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Abstract

We adapt Breiman’s (1995) nonnegative garrote method to per-

form variable selection in nonparametric additive models. The tech-

nique avoids methods of testing for which no general reliable distri-

butional theory is available. In addition it removes the need for a full

search of all possible models, something which is computationally in-

tensive, especially when the number of variables is moderate to high.

The method has the advantages of being conceptually simple and com-

putationally fast. It provides accurate predictions and is effective at

identifying the variables generating the model. To illustrate our proce-

dure, we analyze logbook data on blue sharks (Prionace glauca) from

the United States pelagic longline fishery. In addition we compare

our proposal to a series of available alternatives by simulation. The

results show that in all cases our methods perform better or as these

alternatives.

Keywords: Blue shark logbook data; cross-validation; nonnegative gar-

rote; nonparametric regression; shrinkage methods; variable selection.
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1 Introduction

Variable selection is an important issue in any statistical analysis, whether

parametric or nonparametric in nature. Practically speaking, one is inter-

ested in determining the strongest effects that explain the response variable.

Statistically speaking, variable selection is a way of reducing the complexity

of the model, in some cases by admitting a small amount of bias to improve

accuracy.

As a motivating example we consider data obtained by Julia Baum (see

Baum, 2007 for further details) from the U.S. National Marine Fisheries

Service Pelagic Observer Program (http://www.sefsc.noaa.gov/pop.jsp).

Recently Myers et al. (2007) have been utilizing this data to investigate

ecological impacts of eliminating top predators like sharks from oceanic food

webs. Here we look specifically at catches of the most commonly caught

shark, the blue shark (Prionace glauca), in the main areas where they are

caught in the Northwest Atlantic, that is Northeast Coastal and Distant

Atlantic (Area 6 and 7 as defined in Figure 1 in Baum et al., 2003). This

avoids the presence of excess of zeros and puts us in position to propose a

nonparametric additive model for the blue shark counts. Such a model is

more flexible than its parametric counterpart in being able to accommodate

covariates which are potentially nonlinearly related to some function of the

response (i.e. the counts). The statistical goal is to simultaneously fit a

nonparametric model and perform variable selection.

A nonparametric framework is more challenging than a parametric ap-

proach because of the lack of underlying assumptions that makes it difficult to

define a general test approach for variable selection. Some notable exceptions

exist, but only with strong restrictions: in special situations or for particular

smoothers (see, e.g. Bock and Bowman, 1999 for local polynomials; Cantoni
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and Hastie, 2002 for smoothing splines).

Subset selection is a well-known approach to variable selection: it se-

lects a model containing a subset of available variables, according to a given

optimality criterion and requires that one visits all possible models. This ap-

proach quickly becomes infeasible when the covariate dimension is too large

even when efficient algorithms exist (e.g. leaps and bounds in the case of

linear regression, see Furnival and Wilson, 1974). Stepwise procedures are

a working compromise as they reduce the number of models for compari-

son. However, they suffer from dependence on the path chosen through the

variable space and may be inconsistent. In addition, both subset selection

and stepwise selection are discrete processes that either retain or discard one

variable while shrinkage methods (e.g. ridge regression in the case of linear

models) are continuous in this regard, which leads to lower variability.

Shrinkage methods have emerged and gained popularity (especially in the

parametric context) in recent years. In addition, methods that simultane-

ously address estimation and variable selection now exist (e.g. LASSO, see

Tibshirani, 1996, and LARS, see Efron, Hastie, Johnstone, and Tibshirani,

2004). In the nonparametric setting, a modified LASSO for additive models

(method called PAM) has been proposed by Avalos, Grandvalet, and Am-

broise (2007) and an adaptive LASSO suggested by Zou (2006). Within the

boosting framework, two approaches in particular would be suitable in our

context: the L2 boost for additive models by Buhlmann and Yu (2003) and

the GAMBoost of Tutz and Binder (2006) for generalized linear models. In

addition, the method of COSSO has been proposed by Lin and Zhang (2006).

Efficient algorithms for model selection with shrinkage methods have been

provided by Yuan and Lin (2006).

Here, we propose a simple approach to variable selection for nonpara-
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metric additive models based on the nonnegative garrote idea of Breiman

(1995) which has simultaneously the properties of subset selection, shrinkage

and stability as mentioned above. It has the advantage of being conceptually

simple (like its original parametric counterpart) and computationally reason-

able, and it can be used with any smoother. These desirable characteristics

are not shared simultaneously by alternative methods with which we compare

results. The idea was suggested in Cantoni, Flemming, and Ronchetti (2006)

and independently in Yuan (2007) in the ANOVA framework. In this paper

we provide in addition a detailed discussion on the choice of the smoothing

parameters, a detailed comparison with several alternative approaches, and

a full implementation of the model.

As we shall see in Sections 3 and 4, our proposal is a reliable variable

selection procedure which is able to identify the true underlying model, with

our procedure (C) (see Section 2.1) giving the best results in general.

The paper is organized as follows. We introduce the methodology in

Section 2. Specifically, we discuss the automatic choice of the parameters

involved (Sections 2.1 and 2.2) and provide guidelines for different options. In

Section 3 we demonstrate our methodology using the blue shark data. Results

from the simulation study follow in Section 4. Both demonstrations provide

strong evidence that our proposal works well. A discussion (Section 5) closes

the paper.

2 Methodology

A typical dataset of interest will consist of p explanatory variables x1i, . . . , xpi

and a response variable Yi for each of the i = 1, . . . , n independent individuals
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for which we postulate an additive model of the form

Yi = α +

p∑

k=1

fk(xki) + ǫi, (2.1)

for i = 1, . . . , n.

Model (2.1) is often presented with only univariate functions for conve-

nience, but it must be emphasized that this property is not necessary. In

fact, component functions with two or three dimensions, as well as categor-

ical variable terms (factors) and interactions between them can replace the

univariate functions fk(xk). Moreover, some of the functions in Model (2.1)

may be defined parametrically, giving rise to a semiparametric model.

We suppose that the variables xk have been centered by subtracting off

their sample means. This is not a theoretical restriction, but rather a re-

quirement to use Breiman’s code, see Section 2.3 for further details.

Given an initial estimate ĝhk

k (xk) of each function fk(xk), the nonnegative

garrote approach solves

min
ck

n∑

i=1

(
yi − α −

p∑

k=1

ckĝ
hk

k (xki)
)2

(2.2)

under the constraints ck ≥ 0 and
∑p

k=1 ck ≤ s. The final estimate of fk(xki)

is f̂k(xki) = ckĝ
hk

k (xki).

The parameters h1, . . . , hp are referred to as the smoothing parameters of

the initial functions estimates ĝh1

1 , . . . , ĝ
hp
p . Alternatively one can consider the

degrees of freedom (see Hastie and Tibshirani, 1990, p. 128). Most smoothing

techniques (e.g. splines, loess, local polynomials), allow one parameter for

each function [the AMlet technique (Sardy and Tseng, 2004) is an exception

here in that it requires only a single parameter]. Note also that ck depends

on s, and s is regarded as an additional parameter. We will discuss the choice

of these parameters in Sections 2.1 and 2.2 below.
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Our proposal (2.2) generalizes the original proposal of Breiman (1995)

which is recovered with ĝhk

k (xk) = β̂kxki, where β̂k are the ordinary least

squares estimates in the linear model yi = α +
∑p

k=1 βkxki + ǫi. In this

parametric situation no choice of h1, . . . , hp is required.

The theoretical basis for our proposal can be traced back to the para-

metric case, where Zou (2006) has shown that the nonnegative garrote is

essentially equivalent to the adaptive LASSO. This is a LASSO procedure

with a weighted penalty function, where the weights are proportional to the

inverse of the least squares estimators of the coefficients and are used to pe-

nalize different coefficients in the L1 penalty. Under the conditions given in

Zou (2006) in the parametric case, the adaptive LASSO is consistent and

this implies the same property for the nonnegative garrote; see Zou (2006),

Corollary 2, Section 3.4 or Yuan and Lin (2007). Notice however that, as

pointed out by a referee, the proposed algorithm only scales the initial fit,

and for typical smoothers this implies that the initial fit is itself consistent.

Given an initial estimate of all the additive functions in Model (2.1) and a

value for s, the nonnegative garrote will automatically give in a single step a

set of coefficients c1, . . . , cp that will provide information on the importance

of each variable in the model. For instance, if ck = 0, the variable xk is

considered uninformative and can be removed from the model. Alternatively

the variable contribution to the model will be shrunk by some proportion

ck or left unchanged (if ck = 1). Decreasing s has the effect of increasing

the shrinkage of the nonzeroed functions and making more of the ck become

zero. The nonnegative garrote can be viewed as a method for comparing

all possible models, but unlike subset selection, it avoids fitting each model

separately, therefore making its use possible at low computational cost even

for large values of p. Note that as in LASSO and in the parametric version
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of the nonnegative garrote, the ck as a function of s are not restricted to be

strictly monotonic and they can even be larger than 1 for some values of s.

2.1 Choice of h1, . . . , hp

In order for the method to perform well, it is important that the smoothing

parameters h1, . . . , hp of the initial fits ĝhk

k be selected in a reasonable manner.

They can either be set by the user (perhaps on the basis of asymptotic re-

sults, see Opsomer and Ruppert, 1998) or selected automatically with a data

driven approach (e.g. cross-validation, see Härdle, 1990, Chapter 5). Here we

take the second approach, specifically that proposed by Wood (2004). His

procedure allows one to automatically select the smoothing parameters by

addressing the problem in the more general framework of parameter estima-

tion with multiple quadratic penalties.

We consider the following non exhaustive list of options with which to

obtain an initial fit of the data:

(A) Estimate h1, . . . , hp automatically (by cross-validation, for example) on

the basis of the p univariate nonparametric regressions yi = gk(xki)+ ǫi

for k = 1, . . . , p, to produce ĝhk

k .

(B) Given starting values h0
1, . . . , h

0
p provided by the user, estimate h1, . . . , hp

automatically (by cross-validation, for example) at each step of the

backfitting algorithm (Hastie and Tibshirani, 1990, p. 91). This modi-

fied backfitting algorithm reads as follows:

1. Initialize: α̂ = ȳ, hk = h0
k for k = 1, . . . , p, and ĝhk

k = ĝ
h0

k

k for

k = 1, . . . , p.

2. Cycle: j = 1, . . . , p, 1, . . . , p, . . .

Produce estimates ĝ
hj

j by smoothing the partial residuals
(
Yi −
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α̂ −
∑

k 6=j ĝhk

k (xki)
)

on xj , with hj chosen automatically.

3. Continue Step 2 until the individual functions do not change.

(C) Estimate h1, . . . , hp automatically by minimizing a given criterion in

the p dimensional space.

Procedure (C) is certainly the most desirable, but is not yet widely im-

plemented in software packages. Procedure (A) is the simplest approach but

neglects the correlation between covariates. Procedure (B) is a working com-

promise but is again effective only when there is little correlation between

covariates. Note that the re-estimation of the smoothing parameter at each

step of the backfitting algorithm might, in principle, affect the convergence

of the backfitting algorithm. However, we never experienced this situation

in our examples and simulations. We can expect procedure (C) to perform

better than (B), which in turn will perform better than (A), but it is not

clear a priori how large the differences will be.

2.2 Choice of s

The accuracy of the model can be measured through the (average) prediction

error defined as

PEs(α̂, f̂h1

1 (x1i), . . . , f̂
hp

p (xpi)) =
1

n

n∑

i=1

E
(
Y new

i − α̂ −

p∑

k=1

f̂hk

k (xki)
)2

, (2.3)

where s =
∑p

k=1 ck, f̂hk

k (xki) = ckĝ
hk

k (xki) and the expectation on the right

hand side of Equation (2.3) is taken over Y new
i . The best value of s is then

defined as the minimizer of PEs(α̂, f̂h1

1 (x1i), . . . , f̂
hp
p (xpi)).

Of course, in practice PEs(α̂, f̂h1

1 (x1i), . . . , f̂
hp
p (xpi)) is not observable and

needs to be estimated. V -fold cross-validation is an approach used to mimic
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the behaviour of new observations coming into play, when only a single sam-

ple is available. It splits the data into V subsets. Denote by I1, . . . , IV

the sets of the corresponding observation indices. For each value of s, the

cross-validation estimator of (2.3) is then

P̂Es(α̂, f̂h1

1 (x1i), . . . , f̂
hp

p (xpi)) =

=
1

V

V∑

v=1

1

|Iv|

∑

i∈Iv

(
Yi − α̂(−v) −

p∑

k=1

c
(−v)
k ĝ

hk,(−v)
k (xki)

)2

, (2.4)

where α̂(−v), f̂
hk,(−v)
k and c

(−v)
k are obtained from the sample containing all

the observations but those in Iv. Values of V between 5 and 10 produce

satisfactory results and are known to be a good balance between bias and

variance in the estimation of PEs, that is between the high variance if V

is large (e.g. V = n for leave-one out cross-validation) and the bias if V is

smaller (because of the smaller size of the training set); see Breiman (1995)

and Hastie, Tibshirani, and Friedman (2001, p. 214-7).

2.3 Implementation

Presently, considering all the procedures described in Section 2.1 requires the

use of several different software packages. There are essentially two parts to

our approach: the initial fit followed by the nonnegative garrote for variable

selection. The user has the following options:

Initial fit:

• Procedure (A): smooth.spline function of Splus. Note that the func-

tion smooth.spline of R would produce the same results.

• Procedure (B): addreg function for Splus available from Statlib at

http://lib.stat.cmu.edu/S/ (funfits module, version 5.1, formerly
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available from D. Nychka website).

• Procedure (C) gam from the R package mgcv 1.3-29, see Wood (2006).

We have used Splus (Version 7.0.0 for Linux 2.4.21 : 2005) and R version

2.6.2 (2008-02-08).

Nonnegative garrote:

We adapted the Fortran code L. Breiman had publicly available on his web-

site. The algorithm makes use of a modification of the nonnegative least

squares algorithm by Lawson and Hanson (1974). The predictors must be

centered at zero by subtracting off their sample means. Note that for a

given set of initial estimates ĝhk

k (xk) for k = 1, . . . , p, the nonnegative gar-

rote Equation (2.2) is as simple as its parametric counterpart. We linked

the Fortran code (note that redefinition of some of the input quantities was

required) both within Splus and R and intend to distribute our routines as an

R package. Based on the equivalence between the adaptive LASSO and the

nonnegative garrote an alternative implementation may be to use the lars

package in R. Also note that (2.2) is a quadratic optimization problem with

constraints and therefore any program that can address this kind of prob-

lem could be used, e.g. function pcls in the R package gam or R package

quadprog.

3 Example

[Figure 1 about here.]
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In this section, we analyze the blue sharks dataset using our proposal.

The model, with all the covariates can be written as

log(bluesharks + 1) = α + f1(DOFY) + f2(NLIGHTST) + f3(SOAKTIME)+

+ f4(AVGHKDEP) + f5(OCEAND) + f6(TEMP) + log(TOTHOOKS) + ǫ, (3.1)

where the covariates considered are day of the year (DOFY), number of light

stick used (NLIGHTST), soak duration (amount of time from the midpoint of

the gear setting to the midpoint of the gear hauling, SOAKTIME), hook depth

as measured by the average of the minimum and the maximum of the hook

depth (AVGHKDEP), ocean depth (OCEAND), surface water temperature (TEMP)

and the total number of hooks (TOTHOOKS). Note that the total number of

hooks measures the effort and is introduced as an offset to standardize the

catch data as it is usual in fisheries science. Other covariates were available

but were not used (for different reasons, including missingness issue and

collinearity). The sample size is 91.

With smoothing parameters h1, . . . , hp automatically chosen according to

Procedure (C) (see Section 2.1), we obtain the results as depicted in Figure 1.

This plot identifies the strongest effects (the components that enter first in the

model as s increases) which in this case are (in the order of appearance) TEMP,

OCEAND and DOFY. The bold vertical line shows the value of s automatically

chosen by 5-fold cross-validation (see Section 2.2). Those ck which are zero

for this value of s (=2.3) identify the variables that can be removed from

the final model: SOAKTIME and NLIGHTST. The importance of AVGHKDEP is

borderline. The other values of ck are 0.86, 0.62 and 0.82 respectively, for

TEMP, OCEAND and DOFY, indicating a shrinkage with respect to the initial

fit. This shrinkage is more severe for OCEAND. The nonparametric model

considered in our analysis is certainly a welcome alternative to a fully linear

analysis as indicated by the nonlinear effects present in the final model, see
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Figure 2. In particular, the day of the year has a complicated functional form,

the ocean depth is likely a linear effect and the surface water temperature

may well be approximated by a cubic term, but, of course, we would loose

some nuances by doing so.

[Figure 2 about here.]

4 Simulation Study

In this section we compare the different procedures available within our pro-

posal to a series of alternatives described in detail below. We will evaluate

the prediction accuracy and the ability of each approach to extract the true

underlying model.

Our nonnegative garrote proposal makes available 4 different options.

Procedures (A) and (B) as described in Section 2.1, and two versions of

Procedure (C), hereafter referred to as Procedures (C1) and (C2). Proce-

dure (C1) uses the smoothing parameters obtained from the initial fit with

the entire dataset on the cross-validated samples (80% of the data if V = 5)

and Procedure (C2) re-estimates the smoothing parameter automatically on

each of the cross-validated samples. This same distinction is not necessary

for Procedures (A) and (B) because the software allows the specification of

the degrees of freedom (instead of the smoothing parameters) which don’t

need to vary with the sample size.

Alternative approaches:

To contrast the results of our approach, we have considered the following

alternatives:

• gam in mgcv 1.3-29 with the default option for the spline basis, a thin

plate regression spline (bs="tp"). This is the initial fit of our procedure
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(C1) and (C2) and is considered a benchmark to evaluate the gain in

term of ISE with the nonnegative garrote additional step. No variable

selection is possible in this case.

• gam in mgcv 1.3-29 with a thin plate regression spline with shrinkage

(bs="ts"), which automatically allows for variable selection.

• GAMBoost from GAMBoost 1.0 which implements the proposal by Tutz

and Binder (2006).

• The COSSO proposal by Lin and Zhang (2006) via the Matlab code

available on the authors’ website at

http://www4.stat.ncsu.edu/~hzhang/pub.html. There is also an R

version, but we have been unable to get it running properly.

• The PAM approach presented in Avalos, Grandvalet, and Ambroise

(2007) with the Matlab code available at

http://www.isped.u-bordeaux2.fr/ANNUAIRE/FR-M_AVALOS.htm. The

ISE measure is not available for this approach, given that the current

code does not allow for prediction on a validation sample.

• A backward stepwise approach based upon a generalized cross-validation

criterion, see the detailed description in Section 4.1 in Brumback, Rup-

pert, and Wand (1999).

We consider the generating process of Example 1 in Section 7 of Lin and

Zhang (2006). It is a simple additive model in R10, where the underlying

generating model for i = 1, . . . , 100 is

Yi = f(xi) + ǫi = f1(x1i) + f2(x2i) + f3(x3i) + f4(x4i) + ǫi, (4.1)
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where xi = (x1i, x2i, x3i, x4i, x5i, x6i, x7i, x8i, x9i, x10i) and

f1(s) = 5s, f2(s) = 3(2s − 1)2, f3(s) =
sin(2πs)

2 − sin(2πs)
,

f4(s) = 6
(
0.1 sin(2πs)+0.2 cos(2πs)+0.3 sin2(2πs)+0.4 cos3(2πs)+0.5 sin3(2πs)

)
.

As a consequence there are 6 uninformative dimensions. The variables

X1, . . . , X10 are built according to the following “compound symmetry” de-

sign: Xj = (Wj + tU)/(1 + t), where W1, . . . , W10 and U are i.i.d. from

Uniform(0,1) which results in Corr(Xj, Xk) = t2/(1 + t2) for j 6= k. The

uniform design corresponds to the case where t = 0. The values t = 1 and

3 produce covariates with correlations of 0.5 and 0.9, respectively. The er-

ror term ǫi is generated according to a centered normal distribution with

variance equal to 1.74 (signal-to-noise ratio of 3 in the uniform case) in a

first scenario and with variance equal to 3.9 (signal-to-noise ratio of 2 in

the uniform case) in a second scenario. (Note that V ar(f1(x1)) = 2.08,

V ar(f2(x2)) = 0.80, V ar(f3(x3)) = 3.30 and V ar(f4(x4)) = 9.45, see Lin

and Zhang, 2006, p. 2284.)

[Table 1 about here.]

We measure the accuracy of the method being used to obtain f̂(x) =
∑10

k=1 f̂k(xk) via the integrated squared error (ISE), where ISE = EX

(
(f̂(x)−

f(x))2
)
, estimated by Monte Carlo using 10,000 test points generated from

the same distribution as the training points. Note that some of the terms in

f̂(x) could be zero as determined by the method being used, while f(x) is

the true generating model as defined by (4.1).

We begin by examining the predictive ability of each method. Table 1

presents the average ISE over the 100 simulations. We first comment on the

set of results for a signal-to-noise ratio equal to 3. As expected the results
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from the nonnegative garrote based on Procedure (A) yield the worst results

and should not be recommended. Procedure (B) improves the results and

does as well as the gam fit with no shrinkage. The (C1) and (C2) versions

of our proposal improve over the initial gam fit and are the best performers.

Note that Procedure (C2) performs better than Procedure (C1), showing

that it is worthwhile to adjust the smoothing parameter to the sample size

in the cross-validation approach. The gam fit with shrinkage is not as good

as the Procedures (C1) and (C2) of the nonnegative garrote. GAMBoost

is worst than all the nonnegative garrote options (except Procedure (A)).

The COSSO performance is similar to the nonnegative garrote Procedure

(C1) except for t = 3, and the stepwise approach behaves like a simple

gam fit with no shrinkage, that is very slightly worst than COSSO. For the

signal-to-noise ratio equal 2 scenario, the ISE is larger as expected. All the

comments for the larger signal-to-noise ratio can be repeated here, except

those regarding COSSO and the stepwise approach, which seem to suffer

much more in presence of larger noise.

[Table 2 about here.]

Table 2 and 3 display the number of times (out of the 100 simulations)

that each variable has been selected to appear in the final model for the a

signal-to-noise ratio of 3 and 2 respectively.

As a general comment we can say that methods that are able to pick all

the informative variables tend to retain more unnecessary variables. On the

other hand, approaches that discard more unnecessary variables, miss the

signal more often.

PAM is both less effective in identifying the generating signal and more

prone to retain many irrelevant variables. Other techniques that do not dis-

card the irrelevant variables are GAMBoost and gam with shrinkage. Within

16



the nonnegative garrote options, Procedures (A) and (B) are quite similar

in terms of variable selection, despite their difference in ISE. This means

that both methods pick up the relevant variables equally well, but that the

functions are better estimated under (B). Procedures (C1) and (C2) are very

good at identifying the signal, with Procedure (C2) performing also very well

in discarding the irrelevant variables. COSSO can perform very well only in

particular situations: high signal-to-noise ratio or low correlation between

the covariates. In other situations, it tends to either miss the signal or to

retain too many variables. In keeping with Shao (1993), who considers good

models as those which contain the true generating model, our nonnegative

garrote Procedure (C2) should be preferred. It performs very well over all

the settings considered here. Note also that the presence of some extra vari-

ables in the final model does not seem to impact the predictive ability of our

approaches (see Table 1).

[Table 3 about here.]

One has to be careful when reading the results in Table 2 for t = 1

and t = 3 since the X’s are correlated in these cases, and consequently

substitution can arise. We decide nevertheless to report the results in this

manner, given that all of the methods under investigation are affected in the

same way.

We also ran the nonnegative garrote procedures with V = 10 folds. The

results (not reported here) were very similar.

5 Discussion

We have proposed a model selection approach based on nonnegative garrote

for variable selection in nonparametric regression. We have compared (via
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simulations) the performance of its four versions to available alternatives. In

terms of predictive ability, Procedures (C1) and (C2) of our approach perform

very well. Alternative Procedure (A) and (B) are not as good with respect to

predictive ability, but are quite effective in identifying the underlying model,

although additional spurious variables are included at times. In contrast, the

alternatives considered do not perform as well in terms of ISE and/or in terms

of retaining the correct variables. More precisely, the shrinkage approach

within gam tends to include too many variables in the model, GAMBoost

is not effective in terms of ISE and COSSO tends to select smaller models,

sometimes missing important variables, and is sensitive to the signal-to-noise

ratio. The stepwise approach shows a tendency to select very large models,

including several irrelevant variables.

Wood and Augustin (2002) suggested an ad-hoc procedure to try to obtain

a variable selection procedure from the automatic smoothing parameter selec-

tion. Their approach is based essentially on 3 criteria (see their Section 3.3).

This involves some manual tuning and is very difficult to implement on a

large scale.

Further work includes the extension of this approach to the entire GAM

(non Gaussian) class of models and the consideration of resistance-robustness

aspects building on work by Cantoni and Ronchetti (2001) and Cantoni,

Mills Flemming, and Ronchetti (2005).

For practical applications like the blue sharks example discussed herein,

our approach is particularly desirable. Our code is readily available and user-

friendly, results are easily interpreted and most importantly nonlinear effects

are quite apparent when present.
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Figure 1: Shrinkage values ck as a function of s for the blue sharks dataset.
The bold vertical line indicates the value of s chosen by 5-fold cross-
validation.
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Figure 2: Fitted functions for the final model after variable selection by our
nonparametric nonnegative garrote.
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t=0 t=1 t=3
Signal-to-noise ratio = 3

NNG - Proc. (A) 1.71 (0.10) 1.24 (0.06) 1.12 (0.05)
NNG - Proc. (B) 0.81 (0.03) 0.85 (0.03) 0.95 (0.04)
gam (no shrinkage) 0.84 (0.03) 0.89 (0.03) 0.95 (0.06)
NNG - Proc. (C1) 0.72 (0.03) 0.75 (0.04) 0.71 (0.03)
NNG - Proc. (C2) 0.65 (0.03) 0.64 (0.04) 0.64 (0.03)
gam (shrinkage) 0.76 (0.03) 0.81 (0.03) 0.84 (0.05)
GAMBoost 1.10 (0.04) 1.31 (0.04) 1.09 (0.03)
COSSO 0.73 (0.03) 0.79 (0.03) 0.91 (0.04)
Stepwise GCV 0.82 (0.03) 0.87 (0.03) 0.93 (0.06)

Signal-to-noise ratio = 2
NNG - Proc. (A) 2.33 (0.12) 1.93 (0.09) 1.94 (0.08)
NNG - Proc. (B) 1.71 (0.06) 1.83 (0.07) 1.67 (0.06)
gam (no shrinkage) 1.71 (0.06) 1.84 (0.07) 2.04 (0.12)
NNG - Proc. (C1) 1.49 (0.07) 1.64 (0.09) 1.46 (0.06)
NNG - Proc. (C2) 1.34 (0.06) 1.36 (0.07) 1.37 (0.05)
gam (shrinkage) 1.51 (0.06) 1.70 (0.07) 1.90 (0.12)
GAMBoost 1.87 (0.06) 1.96 (0.05) 1.66 (0.05)
COSSO 1.60 (0.06) 1.79 (0.08) 1.88 (0.08)
Stepwise GCV 1.63 (0.07) 1.79 (0.07) 2.02 (0.12)

Table 1: Average ISE (estimated by Monte Carlo over 10,000 points) over
100 simulations and its standard error within parentheses. V = 5 fold cross-
validation is used. Empirical standard errors are given within parentheses.
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Design Technique X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
t=0 NNG - Proc. (A) 100 100 100 100 23 21 21 15 23 23

NNG - Proc. (B) 100 100 100 100 23 20 27 22 33 15
NNG - Proc. (C1) 100 100 100 100 28 27 35 35 22 30
NNG - Proc. (C2) 100 100 100 100 19 16 19 20 13 19
gam (shrinkage) 100 100 100 100 57 69 61 60 59 61
GAMBoost 100 100 100 100 77 76 86 78 74 78
COSSO 100 98 100 100 2 1 0 1 0 2
PAM 100 100 100 100 93 95 92 92 97 94
Stepwise GCV 100 100 100 100 29 43 40 30 24 37

t=1 NNG - Proc. (A) 100 100 100 100 13 22 24 28 20 20
NNG - Proc. (B) 99 100 100 100 34 29 32 32 29 28
NNG - Proc. (C1) 100 100 100 100 45 44 37 35 37 32
NNG - Proc. (C2) 99 100 100 100 24 24 22 15 18 18
gam (shrinkage) 100 100 100 100 65 65 67 59 66 61
GAMBoost 100 100 100 100 68 76 72 72 75 74
COSSO 95 74 100 100 3 12 4 4 10 3
PAM 99 100 100 100 95 97 90 95 95 92
Stepwise GCV 100 100 100 100 46 36 44 34 43 36

t=3 NNG - Proc. (A) 80 100 100 100 33 29 34 35 40 36
NNG - Proc. (B) 87 100 100 100 36 43 34 44 37 46
NNG - Proc. (C1) 90 100 100 100 46 38 39 40 36 41
NNG - Proc. (C2) 79 100 100 100 24 22 23 26 19 22
gam (shrinkage) 100 100 100 100 62 58 58 50 57 70
GAMBoost 95 100 100 100 55 58 68 59 64 71
COSSO 55 78 94 100 19 23 18 19 20 20
PAM 87 99 100 100 82 76 82 84 82 72
Stepwise GCV 94 100 100 100 40 36 40 39 44 45

Table 2: Frequency of appearance of the variables in 100 simulations for a
signal-to-noise ratio of 3.
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Design Technique X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
t=0 NNG - Proc. (A) 100 100 100 100 26 22 22 17 28 23

NNG - Proc. (B) 99 100 100 100 22 18 22 16 27 13
NNG - Proc. (C1) 100 100 100 100 31 31 33 34 27 33
NNG - Proc. (C2) 100 100 100 100 18 17 20 21 12 20
gam (shrinkage) 100 100 100 100 57 69 58 59 55 61
GAMBoost 100 100 100 100 72 76 80 73 71 79
COSSO 100 78 100 100 6 6 3 7 1 5
PAM 100 100 100 100 92 98 94 96 95 92
Stepwise GCV 100 100 100 100 31 41 39 29 24 35

t=1 NNG - Proc. (A) 94 100 100 100 17 24 21 28 25 24
NNG - Proc. (B) 93 100 99 100 31 30 22 23 23 22
NNG - Proc. (C1) 96 100 100 100 50 46 45 39 38 36
NNG - Proc. (C2) 94 100 100 100 24 22 23 16 19 21
gam (shrinkage) 99 100 100 100 67 63 63 57 66 63
GAMBoost 100 100 100 100 68 67 70 67 67 70
COSSO 76 53 99 100 9 11 5 6 13 9
PAM 88 98 94 100 89 73 84 89 83 76
Stepwise GCV 98 100 100 100 44 32 47 37 40 34

t=3 NNG - Proc. (A) 57 94 93 100 33 32 25 33 37 42
NNG - Proc. (B) 61 96 97 100 32 33 33 37 35 38
NNG - Proc. (C1) 71 100 99 100 44 38 37 36 37 33
NNG - Proc. (C2) 53 98 97 100 22 24 20 20 17 25
gam (shrinkage) 92 100 100 100 60 57 60 51 57 68
GAMBoost 80 100 98 100 57 55 64 59 63 68
COSSO 42 60 82 100 31 30 24 35 27 30
PAM 88 98 94 100 89 73 84 89 83 76
Stepwise GCV 77 100 98 100 39 38 43 39 47 49

Table 3: Frequency of appearance of the variables in 100 simulations for a
signal-to-noise ratio of 2.
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