.cs.bubbles.buda
BudaSpacer

generateMoveSets
Descendants: 10

Height: 5, Depth: 31
Samples: 7 (1%)

1 (0%)

1 (0%) 2 (0%) 2 (0%) 1 (0%) 1 (0%)

.
.

.

.

..
.

.

ComponentResized

System.arraycopy ()

AWT Geometry

getShape ()

Vector.toArray ()

Figure 7.2. Resize Bubbles CCT

7.3 Add Bubbles

New bubble construction starts in the componentAdded() observer method. The
cumulative calling context tree is given in Figure 7.3. As shown in the figure,
this observer nests a call to the localAddBubbles() method which further has
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two branches. There is no particularly heavy branch that consumes most of the
samples. The right branch, fixupBubbles(), contains a long chain of recursive
calls to makeAMove(), which adjusts positions of bubbles to fit properly in the
workbench. More than 25% of samples are taken while executing this method.
This method unnecessarily generates a new array every time it is called for each
loop step. This is not efficient especially if arrays are large. The listing below
shows the original implementation:

p r i v a t e Co l l e c t i on<Conf igurat ion> makeAMove
( Conf igura t ion cur , Adjustment mvd, i n t recurse , long when) {
L i s t<Conf igurat ion> r s l t = new ArrayL i s t<Conf igurat ion >();
. . .
f o r ( Adjustment adj : generateMoveSets ( cur ,mvd)) {

r s l t . addAl l (makeAMove(new Conf igura t ion ( cur ) , adj ,
r ecur se+1,when ) ) ;

}
. . .

}

Instead, we could pass the array as one of the arguments as shown in the
listing below:

p r i v a t e void makeAMove ( Ar rayL i s t<Conf igurat ion> r e s u l t ,
Conf igura t ion cur , Adjustment mvd, i n t recurse , long when) {

. . .
f o r ( Adjustment adj : generateMoveSets ( cur ,mvd)) {

makeAMove( r e s u l t , new Conf igura t ion ( cur ) , adj ,
r ecur se+1,when ) ;

}
. . .

}

We did an experiment stressing especially this functionality. We only save a
few milliseconds with this small optimization. The overall latency of the land-
mark requires more optimizations. Looking back at Figure 7.3 we notice that
almost all the leafs correspond to the System.arraycopy() method invoked by
Vector.toArray(). They approximately take 75% of all taken samples. These leafs
belong to sub-branches of the right localAddBubble() method branch and they
are: mergeGroups(), checkGroups(), addBubbleGroup(), and isSplit(). Each of
them maintains model of bubbles using the AWT graphics package. In this par-
ticular case it ends up copying arrays as we already have seen in Sections 7.2
and 7.1.
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Figure 7.3. Add Bubbles CCT

7.4 Conclusion

We discussed our findings with the authors. They agreed that the places in the
code identified by our profiling tool are complex and should be redesigned. They
also confirmed changes such the one proposed in Section 7.3.

It showed cases where profiling techniques cannot help us to locate the ex-
act line in the code responsible for bad performance. Sometimes, the closest
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location of the problem is to point at the group of methods or classes. As we
have shown in Section 7.3, many calls to a number of methods that together
accomplish some task may cost a lot in total but not individually.
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Chapter 8

Evaluation with Developers

The goal of the experiments was to let real developers use our profiling approach
and quantify how useful it was for them to recognize, locate and understand
interactive application performance problems.

To test the usefulness of our approach, we got the support of RCUB, a com-
puter center at the University of Belgrade in Serbia, where we had a chance to
collaborate with their developers and to use our approach to search for perfor-
mance problems. They are a Java-oriented group working on various projects
for the state and the University. 2

8.1 Background on Empirical Research

Looking at the existing body of research on empirical evaluation through con-
trolled experiments, we tried to distill important aspects for the experiments we
intended to do.

8.1.1 Experimental Evaluation Versus Grounded Theory

In general, experimental evaluation is a controlled evaluation of specific aspects,
where the evaluator sets a hypothesis to be tested. It is required primarily to
know the tasks but also to have a high enough number of participants to achieve
a statistically significant interpretation of the results. Also, to avoid biased re-
sults and interpretations the tasks must be very clear, narrow, and fully con-
trolled.

2http://www.rcub.bg.ac.rs/index.php?lang=en
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In contrast to the idea of having a hypothesis before the experiment, with
the Grounded Theory we first collect data. Then, we mark important data with a
series of codes. Further, the codes are grouped by similarity. From these groups
we form the categories and use them to make a hypothesis. This hypothesis
is also called a reverse engineered hypothesis. Grounded Theory, as a widely
accepted and systematic theory from data, has the goal to formulate hypotheses
based on conceptual ideas [63] [40]. “All is data” is its fundamental property
which means that everything that gets in our way when studying a certain area
is data.

A number of experimental conditions are important and they differ only in
the value of some controlled variable. The changes in the behavioral measure
are attributed to different conditions. When designing an evaluation experi-
ment [24] [118] [76], researchers find important aspects such as:

• Subjects. Who are they? Are they representative? Is the sample sufficient?

• Variables. What does it change and how it could reflect the measures?

• Hypothesis. What do we want to show?

• Experimental design. How are we going to do it?

8.1.2 Data Collection

The important step in the evaluation is data collection. We can acquire data by
different methods such as: video, interview, questionnaire, tasks and questions,
reports, etc.

Video cameras and direct logging of application usage have shown to be a
good practice to collect valuable data. Tasks and questions in the experiments
have to encourage cooperation. To achieve this goal we should make tasks cre-
ative but also to control them.

The interview is a very sensitive part of the experiment because we con-
stantly interact with the participant. We may easily ask an incorrect question in
a conversation and bias the results. Generally, while collecting data from partic-
ipants in the interview, researchers can use observational methods such as:

• Thinking aloud. The user is asked to describe what he is doing and why,
what he thinks is happening, etc.

• Cooperative evaluation. A variation on thinking aloud where the user
collaborates in the evaluation thus both the user and evaluator can ask
each other questions throughout.
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• Protocol analysis. This includes paper, audio, and video analysis.

• Post-task analysis. The transcript is played back to the participant for
comment immediately or delayed.

Questionnaires are a standard component of experiments that are used at
every stage. They include questionnaires that collect information about partici-
pants at the beginning of the experiment, and questionnaires given at the end to
gather feedback from the participants. The generation of a questionnaire is not
a trivial task. Bad questionnaires can be misleading or collect meaningless data.

On the other hand, questionnaires have a number of disadvantages such as
subjectiveness. Thus, questionnaires require careful design. We should ask our-
selves what information is required and what the answers will look like. What
researchers have found to be important is the order of the questions and their
layout. If their order is not proper, people may refuse to cooperate. For example,
if a survey begins with awkward or embarrassing questions, people are not likely
to give honest replies to personal questions.

8.1.3 Quantitative Approach

The goal of this evaluation is to show the effectiveness of our approach in dis-
covering performance problems. For tasks such as ours, it is extremely hard to
find enough developers to participate in the experiment.

Moreover, we could not effectively use a quantitative evaluation approach
for a few reasons.

First, our approach is designed to be deployed and to function with complex
applications. In such environments it is hard or almost impossible to design a
meaningful experiment. For example, we want to time developers and find out
if there is a statistically significant speedup in finding and resolving performance
bugs. For such an experiment we need a baseline to compare with. It should be
another profiling tool. Whatever tool is used, solving the same problem twice
with both tools is impossible, at the second time we already know where and
what to look for. Another example is task size. If we decide to create a small
controlled problem then the results might be completely different from those
obtained with complex problems. This is due to the dramatic growth in the
number of variables as problem complexity increases.

Also, trace files are filled with data that is not readable and understandable as
text. Collected information from runtime has to be visualized and thus become
understandable. Such a visualization requires a certain interface design and
functionality to represent all data written in a trace file. Depending on these two
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aspects a developer might be able to navigate quicker or slower through data and
understand important information. Even though we do fully controlled and fo-
cused tasks, the choice of visualization technique might bias the measurements.
The reason is that we could not distinguish whether a developer’s better or worse
performance in solving problems comes from the usefulness of our approach or
the visualization quality and understandability. Nevertheless, we could partially
overcome this problem by explaining in detail how the visualization tool works
before they start using it with real problems.

8.1.4 Qualitative Approach

Qualitative studies were more relevant for the evaluation we needed. In quali-
tative studies, we begin with decisions regarding the sample to interview, move
on to data collection, and conclude with the analysis. Analysis of early data
contributes to new emphasis in interviewing. The new data collected by the
modified interviewing then produces new analysis results. Also, even though we
have a low number of participants, it is possible to collect significant information
in a structural form. The following two aspects are important:

Developing detailed descriptions.
We may want to learn as much as we want to see. We may well want to

interview more than one informant and integrate their reports, but we will in
any case want from our informants the fullest and the most detailed description
possible.

Integrating multiple perspectives.
We may want to describe an organization, development, or event that no sin-

gle person could have observed fully. Although interviews are necessary, stan-
dardized questions will not work. This is because every respondent will have
different observations to contribute and we should allow her to express herself.

8.2 Study Design

In our experiment, we have evaluated how the use of LagHunter impacts devel-
opers while solving performance problems. In total, 5 developers participated
in this experiment. We tried our tool on two projects they develop. Two of
them were mature, with 10 years of experience of programming in Java. The
other three developers have approximately 5 years of working experience in
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Java. They all have graduated from the computer science department of the
University of Belgrade.

Barbara Kitchenham analyzed empirical evaluations especially in the soft-
ware engineering area[75]. Her work allowed us to establish the guidelines for
the experiment [74]. In this experiment, we used the following protocol:

• Give developers the tutorial in written form and the video record a week
before the beginning of the experiment. The video record shows how to
use the profiler and the visualization tool to identify the performance prob-
lems in one of the applications that we have developed.

• Demonstrate how the profiler and the trace visualizer works one day be-
fore the experiment. Repeat the procedure from the recorded video in
front of the developers. Even though they have already seen the video,
this is a moment when the developers may have a question if something
was not clear enough in the video.

• Provide a “kick-off” questionnaire to understand the experience and back-
ground of the developers.

• Ask the developers to run their applications on top of the profiler.

• Ask each developer to look into her own produced trace with the trace
visualizer and demonstrate an understanding of the tool.

• Divide them into groups based on experience distilled from the question-
naires.

• Let them use their application on top of the profiling tool for one hour.

• Give each developer one hour to analyze traces with the visualizer and to
identify problems.

• Record/write their out-loud thinking and the feedback about the problem
they have been focused on.

Thus, before they used our tool, they had to read the tutorial. Also, we pre-
pared a video where they could see, step by step, how to use our tool. Moreover,
before they started we gave a presentation where we showed how our tools
should be used.

Every developer was available for 2 hours to participate in the experiment,
working on the project on which they are currently enrolled. During this time
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slot, first they had to run the tool with the Java project they work on. Then,
at the end a runtime trace file was created, and they had to open it with the
visualization tool we provided. In the remaining one hour slot they tried to spot
a performance problem, analyze it, and tried to find a cause.

8.3 Results

Here, we present one identified problem for each project the developers were
working on in the experiment.

8.3.1 SNMP Manager

The SNMP Manager application discovers network hosts, browses MIB trees,
and analyzes network requests. The Belgrade node in the current topology is
an important node not only for the Serbian University network but also for the
broader region. Instead of using one of many open source applications, they
have developed their own due to their special needs. The application contains
nearly 400 classes.

One of the two developers with 10 years experience and one of the remaining
three developers worked on this application. Our profiler identified 112 distinc-
tive landmarks from these 2 runtimes. They both triggered the same action of
tree expansion in the application. When sorting by average time the landmark
that handles this action was among the top ranked.

They blamed this performance problem on slow communication with the
database, because in the past they were already optimizing this part of the code.
The perceptibly slow response of the application was noticeable when trying to
expand the tree. This action queried the database to retrieve the children and
information about every child. The amount of first-level children in the tree they
have for the current topology of routers is over two thousand. Previously, they
used standard approaches of measuring the performance to deal with this prob-
lem. They found multiple connections opened to the database while querying it.
This contributed to the total latency with a certain cost. Thus, they optimized
their code and reduced the latency but it still stayed perceptible.

The trace analysis shown the observer treeExpanded() method to take a long
time on average. The observer has been invoked 22 times taking on average
533 ms, every time within the range from 204 ms to 918 ms. In total, the profiler
took 29 samples while being inside this method inclusively. Figure 8.1 shows the
cumulative calling context tree for this observer. These results were surprising.
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Figure 8.1. DB Query or Tree Expansion

They showed that the application spent only 13% in querying the database and
approximately 60% while searching for the child nodes in the tree. Checking
the source code, the developers identified that the indexing of nodes should be
different, and confirmed this is the problem.
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8.3.2 perfsonarUI

perfsonarUI is an infrastructure for network performance monitoring, making
it easier to solve end-to-end performance problems on paths crossing networks.
It is a project developed and maintained by the State Universities of Belgrade,
Sofia and Zagreb. It contains nearly 2000 classes.

The remaining three developers participated in the experiment working on
this project: one developer with 10 years of experience and two with 4 to 5 years
of experience. They were running and using the application with our profiler for
one hour. Each of them used one additional hour to look at the trace files, and
tried to identify performance problems they perceived during run-time. Our
profiler identified 154 distinctive landmarks from these 3 runtimes.

The developer with the most experience discovered a concrete place where
the application hangs every time the action is triggered. Figure 8.2 shows the cu-
mulative calling context tree for the paintDirtyRegions() method. It contains the
ChartPaint.paintComponent() landmark in the calling context tree. This land-
mark appears in two different contexts. From the calling context tree, the ap-
plication spent 33% and 65% in these two contexts. The landmark has been
executed 18 times during the experiment. It took 1.8 sec to execute on average,
having a minimum latency of 514 ms and a maximum of 10.2 sec.

Both contexts in which the landmark appeared have one heavyweight branch
that goes through the getHostName() method that takes 20% and 44% of time
respectively for each context. Almost half of the time this method internally
spends comparing string values.

Looking at the source code, she confirmed that this landmark is invoked ev-
ery time the table is filled with a certain router’s data from the network. They
fill the model of the table with data only when it should be redrawn. The same
component is used in multiple places in the application. To retrieve data for each
router in the table, both network activity and string comparison takes place. Re-
ferring to data from the traces, it may take up to 10 sec. We identified that this
case happens when the table is filled with the list of the above 2000 routers.
Instead of comparing strings, she reimplemented this method to look at the ID,
which is an integer and much simpler to compare. This number also uniquely
identifies every router, which made this change very simple to try in-place. We
reran the application with our profiler and produced another trace triggering
this action in the same contexts. The average went down to 0.8 sec, having a
maximum of 6 sec of delay with above 2000 routers. The communication net-
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work delay they could not fix in-place as it required deeper changes in the code
owned by the developers from another University. Nevertheless, the immediate
idea was to cache locally these names to decrease the response time.
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This part contains three chapters. Chapter 9 discusses the applications of our
approach in other fields. On the other hand, Chapter 10 discusses the limitations
of the approach. Chapter 11 concludes this dissertation.
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Chapter 9

Future Work

In this chapter we discuss the applications of our approach for the regression
benchmarking and the plug-in blame assignment.

9.1 Regression Benchmarking

One additional interesting application of our approach is its use to automate
regression benchmarking of interactive applications.

How does a development team of an interactive application know whether
the current release improves or degrades performance over the prior version?
Traditionally, organizations developing large software systems maintain auto-
matic build and regression test infrastructures, and often they use these in-
frastructures to also assess performance by measuring the time needed to ex-
ecute each of the regression test cases. Such a regression benchmarking [70]
approach can also be used for interactive applications, at least for the isolated
non-interactive components that are covered by regression tests. However, such
measurements do not truly reflect interactive performance: they look at the
speed of specific computations (whichever functionality a specific test case cov-
ers) in isolation. The perceptible performance of the overall application, how-
ever, depends on the latency of handling user requests, where each request may
involve the notification of a diverse set of observers, and each observer may per-
form a diverse set of basic computations. To determine the perceptible perfor-
mance, it is thus essential to move beyond unit tests as benchmarks. We propose
to use the cumulative latency distributions over a set of test user sessions for this
purpose.

To demonstrate this application, we have studied how the latency distribu-
tion has changed over different versions of Eclipse. Figure 5.3 in Section 5.6 has
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shown how Eclipse has grown by 71%, in terms of the number of classes, from
version 3.0 to version 3.4.1. These new classes provide additional functionality.
Most additional features need to observe some aspects of the application state, in
order to provide their functionality. They thus probably register new observers,
and those new observers contribute to additional latency. We wondered whether
this effect was visible in the cumulative latency distribution.

0 50 100 150 200 250 300 350 400 450 500Latency0.20.30.4
0.50.60.7
0.80.91.0
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1.41.5
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unt / To
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Figure 9.1. The Evolution of Eclipse’s Cumulative Latency Distribution

Figure 9.1 shows that it is clearly visible. Each curve represents an aggrega-
tion of three interactive sessions with a given Eclipse version. The curves show a
surprisingly clear decrease of the perceptible performance with each successive
version. The most recent version, the top curve, clearly has the worst latency dis-
tribution, and the older the version, the better the performance. Moreover, the
gaps between the curves show that versions 3.1 and 3.3 caused a bigger drop in
performance, while versions 3.2 and 3.4 represent less pronounced performance
regressions.

We can see that the curves show a significant number of perceptible la-
tency episodes: version 3.4.1, for example, exhibits about one episode longer
than 100 ms every second, and one episode longer than half a second every
0.45 seconds of in-episode time. Given that our profiler also collects – besides
the cumulative latency distributions shown in the figure – information about
each perceptible-latency observer notification, a developer will also receive in-
formation helping her to fix the performance regression. Our profile for version
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3.4.1, for example, shows that a significant number of long-latency episodes is
due to notifications of org.eclipse.jdt.internal.ui.packageview.SelectionTransfer-
DropAdapter.drop().

Our profiler enables the collection of these kinds of profiles in the field, for
example as part of a beta testing program. Developers of interactive applications
could combine our profiler with an approach to usage data collection [51] to
ship the collected profiles from end users back to the developer’s server. They
could then use this information as part of their quality assurance process, and
set specific goals for latency distributions of future versions.

9.2 Plug-In Blame Assignment

The previous use case of latency profiling showed how developers can control
performance throughout the evolution of their application. Applications like
Eclipse, however, are not monolithic systems: they are frameworks that can be
extended by plug-ins in a multitude of ways. Each end-user may install a differ-
ent set of plug-ins, and the specific combination of plug-ins of a given installation
may never have been performance-tested by a developer. Moreover, users tend
to install additional plug-ins over time, so the set of plug-ins in a given installa-
tion may constantly change. For example we installed a plug-in to support the
writing of LATEX documents in Eclipse, and another set of plug-ins to access the
Subversion repository of our group.

If an end-user perceives his specific installation of Eclipse as sluggish, it
would be helpful for him to know what to do to fix the problem. If it was
possible for an ordinary end-user to identify which of the many plug-ins was
causing the perceptible slowdown, he could disable, uninstall, or upgrade that
plug-in.

Our latency profiler can help in this situation. Often plug-ins register as
observers to observe changes in application state. Thus, if a plug-in causes ex-
cessive latency, our profiler can identify the corresponding observer notification.
We have extended our profiler to record, in addition to the observer’s class and
method, also the observer’s class loader, and its class path. In a framework like
Eclipse, each plug-in has its own class loader, and the class files of a given plug-
in are stored in its own location (a JAR file or a directory). By collecting the
class path, we can identify the plug-in containing the sluggish observer.

We have built a simple example of such a “rough” Eclipse plug-in to validate
our idea. Our plug-in is based on Eclipse’s Helloworld example plug-in. The only
addition is that it observes changes in the Eclipse workspace (creation, modifi-
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cation, and deletion of resources) by registering an org.eclipse.core.resources.
IResourceChangeListener with Eclipse’s Workspace. We artificially introduced
a delay in that observer, simulating the expensive computation a real plug-in
might perform. We then ran Eclipse on top of our profiler. After we enabled our
plug-in, all resource modifications became sluggish as expected. Note that the
observed behavior would not tell a user where the problem lies. A very advanced
user might suspect there to be a problem in the resource management plug-in,
which, in fact, is not the case, as our plug-in is not responsible for resource
management, it is just a presumably passive observer.

Figure 9.2. Identification of Responsible Plugin in our Listener Profile Visual-
izer

Figure 9.2 shows that our profile directly points out the observer, its class,
and the plug-in that class belongs to. With an appropriate user interface, our
profiler could pop up a window to notify the user whenever a observer took
long, and propose which plug-in the user may want to disable or upgrade. We
believe that such a feature would be helpful in many contexts, not just for Java
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applications like Eclipse. For example, modern desktop computers are running
a multitude of “plug-ins”, from on-access virus scanners, over anti-spyware, to
advertisement blockers in web browsers. In our own experience, some of these
“plug-ins” indeed add perceptible latency. For a user it is often difficult or im-
possible to tell whom to blame when a computer becomes “sluggish”. A system
based on our approach would directly assign the blame to the responsible com-
ponent.
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Chapter 10

Limitations

This chapter discusses the limitations of the profiling approach and the imple-
mentation presented in this dissertation.

User-relevant issues. Do the issues reported by our approach correspond
to those performance problems users really care about? Our approach exploits
the fact that there is a known threshold at which users start to perceive la-
tency. This is a unique situation: we have a performance metric (event handling
latency), and we have an absolute value for that metric (around 100 ms for dis-
crete events), established by prior research [104; 103; 37; 41], at which perfor-
mance is sufficient. However, it would be interesting to study, in the context of
general interactive applications, whether users indeed would report perceptible
latencies above the threshold as performance issues. One could do that by com-
bining automatic lag hunting with the manual fly-by profiling approach [15],
where users can click a button to immediately report a performance problem
when it occurs.

False positives. Does LagHunter inadvertently catch butterflies instead of
just bugs? LagHunter’s list of issues includes all traced landmark method calls.
Instead of taking a binary decision and reporting only the “bugs”, LagHunter
allows the developer to rank the issues according to criteria such as the land-
mark’s inclusive time, the number of its occurrences, or the number of sessions
in which it occurred. It is up to the developer to select the ranking approach,
and to decide how far down the list he will go in his performance tuning effort.
These decisions are not easy, and they are less a matter of correctness and more
a matter of developer priorities and resources.

False negatives. LagHunter does not necessarily catch all perceptible per-
formance bugs. While it does highlight all individual landmark method calls
that exhibit a long latency, it does not currently point out contiguous bursts of
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short landmark method calls. Such bursts can occur in applications that use
animation (such as games or video players). If subsequent calls in such bursts
are not separated by any idle time interval, this is indicative of an animation
where rendering an individual frame takes too long. It could be useful to also
automatically detect and report such bursts.

LagHunter detects long latency only in landmark methods. If a method out-
side a landmark incurs long latency, LagHunter will not detect it. To circumvent
this problem, we include the event dispatch method as a landmark, and thus
any latency in the GUI thread will be captured (all methods during episodes are
transitively called by the event dispatch method). However, if only the dispatch
method was defined as a landmark, all such long-latency episodes would appear
as a single issue (the event dispatch method). Such a catch-all issue is difficult
to fix. A developer would have to look at hot subtrees of the dispatch method’s
CCT, introduce new landmark definitions accordingly, and then wait for new
issues to appear.

Concurrency. LagHunter targets interactive applications. Prior work has
shown that such applications rarely exhibit significant concurrent behavior [17].
However, our profiler does work with concurrent applications, and it tracks the
behavior of all threads, so it is possible to see what other threads were do-
ing while the user interface thread exhibited lag. Moreover, our lag hunting
approach is not limited to interactive applications. For example, it could also
be used to track lag in transaction-oriented server applications, where concur-
rency is much more prevalent. In that situation, it might be beneficial to extend
LagHunter to track dependencies between threads. That way it could also high-
light the reasons for why a thread blocked or waited.

No automatic optimization. Our approach helps developers to catch rele-
vant latency bugs, however it does not automatically optimize the application to
eliminate those bugs. While feedback-directed performance optimizations usu-
ally target a very specific class of performance issue (e.g., to improve memory
locality by object co-location), the goal of our approach is to catch all percep-
tible performance bugs, independent of their underlying cause. We thus follow
an ends-based approach (“what needs to be fixed?”) instead of a means-based
approach (“what can we fix?”). This entails, however, that we do require the
involvement of a human developer.

Difficulty of issue reproduction. How difficult is it for developers to repro-
duce an issue given just a lag hunter report? While the information in the report,
especially the name of the landmark method and the calling context tree, help in
understanding the activity the user must have performed in the wild, additional
information (such as screenshots of the user’s GUI at the time the problem oc-
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curred) would certainly be helpful. Our agent could capture screenshots when it
detects long latency behavior and ship those screenshots to the analysis engine
as part of the session report. Moreover, it could use a GUI record and replay tool
to capture user interactions, to partially automate the reproduction of latency
bugs. For privacy reasons, we did not capture screens or user interactions in our
initial implementation of the lag hunting approach.

However, to alleviate the above privacy concerns, we have developed a di-
alog that can automatically be shown to the user after a latency bug occurred.
That dialog presents a screenshot and allows the user to black out arbitrary re-
gions of the screen (e.g. to remove passwords or other private information that
is visible). Moreover, we overlay the history of the mouse coordinates over that
screenshot, and allow the user to navigate back in time in terms of mouse po-
sition, and thus to indicate when the bug occurred. Finally, we ask the user to
point where (position/GUI component in the screenshot) the bug occurred. We
did not use these features in our study, because we had not yet fully implemented
them at that time. However, our hypothesis1 is that they might help to gather
useful information aiding developers in bug reproduction, while preserving user
privacy.

Cost of stack sampling. Each time our stack sampling agent takes a sam-
ple it slightly increases the latency of the program. The median cost of taking
a sample is between 0.5 ms and 2.23 ms. Using a sampling rate of 1000 Hz
would thus add between 50 ms and 223 ms to a 100 ms episode. This would
significantly perturb the measurement results and perceptibly slow down the ap-
plication. Moreover, the large number of samples would lead to larger traces.
However, because we perform lag hunting in the wild, we can reduce the sam-
pling rate proportionally to the number of users running the application, while
still receiving the same number of samples for each landmark. Moreover, when
a developer reproduces a reported issue in the lab, we found that a sampling
rate of 10 Hz is still enough to gather enough stack samples to confirm the issue
by repeating the perceptibly slow activity a few times.

Inaccuracy of stack sampling. Mytkowicz et al. [91] have shown that cur-
rent Java stack sampling profilers are inaccurate due to the placement of safe-
points by the virtual machine’s JIT compilers. Our approach depends on the
same infrastructure underlying the profilers studied in that paper, and we thus

1 Unknown to us, Google independently developed a similar privacy-preserving screenshot
feature, which they added to their new Google+ web application. They show a “Send feedback”
button at the bottom right of the web page, and when a user clicks the button, they allow them to
black out screen regions and to highlight problem areas. Google’s introduction of this approach
confirms our hypothesis that our idea can be beneficial.
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are prone to the same inaccuracies in the calling context profiles collected for
each issue. The fact that we collect samples in many different environments (dif-
ferent users, hardware, operating systems, virtual machines), over many differ-
ent program runs, might mitigate part of the problem. Moreover, our landmark
tracing approach is based on bytecode instrumentation, and thus the latency
we report is not affected by that problem. Finally, once virtual machine im-
plementers correct the problems pointed out by Mytkowicz et al., our sampled
calling context profiles will automatically become more accurate.

Limitations of call pruning. Call pruning can lead to crashes, usually after
the omitted method call. Pruning is not calling-context sensitive. Assume we
prune a call site o.x() in method m() that would call a method x(). If method
m() is called from a context outside the given landmark, this pruning could lead
to crashes even outside this landmark. We have not observed this in practice, but
we could easily construct a case where this would occur. Note that the goal of
pruning is to provide the developer with an idea of the consequences of not ex-
ecuting some call (some call on the path to a hot CCT subtree). Pruning the call
is not a fix, it normally leads to missing functionality or even to a crash. Thus,
the developer will still have to replace the omitted code with a more efficient
implementation.

Application selection. We evaluate LagHunter by catching latency bugs in
only several interactive applications. This carries the risk that our approach
might not be effective in finding bugs in other programs. However, Eclipse is
an order of magnitude larger and richer than most other interactive Java pro-
grams. Moreover, it consists of a large number of independent plug-ins, and
some of those plug-ins are more complex than many normal stand-alone appli-
cations. Eclipse also is the only Java application that uses two separate Java GUI
toolkits: its default toolkit is SWT, but some Eclipse plugins use AWT/Swing. Be-
sides Eclipse, LagHunter is used to catch performance bugs in a range of other
applications, including application we discuss in the evaluation chapters.
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Conclusion

Many if not most computer systems are used by human users. The performance
of such interactive systems ultimately affects users. What affects them is the per-
ceptible lag in handling their requests. In general, the performance of interactive
applications can be determined by the perceptible lag.

In this dissertation, we introduced a novel approach, landmark latency pro-
filing, that helps developers dealing with such performance problems. The ap-
proach seeks out perceptible lags and investigates their causes. We showed how
the approach helps developers to understand to improve the perceptible perfor-
mance of their interactive applications.

The approach identifies methods relevant for handling user actions, which
dramatically narrows the scope of the application code where a developer has
to look for problems. The approach is designed to work in the field. The reason
is that many problems occur only in some contexts and platforms which are
impossible to reproduce in the lab. We succeed in providing an approach that
gives an accurate view of the causes of performance problems and perturbs the
interactive application insignificantly.

We evaluated our approach on real-world applications ourselves such as In-
forma, Eclipse, and CodeBubbles. Also, we evaluated the usefulness of our ap-
proach in the field by letting other developers use it and to try identify perfor-
mance problems and their causes. Chapter 6 and Chapter 7 discuss how the
approach helps identifying problems in the code. We showed in which cases
the approach helps developers to recognize long latency problems and to navi-
gate in their code to the places that contribute to long latencies. Nevertheless,
we found limitations of the approach when the approach cannot help and we
discussed that in Chapter 10.
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In addition, our approach has a range of possible applications. We described
how to use the approach for automatic software testing. We also showed how the
approach can be used for regression benchmarking of interactive applications.
Moreover, we believe that our approach could be successfully extended to the
field of distributed systems where latency is a crucial parameter for handling the
events.

This dissertation demonstrated that understanding the performance of mod-
ern complex systems requires more dedicated profiling approaches. We showed
how our approach is more effective than the standard hotness profiling ap-
proaches in identifying performance problems for the context of interactive ap-
plications. In particular, our study showed that our approach can successfully
highlight the region of code in which a performance problem occurs and iden-
tify the problem cause in many relevant situations. Finally, the experience from
this work shows that having the approach deployed in the field, allows a devel-
oper to have insight into the performance problems which otherwise would be
impossible to find.



Publication List

The work on this thesis resulted with a number of publications at the scientific
journals, conferences, and workshops. Hereby, we provide the overview of the
publications along the path toward the thesis:

• The potential of speculative class-loading [122], Dmitrijs Zaparanuks,
Milan Jovic, and Matthias Hauswith

Conference Proceedings at Principles and Practice of Programming in Java
(PPPJ) 2007, Lisbon, Portugal

The work presented in this paper required changes in the code of the re-
search virtual machine JikesRVM. It helped me to acquire necessary un-
derstanding of the internal mechanisms of one virtual machine.

• Measuring the Performance of Interactive Applications with Listener
Latency Profiling [67], Milan Jovic, and Matthias Hauswirth

Conference Proceedings at Principles and Practice of Programming in Java
(PPPJ) 2008, Modena, Italy

This paper represents the inception of the approach presented in this dis-
sertation. It mostly reflects the content of Chapter 3.

• Accuracy of performance counter measurements [123], Dmitrijs Za-
paranuks, Milan Jovic, and Matthias Hauswirth

Conference Proceedings at the International Symposium on Performance
Analysis of Systems and Software (ISPASS) 2009, Boston, Massachusetts,
USA
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• Listener Latency Profiling: Measuring the Perceptible Performance of
Interactive Applications [68], Milan Jovic, and Matthias Hauswirth
Journal Science of Computer Programming, 2010

The paper “Measuring the Performance of Interactive Applications with
Listener Latency Profiling” [67] presented at PPPJ was selected to be pub-
lished in the Science of Computer Programming Journal. This is an ex-
tended version of the PPPJ paper. It includes two additional parts. The
first one contains novel results we got including new landmark types, and
the second is the extended evaluation with NetBeans.

• LagAlyzer: A latency profile analysis and visualization tool [17], An-
drea Adamoli, Milan Jovic, and Matthias Hauswirth
Conference Proceedings at the International Symposium on Performance
Analysis of Systems and Software (ISPASS) 2010, White Plains, NewYork,
USA

In this paper we presented the first study that gives insight into why inter-
active Java applications are sometimes perceived as slow. Our contribution
of the work presented in this paper is shown in Chapter 4.

• Performance Testing of GUI Applications [69], Milan Jovic and Matthias
Hauswirth
International Workshop on TESTing Techniques and Experimentation Bench-
marks for Event-Driven Software (TESTBEDS) 2010, Paris, France

In this paper we broaden the notion of GUI testing to include GUI perfor-
mance testing using our approach. We outline the challenges specific to
performance testing of GUI applications. We proposed a research agenda
towards an automatic approach that would make GUI performance testing
practical.

• Automating Performance Testing of Interactive Java Applications [66],
Milan Jovic, Andrea Adamoli, Dmitrijs Zaparanuks, Matthias Hauswirth
Proceedings of the Workshop on Automation of Software Test (AST) at
ICSE 2010, Cape Town, South Africa

Along the way toward our dissertation we found other areas were our
approach can be applied. Automated software testing as one of the most
interesting reflected in this publication. The idea of automating software
testing with our approach is presented in Section 9.1 when speaking about
regression test benchmarking of interactive applications.
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• Automating Performance Testing of Interactive Java Applications, An-
drea Adamoli, Dmitrijs Zaparanuks, Milan Jovic, Matthias Hauswirth
Software Quality Journal

The paper “Automating Performance Testing of Interactive Java Applica-
tions” presented at AST 2010 was selected for the Software Quality Jour-
nal and this publication is the extended version of the paper.

• Catch Me If You Can: Performance Bug Detection in the Wild, Milan
Jovic, Andrea Adamoli, Matthias Hauswirth
In Proceedings of the Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA) 2011 conference, Portland, Oregon, USA

The paper represents the final approach of our thesis and its content spans
over two chapters: Chapter 5 and Chapter 6.
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