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Preface

The unceasing increase of option transactions makes this kind of contract
very popular among practitioners. Nowadays options constitute the most
important component of the trading book for many financial institutions.
A further incentive was given by the introduction of the electronic trading
platforms to access to derivative markets. For instance, in 2002 more than
800m option contracts were done just on EUREX market.

The large familiarity that traders generally have with options does not
prevent the problems induced by large option positions to cover. First of all,
a pricing problem has to be solved. The value of an option can be computed
as the expectation under some risk neutral measure of the discounted future
cash flows. Hence, the central issue becomes the definition of the risk neutral
measure to get the expected value.

Closely related to the pricing problem, the hedging problem appears each
time an investor has an open option position. This could be the case of an
institution selling an option to gain on the edge paid by the customer. In
order to avoid unexpected losses, the institution has to build a portfolio that
replicates the option value in order to cover the risk when the position is
closed.

The third problem is inherent to the nature of option contracts. The non
linearity of the relation that links option prices to underlying asset prices
generates some problems for risk measurement, too. In particular, all the
distribution based risk measures, such as the value at risk, become very
difficult to estimate also under the standard assumption of the underlying
asset return normality.

In spite of the introduction of a consistent number of realistic pricing
models, the most used pricing model is still the one introduced by Black-
Scholes [9] and Merton [51] about thirty years ago. The popularity of this
model is primarily due to ease of implement. Indeed, only one unobservable
parameter has to be estimated and all the other variables are observable in
the market.

However, the Black-Scholes model cannot be considered the optimal
choice for pricing and hedging options. The most debatable issue is the
assumption that the underlying process has a constant volatility parameter.
The high kurtosis on stock return distribution, originally pointed out by
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Fama [23] and Mandelbrot [49], and the volatility smile effect clash with the
assumption of constant volatility.

Moreover, even if one accepts the constant volatility assumption, an
estimation problem still remains. Indeed, the underlying volatility is not
observable and has to be estimated. Since option prices are generally very
sensitive with respect to volatility, the error made by substituting the true
parameter with the estimated one could not be considered negligible either
for pricing or for hedging purposes.

In order to relax the constant volatility assumption, in the last two
decades a large number of stochastic volatility models have been proposed.
Some seminal papers on this subject are those by Hull and White [41],
Wiggins [62], Stein and Stein [60] and Heston [40]'. The main feature of
these models is that the volatility is no longer constant, but its dynamics is
described by a stochastic differential equation. Some of these models provide
a closed-form solution so that their implementation difficulty is similar to
the Black-Scholes model.

However, stochastic volatility models are not lacking drawbacks. The
introduction of a second source of uncertainty produces market incomplete-
ness. This problem is generally solved by assuming a functional form for
the volatility risk premium and implicitly by making some hypothesis on
investor preferences.

A more practical problem concerns the estimation of model parameters.
Indeed, stochastic volatility models are generally based on one (or more)
latent variables and a set of unobservable parameters. Empirical investiga-
tions? show that stochastic volatility models are very difficult to estimate.
Hence, the parameter misspecification problem due to estimation error can-
not be neglected either for the option pricing or for the hedging.

To reduce the impact of the parameter misspecification, the super-hedging
approach proposed by Avellaneda Levy and Parés [5] (hereafter ALP) can
be generalized to a stochastic volatility framework. The super-hedging un-
der ALP approach provides two bounds for the price of an option portfolio
by assuming that the volatility is unknown but bounded between two val-
ues. Defining a set of possible volatility values is equivalent to defining a set
of equivalent martingale measures for the no-arbitrage option price. Under
this approach the two bounds for the option price are generally very distant
from each other and cannot be conveniently used. By assuming a model
for the volatility dynamic and by imposing some bounds on the parameter
set, it is possible to reduce the set of equivalent martingale measures and
therefore the distance between the two price bounds.

In Chapter 2 the ALP approach is extended to a stochastic volatility

!See also the detailed surveys by Ball and Roma [7] and Frey [29].
2See Bakshi et al. [6], Chernov and Ghysels [12], Andersen at al. [3] and Fiorentini et
al. [26].



vii

framework. The two bounds for the price of an option portfolio are obtained
by numerically solving a non-linear PDE. The application to Heston’s model
shows that the distance between the two price bounds is lower than the
distance between the price bounds obtained in the ALP approach.

Within the ALP approach, the super-hedging price of an option portfolio
with a delta function monotonic with respect to the underlying price is given
by the Black-Scholes formula with volatility equal to one of the two bounds.
Under the stochastic volatility approach, a closed-form solution cannot be
obtained even in the case of monotonic delta function. However, a closed
form approximation of the two super-hedging bounds can be used whenever
a closed form solution can be obtained for the stochastic volatility model
considered.

In order to obtain a useful tool for pricing and hedging, a way to deter-
mine the parameter bounds has to be defined. In Chapter 3 some bounds
for the volatility process parameters are obtained by performing an interval
estimation of a class of stochastic volatility models. To have a consistent
estimator, the indirect inference introduced by Gourieroux, Monfort and Re-
nault [34] and the EMM introduced by Gallant and Tauchen [31] are used.
Both the estimation methods provide an asymptotic distribution for the esti-
mator that can be used to assess a confidence interval for model parameters.
In the same chapter, a Monte Carlo study is performed to verify whether
the asymptotic distribution could be considered a good approximation also
in the finite sample.

The estimation framework is divided into two parts. The first one is de-
voted to estimating the model under the real-world probability measure. For
this purpose, the underlying asset returns are used. The parameters esti-
mated in this way cannot be used for pricing and hedging purposes, where a
risk adjusted probability measure has to be considered. In order to estimate
the model parameters under the risk adjusted probability measure, a time
series of option implied volatility is used. Moreover, in the risk adjusted
framework, the distribution of option implied volatility can be estimated.

Chapter 4 is devoted to verifying pricing and hedging reliability of the
super-hedging method proposed. The pricing properties are examined in a
real data experiment. The option market price is almost always between
the two super-hedging bounds. Compared to the super-hedging bounds of
the ALP approach, the super-hedging bounds under stochastic volatility
get closer to each other and could be conveniently used to define a bid-ask
spread.

In a standard Black-Scholes framework, a self-financing replicating port-
folio can be found by using the underlying asset and a riskless bond. Since
in a stochastic volatility model there is a new source of randomness, the two
assets are no longer sufficient. In order to ensure both the replicating and
the self-financing properties, it is necessary to introduce a second option,
i.e. a new asset whose value depends on the volatility.
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A Monte Carlo experiment shows that the super-hedging under stochas-
tic volatility solves the parameter misspecification problem. Moreover, the
proposed super-hedging approach performs better than the ALP approach.
The same results are obtained under model misspecification.

In the second part of this work, we aim to show the impact of large option
positions on risk measurement methods. Chapter 5 provides an overview of
some value at risk (hereafter VaR) estimation methods. Among all VaR
estimation methods, only those able to manage non-linear positions are
considered. The first method considered is completely parametric and it
is based on a quadratic approximation. The non-parametric method based
on historical simulations is also described. The option portfolio revaluation
made for each past scenario makes this method suitable to manage large
option positions.

Two generalizations of the standard historical simulation method are
presented. The first one is that introduced by Boudoukh, Richardson and
Whitelaw [10] and it improves the sensitivity of VaR measure to sudden
changes in market risk. A more complex generalization is that introduced
by Barone-Adesi, Bourgoin and Giannopoulos [8], which is known as filtered
historical simulation method. This approach is primarily devoted to solving
the inconsistency problem of the standard historical simulation VaR esti-
mator. A generalization of the filtered historical simulation method is also
proposed.

The different VaR estimation methods are tested in Chapter 6 by using
an unconditional and a conditional test. The test refers to a time horizon
of one day and to accepted loss probabilities of 1% and 5%. Four portfolios
are considered: two with linear positions only and two with relevant option
positions.

The test results show that the filtered historical simulation approach
performs better than the other VaR estimation methods. The generalization
proposed performs better than the standard filtered historical simulation
method for the accepted loss probability of 5%. The worst performances are
obtained with the parametric method. It seems completely inadequate to
manage non-linear positions.
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Hedging problems with
uncertain volatility






Chapter 1

Complete and incomplete
markets

In a complete market all the contingent claims can be replicated by a portfo-
lio composed of some basic risky assets (stocks or currencies) and a riskless
asset. In this market, the no-arbitrage argument was used to price con-
tingent claims firstly by Black and Scholes [9] and Merton [51]. A more
mathematically precise framework for the application of the no-arbitrage
argument to the option pricing was given later by Harrison and Kreps [36]
and Harrison and Pliska [37], [38].

Although market completeness is a desirable property to price a claim, it
is not even a realistic assumption. However, also in an incomplete market,
the investor can be safe if he accepts to pay a higher hedging cost. The
subject was developed by Delbaen [17], El Karoui and Quenez [21] and
Kramkov [45] who introduced the idea of super-hedging strategy.

In this chapter, we stress the differences between complete and incom-
plete markets. The basic setting throughout will be a continuous time econ-
omy. However, to give a clearer interpretation to the results of the continu-
ous case, the discrete time economy will be described too.

In Section 1.1 the most important results in a complete market are de-
scribed. The section is a survey of the work by Harrison and Kreps [36] for
the discrete time economy and of the works by Harrison and Pliska [37], [38]
for the continuous time economy. In Section 1.2 we try to link the issue of
the uncertain volatility structure with the market incompleteness while in
Section 1.3 we describe the super-hedging strategy idea.

1.1 The complete market

In this section we adopt the distinction, originally made by Harrison and
Pliska [37], between the discrete-time and the continuous-time economies.
Although we are interested in the continuous time setting, the discrete time

3



4 COMPLETE AND INCOMPLETE MARKETS

economy with finite sample space enables us to give a more comprehensible
interpretation of the results. The continuous time results will be compared
to the discrete time ones whenever possiblel.

Later on, the market is assumed to be frictionless, i.e. trading can be con-
tinuous, with neither transaction costs nor short selling restrictions. More-
over, stocks pay no dividends.

1.1.1 The discrete time economy

Given a time horizon T' > 0, where T' € N, let (2, F,P) be a filtered probabil-
ity space where the filtration F = {F; : t = 1,2,...,T} is right-continuous,
Fo = {0,Q}, Fr := F and Q has a finite number of elements. Moreover,
assume P(w) > 0 for all w € Q.

Remark 1.1.1 The last statement implies that the investors agree only on
which state of the world are possible and not also on what the probability
of the states is. Thereafter the following definitions and results are true also
with a substitution of P by an equivalent probability measure. ]

The economy is composed by K + 1 securities whose price processes S =
{St:t=1,2,...,T} has strictly positive and F-adapted components. The
first security is riskless with S = 1. To be coherent with the notation of
the following sections we denote S = B;. Moreover we choose the riskless
security as numéraire asset.

In the above market, a trading strategy is a predictable (K +1)-dimensional
process ¢ = {¢; : t = 1,2,...,T}, where predictable means that ¢; € F;_1
for t = 1,2,...,T. The interpretation of each component is the number of
security units detained by the investor at time ¢.

Let us define the wealth process V;(¢) at time ¢ as

$iSi = OBy + 0 #hSE it t=1,2,...,T

-m@:{@&:ﬁ%+2ﬁm%§ﬁt:0

and the gain process G¢(¢) as

t t K t
Gi(¢) =D ¢iASi =Y ¢JABi+> > $fASH,
i=1 =1

k=11i=1

where AS; = S; — S;-1 and AB; = B; — B;_1. The gain process can
be interpreted as the sum of the capital gains realized by the investor up
through time t. It seems natural to set Go(¢) = 0.

!Note that a similar reason motivates the description of the discrete time framework
in Harrison and Pliska [37].
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Definition 1.1.1 A trading strategy ¢ is said to be self-financing if and
only if no funds are added or withdrawn at any period t = 1,2,...,T, that

is to say if $1Sy = ¢t+15’t. O

Remark 1.1.2 Recalling the definition of gain process, one can state that

Gt(¢) = Z¢i(si_si—1)

= 151 — P18+ P2S2 — P2 S1 + ... + ¢ ST — T ST
= ¢7ST — $15

where the last line is obtained by using the definition of self-financing trading
strategy. It follows that a trading strategy is self financing if and only if
Vi(¢) = Vo(ér) + Gi(), i.e. all changes in the portfolio value are due only
to the realized capital gains. O

Definition 1.1.2 A trading strategy ¢ is said to be admissible if it is self-
financing and Vi(¢) > 0, where the last statement means that Vi(¢) is a
positive process. O

The set of all admissible trading strategies is denoted by .

A T-maturity contingent claim ¢ is a F-measurable nonnegative random
variable. The value of ¢ can be interpreted as a payoff at time 7' of a
derivative asset such that it is determined by the realization of the S price
path. Without any other statement, only European style contingent claims
are considered. An European contingent claim is a derivative contract which
enables the investor to exercise it only at the expiration date T'. It differs
from the American style contingent claims where the exercise can take place
during all the life of the claim.

Definition 1.1.3 A contingent claim with time T payoff equal to ¢ is said
to be attainable if there exist an admissible trading strategy ¢ such that

Vr(¢) = ¢. O

The main question is to determine the “rational” price of such a claim. The
most common approach is to use the so called arbitrage argument. An arbi-
trage opportunity is defined to be an admissible strategy such that V5(¢) =0
and E[Vp(¢)] > 0, i.e. a strategy which can make profit without any invest-
ment and any risk. The rational claim price is obtained by assuming the
absence of arbitrage opportunity in the considered market.

First of all we have to define a price system for the contingent claims as
a function 7 which maps from the set of all integrable contingent claims to
Rt U {0} and satisfies the following conditions:

m(p) =0 ifandonlyif ¢=0
m(ap +by') = an(p) + br(¢) Va,b>0,
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where ¢ and ¢’ are two different arbitrary contingent claims. Note that the
last condition must be true for all the contingent claims. The above price
system is said to be consistent with the market model if n[Vp(4)] = Vo(¢)
for all ¢ € .

Definition 1.1.4 An equivalent martingale measure Q is a probability mea-
sure defined on the space (Q,F) such that

e it is equivalent to P, i.e. P(A) = 0 if and only if QLA) = 0 for all
AeF;

e the Radon-Nicodym derivative dQ/dP € L?(Q), F,P), that is

/(dQ/dIP)QdIP’ < 00 ;

o the discounted process B, 1S, is a Q-martingale.

a

The set of all the equivalent martingale measures is denoted by Q. Moreover,
one can say that if ¢ € ®, then each Q € Q is a martingale measure also for
the discounted value process B, th(qf)). Indeed, by using again the definition
of self-financing trading strategy, it is possible to verify that A[B, 'Vi(¢)] =
A(qStBt_ISt). The process {¢;} is predictable such that EQ[A(qf)tBt_ISt)] =0
and B, 'V;(¢) is a Q-martingale.

Harrison and Pliska [37] show the relationship between Q and the set of
price systems by proving the following proposition.

Proposition 1.1.1 There is a one-to-one correspondence between price sys-
tems ™ consistent with the market model and the probability measure Q € Q
via

m(p) = E?[B;ly]
Q(A) = =(Brla) AeF

where 14 is the indicator function of the set A and Egl.] is the ezpectation
operator under the probability Q. O

See Harrison and Pliska [37] pp. 227-228 for a proof.

Note that the price m(Brly4) is the price of a digital option that gives
Br at time T if w € A. Such a price is equal to the probability that w
belongs to A, indeed

m(Brla) = E? [Br'Brla] = Q4) .

The above proposition is used by Harrison and Pliska to prove the following
theorem and the consequent corollary.
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Theorem 1.1.1 The market model contains no arbitrage opportunity if and
only if Q is nonempty or, equivalently, if and only if there is at least one
price system. O

See Harrison and Pliska [37] pp. 228-229 for a complete proof.

Corollary 1.1.1 If the market model contains no arbitrage opportunity (or
if Q is nonempty or if there is al least one price system) then, for each
Q € Q, there is a single price 7 associated with any attainable contingent
claim @. The price satisfies 7 = EQ [B;lgo]. O

The above corollary states that in a market with no arbitrage opportunity
there is a unique price for every attainable contingent claim and for every
measure Q € Q. The following proposition goes a step ahead by identifying
what the price at any time £ is.

Proposition 1.1.2 If the contingent claim ¢ is attainable, then
Vi(¢) = BLEY B p|F t=0,1,...,T
for any ¢ € ® which generate ¢ and for any Q € Q. O

This proposition is proved by remembering that Vi(¢) = ¢ and that B; 'V;(¢)
is a martingale under each measure Q € Q.

Above there are the conditions to have no-arbitrage opportunity and to
obtain a no-arbitrage price for any attainable contingent claim, but nothing
was said about market completeness.

Definition 1.1.5 A security market model is said to be complete if every
contingent claim is attainable. O

Harrison and Kreps [36] characterize a complete market setting by proving
the following theorem.

Theorem 1.1.2 The security market model is free of arbitrage opportunity
and complete if and only if there exist a unique equivalent martingale mea-
sure. O

See Harrison and Kreps [36] p. 392 for a proof.

1.1.2 The continuous time economy

In the preceding section investors were allowed to trade only at discrete
times. If we assume that they can trade continuously, we need a more
complex setting. However, we try to facilitate the interpretation of the
continuous time results by giving to the present section a structure similar
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to that of the previous one. Hence most of the definitions, propositions and
theorems revised in the new setting keep an akin interpretation.

Given a time horizon T > 0 let (Q,F,P) be a filtered probability space
where the filtration F = {F; : t € [0,T]} is right-continuous, Fy := {0, Q}
and Fr := F. As in the preceding section, the economy is composed by
K + 1 securities whose price process S = {S; : t € [0,T]} has strictly
positive and F-adapted components. Here the components S?,Stl, .o, ST
are right continuous and left limited (hereafter cadlag).

In the above market, a trading strategy is a predictable (K+1)-dimensional
process ¢ = {¢; : t € [0,7]} whose components are locally bounded.
More precisely, we assume that either fOT |p2|dt or EJ fOT (F)2dt] for k =
1,2,..., K are finite with probability one such that the integral involving
#P and the stochastic integral involving ¢¥ are well defined?.

Remark 1.1.3 The definition of predictability is slightly different from that
in the preceding section. Indeed a process {S;} is said to be predictable if
it is measurable with respect to the predictable o-algebra. The predictable
o-algebra is the o-algebra on €2 x [0, 7] generated by the simple predictable
process. The process {S;} is a simple predictable process if there exist times
0=ty <ty <...<ty, =T and bounded random variable &y, &1,...,&, 1
where

&eF 1=0,1,...,n—1
such that
Si=¢& if t<t<tiy 1=0,1,...,n—1

However, the meaning is similar to that in the discrete market setting. In-
deed, the predictability condition means that ¢} is know immediately before
the time . i

Let us assume that the set Q contains at least one equivalent martingale
measure. The above assumption enables us to define the wealth process
Vi(¢) at time ¢ as

Vi(g) = ¢S = ¢Bi+ Y £ SF

k=1

and the gain process G¢(¢) as

t t nooot
— _ 0 k 7ok
Gi(¢) _/0 dudS _/0 ¢y dBy, + kgﬂ/() ¢, dS,, -

*Note that these are sufficient conditions and that they are invariant with respect to
an equivalent change of probability measure.
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Definition 1.1.6 A trading strategy ¢ is said to be self-financing over the
interval [0, T if the wealth process Vi(¢) satisfies the following condition:

dVi(¢) = ¢7dB; + ) ¢dS;
k=1
or in the integral form
Vi(g) = V0(¢)+/t¢0d3 +§nj/t¢’“ds
o P v
= Vo(¢) + Gi(9) -

a

This is equivalent to say that for a self-financing trading strategy the wealth
process variations are not due to addition or withdrawal of money. Note that
the last line of the above equation is equal to the definition of self-financing
trading strategy in the discrete time economy as in remark 1.1.2.

Let us denote @ the set of all self-financing trading strategies such that
Vi(¢) > 0. Note that this corresponds to the definition of admissible trad-
ing strategy given in the preceding section. In the case of a continuous
time model one should impose a further restriction to say that a strategy is
admissible.

To simplify the notation let us define the discounted price process {Z; :
t €1[0,T)} as Z; := B, *SF for k = 1,2,..., K. The discounted value process
is

Vi (¢) := B, 'Vi(9) t € [0,7]

whereas the discounted gain process is

t
Gi(9) == / $udZ, te[0,T]

By using the above definitions, Harrison and Pliska [37] proved the next
proposition and the consequent corollary:

Proposition 1.1.3 The trading strategy ¢ is self-financing if and only if
Vi(¢) = V5 (¢) + G (). Moreover, Vi(¢) > 0 if and only if Vi*(¢) > 0. O

Corollary 1.1.2 If ¢ € ®, then V;*(¢) is a positive local martingale, and
also a supermartingale, under each Q € Q. O

By recalling the definition of arbitrage opportunity, the above corollary
states that none of these are present in the market. Indeed, if ¢ € ®, then
Vi*(¢) is a positive supermartingale and by letting V' (¢) = Vo(¢) = 0 also
V7 (#) has to be equal to zero. Moreover, being the process {B;} bounded,
one must have V;(¢) = 0 for each t € [0,7]3.

3The equalities are in the Q-a.s. sense.
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Remark 1.1.4 Proposition 1.1.3 and Corollary 1.1.2 give the interpretation
of the assumption made on the set Q. Indeed, if the set Q is nonempty then
there are no arbitrage opportunities. Hence, it is possible to see now the
similarity with the discrete time setting, where no-arbitrage and nonempty
Q are two equivalent conditions. O

In spite of the results of the preceding section, the condition that ¢ belongs
to ® does not ensure the uniqueness of the price w. A bright example made
by Harrison and Pliska [37] shows how the set ® is too large to guarantee
the uniqueness of the price system. They solve the problem by introducing
a reference probability measure P* € Q and by defining £(Z) as the set of
all the predictable process Hy : ¢t € [0,T] for which the increasing process

[[oramn] " enm koo

is locally integrable under P*.

Definition 1.1.7 A trading strategy is said to be admissible if ¢ € L(Z),
V(@) > 0 for t € [0,T], V;*(¢p) = V' (¢) + Gi(p) and V*(¢) is a P*-

martingale. O

The set of all admissible trading strategies is denoted by ®*. Note that
the set ®* now is the set of all the trading strategies for which V*(¢) is a
P*-martingale and not just a local martingale. Moreover, the last statement
of the above definition implies that

EV Vi) = V5 (4)
that immediately proofs the following proposition.

Proposition 1.1.4 The unique price associated with the attainable contin-
gent claim ¢ is ™ = EP*[BEIQD]. O

Harrison and Pliska [37] proved the analogous to the proposition 1.1.2.

Proposition 1.1.5 Let ¢ be an integrable contingent claim and V,* the cad-
lag modification of V = E¥ [B;1<p|.7-"t]. Then ¢ is attainable if and only if
Vi can be represented as Vi = Vi + [ HdZ for some process Hy belonging
to L(Z), in which case V*(¢) = V;* for any ¢ € * which generate . O

Keeping the definition of completeness of the previous section, it is now
useful to introduce the following theorem.

Theorem 1.1.3 The following statements are equivalent:

(a) The model is complete under P*.



COMPLETE AND INCOMPLETE MARKETS 11
(b) Every martingale {M; :t € [0,T]} can be represented in the form
¢
M, = M, +/ H,dZ, ,
0

for some Hy belonging to L(Z) (representation property).

(¢) Q has exactly one element (singleton condition,).

For a proof see Harrison and Pliska [38] pp. 315-316.
Note that as in the preceding section the singleton condition of the set
Q is a necessary and sufficient condition for the completeness of the market.

1.2 Incomplete market and volatility
misspecification

In spite of the convenience of the completeness condition, usually one has
to work with a more realistic incomplete market. The market is incomplete
when some contingent claims are not attainable, i.e. every time that it is
not possible to find an admissible trading strategy to replicate the payoff of
the claim at the maturity.

The sources of incompleteness are manifold. When the probability space
is finite and the time is discrete, there is incompleteness if the number of the
future states of the world is larger than the number of independent assets in
the market. This can arise, for instance, when there is no access to certain
stocks.

In the continuous time economy, Karatzas [42] shows that the market
is complete if and only if the number of independent risky assets traded in
the market matches the number of independent sources of uncertainty which
drive the asset prices. Hence, there is incompleteness when the number of
independent sources of uncertainty is larger than the number of independent
risky assets. This situation arises, for instance, when the volatility moves
according to a stochastic process. Indeed, the volatility is generally not
traded in the market?.

In any case, when the economy is incomplete, one has to face the prob-
lem to price the contingent claims without using the standard arbitrage
argument. This is true even if the market model is arbitrage-free. As a
consequence, one is no longer sure about the uniqueness condition of the set
Q.

The kind of incompleteness that we deal with is generated by the un-
observability of the volatility. In the Black-Scholes model the volatility

4However, note that, in this case, it is sufficient to introduce a traded option to complete
the market. See Section 4.3 for more details.
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parameter is assumed to be known. As matter of fact, the volatility is never
known and it is replaced by its estimated value. Such a substitution is the
cause of the so called volatility misspecification problem that belongs to the
more general field of model risk.

One of the solutions to the problem is to remove the assumption of
a known volatility. This is the aim of stochastic volatility models, where
volatility is assumed to follow a process whose variations are described by
a stochastic differential equation. With the exception of the CEV diffusion
model introduced by Cox [16], in all the stochastic volatility models there is
the assumption that the sources of uncertainty driving the volatility process
are not the same ones driving the price process. According to Karatzas [42],
this feature generates market incompleteness.

In this case market incompleteness is generally handled by equilibrium
considerations. Indeed, by exogenously assuming a risk premium structure
for volatility risk, the no arbitrage argument can be used as in a complete
market®.

Even if one solves the incompleteness problem, stochastic volatility mod-
els are affected by other practical problems which reduce their attractiveness.
One of the most important problem concerns the estimation of the process
parameters. Indeed, while in the Black-Scholes model the only parameter
to be estimated is the volatility, here the number of parameters to be es-
timated is generally higher than one. Hence, the misspecification problem
is transferred from the volatility value to the parameters of the volatility
process.

A completely different approach, introduced by Avellaneda, Lavy and
Parés [5], does not make any assumption on the volatility process with the
exception that the realized volatility values have to lie inside two bounds.
The results are based on the idea of super-hedging strategy described in the
next section.

1.3 The super-hedging strategy

To solve the pricing problem in an incomplete framework, Delbaen [17] and
El Karoui and Quenez [21], among others, introduced the notion of super-
hedging strategy in a continuous time framework. Subsequently Kramkov
[45] developed the theory for a general semimartingale framework.

The super-hedging theory states that in a perfect but incomplete market,
it is possible to create a trading strategy that enables the seller (buyer) of
a claim to have a portfolio value higher (lower) or equal to the claim value
at the expiration date.

Definition 1.3.1 A super-hedging strategy for a short position in the con-

5See Wiggins [62] and Lewis [48] among the others.



COMPLETE AND INCOMPLETE MARKETS 13

tingent claim ¢ is a self-financing trading strategy ¢ for which Vp(¢p) > .
O

Definition 1.3.2 A super-hedging strategy for a long position in the con-
tingent claim ¢ is a self-financing trading strategy ¢ for which V() < .
Od

A super-hedging strategy does not replicate the claim. Even so, it avoids
any losses at the expiration of it. Moreover, the considered trading strategy
is self-financing. This differentiates the present approach from the risk-
minimization hedging method developed by Félmer and Schweizer [27], [28],
where the trading strategy allows additional transfers of funds.

According to the above definitions, the seller’s and buyer’s price (respec-
tively W+ and W) for the non attainable contingent claim are:

W," = inf {Vi(¢)|3 ¢ € ®* : Vir(¢) > ¢} ,
W, = sup {Vi(¢)[3 p€ P : V() < g} .

For a non negative derivative one can state also that the buyer’s price is
less then the seller’s price. The two prices equal only when the derivative is
attainable.

In an incomplete market there is no guarantee that the equivalent mar-
tingale measure is unique. In this case, the set of equivalent martingale
measures defines a range of candidate contingent claim prices. The two
bounds of this range are

By sup EQ [Brlo|F] By inf EQ[Brlo|F] .
QeQ QeQ

When the claim payoff is bounded below, El Karoui and Quenez [21] proved
that the two bounds are, respectively, the seller’s price and the buyer’s price.

At first glance, the above theory seems a very attractive deal to price
and hedge contingent claims in an incomplete market. However, when the
incompleteness is generated by the uncertainty on the volatility structure
the difference between seller’s and buyer’s price is often very high and the
super-hedging is too expensive. In this situation, prices obtained by the
super-hedging theory have no-practical relevance.
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Chapter 2

Super-hedging strategy and
stochastic volatility models

The major problem for an institution selling an option not traded in a liquid
market is to determine the cost of the hedging strategy to be used in order
to avoid a loss. A related problem is the computation of the price that the
same institution has to propose to buy the claim back. These tasks are
indeed very hard even in a standard Black-Scholes framework. Indeed, the
unobservability of the volatility parameter can lead an incorrect valuation
of the hedging cost and then to a misspricing of the option.

The super-hedging approach introduced in Chapter 1 addresses this
problem. However, although the super-hedging setting gives a clear theoret-
ical framework for the pricing of claims under uncertain volatility structure,
it is often unable to provide prices with a practical interest for practitioners.
The main problem is that the implied hedging cost is too high to be payable,
so that a “pure” super-hedging strategy cannot be reasonably used. For in-
stance, in a model where volatility follows an unbounded diffusion process,
Frey and Sin [30] show that the seller’s price for a European call is equal to
the price of the underlying asset.

To tackle the super-hedging problem, many authors impose further re-
strictions on volatility behavior in order to reduce the cost of a super-hedging
strategy. In this direction, Avellaneda, Levy and Pards [5] assume that
volatility lies between two bounds from the date the claim is issued to ma-
turity. Without any assumption on the parametric class of volatility process,
they get a non-linear PDE whose solution is the super-hedging price of the
claim under a possible volatility misspecification. However, the no-arbitrage
interval is still too large.

In this paper, we apply the approach proposed by Avellaneda, Levy and
Parés (hereafter ALP) to a parametric class of stochastic volatility models.
The main idea is to switch from the bounds on the volatility level to some
bounds on the parameters of the volatility process. The implied seller’s

15
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price can be obtained by solving a PDE and, generally, it is lower than
the price obtained by the ALP approach. On the other hand, the buyer’s
price is higher than the price obtained by the ALP approach, so that the
no-arbitrage pricing interval is reduced.

In order to show some numerical results, an application to Heston [40]
model is presented. However, note that the following analysis is sufficiently
general and many other stochastic volatility models could be considered.
In this framework we investigate the reduction effect in the no-arbitrage
pricing interval. We show that the formula proposed by Heston, with a
proper choice of parameters, can be considered a good approximation of the
seller’s and the buyer’s price for plain vanilla options.

In Section 2.1 we show the main results of the work of Avellaneda, Levy
and Pards [5]. Section 2.2 introduces a general parametric specification and
shows how it is possible to move from a volatility misspecification problem to
a misspecification problem that involves only volatility process parameters.
A numerical application is done in Section 2.3 and Section 2.4 concludes.

2.1 Uncertain volatility and stochastic control

The basic idea behind the ALP approach is to consider some volatility
bounds instead of the whole process. Indeed, they do not impose any
volatility dynamics, but they guess that future volatility values will stay
in a bounded set for all times up to the maturity of the claim.

Let us introduce a probability space (2, F,P), a fixed time horizon T €
(0,00) and a right-continuous filtration {F;}co,r With Fo := {0,Q} and
Fr := F. The market is assumed to be frictionless and the transactions are
in continuous time. The economy is composed by two primary assets whose
price processes {Bi}ycio,7) and {St}iejo1) are cadlag, strictly positive and
adapted to the filtration {F;}. The first security is the riskless asset and we
choose it as numéraire asset.

In order to exclude arbitrage opportunities, we assume that the dis-
counted price process S;/B; admits (at least) an equivalent local martingale
measure Q. Moreover, under Q the price process S; is described by the
following SDE:

dSt = TSt dt + \/’U_tSt dwt ; (21)

where w; is a QBrownian motion, 7 is the instantaneous interest rate and v;
represents the square of the volatility process at time ¢. The instantaneous
interest rate is assumed to be constant for all relevant trading dates. Hence,
dBt == ’I"Btdt and B() = 1.

A T-maturity European style contingent claim (St ) is an Fr-measurable
non-negative random variable. The value of ¢(S7) can be interpreted as a
payoff at time T of a derivative asset and it is assumed to be bounded below.
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Since the number of independent sources of uncertainty is higher than
the number of risky assets, the market is incomplete. Because of the incom-
pleteness, the probability measure Q is not unique. Let us denote Q the
set of probability measures such that (2.1) holds for some non-anticipative
volatility function satisfying the following condition:

v € ['Umina 'Umaac] Vite [OaT] y (22)

where vpin > 0 and vgpe, < oo. In other words, the set Q contains all
measures Q determined by any volatility process satisfying (2.2).

Remark 2.1.1 The assumption (2.2) implies that the Novikov condition
for the process v; is true. Hence, the set Q is a set of martingale measures
(not just local martingales) for the discounted price process S;/B;!. O

The no-arbitrage price of the contingent claim ¢(Sr) lies between the fol-
lowing bounds:

WH(S,,t) = esssup EV [e_r(T_t)QD(ST)LTt] ) (2.3)
Qe
W(Sit) = ess inf B9 aICAFA (2.4)

As suggested by Avellaneda, Levy and Pards [5], the two bounds can be
obtained by solving a dynamic programming problem and by considering
(2.3) and (2.4) as two stochastic control problems with control variable v;.
The PDEs obtained for the upper and lower bounds are, respectively,

owt oWt 1
ot ag TSt S mant (2.5)
1 :
+ §F+Szl{[‘+<0} (Umin - 'Umaw) - 7"W+ =0 y
ow— oW~ 1
o T a5 TSt gl Svmart
1 (2.6)
+ EP_521{I‘—>0}(Umin - 'Umaw) —rW™ =0,
where ' := 32{’9‘? and '~ := %. The solutions to (2.5) and (2.6) are

found by assuming the boundary condition W=*(Sz, T) = ¢(S7).

Remark 2.1.2 When the portfolio is composed only by short or long po-
sitions on plain vanilla options, its payoff function is, respectively, always
concave or always convex. In such a case the solution of the above PDE is
straightforward and is equal to the Black-Scholes solution with the volatility
equal to one of the two bounds in (2.2)2. However, in portfolios with mixed
convexity the previous statement is no longer true. O

!See, for instance, Karatzas and Shreve [43] Corollary 5.13 on Section 3.5.
*See El Karoui et al. [20] for more details.
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Example 2.1.1 Let us consider a bullish call spread with the two strikes
equal to 80 and 100. The risk-free rate is 0.05 and the option maturities are
both 6 months. Moreover, let as assume that with a certain confidence the
volatility /vy will lie inside the interval [0.1,0.5].

By using a Crank-Nicholson scheme?, we can solve equations (2.5) and
(2.6) for different values of the underlying. The results are showed in Figure
2.1. The dotted line in the figure represents the spread price according to
Black-Scholes formula.

In particular, if we assume that Sy = 90, the prices according to equa-
tions (2.5) and (2.6) are 13.289 and 5.751, i.e. respectively 34.09% higher
and 41.96% lower than the Black-Scholes price obtained by considering a
volatility of 0.3. O

N
o
T
1

[y
al
T
1

super—hedging claim price
o o
T T
1 1

o
1

20 40 60 80 100 120 140 160 180 200
underlying price

Figure 2.1: Seller’s and buyer’s prices according to equations (2.5) and (2.6)
of a bullish call spread (solid line), compared with Black-Scholes prices for
the same spread (dotted line).

2.2 Stochastic volatility
with unknown process parameters

Let us assume that the stock price process is the solution of the following
stochastic differential equation system:

dS; = psSydt+ |vg|'/?Sydwr
dvi = puy(ve;0)dt + n(ve; 0)[pdw g + /1 — pPdway] ,
defined on the filtered probability space (€2, F,{F;},P) where the filtration

{F}ieo,1) is generated by the two dimensional P-Brownian motion w; =
(w14, wa). Moreover, § € R" is the set of process parameters whereas

2.7)

3See Press et al. [54]. In Wilmott et al. [63] there is an application to the Black-Scholes
model.
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iy (ve; 0) and n(vy; @) are continuous functions of vs. All coefficients defined
are supposed to be adapted to {F;}.

Let us define two adapted and suitably regular* processes {A it }eeo,m
and {A2t }yefo,7] such that

t
w;,t = wjt +/O Aju du j=1,2

and wy = (w7 ;, w3 ;) is a Q-Brownian motion. As usual, the new probability
measure Q is given by the Radon-Nikodym derivative

aQ _ T 1T e
T2 = exp [—/0 X dwu—i/o Dl du (2.8)

where A\; = [A1; A2;]). Under the new measure Q, the system of stochastic
differential equations (2.7) can be written as

dSt = TStdt + \vt|1/25tdw’{,t )

2.9
dvy, = Mg(vt; 0)dt + n(ve; 6) [Pdwit +v1- pzdw§,t] : 29

where

pQ(v4;0) = 11y (v650) — n(v150) (PA14 + V1 — p2hay) -

This implies that the discounted price process S;/B; is a positive local mar-
tingale under Q. For a given value of 6, using standard arbitrage arguments
we can state that in the above economy, the price of the contingent claim
whose payoff in T' is ¢(S7) is the solution of the following PDE:

ow oW ow 10°W
- 77 27 Qn,. A 2
ot + 9S St’f'+ o Moy (’Ut,e) + 9 852 UtSt+ (2 10)
+ 22W 2 us0) + V2 Sm(w1; 0)p — W, = 0 |
2 002 N \V¢; 9590 Ut Vs 0)p — T =V .

While the specification of A;; can be defined as (u —r) vt_l/Q, to define Ao ;
it is necessary to introduce some equilibrium considerations. Indeed, there
is an infinite number of processes Ao ; such to produce a claim price that
ensures no arbitrage opportunities.

Let us assume that the process A9 is a function of S, v; and 6 only®.
Once defined the process Ag 4, it is possible to define a pricing function for the
contingent claim. However, a problem still remains. Indeed, the volatility
process parameters € are not known and they have to be estimated. Also if
one is sure about the parametric specification of the volatility distribution,
estimation risk remains.

1At least, the two processes have to satisfy Novikov condition.
®Note that this assumption implies that we are working in a Markovian setting.
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In order to address the problem, we consider the parameter values un-
known and we assume that for every parameter the following condition is
true:

Oi,min < gi,t < Qi,mm 1=1,2,...,n Vi € [O,T] (2.11)

Since the set of volatility parameters is no longer unique, equation (2.8)
cannot uniquely define the probability measure Q. Let us define Qg the set
of all probability measure consistent with condition (2.11).

Remark 2.2.1 Note that, if the process v; satisfies condition (2.2) then
Qp C Q. In Reference 2.1.1 we show that under condition (2.2) the set Qg
is a set of martingale measure for the discounted price process S;/B;. The
same result can be obtained by assuming a non-positive correlation between
wy and wy. To prove the last statement and for a discussion on the subject
see Sin [59]. O

Assumption 1 The process v; satisfies the Novikov condition.

Proposition 2.2.1 If the price dynamics is described by (2.9) and assump-
tion 1 is true, then the solution of the optimization problem (2.3), where
Q € Qqy, is given by the following PDE

owt  owt ow+ 19°w+

—— + e TS+ 5 —01+ 5 g USi+

102w+ FPW i n
T2 a0 P2 gy vl Sips W =0

where
L maxg uQ(vi; 0) if a‘gy >0 9.1
Y1 = . Q .. OWT ( . 3)
ming p, (vi;0) if “g— <0
maxg n2(v;0) i EWE )
P2 = ) ""2( ) f R (2.14)
mingn?(v;0) if 2% <0
_ | maxgpn(u;0) if ZHZ>0
p3 = . LA (2.15)
ming p n(vi;0) if o500 <0

The solution of the optimization problem (2.4) is given by the same PDE
with reversed inequalities 1, o and 3.

Let us remark that (1, w9 and 3 are functions whose value at time s €
[t,T] depends respectively on the sign of the first derivative with respect to
instantaneous variance, the second derivative with respect to instantaneous
variance and the cross derivative at time s.
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2.3 An application to a specific model

The Heston model is characterized by the following definitions:
o (Vg3 0) 1= K[D — vy] n(ve; 0) == 6y/v

where k > 0, v > 0 and § are parameters. In order to get v; non negative
a.s. for all ¢, one has to impose® 62 < 2x%.

By using the results of the general equilibrium model of Cox, Ingersoll
and Ross [15], Heston finds a volatility risk premium proportional to v; and
such that the process Ay ; satisfies the following equation

5 [p(u — )+ /1 — p2/\2’t] = Avg (2.16)

where ) is a constant. The risk-adjusted process in the Heston model can
then be written as

dSt = ‘T‘Stdt + \/’U_tStd’wit y
dvy = [C—&uldt + 6\ /vi[p dwi; + /1~ p? dwy,] ,
where & 1= k+ A, ( := kU and 0 := [(, &, J, p| is the set of model parameters.

With the risk-adjusted parameters, the restriction imposed to get v; non
negative a.s. becomes §? < 2¢. Moreover, the functions ¢ and @s become

(2.17)

. +
1 = Cmaz — Eminvy  if —61(;[;+ >0
Cmin — Emazvr  1f % <0
2 e 02w
o = 6’2"“% if RN 20
6"””'[)75 lf 6’112 < O

while 3 becomes

. 2w+

. >
for Pmin S Pmazx S 0 Y3 = Pmaz‘smm\/v_t lf 682%[6/1‘]" _ 0
pmin(smaac\/v_t if 050v <0

5 if a?wt >
for Pmin <0< Praz 3 1= Pmaz m(w\/lu_t 1 59251/914 =Y
pminémax\/v_t if o500 < 0

5 if 2wt >
for 0 < Pmin < Pmazx Y3 = pmaz mam\/’u_t 1 (';92514(21'}" =Y
sz’n(smin\/v_t if o500 < 0

Example 2.3.1 Let us consider again the data of the Example 2.1.1. As-
sume that the parameters can fluctuate inside the following intervals: { €
[0.01,0.25], &£ € [0.5,2], § € [0.01,0.10] and p € [—0.5,0]. The instantaneous

See Cox, Ingersoll and Ross [14] for more details.
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variance v; is 0.13. The above intervals are consistent with the EMM esti-
mation of the Heston model done on the S&P 500 option prices by Chernov
and Ghysels [12]. The restriction 62 < 2( is respected.

The super-hedging prices according to equation (2.12) are represented in
Figures 2.2 and 2.3. In plot (a) of both figures, seller’s and buyer’s prices are
computed by letting all the parameters fluctuate within the defined bounds.
In the two figures, we perform a sort of sensitivity analysis to show what
parameters mostly influence the spread price. In all the cases, seller’s and
buyer’s prices (solid line) are compared with Heston prices (dotted line)
calculated by assuming that the value of the parameters is the mean of the
two bounds.

Figure 2.4 shows the differences between super-hedging prices and Hes-
ton prices. In order to remove the dependence on the claim moneyness, the
differences were divided by the underlying price. It is clear that the differ-
ences are higher when one of the two options of the spread is at-the-money.
This shows that at-the-money options are more sensitive to parameter mis-
specifications.

Figure 2.5 presents the differences between prices obtained by equation
(2.12) and those obtained by equation (2.5), i.e. the result of the ALP ap-
proach. In order to solve equation (2.5) the two bounds vy, and vy, are
fixed such that Q(vy > Vmaez) = Qv < Vmin) = 0.05%. The two values are
Vmaz = 0.437 and vy, = 0.259.

The solid line represents the differences between seller’s prices obtained
by equation (2.12) and seller’s prices according to (2.5). Since the differ-
ence is always negative, we see that using equation (2.12) seller’s prices are
lower than the ones obtained by the ALP approach. The opposite result is
obtained for buyer’s prices where the differences are always positive. The
result is that the no-arbitrage pricing interval is reduces. O

In the Heston model the optimization problems (2.13), (2.14) and (2.15)
can be solved in a trivial way. In spite of this, we cannot have a closed form
solution for equation (2.12) even for plain vanilla options. Indeed, in this
case one is sure only about the sign of %.

However, the function ¢; depends on the drift parameters only, while the
functions @9 and 3 depend on the diffusion parameters only. In Example
2.3.1, we showed that the misspecification of the diffusion parameters can
scarcely affect the super-hedging price. By assuming no-misspecification on
0 and p the non-linearity of the equation (2.12) depends only on ;.

For plain vanilla options, the first derivative with respect to v; is not
negative and the Heston formula can be used. In this case, the parameter
has to be set equal to ez for a short option position and to (g, for a long
option position. The parameter ¢ has to be set equal to &, for a short
option position and to &4, for a long option position.
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Figure 2.2: Seller’s and buyer’s prices according to equation (2.12) of a
bullish call spread (solid line) compared with Heston’s prices of the same
spread (dotted line).

Example 2.3.2 Let us consider a put option with a strike price 100 and
maturity 6 months. Moreover, r = 0.05 and vy = 0.13. The parameters
can fluctuate inside the following intervals: ¢ € [0.01,0.25], £ € [0.5,2],
0 € [0.01,0.10] and p € [—0.5,0]. By assuming no-misspecification of the
parameters d and p, we can use the Heston formula to price the put by fixing
¢ = 0.25 and ¢ = 0.5 for seller’s price and ( = 0.01 and ¢ = 2 for buyer’s
price.

In Figure 2.6, the prices of the put for different values of the underlying
are plotted. In plot (a), seller’s and buyer’s prices are computed according
to equation (2.12), i.e. by considering also ¢ and p misspecified. In plot
(b), seller’s and buyer’s prices are computed according to equation (2.12) by
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Figure 2.3: Seller’s and buyer’s prices according to equation (2.12) of a
bullish call spread (solid line) compared with Heston’s prices of the same
spread (dotted line).

fixing 6 = 0.05 and p = —0.25. The same result is obtained in plot (c) by
using the Heston formula where for seller’s price we fix { = 0.25, ¢ = 0.5,
6 = 0.05 and p = —0.25 while for buyer’s price ( = 0.01, £ = 2, § = 0.05
and p = —0.25.

In plot (d) of Figure 2.6 we present the differences between the prices in
plot (a) and the prices in plot (c). The solid line represents the seller’s price
differences while the dotted line represents the buyer’s price differences. In
order to remove the dependence of the differences on the option moneyness
the differences are divided by the underlying price.

In Table 2.1 there is a comparison between the size of the no-arbitrage
pricing interval according to equation (2.12) and the size of the no-arbitrage
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Figure 2.4: Differences between super-hedging price and Heston’s price. In
order to remove the dependence on the option moneyness the differences are
divided by the underlying price.
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Figure 2.5: Differences between the prices obtained by equation (2.12) and
prices according to Avellaneda, Levy and Paras. Solid line represents the
differences between seller’s prices whereas dotted line represents the differ-
ences between buyer’s prices

pricing interval according to the ALP approach. In the last two lines of the
same table, we show the differences between the claim prices according to
equation (2.12) and the claim prices according to the ALP approach. Note
that the former was obtained by using the Black-Scholes formula (see remark
2.1.2).

The values reported refer to three levels of moneyness. In all three cases,
equation (2.12) allows a remarkable reduction of the no-arbitrage pricing
interval. O
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Table 2.1: Comparison between prices according to equation (2.12) and
prices according to Avellaneda, Levy and Paras for three different levels of
moneyness.

moneyness
0.851 1 1.175

Wt —-w- 2.784 3.456 2.871

ASP — ABP  3.857 4.894 3.942

Wt ASP  -0.308 (-1.69%) -0.354 (-3.35%) -0.277 (-5.28%)
W-— ABP 0765 (4.97%) 1.083 (15.21%) 0.794 (33.49%)
ASP is the seller’s price of Avellaneda (/v; = 0.437).
ABP is the buyer’s price of Avellaneda (,/v; = 0.259).

2.4 Conclusion

In this work we try to address the problem of parameter misspecification
in stochastic volatility models. To this end, we use the approach proposed
by Avellaneda, Levy and Pards [5] and we move from a framework with
uncertain volatility to uncertainty on the volatility process parameters.

We consider a generic class of stochastic volatility models that depends
on a set of parameters. We assume that parameter values are unknown but
limited between two bounds and we find a PDE whose solutions represent
seller’s and buyer’s prices of a European contingent claim. A numerical
application shows that seller’s prices and buyer’s prices are, respectively
significantly lower and higher than those obtained by the ALP approach.
Since the super-hedging bounds under stochastic volatility get closer to each
other, they can be conveniently used to define a bid-ask spread.

In this framework, it is not possible to get a closed form solution either for
plain vanilla options. However, we show that, at least in the case examined,
seller’s and buyer’s prices of a plain vanilla option can be properly approxi-
mated by the Heston formula with a slight change of parameter. The same
approximation can be extended to all the options whose first derivative with
respect to v; is always positive or always negative for all the possible values
of Sy and v;. This feature allows a remarkable simplification for pricing and
hedging this kind of options.
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Figure 2.6: Seller’s and buyer’s prices of a put option (solid line) compared
with Heston prices of the same put (dotted line). In plot (d) there are the
differences between seller’s prices in plot (a) and seller’s prices in plot (c)
(solid line) and between buyer’s prices in plot (a) and buyer’s prices in plot
(c) (dotted line).
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Chapter 3

A consistent stochastic
volatility model estimation

Option pricing has become one of the most studied features both by aca-
demics and by practitioners. During the last two decades, the Black-Scholes
pricing model has become the benchmark for academics and the standard
for practitioners. However, from the academic point of view, the Black-
Scholes model cannot be considered consistent with observed data. Indeed,
the presence of high kurtosis in log-return distributions, together with the
evidence of implied volatility “smiles” and “term structures”, remarkably
contradicts the model hypotheses.

In spite of its limits, the Black-Scholes model is almost the only option
pricing model used by practitioners. Some classes of alternative pricing mod-
els have been proposed. In the best known one, some of the Black-Scholes
limits have been overcome by assuming a stochastic process for volatility.

However, by using a stochastic volatility model, pricing problems are
only shifted or reduced, not removed completely. One of the most impor-
tant problems, at least from the point of view of practitioners, is related to
parameter estimation. Indeed, whereas the Black-Scholes model has only
one unobservable parameter, stochastic volatility models are based on one
(or more) latent variable and a set of unobservable parameters.

Moreover, in a stochastic volatility framework the distinction between
objective probability P and risk adjusted probability Q produces a non-
trivial effect on parameter estimation. Indeed, since markets are not com-
plete, the risk premium due to stochastic volatility does not disappear in
the pricing framework and it has to be estimated. This implies a distinct
estimation of objective parameters (i.e. parameters estimated under P) and
risk-adjusted parameters (i.e. parameters estimated under Q).

Under Q, one of the most diffused methods to find some values for model
parameters is to calibrate the model to the cross-section of option prices.
Bakshi et al. [6] use the cross-section of options prices to calibrate the model
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completely disregarding the underlying return time series. Indeed, they get
the parameters by minimizing the sum of the squared differences between
model prices and market prices of the options.

Pure model calibration does not generally allow us to perform a con-
fidence interval estimation for parameter values. This problem can be re-
moved by using an estimation procedure. Indeed, the estimators distri-
bution, at least the asymptotic one, is generally known and a confidence
interval can be estimated. On the other hand, the continuous time frame-
work of a stochastic volatility model introduces some serious problems on the
estimation procedure. Standard estimation techniques, such as maximum
likelihood estimation or GMM, become computationally very intensive and,
in many cases, unfeasible. Moreover, there is a discretization bias that has
to be taken into account.

In this framework, the indirect inference estimation method introduced
by Gourieroux et al. [34] is appealing for two main reasons. First, it is able
to estimate consistently a stochastic volatility model by removing the dis-
cretization bias. Second, it is always feasible or, in any case, the conditions
for the implementation are typically weak.

Based on the same idea of indirect inference, the Efficient Method of
Moments (hereafter EMM) is a widespread estimation method for stochastic
volatility models. Introduced by Gallant and Tauchen [31], it has the same
merits of indirect inference with the advantage that, in most applications,
it requires less computational time.

Indirect inference and EMM estimators can be considered the two most
widely used estimation methods for stochastic volatility models. They can
be equally used to estimate objective parameters and risk adjusted param-
eters. Hence, input data can be both underlying prices and option prices.
The main literature uses option data and underlying time series in different
manners. For instance, Fiorentini et al. [26] use jointly the underlying return
time series and the cross-section of option prices to estimate the Heston [40]
model. In particular, they separately estimate the parameters under P (by
indirect inference) and the price of volatility risk (by a calibration similar
to that proposed by Bakshi et al. [6]).

With the same aim, Chernov and Ghysels [12] use underlying returns
and option prices simultaneously. By using at-the-money call option prices
and underlying returns, they estimate the objective and the risk adjusted
densities by EMM. One of the main conclusions drawn in Chernov and
Ghysels concerns hedging performances. From the hedging point of view,
they show that parameters estimated by using only option prices “dominate”
those estimated by using both option prices and underlying prices. Hence,
the use of underlying prices does not improve hedging performances.

Especially for pricing and hedging options, an accurate parameter es-
timate is probably the most remarkable issue. Indeed, biases and large
estimation standard errors can lead to wrong results both in pricing and
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hedging options. For these reasons, the main goal of this chapter is to test
empirically the properties of indirect inference estimator and EMM estima-
tor. According to this aim, the main focus will be on parameter estimation
under Q, i.e. by using option price information. Estimation according to
underlying prices will be considered only as a term of comparison.

The stochastic volatility models considered are the Heston model and
a model proposed by Lewis [48] (hereafter 3/2 model). The same author
proposed a perturbation approach on the diffusion parameter to get an ap-
proximated option price under a class of stochastic volatility models that
includes also the Heston model.

Under @, two estimation methods are proposed: the first one is based on
an indirect inference and the second on an EMM estimator. Option prices
are not used directly. For estimation purposes Black-Scholes implied volatil-
ities (hereafter BSIV) are used. Since the process that governs the BSIV
dynamics is unknown, it is convenient to approximate it by an Ornstein-
Uhlenbeck process. The Ornstein-Uhlenbeck process admits an exact dis-
cretization and it can be suitably taken as auxiliary model.

Estimation of objective parameters is performed by means of a GARCH
auxiliary model. This is a standard choice that seems to give good results
also when sample size is not too large!. Since there is no closed-form expres-
sion for the auxiliary model estimator, only the EMM estimation method
will be applied. Indeed, without closed form for the auxiliary parameter es-
timation, indirect inference is computationally very intensive. More details
on the issue may be found in Section 3.1.

For both objective parameters and risk adjusted parameters, a Monte
Carlo study and a real data estimation are performed. The Monte Carlo
study is mainly devoted to three aims. The first one is to show whether
estimation bias is completely removed for all the parameters. The second
is to show what the estimation variance for each parameter is. The final
goal is to verify whether the estimator’s asymptotic distribution is a good
approximation of the finite sample counterpart.

The real data application is based on SMI index returns and on the SMI
volatility index (hereafter VSMI), respectively, for objective parameters and
risk adjusted parameters. VSMI is a public volatility index obtained by
at-the-money options with time to maturity of about 45 days.

Sections 3.1 and 3.2 briefly review the indirect inference and the EMM
methodologies. The asymptotic properties of the two estimators are de-
scribed in Section 3.3, while Section 3.4 presents an application to a class
of stochastic volatility models. This application is the central topic of the
work and it is divided into two parts: the objective parameter estimation
(Section 3.4.1) and the risk adjusted parameter estimation (Section 3.4.2).

The results of the Monte Carlo study are presented in Section 3.5, while

'For more details see Andersen et al. [3].
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in Section 3.6 an application to the Swiss market is described. Section 3.7
concludes.

3.1 Indirect Inference

Let us consider a process {S; }1en, with strictly stationary increments {y;},
generated by the dynamics:

Sy = (pl(St—laEtag) (31)

ug = @o(u1,€¢,0)
where § € © C R™ is the parameter vector, ¢;(.) and ¢y(.) are parametric
functions, u; is a latent variable and the p-dimension process {e;} is iid
distributed with mean 0, variance I, and known distribution.

For a given value of the parameters 6, model (3.1) defines a probability
measure? Py. The class of probability measures generated by every admis-
sible @ € © is denoted by P :={Py:0 € © C R™}.

Following the main indirect inference literature, Py will be called struc-
tural model and 0 structural parameter vector. Let us assume that Py is
correctly specified, i.e. that there exists at least a value 8y € © such that
the probability measure Py, is the true probability measure of the process
{yt}-

The structural model is possibly based on a class of density functions
f (y¢; @) which do not admit a closed form expression. In this case, maximum
likelihood estimators are not feasible and an alternative estimation method
has to be applied.

In order to sidestep the unfeasibility of maximum likelihood, another
model is introduced. This model is called auziliary model and defines a
further class of density functions h(y;; 3), where 8 € B C R¢ is the auziliary
parameter vector. In order to easily obtain a consistent estimator for the
auxiliary parameters, the auxiliary model should be analytically tractable.
Moreover, for the structural parameter identification, the number of auxil-
iary parameters cannot be less than the number of the structural parameters,
ie. £ > m.

Let us denote the observations of the process {y;} as y* := (y1,v2,---,yT)-
Moreover, let Qr be a criterion function which depends on the observations
y” and on the auxiliary parameter vector 5. The auxiliary parameter esti-
mator Br is defined as

Br = arg max Qr(y’.B) . (3.2)

2The distinction between objective and risk-adjusted probability measure will be in-
troduced in Section 3.4. Here PPy is a generic probability measure
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Let us assume that Q7 converges a.s. to a non-stochastic limit function (o
lim Qr (y",8) = Qoo(00,8) -
T—oo

which is continuous in 4 and has a unique maximum Sy = arg maxgeg Qoo (6o, B)-
Under this assumptions, BT is a consistent estimator of .

The limit function (o can be defined for a generic value of #. In this
case the binding function b(6) : © — B is introduced:

b(0) = arg max Qoo (6, 5) -

If b(.) was known and one to one, the estimator 7 = b~1(Br) would be a
consistent estimator of y. The problem is that b~ (3r) has generally no-
closed form. Hence, the idea in indirect inference estimation is to substitute
it with an estimator b~!(3r) based on the simulations of the process {y;}.

Gourieroux, Monfort and Renault [34] propose to simulate a path of
length 7 > T from model (3.1) based on a given value of 6, say . In the
sequel, y7(0) denotes the simulated path (y1(8),y2(0), ..., y-(0)).

For given 0, the estimator of the binding function is given by:

Br(0) = argmax Q- |y7(0). 8] - (3.3)

To estimate the structural parameter vector, the basic idea consists in min-
imizing the norm of the difference b(f) — 8. In practice, one has to find the
value of 6 that makes (3;(0) as close as possible to Sr. Hence, the indirect
inference estimator is defined as

. O . 1! A .

0ff = argmin [5,(8) ~ pr| Or |3-(0) ~ Br] (3.4)

€

where Qr is a positive definite matrix that converges a.s. to some positive
definite matrix Q for T' — oc.

Remark 3.1.1 The path 37(6) depends both on 6 and on the simulated
path of the process {£;}, say €. Note that, in order to ensure estimator
consistency, the simulated path £” has to be the same for all the steps of
the optimization algorithm. O

Optimization problem (3.3) involves a generic criterion Q7 that has to be
maximized in order to estimate the binding function. It seems reasonable for
this purpose to use the quasi log-likelihood function of the auxiliary model®:

S
Inh(yL; B) :== Zln hi(ye; B) for s =1T,7
t=1

3Sometimes, the Kullback-Leibler Information Criterion (KLIC) is used. It can be
shown that minimizing the average KLIC is equivalent to maximizing the quasi log-
likelihood function of the auxiliary model.
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where hy(ys; B) is the conditional density function of the auxiliary model at

time t. Hence, equation (3.2) and (3.3) become?
R 1
Br = arg%lggQT(yT,ﬂ) = farglggglnhT(yT;ﬂ) , (3.5)
o P ~T ]‘ T(5T
Br(0) = argmaxQ.(77,B) = ~ argmaxIn}7 (§7; §) . (3.6)
peB T 7 BeB

To summarize, the indirect inference estimation method involves the follow-
ing steps:

1. By taking market data, auxiliary parameters are estimated (equation

(3.5));

2. At each step of the optimization algorithm, a simulation from the
model (3.1) is run by using some value for 6, say 0;

3. By taking the simulated data, auxiliary parameters are estimated
(equation (3.6));

4. The distance between BT(é) and Br is computed. If it is not “suffi-
ciently” small, steps 2 and 3 are performed again.

In order to solve optimization problem (3.4), a recursive algorithm has to
be applied

Ony1 =0, + T4 (BT’BT(H)) Ay (BT,BT(9)> )

where the function I'y,(.) defines the step size and the function A, (.) defines
the direction.

Since both step size and direction function depend on BT, at each step
of the algorithm an estimation of the binding function has to be performed.
Therefore, when problem (3.6) does not have a closed form solution, the
indirect inference estimation method is computationally very intensive. To
mitigate this problem, Gallant and Tauchen [31] proposed a second version
of indirect inference estimation, called Efficient Method of Moments.

3.2 The Efficient Method of Moments

In order to solve the optimization problem (3.6), the first order condition
can be defined as

VgE" [In (h(5; 8))] = 0,

‘In order to simplify the notation, hereafter we will use § to mean y(#), such that
g7 =y (0) and §; := y:(0).
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where Vj is the gradient operator with respect to 8. Interchanging integra-
tion and differentiation, the first order condition becomes

7 [V In (h (7 B))] = 0 .

The idea of Gallant and Tauchen is to select 8 to fulfill, or at least to approx-
imate, the above equality for 8 = £y. In order to perform the estimation in
practice, two issues have to be considered:

e [y is unknown;

e generally £ > m, i.e., the number of the auxiliary parameters can be
greater than the number of the structural parameters. In this case,
the model is overidentified since dim Vg > dim 6.

For estimation purposes 3y can be replaced by its quasi-maximum likelihood
estimation based on real data:

Br = argmaxInh” (y7;B) .
peB
The EMM first order condition then becomes
m(8, Br) := EPs [vﬂ In (ht(gt; [-}T))] ~0. (3.7)

In the overidentified case, condition (3.7) could not be satisfied. However,
one can select the value of 6 that minimizes the distance between m(6, A7)
and an /-vector of zeros. Hence, the general form of the EMM estimator
can be written as

OFM™ = argmin m(6, Br)' Sr m(6, Br) , (3.8)

where Y7 is a positive definite matrix that converges a.s. to some positive
definite matrix % for T' — oo.

Remark 3.2.1 Gourieroux, Monfort and Renault [34] show that, for a
given value of the matrix fJT, the EMM estimator is asymptotically equiv-
alent to the indirect inference estimator (3.4). Unlike indirect inference
approach, EMM estimator does not require to solve a maximization prob-
lem at each step of the optimization algorithm. Indeed, it does not estimate
the binding function b(6) at each step. O

Summarizing, the EMM estimation method involves the following steps:

1. By taking market data, the auxiliary parameters are estimated (equa-
tion (3.5));

2. At each step of the optimization algorithm, a simulation from the
model (3.1) is run by using some value for 8, say 6;
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~ A

3. The simulated path is used to approximate m(#, 8y) by its simulated
sample analogous

~ A

m(@, fr) ~ = 3 Vs n [heu(@: fr)]
t=1

4. The value of m(., BT)ETm(., BT) is computed. If it is not “sufficiently”
small, steps 2 and 3 are performed again.

3.3 Best estimator and asymptotic properties

The optimization problems (3.4) and (3.8) involve a minimization according
to the metric associated with the scalar product defined by Qr and X7,
respectively. The choice of Q27 and Y7 has to be based on some efficiency
principle.

To determine the best estimator, it is sufficient to recognize that both
indirect inference and EMM estimators belong to the general class of Asymp-
totic Least Squares (hereafter ALS) estimators®. In order to review some
asymptotic properties of quasi-maximum likelihood estimators, let us define

the score of the quasi-likelihood function for the auxiliary model as
s(y";B) =T 'Vglnh"(y"; ) .

White [61] shows that
BEI/ZAT\/T(IB - /80) ’(L N(OaIl) ’

where

Ar = E'Vgs(y";8)],
Br = V&I‘[Tl/QS(yT;,BO)]a

and [y is the true value of the auxiliary parameters. Moreover, matrix Ap
can be written as

T
Ap = TEF [Vilmh (5 80)] + 771 Y EF [VEInhy(ys o))
t=L+1
—1 P 2 Ly, L T-L P 2
= T 'F [Vﬂlnh (y 3,80)}+TE [Vglnht(yt;ﬁo)} )
implying

Jim Ap = B [VEInhy(y; fo)] = A .

5In particular, both the optimal matrixes Q7 and X7 depend on the covariance matrix
of the auxiliary parameter estimator.
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Similarly, the limit of By can be written as

lim B = var [Vglnh(ys; Bo)] := B .
T—o0
Hence, the asymptotic covariance matrix of the auxiliary estimator Br is
AT1BATL.
In order to get the best ALS estimator, some further notation has to be
introduced. Let us denote by My € RE*™ and Mg € R the two following
matrixes:

My = 9 9(6;8) Mg = a%, 9(6; B)

oo’ 9=00,5=B0 9=00,8=B0

where g(0; 3) = b(0) — B for the indirect inference estimator and g(6; ) =
EFo[V 5 1In(ht(ys; 8))] for EMM.

Gourieroux and Monfort [32] show that, in order to get the best ALS
estimator, the sequence of matrixes {Qr} and {37} has to converge to
(M/BA_lBA_lM/;,)_l. Since for the indirect inference Mg = —1I, the optimal
matrixes can be then written as:

Q = (A'BAY),

S = (MpA'BAT'MY)T.
Moreover, in the EMM setting, an interchange between integration and dif-
ferentiation gives

My = E¥ [V3Inhi(ys; B)] ‘0:00,ﬁ:50 — A,
implying ¥ = B~ .

Once defined the best ALS estimator, one can analyze its asymptotic
properties. Under some regularity condition both indirect inference and
EMM estimator are consistent. For the asymptotic distribution, Gourieroux
and Monfort [33] show that both estimators are asymptotically normally
distributed:

VT@OH —0) & N [0, (1 + g) (M;,QM,,)l] : (3.9)

VT(OEMM _gy L N [0, (1 + g) (MgZMg)_l] : (3.10)

This finding is similar to that obtained for ALS estimators. The difference
is that here the asymptotic covariance matrix depends also on the ratio
T/7. The reason is that in the indirect inference and in the EMM setting,
the binding function b(6) has to be estimated by simulations. Hence, the
variance of the asymptotic distribution has to depend also on the simulation
error.
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Note that, in practice, one has to replace Sy by its quasi-maximum likeli-
hood estimator. Moreover, by assuming that the quasi-score Vg 1n h(ys; 3)
is a martingale difference sequence, a convenient estimator for B is obtained

by the outer product of the quasi-score itself:

(V510 hals B)] [V 5100 e B)]' , (3.11)

M=

~ 1
BT == f
t=1

and A can be estimated as:
1 X
;L 5 A
AT = T tzl [vﬂ lnht(ytaﬂ)] 3
implying QT = ATB;lflT and f]T = B;l
From equations (3.9) and (3.10) a consistent estimator for the asymptotic
covariance matrix of 61 and ZMM is given by:

~ A ~ A -1
1 1 1 aIBT(eII) A Hh-13 BIBT(HII)
ASCOV(GT ): (T + ; T,TATBTIATTT , (3.12)
ZVEMM [ NVEMM 5 \! -1
AsCov(é%MM):(%—l—%) lam(%&g’ ’ﬂT)Bglam(eTag ’ﬁT)] (3.13)

No explicit solution can be provided for the first derivative of BAH}I ) and
m(O%M M 3r) with respect to @, so that they have to be computed numeri-
cally.

3.4 The application to stochastic volatility models

In the continuous time framework of a stochastic volatility model, methods
based on indirect inference can perform a consistent estimation of the model
parameters. In this work two different stochastic volatility models are esti-
mated. The first model is that proposed by Heston [40], which has an exact
closed form solution for option prices. The second model was proposed by
Lewis [48], who provides an approximated analytical solution based on a
perturbation approach. Actually, Lewis proposes a general perturbation ap-
proach to find option price approximations for a class of stochastic volatility
models that includes also the Heston model. More details on option pricing
according to the perturbation approach are given in appendix B.2.

The choice of the two models is due to the closed form that they pro-
vide for option pricing. Indeed, in spite of the generality of the estimation
approach proposed, in Section 3.4.2 we will see that the estimation under Q
is unfeasible without a closed form expression for derivatives prices.
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Under the real world measure P, the dynamics for the price process
{St}ejo,r) is determined by the following system of stochastic differential
equations:

dSy = pSudt+ /i Sedwi 4 ,
dv; = [C — f’l)t]dt + (S’U?d’l,UQ’t ,

where p, ¢, ¢ and § are positive parameters and w;; and wp; are two IP-
Brownian motions with correlation p. The value of 7 is 1/2 for the Heston
model and 3/2 for the model proposed by Lewis (hereafter 3/2 model).

By assuming a volatility risk premium proportional to v, say Av;, one
can state that the price process dynamics under Q is given by

dSt = ’I‘Stdt + \/EStdu?l,t y
dv, = [¢— Evgldt + 6v] dibay (3.14)

where 7 is the risk-free rate, §~ = {+ X and w1 and Wy are two (-Brownian
motions with correlation p.

While the real world process is estimated by using price return time
series, for the estimation under Q we need something related to option prices.
By considering Black-Scholes formula as a metric, we can use Black-Scholes
implied volatility (hereafter BSIV) time series to estimate the risk-adjusted
parameters.

In this section we will estimate both objective parameters and risk-
adjusted parameters of the model. While for objective parameters we will
use only EMM estimator, for risk-adjusted parameters, EMM and indirect
inference estimators will be applied. Indeed, under Q the computational
complexity of the indirect inference estimator is remarkably reduced by the
characteristics of the auxiliary model.

In both the applications, we will assume a zero correlation between asset
price and volatility (p = 0).

3.4.1 The auxiliary model for underlying asset returns

As previously noted, one has to be able to define a consistent estimator for
the auxiliary parameters. For this reason, the auxiliary model has to be
analytically tractable and it has to be defined in a discrete time framework.
Two other features are requested for the auxiliary model. It cannot be
too distant from the structural model (at least the number of the auxiliary
parameters has to be larger or equal to the number of structural parameters)
and, despite it is not the true market model, it has to be able to fit market
data reasonably well.

Under P, Andersen et al. [3] show that the choice of the auxiliary model
has to be considered important for the estimation results. In particular, they
show that for very large sample size, models which incorporate the semi-non
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parametric (SNP) Hermite polynomial expansion® perform very well but
not remarkably better than a purely parametric GARCH(1,1) model. For
smaller sample sizes there are some convergence problems because of the
overparametrization of the SNP density. Indeed, for a more realistic sample
size of 500 observations, standard Newton-type optimization methods are
not always able to converge to a solution when the auxiliary model is based
on a SNP density.

For this reason, we decided to take a GARCH(1,1) as the auxiliary model.
Accordingly, we define the return dynamics as:

Yyt = a+./v e

vy = Po+Pivi1+ B2 (g1 —a)? (3.15)

where y; := In Sy —1In S;_1, S; is the asset price at time ¢ and ¢; is a standard
normal disturbance. Conditions 8y > 0, §; > 0 and f2 > 0 are required to
ensure a positive value of v;. Moreover, for the stationarity of the volatility
process, one has to impose the condition 81 + s < 1.

Let us denote the parameter vector (a By 81 B2)" by 8. To estimate 3,
the conditional quasi likelihood function that has to be maximized is

e%<_ﬁ>}
Ut(ﬁ) ’

T

In T (yT; 8) = —% In27 — %Z [ln’ut(ﬁ) +

t=1

where e;(8) := y; — . In order to solve the expected value in equation (3.7)
and to get the matrix Br, one has to compute the score of the auxiliary
model. In our case it is given by:

e 11 e% oy
] N = e —_— — .
V/J’ nht(yhﬁ) |:81'Ut + 2 v (Ut ) (9,8 ) (3 16)

where s; is a selection vector whose first component is 1 and the others are
0. The derivative of v; with respect to the vector parameter 8 can be defined
in the usual recursive manner:

Oue _
98~

Ovy_
Zt+/81%7

where

I
Zt—1 = [—2ﬁ26t_1 1 Vi—1 6%_1]

Such a recursive definition needs an initial value for the conditional variance
v;. A common practice is to substitute the initial value of the conditional
variance by the sample estimate of the unconditional variance. From this
assumption follows that the first derivative of v; with respect to g is zero.

See Gallant and Tauchen [31].
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3.4.2 The auxiliary model for BSIV

In order to estimate the risk-adjusted parameters, we need to introduce
an auxiliary model for BSIV. A proper choice seems to be an Ornstein-
Uhlenbeck process of the form?:

doy = (ko — K10¢)dt + kodwy (3.17)

where w; is a Q-Brownian motion. This model is consistent whit Heston’s
assumption on instantaneous variance dynamics. Indeed, by applying Ito’s
lemma to o? we get a square root process similar to that used by Heston.

The Ornstein-Uhlenbeck processes admits as exact discretization an AR(1)
process:

1— e—2n1At 1/2

) _ _
o = (1 —e mAt) te mAtUt—At + Ko ( o
1

K1
= ap+ a10¢-A¢ + Qg6 ,

where

aglnay 1 an 1_‘1% _1/2
Ko = _At(l—a1) k1= _A_tlnal K2 = VAL (_21na1)

Note that parameter adjustment for the time interval At was done in order
to take into account that the data for the estimation are available at each
time interval At (generally one day), while the parameters to estimate are
annualized.

The conditional log-likelihood of the AR(1) process and the score func-
tion can be written as

T
T 1 o r ng)2
lnhT(aT;a) =c— ln(ag) — E [( £ =G0 — 4101-At)

2
2 P 2a5
0 1 1
Volnhi(opa)=| 0 | + (0t —ap— a10t-at) Tt—At
—L a3 91—00—010¢t_A¢
a2 a2
where ¢ is a constant and a := (ag a1 a2)’. From the last equation, it is

clear that the score is a martingale difference sequence under Q. Hence, the
outer product (see equation (3.11)) can be conveniently used to estimate the
asymptotic covariance matrix of the sample quasi-score.

By maximizing the above conditional log-likelihood, we have an explicit
expression for the estimators® of parameters ag, a; and as. Hence, the
computational difficulties inherent with the indirect inference estimator can
be avoided here.

TA similar approach was applied in Pastorello et al. [53].
8See Hamilton [35] for more details.
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Since the auxiliary model is based on BSIV time series, we have to simu-
late a path of implied volatilities (and not instantaneous variances). For this
purpose, for each underlying price and each instantaneous variance, option
prices are computed:

Wy := Wsv (Si, K, T —t,r,v4;0) fort=1,2,...,7
and then inverted, to obtain a simulated BSIV series, say 4:
61 = Wgs(Sy, K, T —t,r; W) fort=1,2,...,7

where Wgy (.) and Wgé() are, respectively, the stochastic volatility pric-
ing function and the inverse with respect to volatility of the Black-Scholes
pricing function.

Since the number of auxiliary parameters is equal to the number of
structural parameters, for a sample size sufficiently large we have that 9%1
and 9“7];: MM are equal and both are independent on the choice of the metric®.
Hence, without loss of generality, 3 and 2 can be substituted by a three
dimensional identity matrix.

However, matrixes ¥ and {2 have to be computed in order to estimate
the asymptotic covariance matrix of the estimator. For such a purpose, we

apply equations (3.12) and (3.13).

3.5 Monte Carlo study

The aim of this Monte Carlo study is to verify the accuracy of the estima-
tion methods proposed. For this purpose, we test three different estimation
methods, one for objective parameters and two for risk-adjusted parameters:

1. EMM with GARCH(1,1) auxiliary model (objective parameters);

2. Indirect inference with Ornstein-Uhlenbeck auxiliary model (risk-adjusted
parameters);

3. EMM with Ornstein-Uhlenbeck auxiliary model (risk-adjusted param-
eters);

All the estimation methods are applied to the Heston model and to the
3/2 model. For the Heston model estimation under QQ, both exact pricing
formula and perturbation approach are considered. This allows to check
whether the error due to the approximation has a remarkable impact on the
estimation procedure.

Each simulation of the Monte Carlo study is based on a path of 1000
simulated observations. The used parameters are shown in Table 3.1. The
parameter values are similar to those obtained in the real data estimation
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Table 3.1: Parameters used to get the simulated path from the Heston
model.

7 ¢ £ d
Real world parameters (Heston model) 0.010 0.150 2.800 0.450

Real world parameters (3/2 model) 0.010 0.150 2.800 6.000
Risk adjusted parameters (Heston model) 0.150 3.000 0.450
Risk adjusted parameters (3/2 model) 0.150 3.000 6.000

(see Section 3.6). Note that for the Heston model parameters fulfill instan-
taneous variance positivity constraint, since 62 < 2(.

We perform 1000 simulations for each of the methods proposed. For the
implementation of the EMM and the indirect inference algorithm, a path
of 20.000 steps is simulated by using a Milstein discretization scheme!?.
Following Andersen and Lund [4], an antithetic variables technique is used
to reduce the simulation error.

GARCH(1,1) maximum likelihood function is maximized by a BHHH
algorithm!'. Moreover, in order to solve the more difficult optimization
problems in equations (3.4) and (3.8), we tested three of the minimization
algorithms proposed by Press et al. [54]: (i) variable metric method, (ii)
downhill simplex method and (iii) simulated annealing method for contin-
uous variable. For this application downhill simplex method turns out to
be the best. Indeed, despite the large number of function evaluations it re-
quires, its results are much more stable if compared, for instance, with the
variable metric method.

The simulated annealing method is useful when one deals with a local
minimum problem. Here there is the advantage to know the function value
at the minimum. Indeed, since the number of the auxiliary parameters is
equal to the number of structural parameters, the function has to be zero
at minimum. Hence, to avoid local minimum problem it is sufficient to
disregard all the solutions where the function value at minimum is not close
to zero.

In order to implement the estimation of methods 2 and 3, option prices
are computed by assuming that options will expire in 45 days, while the risk-
free rate is assumed equal to 2%. Integration in Heston’s formula was done
by using a Gauss-type numerical integration with a Laguerre polynomial'?
of order 12. As usual, BSIV was computed by the Newton-Raphson method.

9See Gourieroux and Monfort [33], Proposition 4.1.

105ee appendix C for details.

"For BHHH algorithm we mean the Newton-like algorithm where Hessian is substituted
by the outer product matrix.

2See appendix B.1 and Abramowitz and Stegun [1] for more details.
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Table 3.2: Monte Carlo results. For each estimation method, in the first
column there is the mean value, in the second column there is the root
mean square error and in the third column there is the average of standard
error computed for each estimation.

Heston model under P 3/2 model under P

mean rms error std error mean rms error std error
¢ 0.0086  0.0092 0.0501 0.0095  0.0141 0.0725
¢ 0.1557  0.0139 0.0447 0.1543  0.0237 0.0471
& 29112 0.3894 1.0518 2.7251 0.4149 1.1283
6 0.4364  0.0486 0.0734 5.8416  0.4183 1.6584
Ind. inf. under Q EMM under
mean rms error std error mean rms error std error
¢ 0.1574  0.0283 0.0353 0.1587  0.0269 0.0364
(1) £ 3.1476  0.6956 0.7027 3.2100  0.6461 0.7306
6 0.4541 0.0203 0.0209 0.4555  0.0179 0.0216
¢ 0.1527  0.0316 0.0340 0.1581 0.0274 0.0352
(2) £ 3.1797  0.6609 0.6995 3.1910  0.6598 0.7224
0 0.4567  0.0232 0.0196 0.4550  0.0187 0.0205
¢ 0.1434  0.0337 0.0911 0.1626  0.0331 0.0862
(3) & 2.8184  0.9286 2.0749 3.2922  0.8440 2.0114
0 59749  0.2180 1.4457 6.0086  0.2227 1.2022

(1) Heston model exact formula
(2) Heston model perturbation approach
(3) 3/2 model perturbation approach

Monte Carlo results are summarized in Table 3.2. In the first column
there is the mean of the estimated value, in the second the root mean square
error with respect to the true parameter and in the third, the average of
standard error computed for each estimation.

The first part of the table shows the estimation results under IP. In spite
of the fact that the pointwise estimation seems to be slightly biased, the
mode of the estimated values is equal to the values used for the simulation.
The second part of the table shows the estimation results under Q. For
parameters ¢ and §, biases are small. On the contrary, £ estimation is not
very accurate. The bias value is about 5% for indirect inference estimation
and 7% for EMM estimation and root mean squared error is very high.
However, also in this case, the mode of the empirical distribution is equal
to the true parameter value.

In Figures 3.1 and 3.2, the empirical estimator distribution is compared
with a normal distribution with standard deviation equal to the root mean
squared error. Figure 3.1 shows the results of the exact Heston model while
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Indirect Inference EMM
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Figure 3.1: Exact Heston model. Empirical distributions (solid line) com-
pared with normal distribution (dotted line) with mean equal to the true
value of the parameter and standard deviation equal to mean standard er-
ror. ¢ estimation results are in plots (a) and (b), £ estimation results are in
plots (¢) and (d) and § estimation results are in plots (e) and (f).

Figure 3.2 shows the results of 3/2 model. Results obtained by the Heston
model with perturbation approach are not reported since they are indistin-
guishable from those obtained by the exact formula. In particular plots (a)
and (b) refer to ¢ estimation results, plots (¢) and (d) refer to & estimation
results and plots (e) and (f) refer to ¢ estimation results. Especially for ¢
and 4, normal distribution can be considered a good approximation also in
the sample.
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Indirect Inference EMM

(b)

(© -1 (d)
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Figure 3.2: 3/2 model. Empirical distributions (solid line) compared with
normal distribution (dotted line) with mean equal to the true value of the
parameter and standard deviation equal to mean standard error. ( estima-
tion results are in plots (a) and (b), £ estimation results are in plots (¢) and
(d) and § estimation results are in plots (e) and (f).

3.6 Model estimation on SMI data

The real data estimation experiment involves Swiss Market Index (SMI)
returns for parameter estimation under P and SMI options implied volatil-
ities (hereafter VSMI) for parameter estimation under Q. All time series
consist of 1007 daily data (from 04.01.1999 to 03.01.2003). As a proxy of
the risk-free rate the average of the three months LIBOR rate is considered
(1.975%). BSIV is computed by using options with moneyness near to one
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Table 3.3: Estimated parameters and asymptotic covariance matrix on SMI
returns. The auxiliary parameter estimates (GARCH(1,1) model) are in the
first panel while the structural parameter estimates are in the second panel.

Auxiliary parameters

values std error
a  -0.000036 (0.030954)
Bo 0.000004 (0.013513)
B1 0.840867 (0.024916)
B2 0.138820  (0.020717)
Structural parameters Asymptotic covariance matrix
values std error 7 ¢ ¢ 6
g -0.000029 (0.092693) 0.00859 - - -
(1) ¢  0.155083 (0.110104) -0.00006 0.01212 - -
& 3.436133 (1.899103) -0.00281 0.19086 3.60659 -
0  0.410676 (0.197345) -0.00139 0.02067 0.29646 0.03894
u o -0.000027 (0.081780) 0.00669 - - -
2) ¢ 0.059507 (0.140506) 0.00053 0.01974 - -
¢ 1.992169  (1.488870) 0.00457 0.64146 2.21673 -
0 6.262296 (2.828623) 0.13081 1.07396 3.01899 8.00111

(1) Heston model - EMM
(2) 3/2 model - EMM

and time to maturity close to 45 business days'®. The above characteristics
should guarantee the liquidity of the options taken into account.

In Table 3.3, estimation results on SMI returns are reported. The first
panel shows auxiliary parameter estimates while the second panel shows
the structural parameter estimates. The high standard error value has to
be noted for the mean reversion parameter for both models. This is due
to the low value of the Jacobian matrix My for this parameter. Indeed, a
low Jacobian value means that high variations of ¢ have a low impact on
the value of the orthogonality condition. This result is consistent with that
obtained in Section 3.5 and it is a further indication that £ estimation cannot
be considered precise.

Estimation results on VSMI index are given in Table 3.4. The auxiliary
parameter estimates are in the first panel, while the structural parameter
estimates are in the second panel. The last two columns show the interval
estimation with a 90% confidence level. As expected, indirect inference
estimator and EMM estimator give quite the same results both for pointwise

'3More details on BSIV computation can be found at the url www.gottardo-fs.com/vsmi.
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Table 3.4: Estimated parameters and asymptotic covariance matrix on SMI
option implied volatility. The auxiliary parameter estimates are in the first
panel, while the structural parameter estimates are in the second panel.

Auxiliary parameters Asymptotic cov. matrix
values  std error ag a1 a

ap 0.002806 0.045596 0.002 - -
ar  0.986731 0.246467 -0.011 0.061 -
ap 0.011979 0.023958 -0.000 0.001  0.001

Structural parameters Asymptotic cov. matrix  Interval estim.
values  std error ¢ 3 ) (conf. 90%)
¢ 0.166654 0.085153 0.007 - - 0.0266  0.3067
(1) & 3.199720 1.698485 0.175 2.885 - 0.4060 5.9935
6 0.464134 0.067830 0.005 0.130 0.006  0.3528 0.5760
¢ 0167045 0.084522 0.007 - - 0.0280 0.3061
(2) & 3.206658 1.839694 0.184 3.384 - 0.1806 6.2327
6 0.464339 0.069570 0.005 0.141 0.005 0.3499 0.5788
¢ 0.166656 0.085018 0.007 - - 0.0268 0.3065
(3) & 3.232507 1.743532 0.177 3.040 - 0.3646 6.1004
6 0.486809 0.070753 0.005 0.141 0.005 0.3704 0.6032
¢ 0.167127 0.083385 0.007 - - 0.0300 0.3043
(4) & 3.240398 1.857503 0.181 3.450 - 0.1851  6.2957
6 0.487002 0.073362 0.005 0.1563 0.006 0.3663 0.6077
¢ 0.039668 0.051429 0.003 - - -0.0449 0.1243
(5) & 0.253134 1.226627 0.062 1.505 - -1.7645 2.2707
6 6.056826 1.855278 0.061 1.660 3.442  3.0052 9.1085
¢ 0.040104 0.049122 0.002 - - -0.0407 0.1209
(6) & 0.202397 1.129433 0.055 1.276 - -1.6553 2.0601
6  6.260973 2.190422 0.073 1.804 4.798  2.6580 9.8639

1
2

(1) Heston model exact formula — Indirect inference

(2) Heston model exact formula — EMM

(3) Heston model perturbation approach — Indirect inference
(4) Heston model perturbation approach - EMM

(5) 3/2 model perturbation approach — Indirect inference

(6) 3/2 model perturbation approach - EMM

estimation and for interval estimation.

Another important result is that the estimated values obtained by per-
turbation approach in the Heston model are very close to those obtained
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Figure 3.3: Comparison between implied volatility smile obtained by the
exact Heston formula (solid line) and implied volatility smile obtained by
the Heston price approximation (dotted line). In plot (a) the correlation
parameter is assumed to be 0 while in plot (b) the correlation parameter
is assumed to be —0.3. Parameter used are those estimated by indirect
inference algorithm.

by exact formula. Figure 3.3 shows a comparison between implied volatility
smile obtained by the exact Heston formula and implied volatility smile ob-
tained by the approximated Heston price. The difference between the two
volatility curves suggests that the perturbation approach approximation can
be properly used only for estimation purposes. Indeed, the observed volatil-
ity differences are not negligible for pricing purposes.

Pointwise parameter estimation allows us to estimate the BSIV distri-
bution. In Table 3.5 a comparison between the empirical distribution and
the estimated distribution under Q is presented. The values of the first two
centered moments are very close each other and all distributions seem to
be positive skewed an slightly leptokurtic. The above features are more re-
marked for 3/2 model. Moreover, in the first column there is the long run
instantaneous volatility. For the Heston model, it is close to the mean of
the VSMI (0.21355).

In Figures 3.4 and 3.5, BSIV distribution is estimated according to dif-
ferent option times to maturity. Figure 3.4 is obtained by using the exact
Heston pricing formula while Figure 3.5 is obtained by the 3/2 model with
perturbation approach. The figure obtained by the Heston model with the
perturbation approach is not shown since it is indistinguishable from that
obtained by exact formula.

The longer the maturity the lower the distribution variance. This feature
is due to the mean reversion of the variance process and it is particularly
evident for the Heston model. Indeed, for T' — oo, instantaneous variance
converges to its unconditional mean (/€. Hence, the Black-Scholes assump-

tion of constant volatility is not misleading for long maturity options.

For an empirical result on the issue see Bakshi et al. [6].
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Table 3.5: Centered moments of the empirical BSIV distribution compared
with the estimated BSIV distribution. Estimated BSIV distribution is ob-
tained by simulating a path of 500’000 steps.

Centered moments C/€ mean std skew. kurt.
Empirical distribution - 0.21355 0.07511 1.17490 3.86224
(1) 0.22822 0.21248 0.07449 0.60876  3.15586

2 0.22824 0.21253 0.07441 0.60868  3.15605
0.22706 0.21088 0.07338 0.73752  3.39583
0.22710 0.21096 0.07330 0.73722  3.39573
0.39586 0.21051 0.07176 2.59113 14.00763

0.44513 0.21341 0.07504 2.39714 11.80407

w

4

S Ot

2) Heston model exact formula — EMM

3) Heston model perturbation approach — Indirect inference
4) Heston model perturbation approach - EMM

5) 3/2 model perturbation approach — Indirect inference
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(6) 3/2 model perturbation approach — EMM

14.00 -
~ 0.030 years
12.00 - —--—- 0.060 years
—— 0.125 years
10.00 4 —— 0.250 years
-—-- 0.500 years
8.00 -
6.00
4.00 -
2.00
0.00 T T T T T T T !
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

Figure 3.4: Exact Heston model. Estimated distribution of Black-Scholes
implied volatility for different option time to maturity. Plot is obtained by
using indirect inference parameters.

3.7 Conclusion

This chapter describes three algorithms to estimate the parameters of a class
of stochastic volatility models. Two of them deal with risk adjusted param-
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Figure 3.5: 3/2 model. Estimated distribution of Black-Scholes implied
volatility for different option time to maturity. Plot is obtained by using
indirect inference parameters.

eters, while the third handles objective parameter estimation. Underlying
prices are used for objective parameter estimation while a BSTV time series
is used for risk adjusted estimation. For objective parameter estimation the
auxiliary model is a GARCH(1,1), while for risk-adjusted parameters an
Ornstein-Uhlenbeck process is used.

Because of the volatility risk premium, the two sets of parameters are
different from one another. In particular, for risk adjusted parameters this
chapter proposes a simple but effective estimation method which is able to
provide interval estimation too. The proposed algorithms are very general
since they can be potentially applied to a broad class of stochastic volatility
models. However, in order to reduce computational time, they are more
appropriately applied to models with closed form solution for option prices.
In this chapter, the Heston model and the 3/2 model are used.

A real data estimation and a Monte Carlo study are performed. Our
Monte Carlo study shows that the discretization bias is small in almost all
the estimates with the exception of the mean reverting parameter. Moreover,
root mean square error is high for £ and much lower for the other two
parameters. The poor estimation precision of £ is evident both for objective
estimation and for risk adjusted estimation. Finally, normal distribution
can be considered a good approximation especially for . For the other two
parameters, the empirical distribution is slightly different from the normal
one, though the distance is not large.
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The Monte Carlo study substantially emphasizes a poor estimation pre-
cision for the mean reverting parameter. This is an interesting result since
both Heston option prices and 3/2 option prices are very sensitive with re-
spect to this parameter. Hence, simple pointwise estimation can provide
considerable errors in option pricing and hedging.

For the risk adjusted estimation of the Heston model, both exact pric-
ing formula and the perturbation approach are considered. For estimation
purposes, the error due to the approximation of the perturbation approach
seems to be negligible. Moreover, the approximated formula remarkably
reduces the computational time during the estimation.

A confirmation of the Monte Carlo results is given by the real data ap-
plication. Indeed, by applying the estimators to a BSIV time series, both a
pointwise estimation and an interval estimation are performed. The confi-
dence interval is large for ¢ and £ and much smaller for §.

Moreover, the BSIV distribution is estimated according to different op-
tion times to maturity. Because of the mean reverting feature, distribution
variance declines for long maturities.



Chapter 4

Pricing and hedging
reliability

Chapter 3 points out the intricacy on stochastic volatility model estimation.
The high estimation standard error implies that the parameter misspecifi-
cation feature cannot be neglected. The parameter misspecification affects
both pricing and hedging, producing an incorrect option pricing and some
unexpected losses due to the hedging errors.

To face the problem, the super-hedging approach proposed in Chapter
2 can be applied. Indeed, the approach is primarily used to tackle the mis-
specification problem that can involve the parameters of the instantaneous
variance process. To be applied, the approach needs the definition of a set
of bounds within which each parameter has to keep. The bounds can be
defined by the interval estimation described in Chapter 3.

The super-hedging approach and the estimation method compose a com-
plete framework to price and hedge options. This chapter aims to test the
approach by verifying the pricing reliability and the capacity of the hedging
strategy to reduce the unexpected losses. For pricing reliability we mean
the capacity of the model to fix a price consistent with the observed mar-
ket price. For the model proposed in Section 2.2 the pricing reliability is
obtained when the market price keeps between buyer’s and seller’s price.

Hedging is generally defined as the ability to compose a portfolio replicat-
ing the option value in order to reduce the possibility of unexpected losses.
In a standard Black-Scholes framework, a self-financing replicating portfolio
can be found by using the underlying asset and a riskless bond. Since in
a stochastic volatility model there is a new source of randomness, the two
assets are no longer sufficient. Indeed, the portfolio composed only of the
underlying asset and the riskless bond can no longer replicate the option
value or is no longer self-financing.

In order to ensure both properties, it is necessary to introduce a new
asset whose value depends on volatility. For such a purpose, a candidate

53
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asset seems to be an option with the same underlying of the first one, but
a longer time to maturity. Moreover, parameter misspecification has to be
considered. This is done by introducing the super-hedging strategy based
on the approach proposed in Chapter 2.

In order to test the super-hedging approach, some simulation experi-
ments are performed. In particular we try to verify whether the proposed
super-hedging strategy is able to properly cope with the parameter misspec-
ification problem. Moreover, we compare the proposed super-hedging with
that introduced by Avellaneda, Levy and Parés [5] (hereafter ALP).

Another set of experiments is developed to test the super-hedging strat-
egy under model misspecification. The model misspecification is obtained
by contaminating the standard error variable of the instantaneous variance
process. This contamination produces some jumps in the implied volatility
path and it affects the hedging error quite remarkably.

In Section 4.1 a method for estimating the unobservable instantaneous
variance is described. This method is used in Section 4.2 to verify the pricing
properties of the super-hedging model under stochastic volatility. Section
4.3 describes the hedging under a stochastic volatility framework and Sec-
tion 4.3.1 extends the approach to a misspecified framework. The hedging
reliability is verified in Section 4.4 where the different hedging approaches
are compared. Section 4.5 concludes.

4.1 Unobservable instantaneous variance

In order to apply an option pricing formula under the stochastic volatility
assumption, not only does one need to estimate the model parameters, but
also the unobservable instantaneous variance v;. For this purpose we propose
to substitute v; with its expected value conditional on the information in
t—1.

In the class of stochastic volatility models considered in Chapter 3, the
conditional expected value of the instantaneous variance is’

EQuy| Fy) = vse808) g (1 — e_g(t_s)) s<t. (4.1)

Recalling that % is the long run variance level, the above expected value can
be interpreted as a weighted average between the instantaneous variance at
time s and the long run variance.

According to intuition, weights depend on the distance between ¢ and s
and on mean reversion parameter £. In particular, the weight associated to
vg is inversely proportional to ¢ — s and to €. Indeed, the longer the time
between ¢ and s the less informative the value of vs. Moreover, the higher

Tt can be easily obtained by applying Ito’s lemma, to vt
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¢ the faster the mean reversion process. In this case, the long run variance
contains more information than the instantaneous variance at time s.

Since the conditional expected value of v; depends on wvs, one has to
compute the unobservable value of vs. This can be done by using BSIV
value in s and solving the following equation with respect to vy:

Wsy(Ss, X, T — s,7,05,0) — Wps(Ss, X, T — s,7,BSIV,) = 0. (4.2)

In equation (4.1) and (4.2), parameter values will be replaced by their es-
timates. Since §11 and §FMM are consistent estimators of the model pa-
rameters, the proposed instantaneous variance estimator will be consistent,
too.

4.2 Pricing reliability

The pricing reliability feature can be tested by comparing the market price
of options and the option price given by the model. Since the proposed
model gives a seller’s and buyer’s price, the price reliability is obtained if
the market price keeps between the two price bounds.

For this purpose, the parameters are estimated on the VSMI? time series
from 04.01.1999 to 03.01.2003. In order to get an out-of-sample test, the
option market prices are obtained by applying the Black-Scholes formula to
VSMI data from 06.01.2003 to 12.02.2004 (275 observations). Moreover, the
three months LIBOR rate is used as a proxy for risk-free rate and, consis-
tently with VSMI computation, maturity is assumed equal to 45 working
days.

The implied instantaneous variance is computed daily as described in
Section 4.1. Super hedging prices are computed by assuming that the pa-
rameter values lie inside the estimated confidence interval (confidence level
90%). The value of p is assumed to belong to interval [—0.8,0.8].

In the most general case, the European call super-hedging price can be
obtained by numerically solving a non-linear PDE. However, by assuming
no misspecification for § and p, the explicit Heston formula can be used.

In Figure 4.1 the super-hedging prices obtained under the assumption
of stochastic volatility are compared with market prices. The same figure
shows also the super-hedging prices according to the ALP approach (broken
line). The uncertain volatility bounds are is obtained for each day by the
5% and the 95% percentile of the simulated BSIV distribution.

Plot (a) of Figure 4.1 shows the super-hedging prices obtained by nu-
merically solving the PDE, while in plot (b) the super-hedging prices are
obtained under the assumption that § is constant and p is zero. It is clear
from the figure that these assumptions have a small impact in the seller’s

2See Section 3.6 for more details.



56 PRICING AND HEDGING RELIABILITY

400 - (a) —— Market price of the option
—— Super-hedging price according to Heston model
350 - - - - Super-hedging price unced uncertain volatility

0 \ \ \ \ \ \ \ \ \ \ \ \ \
0 20 40 60 80 100 120 140 160 180 200 220 240 260
400 4 (b)
350 +
300 +
250 iy

option prices
N
o
o
L

150
100 {7
50 -

0 T T T T T T T T T T T T T
0 20 40 60 80 100 120 140 160 180 200 220 240 260

Figure 4.1: Comparison between market prices, super-hedging prices under
uncertain volatility and super-hedging price according to stochastic volatility
with uncertain parameters. In plot (a) the super-hedging prices according
to the Heston model are obtained by numerically solving the PDE. In plot
(b), by assuming ¢ and p constant, the analytic formula is used.

price and a more pronounced impact in the buyer’s price. However, in both
cases super-hedging prices under stochastic volatility are much closer to
market price than super-hedging prices under the ALP approach.

Table 4.1 shows the main results of the comparison between prices. The
second and third columns show the average percentage distances between
super-hedging prices and market prices. One can notice a strong reduction
in the distances due to the stochastic volatility approach with respect to the
uncertain volatility approach. This suggests that under the assumption of
uncertain volatility there is a strong overestimation of the seller’s price and
a strong underestimation of the buyer’s price.

The fourth column of Table 4.1 shows the number of violations recorded.
A violation is recorded each time the market price is higher than the seller’s
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Table 4.1: Results of the comparison between super-hedging prices and mar-
ket prices.

average distance

from market prices violations size
sell buy sell buy
uncertain volatility 4743% —36.57T% 0 0 —
stochastic vol. numerical 25.39% —30.56% 1 0 —267%
stochastic vol. simplified 18.02% —20.24% 1 0 —-2.711%

price or lower than the buyer’s price. No violations are recorded for the
uncertain volatility approach while the stochastic volatility approach shows
a violation of the seller’s price. However, this violation is slightly higher
than 2.5% of the option market price and can be considered negligible.

4.3 Stochastic volatility and hedging

In a stochastic volatility framework, a self-financing hedging portfolio has
to be composed of an asset whose value depends on the volatility as well
as on the underlying and a riskless bond. Indeed, the underlying and the
riskless bond only are not able to generate a portfolio that is at the same
time replicating and self-financing.

One of the most common assets whose price depends on the volatility is
an option on the same underlying of the first one, but with a longer time
to maturity. The hedging approach that uses the underlying, the riskless
bond and a second option on the same underlying is known as delta-sigma
hedging3.

Remark 4.3.1 In a correctly specified stochastic volatility framework, the
introduction of a second option on the same underlying is sufficient to com-
plete the market since the number of traded assets becomes equal to the risk
factors driving the asset price®. O

Let us denote Wa(t, S¢,v¢) the traded option written on S;. With a slight

change of notation, the option to hedge is denoted by W;. We define V;(0)

the hedging portfolio associated with the strategy ¢ := (a, b, c) such that
Vi(¢) = atS + by By + ¢ Wo

where {a;} and {¢;} are two Fi;-measurable processes. In order to ensure
the replicating property of the portfolio, we define the process {b;} as

by = Byt (W1 — apSy — ciWay) -

3See among others Scott [57].
“See Karatzas [42].
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Moreover, the self-financing constraint imposes that
dVvt = a¢ dSt + bt dBt + ¢t dWQ’t . (43)
By applying Ito’s formula to both sides of the above equation, we get

oW, 190°W, 10°W, *W,
———dt+ d(S) + 3 502 d(v) + 5550

ot 2 982
+ —=dS+ dv = bdB + (at + ct%) ds + Ct%dv+ (4.4)

d(S,v)+

oWy oW,
oS ov oS ov
OWs 10%W, 1 0°Wy 0*W,
+c ( 5 dt + 2952 d(S) + 3 902 d{v) + asavd(S,u) ,

In order to remove the two random parts in (4.4) one needs

¢ — an/a’U and a — 8W1 e (9W2
b oW,/ PTas T Mas

Indeed, substituting the above values, both sides of equation (4.4) become
equal to puQ(vy;0). Since uQ(vi;0) does not depend on the characteristics
of the options, the self-financing portfolio constructed with the strategy ¢
perfectly replicates the claim price at each time ¢t < T. However, a per-
fect replication is subject to the condition that the model parameters are

correctly specified.

Remark 4.3.2 In Heston’s model the first derivative with respect to the
underlying price is P; as defined in appendix B.1. The first derivative with
respect to the instantaneous variance is equal to

ow opP, —r(T—p) OPs
T _ gl g7 2
v St v ¢ ov "’
where
OP; 1 [e'e) —tuln K, . .
- = —/ Re [—e , 210 Dj(u)| du for j =1,2
ov T Jo i
and the definition of ¢;(u) and Dj(u) are given in appendix B.1. 0

4.3.1 Hedging approach in a misspecified SV framework

In order to address the risk of parameter misspecification, it is possible to
use the result of Chapter 2. Hence, for instance, for an institution which
sells the option, the strategy can be defined as

. W[ /ov LW L oW,

oW, /0 as ‘oS (4.5)
bg— :Bt_l (Wfft—aj'St—c,j'Wg,t) .

Hereafter, this strategy will be denoted ¢t := (a*,b™, ™).
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Definition 4.3.1 The discounted replication error® associated with the strat-
egy ¢ is the discounted difference between the self-financing portfolio V (¢)
and the claim price:

er(¢) := By (Vi(9) —Wa)
where eg = 0 as long as Vo = Wy. O

If the discounted replication error associated with the strategy ¢* is non-
negative for all ¢t € [0, 7], then the strategy ¢ is a super-hedging strategy.
Indeed, in such a case we will have Vi(¢T) = Wy + e (¢pF) B, > W,

Proposition 4.3.1 If condition (2.11) is true, the discounted replication
error associated with the strategy ¢T is always non-negative inside the in-
terval [0,T]. O

4.4 Hedging reliability

The effectiveness of a hedging strategy depends on its capacity to reduce
the unexpected losses of an open option position. An unexpected loss oc-
curs when the value of the replicating portfolio is different from the option
value and it appears when the investor decides to close the position. This
difference is usually denoted as hedging error.

Hence, the hedging error gives an indication of the reliability of the
considered hedging strategy. However, the hedging error mean cannot be
the only observed variable. One has to consider also the variability of the
hedging error and, in general, the characteristics of its distribution. This
kind of analysis can be conducted in a simulation framework, where there is
the possibility to simulate a large number of price paths in order to properly
estimate the hedging error distribution.

In this framework, we consider an investor that has to hedge a short
option position. Without loss of generality, we assume that the position is
closed at the option maturity. At the issue date, the call option is at-the-
money with a maturity of one month. In order to reduce the discretization
problems, the hedging strategies are recalibrated four times a day. Moreover,
since the hedging portfolio is recalibrated at discrete times, the hedging
strategy is no longer self-financing. To face this problem, profits and losses
obtained by the recalibration of the portfolio are compounded and added to
the final hedging error.

Each experiment involves 100.000 simulation paths. All the experiments
are performed by using two different sets of parameters. Table 4.3 shows
the results related to the first set while Table 4.4 shows the results related
to the second set. The first column shows the initial cost of the strategy

®Frey and Sin [30] define this error as “tracking error”.
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Figure 4.2: Simulated path of the Black-Scholes implied volatility. Above
there are the simulations according to the first set of parameters and below
those according to the second kind of parameters. The thick line shows the
path simulated without contamination while the thin line shows the path
simulated under contamination of the instantaneous variance process.

while the second shows the percentage difference between the initial cost and
the benchmark cost, i.e. the cost obtained by Black-Scholes formula. The
next columns show some information on the hedging errors distribution. In
particular, hedging errors are described by their mean, the percentage mean
with respect to initial cost, and their standard deviation. Moreover, to have
an idea on the left tail of the hedging error distribution, two columns are
devoted to the distribution percentiles. Finally, the last column shows the
frequency of losses.

The first two experiments concern the Black-Scholes delta hedging. The
first line of Tables 4.3 and 4.4 shows the results of the delta hedging when
prices are simulated according to a geometric Brownian motion. The drift
parameter is assumed equal to the risk-free rate while the volatility is as-
sumed equal to the square root of the long-run instantaneous variance of the
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Table 4.2: Parameter estimates for the hedging experiments. In the first
panel there are the estimates of the first set of parameters while in the
second panel there are the estimates of the second set of parameters. Upper
and lower bound are computed as a confidence interval with a confidence of
80%.

Heston model contaminated Heston model
std  lower upper std lower upper
value error bound bound value error bound bound
¢ 0.1233 0.065 0.0405 0.2061 0.2020 0.127 0.0392 0.3649
& 2.0418 1.260 0.4272 3.6565 2.3668 1.416 0.5520 4.1816
6 0.3852 0.032 0.3446 0.4259 0.4316 0.083 0.3257 0.5375
¢ 0.1035 0.045 0.0456 0.1613 0.1685 0.084 0.0605 0.2765
& 34337 1.527 14762 5.3912 3.3104 1.435 1.4707 5.1500
6 0.2742 0.025 0.2421 0.3063 0.4599 0.069 0.3710 0.5487

Heston model (o = /(/¢). The mean and the standard deviation of the

hedging error are not zero because of the discrete recalibration of the hedg-
ing portfolio. On the whole, in the Black-Scholes framework, delta hedging
performs quite well and it can be taken as a benchmark for all the other
experiments.

The results on the second line of Tables 4.3 and 4.4 refers to the Black-
Scholes delta hedging when prices are simulated according to the Heston
model. We can see a remarkable increase in the hedging error standard de-
viation. Moreover, also the two quantiles indicate that in this framework the
losses can be more serious than in the previous experiment. This confirms
the inappropriateness of the pure delta hedging in a stochastic volatility
framework. Indeed, with delta hedging one completely disregards the im-
pact of the instantaneous variance in the hedging strategy.

As described in Section 4.3, a proper hedging approach in a stochastic
volatility framework can be followed by using a second option on the same
underlying. According to the delta-sigma approach, the hedging portfolio
has to be composed of the underlying, the money market account and the
second option.

The next three experiments involve a simulation according to Heston’s
model and a delta-sigma hedging to hedge the short call position. In order
to make the experiment easy to interpret, we assume a zero risk premium
both for price uncertainty and for variance uncertainty. Hence, the drift of
the price process is equal to the risk-free rate and no distinction is made
between real-world and risk-adjusted parameters.

In practice, the hedging approach involves the following steps: (1) ob-
servation of the underlying price, the money market account and the option
price, (2) computation of the implied instantaneous variance from the op-
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Table 4.3: Results of the hedging experiments with the first set of parameters. The first column shows the initial cost of the strategy while the
second column shows the variation of the initial cost with respect of the cost of the first experiment. The other columns show some results on
hedging errors (mean, percentage mean with respect to initial cost and standard deviation), the frequency of losses and the percentiles of the profits
and losses distribution. The following list points out the hedging strategy of the experiment, the model used to simulate the price path and the

parameter used to apply the hedging strategy.
Black-Scholes delta hedging:

1. Delta hedging — geometric Brownian motion — true parameters (u = r = 0.02 and o = 0.30).

2. Delta hedging — Heston’s stochastic volatility model — true parameters (u = r = 0.02, { = 0.18, £ =2, § = 0.40 and p = 0).
Hedging with parameter misspecification:

Delta-sigma hedging — Heston’s stochastic volatility model — true parameters (u =r = 0.02, { =0.18, £ =2, § = 0.40 and p = 0).

Delta-sigma hedging — Heston’s stochastic volatility model — estimated parameters (é = 0.1233, {AZ 2.0418 and & = 0.3852).

Delta-sigma hedging — Heston’s stochastic volatility model — super-hedging parameters (é = 0.2061, é: 0.4272 and é = 0.3852).

S ook W

Delta hedging — Heston’s stochastic volatility model — super-hedging parameters according to the ALP approach (omax = 0.3097).
Hedging with model misspecification:

Delta-sigma hedging — contaminated Heston’s stochastic volatility model — estimated parameters (¢ = 0.2134, £ = 3.1628 and § = 0.3485).

~

8. Delta-sigma hedging — contaminated Heston’s stochastic volatility model — super-hedging parameters (é = 0.3313, é =1.4562 and § = 0.3485).
9. Delta hedging — contaminated Heston’s stochastic volatility model — super-hedging parameters according to the ALP approach (omax = 0.3119).

initial hedging errors percentiles frequency of

cost % mean % std 5% 1% losses
1) Delta hedging 3.5349 - 0.020 0.57% 0.326 —0.511 —0.848 47.01%
2) Delta hedging 3.5349 - 0.040 1.12% 0.523 —0.829 —1.455 45.80%
3) Delta-sigma hedging 3.56160 —0.53% 0.014 0.41% 0.286 —0.404 —0.844 47.75%
4) Delta-sigma hedging 3.4710 —-1.81% —0.031 —-0.88% 0.287 —0.450 —0.892 58.31%

6) Delta super-hedging 3.6468 3.16% 0.152 4.16% 0.524 —0.690 —1.286 36.61%
7) Delta-sigma hedging 3.5050 —0.85% —0.002 —-0.07% 0.296 —0.417 —0.883 51.76%
8) Delta-sigma super-hedging 3.7533  6.18% 0.246  6.57% 0.296 —0.170 —0.640 11.78%
9) Delta super-hedging 3.7533 6.18% 0.245 6.52% 0.693 —0.862 —1.796 31.76%

)
)
)
)
5) Delta-sigma super-hedging 3.6468 3.16% 0.145 3.99% 0.288 —-0.277 —0.722 21.90%
)
)
)
)




Table 4.4: Results of the hedging experiments with the second set of parameters. The first column shows the initial cost of the strategy while
the second column shows the variation of the initial cost with respect of the cost of the first experiment. The other columns show some results on
hedging errors (mean, percentage mean with respect to initial cost and standard deviation), the frequency of losses and the percentiles of the profits
and losses distribution. The following list points out the hedging strategy of the experiment, the model used to simulate the price path and the

parameter used to apply the hedging strategy.
Black-Scholes delta hedging:

1. Delta hedging — geometric Brownian motion — true parameters (u = r = 0.02 and o = 0.20).

2. Delta hedging — Heston’s stochastic volatility model — true parameters (u = r = 0.02, { = 0.12, £ =3, § = 0.30 and p = 0).
Hedging with parameter misspecification:

Delta-sigma hedging — Heston'’s stochastic volatility model — true parameters (u =7 = 0.02, ¢ = 0.12, £ = 3, § = 0.30 and p = 0).

Delta-sigma hedging — Heston’s stochastic volatility model — estimated parameters (g: = 0.0957, é =2.7625 and § = 0.2494).

Delta-sigma hedging — Heston’s stochastic volatility model — super-hedging parameters (é = 0.1520, é =1.2833 and é = 0.2494).

A

Delta hedging — Heston’s stochastic volatility model — super-hedging parameters according to the ALP approach (omax = 0.2090).
Hedging with model misspecification:

Delta-sigma hedging — contaminated Heston’s stochastic volatility model — estimated parameters (f =0.1783, é =5.2352 and & = 0.2994).

~

8. Delta-sigma hedging — contaminated Heston’s stochastic volatility model — super-hedging parameters (é = 0.2576, é’ =28822 and § = 0.2994).
9. Delta hedging — contaminated Heston’s stochastic volatility model — super-hedging parameters according to the ALP approach (omax = 0.2121).

initial hedging errors percentiles frequency of
cost % mean % std 5% 1% losses
1) Delta hedging 2.3853 - 0.013 0.56% 0.217 —0.340 —0.564 47.05%
2) Delta hedging 2.3853 - 0.029 1.21% 0.369 —0.585 —1.024 45.57%
3) Delta-sigma, hedging 2.3703 —0.63% 0.009 0.40% 0.189 —0.266 —0.554 47.69%
4) Delta-sigma hedging 2.3355 —2.09% —0.025 —1.09% 0.189 —0.300 —0.588 60.40%

6) Delta super-hedging 2.4884 4.32% 0.132 5.31% 0.370 —0.458 —0.874 33.79%
7) Delta-sigma hedging 2.3908 0.23% 0.027 1.12% 0.197 —0.245 —0.562 42.07%
8) Delta-sigma super-hedging 2.5912 8.63% 0.228 8.78% 0.197 —-0.044 —-0.363 6.84%
9) Delta super-hedging 2.5912 8.63% 0.223 8.59% 0.494 —-0.559 —1.220 27.55%

)
)
)
)
5) Delta-sigma super-hedging 2.4875  4.29% 0.127  510% 0.190  —0.150 —0.440 16.17%
)
)
)
)
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Figure 4.3: Final profits (losses) of different hedging strategies. For plots
(a), (b), (c), and (d) the underlying price simulations are done by the Heston
model with the first set of parameters. Plot (a) shows the results of Black-
Scholes delta hedging, plot (b) shows the results of the delta-sigma strategy
obtained by the true parameters. In plot (c¢) the delta-sigma strategy is
obtained by the parameters estimated on the simulated price path. Plot
(d) shows the results of the delta-sigma super-hedging. In plots (e) and (f)
the underlying price simulations are done by a contaminated Heston model.
Plot (e) shows the performance of the delta-sigma strategy obtained by the
parameters estimated on the simulated price path while plot (d) shows the
results of the delta-sigma super-hedging.

tion price and (3) computation of the hedging portfolio coefficients. At each
step, the cost (profit) due to the hedging portfolio recalibration is recorded
and compounded to the maturity of the option in order to get the final loss
(profit) value.
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In the third experiment, the hedging portfolio is built by using the true
parameter of the underlying process. In this case, no parameter misspecifi-
cation is considered. According to the results in Tables 4.3 and 4.4 one can
say that the correctly specified delta-sigma hedging performs much better
than delta hedging. Indeed, the hedging error standard deviation is sub-
stantially reduced. This result is confirmed also by the comparison between
plot (a) and plot (b) of Figure 4.3.

However, the true parameters are not known by the investor that has
to estimate them. This introduces a misspecification phenomenon due to
a potential estimation problem. To investigate it, in the fourth experiment
the parameters for the hedging portfolio are estimated in a sample path
simulated by using the true parameters. The estimation results are in Table
4.2. The parameter misspecification produces a worsening especially of the
frequency of losses and of the quantiles of the hedging error distribution.

The parameter misspecification impact can be slashed by the super-
hedging strategy introduced in Section 4.3.1. To compute the value of a™,
b™ and ¢t we assume that the misspecification involves only the drift pa-
rameters of the instantaneous variance process. Indeed, as shown in Chapter
3 the estimation of the diffusion parameter of the variance process is very
precise. Moreover, in several early instances the influence exercised by § and
p on option pricing and hedging was shown to be small. This simplification
allows us to get a closed-form solution for the first derivative with respect
to the underlying price and to the instantaneous variance.

The fifth experiment is carried out by using the super-hedging parame-
ters (see again Table 4.2). The super-hedging parameters are obtained by
the interval estimation proposed in Chapter 3. For this purpose, an 80%
confidence is used. Due to the large standard error, especially for the mean
reverting parameter, the 80% confidence is a good trade-off between hedg-
ing safety and credibility of parameter’s bound values. Indeed, in many
cases a higher confidence could lead to a negative lower bound for the mean
reverting parameter.

The delta-sigma super-hedging approach effectively reduces the frequency
of losses and the percentiles of the left tail. It is clear from plot (d) of Figure
4.3 that the hedging error distribution is shifted to the right. On the whole,
the delta-sigma super-hedging approach solves the parameter misspecifica-
tion problem. However, to assess its real effectiveness, our approach has to
be compared with alternative super-hedging strategies. The one proposed
under the ALP approach is based on the solution of a non-linear PDE. How-
ever, when the option to hedge has a monotonic first derivative with respect
to the underlying price (such as a call option), the PDE has the Black-
Scholes solution with the volatility equal the upper bound of the possible
volatility values. Let us call this value oy,q;.

The sixth experiment involves the ALP approach. A proper comparison
can be done only by using a value of 0,4, such that the initial cost equals
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the initial cost of the delta-sigma super-hedging strategy. Tables 4.3 and
4.4 show that the ALP approach is clearly dominated by the delta-sigma
super-hedging approach.

So far only parameter misspecification is considered. Indeed, we made
the assumption that the Heston model is the true model for the underlying
price dynamics. Eraker, Johannes and Polson [22] show that the Heston
model is misspecified. They state that the misspecification can be remark-
ably reduced by introducing jumps in the instantaneous variance process.

In order to show whether the proposed hedging strategy is effective also
with model misspecification, the next experiments are done by simulating
the price paths by a contaminated Heston model. The contamination is
caused by assuming that the error term of the instantaneous variance pro-
cess is no longer distributed as a standard normal but it is distributed
as a mixture of normal distributions. By assuming that x ~ N(ugz,02),
Y~ N(uy,az) and A ~ Bern(p), the new error term z = Ay + (1 — Az is
distributed as a mixture of normal distributions. In this application, the
contamination percentage p is equal to 0.02, both y and = have zero mean

and variance respectively equal to 9 and 1119;”, so that the new error term z
has mean 0 and variance 1.

As shown in Figure 4.2, the contamination of the instantaneous variance
process produces some jumps in the implied volatility path. However, since
the investor persists in considering the Heston model, both the estimation
and the hedging strategy are based on this model. The estimated parameters
are in Table 4.2.

The seventh experiment is conducted by using the parameter estimated
on the simulated path. The hedging performances are similar to those ob-
tained under parameter misspecification only. Also in this case the right
translation produced by the delta-sigma super-hedging reduces the problem
quite radically. Indeed, the frequency of losses of the eighth experiment is
reduced to a level lower than that obtained without model misspecification.
This is due to the rise of the estimation standard error, especially for the long
run variance parameter. Hence, the value of ¢ used for the super-hedging
strategy with model misspecification is higher than the value of ¢ considered
with parameter misspecification only.

On the contrary, the super-hedging based on the ALP approach seems
to give unsatisfactory results. Indeed, the value of the percentiles indicates
that the left tail of the hedging error distribution is still too high.

4.5 Conclusion

This chapter pursues an analysis aimed to assess pricing and hedging relia-
bility of the model proposed in Chapter 2 and estimated in Chapter 3. The
analysis concerns real data for pricing purposes and simulations for hedging
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purposes.

The pricing reliability is assessed by comparing buyer’s and seller’s prices
obtained by the model with the market price of the option. The comparison
shows that the market price of the option is almost always between the
two price bounds defined by the super-hedging approach under stochastic
volatility assumption. Moreover, the two price bounds are very realistic since
they are not too far from market price. The comparison involves also the
super-hedging price obtained by Avellaneda et al. [5] under the assumption
of uncertain volatility. The prices obtained in this case are very far from the
market price and cannot be considered realistic.

A super-hedging approach under stochastic volatility assumption is pro-
posed. This is based on the delta-sigma hedging introduced by Scott [57] and
uses a second option written on the same underlying. The super-hedging
approach is introduced primarily to solve the parameter misspecification
problem due to the low precision in stochastic volatility estimation.

In a simulation framework, a hedging error distribution is obtained for
different hedging approaches. Under Heston model assumptions, the delta-
sigma super-hedging approach is able to solve the parameter misspecification
problem. This approach dominates also the ALP approach that is unable
to reduce sensibly the hedging error standard deviation.

Moreover, the different hedging approaches are compared under model
misspecification. In this case, too, the delta-sigma super-hedging improves
noticeable the hedging performances both with respect to the standard delta-
sigma hedging and with respect to the ALP approach.
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Chapter 5

VaR estimation methods for
non-linear portfolios

The increase in the dimension of traded portfolios and the rise in market
volatility have made market risk measurement an even more significant and
challenging issue for a financial institution. Value at Risk (VaR) has become
one of the most used instruments to measure market risk both for regulatory
purposes and for internal control motivations. Defined as the maximum
portfolio loss that the institution can have with a certain probability and
within a time interval, VaR is attractive because it summarizes in one single
number a complex market risk exposure.

Different methods are in general used to estimate the VaR. Many of these
methods are based on some assumptions on the asset returns distribution,
while some others give a sort of non-parametric VaR estimate. Neither the
first kind of models nor the second one is free of drawbacks.

The parametric methods strongly depend on the hypothesis made for
the return distribution that is often assumed to be normal. As already
noted by Mandelbrot [49] and Fama [23] the normality assumption is un-
realistic since the return distribution seems to be more fat-tailed than the
normal. As documented by a wide literature! the fat-tail problem produces
an underestimation of the VaR.

Another problem emerges when the portfolio contains option positions.
Indeed, in such a situation the relation between the option price and the
underlying price is non-linear and it is not clear, given the distribution of
the underlying price, what the distribution of the option returns is.

On the other hand, the non-parametric approaches implicitly assume
that the returns are identically and independently distributed (hereafter iid).
This assumption, too, is violated by the evidences that volatility changes
over time. As pointed out by Hendricks [39] and by McNeil and Frey [50]
the wrong assumption of iid returns leads to an inconsistent VaR estimation.

'See Duffie and Pan [18] for an overview on the subject.
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Barone-Adesi, Bourgoin and Giannopoulos [8] propose a semi-parametric
method to deal with non-iid returns. The main idea is to standardize the
returns by assuming a model for their volatility, in order to obtain an iid
series of standard residuals. Inside the series, the bootstrap is applied to
obtain a simulated distribution for standardized returns. These returns are
then scaled by a variance forecast.

Pritsker [56] shows that the standard non-parametric approach based on
historical data reduces the sensitivity of the VaR measure to sudden changes
of risk. To mitigate the problem Boudoukh, Richardson and Whitelaw [10]
suggest to relax the standard assumption that all the past returns have the
same probability to occur again. They assign a higher probability to occur
again to the more recent realizations.

We intend to apply something similar to the method proposed by Barone-
Adesi et al. [8]. Indeed, The bootstrap is usually applied by assuming that all
the standardized residuals have the same probability to occur. This would
be the best thing to do if the volatility model were correctly specified. If
we take into account a possible misspecification of the volatility model, we
would be considering the most recent observations as more probable.

In Section 5.1 we introduce a general definition of portfolio VaR, while
Section 5.2 is devoted to describing the parametric method based on the
quadratic approximation of the non-linear assets. In Section 5.3 the non-
parametric method based on historical data is described. The filtered his-
torical simulation method introduced by Barone-Adesi et al. [8] is described
in Section 5.4.

5.1 A general definition of portfolio VaR

In a portfolio composed by n assets, let Xy := [X1 4, Xo¢,..., Xpn ) € R" be
the vector of the asset prices. Moreover, let us define ¢ € Z" the vector of
the number of the assets in the portfolio between t and t + At and V; the
price of the portfolio at time ¢ such that V; = ¢’X;. We define the vector
a € R" as the vector of the weights of each asset. For the i-th asset the
weight a; is equal to %

If « is the accepted loss probability, the VaR measure between ¢ and
t + At will be defined in the following way:

inf {Pt[v;t—}—At e Z R —VaRt] < a} s
VaR

or with another notation

Vig}fh {]P)t [‘/tG,IRH_At < —VaRt} < Ol} s (51)

where Ry, a; is the vector of asset returns at time ¢ + At.
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By the above definition, it is clear that VaR depends on the available
information in ¢, the horizon At, the portfolio allocation a (that is assumed
constant during the VaR horizon) and the accepted loss probability a.

One of the most diffused approaches to estimate VaR is the so called
delta-normal approach, where the assets returns are considered normally
distributed and all the assets are assumed to be linear with respect to their
underlying.

The first problem of this approach is due to the non normality of the re-
turns, originally noted by Mandelbrot [49] and Fama [23]. Figure 5.1 shows
how the standardized returns of the Swiss Market Index and the Standard
& Poor 500 cannot be considered normally distributed. The evidence ac-
crues mostly by the QQ-plot where the plot diverges from the dashed line
especially on the tails. This phenomenon is sometimes called heavy-tails or
fat-tails problem and induces a VaR underestimate also in portfolios with
linear positions only.
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Figure 5.1: Frequency plot compared with the standard normal density and
QQ-plot of the same historical distribution with respect to the standard
normal distribution. The sample is composed by the standardized log-return
of the Standard & Poor 500 (above) and of the Swiss Market Index (below)
from May 1993 to May 2001. Source: Datastream.
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The non-linearity of some positions increases the difficulty in the appli-
cation of any analytical approach to estimate VaR. Indeed, even under nor-
mality of the underlying risk factors, the portfolio distribution is no longer
normal.

To solve the non-linearity problem some methods can be used. Among
them one can distinguish those based on approximation of the function be-
tween non-linear assets and underlying risk factors from those based on the
simulations and on a full valuation of the non-linear positions.

5.2 The quadratic approximation

A frequently used hypothesis to compute VaR is to assume that the returns
are jointly normally distributed. In spite of this assumption, when there are
option positions in the portfolio, portfolio returns are no longer normally
distributed. A way to face the problem is to substitute the non-linear rela-
tion between the option returns and the underlying returns by a quadratic
approximation.

In a one-dimension Black-Scholes framework, let us call S; the price of
the underlying asset in ¢ and X; the price of an option at the same time.
In this framework, the underlying asset is the only risk factor of the option.
Hence, for a small time interval At, the option price at time ¢ + At can be
approximated as:

Xerar = Xt X (Surne— 50+ 20X (61 ai— 802+ o1Ser ae — S2)
trar = X+ oo (Otrar = 51) + 5 Her (Star =St t+Aat—ot|”) -
By defining Ry, s = M and Ry 5 = St%t;s‘, the above equation can
be written as
Sy 0X ~ 1587 9°X
Ripat = S o Rypn + =L Z 2 R2 a4 0(|Serar — Si?) . (5.2)

X; 98 2 X; 05?

The ratios ﬁ and 2 352 are called respectively delta and gamma, while the
last term is the error made by the approximation.

Remark 5.2.1 In the delta-normal approach the Taylor series expansion is
arrested at the first order. The advantage is that the normality assumption
of the underlying returns is transferred to the option returns also. The draw-
back is that this assumption produces a wrong VaR value. In particular, for
short option positions the VaR is strongly underestimated. Indeed, in this
situation the option function is concave and the linear approximation always
lies above the option function. On the contrary, for a long option position
the linear approximation always lies below the option function leading to an
overestimated VaR.
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The delta-gamma approach replaces the option function with a quadratic
function. This substitution produces an underestimated VaR for long option
positions and an overestimated VaR for short option positions?. O

The above equations are approximately true in a neighborhood of S;.
When one faces large variations they are not in general a good approxima-
tion. Intuitively, the problem is that by estimating VaR one is interested
in large variations on the risk factor while the approximation is close to be
true for small variations only.

Moreover, also by assuming the conditional normality of the underlying
returns, from equation (5.2) we cannot easily say anything about the dis-
tribution of the derivative returns. The most common ways to take into
account the non normality of the derivatives returns are three:

e The Cornish-Fisher expansion corrects the normal critical value of the
a-percentile to deal with the kurtosis and the skewness of the option
return distribution. The use of this approach is explained in Zangari
[64].

e The Johnson transformations approach is based on the matching of the
option return first four moments with a distribution belonging to the
Johnson distributions family. The use of this approach is summarized
in Zangari [65].

e The Fourier transform approach is based on the inversion of the char-
acteristic function of the approximated derivative returns. By the
inversion of the Fourier transform, one can get the distribution of
derivative return and obtains the required quantile.

In what follows the used approach is the last one. The advantage is that
by Fourier inversion we get the exact distribution of approximated option
returns. Moreover, some recent papers show the superiority of this method-
ology with respect to the others®.

5.2.1 The multivariate framework

Let us define the underlying return vector as
~ ~ ~ ~ !
Rine = [Rl,t+At,R2,t+At,---,Rm,t+At] .

By equation (5.2) the portfolio return can be approximated in the following
way:

D ! ', ! ~! P,
RH—At =a RH—At ~ a CRt-i—At + Rt—|—Ata’ ARH—At y

2See El-Jahel et al. [19] for more details.
3See among others Mina and Ulmer [52].
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where C € R"™™™ is the matrix of the first term approximation coefficients,
A € R"™™ jis the matrix of the second term approximation coefficients and
a € R™™ is a matrix composed by the portfolio weights.

Let us denote by i a generic row of a matrix and j a generic column
of the same matrix. A general rule for the construction of the matrixes C,
A and a is to put the coefficients of the i-th option which depends on the
j-th underlying on the element %,; of each matrix. Hence, the coeflicients
of the options written on the same underlying will be on the same column.
Moreover, the linear part of the portfolio has to be a zero coefficient in both
matrix A and a.

To be more general let us introduce a constant term in the above ap-
proximation such that*

RH_A,A, = CLIK + a,CRH—At + Ré_,_AthIARH_At ,

where K € R” is a vector of constants. With a more compact notation we
can write the above equation in the following way:

Rt—|—At =K+ C,Rt + R;Bét , (53)

where k := 'K, ¢ := C'a and B := @' A. We assume that B is symmetric’.
Let us assume as usual that the returns of the risk factors follow a
multivariate conditional normal distribution

Riyyae ~N(0,3),

where ¥ € R™*™ ig a positive definite symmetric matrix. The assumption
of a zero mean is not so strong for a short horizon. Moreover, for some
authors such an approximation performs better than an estimate based on
historical data®.

Definition 5.2.1 Let Y be a random variable and u a real number, we call
characteristic function of Y the ezpected value of €Y . |

If we assume that R;ia; is a continuous random variable with probability
density function f(r), the characteristic function can be written as

. too
orla) = Bl = [ p(ryir

—00

where the last integral is called the Fourier transform.

“Later on, we will use the equality by neglecting the error term.

When B is not symmetric Feuerverger and Wong [24] suggest to substitute it by
;(B+ B').

See among others Figlewski [25].



VAR ESTIMATION METHODS FOR NON-LINEAR PORTFOLIOS s

Proposition 5.2.1 If we assume that Rt+At has a multivariate normal dis-
tribution with mean zero and covariance matrix 3, then the random variable
Ry Ay will have the following characteristic function

1
or(u) = |D| /% exp |iur — §’LLQC,D7120 , (5.4)
where D := 1 — 2iuXB. 0

See appendix A.3 for a proof.

Remark 5.2.2 When B = 0,, i.e. when the assets are linear with respect
to the risk factors, the above characteristic function becomes

1
vr(u) = exp [ium — E’U,ZCIZC] ,

where ¢3¢ is the portfolio variance. As expected, in this framework we
obtain the characteristic function of a multivariate normal distribution. O

The probability density function f(r) of the random variable R; ;s can be
obtained by the result of the Fourier inversion theorem

+oo
£(r) 1/ e or(u)du

:E .

Moreover, we can also obtain the distribution function F(r) of the same

variable by the following theorem”.

Theorem 5.2.1 Let f(r) and pr(u) be Lebesgue-integrable, if the mean and
variance of the random variable Rya; exist, then its distribution function
F(r) will be

1 1 00 e—iur(pR(u)
= - — — - resr 7 .
F(r) 5 7"/0 Re[ " du , (5.5)
where Re[g(u)] is the real part of g(u). O

Recalling that F(r) = P;[Riyat < 7|, we can guess that if F(r) = « then
r will be equal to —V%tR. Hence, one can obtain the portfolio VaR by
numerically solving the following equation:

% 21 /Ooo Re [i exp (iuvgf) @R(u)] du=a . (5.6)

™ m

"See Shephard [58].
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5.3 Non parametric method based on historical
simulations

By taking a time series of data of size T" as a sample of the whole population
it is possible to get an empirical distribution of portfolio returns. Indeed,
at every date of the sample the past risk factor returns are used to revalue
the portfolio and to get the empirical distribution of its returns. VaR is the
a-quantile of this distribution.

Without loss of generality, we will assume At = 1. The idea is to replace
in equation (5.1) the theoretical probability by an empirical frequency:

T-1

1
T Z L{ViR,_4<-VaR} = @,
k=0

such that VaR can be obtained by the following minimization problem:

T-1 2
VaR, = arg min [(f kz_% 1{—(Vth_k+VaR)>0}> - 04] : (5.7)

We can see equation (5.7) as a non-linear last square regression

a = 1{—(Vth_k+VaR)>O} + Et—k k :0,1,...,T— 1

where VaR is now the true VaR and e;_j ~ iid(0, o). Summing and divid-
ing by the sample dimension we get

1 1 T=1
a= T Z 1{_(‘/iRt—k;+VaR)>0} + T Z Et—k -
k=0 k=0

Note that the last term on the above equation goes to zero if some version
of the law of large number applies. In this case, the first sum of the right
hand side of the above equation defines a consistent estimator for a.

5.3.1 Generalized historical simulation method

The iid assumption allows us to say that every realized return has the same
probability to occur again. Indeed, equation (5.7) does not differentiate
among all the past realizations which are equally weighted independently
on the time they are occurred. As noted by Pritsker [56], giving the same
probability to occur for each return reduces the sensitivity of the VaR mea-
sure to the changes of risk due to market crashes.

To face the problem Boudoukh, Richardson and Whitelaw [10] suggest
to give different weights to different realized returns such that equation (5.7)
becomes

T-1 2
VaR, = arg min [(%pkl{—(WRt_k+V(zR)>0}) - a] : (5.8)
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where py, is the weight and Zfﬁlpk =1.
In particular they suggest to give a higher weight to the most recent
realizations by using a weight that decays with time

T-1 -1 1-1
_ Ni-1 Ae-1— = 2 3kl k=0,1,...,T—1
pk (; ) 1 — )\T 07 ? ?

where X € (0,1) is called the decay factor. Note that for A equal to one we
have equation (5.7).

Moreover, we can say that Apy = pr_1. This shows that the lower A\
the higher the decay effect on the weights associated with far returns. This
should increase the VaR sensibility to market crashes or in general to risk
raises.

5.3.2 Some hidden drawbacks

Because of the ease of implement and of the absence of an explicit model as-
sumption on the risk factors returns, the historical simulation approach has
become very popular. There are some drawback, though. One of the most
relevant concerns the revaluation of the options. Indeed, for this purpose it
is necessary to introduce some assumptions on the underlying returns dis-
tribution that partially reduce one of the two main benefits of the approach.

A second problem is that a lot of data have to be used, otherwise the
empirical distribution is not properly defined on the tails. This drawback is
common to all the methodology based on simulations, but it is more evident
for historical simulations since the data available for some assets can be very
few.

5.4 Filtered historical simulation

The assumption that sample returns are iid is violated by the evidence that
the volatility changes over time. This causes an inconsistent estimation of
VaR8.

Barone-Adesi, Bourgoin and Giannopoulos [8] introduce a method to
face the problem. The approach is based on historical data. Indeed, the aim
is to have a sort of independence from the assumptions on the risk factors
distribution. In this framework, the iid realizations are obtained by filtering
the data with a predefined model for returns.

The models generally assumed belong to the ARCH class. Hereafter, we
will assume that returns have some GARCH(1,1) errors. Let us describe the
idea of the method in the one dimensional framework. For the j-th asset

8The same idea is discussed by Hendricks [39] and by McNeil and Frey [50].
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the return dynamics is described by the following model:

Rjt = &4t j:132a"'7ma
Ej,t ~ N(O,hj,t) ;
hjt = ao+ 1R, | +aghjy 1, (5.9)

To apply the method one has to consider the following steps:

—

. collect a set of observed daily returns R;; for t =1,2,...,T;

2. estimate equation (5.9) to have the estimated variance hj; for each
time ¢;

3. define the standardized residuals in the following way:

R;;

by

et t=1,2,...,T

4. to generate the k-th simulation pick randomly (with replacement) one
of the T standardized residuals (let us define it e*);

5. forecast the variance of the period T'+ 1 by equation (5.9);

6. define the simulated innovation forecast for time 7'+ 1 as

k — kL.
241 = € hjri1,

7. define the T' + 1 simulated risk factor price as
Siri1 = Sir(1+ 25 r11)

8. by using S;’T .1 calculate the simulated portfolio price and then the
simulated portfolio returns.

By repeating the procedure from step 4 to step 8 one can obtain a simulated
probability density function for the one day returns that may be used to
calculate the VaR of the portfolio.

Remark 5.4.1 The approach can be extended to consider a time horizon
longer than one day. Indeed, z;-“,T 41 can be used to forecast hjrio:

. . ) .
hjrie = ao+ a1(2ir1)” + aohjri -

Then, by picking randomly a second standardized residual, say ek, it is
possible to simulate the innovation for time 7" + 2:

k — ok
25 T+2 = €3 hjrio,
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that is used to simulate the risk factor value at T' + 2:

k k k
Siryo = Simi (1 + 25140) -

The steps are iterated until the time horizon 7 was reached. Hence, the
simulated risk factor value in T+ 7 is:

,
ko k. [ik
Sjrir = Sj,TH (1 + € hj,T+z'> :
i=1

5.4.1 The model misspecification

In step 4 the bootstrap from the sample can be performed by assuming that
all the standard residuals are equally probable. Therefore, the random date
can be picked from a uniform distribution. Indeed, the use of a uniform
distribution is the best one can do since one is sure that the standardized
residuals are iid, or, otherwise, that model (5.9) is the true model for the
market volatility.

If we consider the possibility that the model could be misspecified, we
will not be sure about the iid of the standardized residuals. In such a
situation, to use a uniform distribution might not be the best way to sample
the random date. As in Section 5.3.1, to increase the sensibility of the VaR
measure to risk changes, we can impute a higher probability of occurrence
to the standard residuals obtained by the most recent returns. This can
be done by extracting the random date from an exponential instead of a
uniform distribution.

5.4.2 The multivariate framework

In the multivariate extension of the above method no variance-covariance
matrix is used. Indeed, the bootstrap is not directly applied on the resid-
ual returns, but on the past states of the world. A state of the world is
represented by the m underlying returns observed at a certain date.

In practice, one has to construct a 7' x m maftrix where in the column
there are the time series of the each underlying returns. The returns have to
be standardized with the procedure described above. Note that in spite we
are working in a multivariate framework the GARCH model for the returns
filtration is a univariate GARCH for each time series.

The bootstrap is carried out by picking randomly a row vector from
the standardized return matrix. Now e is an m-vector and it is used to
generate the simulated innovation as in step 6. Since all the standardized
returns relative to the same date are picked at the same time, the correlation
among different underlying is preserved. The portfolio is revalued for each
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randomly picked state of the world so as to obtain an empirical distribution.
From the empirical distribution the VaR estimate is obtained by the same
techniques which are used for the historical simulation.

In order to apply the filtered historical simulation method, one does not
need to estimate the variance-covariance matrix of returns. However, the
iid assumption of the standardized residuals implies that their correlations
are constant over time. For a long data set, Pritsker [56] shows that the
differences in correlations are significant from a statistical as well as an
economic point of view.

The same author shows that the reduction of the sample size can mit-
igate the problem. However, a too short data set could lead to a VaR un-
derestimate due to the potential lack of extreme observations. Hence, one
needs to find a proper data set size in order to manage the trade-off between
stationarity property and the number of extreme observations considered.



Chapter 6

Testing VaR estimation
methods

In the last few years, financial institutions have the possibility to choose
among a variety of VaR estimation methods. The choice has to be consistent
with the dimension and the composition of the trading book. However, in
order to make this choice properly, a comparison between the different VaR
estimation methods has to be done.

There is a lot of literature that tries to evaluate the accuracy of the
different methods, especially for equity portfolios'. However, most of this
literature does not consider the effects on VaR estimation of the introduction
of non-linear positions in the portfolio.

The aim of this chapter is to test the VaR estimation methods introduced
in Chapter 5 for portfolios containing non-linear positions. To measure
the performances of the estimation methods, they will be tested on the
period between June 1999 and May 2001 in order to include the crash of the
NASDAQ index.

The choice of this period is not casual. Indeed, our attention is also
on the VaR sensitivity to sudden changes of risk due to market crashes.
It seems natural to require this kind of sensitivity for a risk measure; yet,
clearly, not all estimation methods supply this feature.

To verify the accuracy of VaR estimation methods one of the most used
approaches is the so-called reality check test based on the observation of the
VaR performances during a period of time. Hence, the performances are
tested by an unconditional coverage test and by a conditional coverage test.
While the first test assesses the goodness of the coverage of VaR value on all
the sample period, the second test tries to detect the presence of a relevant
time dependence among VaR performances.

Without loss of generality, hereafter the time horizon will be assumed
equal to one day (At = 1). One of the problems in using longer time intervals

'See among others Hendricks [39] and Pritsker [55].
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is that the assumption of a constant portfolio allocation becomes unrealistic.
Moreover, a longer time horizon involves a reduction of the sample size for
the test and it can lead to a reduction of the power of the test.

Section 6.1 describes the four portfolios considered for the analysis. Sec-
tion 6.2 is a first glance at the VaR estimation. Section 6.3 is devoted to
testing the accuracy of the VaR estimates during the test period. Comments
and conclusions are in Section 6.4.

6.1 The portfolios considered

For the following analysis, four portfolios are considered. They consist of
the same kind of assets (equities and options on index) but with different
composition rates. A certain percentage of equities is diversified inside the
American biotechnological industry. The choice of this industry is motivated
by the fact that we want to consider an high volatility portfolio whose stocks
are quoted in a market that suffered of some strong crashes in the recent
past. It enables us to observe the sensibility of the VaR estimate with respect
to an increase of risk due to a market crash.

In particular, portfolio A is completely composed by the biotech eg-
uities. The percentage of biotech equities reduces to 63% in portfolio B.
The residual 37% consists of other stocks having low correlation with the
biotechnological industry.

In portfolio C, biotech stocks are 56% of the total portfolio while 12% of
total wealth is represented by long positions in the S&P 500 Index European
put options and in the NASDAQ 100 Index European put options. Both
options have four months time to maturity and are in the money. Their
purpose is to reduce the market risk of the equity portfolio. Indeed, the
number of put options and the strike price are chosen to reduce, in the
following four months, the probability of a loss of more than 95% of the
equity portfolio. The aim is to show how the hedging strategy can change
the VaR value.

In portfolio D the biotech stocks are 56% of the total portfolio while
7% of total wealth is represented by short positions in the S&P 500 Index
European call options and in the NASDAQ 100 Index European call options.
Both options have four months time to maturity and are out of the money.
They are not used for hedging purposes but for a sort of speculation that
increases the expected portfolio profitability. This kind of behavior strongly
increases the portfolio risk. Our aim is to show how the different VaR
methods are able to detect such a risk increase.

The exact composition of the portfolios is in appendix D.
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Table 6.1: VaR estimated by the methods described in the previous sections
for the four portfolios. The VaR is expressed in percentage with respect to
the portfolio price at time ¢. The time horizon is one day.

Portfolios

a=0.01 A B C D

1) Parametric VaR 7.50% 6.06% 3.92% 19.76%
2) Standard Historical Simulation 10.11% 7.41% 5.41% 10.10%
3) Weighted H. S. (A = 0.99) 9.24% 7.40% 4.95% 10.77%
4) Weighted H. S. (A = 0.97) 716% 6.24% 4.17% 10.09%
5) Filtered H. S. (Uniform) 9.32% 6.90% 8.57% 16.58%
6) Filtered H. S. (Exponential) 7.75% 5.93% 8.79% 16.53%
a=0.05 A B C D

1) Parametric VaR 5.30% 4.28% 2.62% 12.55%
2) Standard Historical Simulation  5.88% 4.44% 3.39%  6.79%
3) Weighted H. S. (A = 0.99) 6.35% 4.69% 3.51%  6.89%
4) Weighted H. S. (A = 0.97) AT3% 4.53% 2.23%  5.52%
5) Filtered H. S. (Uniform) 5.22% 4.34% 5.712% 10.55%
6) Filtered H. S. (Exponential)  4.34% 4.11% 4.88%  9.73%

6.2 A first glance at the empirical results

The different VaR estimates at 30.05.2001 for the following day are sum-
marized in table 6.1. In the application of the parametric approach for the
linear portfolios A and B the assumption is only that the returns are nor-
mally distributed, while for portfolio C and D a delta-gamma approximation
is used.

The variance-covariance matrixes are estimated by the so called Orthog-
onal GARCH(1,1)2. The parameters of the GARCH model are estimated
by means of 300 daily observations. Moreover, in order to apply the delta-
gamma, approach, equation (5.6) has to be solved numerically?.

Figure 6.1 shows the conditional probability density function of the re-
turn of portfolios C and D compared with a normal distribution. The prob-
ability density function is obtained by assuming the normality of the risk
factors return and by using a quadratic approximation for the options re-
turn. The non-linear positions produce an asymmetric shape of the density
function. As expected, the left tail of the distribution is higher for portfolio

2See among others Alexander [2] and Bystrdm [11] for an application to Nordic stock
markets during the Asian financial crisis.

3Note that in the left hand side of the equation there is an integral that has to be
solved numerically. For this purpose a Gauss-type numerical integration with Laguerre
polynomials of order 14 is used.
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Figure 6.1: Conditional probability density function of the return of the
portfolios C (above) and D (below) compared with a normal distribution
(shaded line).

D than for portfolio C. This is due both to the larger risk in portfolio D
and to the risk overestimation of the delta-gamma method for short option

positions®*.

The historical simulations are done by using equation (5.7) with 500 past
daily returns. In portfolios C and D the options are revalued by using the
Black-Scholes formula with a constant volatility equal to the implied volatil-
ity at date t. The weighted historical simulation approach is performed by
using two different decay factors. The first one (0.99) gives a lower decay
effect than the second one (0.97). The latter yields a VaR estimate more
sensitive to the changes in market risk.

In the filtered historical simulation method, the sample size is composed
by 400 daily observations. The choice of this sample size is justified by the
need to manage the trade-off between the covariance stationary of the stan-
dardized residuals and the possibility to include a sufficient number of ex-
treme observations. Within the sample the standardized residuals are picked
randomly 5000 times. The bootstrap is done either by picking randomly a
date from a uniform distribution or by using an exponential distribution
with parameter A equal to 0.99.

“See Remark 5.2.1 for a description of the phenomenon.
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Table 6.2: Number of failures z and their proportion p with respect to the
whole sample of 500 observations (from 07.06.1999 to 30.05.2001). The time
horizon is one day.

Portfolios

A B C D
a=0.01 T P T P T P T P
1) Param. VaR 6 12% 5 1.0% 27 54% 5 1.0%
2) S.H.S. 8 1.6% 9 1.8% 13 2.6% 12 24%
3) WHS. (A=099) 9 18% 10 2.0% 9 1.8% 6 1.2%
4) WHS. (A=097) 9 18% 10 20% 12 24% 10 2.0%
5) F.H.S. (Uniform) 7 1.4% 7 1.4% 8 1.6% 7 14%
6) F.H.S. (Exp.) 8 1.6% 8 1.6% 7 14% 8 1.6%

A B C D
a=0.05 T P T p T p T p

) Param. VaR 24 4.8% 23 4.6% 41 82% 10 2.0%
) S.H.S. 52 10.4% 50 10.0% 45 9.0% 33 6.6%
3) WHS. (\=0.99) 32 64% 32 64% 30 6.0% 29 58%
4) WHS. (A=097) 28 56% 28 56% 27 54% 28 5.6%
5) F.H.S. (Uniform) 40 8.0% 39 7.8% 30 6.0% 27 5.4%
) F.H.S. (Exp.) 25 52% 24 48% 25 50% 26 52%

6.3 Testing the VaR estimations

To verify the accuracy of VaR estimates, one of the most used methods is
the so called reality check. It is based on the observation of the VaR perfor-
mances during a period of time. The observed variable is the number of VaR
failures. For VaR failure we mean a loss higher than the estimated VaR.
The percentage of failures with respect to the total of the considered obser-
vations, say p, should be as near as possible to the defined loss probability
Q.

Table 6.2 shows the number of failures and their proportion with respect
to the whole sample. They are obtained by estimating VaR for the different
portfolios during a period of 500 days from June 1999 to May 2001. The
obtained VaR is compared with the loss of the following day.

The first estimation method gives similar results for the two portfolios
with linear positions only. For both portfolios this method seems to work
quite well. On the other hand, the delta-gamma approach, seems to perform
badly for both portfolios containing options. As expected, the quadratic ap-
proximation underestimates the risk for a long position while overestimates
the risk for a short position. This is also evident from table 6.1, where the
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VaR estimated by the delta-gamma approach is twice the value obtained by
the historical simulations.

The standard historical simulation method performs poorly both for eg-
uity portfolios and for non-linear portfolios. This is due to the lack of sen-
sibility of the method with respect to changes in market risk. Indeed, from
figure 6.4 one can see the weak reaction of the standard historical simulation
VaR to the NASDAQ crash. The performances remarkably get worse for a
5% accepted loss probability. For this accepted loss probability weighted
historical simulations seems to give better performances for all the portfo-
lios.

As expected, the filtered historical simulations seems to work very well
for the accepted loss probability of 1%. Indeed, as a result of bootstrap,
the extreme left tail has an accurate definition. The exponentially sampled
filtered historical simulations dominates the standard filtered historical sim-
ulation method for the accepted loss probability of 5%. Moreover, due to
the GARCH forecast of the variance, the filtered historical simulation meth-
ods are very sensitive to market crashes. This is evident in figure 6.4 and
6.5. Also in this case the sensitivity is higher for the modified exponential
sampled approach than for the standard approach.

6.3.1 Unconditional coverage test

According to Kupiec [47], by using a likelihood ratio statistic, a test can be
developed to decide whether to reject the null hypothesis that the probability
of failure p is equal to «. The starting point is to assume that the sample is
drawn from a Bernoulli population with two possible events: the VaR can
cover the loss or the VaR is not sufficient to cover the loss. If the Bernoulli
random variables are independent the probability to have x failures in a
sample of size n will be given by a binomial distribution:

n i _ n—x _
P(X = z) = (a:)p(l P) forz =0,1,...,n
0 elsewhere

For the null hypothesis p = a and assuming that z is the observed number
of failures, the relevant likelihood ratio test statistic is given by

Wye(z,@) = —21n [aw(l - a)"f‘”] +2In [ﬁw(l —ﬁ)"ﬂ”} ,

where p = 7.
Under the null hypothesis, the test statistic W(z, @) is asymptotically
distributed as a x7. The rejection region is

{z : Wyelz,a) > ¢},

where £ is the probability of the first kind error and ¢, is the quantile of the
X3 distribution associated to the probability £. By assuming ¢ = 0.05 and
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Figure 6.2: Protfolio B returns of the period from June 1999 to May 2001
compared with the 1% VaR.

a sample size of 500 observations, the non rejection region is approximately
equal to

1<z<10 if aa=0.01
16<z<35 if a=0.05.

According to the Neyman-Pearson theorem, the likelihood ratio test is the
uniformly most powerful test against simple alternative hypothesis. In spite
of this property, the above test has poor power especially in small samples®.

Table 6.3 shows the likelihood ratio test value and the p-value for the
different estimation methods. Portfolio A is omitted since it gives the same
results of portfolio B.

Some very low p-values can be noted when testing the parametric method
and the standard historical simulation method applied to non-linear portfo-
lio. This pattern is very evident especially for portfolio C. The p-values for

®For a close discussion on the power of the test see Kupiec [47].
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Figure 6.3: Protfolio B returns of the period from June 1999 to May 2001
compared with the 5% VaR.

portfolio D are much more uncertain. For the equity portfolio the null is
never rejected for the parametric method and for the exponentially sampled
historical simulations.

6.3.2 Conditional coverage test

Since the above test refers to the unconditional coverage of the VaR, it can
suggest to accept the null hypothesis also when there is a clustering on VaR
failures. According to Christoffensen [13], the unconditional test does not
have any power against the alternative hypothesis that the failures are time
dependent.

The clustering phenomenon in the failures indicates that when risk raises,
the VaR is not able to quickly adapt to the new market conditions. Hence,
the unconditional coverage test seems not sufficient to assess the goodness
of a VaR estimation method.

Let us denote by ¢; a variable that is 1 if in ¢ there is a failure and 0
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Figure 6.4: Protfolio C returns of the period from June 1999 to May 2001
compared with the 1% VaR.

elsewhere:

o = 1{Vta’Rt+At<—Va.Rt} .

Christoffensen [13] generalizes the idea of independent failures introducing
the concept of VaR efficiency. The VaR at time ¢ is efficient conditionally
on the information available at ¢t — 1 when E[0;|F;—1] = « for all ¢. Testing
the conditional efficiency is equivalent to test that the process {d0;}1=12...n
is iid as a Bernoulli with parameter a.

Remark 6.3.1 In the special case of trivial conditional information F;_1 =
{0, 2}, the conditional VaR efficiency becomes E[§;] = «. In this case,
testing the efficiency is equivalent to the unconditional test proposed by
Kupiec [47]. |

Let us denote 7; ; the probability that §; = j conditional to d;—; = 7. Hence,
mo,0 is the probability that VaR covers the loss conditional to the correct
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Figure 6.5: Protfolio C returns of the period from June 1999 to May 2001
compared with the 5% VaR.

coverage also in the previous period; 71 1 is the probability to have a failure
conditional to a failure in the previous period. In a similar way z; ; is the
number of times that é; = 7 conditional to §; 1 = 7.

The conditional likelihood function of J; is

L =m54" (1 —mo0)™ * 00my (1 — mo)® "ot

where 7 and 711 can be estimated with 7p g = ~>% and 71 = % The

n—r
likelihood ratio statistic can be written as
ch(.’II, 20,0, T1,1, Oé) = -2 ln[am(l — a)”_‘%]—i—
+2 ln[ﬁg’%’o(l — fro,o)n_z_mo’oﬁ'ill’l (1 — ﬁ'(),())z_a;l’l] R
and is asymptotically distributed as a x3.

The conditional coverage test was applied only for the accepted loss
probability of 5%. Indeed, only in this case we have a sufficient number of
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Table 6.3: Lakilewood ratio value for the unconditional test and p-value.
The likelihood ratio values in the rejection region are in bold.

Portfolios
B C D
a=0.01 Wue p-value Wae p-value Wae p-value
Param. VaR 0.000 1.0000 48.058 0.0000 0.000 1.0000
S.H.S. 2.613 0.1060 8.973 0.0027 7.111 0.0077

W.H.S. (0.99) 3.914 0.0479 2.613 0.1060 0.190 0.6630
W.H.S. (0.97) 3.914 0.0479 7.111  0.0077 3.914 0.0479
F.H.S. (Unif.) 0.719  0.3966 1.538 0.2149 0.719  0.3966
F.H.S. (Exp.) 1.538 0.2149 0.719  0.3966 1.538 0.2149

B C D
a=0.05 Weae p-value Wae p-value Wae p-value
Param. VaR 0.173 0.6776 9.110 0.0025 12.143 0.0005
S.H.S. 20.654 0.0000 13.755 0.0002 2.459 0.1168

W.H.S. (0.99) 1.903 0.1678 0.992 0.3192 0.642 0.4229
W.H.S. (0.97) 0.365 0.5455 0.164 0.6852 0.365 0.5455
F.H.S. (Unif.) 7.102 0.0077 0.992 0.3192 0.164 0.6852
F.H.S. (Exp.) 0.043 0.8364 0.000 1.0000 0.042 0.8384

For the X% c.05 = 3.841 and ¢y = 2.706.

Table 6.4: Lakilewood ratio value for the conditional test and p-value. The
likelihood ratio values in the rejection region are in bold.

Portfolios
B C D
a=0.05 Wee p-value W,  p-value W, p-value
Param. VaR 0.920 0.6313 0.462 0.7937 1.157 0.5608
S.H.S. 16.532 0.0003 4.612 0.0996 0.749 0.6876

W.H.S. (0.99) 0.185 0.9119 1.463 0.4812 0.420 0.8107
W.H.S. (0.97) 0.489 0.7829 0.454 0.7970 0.935 0.6265
F.H.S. (Unif.) 2463 0.2919 0.019 0.9905 0.454 0.7970
F.H.S. (Exp.) 0.066 0.9677  0.327 0.8491 0.059 0.9711

For the X% co.05 = 5.991 and ¢p1 = 4.605.

failures to investigate their time dependence. The test gives an idea on the
sensitivity of the VaR estimation method to the rise of risk. Indeed, when a
VaR estimation method is sufficiently sensitive to changes in market risk, it
should react after the first failure, thus preventing a clustering of violations.

Hence, test results penalizes the poor responsiveness of the standard his-
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torical simulation method. Table 6.4 shows that for this kind of estimation
method, the null is rejected both for portfolio B and C.

6.4 Conclusion

This chapter is devoted to assessing the performances of the different VaR
estimation methods, by testing them on two years of daily data. The sample
period considered for the test includes the NASDAQ crash. The observed
variable is the number of times that the loss exceeds VaR. We investigate
both the accuracy of the VaR coverage and the time dependence of the VaR
failures.

The conclusions are quite different for the different portfolios considered.
Indeed, for linear portfolios all the methods give quite accurate results. Un-
fortunately, most of the financial institutions have portfolios with strong
positions on options or other non-linear instruments.

The results are visibly different for portfolios which contain option posi-
tions. Indeed, the increase of volatility due to the leverage effect of option
positions, reduces the accuracy of some methods. The worst performances
are obtained by parametric methods. The quadratic approximation under-
estimates the risk on long option positions and overestimates the risk on
short option positions.

The standard historical simulation approach gives poor results both for
the coverage percentage and for the failure time dependence. The latter
result indicates that the standard historical simulation approach has an
inadequate sensitivity to the change of market risk conditions. The general-
ization of the standard historical simulation strongly improves the accuracy
of VaR estimate and, particularly, its sensitivity to crashes of the market.

The best performances are obtained by the semi-parametric method of
the filtered historical simulations. The standardization of the returns re-
duces the non-iid problem while the bootstrap enables us to have a well-
defined simulated distribution. At the 5% level, the filtered historical simu-
lations with exponential sampled bootstrap dominate the uniformly sampled
approach.
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Proofs of propositions

A.1 Proof of Proposition 2.2.1

Let us define W (S;,t) := e "*W (S}, t). Equation (2.3) becomes

ess sup EQ [W(ST, T) — W (S, )|-7:t] =0,
QeQy

By applying Ito’s lemma to W (S}, t), we obtain

ess sup EY / B—W + AW (Sy,u) | dut
QeQy t Ou
T ow T ow
T — o V0uSu dwi, /t WT](’UU;G) dzy, ]—"t] =0,
(A.1)

where z; = pwi ; ++/1 — p2w§,t and the infinitesimal generator A; is defined
as

0 0 1 02
A i=7rS— + M?(’Ut; 9) + ’UtS2 +

oS v t 9582

1 0?
+ 5772(%;9)8 5 T o Y/2Sp (e 6)

82
0Sov
95
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Under Assumption 1 equation (A.1) becomes

T (ow .
ess sup EQ / — + AW (Sy,u) | du| F| =0,
Qe t Ou
t+h [ oTi 3
ess sup EC / ow + AW (Sy,u) | du +
QeQy t ou
+ ess sup EQ [VV(ST,T) W (Sypn, b+ h)|}’t+h] }’t] ~0,
QeQy
1 t+h 1 N
ess sup —EQ / ow + AW (Sy,u) | du| =0,
QEQG h t 3’u

By taking the limit for h — 0 we have

ow =
ot + .AtW(St,t)] =0.

sup
0

Recalling the definition of W (S;,t) we get

+
sup [81;;' + AW T(S,t) — rW+] =0.
0

This is known as the Bellman differential equation for the optimal control
problem (2.3).

For the buyer’s price the same considerations are true by substituting
the supremum by the infimum.

A.2 Proof of Proposition 4.3.1

Let us consider the discounted values V; := B, W, S, = B, 1S, and Wj,t =
B, 1T/Vj,t for 7 = 1,2. The self-financing constraint can be written as

df/t = a¢ dgt + Ct dWQ’t ,
whereas equation (2.12) becomes

oWy oWy 1O°W = 10°W Wi g
A BV > Tl BTl Syp3=0.
ot v P T2Te5 T2 a2 PR T B3au [orl * Sepae

!See Krylov [46] among the others.
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At time s € [t,T] the super hedging portfolio value is
S S
6T = Wi [ ap S [ diva,
t t
~ $ - s -
= Wt++/ al dSu—I-/ et dWa +
t t
sfow 12w -
+/t ( 90 +§ 552 vy S, | du+

8W+ 10°W; oW
+/t ( 90 901u+§ v 21 P2,u + aSal |’Uu|1/ Su‘P3u> du

Moreover, by applying Ito’s lemma to the discounted option price Wl—l,_t and
using equations (2.10) and (4.5), we obtain

oW+ 10°W,

AW = af dS+cf dWy + pn dt+§ 5 v SPdt +
oWt 10°W.
+ 8@1 p (v1; 0) dt+§ p» 5 77 ?(v4;0) dt +

2w -
+W|Ut|l/25tpn(vt;0) dt

Hence, for all s € [t,T] the discounted replication error

ow+
/ L [o1,4 — p2(vy;0)] du +

1 82W+
+[3 - =00

+/t 85‘81; oul"? Sulips 0 — pn(va; 0)] du

is positive if condition (2.11) is satisfied.

A.3 Proof of Proposition 5.2.1

By the properties of the positive definite matrixes we can decompose ¥ as
HH' such that

Ryny=HZ,

where Z is an m x 1 vector of independent standard normal variables. Hence,
equation (5.3) can be written as

Rine=xk+cdHZ+Z'HBHZ .
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Since B is symmetric also H' BH will be symmetric. Its decomposition is
H'BH = GAG',

where A = diag(A1, Ag, ..., Ap,) is the diagonal matrix formed from the eigen-
values of H'BH, while G is the matrix of the orthogonal and normalized
eigenvectors of H'BH. Since H'BH is symmetric all the eigenvalues are
real. Hence, the portfolio return takes the following form:

Rine = s+ dHGG'Z+ Z'GAG'Z
= K+ n'i + 7 Az

= ﬁ—I—Zmzj —I—Z)\Jz] .

where n := G'H'c and Z := G'Z is a vector of independent standard normal

variables. Let us define h := % and consider the random variable z; =

h+mn;z; + )\J-EJQ- for j =1,2,...,m. The characteristic function of z is?
(Px(u) _ E[eiu(h+n2+)\22)]

eiuh o} 0 22

= iu(nz + Az ——1 dz
Nl exp [1u(nZ + A\z°)] exp [ 5 ] Z
eiuh [ 1

= =) e [—5 (Z(1 — 2iuX) — 2iun§)] dz

uln?

= uh — —— 1

P [“‘ 2(1 - 2z'u)\)] X

by defining the variable y as Zv/1 — 2iu), the above integral can be solved
in the following way:

or(u) = ;exp [zuh — L] X
\/1 — 2iu\ 2(1 — 2iul)

o)

_ un
- \/1 “2iun ¥ [Z“h 201 — 2zu)\):| '

2To simplify the notation the subscript j is left out.
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Since the variable z; for j = 1,2,...,m are independent, the characteristic

function of Ry is

' 1 m u2n]2

vr(u) = exp | iuk — = —
H\/l—Zzu)\ 2.2:11_27/11)\3'

J]=

1
= |I—2iuA|"Y?exp [z’um — §u2n'(I — 2iuA)_1n] (A.2)

where
I —2iud| = |G(G'IG - 2iuG'AG)G'|
|I — 2iuH'BH|
= |I —2iu¥B|,
and

n'(I —2iuh)"'n = 9'G'[G(I - 2iul)G' Gy
dH(I —2iuH'BH) 'H'c
d(x7! —2iuB)"te

= (I -2iuxB) 'S¢,

Hence equation (A.2) becomes

1
or(u) = [I — 2B~ 2 exp |iur — §u2c'(I — 2uXB) 'Zc

A.4 Some notes on Theorem 5.2.1

Theorem A.4.1 Let f(y) and @y (u) be Leabesgue-integrable, if the mean

and variance of the random wvariable Y exist, then its cumulative density
function F(y) will be

Fy) = % _ % A, [%] du | (A.3)
where Ayg(u) = g(u) + g(—u). ]

For a proof see Shephard [58].
It remains to show that equation (A.3) and equation (5.5) are equal or
equivalently that

T e T e R

U 2
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Let us consider the left part of the equation (A.4). By the definition of the
characteristic function we can write

o0 1 . +oo

/ Re [.—ewy/ e f(zx) da:] du
0 u —00
o0 1 +oo

/ Re [—/ elve—u) ¢ () d:v] du ,
0 U J o

where f(z) is the probability density function. By applying Euler’s rule we
have

/°° Re [/+°° cos(uz - uy) f(z) iz +
0 ~ i

- +/+00 sin(ux — uy) f () dm] du

U

-0

/Ooo [/:0 sin(ux —uuy)f(x) dz] du .

On the other hand, the right part of the equation (A.4) can be written as

o] +o0o . .
%/0 % |:/ (ez(uz—uy) o e—z(ux—uy)) f(.’l:) d37:| du .

o0

By applying again Euler’s rule

1 /Ooo [ /+oo cos(uz — up) +isin(ur —wy) 0

2 —o0 57/

cos(uz — uy) — isin(uz — uy)
U

/0 ” [ / T sin(uz — uy) f(z) dz| du .

oo U

() dx] du



Appendix B

Option price under
stochastic volatility

B.1 Heston option price (exact formula)

Heston’s call price is given by the following formula
Wi = SiPry — Ke '@ 0Py,

where S; is the underlying price in ¢, K is the strike price and P;; and
P4 have the same meaning than ®(d;) and ®(dy) in Black-Scholes formula.
They are obtained by an inversion theorem of the characteristic function
due to Shephard [58]. Since the characteristic function, ¢;(.) for j = 1,2, is
obtained analytically by Heston [40], the two probabilities can be obtained
by the following one-dimension integration:

1 o0 —tuln K, .
Pjt = + —/ Re |:—e . <pJ(U):| du
0

1

2w U

1 1 00 u—iuln K,

2 + ;/ e “Re [w] du forj=1,2
0 mu

where the characteristic function is defined in the following exponential way:

@j(u) = exp[Cj(T — t,u) + D;(T — t,u)v; +iulnS;] for j =1,2
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where
Ciy(T —t,u) = uir(T—t)+5%{[§~—p6(aj + ui) + dj]—
ol [1 — gj exp(d; (T — t))] }
1—g;
, _ E—pdlaj+ui) +dj [ 1—exp(d;(T —1))
il —tw) = ]
e _ g—pé(aj—l—ui)—l—dj
(T —te) € — pd(a; + ui) — d;
(T —tu) = \[[pd(a; +us) — &P + (w2 + ui — 2a;ui)

and a; is an indicator function equal to 1 when j = 1 and zero elsewhere.
The following C++ code computes the characteristic function an the
second part of the integrand functions:

double intgrnd(double u, double SO, double K, double T, double r, double vO,
double delta, double rho, double xi, double zeta, int intflag)
{ double b;
complex<double> d, e, g, C, D, car;

if (intflag == 1)

{ b = xi - rho*delta;
d = sqrt((rho*delta*u*i - b)*(rho*delta*u*i - b)
- deltak*delta*(u*i - u*u));
}
else
{ b= xi;
d = sqrt((rho*delta*u*i - b)*(rho*delta*u*i - b)
+ deltakdelta*(u*i + u*u));
}
e = exp(d*T);
g = (b - rhoxdelta*u*i + d)/(b - rho*delta*u*i - d);
C = r*u*xi*T + zeta/(delta*delta)*((b - rho*delta*u*i + d)*T

2%1log((1 - gxe)/(1 - g)));

D = ((b - rhoxdelta*u*i + d)/(delta*xdelta))*((1 - e)/(1 - g*e));
car = exp(C + D*v0 + i*u*log(S0));

return (real((exp(u-i*u*log(K))*car)/(i*u)));

}

Since the integrand function is sufficiently regular, it can be integrated by
using a Gauss type integration rule. For this particular problem, it is conve-
nient to use Laguerre polynomial and to approximate the integral with the
following sum:

o] u—iuln K n up—iup In K,
/ e “Re [—e - L] (u):| du =~ Zkae [e : 5 (ur)
0 k=1

U TUg

where wy, for £k =1,2,...,n, are Laguerre polynomial coefficients and they
depend on values of u;!. A table with the value of u;, and the corresponding

'See equation 25.4.45 in Abramowitz and Stegun [1] for more details.
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value of wy is in Abramowitz and Stegun [1] (Table 25.9). The follow-
ing C4++ code computes the Heston option price according to a Laguerre
polynomial of degree 12. Input parameters are CallPutFlag, the flag that
identifies the option kind (“c” for call option and “p” for put option), the
underlying price so, the strike price K, time to maturlty T, risk free rate r,
the instantaneous variance v0, and the four parameters delta, rho, xi and
zeta.

const int POLDEGR = 12;
const double x[POLDEGR]={0.115722117358, 0.611757484515,
1.512610269776, 2.833751337744,
4.599227639418, 6.844525453115,
9.621316842457, 13.006054993306,
17.116855187462, 22.151090379397,
28.487967250984, 37.099121044467};
const double W[POLDEGR]={2.64731371055e-1, 3.77759275873e-1,
.44082011320e-1, 9.04492222117e-2,
.01023811546e-2, 2.66397354187e-3,
.03231592663e-4, 8.36505585682e-6,
.66849387654e-7, 1.34239103052e-9,
.06160163504e-12, 8.14807746743e-16};

W NDNDN

double Hprice(char CallPutFlag, double SO, double K, double T, double r,
double v0O, double delta, double rho, double xi, double zeta)
{ int k;
double P1, P2, Hcall, Hput, gl;

if (T==0)

{ if(CallPutFlag == ’c’) return max(S0-K,0.0);
else return max(K-S0,0.0);

}

P1 = 0.0; P2 = 0.0;

for (k=0;k<POLDEGR;k++)

{ P1 += W[k]*intgrnd(x[k],S0,K,T,r,v0,delta,rho,xi,zeta,1);
P2 += W[k]*intgrnd(x[k],SO,K,T,r,v0,delta,rho,xi,zeta,2);

}

P1 = 0.5 + (1.0/Pi)*P1;

P2 = 0.5 + (1.0/Pi)*P2;

Hcall = SO*P1 - K¥exp(-r*T)*P2;

if (CallPutFlag == ’c’) return Hcall;

else {Hput = Hcall - SO + Kxexp(-r*T); return Hput;}

}

The constant for the integration are defined as global constants. In this way
they can be used also for other routines that exploit a similar integration.
An example is the routine that computes the first derivative of the option
price according to Heston with respect to the underlying price:

double Hdelta(char CallPutFlag, double SO, double K, double T, double r,
double v0O, double delta, double rho, double xi, double zeta)

{ int j;
double P1;
if (T==0)

{ if(CallPutFlag == ’c’)
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{ if (S0-K>0) return 1.0;
else return 0.0;
}
else
{ if(K-S0>0) return 1.0;
else return 0.0;
}
}
P1 = 0.0;
for (j=0;j<POLDEGR;j++)
{ P1 += W[jl*intgrnd(x[j],S0,K,T,r,v0,delta,rho,xi,zeta,1);
}
P1 = 0.5 + P1/Pi;
P1 = min(max(P1,0.0),1.0);
if (CallPutFlag == ’c’) return P1;
else return (P1-1);

}

The computation of the first derivative with respect to the instantaneous
variance is slightly more complicated. Indeed, another integrand function
has to be introduced:

double vegaintgrnd(double u, double SO, double K, double T, double r,

double v0, double delta, double rho, double xi, double zeta, int intflag)

{ double b;
complex<double> d, e, g, C, D, car;

if (intflag == 1)
{ b = xi - rhoxdelta;
d = sqrt((rho*delta*u*i - b)*(rho*delta*u*i - b)//
- delta*delta*(u*i — u*u));

}
else
{ b= zxi;

d = sqrt((rho*delta*u*i - b)*(rho*delta*u*i - b)//

+ delta*delta*(u*i + u*u));

}
e = exp(d*T);
g = (b - rhoxdelta*u*i + d)/(b - rho*delta*u*i - d);
C = r*uxi*T + zeta/(delta*delta)*((b - rho*delta*u*i + d)*T//

- 2xlog((1 - gxe)/(1 - g)));
D = ((b - rhoxdelta*u*i + d)/(deltaxdelta))*((1 - e)/(1 - g*e));
car = exp(C + D*v0 + i*u*log(S0));
return (real((D*exp(u-i*u*log(K))*car)/(i*u)));
}

The integration of the above integrand function is similar to the integration
for the option price:

double Hvega(double SO, double K, double T, double r,
double v0O, double delta, double rho, double xi, double zeta)
{ int j;
double V1, V2, vega;

if (T==0) return 0.0;
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Vi =0.0; V2 = 0.0;

for (j=0;j<POLDEGR; j++)

{ V1 += W[jl*vegaintgrnd(x[j],S0,K,T,r,v0,delta,rho,xi,zeta,1);
V2 += W[jl*vegaintgrnd(x[j],S0,K,T,r,v0,delta,rho,xi,zeta,2);

}

Vi /= Pi; V2 /= Pi;

vega = (S0*V1 - Kxexp(-r*T)*V2)*0.01;

vega = max(vega,0.0);

return vega;

B.2 Option pricing by perturbation approach

Considering the perturbation approach described by Lewis [48], option price
according to the Heston model can be approximated with a power series
expansion around § = 0. More precisely, Lewis describes a power series
approximation for BSIV according to a generic stochastic volatility model
where instantaneous variance dynamics has the form

d’Ut = b(’l)t)dt + 577(vt)dwt

where the Q-Brownian motion w; can be correlated with the (Q-Brownian
motion that drives the price process, § is constant and functions b(v;) and
n(v¢) do not depend on 4. In this framework the expansion takes the follow-
ing form?:

JB R0  g@) R(1,2)

1
2:— - (1) p(1,1) 2
o =5+ 8JWREY + e
" , (B.1)
12 /X 11242 5X 5
3T <Z+8 72 2Z3> +00%

where
_ ¢ ¢ 1—e¢T _ So s
’U—E—F (’UO—E) (T) s X =In (Ke_TT> s Z—’UT,

R(ZO) (SO’U()aT) =T < ______

2 Z2 27 8
1 X
(1,1) T = - _
R (SO,UO’ ) 9 7 )
X2 X 1
(1,2) - 2 _ 2 _
R (Sy, v0,T) )

To simplify the notation, hereafter we assume t = 0.
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In order to apply this general formula, we have to define the three variables
JO, JB) and J®. This can be conveniently done only by assuming a
specific model. For instance, in the Heston model the three variable are
given by the following equations:

J(l) (’U()a T) = 9270 )

3) w+ €210 (270 — 5) + 4e™? [w + wTO — TH?vg + vy sinh(T6)]
J ('U()a T) = 202270 )

@ w [6+2eT? (T —3) + TO(4+T6)] — 6 [2 —2eT% +T6 (2 + T8)] vo
J (UO,ZU = .

w[2+T0+ el (T0—2)] +6 (e’ —T6—1) vy

20310

The following C++ code computes BSIV according to the above approxima-
tion applied to the Heston model. Input parameters have the same meaning
of those in routine Hprice.

double HApxImpVol(double SO, double K, double T, double r, double vO,

{

double delta, double rho, double xi, double zeta)
double X, Z, vmean, J1, J3, J4, impvar, R11, R20, R12;

X = 1og(S0) - log(K) + r*T;
vmean = zeta/xi + (vO-zeta/xi)*((1-exp(-xi*T))/(xi*T));

J1 = rho/xi*(zeta* (2+T*xi+texp(T*xi)*(T*xi-2)) + xi*(exp(T*xi)-T*xi-1)*v0)
/ (exp(T*xi)*xi*xi);
J3 = (zeta + exp(2#Txxi)*zetax (2*T*xi-5) +
+ 4kexp(T*xi)*(zeta + zeta*T#xi - Tkxi*xi*v0 + xi*vO*sinh(T*xi)))
/ (2*exp(2*T#xi) *xi*xi)
/ (2*xi*xi);
J4 = rho*rho/xi*(zeta* (6+2%exp (T#xi)*(T*xi-3) + T*xi*(4 + T*xi))

xi* (2 - 2*%exp(T*xi) + T*xi*(2 + T*xi))*v0)
(2*exp(T*xi) *xi*xi*xi);
Z = vmeanx*T;

~

Ri1 = 0.5 - X/Z;
R20 = T*(0.5%(X*X)/(Z*Z)-1/(2%*Z)-0.125);
R12 = (X*X)/(Z*Z)-X/Z-(4-2)/(4*Z);

impvar = vmean + delta*J1*R11/T
+ deltax*delta*x(J3*R20/ (T*T)
+ J4*R12/T + 0.5*%J1%J1%(X/Z+0.125%(12+Z)/(Z*Z)-5/2* (X*X) / (Z+Z*Z)) /T) ;
return sqrt(impvar);
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For 3/2 model, JO | J63) and J® take a more complicated form:

1
T, T) = s {w2 [1 +4eT0 (1 4+ T8) + 2% (276 — 5)] +

1
IV, T) = i {2w3 [1 +9¢19 (2 4+ T0) + 96210 (270 — 1) + €317 (376 — 10)] +

2
+ (eTa — 1) 0202 + 4eT%w0v [sinh(TH) — TO]} )

3067 [2 4+ " (8- 6677+ 7T 1 670) | 0?4 2(e70 1) 0P+

+12e3T0,20y [9 sinh (%0) + sinh (220) — 670 cosh (%0)] } )

1
J(4)(’U(),T) = W {OJ3 [1 + 66T0 (]. + T9) +

+e37% (679 — 22) + 3¢27° (5 + 279 (3 + T9))] -

—3w?0 [1 + T (2 + 470 + ™° <2T0 +27%60% —1 — 26”))] v+

+3 (6T9 — 1) wh? (eQTG —2¢70T9 — 1) v+ (eTG — 1)3 63'03}

The C++ code for the computation BSIV approximation according to the
3/2 model is the following:

double

M32ImpVol(double SO, double K, double T, double r,
double v0O, double delta, double rho, double xi, double zeta)

{ double X, Z, vmean, J1, J3, J4, impvar, R11, R20, R12;

X =

log(S0) - log(K) + r*T;

vmean = zeta/xi + (vO-zeta/xi)*((1-exp(-xi*T))/(xix*T));

J1i

J3

J4

= rho/xi*(zeta*zeta

(1+4%exp (T*xi) * (1+T*xi) +exp (2%T*xi) * (2¥T*xi-5))
(exp(T*xi)-1)* (exp(T*xi)-1) *xi*xi*v0*v0

4*exp (T*xi) *zeta*xi*v0* (sinh (T*xi)-T*xi))

(2%exp (2*T*x1i) #xikxi*xi) ;

(2xzetaxzeta*zeta* (1 + 9%exp (T xi)* (2+T*xi)

Okexp (2¥T*xi) * (2*%T*xi-1) + exp(3*T*xi)*(3*T*xi-10))
3*kzeta*xi*xix* (2

exp (T*xi) * (3-6*exp(T*xi)+exp (2*T*xi) +6*T*xi) ) *v0*v0
2% (exp(T*xi)-1) * (exp (T*xi) -1) * (exp(T*xi)-1)
xi*xi*xi*v0*v0*v0

12*exp(1.5%T*xi) *zeta*zeta*xi*v0

(9%sinh (0.5%T*xi) +sinh(1.5%T*xi) -6*T*xi*cosh(0.5%T*xi)))
(6*exp (3*T#x1i) *xi*xikxi*xi)

(2%xi*xi);

2*¢rho*rho/xi* (zeta*zeta*zetax (1 + 6¥exp(T*xi)#*(1+T*xi)
exp (3*T*xi) * (6*T*xi-22)

3kexp (2¥T*xi) * (5+2*Tkxi* (3+T*xi)))
3*zeta*zeta*xi* (1 + exp(T*xi)*(2 + 4*T*xi

exp (T*xi)* (2*T*xi* (1 + T*xi)-1-2%exp(T*xi))))*v0

3* (exp(T*xi)-1) *zeta*xi*xi* (exp(2*T*xi)

+ + 1+ 4+ NN ¥+ ¥+ + + + NN+ + ¥
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2%exp (T#xi) *T*xi-1) *v0*v0

(exp(T*xi)-1)* (exp(T*xi)-1)* (exp(T*xi)-1)* (exp (T*xi)-1)
xi*xi*xi*v0*v0*v0)

(6*exp (3*T*xi) *xikxikxi*xi*xi);

Z = vmean*T;

R11 = 0.5 - X/Z;

R20 = T*(0.5%(X*X)/(Z*Z)-1/(2%Z)-0.125);

R12 = (X*X)/(Z*Z)-X/Z-(4-2)/(4*Z);

impvar = vmean + delta*J1*#R11/T

+ delta*delta* (J3*R20/ (T*T)

+ J4*R12/T + 0.5%J1*J1%(X/Z+0.125%(124Z)/(Z*Z)-5/2* (X*X) / (Z*Z*Z)) /T) ;
return sqrt(impvar);

~N ¥+
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The discretization of the
structural model

Let us assume that the dynamics of the price process {St}te[O,T] can be
described by the following equations:

dS; = uSidt + |vs|'?Ssdw
dvy = a(ve)dt + m(ve)dwi s + n2(vg)dway

where w; ¢ and wy; are two Brownian motions whereas a(v), m(v:) and
n2(ve) are functions of v;. Both the processes {S;} and {v;} are cadlag.

Let us consider an equidistant discretization composed by N subintervals
of the period T —t such that At = T'/N. In order to discretize the volatility
process, it is convenient to write it again in the following way

dvy = a(vy)dt + V' (vy)dw,

where wy = [wy, way]” and b(ve) = [n1(vs) n2(v)]’. In Euler scheme, the
volatility process can be discretized in the following way:

virar = v + a(vy) At + b (v)er VAL,

where e; = (g1 €2¢)" is a vector of independent normally distributed random
variable with mean 0 and variance 1.

Under Lipschitz and linear growth conditions on a(.) and b(.), the Euler
scheme strongly converges to the true process and the convergence order is
0.5. In order to improve the convergence order, the Milstein discretization
schemes can be used!. By following the Milstein discretization scheme, the
volatility dynamics becomes:

1 ob
verar = v + a(ve) At + 8 (vp)er VAL + §bl(vt) [ere} — D] %At ,

'See Kloeden and Platen [44] pp. 345-351.
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where I is a 2 by 2 identity matrix.

Under the assumption that a(v;) is once and b(v;) twice differentiable,
the Milstein scheme has a strong convergence of order one?.

Since the process {v;} is cadlag, the discretization of the price process

can be written as

1 t+At t+At
t t

St exp [(T — %) At + |'Ut+At|1/251,tV At] .

For model 3.14, drift and diffusion functions are specified in the following
way:

a(v)) =[C—&v] , m(ve) =vp, ma(v) = dv//(1-p?),

with ,¢,d > 0 and p € [—1,1]. In order to apply the Milstein discretization
schemes we can state that

! 0b _
b(vt) = dvy [p vl—pQ] ; = = v/ l[p 1—,02] :
v
Hence, the volatility process will have the following approximation:

virar = vt + [ — Ev] AL + Sv] pV AL €14 + 6v) /ALl — p?) €9+

1 —
+ 5’7(52'0,527 ! [925%,75 + (1 - p2)£%,t +2pV/1— p2eq 694 — 1] At ,

which for p = 0 becomes,

1 _
Virar = v+ [ — v ] At + 6/ v At 94 + 57(521)?7 . (eg,t - 1) At .

’See again Kloeden an Platen [44] Theorem 10.3.5.
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Portfolios composition

The composition of the portfolios is the following:

Portfolios

Assets A B C D

Advanced Tissue Sciences 3.15% 2.00% 1.76% 2.30%
Alexion Pharmaceuticals 4.99% 3.16% 2.79% 3.64%
Amgen 10.32% 6.54% 5.76% 7.53%
Applera Biosystems Graup 2.82% 1.79% 1.58% 2.06%
Aradigm 2.27% 1.44% 1.27% 1.66%
Atrix Labs 3.05% 1.93% 1.70% 2.23%
Avigen 3.60% 228% 201% 2.62%
Aviron 9.99% 6.33% 5.58% 7.29%
Cell Genesys 11.17%  7.08%  6.24%  8.15%
Chiron 6.68% 4.23% 3.73% 4.87%
Cortex Pharmaceuticals 4.31% 2.73% 2.41% 3.14%
Diversa 3.63% 2.30% 2.03% 2.65%
Genome Therapeutics 2.68% 1.70% 1.50% 1.96%
Genzime-GENL Division 6.75% 4.28% 3.77% 4.93%
Human Genome Sciences 8.52% 5.40% 4.76% 6.21%
Immunex 2.01% 1.27% 1.12% 1.46%
Medimmune 5.10% 3.23% 2.85% 3.72%
Myriad Genetics 4.06% 2.57% 2.26% 2.96%
Sciclone Pharmaceuticals 2.57% 1.63% 1.43% 1.87%
Valentis 2.34% 1.48% 1.30% 1.70%
Intel - 8.80% 7.76% 10.14%
Cisco - 7.86% 6.93% 9.05%
Lucent Technologies - 067% 059% @ 0.78%
General Electrics - 4.06% 3.58% 4.67%
Wells Fargo & Co - 11.59% 10.22% 13.35%
US Bancorp - 3.66% 3.22% 4.21%
S&P 500 put option - - 3.87% -
NASDAQ 100 put option - - 7.99% -
S&P 500 call option - - - -9.43%
NASDAQ 100 call option - - - -5.72%
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