
Approximability of Precedence Constrained
and Robust Scheduling Problems

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Nikolaus Mutsanas

under the supervision of

Prof. Luca Maria Gambardella

co-supervised by

Prof. Monaldo Mastrolilli

March 2010

Dissertation Committee

Prof. Antonio Carzaniga Universitá della Svizzera Italiana, Switzerland
Prof. Evanthia Papadopoulou Universitá della Svizzera Italiana, Switzerland

Prof. Friedrich Eisenbrand Ecole Polytechnique Fédérale de Lausanne, Switzerland

Dissertation accepted on 17 March 2010

Prof. Luca Maria Gambardella
Research Advisor

Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA)

Prof. Monaldo Mastrolilli
Research Co-Advisor

Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA)

Prof. Michele Lanza
PhD Program Director

i

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been sub-
mitted previously, in whole or in part, to qualify for any other academic award;
and the content of the thesis is the result of work which has been carried out
since the official commencement date of the approved research program.

Nikolaus Mutsanas
Lugano, 17 March 2010

ii

Theoretical Computer Science is
about showing that problems that
do not exist cannot be solved
assuming a conjecture nobody can
prove.

Fred

iii

iv

Abstract

This thesis studies the approximability of scheduling problems in different con-
texts. Chapter 2 gives a short introduction to the field of scheduling theory and
presents a simple single machine scheduling problem that will form the base for
all variants considered in the remainder of this thesis. We point out that this
scheduling problem, though long known to be efficiently solvable in its original
form, becomes very interesting when additional restrictions are imposed. The
restrictions in the focus of this thesis are precedence constraints among the jobs
that need to be fulfilled by any feasible solution, or incomplete knowledge about
the instance at hand.

We first study the precedence constraint version of the above mentioned sin-
gle machine scheduling problem. This problem was first studied in the seven-
ties, and still poses perplexing questions to researchers, concerning its approx-
imability. Throughout the years several 2-approximation algorithms have been
developed for it, with some special cases of precedence constraints allowing
for better than 2 approximations. It was recently shown that this scheduling
problem is strongly related to the VERTEX COVER problem of an appropriately
defined graph. We establish a connection between this graph and a well-known
graph in Dimension Theory of partial orders. We also extend a technique de-
veloped by Dorit Hochbaum that yields “good” approximation algorithms for
the INDEPENDENT SET problem in graphs to the case that the so-called fractional
chromatic number of the graph is bounded. Using the connections to dimension
theory, we devise an algorithmic framework that unifies and often improves on
the best known approximation algorithms for all previously considered special
cases of partial orders. Besides its success in devising approximation algorithms
for special cases of precedence constraints, the above sketched connection is
also interesting in its own right. As an example, the polynomial solvability of
2-dimensional precedence constraints can be explained by the fact that the re-
sulting graph becomes bipartite and vertex cover is known to be polynomially
solvable for bipartite graphs.

We then study the above scheduling problems in the presence of uncertainty.

v

vi

We show that this problem cannot be approximated within a logarithmic fac-
tor whenever the number of different scenarios, i.e. different configurations
of the numerical parameters is unbounded. This result contrasts the difficulty
in proving inapproximability results for the classical, non-robust problem and
hints at the increase in complexity caused by the uncertain environment. We
find it therefore surprising that we were able to develop a polynomial time 2-
approximation algorithm for the case when only one of the two parameters is
affected by uncertainty. The fact that our result holds in the presence of prece-
dence constraints implies that it cannot be improved without improving upon
the 2-approximation algorithm for the classical precedence constrained schedul-
ing problem, a long standing open problem in scheduling theory. We further
prove inapproximability results for the unweighted case and give a polynomial
time algorithm for the case when both the number of scenarios and processing
times / weights are bounded by some constant.

Parts of the work presented in Chapter 3 has been published as [AMMS07],
[AMMS08] and [AMMS09]. Work presented in Chapter 4 has been published
as [MMS08]. Research conducted was supported by Swiss National Science
Foundation project 200021- 104017/1, “Power Aware Computing”, by the Swiss
National Science Foundation project 200020-109854, “Approximation Algorithms
for Machine scheduling Through Theory and Experiments II”, and by the Swiss
National Science Foundation project PBTI2-120966, “Scheduling with Prece-
dence Constraints”.

Acknowledgements

I would like to express my gratitude to

• my doctoral father, Monaldo, whose patience only admits lower bounds
and who has become a paradigm of a researcher and teacher to me.

• Ola, my doctoral brother, friend, colleague, co-author, neighbor and soccer
team-mate who always has some tricks up his sleeve.

• my colleagues and co-authors, Arash, Christoph, Giorgos, Monaldo and
Ola who have taught me everything I know.

• our director, Luca, for supporting my studies and giving me the freedom
to work on subjects of my interest.

• Prof. Carzaniga, Prof. Eisenbrand and Prof. Papadopoulou for offering to
evaluate this dissertation and provide their valuable feedback.

• my colleagues and friends at IDSIA and USI that have made the stay at this
institute a memorable time.

• Alexander, Carlo, Luca, Monaldo and Tom for trusting me with the task of
assisting their excellent courses, from which I have learned a lot.

• Orchestra Arcadia, Orchestra da Camera di Lugano, Trio di Ravecchia and
Duetto αlphaβeto for adding the right tone to my free time.

• my flatmates, neighbors and friends for making Castalia such a great place
to live.

• the “Ticiniotes” Antonella, Chrysa, Giannis, Giorgos, Giorgos (2), Fotis and
Ljuba for curing occasional home-sickness with a lot of greek jokes.

• my girlfriend, Ania, and my family, whose love and support was never
affected by uncertainty.

vii

viii

Contents

Contents ix

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Algorithms . 1
1.2 Computational Complexity and P vs. NP 2

1.2.1 Combinatorial Optimization 4
1.3 Approximation Algorithms . 5

1.3.1 Approximation Schemes . 7
1.3.2 Inapproximability proofs . 8
1.3.3 Approximation Gap . 9

1.4 Unique Games Conjecture . 9
1.4.1 Randomization and Approximation 11

1.5 Robust Optimization . 13
1.6 Terminology and notation . 14
1.7 How to read this thesis . 15

2 Scheduling Theory 17
2.1 A simple scheduling problem . 17
2.2 Graham notation . 21

3 Single Machine Precedence Constraint Scheduling 25
3.1 Introduction . 25

3.1.1 Literature review . 28
3.2 A sketch of the algorithmic framework 31
3.3 Single Machine Scheduling and Vertex Cover 35

3.3.1 The Vertex Cover problem . 35

ix

x Contents

3.3.2 Connection between 1|prec|∑ j w jC j and Vertex Cover . . . 41
3.4 Dimension Theory of Partial Orders 44

3.4.1 The Hypergraph of Incomparable Pairs 47
3.5 The algorithmic approximation framework 49

3.5.1 Structure of the Graph GS
P . 50

3.5.2 The Framework . 51
3.6 Applications of the framework . 54

3.6.1 Interval Orders . 54
3.6.2 Semiorders . 57
3.6.3 Orders of Interval Dimension two 59
3.6.4 Posets of Bounded Up- or Down-degree 60
3.6.5 Lexicographic Sums . 63

3.7 Conclusions and future research . 65

4 Single Machine Scheduling with Scenarios 67
4.1 Deterministic vs. Robust Optimization 67

4.1.1 Robustness Criteria and Uncertainty Modeling 68
4.1.2 Approximability of Robust Problems 69

4.2 Robust single machine scheduling . 70
4.3 Bounded number of scenarios . 72

4.3.1 Complexity of robust scheduling 72
4.3.2 Efficient algorithm for bounded parameters 72

4.4 Unbounded number of scenarios . 75
4.4.1 Inapproximability for the general case 76
4.4.2 Inapproximability of unweighted case 82
4.4.3 2-approximation for PARTUNC MIN-MAX 1|prec|∑ j w jC j . . 85

4.5 Conclusions and future research . 89

A Problem Index 91

Bibliography 97

Index 105

Figures

1.1 Example of a derandomization procedure 13
1.2 Examples of graph theoretic definitions 15

2.1 Correctness proof of Smith’s rule . 20

3.1 Example instance of 1|prec|∑ j w jC j 27
3.2 Sketch of the framework. 34
3.3 The Nemhause & Trotter preprocessing 37
3.4 Hochbaum’s coloring approach for IS 39
3.5 Comparison of integral and fractional colorings 41
3.6 Hasse diagram example . 45
3.7 Example of an extension . 46
3.8 Example of a 2-realizer . 46
3.9 The graph GP and the hypergraph HP 48
3.10 The three edges types of graph GS

P . 50
3.11 The fractional coloring framework . 52
3.12 Interval order example . 55
3.13 Forbidden poset for semiorders . 58
3.14 Construction of a realizer for semiorders 59
3.15 Lexicographic sum example . 64

4.1 Illustration of the forbidden cycle gadget 78
4.2 Illustration of a counting scenario . 80
4.3 Example reduction for 6/5-inapproximability 83
4.4 Upper and lower bounds using vertex covers 84

xi

xii Figures

Tables

2.1 Possible values for the machine environment 22

4.1 Example instance of MIN-MAX 1||∑ j w jC j 71

xiii

xiv Tables

Chapter 1

Introduction

Many commonly used techniques for solving numerical problems, simulating
physical or social processes and manipulating information would be impossible
today without the introduction of the fast computers. The insight that the limits
of human computers have been long surpassed by the technological and scien-
tific needs of our time has led people to wonder about the limits of machine
computation.

1.1 Algorithms

The problems handled by a digital computer are required to be well-defined and
formulated in a structural way, in the form of an algorithm. The mathematical
dictionary of “MathWorld” gives the following definition [Wei]:

Definition 1.1.1 An algorithm is a specific set of instructions for carrying out a
procedure or solving a problem, usually with the requirement that the procedure
terminate at some point.

In other words, an algorithm is a rigid procedure that is defined with suffi-
cient precision for a machine to be trusted with its execution. But the history
of algorithms starts long before the invention of digital computers. All ancient
civilizations had developed algorithms used in computations involved in con-
struction, time measurement and other tasks, a prominent example being the
Euclidean Algorithm developed as early as 375 BC. The construction of comput-
ers, however, lead to a previously unimaginable boost in the speed with which
algorithms could be executed, and led people to wonder if all formally defined
tasks can be solved by a computer. By brilliant arguments, Alan Turing [Tur36]

1

2 1.2 Computational Complexity and P vs. NP

showed that there are well-defined mathematical problems for which no algo-
rithm can exist that correctly solves all instances, the most famous example being
the halting problem (see [Tur36]).

However, even the restriction to decidable problems, i.e. problems for which
in principle there is an algorithm that would correctly solve any of its instances,
poses big challenges to researchers. This is because an algorithm’s requirements
of computational resources such as time and memory might be so excessive that
it becomes practically insignificant. The need to analyse algorithms in terms
of the amount of resources needed for their execution has led to the field of
Computational Complexity.

1.2 Computational Complexity and P vs. NP

It is obvious that the amount of resources needed by an algorithm to solve an
instance of a problem grows with the size of the instance. The efficiency of an
algorithm is quantified by studying how its number of basic operations scales as
the size of the input is increased. The motivation for this measure comes from
the fact that the efficiency of an algorithm is to a considerable extent much more
important than the technology used to execute it [AB09]. As an example, com-
paring the grade-school algorithm for the multiplication of integers to a naive
repeated addition algorithm, it is estimated that for 15-digit numbers, a fifth
grader with pen and paper executing the former would outperform a modern
supercomputer executing the latter.1

The above raised the question for a characterization of the efficiency of al-
gorithms. In his celebrated paper [Edm65], Edmonds introduced the concept of
polynomial-time algorithm, an algorithm whose runtime is bounded by a polyno-
mial in the size of the instance. It is today generally agreed that an algorithm is
efficient if it is a polynomial-time algorithm. One might argue that this definition
has the flow that an algorithm which requires n100 operations is practical only for
the smallest of instance sizes. However, support for this definition comes from
our experience that almost all efficient algorithms run in time that is bounded
by a polynomial of small degree.

A complexity class is a set of problems that can be solved within given re-
source bounds. In this context, the class P is defined as the set of problems that
admit a polynomial-time algorithm. As discussed above, there is a consensus

1The number of basic operations — i.e. additions and multiplications of digits — needed by
the grade-school multiplication of n-digit numbers is at most 2n2, while for the repeated addition
it is at least n10n−1.

3 1.2 Computational Complexity and P vs. NP

that the class P contains those problems that can be solved efficiently. Naturally,
a lot of effort has been made to place combinatorial problems in P, by devising
polynomial-time algorithms that solve them. A very fruitful technique was pro-
vided by the polynomial reducibility among problems. A polynomial reduction
from problem Π1 to Π2 is an algorithm that for any instance of Π1 constructs,
in polynomial time, an instance of Π2 such that solutions to Π2 correspond to
solutions to Π1. Thus, given a polynomial time algorithm for a problem Π2, one
can devise a polynomial time algorithm for Π1 by polynomially reducing it to
Π2.

Nevertheless, for many basic combinatorial problems, such algorithms re-
main unknown, despite extensive efforts by many bright researchers. Our in-
ability to devise efficient algorithms for this prominent group of problems has
led to the development of a beautiful theory that unifies these failures into a
deep mathematical conjecture, often cited as “P6=NP”. The class NP contains the
problems for which the validity of a suggested solution can be checked in poly-
nomial time. In other words, it is different to the class P in that the “creative
effort” of constructing a solution is no longer required, but instead an efficient
way of validating solutions constructed externally is sufficient.

It is widely believed that the classes P and NP are different [Gas02], i.e. that
removing the requirement for creative effort leads to a significantly different
class of problems. This complies with our intuition that the inability to solve a
difficult mathematical problem does not imply a difficulty in understanding the
solution, once presented by the instructor. However, a proof of the statement
P6=NP is inherently difficult: one must choose a problem and prove a claim
about all possible algorithms that solve this problem, namely that they have a
superpolynomial runtime. Due to this difficulty, the problem “P6=NP” remains a
conjecture and has become one of the most fundamental open problems of our
times (see e.g. [Cla00]).

Despite our inability to precisely classify problems according to their compu-
tational complexity, a lot of progress has been made in interrelating the complex-
ities of different combinatorial problems. The class NP-complete is defined as the
subclass of NP containing those problems Π ∈ NP that have the property that all
other problems in NP can be polynomially reduced to Π. In his seminal paper,
Stephen Cook [Coo71] (and, independently, Leonid Levin [Lev73]) proved in
the seventies that the problem of deciding the satisfiability of boolean formulas
(SAT) is NP-complete. The importance of this proof is that it acted as a seed,
based on which many other problems could be shown to also be NP-complete,
by constructing polynomial reductions from these problems to SAT. This was
demonstrated by Richard Karp who gave a list of 21 NP-complete problems us-

4 1.2 Computational Complexity and P vs. NP

ing the hardness of SAT and polynomial reductions. Many more problems have
been added to this class throughout the years (for a list of more than 200 basic
NP-complete problems, see the online compendium [CK98]). By definition of
the class NP-complete, these problems form a web of interconnected problems,
such that a polynomial time algorithm for any of them would translate into a
polynomial time for all other problems of the class as well. That is, the prob-
lems in the class NP-complete can be seen as different flavours of one, very hard,
fundamental problem.

A problem is called NP-hard if it is at least as hard as the hardest problems
in NP. More precisely, a problem Π is NP-hard if there exists an NP-complete
problem that is polynomially reducible to Π. In this definition, by convention
the length of some reasonable binary encoding of the instance is considered
as the input size. A problem that remains NP-hard when the encoding of the
instance is unary is called strongly NP-hard.

We point out a trivial “antisymmetry” in the inheritance of computational
complexity. Given two problems Π1 and Π2, we say that Π1 is a special case of Π2

if all valid instances of Π1 are also valid instances for Π2. Naturally, an efficient
algorithm for Π2 implies an efficient algorithm for Π1, since only a subset of
instances is considered. Conversely, showing that Π1 is NP-hard implies the
same for the more general problem Π2. Thus, the NP-completeness for problems
in NP can often be established easily by identifying an NP-complete subproblem
(see Problem 1.3.2 for an example).

1.2.1 Combinatorial Optimization

Similar to the problem of satisfiability, the beginning of the theory of NP-comple-
teness revolved around decision problems i.e. problems that can be expressed as
the computation of a boolean function. However, many combinatorial problems
arising in practice are optimization problems: given an instance of a problem, the
question is to find a solution, among a set of implicitly defined feasible solutions
to this problem, such that a given measure on the quality of a solution is opti-
mized. Seemingly easier versions of such problems are given by requiring only
the value of an optimal solution (evaluation problem) or recognizing if there ex-
ists a solution of at least / at most a given value (recognition problem). However,
it is easy to see that evaluation problems are no harder than recognition versions
of the same problem. This is because a given hypothetical polynomial time al-
gorithm that correctly answers the recognition problem can be combined with
binary search in order to determine the exact value of the optimum. Further-
more, even though there is no general way of reducing optimization problems

5 1.3 Approximation Algorithms

to their evaluation versions, most problems exhibit the self-reducibility property
(see Section 1.4.1), with which it can be shown that their optimization version
is no harder than their evaluation version. This will in particular be the case
for all problems considered in this thesis. For such problems, the three different
versions mentioned above are essentially the same, in terms of complexity.

1.3 Approximation Algorithms

Many optimization problems that arise in practice are NP-complete. Assuming
that P 6= N P, this implies that one cannot hope for a polynomial time algorithm
that correctly solves all of the problem’s instances. Thus, one must settle for
a less ambitious goal, when dealing with such a problem. More precisely, one
needs to sacrifice one of the following desired features of the sought algorithm:

• Solve the problem to optimality.

• Solve the problem efficiently.

• Solve arbitrary instances of the problem.

The field of Approximation Algorithms studies the design of algorithms that drop
the first of those requirements, i.e. they solve arbitrary instances of a problem
efficiently, though possibly suboptimally. Moreover, an approximation algorithm
comes with a guaranteed bound on the deviation from optimality of the solution
produced. A formal definition follows.

Definition 1.3.1 (Approximation Algorithm) Let Π be a minimization (respec-
tively, maximization) problem. Let ε > 0 and set ρ = 1+ε (respectively, ρ = 1−ε).
An algorithm A is called a ρ-approximation algorithm for the problem Π, if for all
instances I of Π it computes a feasible solution with the objective value A(I) such
that

|A(I)−OPT (I)| ≤ ε ·OPT (I)

where OPT (I) denotes the value of the optimal solution to the instance I. The value
ρ is called the performance guarantee or the worst case ratio of the approximation
algorithm A.

This definition seems counterintuitive at first sight, since it requires a guar-
antee involving the optimal solution of the problem. However, as discussed in
Section 1.2, solving the evaluation version of a problem is computationally not

6 1.3 Approximation Algorithms

easier than solving the optimization version. This observation hints to an im-
portant part in the design of approximation algorithms: bounding the value of
an optimal solution and analyzing the worst-case approximation ratio. We will
illustrate these concepts with an example of a 2-approximation algorithm for the
LOAD BALANCING problem.

Problem 1.3.2 (LOAD BALANCING)

Given: A set of m identical machines, a set of n jobs N = { j1, j2, . . . , jn} and for
each job ji a processing time pi ∈Q.

Find: A partitioning of N into m partitions N1, . . . , Nm such that the jobs in Ni are
scheduled on machine i in an arbitrary order and without gaps, such that the
maximum load among all machines (i.e. the makespan)

max
1≤i≤m

Li

is minimized, where the load of machine i is defined by Li :=
∑

j∈Ni
p j.

It is easy to see that this problem is NP-hard, since it contains the problem
2-PARTITION as a special case. The following algorithm, due to Graham [Gra66],
is one of the first approximation algorithms and achieves an approximation ratio
of 2: arbitrarily order the jobs and schedule them in this order, each time choosing
the currently least loaded machine.

This algorithm clearly returns a feasible solution. In order to prove the ap-
proximation ratio of 2, we need to lower bound the value of an optimal solution,
as discussed above.

Let L∗ be the optimal makespan. Since all jobs need to be scheduled at
some point, we know that there will be a machine with load at least pmax :=
max1≤ j≤n p j and thus pmax ≤ L∗. Moreover, in the best case it will be possible to
distribute the total processing time of all the jobs evenly across machines, which
gives another lower bound on L∗, namely 1

m

∑n
j=1 p j ≤ L∗.

Now the analysis of the approximation ratio can be done as follows. Let k be
the most loaded machine in solution returned by the approximation algorithm
and let j be the last job scheduled on this machine. When j was assigned, k was
the least loaded machine, i.e. all machines have load at least Lk − p j. In other
words,

Li ≥ Lk − p j, ∀1≤ i ≤ m.

If we sum over all machines and divide by m we get

Lk − p j ≤ 1

m

m∑
i=1

Li =
1

m

n∑
j=1

p j ≤ L∗.

7 1.3 Approximation Algorithms

Now we only need to rewrite the load of machine k as

Lk = Lk − p j︸ ︷︷ ︸
≤L∗

+ p j︸︷︷︸
≤pmax≤L∗

≤ 2L∗.

This means that the algorithm returns a feasible solution that has makespan at
most twice the optimal makespan, and is thus a 2-approximation.

The above example shows the importance of devising lower bounds, in the
design of approximation algorithms. A particularly successful method of bound-
ing optimal solution values has been provided by the theory of linear program-
ming. Many problems allow for a natural, exact formulation by an Integer Linear
Program (ILP). Such a formulation uses binary decision variables, linear con-
straints on these variables and a linear objective function. Since there are NP-
complete problems that admit such an exact formulation, solving an ILP is NP-
complete as well. However, the situation changes when the integrality constraint
on the variables is dropped. The resulting linear programming (LP) formulation
can be solved efficiently to optimality, but the resulting solution is not feasible
for the integral problem. Nonetheless, the optimal value thus achieved often
gives a good bound on the actual optimum, and a wide range of algorithms has
been devised that work by “rounding” the fractional solution to a feasible (in-
tegral) one, without deteriorating the objective value too much. The maximum
ratio between an optimal fractional and an optimal integral solution for an LP is
called the integrality gap of the LP. We defer a detailed example to Section 3.3
where we show a very simple 2-approximation algorithm for the VERTEX COVER

problem, based on LP-rounding.

1.3.1 Approximation Schemes

For some problems, the development of an approximation algorithm can be
parametrized in such a way that a “tuning” of the trade-off between runtime
and approximation guarantee is possible. Instead of an algorithm, such results
yield an algorithmic scheme, defined below.

Definition 1.3.3 Let Π be a minimization problem (respectively, maximization)
problem.

• An approximation scheme for problemΠ is a family of (1+ε)-approximation
algorithms Aε (respectively, (1− ε)-approximation algorithms Aε) for prob-
lem Π over all 0< ε < 1.

8 1.3 Approximation Algorithms

• A polynomial time approximation scheme (PTAS) for problem Π is an ap-
proximation scheme whose time complexity is polynomial in the input size.

• A fully polynomial time approximation scheme (FPTAS) for problem Π is
an approximation scheme whose time complexity is polynomial in the input
size and also polynomial in 1/ε.

For many problems a PTAS is the best one can hope for. Indeed, the following
theorem states that, under certain conditions, only so-called weakly NP-complete
problems may admit an FPTAS (see e.g. [Vaz01]).

Theorem 1.3.4 (Strongly NP-hard and “natural”⇒ No FPTAS)
Let Π be a strongly NP-hard integer-valued optimization problem such that on any
instance I of Π, OPT (I) < p(|Iu|) where p is some polynomial and Iu is a unary
encoding of instance I. Then Π does not admit an FPTAS, assuming P 6= NP.

We point out that the conditions required by this theorem for the strongly NP-
hard problem are naturally fulfilled by most problems. Thus, unless otherwise
specified, strong NP-hardness implies that the problem does not admit an FPTAS.

1.3.2 Inapproximability proofs

Every approximation algorithm achieving a ratio ρ naturally raises the question
of whether this ratio can be improved or not. Inapproximability results are im-
portant tools that guide the search for the best possible efficient approximation
algorithm for a given problem. The following technique, often referred to as
“the gap technique” (see e.g. [SG76; GJ76; LR78a]) is one of the oldest meth-
ods to prove that a problem cannot be approximated to arbitrary precision in
polynomial time.

Theorem 1.3.5 (The gap technique) Let Πd be an NP-hard decision problem, let
Πm be a minimization problem, and let τ be a polynomial time computable trans-
formation from the set of instances ofΠd into the set of instances ofΠm that satisfies
the following two conditions for fixed integers a < b:

• Every YES-instance of Πd is mapped into an instance of Πm with optimal
objective value at most a.

• Every NO-instance of Πd is mapped into an instance of Πm with optimal
objective value at least b.

9 1.4 Unique Games Conjecture

Then problem Πm does not have a polynomial time ρ-approximation algorithm
with ρ < b/a unless P=NP.

Note that this theorem in particular states that problem Πm does not admit
a PTAS. Such types of reductions are often called “gap-introducing reductions”.
Furthermore, we note that, similar to polynomial reductions in order to establish
the NP-completeness of a problem, approximation-preserving reductions can be
used to make statements about the approximability of a problem (see e.g. the
L-reduction [PY91]).

1.3.3 Approximation Gap

The two-fold nature of research conducted in the field of Approximation Algo-
rithms led to the concept of the approximation gap of a problem. Intuitively,
the approximation gap serves as an illustrative measure of our understanding
of the approximability of a problem, by describing the discrepancy between the
best known positive and negative results on this problem. More precisely, the
approximation gap of a problem is the interval between the best known ap-
proximation algorithm and the strongest known inapproximability result for this
problem.

Our understanding of the approximability of a problem is considered to be
complete when the approximation gap vanishes. For instance, the approxima-
bility of the 3SAT problem is considered well-understood, since there exists a
trivial 7/8-approximation algorithm2, while it has been shown by Johan Hås-
tad [Hås97] that an algorithm achieving an approximation ratio of (7/8 − ε)
cannot exist, assuming P 6= NP. On the other hand, the VERTEX COVER problem
mentioned earlier is one of the most prominent problems that retain a non-trivial
approximation gap to this day. In the case of VERTEX COVER there are many
simple 2-approximation algorithms (see e.g. Section 3.3.1), while the strongest
inapproximability result, due to Dinur & Safra [DS02], states that the problem
cannot be approximated within a factor of 1.3606.

1.4 Unique Games Conjecture

The Unique Games Conjecture is a complexity theoretic conjecture proposed by
Subhash Khot [Kho02] in 2002. Before discussing its implications, we give a

2This can be achieved by derandomizing a simple coin-flipping algorithm that randomly
chooses a truth value for each variable without looking at the instance (similar to the one pre-
sented in Section 1.4.1).

10 1.4 Unique Games Conjecture

definition of the problem.

Problem 1.4.1 (UNIQUE GAMES)

Given: An undirected, connected graph G = (V, E), a set of colors C and for each
edge {i, j}, i < j, a permutation πi, j : C → C.

Find: A coloring of the graph that maximizes the number of satisfied edges, i.e. an
assignment of colors to vertices c : V → C such that the number of edges {i, j}
for which πi, j(c(i)) = c(j) holds is maximized.

The “uniqueness” in the name of the problem comes from the fact that the map-
ping associated with each edge {i, j} is a permutation, and thus the color of i
uniquely determines the color of j in any coloring satisfying all edges.

Note that deciding whether there exists a coloring satisfying all edges can
be solved efficiently: start at any vertex of the graph and try all possible colors
for this vertex, propagating the uniquely defined colors for adjacent edges until
a valid coloring has been found or all initial colors lead to unsatisfied edges.
However, the approximability of this problem exhibits a very different behaviour.
Indeed, the Unique Games Conjecture (UGC) states that, for every constants
ε,δ > 0 there is a color set C of sufficiently big size that depends on ε,δ such
that it is NP-hard to distinguish the following two cases for any unique game
with color set C:

1. there is a coloring satisfying at least a fraction (1−δ) of the edges.

2. any coloring satisfies at most a fraction ε of the edges.

A lot of effort has been invested into the settlement of this conjecture. Khot’s
suggestion that current algorithmic techniques seem unable to design such an
algorithm is supported by the fact that it defied very intensive attempts towards
its disproof. Indeed, our current understanding locates the conjecture on the
fine line between being true and being false [AB09].

What makes the Unique Games Conjecture so interesting is that it acts as
a seed for stronger inapproximability results, in the same way that the NP-
completeness of SAT acts as a seed for intractability results. As an example,
the trivial 2-approximation algorithm for the VERTEX COVER problem, presented
in Section 3.3.1 is proven to be best possible, if one is willing to assume the
Unique Games Conjecture [KR08]. Our inapproximability result for the robust
scheduling problem discussed in Section 4.4.2 improved from 6/5 to 4/3 based
on the Unique Games Conjecture. As more and more inapproximability results
are obtained assuming the UGC, its settlement becomes increasingly important

11 1.4 Unique Games Conjecture

and would constitute a leap forward in our understanding of Approximation
Algorithms.

As a side-note, there are also weaker assumptions than the Unique Games
Conjecture that are still stronger than the traditional assumption P 6= NP that are
useful for inapproximability proofs. As an example, in Section 4.4.1 we show an
inapproximability proof based on the assumption that the class NP does not have
quasi-polynomial algorithms, i.e. there is no algorithm that can solve all NP-hard
problems with an asymptotic runtime of O(2poly(log n)), where n is the size of the
input. This assumption, while stronger than P 6= NP, is still widely believed to
be true.

1.4.1 Randomization and Approximation

Randomization has proven to be a very useful tool in the design of approxima-
tion algorithms, and we will use it extensively in this thesis. A randomized or
probabilistic algorithm is an algorithm that has access to a source of usually uni-
formly distributed random bits, often referred to as “coin-flips”, which guide its
execution. The performance of a randomized algorithm is measured in terms of
the expected quality of the solution.

A common method towards a guarantee for such algorithms despite ran-
domness, is given by repetition: the probability that a randomized algorithm
returns a solution at least as good as the expectation is increased by execut-
ing the algorithm several times and retaining the best solution among all trials.
However, such an algorithm still remains probabilistic.3 Nonetheless, in some
cases a purely deterministic can be devised that matches the guarantee given
in expectation by the randomized algorithm, using derandomization. In partic-
ular, this will be the case for almost all algorithms presented in Chapter 3. We
briefly sketch a common method for derandomization, the method of conditional
probabilities.

The method of conditional probabilities

Many combinatorial problems exhibit the so-called self-reducibility property. This
property, besides being useful in finding a solution given an oracle for the de-
cision version, is helpful for the derandomization of algorithms. Intuitively, the
self-reducibility property implies that completing a given partial solution for an
instance is again another (smaller) instance of the same problem. We demon-
strate this property on the example of MAX-2-SAT, and devise a deterministic

3For a comment on the statement “with high probability”, see [Pra07].

12 1.4 Unique Games Conjecture

3/4-approximation algorithm using derandomization. First, we give a definition
of the problem:

Problem 1.4.2 (MAX-2-SAT)

Given: A boolean formula φ in conjunctive normal form with n variables and m
clauses, such that each clause contains exactly two literals (i.e. variables or
their negations).

Find: A truth assignment for all variables that maximizes the number of satisfied
clauses, i.e. the clauses such that at least one of their literals is true.

The following is a very simple randomized algorithm for this problem: for
each of the variables, flip a coin and set its truth value according to the outcome
of the coin flip, e.g. set it to true if heads. The expected performance of this
algorithm can be computed as follows. For each clause, say (x1 ∨ x2), there
are three truth assignments that satisfy it (namely (0, 0), (1,0), (1, 1)) and one
that does not (namely (0,1)). Thus, the probability of satisfying any clause by
random truth assignment is 3/4 and the expected number of satisfied clauses is
3m/4. As m is a trivial upper bound on the value of an optimal solution, the
above method yields a randomized 3/4-approximation algorithm.

The above algorithm can be derandomized as follows. Consider an arbitrary
ordering of the variables x1, x2, . . . , xn of φ, and consider a binary tree of depth
n whose leaves are all binary strings of length n (See Figure 1.1 for an example).
This tree can be interpreted as the computation tree of all truth assignments of
φ. A node at depth 1 < i < n represents an instance in which the first n − i
variables have been assigned some truth value. The self-reducibility says that
each node v corresponds to a Max-2-Sat instance φv such that the maximum
number of satisfied clauses of φ in the assignments (leafs) of the subtree rooted
at v is given by the number of clauses satisfied by the partial truth assignment
plus the maximum number of satisfiable clauses in φv. This means that the
expected number of satisfiable clauses in any subtree can be computed in poly-
nomial time. A deterministic algorithm with a guarantee at least as good as the
average is now obvious: start at the root of the tree and compute the expected
number of satisfied clauses for each of the two subtrees. Assign the truth-value
corresponding to the subtree with the highest expected value and iterate until a
leaf node (i.e. a truth assignment) is reached.

13 1.5 Robust Optimization

x2

x3

x4

(x1 ∨ x2)∧ (x1 ∨ x3)∧ (x2 ∨ x4)∧ (x3 ∨ x4)

(x2 ∨ x4)∧ (x3 ∨ x4)

(x3 ∨ x4)

E= 5
2

E= 7
2

E= 15
4

E= 4

E= 13
4

E= 7
2

0 1

10

10

(1,0, 0,∗)

x1

Figure 1.1. An example of the derandomization procedure for MAX-2-SAT. No-
tice that the resulting deterministic algorithm returns a solution that satisfies
4 clauses, i.e. at least as many as the randomized algorithm in expectation,
i.e. 4 · 3/4= 3.

1.5 Robust Optimization

The field of Robust Optimization [KY97] was created by the need to consider
combinatorial problems that are defined in uncertain environments. This uncer-
tainty naturally presents additional difficulties, since a guarantee is required for
a solution of an instance that is not fully known. Robust Optimization sets as
a goal to optimize the worst-case scenario over a set of possible realizations of
the numerical parameters. That is, a solution is evaluated in a range of possible
configurations for the numerical parameters, and its worst-case performance is
taken as a measure for its quality in the uncertain environment.

The emphasis in robust optimization lies in the “worst-case” objective. The
desired solution will in general perform suboptimally in the actual scenario, but
this is traded off for acceptable performance in all scenarios. Thus, the field of
robust optimization becomes interesting when a rigid guarantee is necessary. As
an example where this principle is applied, many travelers choose to take the
train to the airport when they are about to take a flight, even though driving
by car is (in most cases) faster. The importance of not missing a flight makes
the suboptimal in duration train trip more attractive than the car ride, whose
duration is uncertain due to traffic.

14 1.6 Terminology and notation

The computational complexity of robust optimization problems are in gen-
eral higher than their classical, non-robust counterparts. Since the classical prob-
lems can be viewed as robust problems with a single scenario, any hardness re-
sults for the classical problems are inherited by their robust versions. Moreover,
the definition of different scenarios allows for the “overlay” of several instances
of a problem into one, robust instance, leading to more complex problems. We
demonstrate this phenomenon in Section 4.4.1, where we employ scenarios in
order to present a reduction from the LABEL COVER problem to a robust schedul-
ing problem.

1.6 Terminology and notation

The following graph theoretic concepts are going to be used throughout the
thesis (see Figure for an example):

A graph G is a mathematical structure consisting of a set V (often assumed
to be equal to the set {1,2, . . . , n} of n vertices and a set E of m edges. In case
the graph is undirected, edges consist of a set of unordered pairs of V , i.e. of the
type {i, j} for i, j ∈ V , while for directed graphs they are ordered pairs of the
type (i, j) for i, j ∈ V . We denote such a graph by G(V, E). We say that i and j
are adjacent when the edge {i, j} is part of the graph G. Moreover, we say that
the edge {i, j} is incident to both of the vertices i and j, which are also called its
endpoints. A set of vertices S ⊆ V such that no two of them are adjacent is called
vertices!independent. We say that a set of vertices V ′ ⊆ V covers a set of edges
E′ ⊆ E, if for each edge e ∈ E′ at least one of its endpoints is in V ′. We say that a
set V ′ ⊆ V induces an edge e ∈ E when both endpoints of e are contained in V ′.
A graph G′(V ′, E′) is called an induced subgraph of the graph G(V, E) if V ′ ⊆ V
and the edge set E′ contains the edges of E that are induced by V ′

The number of edges that are incident to a given vertex i is called the degree
of i, denoted by deg(i). The maximum degree among all vertices of a graph G is
called the degree of G. A graph is called bipartite if there exists a 2-partitioning
of its vertices — i.e. a division of the set of vertices into two sets V and W such
that each vertex is in exactly one of V, W — such that neither V nor W induce
any edges. A graph G(V, E) is called a clique or complete graph when any two
vertices in V are adjacent, i.e. E =

�V
2

�
.

Note that the above definitions easily generalize to hypergraphs, i.e. graphs
whose edges may have cardinality greater than two. A hypergraph with hyper-
edges of the same cardinality k is called a k-regular hypergraph.

For the analysis of asymptotic runtimes, approximation ratios or instance

15 1.7 How to read this thesis

1

3 4

52

Graph G(V, E) V = {1,2, 3,4, 5}
E = {{1, 2}, {2,3}, {3,4}, {2, 5}, {3, 5}}
• 2 and 5 are adjacent

• the subgraph induced by {1, 2, 5} is bipartite
• the set {1, 4,5} is independent

• the subgraph induced by {2, 3, 5} is complete

• The degree of G is deg(G) = 3.
• The degree of 5 is deg(5) = 2

Figure 1.2. Examples of the graph theoretic definitions used in this thesis.

sizes, we use the Big-Oh notation (see e.g. Section 0.3 in [AB09]).

1.7 How to read this thesis

Chapter 2 gives a short introduction to scheduling and presents a simple, effi-
ciently solvable scheduling problem. Intractable variants of this problem and
their approximability form the content of subsequent chapters. In Chapter 3
we consider the classical problem in which precedence constraints are added,
while in Chapter 4 robust variants of this problem are studied. Both chapters
are largely self-contained, with references to Chapter 3 being made whenever
relevant results are presented in Chapter 4.

Both Chapters 3 and 4 give an overview of the relevant literature before
presenting our contributions. In Chapter 3 we present an algorithmic approxi-
mation framework consisting of several components. We sketch this framework
in the beginning before going into the details, and revisit the framework in the
end of the chapter. This sketch serves as a roadmap to the remainder of the
chapter, and the reader is advised to use it as a reference.

Finally, Appendix A contains an index of the combinatorial problems that
appear in this thesis for easy reference.

16 1.7 How to read this thesis

Chapter 2

Scheduling Theory

One of the earliest studied fields in Combinatorial Optimization is the field of
Scheduling Theory. Scheduling is a decision-making process that plays an im-
portant role in most manufacturing and service industries [PC99]. It naturally
arises whenever a limited number of resources need to be allocated to the pro-
cessing of tasks.

What constitutes a resource may range from a processing unit of a computer
or a machine in an assembly line to a group of employees of a company, or
a platform in a train station. Similarly, a task may be a computer program, a
stage in the production of an item, an order to be processed by a company or
an arrival and departure of a train. The objectives to be optimized can also take
many forms, such as minimizing the time spent until the last task completes or
minimizing a more sophisticated function that takes into account priorities of
different tasks.

2.1 A simple scheduling problem

Consider the following example of a scheduling problem:

Example 2.1.1 [Bakery Scheduling] A bakery has received a set of orders from
different customers to be processed during the day. Each order needs a different
amount of time to be processed, and is immediately delivered to the customer
as soon as it is completed. The bakery would like to process the orders in such
a way that the waiting time of the customers is as small as possible. However,
the bakery would also like to favor orders given by their regular customers, by
valuing their waiting times higher. Find a schedule that best meets the above
stated goals.

17

18 2.1 A simple scheduling problem

Scheduling Theory deals with the combinatorics of scheduling problems. Math-
ematical models are used in order to abstract from the concrete interpretation
of the tasks and resources and only consider its significant parameters. In the
following, we will use the terms job and machine to denote tasks and resources
respectively, regardless of their interpretation.

Let us try to formalize the scheduling problem of Example 2.1.1 in order
to put it into this context. We define a job ji for each of the orders taken by
the bakery. We call the amount of time needed to process the i-th order the
processing time of job ji and represent it by a non-negative rational pi ∈ Q. In
order to model the different priorities given to customers, we need to introduce
a further parameter for each job, which we will call its weight, represented by a
non-negative rational wi ∈Q.

Clearly, if we ignored the fact that regular customers are favored, a natural
objective would be to minimize the function

∑n
i=1 Ci, where Ci is the time at

which job ji completes in the schedule. Minimizing this sum simply means not
to allow any gaps between the processing of orders. Thus, given a total ordering
(or permutation) L of the jobs { j1, j2, . . . , jn}, the completion time of job Ci is

Ci =
∑

k ∈ {1, . . . , n}
k ≤ i in L

pk.

To model the priorities, we can simply assign a high weight to jobs corresponding
to orders given by regular customers and a low weight to the remaining ones,
and replace the objective by

∑n
i=1 wiCi. Note that, by allowing for any non-

negative rational to be the value of a weight, the distinction between regular
and occasional customers can be refined accordingly.

With the above, the scheduling problem described in Example 2.1.1 can be
formally defined as follows.

Problem 2.1.2 (Single Machine Scheduling)

Given: A set of jobs N = { j1, j2, . . . , jn} and for each job ji a processing time pi ∈Q
and a weight wi ∈Q.

Find: An ordering of the jobs N that minimizes the sum of weighted completion
times

n∑
i=1

wiCi

where the completion time Ci of job ji is the time at which it completes in the
schedule.

19 2.1 A simple scheduling problem

Note that, since each ordering of the jobs is a feasible solution to the Single
Machine Scheduling problem, the optimal solution can be achieved by a brute-
force algorithm that systematically generates all n! permutations keeping track
of the currently best known ordering. However, the following observations show
that this problem can be solved in a much more efficient way.

Assume that we are given an instance of Problem 2.1.2 in which all weights
are equal to 1. Since the processing time of each job is included in the com-
pletion time of all jobs that follow, it is advantageous to schedule jobs with a
small processing time first. Thus, scheduling the jobs in non-decreasing order
of their processing time gives the optimal solution. Conversely, if we are given
an instance in which all processing times are equal to 1, it is advantageous to
schedule jobs with a small weight last, and the best solution would schedule the
jobs in non-increasing order of their weights.

These observations easily carry over to the general case: when both the pro-
cessing times and weights of the jobs are allowed to be arbitrary non-negative
rationals, the best choice for the position of a job is given by the trade-off –
i.e. the ratio – between its processing time and its weight. This intuitive claim is
easy to prove and has been long known as Smith’s rule. The ratio between the
processing time and the weight of a job is often called the density of the job and
denoted by ρi = pi/wi.

Theorem 2.1.3 (Smith’s rule [Smi56], 1956)
Assume an instance of Problem 2.1.2. Scheduling the jobs in non-decreasing order
of their densities, breaking ties arbitrarily, gives an optimal solution.

Proof. First, observe that the schedule thus constructed is unique up to reorder-
ing of jobs with equal density and that all these (equivalent) schedules have
the same value. Now, assume, towards contradiction, that these schedules are
suboptimal. Then, any optimal solution must violate Smith’s rule, i.e. in any
optimal solution L∗, there exists a pair of jobs such that the earlier scheduled
among them has a strictly greater density than the other. In particular, there
must be a pair of consecutive jobs, say jk, jl , such that ρk > ρl (see Figure 2.1).
However, it is easy to see that exchanging the order of jk and jl leads to a solu-
tion with a strictly better value, contradicting the optimality of L∗.

Indeed, let L′ be the schedule obtained from L∗ by exchanging the order of jk
and jl (see Figure 2.1). Let A⊆ N be the indices of jobs proceeding { jk, jl} and
B ⊆ N the indices of jobs following { jk, jl} in both schedules L∗ and L′. Observe
that any job ji with i ∈ A∪ B contributes the same to the objective value of L∗

20 2.1 A simple scheduling problem

︸ ︷︷ ︸
lk

B

. . .

. . .

. . .

. . .l k

L∗ :

L′ :

ρk > ρl

︸ ︷︷ ︸
A

Figure 2.1. Exchanging the order of jk and jl does not affect the contributions
of jobs in A∪ B to the objective function.

and L′. Thus

val(L∗) =
n∑

i=1

wiCi =
∑

i∈A∪B

wiCi +wkCk +wl Cl

while

val(L′) =
n∑

i=1

wiC
′
i =

∑
i∈A∪B

wi C ′i︸︷︷︸
=Ci

+wkC ′k +wl C
′
l

where Ci and C ′i are the completion times of job ji in L∗ and L′ respectively. By
definition of the completion time, we have

Ck =
∑

i∈A pi + pk Cl =
∑

i∈A pi + pk + pl

C ′k =
∑

i∈A pi + pk + pl C ′l =
∑

i∈A pi + pl

Thus,

val(L∗)− val(L′) = wkCk +wl Cl −wkC ′k −wl C
′
l

= wk(Ck − C ′k)−wl(C
′
l − Cl)

= −wkpl +wl pk

> 0

where the last inequality follows from the assumption pk/wk = ρk > ρl = pl/wl .
This contradicts the optimality of L∗ and concludes the proof. �

As a corollary of Theorem 2.1.3, the Single Machine Scheduling problem
admits a polynomial-time algorithm: all there is to do is compute the densities
of the jobs and sort them non-decreasingly.

21 2.2 Graham notation

Corollary 2.1.4 Problem 2.1.2 can be solved in O(n log n) time.

The single machine scheduling problem is one of the earliest studied prob-
lems in Scheduling Theory and has been long known to be solvable efficiently.
However, the situation changes dramatically when additional restrictions on the
possible orderings are imposed, or when the exact numerical parameters of the
instance are unknown. This is the content of the following chapters. In Chapter 3
we study the problem in which the instance description is extended to include a
partial order that describes precedence constraints among the jobs. In Chapter 4
we study the problem in which the numerical parameters are uncertain.

2.2 Graham notation

The field of scheduling theory allows for a wide range of scheduling problems
to be defined, by combining different machine environments with additional
restrictions on the feasibility of a solution. Those can be further combined
with several natural objective functions to produce a big number of interest-
ing scheduling problems. The rich diversity of this field yielded the need for a
standardized way of representing scheduling problems. To this goal, Graham,
Lawler, Lenstra & Rinnooy Kan [GLLR79] introduced a concise way of repre-
senting scheduling problems1 by defining three fields α,β and γ, often written
in the form

α|β |γ
each one defining one of the above mentioned parameters. More precisely:

α: Machine environment. We distinguish between two kinds of problems, in each
of which α can assume several different values: in single stage problems
each job consists of a single entity, while in multi-stage problems each job
consists of several entities, called operations, that need to be processed in
order to complete the job. Some values of the field α are given in Table 2.1.

β: Job characteristics. In this field, additional job characteristics or restrictions
are noted. For example, the case in which all jobs have the same process-
ing time p can be expressed by putting pi ≡ p. In some contexts, jobs have
an earliest and latest time in which they can be processed, called their re-
lease time ri and deadline di respectively. If a job may be preempted and

1Nowadays often referred to as the Graham Notation

22 2.2 Graham notation

Single stage problems
1 Single machine environment.
P Parallel machines environment. There are m identical machines available

for the processing of the jobs1.
Q Uniform parallel machines environment. There are m machines with dif-

ferent given speeds1. The processing time of each job is to be divided by
the speed of the machine it is run on.

U Unrelated parallel machines environment. There are m, each specifying
the processing time for each of the jobs in case that job is run on it1.

Multi-stage problems
O Open Shop environment. Each job contains one operation for each of

the m machines. The order in which the operations are processed can
be arbitrary.

F Job Shop environment. Each job contains one operation for each of the
m machines. The order in which the operations are processed is fixed
for each job.

J Flow Shop environment. Each job contains one operation for each of the
m machines. The order in which the operations are processed is fixed
and common to all jobs.

1 Whenever the number of machines is a fixed constant, its value is appended to the

environment notation

Table 2.1. Some of the possible values of the parameter α describing the
machine environment of a scheduling problem

resumed at a later point, this is noted by “pmtn”. The presence of prece-
dence constraints among the jobs is denoted by “prec”, or by the name
of the partial order when the class of precedence constraints is restricted,
e.g. “interval-orders”.

γ: Objective function. Natural objective values usually depend on the following
values: deadline di, completion time Ci, lateness Li = Ci − di, tardiness
Ti = max{0, Ci − di} to name a few. For example, a common objective to
be minimized is the maximum value of the values of Ci, Ei, Ti, such as the
makespan Cmax. Another common objective is to minimize the sum of these
values, or the weighted version thereof when weights are present, such as
the weighted sum of completion times

∑
wiCi. The latter objective will be

23 2.2 Graham notation

the focus of this thesis.

As an example, Problem 2.1.2 from the previous Section is denoted by

1 | |∑wiCi

in the Graham notation.

24 2.2 Graham notation

Chapter 3

Single Machine Scheduling with
Precedence Constraints

In this chapter we study a classical problem in scheduling theory, denoted by
1|prec|∑ j w jC j in Graham’s notation (see Section 2.2). We show that this prob-
lem bears strong ties to the dimension theory of partial orders. Combining this
connection with the fact that this problem is a special case of the vertex cover
problem, we are able to devise an algorithmic framework that extends and uni-
fies the currently best known approximation algorithms for all previously con-
sidered special cases of precedence constraints.

In Section 3.1 we define the problem formally and give an overview of the
relevant literature. We choose to first give an intuitive sketch of our framework
in Section 3.2, with the individual components being discussed in the subse-
quent sections. In Section 3.3 we prepare the ground for the design of our
framework by reviewing the connection between 1|prec|∑ j w jC j and the ver-
tex cover problem. The connection to the dimension theory of partial orders is
studied in Section 3.4. In Section 3.5 we put everything together to derive the
algorithmic framework that yields “good” approximation algorithms whenever
the precedence constraints are of “low complexity”. We apply this framework in
Section 3.6 and present several classes of precedence constraints that allow for
a better approximation than the general case. Finally, some directions for future
research are suggested in Section 3.7.

3.1 Introduction

We consider the following classical scheduling problem:

25

26 3.1 Introduction

Problem 3.1.1 (1|prec|∑ j w jC j)

Given: A set N = { j1, j2, . . . , jn} of n jobs, for each job ji a processing time pi ∈ Q
and a weight wi ∈Q, and a partial order P(N , P) defined on the set of jobs N,
i.e. a reflexive1, antisymmetric and transitive relation P on N. If (i, j) ∈ P, i
needs to have completed before j can be processed.

Find: A schedule of N without interruptions, i.e. a total ordering L of the jobs on
a single machine that respects the precedence constraints and minimizes the
weighted sum of completion times

∑
i∈N wiCi.

We illustrate the above definition in terms of the following example instance.
Let N = { j1, j2, j3, j4} be the set of jobs and let p = (p1, p2, p3, p4) = (3,3, 2,4)
and w = (w1, w2, w3, w4) = (1, 4,2, 5) be the vectors defining the processing
times and weights of the jobs, respectively. Finally, let P({(j1, j2), (j3, j4)}, N) be
the partial order describing the precedence constraints. This instance is depicted
in Figure 3.1, with rectangles representing the jobs, subscripts representing the
weights of the jobs and the processing times encoded as the lengths of the rect-
angles. An arrow connecting two jobs i → j represents a precedence constraint
of the form (i, j) ∈ P. Note that scheduling the jobs according to their density,
as suggested by Smith’s rule, gives the infeasible schedule (j2, j4, j3, j1) (schedule
(a) in Figure 3.1). This schedule is infeasible because it does not comply with
the precedence constraints given by the partial order: j3 is to be scheduled after
j1, whereas the schedule puts these two jobs in the reverse order. On the other
hand, the schedule L = (j2, j4, j1, j3) is a feasible schedule, since it respects all
precedence constraints given by the partial order. Its objective value is

val(L) =
4∑

i=1

wiCi

= w2p2+w4(p2+ p4) +w1(p2+ p4+ p1) +w3(p2+ p4+ p1+ p3)

= 4 · 3+ 5 · 7+ 1 · 10+ 2 · 12

= 81

Coincidentally, this solution is also an optimal solution to this example in-
stance.

1Note that, while partial orders are defined to be reflexive, it does not make any sense to
require a job to be completed before it can be started. Thus, we will often choose to omit
reflexive edges in posets in the context of scheduling. This will be always clear from the context
and will have no implications for our purposes.

27 3.1 Introduction

2 4

3

Instance

3

(a)

(b)

0 1 2 4 5 6 8 9 113 7 10 12

Schedules

2j3 5j4

4j21j1 2j35j44j2 1j1

2j35j44j2 1j1

Figure 3.1. An example instance of problem 1|prec|∑ j w jC j and two schedules:
(a) an infeasible schedule and (b) a feasible (and optimal) schedule. Completion
times of the feasible schedule (b) are in bold.

Inspecting the objective function a bit closer, we observe that there is a con-
siderable portion of it that depends only on the definition of the instance. For
example, a job’s own processing time is always included in its completion time.
Moreover, for any precedence constraint (i, j) ∈ P, the processing time pi will
be included in C j for any feasible solution. We can rewrite the objective value as
follows in order to separate this so-called fixed cost from the variable cost:∑

j

w jC j =
∑

j

w j

�
p j +

∑
(i, j)∈L

pi

�
=
∑

j

w j p j +
∑
(i, j)∈P

w j pi︸ ︷︷ ︸
fixed cost

+
∑

(i, j)∈L\P
w j pi︸ ︷︷ ︸

variable cost

Clearly, since the fixed cost is present in any feasible solution, the problem can
be reformulated as minimizing the variable cost. However, the fixed cost is
important in the analysis of approximation algorithms, since it increases both
the approximate solution value and the optimal value by an additive term, thus
improving the approximation ratio. As an example, in the instance given above,
the fixed cost is equal to

4∑
i=1

piwi + (p1 ·w3+ p2 ·w4) = 39+ 21= 60

Thus the optimal solution L has variable cost 21. Assume an approximation
algorithm that returns the solution LA = (j1, j2, j3, j4). The value of this solution

28 3.1 Introduction

is
val(LA) = 1 · 3+ 4 · 6+ 2 · 8+ 5 · 12= 103= 60+ 43︸︷︷︸

variable cost

The approximation factor of this algorithm is 103/81≈ 5/4 which is much better
than the ratio 43/21≈ 2 given by comparing only the variable costs.

The impact of the fixed cost in the analysis of approximation algorithms is
reflected throughout the history of this problem. For example, in [FM03] and
[CM99] the authors show that any schedule that complies with the Sidney de-
composition is a 2-approximation. However, the same is not true if only the
variable cost is considered, as shown in [Uha08]. On the negative side, approx-
imating the variable cost is known to be as hard as approximating the vertex
cover problem [Sve08], whereas a similar result is not known to hold for the
complete objective. We give an overview of the literature on this problem in the
next Section.

3.1.1 Literature review

The computational complexity of the problem 1|prec|∑ j w jC j has been of inter-
est to researchers already in the seventies. It was shown to be strongly NP-hard
in 1978 by Lawler [Law78] and Lenstra & Rinnooy Kan [LR78b]. This result
implies that the problem does not allow for a fully polynomial time approxima-
tion scheme (FPTAS, see Theorem 1.3.4). Until recently, this was the best known
inapproximability result for this problem (recent advances are described below).

On the positive side, several 2-approximation algorithms have been pro-
posed [Pis92; Sch96b; HSSW97; CM99; CH99; FM03; Pis03]. We shall briefly
outline the different approaches below. Schulz [Sch96b] gave 2-approximation
algorithms using linear programming relaxations2. Chudak & Hochbaum [CH99]
gave another algorithm based on a linear programming relaxation with two
variables per constraint. Furthermore, they showed that their linear program-
ming relaxation can be solved using one min-cut computation, making their
algorithm combinatorial. Independently, Chekuri & Motwani [CM99] and Mar-
got, Queyranne & Wang [FM03], provided identical, simple combinatorial 2-
approximation algorithms based on Sidney’s decomposition theorem [Sid75]
from 1975.

A Sidney decomposition partitions the set N of jobs into sets S1, S2, . . . , Sk

that can be scheduled in this order without loss of optimality. More precisely,

2This work later appeared in a joint journal version [HSSW97] together with the work of
Hall, Shmoys, & Stein [HSW96], who used linear programming relaxations to give a constant
factor (4+ ε)-approximation algorithm for 1|prec|∑ j w jC j .

29 3.1 Introduction

there exists an optimal schedule where jobs from Si are processed before jobs
from Si+1, for any i = 1, . . . , k − 1. Lawler [Law78] showed that a Sidney de-
composition can be computed in polynomial time by performing a sequence of
min-cut computations. Chekuri & Motwani [CM99] and Margot, Queyranne
& Wang [FM03] proved that every schedule that complies with a Sidney de-
composition is a 2-approximate solution. As mentioned earlier, the fixed-cost is
crucial for this analysis: a schedule that complies with a Sidney decomposition
is not necessarily a 2-approximate solution if we only consider the variable-
cost [Uha08]. Correa & Schulz [CS05] showed that all known 2-approximation
algorithms follow a Sidney decomposition, and therefore belong to the class of
approximation algorithms described by Chekuri & Motwani [CM99] and Mar-
got, Queyranne & Wang [FM03]. Recently, Schulz & Uhan [SU08] showed for
a large class of randomly generated instances that almost all instances are not
Sidney decomposable. Hence, for almost all of those instances, any feasible
schedule is a 2-approximation. They actually proved the stronger statement that
for almost all randomly generated instances, all feasible schedules are arbitrarily
close to optimal. Nevertheless, an algorithm that can guarantee a better than
2-approximate solution to any given instance remains unknown.

Due to the difficulty of obtaining better than 2-approximation algorithms for
the general case, it is interesting to understand for which special cases one can
achieve a better performance guarantee. A particularly successful and popular
approach has been to consider special cases of precedence constraints. Indeed,
as we sketched in section 2.1, Smith [Smi56] showed already in 1956 that,
in the absence of precedence constraints3, an optimal solution can be found
by sequencing the jobs in non-increasing order of the ratio wi/pi. Later, sev-
eral other results for special classes of precedence constraints were proposed
(see [LLKS93] for a survey), most notably Lawler’s [Law78] O(n log n) time al-
gorithm for series-parallel precedence constraints. A nice alternative proof of the
correctness of this algorithm was provided by Goemans & Williamson [GW00]
who used the two-dimensional Gantt charts of Eastman et al. [EEI64]. For in-
terval orders and convex bipartite precedence constraints, Woeginger [Woe03]
gave approximation algorithms with an approximation ratio arbitrarily close to
the golden ratio 1

2
(1 +

p
5) ≈ 1.61803. Using a similar approach, Kolliopou-

los & Steiner [KS02] gave an approximation algorithm with the same perfor-
mance guarantee (≈ 1.61803) for the special case of two-dimensional prece-
dence constraints. This was later improved to a 3/2-approximation by Correa &
Schulz [CS05].

3Or “whenever the precedence constraints form an antichain” (see Section 3.4)

30 3.1 Introduction

Recently, Ambühl & Mastrolilli [AM09] settled an open problem first raised
by Chudak & Hochbaum [CH99] and whose answer was subsequently conjec-
tured by Correa & Schulz [CS05]. As shown by Correa & Schulz, the settlement
of this conjecture has several interesting consequences for 1|prec|∑ j w jC j. The
combined results of [CS05; AM09] imply the existence of an exact polynomial
time algorithm for the special case of two-dimensional precedence constraints,
a problem that previously was only known to be approximable in polynomial
time [KS02; CS05], as mentioned above. Furthermore, it significantly general-
ized Lawler’s exact algorithm for series-parallel orders [Law78].

The most significant implication of [CS05; AM09] is that 1|prec|∑ j w jC j is
in fact a special case of the weighted vertex cover problem. More precisely, they
proved that every instance S of 1|prec|∑ j w jC j can be translated in polynomial
time into a weighted graph GS

P (see Section 3.3 for details), such that finding an
optimum of the variable-cost of S can be reduced to finding a minimum vertex
cover in GS

P . This result even holds for approximate solutions: finding an α-
approximate solution for the variable-cost of S can be reduced to finding an
α-approximate vertex cover in GS

P . This result shed new light on the scheduling
problem, as it provided simple explanations for this problem’s behavior in terms
of computational complexity. For instance, since the vertex cover problem can
be approximated within a factor of 2, this seems to provide yet another simple
2-approximation algorithm for 1|prec|∑ j w jC j. However, it is remarkable that
this approach is the first one to yield any constant approximation algorithm for
the variable part, as results from [AM09; Uha08]. Moreover, the solvability
of 2-dimensional precedence constraints can be gazed from the fact that the
corresponding graph GS

P becomes bipartite, as a classical result in graph theory
states that vertex cover in bipartite graphs can be solved in polynomial time.

On the negative side, until recently the best known inapproximability result
for this problem was its strong NP-completeness, i.e. the fact that it does not
allow for an FPTAS (see Theorem 1.3.4). This still left open the possibility for
arbitrarily good constant factor approximation algorithms. This was disproved
recently by Ambühl et al. [AMS07] who showed that this problem does not
have a PTAS, making a fairly standard assumption, namely that the satisfiability
problem does not have subexponential algorithms (see [Sve08] for a detailed
description).

The approximation gap of problem 1|prec|∑ j w jC j remains one of the most
perplexing questions in scheduling theory, and appears in the list of ten out-
standing open problems in scheduling theory, compiled by Shuurman & Woeg-
inger [SW99]. We know of several simple 2-approximation algorithms, but the

31 3.2 A sketch of the algorithmic framework

current techniques fail to provide any non-marginal inapproximability results.
We are confident that a full understanding of the approximability of this prob-
lem will go hand in hand with a deeper understanding of approximability. A no-
table recent result by Bansal & Khot [Kho09] suggests that the above mentioned
2-approximation algorithms are best possible. Their result is based on a variant
of the Unique Games Conjecture [Kho02], whose status remains open as of this
writing. In contrast to the “P vs. NP”-conjecture, there seems to be no consensus
in the community about the most probable outcome of this conjecture.

The contributions of this thesis to this problem are improvements whenever
the precedence constraints contain some structure that can be exploited, and re-
sults in a characterization of the complexity of instances in terms of their prece-
dence constraints.

3.2 A sketch of the algorithmic framework

In this Section we sketch the framework that we will present in the remainder of
this chapter. Instead of giving an exact description of the individual components,
this section conveys the intuition behind our approach, using the components
as black boxes. We defer the details of the different steps to later sections, in
which each component of our framework is examined individually. We revisit
the framework in Section 3.5 after the components have been presented, and
give some applications in Section 3.6. Figure 3.2 illustrates the different steps
of our framework. The remaining of this section is to be read in parallel to
Figure 3.2, to which we will make references in the text.

Assume that we are given an instance of problem 1|prec|∑ j w jC j. As dis-
cussed in Section 3.1, the objective value of any solution to this instance consists
of an instance-dependent fixed cost and a solution-dependent variable cost. We
can easily calculate the fixed cost of this instance and reformulate the problem
as minimizing only the variable cost, as described above.

Now assume that we are given an algorithm (Step A in Figure 3.2) that
creates an instance of the weighted vertex cover problem corresponding to the
reformulated minimization problem above. In the following, we will try to ap-
proximate the vertex cover problem on the given graph.

First, assume that we are given a preprocessing procedure (Step B in Fig-
ure 3.2) that partitions the vertices of the graph into three sets, as follows:

• a set of vertices which we can choose in the vertex cover without loss of
optimality

32 3.2 A sketch of the algorithmic framework

• a set of vertices which we can leave out of the vertex cover without loss of
feasibility or optimality

• a set consisting of the remaining vertices, together with a guarantee that
any optimal solution of the vertex cover in the subgraph induced by these
nodes has value at least half of the their total weight W .

Due to the above procedure, we can concentrate on the subgraph induced by
the third set of vertices. We will approximate the vertex cover problem on this
graph using the following idea. Let us assume we are given an independent set in
a graph. The complement of the independent set, i.e. all the vertices of the graph
except the ones contained in the independent set, must form a vertex cover, for
were there an uncovered edge in the graph, both of its endpoints would have
to be in the independent set, contradicting its independence. This means that
providing a big independent set automatically provides a small vertex cover,
simply by complementation.

This redefines our goal as finding a “good” independent set, i.e. an indepen-
dent set with a high total weight. We will do this using the following approach.
Assume that we are given a coloring (Step C in Figure 3.2) of the graph, i.e. an
assignment of colors to the vertices, such that adjacent vertices receive different
colors4. Looking at a color class, i.e. a set of vertices all of which were assigned
the same color, we observe that they must form an independent set, by definition
of the coloring. Thus, a coloring with t colors provides t disjoint independent
sets that cover the vertices of the graph.

It is natural to choose the color class with the highest total weight to be the
independent set used in defining the vertex cover solution by complementation.
Since the color classes cover all the vertices, the weight of the heaviest indepen-
dent set can be lower bounded by the average weight of the color classes, which
is W/t. The vertex cover defined by complementation (Step D in Figure 3.2)
will thus have weight the remaining W −W/t = (1− 1/t)W .

Recall that, due to the preprocessing procedure applied to the original graph
above we can assume that the optimal vertex cover for this subgraph has total
weight at least W/2. Therefore, providing one of weight (1−1/t)W constitutes
a 2− 2/t-approximation.

We have now approximated the vertex cover problem in the subgraph with a
ratio of 2−2/t. In order to achieve this approximation guarantee for the schedul-
ing problem, we need to roll back the previous steps in reverse order. First, let

4Note that in Section 3.5.2, when we revisit the framework sketched here, we will extend
this approach to fractional coloring. We only mention the integral coloring here for simplicity.

33 3.2 A sketch of the algorithmic framework

us add the first set of vertices given by the preprocessing that we know we can
add without loss of optimality. It is intuitive that, after performing this step, the
impact of the part of the graph in which our solution is suboptimal decreases.
Thus, the approximation guarantee still holds (and actually might improve after
this step). This means that we can guarantee a (2− 2/t)-approximation for the
vertex cover of the whole graph.

Now, assume that we were given an algorithm (Step E in Figure 3.2) that
transforms an approximate solution to the vertex cover of this graph into an
approximate solution to the variable part of the scheduling problem, such that
the approximation factor remains the same or improves. Applying this algorithm
on the (2− 2/t)-approximate solution constructed above gives a solution to the
scheduling problem with a (2− 2/t)-approximation guarantee for the variable
part.

The last step is obvious: we need to analyze the solution constructed in
terms of the whole objective function, not just the variable part. As mentioned
in Section 3.1, the analysis of the approximation ratio can only profit when the
fixed cost of the instance is taken into consideration. Overall, this provides a
(2− 2/t)-approximation for the scheduling problem.

We briefly mention the content of the different components that were used as
black boxes above, before describing them individually in detail in the following
sections.

Step A is a result of a series of linear programming formulations of the problem
1|prec|∑ j w jC j. Based on a formulation by Potts [Pot80] and relaxations
of Chudak & Hochbaum [CH99] and Correa & Schulz [CS05], the variable
part of any instance of 1|prec|∑ j w jC j can be associated with an instance
of the weighted vertex cover graph (see Section 3.3)

Step B is a classical result by Nemhauser & Trotter [NT75], showing the half-
integrality of a linear programming formulation for the vertex cover prob-
lem. We describe their contributions in Section 3.3

Step C is the core of our contribution. We use the dimension theory of partial
orders in order to color the graph with few colors, whenever the partial
order has low dimension. We point out that this component can be sig-
nificantly improved by considering the fractional dimension and fractional
coloring, yielding a new framework with a wider range of applications.
This will be described in Section 3.5 and applied in Section 3.6. We sketch
the simpler framework based on (integral) dimension and coloring in this
Section for the sake of simplicity.

34 3.2 A sketch of the algorithmic framework

instance

fixed cost

variable cost

1|prec|∑ j w jC j

Vertex Cover
instance

2 2

2
1

1

3

3

OPT ≥ W
2

coloring

VC by
complem.

?

+ in

(2− 2
k
)-approx.(2− 2

k
)-approx.

(2− 2
k
)-approx.

for variable cost
+ fixed cost (2− 2

k
)-approx.

for 1|prec|∑ j w jC j

A
B

B

B

Ind.
Set

E

Dimension
Theory

D

C

in

out

2

Figure 3.2. Sketch of the framework.

Step D is due to Hochbaum [Hoc83], who gave a (2− 2/t) approximation al-
gorithm for the vertex cover problem, whenever the graph can be colored
with t colors, and is discussed in Section 3.3

Step E is due to a combination of results by Correa & Schulz [CS05] and Am-
bühl & Mastrolilli [AM09] which yield a polynomial time algorithm that
converts an approximate solution to the vertex cover problem into an ap-
proximate solution to the variable part of 1|prec|∑ j w jC j, without deteri-
orating the objective value. This is described in Section 3.3.

35 3.3 Single Machine Scheduling and Vertex Cover

3.3 Single Machine Scheduling and Vertex Cover

We first give an overview of the vertex cover problem, before discussing its rela-
tionship with the scheduling problem.

3.3.1 The Vertex Cover problem

The VERTEX COVER problem (see e.g. [Hoc95]) is arguably one of the most promi-
nent NP-complete problems in Graph Theory. It is among the 21 NP-complete
combinatorial problems in the landmark paper of Richard Karp [Kar72]. More-
over, it is a problem that illustrates the limits of the current theory on Approx-
imation Algorithms, since it is a very basic problem whose approximation gap
remains open as of this writing (see below). Its notoriety can be glanced at by
the fact that it is by far the most accessed entry in the on-line compendium of
Crescenzi & Kann [CK98]. Besides its prominence in Complexity Theory, the
VERTEX COVER problem is also important in practice, as it can naturally arise
when a set of dependent entities is to be covered using a minimum amount of
resources. A formal definition follows:

Problem 3.3.1 (VERTEX COVER)

Given: A Graph G(V, E) with vertex set V and edge set E, and a weight function
w : V →Q, i 7→ wi.

Find: A vertex cover that minimizes the total weight, i.e. a subset S ⊆ V such
that for each edge e = {v, w} ∈ E, we have |S ∩ {v, w}| ≥ 1 and

∑
v∈S wv is

minimized.

There are several 2-approximation algorithms for this problem (see [Pas97]
for a survey). We describe one of them, due to Nemhauser & Trotter, in the
next section. On the negative side, Dinur & Safra [DS02] showed that the min-
imum vertex cover cannot be approximated within a factor of 1.3606 for any
sufficiently large vertex degree unless P=NP. This leaves the interval between
1.3606 and 2 as the approximability gap for this problem. We note that this gap
vanishes, if one is willing to assume the Unique Games Conjecture [KR08].

Half-integrality and a simple 2-approximation

Consider the following Integer Programming (IP) formulation for the vertex
cover problem on a given graph G(V, E).

36 3.3 Single Machine Scheduling and Vertex Cover

[VC-IP] min
∑
i∈V

wi x i

s.t. x i + x j ≥ 1, {i, j} ∈ E

x i ∈ {0,1}, i ∈ V

That is, to each vertex i ∈ V of the graph we associate an indication variable
x i that can take two values, 0 and 1. The interpretation of these values will be
that x i = 1 corresponds to vertex i being picked in the vertex cover solution,
while x i = 0 corresponds to i not being picked. With this interpretations, the
constraints that at least one endpoint is to be picked in the vertex cover for each
edge e = {i, j} can be expressed as x i + x j ≥ 1. Finally, the value of

∑
i∈V wi x i

gives the total sum of picked vertices.
Since the [VC-IP] is an exact formulation of the vertex cover problem, it is

NP-hard to solve. Towards a tractable (but not exact) formulation, we relax
the integrality constraints x i ∈ {0,1} by replacing them by 0 ≤ x i ≤ 1 (note
that the upper bound is redundant since it is implied by the combination of
the constraints with the objective function). This gives the following Linear
Programming (LP) relaxation.

[VC-LP] min
∑
i∈V

wi x i

s.t. x i + x j ≥ 1, {i, j} ∈ E

x i ≥ 0, i ∈ V

In 1973, Nemhauser & Trotter [NT73; NT75] studied the above two pro-
grams and proved that the linear program can be solved combinatorially in poly-
nomial time, i.e. without invoking a call to an LP-solver. They also proved that
any basic feasible solution for [VC-LP] is half-integral, that is x i ∈ {0, 1/2,1} for
all i ∈ V . This partitions the vertices into three sets V0, V1/2 and V1 according to
their value. In the following we will denote by Wi the total weight of vertices in
Vi for i ∈ {0, 1/2,1}.

Observe that there is no edge inside V0 or between V0 and V1/2, by feasibility
of the half-integral solution. In other words, the set V1 separates V0 (which is
an independent set) from V1/2. This is particularly useful, due to the persistency
property [NT73; NT75]: there exists an optimal solution S∗per to the (integral)
problem such that all vertices in V1 are picked and all the vertices in V0 are not

37 3.3 Single Machine Scheduling and Vertex Cover

picked. This allows us to concentrate on the graph G[V1/2], i.e. the subgraph of
G induced by the vertices in V1/2: any vertex cover of G[V1/2] can be completed
into a vertex cover of G simply by adding the vertices in V1. Moreover, since
by the addition of W1 into the objective function, the impact of W1/2 decreases,
any α-approximation guarantee for a vertex cover in G[V1/2] carries over to the
graph G. This preprocessing is illustrated in Figure 3.3.

α-approx. VC for G

Half-integral solution

:V0 :V1 :V1/2

α-approx. for G[V1/2]

VC instance G

approximate VC in G[V1/2]

add V1

solve
the LP

Figure 3.3. The Nemhauser & Trotter preprocessing [NT75; NT73] allows us to
concentrate on the graph G[V1/2], when looking for a vertex cover of G.

Note that, since [VC-LP] is a relaxation of the vertex cover problem, the
value OPTLP of an optimal half-integral solution S∗LP of [VC-LP] is “too opti-
mistic”, i.e. it provides a lower bound on the value of any feasible solution. Let
us compare the value OPTLP to the value OPT ∗per of a persistent solution S∗per
mentioned above. The two solutions perform equally well on the sets of vertices
V0 and V1, since they are identical on these sets of vertices. Thus, for OPTLP to

38 3.3 Single Machine Scheduling and Vertex Cover

be a lower bound of OPT ∗per, it needs to be a lower bound when the two solutions
are restricted to the set V1/2. Thus, any vertex cover of G[V1/2], and in particular
an optimal one, has value at least

val(S∗LP[V1/2]) =
∑

i∈V1/2

x iwi =
1

2

∑
i∈V1/2

wi =
W1/2

2

An obvious way of solving the vertex cover problem in G[V1/2] would be
to pick all the nodes. Surprisingly, this trivial algorithm already provides a 2-
approximation for this problem. Indeed, as discussed above, a persistent optimal
solution will have value at least W1/2/2+W1 while the trivial solution has value
W1/2+W1, giving an approximation ratio of at most 2. The next section suggests
a better way of dealing with the subgraph G[V1/2].

A better approximation based on coloring

Hochbaum [Hoc83] suggested a better way of computing the vertex cover in
the subgraph G[V1/2], based on the graph coloring problem, defined below. Her
approach yields better than 2-approximation algorithms whenever a coloring
with a small number of colors is provided for the input graph.

Problem 3.3.2 (GRAPH COLORING)

Given: A graph G(V, E) with vertex set V and edge set E.

Find: A k-coloring, i.e. an assignment of colors to the vertices of the graph from a
palette of size k such that no two adjacent vertices share the same color and
k is minimized.

The smallest k for which it is possible to find a k-coloring is called the chro-
matic number of the graph G, denoted by χ(G).Let us define the set of vertices
that were assigned color i in a feasible coloring of G to be the color class i. Ob-
serve that any color class must be an independent set in G. This is because if
there were an edge between two vertices that belong to the same color class, it
would imply that those two vertices were assigned the same color despite being
adjacent, contradicting the feasibility of the coloring.

Assuming that a k-coloring of the graph is given, a vertex cover can be con-
structed by ordering the color classes by their total weight (i.e. the sum of
weights of the vertices in the color class) and picking all color classes except
the heaviest one to be in the vertex cover solution. Since the omitted vertices

39 3.3 Single Machine Scheduling and Vertex Cover

form an independent set, this solution is feasible. Furthermore, since the heav-
iest color class has total weight at least the average among the color classes,
i.e. W1/2/k, the total weight of the vertex cover in G[V1/2] is at most

W1/2− W1/2

k
=
�

1− 1

k

�
W1/2.

As hinted to in Section 3.2, this approach together with the fact that any feasible
vertex cover for G[V1/2] has weight at least W1/2/2 leads to an approximation
ratio at most

W1/2(1− 1/k)

W1/2/2
= 2− 2

k
.

We demonstrate this approach in Figure 3.4 giving an example of a 3-colorable
graph.

(2− 2/3)-approx. VC

3-coloring

heaviest color cl. (IS)

subgraph G[V1/2]

choose heaviest color class

color it

1

1

2 2

2

3

3

1

1

2 2

2

3

3
2 : weight ≥W1/2/3

pick
complement

Figure 3.4. Hochbaum’s approach to approximate the vertex cover problem in
G[V1/2] using graph coloring.

40 3.3 Single Machine Scheduling and Vertex Cover

Fractional coloring and Vertex Cover

In this Section we take the approach of [Hoc83] a step further and extend it to
the case when a fractional coloring [SU97] of the graph is known. Let us first
give a definition.

Problem 3.3.3 (FRACTIONAL GRAPH COLORING)

Given: A graph G(V, E) with vertex set V and edge set E.

Find: An a:b-coloring, i.e. an assignment of a set of b colors to each vertex of
the graph from a palette of size a such that no two adjacent vertices share a
color and a/b is minimized.

We call a coloring that assigns b colors to each vertex a b-fold coloring with a
1-fold coloring being the traditional coloring described above, see Problem 3.3.2.
Similarly, the smallest integer a for which a b-fold coloring exists is called the
b-fold chromatic number, denoted χb(G). Now, the fractional chromatic number
χ f (G) of a graph is given by the limit5

χ f (G) = lim
t→∞

χb(G)
b
= inf

b

χb(G)
b

.

Observe that the chromatic number is always an upper bound on the frac-
tional chromatic number, since a (traditional) k-coloring can be turned into a
(c · k):c-coloring simply by replicating colors.

The color classes in a fractional coloring are still independent sets, only that
now they do not form a partitioning of the nodes, but overlap. More precisely,
every vertex of the graph in a b-fold coloring appears in the b color classes
corresponding to the colors assigned to it. Again, we can construct a vertex
cover solution by complementing the heaviest among the a color classes.

The power of this new approach is best illustrated with an example. Consider
the graph C5, i.e. a circle on 5 nodes, with arbitrary weights. Since this graph is
an odd cycle, its chromatic number is χ(C5) = 3 (see Figure 3.5a). On the other
hand, we can find a 5:2-coloring for C5, as shown in Figure 3.5b.

Let W be the total weight of the graph and W[i] the weight of color class i.
As shown above, if it can be assumed that any vertex cover of the graph has
weight at least W/2, Hochbaum’s approach [Hoc83] yields an approximation
guarantee of 2 − 2/3 = 4/3, given a 3-coloring of the graph. If instead we

5That this limit exists follows from the subadditivity of the t-fold chromatic number,
i.e. χb+c(G)≤ χb(G) +χc(G)

41 3.3 Single Machine Scheduling and Vertex Cover

1

2 1

23

12

2

4

1 5

3

3

4 5

3-coloring of C5 5:2-coloring of C5

a b

Figure 3.5. On the left a 3-coloring of C5. On the right a 2-fold coloring using
a palette of size only 5 (as opposed to the straight-forward palette of 6 colors
resulting by replication).

choose the heaviest color class in the 5 : 2-coloring, using again an averaging
argument we get that

max
1≤i≤5

{W[i]} ≥
∑5

i=1 W[i]

5
=

2W

5

where the last equality holds because each vertex appears in two color classes.
Thus, using fractional coloring we get an approximation guarantee of at most

W − 2W/5

W/2
=

6

5
,

an improvement over the 4/3-approximation given by [Hoc83].

3.3.2 Connection between 1|prec|∑ j w jC j and Vertex Cover

In a series of recent papers [CH99; CS05; AM09] it was proved that the problem
1|prec|∑ j w jC j is a special case of the minimum weighted vertex cover prob-
lem. In this section we give an overview of how this result was obtained. In
Section 3.5.1 we make the connection between the scheduling problem and di-
mension theory explicit by pointing out that the vertex cover graph obtained
from a scheduling instance, with precedence constraints in the form of a poset
P, is in fact the graph of incomparable pairs GP, defined in dimension theory of
partial orders (see Section 3.4).

42 3.3 Single Machine Scheduling and Vertex Cover

To simplify notation, we implicitly assume hereafter that tuples and sets of
jobs have no multiplicity. Therefore, (a1, a2, . . . , ak) ∈ N k and {b1, b2, . . . , bk} ⊆
N denote a tuple and a set, respectively, with k distinct elements.

In the following, we introduce several linear programming formulations and
relaxations of 1|prec|∑ j w jC j using linear ordering variables δi j. The variable
δi j has value 1 if job i precedes job j in the corresponding schedule, and 0
otherwise. In this sense, the variables δi j and δ ji are complementary to each
other.

The following linear programming formulation of 1|prec|∑ j w jC j using lin-
ear ordering variables is due to Potts [Pot80]:

[P-IP] min
∑
j∈N

p jw j +
∑
(i, j)∈N2

δi j piw j (3.1a)

s.t. δi j +δ ji = 1 {i, j} ⊆ N (3.1b)

δi j = 1 (i, j) ∈ P (3.1c)

δi j +δ jk +δki ≤ 2 (i, j, k) ∈ N 3 (3.1d)

δi j ∈ {0,1} (i, j) ∈ N 2 (3.1e)

Constraint (3.1b) ensures that δi j and δ ji are complementary, meaning that
for any two jobs {i, j} either job i is scheduled before j or vice versa. If job
i is constrained to precede j in the partial order P, then this is seized by con-
straint (4.3d). The set of constraints (3.1d) is used to capture the transitivity of
the ordering relations (i.e., if i is scheduled before j and j before k, then i is
scheduled before k). It is easy to see that [P-IP] is indeed an exact formulation
of the problem 1|prec|∑ j w jC j.

Chudak & Hochbaum [CH99] suggested to study the following relaxation
of [P-IP] in which the transitivity constraints are modified:

[CH-IP] min
∑
j∈N

p jw j +
∑
(i, j)∈N2

δi j piw j (3.2a)

s.t. δi j +δ ji = 1 {i, j} ⊆ N (3.2b)

δi j = 1 (i, j) ∈ P (3.2c)

δ jk +δki ≤ 1 (i, j) ∈ P, {i, j, k} ⊆ N
(3.2d)

δi j ∈ {0,1} (i, j) ∈ N 2 (3.2e)

In [CH-IP], the set of constraints (3.1d) from [P-IP] are replaced by the set of
constraints (3.2d). These inequalities correspond in general to a proper subset

43 3.3 Single Machine Scheduling and Vertex Cover

of (3.2d), since the transitivity constraints (3.2d) are dropped, unless there is a
precedence constraint between two of the participating jobs.

Correa & Schulz [CS05] proposed the following integer programming for-
mulation [CS-IP], which is a relaxation of [P-IP]. For (i, j) ∈ N 2, the term6 i‖ j
means that (i, j) 6∈ P and (j, i) 6∈ P. Note that in [CS-IP], we only need variables
δi j for jobs i‖ j.

[CS-IP] min
∑
j∈N

p jw j +
∑
(i, j)∈P

piw j+
∑
i‖ j

δi j piw j (3.3a)

s.t. δi j +δ ji ≥ 1 i‖ j (3.3b)

δik +δk j ≥ 1 (i, j) ∈ P, j‖k, k‖i (3.3c)

δi`+δk j ≥ 1 (i, j) ∈ P, j‖k, (k,`) ∈ P,`‖i (3.3d)

δi j ∈ {0,1} (i, j) ∈ N 2, i‖ j (3.3e)

Note that in this formulation, the objective function has been split into the fixed-
cost

∑
(i, j)∈P piw j+

∑
i∈N piwi and the variable-cost

∑
(i, j)∈L\P piw j defined in Sec-

tion 3.1, where L = {(i, j) : δi j = 1} is not necessarily a total ordering of the jobs.
As discussed above, the fixed part can be ignored during optimization.

There is a strong resemblance of [CS-IP] to the [VC-IP] given in Section 3.3.1,
once the fixed part of (3.3a) is put aside. Indeed, [CS-IP] can be interpreted as
a vertex cover problem of the following graph:

Vertices There is a vertex for every (ordered) pair of jobs (i, j), i‖ j, with δi j

being the associated indication variable.

Weights The weight of the vertex corresponding to the pair (i, j) is given by the
coefficient of δi j in the variable part of the objective function (3.3a) and is
equal to the product piw j.

Edges There is an edge between two ordered pairs if their corresponding order-
ing variables appear together in one of the constraints (3.3b), (3.3c) and
(3.3d).

Correa & Schulz [CS05] also proved that their formulation [CS-IP] is equiva-
lent to [CH-IP] and they conjectured that an optimal solution to 1|prec|∑ j w jC j

gives an optimal solution to [CH-IP] as well. The conjecture in [CS05] was re-
cently settled in the affirmative by Ambühl & Mastrolilli [AM09], who proved
that any feasible solution to [CH-IP] can be turned into a feasible solution

6Such two jobs are called an “incomparable pair” in poset terminology

44 3.4 Dimension Theory of Partial Orders

to 1|prec|∑ j w jC j without deteriorating the objective value and in polynomial
time. As the fixed-cost remains unaffected by these transformations, the re-
sults in [CS05; AM09] imply that the problem of minimizing the variable-cost
of 1|prec|∑ j w jC j is a special case of minimum weighted vertex cover.

For a scheduling instance S with precedence constraints P = (N , P), we let
GS

P be the vertex cover graph obtained by interpreting [CS-IP] as a vertex cover
problem, as described above. The following theorem summarizes the aforemen-
tioned results.

Theorem 3.3.4 ([CH99; CS05; AM09]) Let S be an instance of 1|prec|∑ j w jC j

with precedence constraints P. Then an α-approximate solution to the weighted ver-
tex cover problem on GS

P can, in polynomial time, be turned into an α-approximate
solution to the variable-cost part of S.

As the approximation guarantee can only improve by taking into account the
fixed-cost, we have that an α-approximation algorithm for the weighted vertex
cover problem associated to 1|prec|∑ j w jC j, yields at least an α-approximation
algorithm for the scheduling problem.

However, as mentioned earlier, it is unknown whether the vertex cover prob-
lem can be approximated with a ratio better than 2 in general graphs, and there
is some evidence against the existence of such an algorithm [KR08]. Thus, the
above connection by itself only provides another 2-approximation algorithm for
this problem. The decisive point is that the graph GS

P obtained from 1|prec|∑ j w jC j

exhibits some nice structure, leading to better approximation algorithms for sev-
eral families of precedence constraints. In fact, it turns out that it coincides with
a graph well known to Combinatorialists: the graph of incomparable pairs GP of
partial orders (see Section 3.4.1).

3.4 Dimension Theory of Partial Orders

A partially ordered set (or poset) formalizes the intuitive concept of an ordering,
sequencing, or arrangement of the elements of a set. The theory of partially
ordered sets is central to combinatorics and arises in many different contexts.
We are going to introduce it by giving an example.

Consider the set A = {a, b, c, d} and a set N consisting of five subsets of A,
namely S1 = {a}, S2 = {b}, S3 = {c}, S4 = {a, b, c} and S5 = {b, d}. The elements
of the set N , called the groundset, can be partially ordered by the reflexive,
antisymmetric and transitive relation P which we define, in the example, by
use of the set inclusion “⊆” (see also Figure 3.6): for any S, S′ ∈ N we have

45 3.4 Dimension Theory of Partial Orders

(S, S′) ∈ P if and only if S ⊆ S′. To emphasize the order concept, we write x ≤ y
when (x , y) ∈ P.

For any S, S′ ∈ N , in case S′ ≤ S or S ≤ S′, we will say that the (ordered)
pair (S, S′) is comparable, otherwise it is called incomparable (for S 6= S′ we call
S′ larger than S, if S ≤ S′, also denoted by S < S′). For instance, S1 and S4

are comparable since S1 ≤ S4, whereas neither S1 ≤ S5 nor S5 ≤ S1 holds which
makes the pairs (S1, S5) and (S5, S1) incomparable. The groundset N together
with the partial order P define a partially ordered set (poset) P = (N , P). We
denote the set of all incomparable points of a poset P by inc(P). A poset that
does not have any incomparable pairs is called a linear order.

S1 = {a}

S4 = {a, b, c} S5 = {b, d}

S2 = {b} S3 = {c}

Figure 3.6. The Hasse diagram of the example poset P (each element of N
is represented by a vertex on the plane and an upwards going line segment is
drawn from x to y whenever x < y, unless there is a z ∈ N such that x < z < y).

An extension of a poset P= (N , P) is any poset P′ = (N , P ′) such that P ⊆ P ′.
Moreover, if P ′ is a linear order, we call P′ a linear extension of P. Putting aside
the set-inclusion interpretation of the example poset, we can construct an exten-
sion of P by adding, for example, S3 ≤ S5 to P. The resulting poset P′ is depicted
in Figure 3.7. We say that the extension P′ reverses the (ordered) incomparable
pair (S5, S3).

Constructing a linear extension that satisfies certain properties is central to
several problems in combinatorics. The scheduling problem 1|prec|∑ j w jC j falls
in this category. The construction of linear extensions of a poset also arises when
determining its dimension, as explained in the following.

For a familyR of linear extensions of P, we callR a realizer of P if
⋂R = P,

i.e. for all a, b,∈ N , a ≤ b in P if and only if a ≤ b in every L ∈ R . Note that
for each incomparable pair (a, b) ∈ inc(P), there must be at least one linear ex-
tension in the realizer that reverses it. Thus, for any two a‖b, there must be
a linear extension in the realizer containing (a, b) and another one containing
(b, a). This means that, unless P is already a linear ordering or P = ;, any real-

46 3.4 Dimension Theory of Partial Orders

S1

S4 S5

S2 S3

Figure 3.7. The Hasse diagram of the poset P′(N , P ′), an extension of the poset
P(N , P) with P ′ = P ∪ {(S3, S5)}

izer will have size at least 2. The least positive integer t for which there is such
a realizer R = {L1, . . . , Lt} of P is called the dimension of P, denoted by dim(P).
A realizer of size t will be abbreviated by the name t-realizer. Figure 3.8 shows
that the dimension of the example poset is at most two (and thus equal to two)
by giving a 2-realizer, together with a table containing, for each incomparable
pair (a, b) a linear extension in which it is reversed.

L1 L2

S1

S4

S5

S2

S3

S1

S4

S5

S2

S3

R

S1 S4 S5S2 S3

L2S1

S4

S5

S2

S3

L1L1

L2

L1

L2

L1

L2L1

L2

L1

L2

ba

Figure 3.8. A 2-realizer for the example poset of Figure 3.6. In the table on
the right, a cell corresponding to an incomparable pair (a, b) contains a linear
extension of the realizer in which it is reversed.

Similar to the coloring problem, also the dimension has a fractional counter-
part. A k:t-realizer is defined as a multiset of t linear extensionsR = {L1, . . . , Lt}

47 3.4 Dimension Theory of Partial Orders

in which each incomparable pair is reversed at least k times7. The fractional di-
mension of P, denoted by fdim(P), is the infimum of the set of ratios t/k for
which there exist k:t-realizers [BS92]. Since a t-realizer can be seen as a 1 : t-
realizer, the dimension is a natural upper bound on the fractional dimension.

A natural question is for which posets one can construct a t-realizer in poly-
nomial time. In the general case, Yannakakis [Yan82] proved that determining
whether the dimension of a poset is at most t is NP-complete for every t ≥ 3.
Moreover, Hegde & Jain [HJ07] recently proved that it is hard to approximate
the (fractional) dimension of a poset with n elements within a factor n0.5−ε, in
the general case. However, for several special cases, a minimal realizer can be
computed in polynomial time (see e.g. [Tro92; Möh89]).

3.4.1 The Hypergraph of Incomparable Pairs

It is easy to see that, when constructing an extension of P, there are some groups
of incomparable pairs that cannot be reversed at the same time. Obviously,
an extension of P cannot reverse both (S3, S5) and (S5, S3) at the same time.
This implies that, unless a poset is already a linear order, any realizer needs to
contain more than one linear extensions in order to reverse every incomparable
pair at least once. For the pairs of incomparable pairs mentioned above, it is
obvious that they cannot be reversed at the same time. However, there are also
less obvious pairs of incomparable pairs for which this is true. By examining
the Hasse-diagram of P (see Figure 3.6), one can conclude that reversing both
(S2, S1) and (S1, S5) would lead to an inconsistency, i.e. a “cycle” in the ordering:
adding S1 ≤ S2 and using transitivity leads to S1 ≤ S2 ≤ S5, which contradicts
S5 ≤ S1. In general, there can also be groups bigger than two pairs that cannot be
all reversed at the same time without introducing contradictions (e.g., (S2, S1),
(S1, S3) and (S3, S5)).

The above observations naturally lead to the definition of the hypergraph of
incomparable pairs HP of a poset P [FT00] defined as follows. The vertices of
HP are the incomparable pairs in P. The edge set consists of those sets U of
incomparable pairs such that:

1. No linear extension of P reverses all incomparable pairs in U .

7Note the unfortunate dissonance in the notation of fractional dimension and fractional col-
oring literature: the total number of colors a is denoted first in an a:b-coloring, while the total
number of linear extensions t is is denoted second in a k:t-realizer. To avoid confusion, the
reader is advised to keep in mind that these fraction cannot be less than one.

48 3.4 Dimension Theory of Partial Orders

2. For every proper subset of U there is a linear extension that reverses all
incomparable pairs in U .

Figure 3.9 depicts the hypergraph of incomparable pairs for our example
poset. The graph resulting from HP by restricting the set E to hyperedges of size
2 (i.e. graph edges), is called the graph of incomparable pairs and denoted by GP.

1,2

2,1

1,3 3,1

2,3

3,2 5,4

4,5

3,5

5,3

1,5

5,1

a

1,2

2,1

1,3 3,1

2,3

3,2 5,4

4,5

3,5

5,3

1,5

5,1

b

Figure 3.9. The graph GP and the hypergraph HP of incomparable pairs of our
example poset P. The graph of incomparable pairs GP is depicted on the left.
The hypergraph HP can be obtained by adding the hyperedges on the right to
the edges on the left.

It turns out that properties of this graph reflect properties of the originating
poset. More precisely, the dimension of P is equal to the chromatic number of
the hypergraph HP [Tro92]. Brightwell & Scheinerman [BS92] showed that the
fractional counterparts of these values also coincide: the fractional dimension
of P equals the fractional chromatic number of the hypergraph HP. We include
the proof of these statements below, as they offer useful insights into the (hy-
per)graph of incomparable pairs. Since dimension is a special case of fractional
dimension, we only present the proof for the fractional case.

Proposition 3.4.1 [[FT00; BS92]] Let P = (X , P) be a poset which is not a
linear order, and let HP be its hypergraph of incomparable pairs. Then

49 3.5 The algorithmic approximation framework

a) HP can be t:k-colored if and only if P has a k:t-realizer.

b) A linear extension L of P defines a vertex cover S by setting

S := {(x , y) ∈ inc(P) : (x , y) ∈ L}
and an independent set I of HP by setting

I := {(x , y) ∈ inc(P) : (y, x) ∈ L}

Proof. For statement a), note that a t:k-coloring suggests a way of reversing each
incomparable pair in at least k linear extensions, with each color corresponding
to a linear extension. Since a valid coloring does not use a color common to
all vertices of a hyperedge, these extensions do not contain any cycles and are
therefore valid partial orders. On the other hand, a k:t-realizer suggests a way of
coloring the vertices of the graph by assigning color i to each pair (a, b) ∈ inc(P)
if and only if it is reversed in Li. Since a linear extension can only reverse a
proper subset of vertices for each hyperedge, there is no hyperedge that contains
vertices that share a common color. Therefore, the coloring is valid.

Statement b) follows from the above arguments. Since all pairs in the set
I are assigned the same color in the above discussed coloring, they must form
an independent set, by validity of the coloring. Observe that, since for each
(a, b) ∈ inc(P) a linear extension L must either include it or reverse it, S is the
complement of I . As complements of independent sets are vertex covers, S forms
a vertex cover of HP. �

3.5 The algorithmic approximation framework

In this section we bring together all previously discussed components in order
to create a framework that yields better than 2-approximation algorithms for
families of posets that have bounded fractional dimension.

The following observation is central to our approach. Recall that in Sec-
tion 3.3.4 we presented several formulations and relaxations of the problem
1|prec|∑ j w jC j, resulting in the vertex cover problem in graph GS

P , associated
to the given instance of the scheduling problem. It turns out that this graph
reflects the structure of the poset given in the instance of 1|prec|∑ j w jC j in such
a way that we can apply techniques from Dimension Theory when trying to ap-
proximate the vertex cover problem. The following section makes this intuition
explicit.

50 3.5 The algorithmic approximation framework

3.5.1 Structure of the Graph GS
P

Consider an instance S of 1|prec|∑ j w jC j with precedence constraints P= (N , P).
Recall that the vertices of GS

P are the incomparable pairs of P. Graph GS
P has three

types of edges (depicted in Figure 3.10), one for each type of constraint in [CS-
IP] (See Section 3.3.2):

(i) Two vertices (i, j) and (j, i) are adjacent (constraints (3.3b)).

(ii) Two vertices (i, k) and (k, j) are adjacent if (i, j) ∈ P (constraints (3.3c)).

(iii) Two vertices (i,`) and (k, j) are adjacent if (i, j) ∈ P and (k,`) ∈ P (con-
straints (3.3d))

j

i

k

`

j j

ii

k

Figure 3.10. The three different edge types of graph GS
P , corresponding to the

three constraints of [CS-IP]. A pair of jobs i‖ j is connected by a dashed line,
while solid lines represent precedence constraints.

It is not hard to see that the edge set of GS
P consists of those sets U of two

incomparable pairs that cannot be reversed at the same time without introducing
cycles. This observation is crucial to our approach, since it implies that the
graph GS

P and the graph of incomparable pairs of partial orders (see Section 3.4)
coincide.

Proposition 3.5.1 The vertex cover graph GS
P associated to 1|prec|∑ j w jC j and

the graph of incomparable pairs GP coincide.

Theorem 3.5.2 ([Tro92; CS05]) Let P = (N , P) be a poset that is not a linear
order. Then the graph GP is bipartite if and only if dim(P) = 2.

Note that the example poset given in Figure 3.6 is 2-dimensional. Indeed, the
graph of incomparable pairs of this poset is a tree (see Figure 3.9a), and thus
bipartite. Theorem 3.5.2 is a well-known result in dimension theory. Using a
different approach, Correa & Schulz [CS05] rediscovered it for the vertex cover
graph GS

P , independent of the connection pointed out by Proposition 3.5.1.

51 3.5 The algorithmic approximation framework

3.5.2 The Framework

Propositions 3.5.1 and 3.4.1 imply that graph GS
P can be colored using dim(P)

colors and, given a realizer, this can be done in polynomial time (see the proof
of Proposition 3.4.1). Combining this with Hochbaum’s [Hoc83] (2 − 2/t)-
approximation algorithm for the weighted vertex cover problem, whenever the
vertex cover graph is t-colorable in polynomial time, yields the following theo-
rem.

Theorem 3.5.3 Problem 1|prec|∑ j w jC j has a polynomial time (2− 2
t
)-approxi-

mation algorithm, whenever precedence constraints are given by a t-realizer.

Using the correspondence between fractional dimension and fractional color-
ing, this theorem can be generalized to the case that the fractional dimension of
the poset is bounded. However, there is a technicality that needs to be overcome.

Assume that we are given a k:t-realizer for which the ratio t/k is some small
constant, while k and t are exponential in the size of the groundset (number of
jobs). Since this gives a fractional chromatic number with a small ratio, such
a realizer suggests a fractional coloring that can indeed be used to provide a
(2 − 2/(t/k))-approximation. Clearly, however, our above sketched algorithm
cannot run in polynomial time, since it takes exponential time to even read-in
the realizer.

Randomness comes to our avail. In fact, randomization will merely serve
as a detour, in which we first show a randomized algorithm that has the above
approximation ratio in expectation. We then show that for all our applications
this algorithm can be derandomized using the method of conditional probabil-
ities. The result is a fully deterministic algorithm that guarantees the above
approximation ratio.

We say that a poset P admits an efficiently samplable k:t-realizer if there exists
a randomized algorithm that, in time polynomial in the size of the ground set,
returns any linear extension from a k:t-realizer F = {L1, L2, . . . , Lt} of P with
probability 1/t. Using this definition we can now formulate the generalization
of Theorem 3.5.3. We revisit the algorithmic framework already sketched in
Section 3.2 as a proof of this theorem (see Figure 3.11 for an illustration).

Theorem 3.5.4 Problem 1|prec|∑ j w jC j has a randomized (2− 2
t/k
)-approximation

algorithm, whenever precedence constraints admit an efficiently samplable k:t-
realizer.

52 3.5 The algorithmic approximation framework

instance

fixed cost

variable cost

1|prec|∑ j w jC j

Vertex Cover
instance

OPT ≥ W1/2

2

VC by
complem.

GS
P[V1/2]

+V1

+ fixed cost

Ind.
Set

in

out

[P-IP],
[CH-IP],
[CS-IP]

V1

V0

NT

NT

NT

fractional
color
class

(2− 2
t/k
)-approx. (E)(2− 2

t/k
)-approx. (E)

random
Llin. ext.

(2− 2
t/k
)-approx. (E)

for variable cost

(2− 2
t/k
)-approx. (E)

for 1|prec|∑ j w jC j

[Hoc83]

k:t-realizer

. . .

Dimension
Theory

[CS05,AM09]

Figure 3.11. An illustration of the framework based on fractional coloring. The
sign (E) indicates that the claimed approximation ratios hold in expectation.

Proof. Let S be an instance of 1|prec|∑ j w jC j where precedence constraints are
given by a poset P = (N , P) that admits an efficiently samplable k:t-realizer
F = {L1, L2, . . . , Lt}. Furthermore, we assume that fdim(P) ≥ 2. The case when
fdim(P) = 1, i.e. P is a linear order, is trivial.

Let GS
P = (VP, EP) be the weighted vertex cover instance associated to S where

each vertex (incomparable pair) v = (i, j) ∈ VP has weight wv = pi · w j, as
specified in Section 3.3.2.

We apply the preprocessing given by Nemhauser & Trotter [NT73; NT75]
described in Section 3.3.1. This outputs a partition of the vertices of the graph

53 3.5 The algorithmic approximation framework

into V0, V1 and V1/2 such that only the induced subgraph GS
P[V1/2] needs to be

further considered: adding the vertices V1 yields a feasible solution that is an at
least as good approximation as the one found in GS

P[V1/2].
To approximate vertex cover in GS

P[V1/2], we consider the linear extensions
of F as outcomes in a uniform sample space. For an incomparable pair (x , y),
the probability that y > x in a linear extension picked from F is given by

ProbF [y > x] =

���i = 1, . . . , t : y > x ∈ Li
	��

t
≥ k

t
(3.4)

This inequality holds because every incomparable pair is reversed in at least k
linear extensions of F , by definition of a k:t-realizer. Let us pick one linear
extension L uniformly at random from F = {L1, . . . , Lt}. By Proposition 3.4.1, L
defines the independent set

IL :=
�
(x , y) ∈ inc(P) : (y, x) ∈ L

	
,

i.e. the set of incomparable pairs that are reversed in L. By linearity of expecta-
tion, its expected weight equals8

E[w(I1/2)] =
∑

(i, j)∈V1/2

ProbF [j > i] ·w(i, j) ≥ k

t
·W1/2

A vertex cover solution C for the graph GS
P[V1/2] can be obtained by comple-

menting IL in V1/2, i.e. setting C = V1/2 \ I1/2. The expected value of this vertex
cover solution is

E[w(C)] =W1/2− E[w(I1/2)]≤
�

1− k

t

�
W1/2

We now add V1 to C in order to get a vertex cover for the total graph GS
P . The

expected value of this vertex cover solution is, by linearity of expectation,

E[w(V1 ∪ C)] ≤ W1+
�

1− k

t

�
W1/2 (3.5)

≤ 2
�

1− k

t

��
W1+

1

2
W1/2

�
(3.6)

≤
�

2− 2

t/k

�
OPT (3.7)

8Recall that Wi denotes w(Vi) for i ∈ {0, 1/2, 1}

54 3.6 Applications of the framework

where inequality 3.6 follows from the fact that 2(1− k/t) ≥ 1 because t/k ≥
fdim(P) ≥ 2, and inequality 3.7 holds since W1+ 1/2 ·W1/2 is the optimal value
of [VC-LP] and thus a lower bound on the actual optimum.

Finally, theorem 3.3.4 implies that any α-approximation algorithm for GS
P

also gives an α-approximation algorithm for S. Thus we obtain a randomized
(2− 2

t/k
)-approximation algorithm for S. �

We point out that, since the dimension is an upper bound on the fractional
dimension, the approach using the fractional dimension subsumes the approach
using the (integral) dimension. Furthermore, it is worth noting that this frame-
work improves or reaches the approximation ratios for all previously considered
special cases of precedence constraints, to the best of our knowledge. Thus, it
provides a unified way of generating the best known approximation algorithms
for special cases of precedence constraints. We show some of these applications
in the next section.

3.6 Applications of the framework

In this section we present applications of the framework presented in Section 3.5
for several families of precedence constraints. For each family, we first give a def-
inition and discuss some properties of the poset, then give either a polynomial
time algorithm that produces a realizer, or a polynomial time algorithm that sam-
ples a linear extension of a k:t-realizer uniformly at random. Once this is done,
the approximation ratio claimed follows from the framework (see Section 3.5).

3.6.1 Interval Orders

A poset P = (N , P) is an interval order if it has an interval representation. An
interval representation F for poset P = (N , P) assigns to each x ∈ N a closed
interval Ix = [`x , ux] ⊆ R , so that ux < `y in R if and only if x < y in P (see
Figure 3.12 for an example).

Interval orders allow for a nice characterization by minors (see e.g. [Tro92]):
a poset is an interval order if and only if it does not contain the poset 2+ 2 as
a subposet (see Figure 3.12c). It is intuitive that such posets are not interval
orders, because if Ia were completely before Ib and Ic were intersecting both,
then any Id that is completely after Ic would also have to be completely after Ia,
but such an edge (a, d) is not present in the poset 2+ 2.

55 3.6 Applications of the framework

a

d e

b c

f g

R

Ib

Ie

I fId

Ia

Ig

Poset P Interval representation of P Poset 2+ 2

b d

a c

a b c

Ic

Figure 3.12. An example of an interval order (a), an interval representation for
it (b) and the forbidden minor poset 2+ 2 (c).

Interval orders can be recognized in O(n2) time [PY79]. The dimension
of interval orders can be of order log log n [Tro92], whereas the fractional di-
mension is known to be less than 4 [BS92], and this bound is asymptotically
tight [FT94]. In the following we show how to obtain a 1.5-approximation algo-
rithm for 1|prec|∑ j w jC j with precedence constraints in the form of an interval
order. By Theorem 3.5.4, it is sufficient to prove that interval orders admit an
efficiently samplable k:t-realizer with t/k ≤ 4.

Given a poset P = (N , P), disjoint subsets A and B of the ground set N , and
a linear extension L of P, we say that B is over A in L if, for every incomparable
pair of elements (a, b) with a ∈ A and b ∈ B, one has b > a in L. The following
property of interval orders is fundamental for our approach.

Theorem 3.6.1 (Rabinovitch [Rab78]) A poset P = (N , P) is an interval order
if and only if for every pair (A, B) of disjoint subsets of N there is a linear extension
L of P with B over A.

We remark that given a pair (A, B) of disjoint subsets of N , we can find a linear
extension L of P with B over A in polynomial time: add the relations A× B to P
and complete the partial order to obtain a linear extension L. Using this property
we can easily obtain a k:t-realizer F = {L1, . . . , Lt} with t = 2n and k = 2n−2,
where n= |N |, as follows.

Consider every subset A of N and let LA be a linear extension of P in which
B = N \A is over A. Now letF be the multiset of all the LA’s. Note that |F |= 2n.
Moreover, for any incomparable pair (x , y) there are at least k = 2n−2 linear
extensions inF in which this pair is reversed. This is because, for each partition

56 3.6 Applications of the framework

(A, B) in which x ∈ B and y ∈ A, this pair is reversed, and there are 2n−2 such
partitions.

As mentioned in Section 3.5.2, this k:t-realizer is not helpful by itself, due to
its exponential size. However, we can easily show that it is efficiently samplable:
for every element (job) in the groundset, put it in A or in B with the same
probability 1/2.

By the previous observations and Theorem 3.5.4, we have a randomized
polynomial time 1.5-approximation for 1|prec|∑ j w jC j with interval order prece-
dence constraints. In Section 3.6.1 we show that this algorithm can easily be de-
randomized using the standard method of conditional probabilities. This yields
the following theorem.

Theorem 3.6.2 Problem 1|prec|∑ j w jC j for which the precedence constraints form
an interval order has a 1.5-approximation algorithm.

Derandomization for Interval Orders

Our goal is to partition the set of jobs into two sets A and B, such that any linear
extension L with B over A will define an independent set with weight at least
W1/2/4. We will define such a partition incrementally.

Fix a subset of the jobs Ni ⊆ N and a partition (Ai, Bi) thereof. Consider
the set of all linear extensions of P that put Bi over Ai, and any given pair
(x , y) ∈ inc(P). The following cases can be distinguished:

• If x ∈ Ai, y ∈ Bi then this pair is reversed in all such linear extensions.

• If x ∈ Ai, y ∈ Ai ∪ Bi then (x , y) is certain to be reversed9 only in case of
the event that y ∈ B when the sets A,B have been fully defined. Similarly,
when y ∈ Bi, x ∈ Ai ∪ Bi, (x , y) is certain to be reversed in the event that
x ∈ A.

• If x , y ∈ Ai ∪ Bi then both events x ∈ A and y ∈ B need to occur in order
for the pair (x , y) to be reversed with certainty in a linear extension.

Consider a function Φ defined as follows:

Φ(Ai, Bi) =
∑

(x ,y)∈Ai×Bi

py wx +
∑

x∈Ai ,y 6∈Ai∪Bi or
x 6∈Ai∪Bi ,y∈Bi

py wx

2
+

∑
x ,y 6∈Ai∪Bi

py wx

4

9Note that such a pair might be reversed also when both x , y are in the same set A or B, but
this cannot be concluded with certainty

57 3.6 Applications of the framework

Note that Φ(Ai, Bi) gives a lower bound on the expected value of the independent
set conditioned upon our current choices of Ai and Bi.

Set A0 = B0 = ; and observe that Φ(A0, B0) =W1/2/4. For i = 1, . . . n we have
to decide if job i is in set Ai or in set Bi. We evaluate both possibilities:

1. A1
i := Ai−1 ∪ {i} and B1

i := Bi−1

2. A2
i := Ai−1 and B2

i := Bi−1 ∪ {i}
Let g = argmax

h=1,2
{Φ(Ah

i , Bh
i)} and observe that

Φ(Ai−1, Bi−1)≤ Φ(Ag
i , Bg

i).

We therefore set

Ai := Ag
i

Bi := Bg
i .

At the end we have partitioned the set of jobs into two sets An and Bn such that
Φ(An, Bn) ≥ w(V1/2)/4. Since P is an interval order P ∪ {(a, b) ∈ An × Bn : a||b}
is a valid extension of P and any linear extension of it gives an independent set
of value ≥ w(V1/2)/4.

3.6.2 Semiorders

A special case of interval orders are semiorders. An interval order P = (N , P)
is called a semiorder (or unit interval order) if P has an interval representation
in which all intervals have the same length. More precisely, an interval order
is a semiorder if there is a representation assigning to each x ∈ N an interval
Ix = [ax , ax + 1] so that ax + 1< ay if and only if x < y in P.

Just as interval orders, semiorders allow for a characterization by forbidden
minors as well. Besides the minor poset 2+ 2 inherited from interval orders,
semiorders have also 3+ 1 as a forbidden minor, depicted in Figure 3.13. Intu-
itively, such a poset admits a representation by intervals only if the interval Ib is
strictly contained in the interval Id , which is impossible due to the unit length
of intervals. Observe, for example, that the interval order of Figure 3.12 is not a
semiorder, since subposet induced by the elements {a, d, e, f } is a 3+ 1 poset.

Semiorders can be recognized in O(n2) time (see e.g. [Möh89; Tro92]). In
contrast to interval orders that have unbounded dimension [Tro92], Rabinovitch
proved, by constructing a realizer, that the dimension of semiorders is at most

58 3.6 Applications of the framework

Poset 3+ 1

b d

a

c

Figure 3.13. The additional forbidden subposet 3+ 1 for semiorders.

three [Rab78] (see also [Tro92] for a good explanation). The result presented
in this section is achieved using the approach based on (integral) dimension.

The realizer proposed by Rabinovitch is constructed as follows (see Fig-
ure 3.14 for an overview). Intuitively, the elements of the groundset will be
partitioned into “levels” by iterative removal of the maximal elements of the
residual poset, where the maximal elements of a poset P are

max(P) := {x ∈ N : ∀y ∈ N , either (y, x) ∈ P or (y, x) ∈ inc(P)}.
Those levels will be used to define two sets A and B, one containing the odd
levels and the other one containing the even levels. Two linear extensions are
formed, one putting A over B and the other B over A, in order to reverse all
incomparable pairs that span across levels. A third linear extension is used to
reverse incomparable pairs within levels and completes the definition of the re-
alizer. A more precise description of this algorithm follows.

Given a semiorder P = (N , P), we iteratively define Ni, Pi,Pi and Ai for i ≤
i ≤ h (for some10 h) as follows: let N1 = N , P1 = P,P1 = (N1, P1) and let A1 =
max(P1), i.e. the maximal elements of the poset P1. If Ni, Pi,Pi and Ai have been
defined for some i : 1 ≤ i < h, set Ni+1 = Ni \ Ai, Pi+1 = Pi ∩ (Ni+1 × Ni+1),
Pi+1 = (Ni+1, Pi+1), and Ai+1 = max(Pi+1). Note that the sets A1, A2, . . . , Ah form
a partition of N and all elements in a set Ai are incomparable11. Let A = {x ∈
N : x ∈ Ai for some odd i} and let B = N \ A. As semiorders are a special case
of interval orders, we can construct two linear extensions L1 and L2 so that B

10This integer is called the height of the poset
11They are antichains, in Dimension Theory terminology

59 3.6 Applications of the framework

is over A in L1 and A is over B in L2 (see Theorem 3.6.1). Finally, we construct
a third linear extension L3 so that an incomparable pair (i, j) ∈ L3, if either (i)
i ∈ Ak and j ∈ A` with k > ` or (ii) {i, j} ⊆ Ak and (j, i) ∈ L1. R := {L1, L2, L3}
is a realizer for P, since incomparable pairs that span across different Ai ’s are
reversed in either L1 or L2, while incomparable pairs within some Ai are reversed
either in L1 or in L3 (see [Rab78; Tro92] for more details).

L3 :
a

d e

b c

Semiorder P

b

f

A3

A2

A1

: A

: B

: B

L2 :

L1 : < < < < <

< < < < <

< < < < <a

d

ebc f

a

d

eb c f

a d eb c f

3-realizer R = {L1, L2, L3}

a

Figure 3.14. Overview of the construction of a 3-realizer for semi-orders. The
jobs are partitioned into two sets A and B, in white and gray respectively. L1

puts B/A, L2 puts A/B and L3 reverses incomparable pairs within a set A, B that
are not reversed in L1.

It is not hard to see that we can construct R in polynomial time. This to-
gether with Theorem 3.5.3, gives us the following theorem.

Theorem 3.6.3 Problem 1|prec|∑ j w jC j for which the precedence constraints form
a semiorder has a (1+ 1/3)-approximation algorithm.

3.6.3 Orders of Interval Dimension two

The interval dimension of a poset P= (N , P), denoted by dimI(P), is defined [Tro92]
as the least t for which there exist t extensions Q1,Q2, . . . ,Q t , so that:

• P =Q1 ∩Q2 ∩ · · · ∩Q t and

• (N ,Q i) is an interval order for i = 1,2, . . . , t.

Obviously, if P is an interval order dimI(P) = 1. Moreover, since any linear
extension is in particular an interval order but not vice versa, dimI(P)≤ dim(P).

60 3.6 Applications of the framework

The class of posets of interval dimension 2 forms a proper superclass of the
class of interval orders. Posets of interval dimension two can be recognized in
O(n2) time due to Ma & Spinrad [MS94]. Given a poset P with dimI(P) = 2, their
algorithm also yields an interval realizer {Q1,Q2}. As described in Section 3.6.1,
we know how to construct k:t-realizers F1 and F2 for the interval orders Q1

and Q2 respectively, with k = 2n−2,t = 2n. Forming the union of these realizers,
we obtain a k:t-realizer F := F1 ∪F2 with t = 2n+1 and k = 2n−2. Note that
in F each incomparable pair is reversed in at least 1/8 of the linear extensions.
Furthermore, we can efficiently pick uniformly at random one linear extension
from F : pick uniformly at random a linear extension from either F1 or F2

with the same probability 1/2. The derandomization is analogous to the one
for interval orders presented in Section 3.6.1 and is omitted. This yields the
following theorem.

Theorem 3.6.4 Problem 1|prec|∑ j w jC j, whenever precedence constraints have
interval dimension at most 2, has a 1.75-approximation algorithm.

3.6.4 Posets of Bounded Up- or Down-degree

In the following we will see how to obtain, using Theorem 3.5.4, an approxima-
tion algorithm for 1|prec|∑ j w jC j when the precedence constraints form a poset
whose up-degree (or down-degree) is bounded. We first give some definitions.

Let P = (N , P) be a poset. For any job j ∈ N , define the degree of j, denoted
deg(j), as the number of jobs comparable (but not equal) to j in P. Let ∆(P) =
max{deg(j) : j ∈ N}. Given a job j, D(j), called the down-set of j in P, denotes
the set of all jobs which are less than j. Similarly, U(j) is called the up-set of j in
P and denotes those jobs which are greater than j in P. We call degD(j) = |D(j)|
the down-degree of job j and let ∆D(P) = max{degD(j) : j ∈ N}. The up-degree
degU(j) and ∆U(P) are defined analogously.

We observe that the NP-completeness proof for 1|prec|∑ j w jC j given by
Lawler [Law78] was actually provided for posets P with ∆D(P) = 2. Using
fractional dimension we show that these posets (with bounded min{∆D,∆U})
allow for a better than 2-approximation.

Theorem 3.6.5 Problem 1|prec|∑ j w jC j has a polynomial time (2−2/ f)-approx-
imation algorithm, where f = 1+min{∆D,∆U , 1}.
Proof. Let P = (N , P) be the poset representing the precedence constraints with
bounded min{∆D,∆U}. We will show that P has an efficiently samplable k:t-
realizer with t/k ≤min{∆D,∆U}+ 1 using a result by Felsner & Trotter [FT94].

61 3.6 Applications of the framework

To describe their approach we need to first introduce some concepts. Assume,
without loss of generality, that P is not decomposable with respect to lexico-
graphic sums (see Section 3.6.5)12. Otherwise, a decomposition with respect to
lexicographic sums can be done in O(n2) time (see e.g. [Möh89]), and each com-
ponent will have degree no larger than the degree of P and can be considered
separately (see Theorem 3.6.6). We call an incomparable pair (x , y) ∈ inc(P) a
critical pair if for all z, w ∈ N \ {x , y}

1. z < x in P implies z < y in P, and

2. y < w in P implies x < w in P.

Critical pairs play an important role in dimension theory: any incomparable pair
(a, b) can be associated with at least one critical pair (x , y) so that a linear
extension reversing (x , y) also reverses (a, b) [Tro92]. It follows that if for
each critical pair (x , y), there are at least k linear extensions inF = {L1, . . . , Lt}
which reverse the pair (x , y) thenF is a k:t-realizer of P and vice versa [BS92].

For an element x ∈ N and a set A⊆ N we write x > A, if x > y for all y ∈ A.
For any permutation M of N , consider the set C(M) of critical pairs (x , y) that
satisfy the following two conditions:

1. x > (D(y)∪ {y}) in M if |D(y)|<∆D

2. x > D(y) in M if |D(y)|=∆D

In [FT94], Felsner & Trotter present an algorithm (for posets that are not de-
composable with respect to lexicographic sums) that converts in polynomial
time a permutation M of N into a linear extension L of P so that L reverses
all critical pairs in the set C(M). Now set t = |N |! and consider the set M =
{M1, M2, . . . , Mt} of all permutations of the ground set N . Observe that for any
critical pair (x , y) there are at least n!/(∆D+1) different permutations Mi ∈M ,
where the critical pair is reversed, i.e. (y, x) ∈ C(Mi). This is because any order-
ing of the n elements defines an ordering of T := {x} ∪ D(y) (respectively, an
ordering of T := {x} ∪ {y} ∪ D(y)) and in 1/|T | ≥ 1/(∆D + 1) of them x is the
last element of T .

Applying the algorithm in [FT94]we obtain a k:t-realizerF = {L1, . . . , Lt} of
P with t = n! and k = n!/(∆D+1). Moreover, we can efficiently pick uniformly at
random one linear extension fromF : generate uniformly at random one permu-
tation of jobs (e.g. by Knuth’s shuffle algorithm [Knu69]) and transform it into a
linear extension with the described properties using the algorithm in [FT94]. As

12This is needed in order to be able to apply the algorithm of Felsner & Trotter [FT94] below.

62 3.6 Applications of the framework

described below, the algorithm can be derandomized using the standard method
of conditional probabilities. Finally observe that we can repeat a similar analysis
using ∆U instead of ∆D: let Pd = (N , Pd), where Pd = {(i, j) : (j, i) ∈ P} then
∆D(Pd) = ∆U(P) and a k:t-realizer Rd = {Ld

1 , . . . , Ld
t } of Pd gives a k:t-realizer

R = {L1, . . . , Lt} of P, where Li = {(i, j) : (j, i) ∈ Ld
i }. �

We remark that it is necessary to use fractional dimension for obtaining the
above result. To see this, consider the incidence poset P(G) = (N , P) defined as
follows: given an undirected graph G(V, E), let N = V ∪ E and for every v ∈ V
and e = {v1, v2} ∈ E, put (v, e) ∈ P if and only if v ∈ {v1, v2}. Since every edge is
adjacent to only two vertices, ∆D is bounded by 2. For Kn the complete graph on
n nodes, Spencer [Spe71] showed that dim(P(Kn)) = Θ(log log n) whereas from
the above discussion we have fdim(P(Kn))≤ 1+min{∆U ,∆D}= 3.

Derandomization for Bounded Degree Posets

We let V1/2 be the set of vertices with value 1/2 in the optimal solution to the
[VC-LP] formulation of the scheduling problem (see Section 3.5.2).

We consider the case when ∆D ≤∆U . The case when ∆U <∆D is symmetric
and omitted. It suffices to compute a permutation that gives a linear extension
whose associated independent set has value at least

w(V1/2)

∆D + 1
.

We already mentioned that any incomparable pair (a, b) can be associated
with at least one critical pair (x , y) so that a linear extension reversing (x , y) also
reverses (a, b) [Tro92]. For simplicity, we associate every incomparable pair with
exactly one critical pair such that the above condition holds and we denote by
C(x ,y) the set of incomparable pairs associated to the critical pair (x , y). Note that
by convention we have (x , y) ∈ C(x ,y) and the set {C(x ,y) : (x , y) is a critical pair}
forms a partition of the incomparable pairs. From the proof of Theorem 3.6.5, it
follows that the probability that any critical pair (x , y) (and thus the incompara-
ble pairs in C(x ,y)) are reversed by a linear extension L obtained from a uniformly
picked permutation is at least

N(x ,y)/D(x ,y),

where at the beginning

N(x ,y) := 1 and D(x ,y) :=

¨ |D(y)|+ 2, if |D(y)|<∆D|D(y)|+ 1, if |D(y)|=∆D
.

63 3.6 Applications of the framework

Starting from the first position of the permutation, we consider the n possi-
bilities corresponding to placing any job at that position and retain the best one.
Then we remove the job that has been placed at the first position and continue
with the second position, by considering the remaining n− 1 jobs, and so forth
until the end of the permutation. Each time we consider a possibility, we update
the probabilities accordingly. For example, if we decide to put job j at position
i then the probability to reverse the incomparable pairs in C(x ,y) is updated as
follows.

• Set N(x ,y) := 0 if x = j, |D(y)| < ∆D and y has not been placed at a
previous location;

• Set N(x ,y) := 0 if x = j and there exists a z ∈ D(y) that has not been placed
at a previous location;

• Set D(x ,y) := D(x ,y)− 1, if (j = y and D(y)<∆D) or j ∈ D(y).

With the updated probabilities we can compute the associated value and
retain the best choice.

3.6.5 Lexicographic Sums

In this section, we show how the results of the previous sections can be combined
in order to provide approximation algorithms for a wider range of posets. The
construction we will use is called the lexicographic sum of posets (see e.g. [Tro92])
and derives from the following simple idea. Take a poset P= (N , P) and replace
each of its elements x ∈ N with a partially ordered set Qx such that each element
of Qx has the same relation to points outside it as x had before the replacement
(See Figure 3.15). A more formal definition follows.

For a poset P = (N , P) and a family of posets S = {(Yx ,Q x) | x ∈ N} in-
dexed by the elements in N , the lexicographic sum of S over (N , P), denoted∑

x∈(N ,P)(Yx ,Q x) is the poset (Z , R) where Z = {(x , y) | x ∈ N , y ∈ Yx} and
(x1, y1)≤ (x2, y2) in R if and only if one of the following two statements holds:

1. x1 < x2 in P.

2. x1 = x2 and y1 ≤ y2 in Q x1
.

We call P = {P} ∪ S the components of the lexicographic sum. A lexico-
graphic sum is trivial if |N | = 1 or if |Yx | = 1 for all x ∈ N . A poset is de-
composable with respect to lexicographic sums if it is isomorphic to a non-trivial

64 3.6 Applications of the framework

Components

Qa

Qb

Qc

Qd

a

d

b

c

P

lex. sum
∑

x∈(N ,P)(Yx ,Q x)

Ya

Yb

Yc Yd

Figure 3.15. An example of the lexicographic sum
∑

x∈(N ,P)(Yx ,Q x) of the posets
Qa,Qb,Qc and Qd over P.

lexicographic sum. Moreover, a decomposition of a poset with respect to lexico-
graphic sums can be done in O(n2) time (see e.g. [Möh89])

In case the precedence constraints of every component admit an efficiently
samplable realizer, we observe that this translates into a randomized approxi-
mation algorithm:

Theorem 3.6.6 Problem 1|prec|∑ j w jC j, whenever precedence constraints form a
lexicographic sum whose components admit efficiently samplable k:t-realizers, has
a randomized (2− 2

t/k
)-approximation algorithm.

Proof. Let P = (N , P) with N = {1, 2, . . . , n} and Q1,Q2, . . . ,Qn be the compo-
nents of the lexicographic sum

∑
x∈(N ,P)Qx , where Qx = (Yx ,Q x).

Given a linear extension Lp of P and linear extensions L1, L2, . . . , Ln of the
components Q1,Q2, . . . ,Qn, we can construct a linear extension of

∑
x∈(N ,P)Qx

by adding the relation (x , y) ≤ (x ′, y ′) between two incomparable elements of∑
x∈(N ,P)Qx , if either (i) x < x ′ in Lp or (ii) x = x ′ and y < y ′ in Lx .
Now, suppose that all components have efficiently samplable k:t-realizers.

Then we can sample each k:t-realizer independently to obtain linear extensions
of all components, which in turn define a linear extension L of the lexicographic
sum

∑
x∈(N ,P)Qx . It is not hard to see that each incomparable pair of

∑
x∈(N ,P)Qx

is reversed in L with probability at least k/t. Hence, the lexicographic sum
has an efficiently samplable k:t-realizer. This together with Theorem 3.5.4 con-
cludes the proof. �

65 3.7 Conclusions and future research

Finally, we point out that, if the approximation algorithm for each component
can be derandomized, this yields a deterministic approximation algorithm for
the lexicographic sum. In particular this can be done when all components have
low dimension.

3.7 Conclusions and future research

Even though our framework improved the previously considered special cases of
precedence constraints, it failed to yield a better than 2-approximation for the
general case. Understanding the exact approximability of the scheduling prob-
lem remains one of the most prominent open questions in scheduling theory.
Furthermore, it would be interesting to investigate if the discovered connection
between precedence constraint scheduling and graph theory can be further ex-
ploited, in order to devise even stronger approximation algorithms for the spe-
cial cases considered. In particular, recent developments such as semidefinite
programming [GW95] suggest themselves as alternatives to the currently used
graph coloring approach. It would be interesting to investigate if this would lead
to a stronger framework.

It is natural to expect new insights for the scheduling problem from a better
characterization and understanding of the structure of the graph of incompara-
ble pairs. For instance, the solvability of 2-dimensional precedence constraint
scheduling can be gazed from the fact that the resulting graph of incomparable
pairs is bipartite. Furthermore, we know that the graph of incomparable pairs is
complete if and only if the precedence constraints are the standard examples of
partial orders. However, a deeper understanding of the structural properties of
this graph eludes us. We believe that useful insights for the scheduling problem
will emerge from such a study.

66 3.7 Conclusions and future research

Chapter 4

Single Machine Scheduling with
Scenarios

In this chapter, we will discuss a robust variant of the problem 1 ||∑ j w jC j. In
Section 2.1 we saw that this problem can be solved in polynomial time, simply
by balancing the trade-offs between processing times and weights (see Theo-
rem 2.1.3). However, the solution produced in this way may be far from opti-
mality, if the numerical parameters of the instance change. Thus, such a solution
is only of limited use when the instance cannot be formulated in a precise way.
Instead, a new approach is needed that takes into account possible fluctuations
of the parameters and produces a solution that is robust, i.e. whose performance
doesn’t deteriorate dramatically in case the real values of the parameters turn
out to be different to the ones given by the input.

In the following, we will suggest a way to formulate the problem 1 ||∑ j w jC j

in an uncertain environment.

4.1 Deterministic vs. Robust Optimization

For many applications, the exact formulation of an instance of a problem is
not always possible. The field of robust approximation deals with problems
that are considered under the light of uncertainty. Since the optimality of a
solution to a combinatorial optimization problem can change dramatically if the
numerical parameters are perturbed, a new approach is needed to deal with
decision-making in uncertain environments.

Two common approaches to deal with uncertainty are stochastic optimiza-
tion (see e.g. [BL97]) and robust optimization (see e.g. [BS02; KY97]). In the
stochastic optimization approach, the numerical values are assumed to be drawn

67

68 4.1 Deterministic vs. Robust Optimization

from some density function and the goal is to optimize the expected value of the
objective function. On the other hand, the robust optimization can be consid-
ered the “worst-case counterpart” of the stochastic optimization approach. In
this approach, the configuration of the numerical parameters is assumed to be
drawn from a (potentially infinite) set of possible configurations. The goal is to
construct a solution whose objective function value in the worst case scenario is
as good as possible. Naturally, which scenario is the worst case scenario will in
general depend on the solution at hand. This makes the combinatorics of such
problems significantly more elaborate than their underlying fixed-parameters
problems. Indeed, we will see in Section 4.4.1 that strong hardness results can
be obtained for the robust version of problem 1|prec|∑ j w jC j, when the number
of scenarios is not bounded by any constant. Obtaining strong inapproximability
results for the classical version of problem 1|prec|∑ j w jC j (i.e. in the absence of
uncertainty) remains a challenging open question to this date.

4.1.1 Robustness Criteria and Uncertainty Modeling

Consider a combinatorial minimization1 problem Π and let S be the (possibly
infinite) set of all possibly realizable input data scenarios. Furthermore, let X be
the set of the decision variables in the definition of the problem and D be the
set of input data. The instance of the input data corresponding to scenario s is
denoted by Ds, whereas the set of corresponding feasible solutions is denoted by
F s. The definition of the problem instance is completed by giving an objective
function val(·) that maps a tuple (X , Ds) to the objective value val(X , Ds). The
optimal single scenario decision X ∗s for the input data instance Ds is the solution
to a classical, deterministic optimization problem and satisfies

zs = val(X ∗s , Ds) =min
X∈F s
(val(X , Ds))

Kouvelis & Yu [KY97] introduced the following three robustness criteria:

the absolute robust decision XA is defined as the one that minimizes the maxi-
mum total cost, among all feasible decisions over all realizable input data
scenarios, i.e.

zA =max
s∈S

val(XA, Ds) = min
X∈⋂s∈S Fs

max
s∈S

val(X , Ds).

This optimization criterion is often referred to as the “MIN-MAX” version of
the problem Π.

1The definitions for maximization problems are analogous

69 4.1 Deterministic vs. Robust Optimization

the robust deviation decision XD is defined as the one that exhibits the best
worst case deviation from optimality among all feasible decisions over all
realizable input data scenarios, i.e.

zD =max
s∈S
(val(Xd , Ds)−val(X ∗s , Ds)) = min

X∈⋂s∈S Fs

max
s∈S
(val(X , Ds)−val(X ∗s , Ds)).

This optimization criterion is often referred to as the “MIN-MAX REGRET”
version of the problem Π. Recent examples of these two families of ap-
proaches can be found in [ABV06; KZ07; FJMM07].

the relative robust decision XR is defined as the one that exhibits the best worst
case percentage deviation from optimality, among all feasible decisions
over all realizable input data scenarios, i.e.

zR =max
s∈S

val(XR, Ds)− f (X ∗s , Ds)

val(X ∗s , Ds)
= min

X∈⋂s∈S Fs

max
s∈S

val(X , Ds)− val(X ∗s , Ds)

f (X ∗s , Ds)
.

As noted by Kouvelis & Yu [KY97], this criterion is often given in its equiv-
alent form

zR = min
X∈⋂s∈S Fs

max
s∈S

val(X , Ds)
f (X ∗s , Ds)

since the remaining part of the formula is constant.

We note that the above criteria definitions get simplified when the feasibility
of the solution is independent of the input data scenario, i.e.

⋂
s∈S Fs = Fs for

all s ∈ S. This is, for example, the case for some ordering problems, including
the robust scheduling problem discussed in Section 4.2. Moreover, for ease of
notation we will write val(X , s`) instead of val(X , Ds`) in the following.

There are two main approaches in the definition of scenarios. In the discrete
scenario case, the definition of the instance contains a finite set S of input data
scenarios s, each of which is represented by a vector that defines the values Ds.
The robust version of a problem Π in this manner is often referred to in the
literature as “Π with scenarios”. In the interval data case, the definition of the
instance contains a real interval Id for each of the input data d. The infinite set
of realizable input data scenarios is implicitly defined as the set of all vectors
defining the values Ds, such that d ∈ Id .

4.1.2 Approximability of Robust Problems

In a recent paper, Aissi et. al [ABV06] considered the approximability of min-
max versions of several combinatorial optimization problems. Their approach

70 4.2 Robust single machine scheduling

to model uncertainty was to use discrete scenarios. Their results contain robust
versions of several basic combinatorial problems, namely the MIN-MAX KNAPSACK

problem, the MIN-MAX SHORTEST PATH problem, and the MIN-MAX SPANNING TREE

problem. More specifically, when the number of scenarios is bounded, the au-
thors proved the existence of FPTAS’s for both the MIN-MAX and the MIN-MAX

REGRET versions of these problems, with the exception of the MIN-MAX REGRET

KNAPSACK problem, which was shown not to be approximable at all. For an un-
bounded number of scenarios, the MIN-MAX SHORTEST PATH and MIN-MAX SPAN-
NING TREE were shown not to be approximable within a specified constant, while
the MIN-MAX KNAPSACK problem was shown not to be approximable at all. For
the unbounded scenario case, the behaviour of the problem with regards to ap-
proximability was retained when the relative robustness criterion instead of the
absolute robustness criterion was considered.

Recently, Kasperski & Zielinski [KZ08] investigated robust versions of net-
work optimization problems. From previous work, the question remained open,
whether an efficient algorithm achieving a constant performance ratio exists, in
case the number of scenarios is unbounded. The authors addressed this ques-
tion for Min-Max (Regret) versions of classical network optimization problems,
namely the SHORTEST PATH, the MINIMUM SPANNING TREE, the MINIMUM ASSIGN-
MENT, and the MINIMUM s − t CUT. For all the above problems and for both
robustness criteria, the authors proved that there is no polynomial algorithm
achieving a constant performance ratio unless NP ⊆ DTIME(npoly log n). The last
inclusion is widely believed to be untrue.

4.2 Robust single machine scheduling

In this chapter, we will consider the following robust versions of the previously
considered scheduling problems.

Problem 4.2.1 (MIN-MAX 1||∑ j w jC j)

Given: A set of jobs N = { j1, j2, . . . , jn} and a set of k scenarios S = {s1, . . . , sk}.
For each job ji, each scenario s` defines a processing time ps`

i ∈ Q and a
weight ws`

i ∈Q.

Find: An ordering L of the jobs N such that the sum of weighted completion times
in the solution’s worst-case scenario sM(L)

n∑
i=1

w
sM(L)

i C
sM(L)

i

71 4.2 Robust single machine scheduling

is minimized, where C
sM(L)

i is the completion time of job ji when the processing
times are defined by scenario sM(L).

We illustrate this definition with an example. Assume an instance with 4 jobs
{ j1, j2, j3, j4} and two scenarios s1, s2. Each scenario defines the processing times
and weights of the jobs, as given in Table 4.1.

j1 j2 j3 j4

s1
p : 1 2 3 4
w : 4 3 2 1

s2
p : 4 3 2 1
w : 1 2 3 4

Table 4.1. An example instance of Problem 4.2.1.

First, observe that, if s1 was the only scenario of this instance (i.e. the prob-
lem was given in the classical, non-robust form), the optimal schedule could
be computed using Smith’s rule (see Theorem 2.1.3). The resulting schedule
L1 = (j1, j2, j3, j4) evaluates to

val(L1, s1) = 4+ 9+ 12+ 10= 35,

which is the optimal value for this scenario. However, the same schedule L1 has
a very high value in scenario s2, namely

val(L1, s2) = 4+ 14+ 27+ 40= 85,

resulting in a high value of L1 in the robust setting, since

val(L1) =max{val(L1, s1), val(L1, s2)}=max{35,85}= 85.

The situation is analogous for the schedule L2 = (j4, j3, j2, j1)which is optimal for
the scenario s2 but has a high value for scenario s1. In contrast, an ordering that
achieves a “balance” between the two scenarios achieves a much better value.
For example, scheduling the jobs according to J3 = (j2, j4, j1, j3) evaluates to

val(L3) =max{val(L3, s1), val(L3, s2)}=max{60,60}= 60.

This is indeed the optimal schedule for this robust problem.
We will also consider the robust version of the problem 1|prec|∑ j w jC j, de-

fined as below.

72 4.3 Bounded number of scenarios

Problem 4.2.2 (MIN-MAX 1|prec|∑ j w jC j)

Given: A set of jobs N = { j1, j2, . . . , jn}, a set of precedence constraints given by a
partial order P(N , P) and a set of k scenarios S = {s1, . . . , sk}. For each job
ji, each scenario s` defines a processing time ps`

i ∈Q and a weight ws`
i ∈Q.

Find: An ordering L of the jobs N that complies with the precedence constraints
such that the sum of weighted completion times in the solution’s worst-case
scenario sM(L)

n∑
i=1

w
sM(L)

i C
sM(L)

i

is minimized, where C
sM(L)

i is the completion time of job ji when the processing
times are defined by scenario sM(L).

4.3 Bounded number of scenarios

In this section we investigate the problem MIN-MAX 1||∑ j w jC j when the num-
ber of scenarios in the description of the instance are upper-bounded by some
constant. We discuss its complexity in Section 4.3.1 and present an efficient al-
gorithm based on dynamic programming for a special case of this problem in
Section 4.3.2.

4.3.1 Complexity of robust scheduling

The computational complexity of the problem MIN-MAX 1||∑ j w jC j was already
studied by Kuvelis & Yu [KY97], who showed that it is NP-hard even for the case
of 2 scenarios. Their proof is by reduction from the (weakly) NP-hard problem
2-PARTITION. Thus, the question about the existence of a fully polynomial time
approximation scheme remains open. In the next section we show that, when
the numerical parameters of the problem are upper-bounded by some constant,
the problem can be solved optimally using dynamic programming.

4.3.2 Efficient algorithm for bounded parameters

In this section we assume that the number of scenarios m as well as the weights
and processing times are bounded by some constant. Given an instance I of the
robust scheduling problem, let W be the maximum weight and P the maximum
processing time occurring in the description of I . We present a polynomial time

73 4.3 Bounded number of scenarios

algorithm that solves this problem. In fact, we are going to solve the related
multi-criteria scheduling problem. This result carries over to our problem by use
of the following (more general) Theorem, due to Aissi et. al. [ABV06].

Theorem 4.3.1 (Multicriteria and Robust Approximation) For any problemΠ
If MULTI-CRITERIA Π has a polynomial α-approrimation algorithm, then also MIN-
MAX Π has a polynomial α-approximation algorithm.

In the context of multi-criteria optimization, given two vectors v, w ∈ Nk,
v 6= w, k > 0, we say that v dominates w, if vi ≤ wi for all 1 ≤ i ≤ k. A vector
that is not dominated is called efficient. Analogously, given a set of vectors S, a
subset S′ ⊆ S is called an efficient set if there is no pair (v, v′), v ∈ S, v′ ∈ S′ such
that v dominates v′. The goal in multi-criteria optimization is to find a maximal
efficient set of solutions.

For a fixed set of scenarios S = {s1, . . . , sm} and a solution L, we will define
the multivalue of L, denoted

mval(L) =
�
val(L, s1), . . . , val(L, sm)

�
as the vector containing the values of L in the different scenarios in an arbitrary
but fixed order. Furthermore, we call α =

�
(w1, p1), . . . , (wm, pm)

�
with 1 ≤

wi ≤ W , 1 ≤ pi ≤ W a job profile, and define the auxiliary functions p(α) =
(p1, . . . , pm) and w(α) = (w1, . . . , wm). Note that, since we assumed that P,W
and m are all bounded by a constant, there can only be a constant number k
of different job profiles. Let α1, . . . ,αk be the different job profiles that occur
in instance I . We can now identify the instance I by the concatenation of two
vectors (α1, . . . ,αk, n1, . . . , nk) where ni is the number of jobs with profile αi in I .
This allows for an easy representation of subinstances of I which will be useful
in the following.

We present a dynamic programming approach for solving this version of MIN-
MAX 1||∑ j w jC j in polynomial time below. Consider a k-dimensional dynamic
programming table DPT of size (n1+1)×(n2+1)×. . .×(nk+1). Each cell c of this
table represents a subinstance I(c) of I , where the coordinates of c encode the
number of jobs of the corresponding profile that are present in I(c). For instance,
the cell (1, 0,4) represents the subinstance of I that contains one job of profile
α1 and four jobs of profile α3. The total number of jobs in I(c) for c = (c1, . . . , ck)
is denoted by n(c) =

∑k
i=1 ci. Each of these cells will accommodate an efficient

set Mc of multivalues of schedules in which only the jobs of the subinstance
are considered (note that since the maximum value in any scenario is bounded,
there can only be a polynomial number of different efficient vectors). Since the

74 4.3 Bounded number of scenarios

cell (n1, . . . , nk) represents the whole instance, filling in the last cell of the table
would allow us to solve the problem MULTI-CRITERIA 1||∑ j w jC j, and thus also
MIN-MAX 1||∑ j w jC j. We show how to recursively fill in this table below.

Initialization: We start by filling in the cells representing instances with only
one job as follows: for ct = 1 add to Mc the multivalue of the schedule
consisting of a single job with profile αt . This is easily calculated by the
pointwise product p(αt) ·w(αt). We continue filling in the rest of the cells
in order of increasing n(c) in the following manner.

Iterative step: Consider the cell c = (c1, . . . , ck) and define

Tc = {(c′1, . . . , c′k) | n(c′) = n(c)− 1, c′i ≥ ci − 1}.
In other words, Tc contains the cells representing subinstances that result
by removing one job from I(c). Note that, since we fill in the table in order
of increasing n(c), all cells in Tc have been filled in at this point. For each
c′ ∈ Tc with ct − c′t = 1 and for each schedule L in Mc′ , add to the set
Mc the multivalue of the schedule resulting from L by appending a job of
profile αt at the end of the schedule. Given mval(L′), the multivalue of
this schedule can easily be computed by:

mval(L) =mval(L′) +w(αt) ·
k∑

i=1

ci · p(αi),

where the first multiplication is pointwise and the second a scalar multi-
plication. Note that only the multivalue of L′ is needed in the above calcu-
lations, not L′ itself. We conclude the computation for cell c by replacing
Mc by Red(Mc), which retains only the efficient elements of Mc.

We first prove the correctness of the above algorithm, before analysing it.

Lemma 4.3.2 For every cell c of the table DPT, the set Mc is a maximal efficient
subset of the set of all multivalues achieved by scheduling the jobs of I(c).

Proof. We need to show that for every cell c of the table DPT and every multi-
value mval(L), where L is a schedule of I(c), either

• val(L) ∈ Mc, or

• ∃v ∈ Mc, such that v ≤ val(L)

75 4.4 Unbounded number of scenarios

Assume, towards contradiction, that this is not the case and let c be a cell with
minimal n(c) that does not satisfy the above condition. Thus, there is a schedule
L of the instance I(c) with val(L) 6∈ Mc and for any v ∈ Mc there is an ` ∈
{1, . . . , m} with mval(L)` < v`. Clearly, this can only happen for n(c)≥ 2. Let α f

be the profile of the job scheduled last in L and let c′ be the cell with coordinates
(c1, c2, . . . , c f−1, c f − 1, c f+1, . . . , ck). Furthermore, let L′ be the schedule derived
from L by omitting the last job. The multivalue of L′ is

mval(L)−w(α f) ·
k∑

i=1

ci · p(αi).

If there were a v ∈ Mc such that val(v) ≤ val(L′), then val(L) would be dom-
inated by v + w(α f) ·∑k

i=1 ci · p(αi). Thus, for every v ∈ Mc′ , there is an
` ∈ {1, . . . , k} such that v` > val(L′)` and thus c′ does not satisfy the above
property either. Since n(c′)< n(c), this contradicts the minimality of c. �

For the analysis of this algorithm, it is easy to see that the initialization of the
table, as well as the computations of val(L) can be done in polynomial time. Fur-
thermore, since (n2·P ·W)2 is an upper bound on the value of any schedule in any
scenario, there can be at most (n2 · P ·W)2m efficient vectors in any stage of the
computation. The size of the dynamic programming table is bounded by nk and
for each computation of a cell, at most k cells need to be considered. Moreover,
the operator Red can be implemented in time (n2 · P ·W)4m by exhaustive com-
parison. Thus, a single cell can be filled-in in time k(n2 · P ·W)2m+(n2 · P ·W)4m,
and the whole table in time nk · (k · (n2 · P ·W)2m+ (n2 · P ·W)4m). The number
of different profiles k is bounded by (P ·W)m, which is a constant. Thus our
algorithm runs in time O(n8m+W mPm

), i.e. polynomial in n.

4.4 Unbounded number of scenarios

In this section we study the problem MIN-MAX 1||∑ j w jC j for the case that there
is no bound on the number of scenarios in the description of the instance. We
show that relaxing this condition brings about a big increase in complexity and
allows for rather strong inapproximability results. This is in contrast to the clas-
sical, non-robust version of this problem, for which obtaining good inapprox-
imability results is considered a prominent open problem.

In Section 4.4.1 we show that MIN-MAX 1||∑ j w jC j cannot be approximated
within a better than logarithmic factor, based on a rather standard assumption.

76 4.4 Unbounded number of scenarios

We then restrict the problem to the case that only the weights (or, symmetri-
cally, the processing times) of the jobs are governed by uncertainty. We call this
problem “MIN-MAX 1||∑ j w jC j with partial uncertainty” and denote it by PAR-
TUNC MIN-MAX 1||∑ j w jC j. We provide a 2-approximation algorithm for this
problem in Section 4.4.3, based on the rounding of a linear program. Sur-
prisingly, this algorithm works even in the presence of precedence constraints,
i.e. for the problem PARTUNC MIN-MAX 1|prec|∑ j w jC j. Thus, our algorithm
matches the best known approximation for the classical, non-robust problem
1|prec|∑ j w jC j, and improving it would solve a long-standing open problem in
scheduling theory. Furthermore, again contrasting the problem 1|prec|∑ j w jC j,
we provide rather simple constant inapproximability results for the problem PAR-
TUNC MIN-MAX 1||∑ j w jC j in Section 4.4.2.

4.4.1 Inapproximability for the general case

In this section we show that MIN-MAX 1||∑ j w jC j cannot be approximated within
a factor of O(log1−ε n), unless NP has quasi-polynomial time algorithms. The
hardness result is obtained by reduction from the version of the LABEL COVER

problem defined below. We will need the following definition in order to define
LABEL COVER.

Definition 4.4.1 (Total labeling) Given a bipartite graph G(V ∪W, E), a set of
labels [R] and for each edge (v, w) ∈ E a map σv,w : [R]→ [R], we call a labeling
of G an assignment of a subset of labels to each of the vertices of G, i.e. a function
` : V ∪W → 2[R]. We say that a labeling ` satisfies an edge (v, w) if

∃a ∈ `(v),∃b ∈ `(w) : σv,w(a) = b.

A total labeling is a labeling that satisfies all edges.

Problem 4.4.2 (LABEL COVER L (V, W, E, [R], {σv,c}(v,w)∈E))

Given: A regular bipartite graph G(V ∪W, E) and for each edge (v, w) ∈ E a map
σv,w : [R]→ [R].

Find: A total labeling that minimizes maxx∈V∪W |`(x)|.
The value of a Label Cover instance, denoted val(L), is defined to be the

minimum, over all total labelings, of maxx∈V∪W |`(x)|. Observe that the variant
of the Label Cover problem that is considered assumes that an edge is covered

77 4.4 Unbounded number of scenarios

if, among the chosen labels, there exists a satisfying pair of labels. The following
hardness result easily follows from the hardness result for the max version by us-
ing the “weak duality” relationship between the two versions (see e.g. [AL95]).

Theorem 4.4.3 There exists a constant γ > 0 so that for any language L in NP,
any input w and any R> 1, one can construct a LABEL COVER instance L with the
following properties in time polynomial it the instances size:

• The number of vertices in L is |w|O(log R) and the number of labels is R.

• If w ∈ L then val(L) = 1.

• If w 6∈ L then val(L)> Rγ.

Intuitively, the above theorem states that it is NP-hard to distinguish instances
of L that have a covering that uses just one label per vertex from those that
require some vertex to be labeled by many labels. Note that the actual resulting
hardness depends on the size of the label cover instance produced.

Based on theorem 4.4.3, we will prove the following theorem by presenting
a reduction from LABEL COVER to MIN-MAX 1||∑ j w jC j.

Theorem 4.4.4 There exists a constant γ > 0 so that for any language L in NP,
any input w and any R > 0, one can construct a MIN-MAX 1||∑ j w jC j instance S
with the following properties:

• If w ∈ L then val(S) = 1+ o(1).

• If w 6∈ L then val(S) = dRγe := g.

Moreover, the instance S can be constructed in time O(|w|O(g log R) · RO(g)).

Proof. Given a Label Cover instance L (V, W, E, [R], {σv,w}(v,w)∈E), we construct
an instance S of the problem MIN-MAX 1||∑ j w jC j. In the next paragraph we
give an intuitive description of the reduction, before presenting a more formal
proof below.

The following observation leads to the construction of a gadget that is crucial
for our reduction. Let J := {J1, J2, . . . , Jk} be a subset of n jobs in a scheduling
instance S and consider the precedence relations {Ji < J(i+1) mod k : 1 ≤ i ≤
k}, forming a cyclical “ordering” of J . Clearly, any schedule of S induces a
linear ordering of the subset J and thus needs to “break” at least one of the k
precedence relations given above. Now, let us concentrate on an edge (v, w) ∈ E
of L with its corresponding map σv,w. Let Rv, Rw be the possible labels of v and

78 4.4 Unbounded number of scenarios

w respectively, and let Rv,w ⊆ Rv × Rw be the pairs of labels that satisfy σv,w,
i.e. Rv,w := {(a, b) ∈ Rv × Rw : σv,w(a) = b}. Clearly, in any total labeling ` of L
there is at least one pair (a, b) ∈ Rv,w such that a is a label of v and b is a label
of w (we say that (a, b) covers (v, w)). Our reduction works by establishing a
connection between the two “at least” conditions in the two problems using the
gadget described below. The reduction is completed by employing the scenarios
in order to synchronize the two objectives with each other.

Gadget construction: Let (v, w) ∈ E with nv,w := |Rv,w|. Construct a setJ (v,w) =
{J (v,w)

1 , J (v,w)
2 , . . . , J (v,w)

nv,w
} of jobs. Each pair of labels in Rv,w is assigned to a

pair of consecutive jobs using the function rv,w : Rv,w → {1, . . . , nv,w}. That
is, the i’th pair in Rv,w is assigned to the pair J (v,w)

i , J (v,w)
i+1 (cyclically). Con-

sidering the precedence relations {J (v,w)
i < J (v,w)

(i+1) mod nv,w
: 1≤ i ≤ k}, there

must be an index i such that J (v,w)
i+1 is scheduled before J (v,w)

i , as discussed
above. See Figure 4.1 for an illustration. In the following we will identify
the gadget itself by the set of its jobs J (v,w).

. . .

J (v,w)
1 J (v,w)

2 J (v,w)
3 J (v,w)

4 J (v,w)
nv,w

r−1(1) r−1(2) r−1(3)

r−1(nv,w)

Figure 4.1. An illustration of the gadget J (v,w) connecting the possible ways of
covering of an edge to possible ways of “breaking the cycle” to create a total
ordering of the jobs.

Intuitively, a set of scenarios (“counting scenarios”, see below) is defined for
each edge in such a way that for any possible way of satisfying this edge using
at least g labels at some vertex raises the value of a scenario (and thus the
maximum) to g. A further set of scenarios (“ordering scenarios”) are defined
in order to overcome a technical difficulty. A more precise description of the
instance S follows:

79 4.4 Unbounded number of scenarios

Jobs The jobs of instance S are the union of all jobs in the gadgets, i.e.⋃
(v,w)∈E

J (v,w).

Ordering Scenarios This set of scenarios is introduced because it will be conve-
nient to restrict our attention to solutions that schedule the jobs of the gad-
gets consecutively and in a fixed ordering of the gadgets. This is achieved
by making it highly unprofitable to violate this desired property, as fol-
lows. Let m = |E| and let π : E → {1, . . . , m} be an arbitrary ordering
of the edges. For each i : 1 ≤ i < m, we have a scenario that sets the
weights of the jobs in J π−1(i) to m and the processing time of the jobs in⋃

j>iJ π−1(j) to m. This ensures that any optimal schedule will schedule
the jobs in the order

J π−1(1) ≺J π−1(2) ≺ · · · ≺ J π−1(m). (4.1)

Counting Scenarios This part is the core of our reduction (see also Figure 4.2).
We need to define scenarios that get a high value in schedules that cor-
respond to labelings that use many labels in some vertex. In order to
achieve this, we have to define a scenario for every possible way that (at
least) g labels are assigned to some vertex. For each v ∈ V , each tuple
((v, w1), . . . , (v, wg)) of g edges incident to v, each subset of g possible la-
bels (a1, . . . , ag) in Rv and each possible choice of (b1, . . . , bg) that satisfies

these edges, we define a scenario S (v,w1),...(v,wg)
(a1,b1),...,(ag ,bg)

. This scenario represents
the situation that (ai, bi) covers (v, wi) and the number of different labels
of v is at least g. This partial label cover solution corresponds to schedules
that put J (v,wi)

h+1 before J (v,wi)
h in the gadget J (v,wi), where h = rv,wi

(ai, bi).

In order to ensure that scenario S (v,w1),...(v,wg)
(a1,b1),...,(ag ,bg)

will “count” these g labels
of v (i.e. will have value at least g), we define the processing times and
weights of the jobs in such a way that the product of the processing time of
J (v,wi)

h+1 with the weight of J (v,wi)
h equals 1. For instance, we could simply set

both values equal to 1. However, there is another technical difficulty that
needs to be overcome: due to the ordering scenarios defined above, any
job of J i with non-zero processing time will contribute to the weighted
completion time of any job of J j, j > i the with non-zero weight. This
undesirable interaction between the gadgets can be eliminating by setting
the weight of J (v,wi)

h to m2π(v,wi) and the weight of J (v,wi)
h+1 to 1/m2π(v,wi). In

this way, the interactions between gadgets become negligible.

80 4.4 Unbounded number of scenarios

The definition of S is completed by defining scenarios that count the la-
bels for every vertex w ∈W in a symmetric way.

J (v,w2)
1 J (v,w2)

2 J (v,w2)
3 J (v,w2)

4

J (v,w1) J (v,w2) J (v,w3)

J (v,w3)
1 J (v,w3)

2 J (v,w3)
3J (v,w1)

1 J (v,w1)
2 J (v,w1)

3

(a1, b1)

(a2, b2)

(a3, b3)

S (v,w1),(v,w2),(v,w3)
(a1,b1),(a2,b2),(a3,b3)

J (v,w2)
1

J (v,w2)
2

J (v,w2)
3

p w

m4

1
m4

0 0

00

J (v,w2)
3

0

0

J (v,w1)
1

J (v,w1)
2

J (v,w1)
3

p w

m2

1
m20

0

00

J (v,w3)
1

J (v,w3)
2

J (v,w3)
3

p w

m6

1
m6

0 0

0

0

Figure 4.2. An illustration of the definition of a counting scenario, for g = 3.
For simplicity, we assume that the three considered edges (v, w1), (v, w2) and
(v, w3) are put in the beginning by the ordering scenarios.

We conclude the proof by presenting the completeness and soundness anal-
ysis.

Completeness Analysis By Theorem 4.4.3, there exists a feasible labeling ofL
that assigns one label to each vertex. Let ` be such a labeling and consider a
schedule σ of I that respects the ordering given by the ordering scenarios (4.1)
and such that, for each element (v, w) ∈ E, the jobs in J (v,w) are scheduled as
follows: for h = 1, . . . , nv,w, if h = rv,w(`(v),`(w)) then job J (v,w)

h+1 is scheduled
before J (v,w)

h , otherwise J (v,w)
h is before J (v,w)

h+1 . This gives a feasible schedule.
Moreover, since only one label is assigned to each vertex, it is easy to see that
the value of any scenario is at most 1+ o(1).

81 4.4 Unbounded number of scenarios

Soundness Analysis Consider a schedule σ of I . Define a labeling ` as follows:

`(v) = {a : if J (v,w)
h+1 ≺ J (v,w)

h for some h= rv,w(a, b), w ∈W and b ∈ Rw}
`(w) = {b : if J (v,w)

h+1 ≺ J (v,w)
h for some h= rv,w(a, b), v ∈ V and a ∈ Rv}

As at least one scenario for each edge will have value 1, ` is a feasible labeling
for L . Furthermore, by Theorem 4.4.3, there exists a vertex x ∈ V ∪W so that
|`(x)| ≥ g, and this implies that there is a scenario of value g, by construction.
Indeed, if x ∈ V let `(x) = {a1, . . . , ag} be a set of g labels assigned to x , and
let (b1, . . . , bg) and (w1, . . . , wg) be such that J (v,w)

h+1 ≺ J (x ,w)
h with h= rx ,wi

(ai, bi).

Then scenario S (x ,w1),...,(x ,wg)
(a1,b1),...,(ag ,bg)

has been constructed to have value g according to
this schedule. The same holds when x ∈W .

Size of the instance The total number of scenarios is at most

|E| − 1+ 2|E|g · Rg · Rg

and the total number of jobs is at most |E| · R2. As |E| = |w|O(log R), the total size
of the robust scheduling instance is O(|w|O(g log R) · RO(g)). �

By setting g = O(logc n) (and R = O(logO(c) n)), where |w| = n and c ≥ 1
any large constant, we obtain that the input size is equal to s = nO(g log R) ·RO(g) =
nO(logc n·log log n) · (log n)O(logc n) = nO(logc+δ n) = 2O(logc+1+δ n), for any arbitrarily small
δ > 0. It follows that g = O(log s)

c
c+1+δ = O(log s)1−ε, for any arbitrarily small

ε > 0. We conclude this section by restating the main result.

Theorem 4.4.5 For every ε > 0, the robust scheduling problem cannot be approx-
imated within ratio O(log1−ε s), where s is the input size, unless NP has quasi-
polynomial algorithms.

A note about precedence constraints The above result naturally carries over
to the more general problem MIN-MAX 1|prec|∑ j w jC j, i.e. when precedence
constraints among the jobs are allowed. However, observe that the two prob-
lems are essentially the same when no restriction is imposed on the number of
scenarios, in the following sense. Every instance of MIN-MAX 1|prec|∑ j w jC j

can be transformed into an instance of MIN-MAX 1||∑ j w jC j in which the prece-
dence constraints are imposed by additional scenarios, in which the values are
chosen in such a way that it becomes highly unprofitable to violate the original
precedence constraints. Thus, precedence constraints can be “simulated” by use
of additional scenarios. To some extend, this is what we did in the proof of
Theorem 4.4.4 when introducing the counting scenarios.

82 4.4 Unbounded number of scenarios

4.4.2 Inapproximability of unweighted case

In this section we consider a more restricted version of MIN-MAX 1|prec|∑ j w jC j,
namely when only the processing times are affected by uncertainty. We note
that this case is symmetric to the one where the processing times are uncertain,
while the weights are common to all scenarios. Therefore, we call this prob-
lem partial uncertainty MIN-MAX 1|prec|∑ j w jC j and denote it by PARTUNC MIN-
MAX 1|prec|∑ j w jC j. Clearly, the inapproximability presented in Section 4.4.1
does not hold for this case, since both the processing times and weights played
a crucial role in our reduction. Nevertheless, we provide very simple constant
inapproximability results for this problem, even for the further restricted case
that all processing times are equal to one. More precisely, we show that if the
number of scenarios is unbounded, the robust scheduling problem is not approx-
imable within 6/5 even for the special case that all processing times are equal
to one, and show that this ratio improves to 4/3 assuming the Unique Games
Conjecture [Kho02].

We will use the following theorem by Dinur et al. [DGKR03], which estab-
lishes the inapproximability of Ek-VERTEX-COVER

Theorem 4.4.6 (Inapproximability of Ek-VERTEX-COVER [DGKR03])
It is NP-hard to decide which of the two categories a given k-uniform hypergraph
G(V, E) with |V |= n lies in:

• k-hypergraphs that have a vertex cover of size
�

1
k−1
+ ε
�

n

• k-hypergraphs whose minimum vertex cover has size at least (1− ε)n
for an arbitrarily small ε > 0.

We prove the following theorem, which yields the 6/5-inapproximability as
Corollary 4.4.8.

Theorem 4.4.7
Given a 3-uniform hypergraph G(V, E), we can construct an instance I of PAR-
TUNC MIN-MAX 1|prec|∑ j w jC j with n jobs such that:

• if G has a vertex cover of size
�

1
2
+ ε
�

n then there exists a schedule L of I

such that val(L)≤ �5
2
+ ε
�

n

• If any vertex cover of G has size at least (1− ε)n then any schedule L of I
satisfies val(L)> (3− ε)n

83 4.4 Unbounded number of scenarios

for an arbitrarily small ε > 0.

Proof. We present a reduction from the E3-VERTEX-COVER problem. Given an
arbitrary instance of E3-VERTEX-COVER G(V, E) with vertex set V and hyperedge
set E, we construct an instance I of PARTUNC MIN-MAX 1||∑ j w jC j as follows
(see also Figure 4.3).

Jobs For every vertex vi ∈ V we create a job i ∈ N with pi = 1.

Scenarios For every hyperedge e = {ve
1, ve

2, ve
3} ∈ E we create a scenario se de-

fined by

wse
i =

¨
1 , if vi ∈ {ve

1, ve
2, ve

3}
0 , otherwise.

v1

v2

v3

v4

v5

v6

v7

e1

e2

e3

e4 w1 w2 w3 w4 w5 w6 w7
s1

s2

s3

s4

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

1 1 1
1 1 1

1 1 1
1 1 1

E3-VERTEX-COVER PARTUNC MIN-MAX 1||∑ j w jC j

Figure 4.3. An example of the reduction described in the proof of Theo-
rem 4.4.7. Hyperedges are depicted by sets enclosing their incident vertices.

We prove the completeness and soundness of our reduction.

Completeness Assume that there is a vertex cover of size c ≤ �1
2
+ ε
�

n, say
C = {v1, v2, . . . , vc}. Consider any schedule L that schedules the jobs cor-
responding to vertices in C first. Clearly, since the set C covers all hy-
peredges, there is no hyperedge all of whose vertices correspond to jobs
scheduled after time c. In the scheduling context, this means that there

84 4.4 Unbounded number of scenarios

is no schedule such that the three jobs it assigns unit weight to are sched-
uled after time c. Thus, the biggest possible value of such a scheduling
is attained when the job of C scheduled last is a vertex of a hyperedge
whose other two vertices are the last two jobs to be scheduled (see L1 in
Figure 4.4). This gives an upper bound, dependent on c of

UB(c) = c+ (n− 1) + n< c+ 2n≤
�

5

2
+ ε′

�
n

for an appropriately chosen ε′ > 0. Thus, there exists a schedule L such
that maxs∈S(L)≤

�
5
2
+ ε
�

n for some arbitrarily small ε > 0.

v1

v2

v3

v4

v5

v6

v7

e1

e2

e3

e4

E3-VERTEX-COVER PARTUNC MIN-MAX 1||∑ j w jC j

v2

v5

s4

s4

L1

L2

j1j3 j4 j6 j7j5j2

j1j3 j4j6 j7j5j2

Figure 4.4. Upper (L1) and lower bounds (L2) on the value of I constructed
by our reduction given the hypergraph on the left. Note that the vertices
C = {v2, v5} form a vertex cover.

Soundness Assume that any vertex cover has size c > (1− ε)n and consider an
optimal schedule L. Define a vertex cover by collecting the vertices corre-
sponding to the jobs scheduled in the beginning, until all hyperedges are
covered. Let C = {v1, v2, . . . , vc} be the vertex cover thus constructed. By
construction, the last vertex added to this set will be necessary to cover
some hyperedge (otherwise the definition of C would have stopped ear-
lier). In other words, there exists a hyperedge whose vertex to be sched-
uled first is vc. The corresponding scenario gets its minimum value when
the remaining two vertices immediately succeed vc in the schedule (see

85 4.4 Unbounded number of scenarios

L2 in Figure 4.4). This gives a lower bound on the value of the optimal
schedule L dependent on c of

LB(c) = c+ (c+ 1) + (c+ 2)> 3c > (3− ε′)n
for an appropriately chosen ε′ > 0. Thus, any schedule satisfies maxs∈S >

(3− ε)n for some arbitrarily small ε > 0.

�

We now get the inapproximability of 6/5 as a corollary to Theorem 4.4.7,
by taking the ratio of the lower to the upper bound. As the unit-time and un-
weighted robust scheduling problem are symmetric, we can formulate it as fol-
lows.

Corollary 4.4.8 [6/5-inapproximability of PARTUNC MIN-MAX 1||∑ j w jC j]
It is NP-hard to approximate the unit-time/unweighted robust scheduling prob-
lem within a factor less than 6/5.

We note that the inapproximability of Ek-VERTEX-COVER is strengthened if one
is willing to assume the Unique Games Conjecture [Kho02], as shown in [KR08].
A similar reduction as the one described above, this time using 2-uniform hyper-
graphs (i.e. graphs), leads to a strengthening of our result as well. The reduction
is analogous to the one given in the proof of Theorem 4.4.7 and is therefore omit-
ted. Finally, we note that an easy numerical analysis shows that, in both cases,
the inapproximability results cannot be improved by changing the uniformity of
the hypergraphs in the vertex cover problems considered.

4.4.3 2-approximation for PARTUNC MIN-MAX 1|prec|∑ j w jC j

In this section we present a 2-approximation algorithm for the problem PAR-
TUNC MIN-MAX 1|prec|∑ j w jC j based on LP-rounding. We find this result sur-
prising, since PARTUNC MIN-MAX 1|prec|∑ j w jC j contains 1|prec|∑ j w jC j as a
single-scenario case. Thus, our result matches the best known result for
1|prec|∑ j w jC j and any improvement would answer a long-standing open ques-
tion in scheduling theory (see e.g. [SW99]). If in the future the exact approx-
imability of 1|prec|∑ j w jC j is settled at the value 2, our result would state that
the approximability of the problem remains unaffected when the weights are
replaced by an arbitrary number of scenarios. This strongly contrasts the fact
that adding scenarios that also define processing times allows for non-constant
inapproximability proofs (see Section 4.4.1).

86 4.4 Unbounded number of scenarios

Consider the following ILP for 1|prec|∑ j w jC j due to Potts [Pot80], already
introduced in Section 3.3.2.

[P-IP] min
∑
j∈N

p jw j +
∑
(i, j)∈N2

δi j piw j (4.2a)

s.t. δi j +δ ji = 1 {i, j} ⊆ N (4.2b)

δi j = 1 (i, j) ∈ P (4.2c)

δi j +δ jk +δki ≤ 2 (i, j, k) ∈ N 3 (4.2d)

δi j ∈ {0,1} (i, j) ∈ N 2 (4.2e)

As above, the variables δi j have the natural meaning that job i is scheduled
before job j if and only if δi j = 1. We could translate this ILP formulation into
the robust context by setting the objective as minimizing the value

max
s∈S

∑
j∈N

p jw
s
j +

∑
(i, j)∈N2

δi j · piw
s
j.

This objective, however, is not a linear function. Nevertheless, it can be easily
turned into a linear function using an auxiliary variable t that attains the maxi-
mum value among all scenarios in an optimal solution, leading to the following
formulation.

[MM-IP] min t (4.3a)

s.t.
∑
j∈N

p jw
sk
j +

∑
(i, j)∈N2

δi j · piw
sk
j ≤ t, 1≤ k ≤ m (4.3b)

δi j +δ ji = 1 {i, j} ⊆ N (4.3c)

δi j = 1 (i, j) ∈ P (4.3d)

δi j +δ jk +δki ≤ 2 (i, j, k) ∈ N 3 (4.3e)

δi j ∈ {0, 1} (i, j) ∈ N 2 (4.3f)

The LP relaxation [MM-LP] of the ILP [MM-IP] is obtained by relaxing the con-
straint δi j ∈ {0,1} to δi j ≥ 0. In the next section we first show that this LP
has an integrality gap of 2, before giving an LP-rounding based 2-approximation
algorithm in Section 4.4.3.

Integrality gap of [MM-LP]

It is easy to see that the resulting LP has an integrality gap of 2, as follows.
Consider the following family of instances, consisting of n jobs and an equal

87 4.4 Unbounded number of scenarios

number of scenarios. The (scenario-independent) processing times are set to
p j = 1, j ∈ N . The weights of the jobs in scenario sk are defined as follows:

wsk
j =

¨
1 , if j = k
0 , otherwise

, j ∈ N .

It is easy to see that setting

δi j = 1/2, 1≤ i, j ≤ n, i 6= j

yields a feasible solution. For this solution, all scenarios assume the same objec-
tive value

p j +
∑
i 6= j

δi j pi = 1+ (n− 1) · 1
2
=

n+ 1

2

which is trivially also the maximum. This gives an upper bound on the value of
the optimal solution of [MM-LP].

On the other hand, for any feasible integral solution, there is a scenario sk for
which the job j is scheduled last. This scenario has value wk

j · C j = n. Thus the
integrality gap of the above presented LP with n scenarios is at least 2n/(n+1),
which tends to 2 as n tends to infinity. In the next section we provide an LP-based
2-approximation algorithm which shows that our analysis of the integrality gap
is tight.

LP-based 2-approximation algorithm

We now provide a 2-approximation algorithm based on rounding the LP-relaxation
[MM-LP].

Given an optimal fractional solution δ̃i, j, 1≤ i, j ≤ n of the LP, let

C̃ j = p j +
∑
i 6= j

δi j pi

be the fractional completion time of job j. Assume, without loss of generality,
that C̃1 ≤ . . . ≤ C̃n. Our proof is based on the following property due to Hall et
al. [HSSW97]. We include the proof for the sake of completeness.

Lemma 4.4.9 [Hall et al. [HSSW97]] Given a solution of the above LP, with
C̃1 ≤ . . .≤ C̃n the following inequality holds

C̃ j ≥ 1

2

j∑
i=1

pi

88 4.4 Unbounded number of scenarios

Proof. In his dissertation [Sch96a], Schulz proved that the implicitly defined
completion times of a feasible solution to [MM-LP] constitute a feasible solution
to another linear program formulation using completion times as the decision
variables. As a result, feasible solutions of [MM-LP] inherit the property

∑
j∈S

p j C̃ j ≥ 1

2

 ∑
j∈S

p2
j +

�∑
j∈S

p j

�2!
, for every S ⊆ N .

Setting S = {1, 2, . . . , j} implies

j∑
k=1

pkC̃k ≥ 1

2

 ∑
j∈S

p2
j +

�∑
j∈S

p j

�2!
≥ 1

2

�∑
j∈S

p j

�2

.

Thus

C̃ j

j∑
k=1

pi ≥
j∑

k=1

pkC̃k

≥ 1

2

�∑
j∈S

p j

�2

where the first inequality follows from C̃ j ≥ Ci for 1≤ i ≤ j. �

This property can be used to derive a simple 2-approximation algorithm:
schedule the jobs in non-decreasing order of C̃ j. The integral completion time is

C j =
j∑

i=1

pi ≤ 2 · C̃ j.

Since every completion time increases by at most a factor of 2, we have a 2-
approximate solution.

It is remarkable that the above analysis holds in the presence of precedence
constraints, a significant generalization of this problem. For instance, in the
single scenario case, the presence of precedence constraints makes the schedul-
ing problem intractable: 1|prec|∑w jC j is NP-complete whereas 1||∑w jC j is
polynomial time solvable. We summarize with the following theorem.

Theorem 4.4.10 The problem PARTUNC MIN-MAX 1|prec|∑ j w jC j has a polyno-
mial time 2-approximation algorithm when the processing times or, alternatively,
the weights of the jobs do not vary among the scenarios.

89 4.5 Conclusions and future research

4.5 Conclusions and future research

We have studied different variants of 1||∑ j w jC j and 1|prec|∑ j w jC j, with bounded
and unbounded number of scenarios, in the presence of partial / full uncertainty
as well as with bounded weights and unweighted versions. We summarize the
results presented in this chapter below:

• Problem MIN-MAX 1||∑ j w jC j (and thus also MIN-MAX 1|prec|∑ j w jC j)
with an unbounded number of scenarios cannot be approximated within
ratio O(log1−ε n) unless NP has quasi-polynomial algorithms.

• Problem MIN-MAX 1||∑ j w jC j with a bounded number of scenarios is solv-
able in polynomial time when the numerical values of the problem are
bounded.

• Problem PARTUNC MIN-MAX 1|prec|∑ j w jC j has a 2-approximation algo-
rithm based on LP-rounding (and this result is hard to improve, as it is a
generalization of 1|prec|∑ j w jC j).

• Problem PARTUNC MIN-MAX 1||∑ j w jC j cannot be approximated within ra-
tio 6/5 unless P=NP, even when all processing times are equal to 1. As-
suming the Unique Games Conjecture, it cannot be approximated within
ratio 4/3.

An interesting question that arises is the approximability of the problem
when the number of scenarios is bounded but the processing times and weights
are not. It is easy to see that some natural approaches, such as scheduling ac-
cording to Smith’s rule on the average over all scenarios, have an arbitrarily
bad approximation ratio in the worst case. It would be interesting to study the
approximability of this case more closely.

Moreover, we have proved that the general problem, i.e. when the number of
scenarios is not subject to any bounds, cannot be approximated within a better
than logarithmic factor. However, we don’t know of any positive result for this
problem. It would be interesting to investigate whether a matching logarith-
mic approximation algorithm exists, or stronger inapproximability results can
be obtained. As a side-note, while the assumption that NP doesn’t have quasi-
polynomial algorithms is widely believed to be true, it would be interesting to
have a similar result based on a more traditional assumption, such as P 6= NP.

Finally, while we have shown that the unit processing times case allows
for easy inapproximability proofs, there still remains an approximability gap of

90 4.5 Conclusions and future research

[6/5,2]. It is conceivable that a more involved reduction than from hypergraph
vertex cover can make better use of the complexity added by the scenarios and
close this gap.

Appendix A

Problem Index

Propositional Logic

k-SAT

Given: A boolean formula φ in conjunctive normal form with n variables and m
clauses, such that each clause contains exactly two literals (i.e. variables
or their negations).

Find: A truth assignment for all variables that satisfies all the clauses, i.e. for
each clause at least one of its literals is true, or state that no such truth
assignment exists.

MAX-k-SAT

Given: A boolean formula φ in conjunctive normal form with n variables and
m clauses, such that each clause contains exactly k literals (i.e. variables
or their negations).

Find: A truth assignment for all variables that maximizes the number of satisfied
clauses, i.e. the clauses such that at least one of their literals is true.

91

92

Graph Theory

VERTEX COVER

Given: A Graph G(V, E) with vertex set V and edge set E, and a weight function
w : V →Q, i 7→ wi.

Find: A vertex cover that minimizes the total weight, i.e. a subset S ⊆ V such
that for each edge e = {v, w} ∈ E, we have |S ∩ {v, w}| ≥ 1 and

∑
v∈S wv is

minimized.

INDEPENDENT SET

Given: A Graph G(V, E) with vertex set V and edge set E, and a weight function
w : V →Q, i 7→ wi.

Find: An independent set that maximizes the total weight, i.e. a subset S ⊆ V
such that for each edge e = {v, w} ∈ E, we have |S ∩ {v, w}| ≤ 1 and∑

v∈S wv is maximized.

Vertex Cover

1

3 4

52

Independent Set

1

3 4

52

GRAPH COLORING

Given: A graph G(V, E) with vertex set V and edge set E.

Find: A k-coloring, i.e. an assignment of colors to the vertices of the graph from
a palette of size k such that no two adjacent vertices share the same color
and k is minimized.

93

FRACTIONAL GRAPH COLORING

Given: A graph G(V, E) with vertex set V and edge set E.

Find: An a:b-coloring, i.e. an assignment of a set of b colors to each vertex of
the graph from a palette of size a such that no two adjacent vertices share
a color and a/b is minimized.

1

2 1

23

12

2

4

1 5

3

3

4 5

3-coloring of C5 5:2-coloring of C5

LABEL COVER L (V, W, E, [R], {σv,c}(v,w)∈E)

Given: A regular bipartite graph G(V ∪W, E) and for each edge (v, w) ∈ E a
map σv,w : [R]→ [R].

Find: A total labeling that minimizes maxx∈V∪W |`(x)|.

UNIQUE GAMES

Given: An undirected, connected graph G = (V, E), a set of colors C and for
each edge {i, j}, i < j, a permutation πi, j : C → C .

Find: A coloring of the graph that maximizes the number of satisfied edges,
i.e. an assignment of colors to vertices c : V → C such that the number of
edges {i, j} for which πi, j(c(i)) = c(j) holds is maximized.

94

Scheduling

LOAD BALANCING

Given: A set of m identical machines, a set of n jobs N = { j1, j2, . . . , jn} and for
each job ji a processing time pi ∈Q.

Find: A partitioning of N into m partitions N1, . . . , Nm such that the jobs in Ni

are scheduled on machine i in an arbitrary order and without gaps, such
that the maximum load among all machines (i.e. the makespan)

max
1≤i≤m

Li

is minimized, where the load of machine i is defined by Li :=
∑

j∈Ni
p j.

1||∑ j w jC j

Given: A set of jobs N = { j1, j2, . . . , jn} and for each job ji a processing time
pi ∈Q and a weight wi ∈Q.

Find: An ordering of the jobs N that minimizes the sum of weighted completion
times

n∑
i=1

wiCi

where the completion time Ci of job ji is the time at which it completes in
the schedule.

1|prec|∑ j w jC j

Given: A set N = { j1, j2, . . . , jn} of n jobs, for each job ji a processing time pi ∈Q
and a weight wi ∈Q, and a partial order P(N , P) defined on the set of jobs
N . If (i, j) ∈ P, i needs to have completed before j can be processed.

Find: A schedule of N without interruptions, i.e. a total ordering L of the jobs on
a single machine that respects the precedence constraints and minimizes
the weighted sum of completion times

∑
i∈N wiCi.

95

2 4

3

1|prec|∑ j w jC j

3 0 1 2 4 5 6 8 9 113 7 10 12

2j3 5j4

4j21j1 2j35j44j2 1j1

2j35j44j2 1j1
infeasible

feasible

MIN-MAX 1||∑ j w jC j

Given: A set of jobs N = { j1, j2, . . . , jn} and a set of k scenarios S = {s1, . . . , sk}.
For each job ji, each scenario s` defines a processing time ps`

i ∈ Q and a
weight ws`

i ∈Q.

Find: An ordering L of the jobs N such that the sum of weighted completion
times in the solution’s worst-case scenario sM(L)

n∑
i=1

w
sM(L)

i C
sM(L)

i

is minimized, where C
sM(L)

i is the completion time of job ji when the pro-
cessing times are defined by scenario sM(L).

MIN-MAX 1|prec|∑ j w jC j

Given: A set of jobs N = { j1, j2, . . . , jn}, a set of precedence constraints given
by a partial order P(N , P) and a set of k scenarios S = {s1, . . . , sk}. For
each job ji, each scenario s` defines a processing time ps`

i ∈Q and a weight
ws`

i ∈Q.

Find: An ordering L of the jobs N that complies with the precedence constraints
such that the sum of weighted completion times in the solution’s worst-
case scenario sM(L)

n∑
i=1

w
sM(L)

i C
sM(L)

i

is minimized, where C
sM(L)

i is the completion time of job ji when the pro-
cessing times are defined by scenario sM(L).

96

PARTUNC MIN-MAX 1|prec|∑ j w jC j

Given: A set of jobs N = { j1, j2, . . . , jn}, a set of precedence constraints given by
a partial order P(N , P) and a set of k scenarios S = {s1, . . . , sk}. For each
job ji, each scenario s` defines a weight ws`

i ∈ Q, while its processing time
pi is scenario-independent.

Find: An ordering L of the jobs N that complies with the precedence constraints
such that the sum of weighted completion times in the solution’s worst-
case scenario sM(L)

n∑
i=1

w
sM(L)

i Ci

is minimized.

Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Mod-
ern Approach. Cambridge University Press, New York, NY, USA,
2009.

[ABV06] Hassene Aissi, Cristina Bazgan, and Daniel Vanderpooten. Approxi-
mating min-max (regret) versions of some polynomial problems. In
COCOON, pages 428–438, 2006.

[AL95] Sanjeev Arora and Carsten Lund. Hardness of approximations. In
Dorit S. Hochbaum, editor, Approximation Algorithms for NP-Hard
Problems. PWS, 1995.

[AM09] Christoph Ambühl and Monaldo Mastrolilli. Single machine prece-
dence constrained scheduling is a vertex cover problem. Algorith-
mica, 53(4):488–503, 2009.

[AMMS07] Christoph Ambühl, Monaldo Mastrolilli, Nikolaus Mutsanas, and
Ola Svensson. Scheduling with precedence constraints of low frac-
tional dimension. In Matteo Fischetti and David P. Williamson, edi-
tors, Integer Programming and Combinatorial Optimization, 12th In-
ternational IPCO Conference, Ithaca, NY, USA, June 25-27, 2007, Pro-
ceedings, volume 4513 of Lecture Notes in Computer Science, pages
130–144. Springer, 2007.

[AMMS08] Christoph Ambühl, Monaldo Mastrolilli, Nikolaus Mutsanas, and
Ola Svensson. Precedence constraint scheduling and connections
to dimension theory of partial orders. Bulletin of the European
Association for Theoretical Computer Science (EATCS), 95:45–58,
2008. Appeared online at http://www.eatcs.org/publications/
bulletin.php.

97

http://www.eatcs.org/publications/bulletin.php
http://www.eatcs.org/publications/bulletin.php

98 Bibliography

[AMMS09] Christoph Ambühl, Monaldo Mastrolilli, Nikolaus Mutsanas, and
Ola Svensson. Scheduling with precedence constraints with low
fractional dimension. Mathematics of Operations Research, 2009.
Accepted for publication.

[AMS07] Christoph Ambühl, Monaldo Mastrolilli, and Ola Svensson. Inap-
proximability results for sparsest cut, optimal linear arrangement,
and precedence constrained scheduling. In Proceedings of the 48th
Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 329–337, 2007.

[BL97] John R. Birge and François Louveaux. Introduction to stochastic pro-
gramming. Springer, 1997.

[BS92] Graham R. Brightwell and Edward R. Scheinerman. Fractional di-
mension of partial orders. Order, 9:139–158, 1992.

[BS02] Dimitris Bertsimas and Melvyn Sim. Robust discrete optimization
and network flows. Programming Series B, 98:49–71, 2002.

[CH99] Fabián A. Chudak and Dorit S. Hochbaum. A half-integral linear pro-
gramming relaxation for scheduling precedence-constrained jobs on
a single machine. Operations Research Letters, 25:199–204, 1999.

[CK98] Pierluigi Crescenzi and Viggo Kann. A compendium of np optimiza-
tion problems, 1998.

[Cla00] Clay Mathematics Institute. Millenium prize problems – P vs. N P.
http://www.claymath.org/millennium/, 2000.

[CM99] Chandra Chekuri and Rajeev Motwani. Precedence constrained
scheduling to minimize sum of weighted completion times on a sin-
gle machine. Discrete Applied Mathematics, 98(1-2):29–38, 1999.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures.
In STOC, pages 151–158, 1971.

[CS05] José R. Correa and Andreas S. Schulz. Single machine scheduling
with precedence constraints. Mathematics of Operations Research,
30(4):1005–1021, 2005.

99 Bibliography

[DGKR03] Irit Dinur, Venkatesan Guruswami, Subhash Khot, and Oded Regev.
A new multilayered pcp and the hardness of hypergraph vertex
cover. In STOC ’03: Proceedings of the thirty-fifth annual ACM sym-
posium on Theory of computing, pages 595–601, New York, NY, USA,
2003. ACM.

[DS02] Irit Dinur and Samuel Safra. The importance of being biased. In
Proceedings of the 34th Annual ACM Symposium on Theory of Com-
puting (STOC), pages 33–42, 2002.

[Edm65] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Math-
ematics, 17:449–467, 1965.

[EEI64] Willard L. Eastman, Shimon Even, and I. M. Isaacs. Bounds for the
optimal scheduling of n jobs on m processors. Management Science,
11(2):268–279, 1964.

[FJMM07] Uriel Feige, Kamal Jain, Mohammad Mahdian, and Vahab S. Mir-
rokni. Robust combinatorial optimization with exponential scenar-
ios. In IPCO, pages 439–453, 2007.

[FM03] Yaoguang Wang François Margot, Maurice Queyranne. Decomposi-
tions, network flows and a precedence constrained single machine
scheduling problem. Operations Research, 51(6):981–992, 2003.

[FT94] Stefan Felsner and William T. Trotter. On the fractional dimension of
partially ordered sets. DMATH: Discrete Mathematics, 136:101–117,
1994.

[FT00] Stefan Felsner and William. T. Trotter. Dimension, graph and hyper-
graph coloring. Order, 17(2):167–177, 2000.

[Gas02] William I. Gasarch. The P =?N P-poll. SIGACT News, 36(2), 2002.

[GJ76] Michael R. Garey and David S. Johnson. The complexity of near-
optimal graph coloring. Journal of the ACM, 23:43–49, 1976.

[GLLR79] Ronald L. Graham, Eugene L. Lawler, Jan Karel Lenstra, and Alexan-
der H. G. Rinnooy Kan. Optimization and approximation in deter-
ministic sequencing and scheduling: a survey. Annals of Discrete
Mathematic, 4:287–326, 1979.

100 Bibliography

[Gra66] Ronald L. Graham. Bounds for certain multiprocessing anomalies.
The Bell System Technical Journal, 45(9):1563–1581, 1966.

[GW95] Michel X. Goemans and David P. Williamson. Improved approxima-
tion algorithms for maximum cut and satisfiability problems using
semidefinite programming. Journal of the ACM, 42(6):1115–1145,
1995.

[GW00] Michel X. Goemans and David P. Williamson. Two-dimensional
Gantt charts and a scheduling algorithm of Lawler. SIAM J. Discrete
Math., 13(3):281–294, 2000.

[Hås97] Johan Håstad. Some optimal inapproximability results. In Proceed-
ings of the 29th Annual ACM Symposium on Theory of Computing
(STOC), pages 1–10, 1997.

[HJ07] Rajneesh Hegde and Kamal Jain. The hardness of approximating
poset dimension. Electronic Notes in Discrete Mathematics, 29:435–
443, 2007.

[Hoc83] Dorit S. Hochbaum. Efficient bounds for the stable set, vertex cover
and set packing problems. Discrete Applied Mathematics, 6:243–254,
1983.

[Hoc95] Dorit S. Hochbaum, editor. Approximation Algorithms for NP-hard
Problems. PWS Publishing Company, Boston, 1995.

[HSSW97] Leslie A. Hall, Andreas S. Schulz, David B. Shmoys, and Joel Wein.
Scheduling to minimize average completion time: off-line and on-
line approximation algorithms. Mathematics of Operations Research,
22:513–544, 1997.

[HSW96] Leslie A. Hall, David B. Shmoys, and Joel Wein. Scheduling to min-
imize average completion time: Off-line and on-line algorithms. In
Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), pages 142–151, 1996.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In
Raymond E. Miller and James W. Thatcher, editors, Complexity of
Computer Computations, pages 85–103. Plenum Press, 1972.

101 Bibliography

[Kho02] Subhash Khot. On the power of unique 2-prover 1-round games. In
Proceedings of the 34th annual ACM symposium on Theory of com-
puting (STOC), pages 767–775, 2002.

[Kho09] Nikhil Bansal & Subhash Khot. Optimal Long-Code test with one
free bit. In Foundations of Computer Science (FOCS), 2009. To ap-
pear.

[Knu69] Donald E. Knuth. The Art of Computer Programming volume 2:
Seminumerical algorithms. Reading, MA: Addison-Wesley, 1969.

[KR08] Subhash Khot and Oded Regev. Vertex cover might be hard to ap-
proximate to within 2−ε. Journal of Computer and System Sciences,
74(3):335–349, 2008.

[KS02] Stavros G. Kolliopoulos and George Steiner. Partially-ordered knap-
sack and applications to scheduling. In Proceedings of the 10th
Annual European Symposium on Algorithms (ESA), pages 612–624,
2002.

[KY97] Panos Kouvelis and Gang Yu. Robust Discrete Optimization and Its
Applications. Kluwer Academic Publishers, 1997.

[KZ07] Adam Kasperski and Paweł Zieliński. On the existence of an fptas for
minmax regret combinatorial optimization problems with interval
data. Operations Research Letters, 35(4):525–532, 7 2007.

[KZ08] Adam Kasperski and Paweł Zieliński. On the approximability of min-
max (regret) network optimization problems. CoRR, 2008.

[Law78] Eugene L. Lawler. Sequencing jobs to minimize total weighted com-
pletion time subject to precedence constraints. Annals of Discrete
Mathematics, 2:75–90, 1978.

[Lev73] Leonid A. Levin. Universal search problems. In Problemy Peredaci
Informacii, volume 9, pages 265–266, 1973. (in Russian).

[LLKS93] Eugene L. Lawler, Jan Karel Lenstra, Alexander H.G. Rinnooy Kan,
and David B. Shmoys. Sequencing and scheduling: Algorithms and
complexity. Handbook in Operations Research and Management Sci-
ence, 4:445–522, 1993.

102 Bibliography

[LR78a] Jan Karel Lenstra and Alexander H. G. Rinnooy Kan. Complexity
of scheduling under precedence constraints. Operations Research,
26:22–35, 1978.

[LR78b] Jan Karel Lenstra and Alexander H. G. Rinnooy Kan. The complexity
of scheduling under precedence constraints. Operations Research,
26:22–35, 1978.

[MMS08] Monaldo Mastrolilli, Nikolaus Mutsanas, and Ola Svensson. Approx-
imating single machine scheduling with scenarios. In Ashish Goel,
Klaus Jansen, Jos’e D. P. Rolim, and Ronitt Rubinfeld, editors, 11th
Intl. Workshop on Approximation Algorithms for Combinatorial Opti-
mization Problems - APPROX 2008, volume 5171 of Lecture Notes in
Computer Science, pages 153–164. Springer, 2008.

[Möh89] Rolf H. Möhring. Computationally tractable classes of ordered sets.
In I. Rival, editor, Algorithms and Order, pages 105–193. Kluwer
Academic, 1989.

[MS94] Tze-Heng Ma and Jeremy P. Spinrad. On the 2-chain subgraph cover
and related problems. Journal of Algorithms, 17(2):251–268, 1994.

[NT73] George L. Nemhauser and Leslie E. Trotter Jr. Properties of vertex
packing and independence system polyhedra. Mathematical Pro-
gramming, 6:48–61, 1973.

[NT75] George L. Nemhauser and Leslie E. Trotter Jr. Vertex packings:
Structural properties and algorithms. Mathematical Programming,
8:232–248, 1975.

[Pas97] Vangelis T. Paschos. A survey of approximately optimal solutions
to some covering and packing problems. ACM Computing Surveys,
29(2):171–209, 1997.

[PC99] Michael Pinedo and Xiuli Chao. Operations Scheduling with applica-
tions in manufacturing and services, chapter 1. Irwin McGraw-Hill,
1999.

[Pis92] Nicolai N. Pisaruk. The boundaries of submodular functions. Com-
putational Mathematics and Mathematical Physics, 32(12):1769–
1783, 1992.

103 Bibliography

[Pis03] Nicolai N. Pisaruk. A fully combinatorial 2-approximation algorithm
for precedence-constrained scheduling a single machine to mini-
mize average weighted completion time. Discrete Applied Mathe-
matics, 131(3):655–663, 2003.

[Pot80] Chris N. Potts. An algorithm for the single machine sequencing
problem with precedence constraints. Mathematical Programming
Study, 13:78–87, 1980.

[Pra07] Martin Prado. Amazing baseball bat stands upright vertical. http:
//www.youtube.com/watch?v=k6LNnKonTOw, 2007.

[PY79] Christos H. Papadimitriou and Mihalis Yannakakis. Scheduling
interval-ordered tasks. SIAM Journal on Computing, 8:405–409,
1979.

[PY91] Christos H. Papadimitriou and Mihalis Yannakakis. Optimization,
approximation, and complexity classes. Journal of Computer and
System Sciences, 43:425–440, 1991.

[Rab78] Issie Rabinovitch. The dimension of semiorders. J. Comb. Theory,
Ser. A, 25:50–61, 1978.

[Sch96a] Andreas S. Schulz. Polytopes and Scheduling. PhD thesis, Depart-
ment of Mathematics, Technische Universität Berlin, February 1996.

[Sch96b] Andreas S. Schulz. Scheduling to minimize total weighted com-
pletion time: performance guarantees of LP-based heuristics and
lower bounds. In Proceedings of the Fifth Conference on Integer Pro-
gramming and Combinatorial Optimization (IPCO), volume 5, pages
301–315, 1996.

[SG76] Sartaj Sahni and Teofilo F. Gonzalez. P-complete approximation
problems. Journal of the ACM, 22:115–124, 1976.

[Sid75] Jeffrey B. Sidney. Decomposition algorithms for single-machine se-
quencing with precedence relations and deferral costs. Operations
Research, 23:283–298, 1975.

[Smi56] Wayne E. Smith. Various optimizers for single-stage production.
Naval Research Logistics Quarterly, 3:59–66, 1956.

http://www.youtube.com/watch?v=k6LNnKonTOw
http://www.youtube.com/watch?v=k6LNnKonTOw

104 Bibliography

[Spe71] Joel Spencer. On minimum scrambling sets of simple orders. Acta
Mathematica, 22:349–353, 1971.

[SU97] Edward R. Scheinerman and Daniel H. Ullman. Fractional Graph
Theory. John Wiley and Sons Inc., 1997.

[SU08] Andreas S. Schulz and Nelson A. Uhan. Near-optimal solutions
and integrality gaps for almost all instances of single-machine
precedence-constrained scheduling. Preprint, 2008.

[Sve08] Ola N. A. Svensson. Approximability of Some Classical Graph and
Scheduling Problems. PhD thesis, Università della Svizzera Italiana,
University of Lugano, 2008.

[SW99] Petra Schuurman and Gerhard J. Woeginger. Polynomial time ap-
proximation algorithms for machine scheduling: ten open prob-
lems. Journal of Scheduling, 2(5):203–213, 1999.

[Tro92] William T. Trotter. Combinatorics and Partially Ordered Sets: Dimen-
sion Theory. Johns Hopkins Series in the Mathematical Sciences.
The Johns Hopkins University Press, 1992.

[Tur36] Alan M. Turing. On computable numbers, with an application to
the entscheidungsproblem. Proceedings of the London Mathematical
Society, 2(42):230–265, 1936.

[Uha08] Nelson A. Uhan. Algorithmic and Game-Theoretic Perspectives on
Scheduling. PhD thesis, Massachusetts Institute of Technology
(MIT), 2008.

[Vaz01] Vijay V. Vazirani. Approximation Algorithms. Springer, 2001.

[Wei] Eric W. Weisstein. Algorithm. http://mathworld.wolfram.com/

Algorithm.html. From MathWorld – A Wolfram Web Resource.

[Woe03] Gerhard J. Woeginger. On the approximability of average comple-
tion time scheduling under precedence constraints. Discrete Applied
Mathematics, 131(1):237–252, 2003.

[Yan82] Mihalis Yannakakis. On the complexity of partial order dimen-
sion problem. SIAM Journal on Algebraic and Discrete Methods,
22(3):351–358, 1982.

http://mathworld.wolfram.com/Algorithm.html
http://mathworld.wolfram.com/Algorithm.html

Index

ρ-approximation algorithm, 5
k-coloring, 36

algorithm, 1
probabilistic -, 11
randomized -, 11

antichain, 56
approximation

- scheme, 7
- gap, 9

Big-Oh notation, 15

chromatic number, 36
clique, 14
color class, 36
coloring

b-fold -, 38
fractional -, 30, 38

completion time, 22
complexity class, 2
cost

fixed -, 25
variable -, 25

critical pair, 59

decidable, 2
derandomization, 11
discrete scenario, 67
dominate, 71
down-degree, 58

edge, 14

efficiency, 2
efficient

- vector, 71
- set, 71

endpoints, 14
extension, 43

linear -, 43

feasible solutions, 4
FPTAS, Fully Polynomial Time Approx-

imation Scheme, 8
fractional

- chromatic number, 38
- dimension, 45

GP, graph of incomparable pairs, 46
gap technique, 8
Graham Notation, 21
graph, 14

bipartite -, 14
complete -, 14
degree of -, 14
directed, 14
undirected, 14

groundset, 42

HP, hypergraph of incomparable pairs,
45

half-integrality, 34
halting problem, 2
hypergraph, 14

k-regular -, 14
2-uniform -, 83

105

106 Index

3-uniform -, 80

incident, 14
induce, 14
Integer Linear Programm (ILP), 7
integrality gap, 7, 84
interval

- order, 52
- dimension, 57
- representation, 52

interval data, 67

job, 18
- characteristics, 21
- profile, 71
density of a -, 19
processing time of a -, 18
weight of a -, 18

jobs, 6

k:t-realizer
efficiently samplable -, 49

labeling, 74
lexicographic sum, 61

decomposable w.r.t. -, 61
linear order, 43
linear programming (LP), 7

machine, 6, 18
- environment, 21

makespan, 6, 22
method of conditional probabilities, 11
Multi-criteria Optimization, 71
multivalue, 71

NP-complete, 3
NP-hard, 4

strongly -, 4

Objective function, 22

pair
comparable -, 43
incomparable -, 43

partial order, 24
partial uncertainty, 80
performance guarantee, 5
persistency property, 34
polynomial

- reducibility, 3
- reduction, 3

polynomial-time algorithm, 2
poset

P, poset, 39
t-realizer of a -, 44
-, partially ordered set, 42
k:t-realizer of a -, 44
dimension of a -, 44
height of a -, 56
incidence -, 60
realizer of a -, 43

problems
decision -, 4
evaluation -, 4
optimization -, 4
recognition -, 4

processing time, 6
PTAS, Polynomial Time Approximation

Scheme, 8

resource, 17
reverse, 43
robust optimization, 66

scenario
counting -, 77
ordering -, 77

schedule
feasible -, 24
infeasible -, 24

107 Index

self-reducibility, 5, 11
semiorder, 55
Sidney decomposition, 26
Smith’s rule, 19
subgraph

induced -, 14

task, 17
total labeling, 74

Unique Games Conjecture, 9, 33
up-degree, 58
up-set, 58

vertex
degree of -, 14

vertices, 14
adjacent, 14

worst case ratio, 5

This thesis contains a false statement.

	Contents
	List of Figures
	List of Tables
	Introduction
	Algorithms
	Computational Complexity and P vs. NP
	Combinatorial Optimization

	Approximation Algorithms
	Approximation Schemes
	Inapproximability proofs
	Approximation Gap

	Unique Games Conjecture
	Randomization and Approximation

	Robust Optimization
	Terminology and notation
	How to read this thesis

	Scheduling Theory
	A simple scheduling problem
	Graham notation

	Single Machine Precedence Constraint Scheduling
	Introduction
	Literature review

	A sketch of the algorithmic framework
	Single Machine Scheduling and Vertex Cover
	The Vertex Cover problem
	Connection between 1|prec|j wjCj and Vertex Cover

	Dimension Theory of Partial Orders
	The Hypergraph of Incomparable Pairs

	The algorithmic approximation framework
	Structure of the Graph G¶S
	The Framework

	Applications of the framework
	Interval Orders
	Semiorders
	Orders of Interval Dimension two
	Posets of Bounded Up- or Down-degree
	Lexicographic Sums

	Conclusions and future research

	Single Machine Scheduling with Scenarios
	Deterministic vs. Robust Optimization
	Robustness Criteria and Uncertainty Modeling
	Approximability of Robust Problems

	Robust single machine scheduling
	Bounded number of scenarios
	Complexity of robust scheduling
	Efficient algorithm for bounded parameters

	Unbounded number of scenarios
	Inapproximability for the general case
	Inapproximability of unweighted case
	2-approximation for PartUnc Min-Max 1|prec|j wjCj

	Conclusions and future research

	Problem Index
	Bibliography
	Index

