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ABSTRACT 

“Time is money” if you are a service provider or a customer using the service. In the current economic 

scenario where there is heavy competition, customers have more alternatives at their disposal; which 

means understanding customers is of paramount importance. This dissertation delves into this terrain, 

and tries to provide a conceptual and an experimental framework to understand the complex dynamics 

we see every day in queuing. 

The traditional approach to queuing has been towards designing an efficient facility, with little focus 

towards the customers who use these facilities. This approach has been helpful to understand the 

capacity requirements, and the impact of different configurations of production and service facilities, 

but has limited our ability to explain the behavior observed in many real queues. This dissertation 

continues the shift in focus from the service facility design to the information structure, and the 

behavior of the customers in a queuing system. Two extensions are proposed to the traditional queuing 

framework: Customers are provided with 1) information regarding the performance of the facility 

(feedback) and 2) computational capability to process the information provided. In a nutshell, the 

customers in this model choose which facility to use depending on their expectations which are based 

on past experiences.  

I present two agent based modeling frameworks to characterize the customers using the facility. This 

approach helps us to model homogenous customers, and it is useful because every customer perceives 

differently the cost of waiting and also the efficiency of the system.  Agent based models help to 

understand how the customers might co-evolve with the facility that serves them, which is difficult to 

achieve within the traditional queuing framework. Finally, an experiment is designed using the 

guidelines from experimental economics to validate the agent based modeling framework.  

Key words: Behavioral queuing, agent based modeling, experimental economics. 
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1. INTRODUCTION 

 

Queuing theory is a widely studied branch in operations research and is used to make important 

decisions regarding the allocation of resources. Queuing is a way of life and we experience it every day. 

The systematic study of queuing dates back to 1909 when Erlang (1909), a Danish engineer, published 

the first paper on queuing theory applied to traffic in telephone networks. He is considered to be the 

pioneer of queuing theory and since then it has been researched extensively and its application spans 

telecommunications, healthcare, traffic, and computer networks to name a few. 

Most of the research in the area of queuing since Erlang has focused predominantly on designing 

efficient systems. Most of the queuing models assume static conditions with exogenous arrival and 

service rates and are analysed in steady-state. The impact of individual decision making on queuing (i.e. 

how individual expectation formation affects queuing) and selection of service facility based on 

experience has been largely neglected.  

The seminal papers addressing the behaviour of agents involved in a queuing system are that of Naor 

(1969) and Yechiali (1971). In his 1969 paper, Naor focused on decision processes in queuing which 

was a shift from the design centric approach to queuing. Yechiali (1971) extended Naors’ work; both 

adopt an analytical approach and propose the use of tolls to control queue size. Since then Stidham 

(1985), Dewan and Medelson (1990), van Ackere (1995), Rump (1998),  Zohar et al. (2002), 

Haxholdt et al. (2003) and van Ackere et al. (2006) have explored this idea. Koole and Mandelbaum 

(2002) raise the issue of the need to include behavioural factors in telephone call centre queuing 

models and call it a complex socio-technical system. Hassin and Haviv (2003) provide a 

comprehensive survey of equilibrium behaviour of customers and servers in queuing systems. van 

Ackere and Larsen (2004) analyze customers’ choice based on feedback and how they form 

expectations based on local information and their experiences in the system. 
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There has also been a trend towards understanding the behavioural aspects in complex decision 

problems named behavioural operations (Gino and Pisano, 2008; Loch and Wu, 2008). This research 

area has used experiments and covers supply chains, commodity research (Sonnemans et al., 2004; 

Sterman, 1989) and to some extent queuing (Rapoport et al., 2010; Rapoport et al., 2004; Stein et al., 

2007). 

This thesis builds on the work of van Ackere and Larsen (2004) and seeks to understand customers’ 

behaviour in a multi-channel service facility. The idea is to understand decision making and the effects 

of local information and adaptive expectations on the decision making process. The dissertation thus 

looks into interactions among customers within a system and how it influences the systems’ 

performance, which in turn affects customers’ perception of the system. We are all aware of the famous 

adage “Time is money” and this applies to a service provider and to customers who use the service. In 

the current economic scenario where there is heavy competition, customers have more alternatives at 

their disposal, which means that understanding customers' needs is of paramount importance. This 

thesis delves into this terrain and tries to provide both a theoretical and an experimental framework to 

understand the complex dynamic behaviour that we observe every day in queuing. 

The motivation for this doctoral dissertation thus stems from the fact that queuing research has looked 

towards the use of analytical tools to solve system design issues and neglected the behaviour of 

customers to a large extent. These analytical models in order to arrive at a closed form solution 

sometimes make unrealistic assumptions leading to suboptimal design; hence simulation is used as a 

methodology to study behaviour in queues. Agent based modelling and simulation (North and Macal, 

2007) is a natural choice to model such a system.  

The thesis implements this self-organizing (van Ackere and Larsen, 2004) agent based modelling 

framework by using cellular automata  and captures the nonlinear interactions of customers (the term 

customer represents both living and non-living items; hence the term “agent” will be used henceforth). 
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In the dissertation we propose two  frameworks : 1) the first is based on cellular automata (CA) 

(Gutowitz, 1991; Wolfram, 2002) and adds an extension to it by providing a memory structure. This 

helps to model the behaviour of individual agents and study how they evolve based on their 

experiences. 2) The second framework uses genetic algorithms (GA) (Goldberg, 2009; Haupt and 

Haupt, 2004b; Mitchell, 2001) to model adaptive agents or intelligent agents. In this way by finding 

the best combination of behavioural parameters for the CA, the overall system is optimized. Thus the 

thesis looks at both the individual level and the system as a whole.  

Finally an experimental approach (Friedman and Sunder, 1994; Guala, 2008; Smith, 1982; Smith, 

1989) is adopted as a methodology to validate the findings of the agent based framework. The idea is 

to collect data from human subjects who will take up the role of one of the virtual agents. This 

approach aims to validate the simulated results and see if human subjects’ decision making follows the 

same characteristics as proposed in the agent based framework.  

The thesis is structured as follows: Chapter 2 presents a literature review on queuing; Chapter 3 gives a 

brief description of the research methodologies and methodological ideas that are adopted in this 

thesis; Chapter 4 presents the research contributions of this thesis in the form of scholarly papers. The 

format of the thesis is cumulative, i.e., it integrates three individual papers into one. Section 4.1 in 

chapter 4 introduces the agent based behavioural queuing framework. Using cellular automata a self-

organizing behavioural queuing system is built. The idea behind this paper is to investigate the micro 

foundation of queuing and macro effects for the system. The paper shows how, using adaptive 

expectations based decision rules, different collective behaviours can be observed.   

Section 4.2 presents another agent based framework based on genetic algorithms. This model takes the 

CA model a step further by modelling how customers evolve, and how they optimize their behaviour as 

they experience the consequence of queuing. Using genetic algorithms, this paper optimizes the 

behavioural parameters of the behavioural queuing model of section 4.1.   
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In section 4.3, an experimental approach is proposed to validate the behavioural queuing model 

described in section 4.1. The aim of this paper is to understand the influence of human subjects on the 

performance of the system. By using various treatments, the paper investigates the influence of 

structural and behavioural properties on human subjects’ decision making. The influence of 

information and the perception of the same are also studied. Finally, chapter 5 summarizes and 

concludes the thesis by pointing out its contributions and avenues for future work. 
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CHAPTER 2: QUEUING 

2.1 Introduction 

 

 

 

 

 

 

 

“Queue” is a word that every human being on earth would have heard and “queuing” is a phenomenon 

that is being experienced on a daily basis. We stand or wait in queues at supermarkets, airports, 

restaurants, post offices or virtually queue at our desks when we are on hold at a call center. Do people 

like to wait? The answer is of course “NO”. Do managers or businesses like customers waiting? The 

answer again is no because they may lose customers as well as receive a bad reputation. Why then are 

there queues and why do we have to wait? One reason that comes to mind immediately is that there is 

more demand than available service capacity. Why not add more capacity? Adding capacity might not 

be feasible either economically or due to space limitations. Hence this warrants the development of a 

scientific method of optimally designing a facility keeping in mind the economics as well as the quality 

of service. 

Queuing theory (Gross and Harris, 1998), defined as the mathematical study of queues, helps us to 

overcome these limitations by trying to answer questions like:  

1) The number of required service facilities to cater to the needs of the customers. 
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Arrival 

Server/Service Facility 

Departure 

2) How to reduce the waiting time of customers so that they return?  

3) Optimal length of the queue that will suit both the business as well as in keeping the customers 

happy?  

2.2 Queuing System 

A queuing system consists of customers waiting for service, a service area and customers leaving after 

being served. Figure 2.1 shows a schematic representation of such a queuing system. The term 

customers need not refer to humans but can also be objects (data waiting in computers to be processed, 

or car parts waiting in an assembly line).   

   

 

 

Figure 2.1: A simple queuing system 

Gross and Harris (1998) describe a queuing system based on six basic characteristics: arrival pattern of 

customers, service pattern of customers, queue discipline, system capacity, number of service channels 

and number of service stages.  

Arrival and service patterns have many similarities: 1) they can be either individual or in batches, 2) 

stochastic (wherein a probability distribution describes customers’ arrival pattern and service rate) or 

deterministic, 3) state dependent or independent, and 4) time dependent or independent. Gross and 

Harris (1998) also describe three situations as examples of queues influenced by customers reaction: 1) 

Balking; where customers’ decide not to join upon arrival, 2) Reneging; impatient customers who leave 

after waiting for a while in the queue and 3) Jockeying; customers (in multiple channel facilities) 

moving from one queue to another in order to get faster service. 
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Once in the queue there is an order in which customers are picked for service: 1) the most common 

order is first come, first served (e.g. post office); 2) Last come, first served is another usage (e.g. non-

perishable items in a warehouse stacked upwards and the unit on top is picked based on convenience); 

3) Random order and 4) priority based (e.g. first class passengers over economy class passengers). 

Waiting room capacity is the space available for customers to wait until they are served. This of course 

is a limitation based on the type of business and can lead to forced balking (i.e. due to space limitations 

arriving customers are not able to join e.g. restaurants in cities). The number of service channels refers 

to the number of servers available in the system to serve the customers. A multichannel service facility is 

quite common and can have a single queue (e.g. transactions’ handled by tellers in banks) or each 

service point having a separate queue (e.g. supermarkets).  

A queuing system can be single stage or multistage. Single stage queuing systems have only one stage of 

service (e.g. hair style salon where the customers get their hair done and are out of the salon) whereas in 

multistage systems the customers go through several stages before completion (e.g. car assembly process 

where the assembly happens in stages and the product moves along the assembly line) 

Kendall (1951; 1953) provided a shorthand notation to describe queuing processes which is widely 

used in queuing literature. A queuing process can be described as A/B/C where A is the inter-arrival 

time distribution, B is the probability distribution of service time and C is the number of servers. For 

example M/M/1 represents a queuing system that has exponential inter-arrival and service time 

distributions and having a single service channel. 

Finally it is apt to wind up the general ideas of queuing theory by talking about one of the most 

important and widely used result known as “Little’s Law”(Little, 1961). John Little in 1961 related the 

steady state average queue size L q to that of the steady state average waiting time W q by the following 

equation: 

     L q = λ * W q      (1) 
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where λ is the customer arrival rate. 

After this brief introduction to queuing the next section delves into the literature and tries to provide a 

detailed picture of queuing research and its evolution since its inception.  

2.3 Queuing literature 

Queuing theory, generally considered to be a branch of operations research, is the mathematical analysis 

of waiting lines. The results are used in making business decisions regarding allotment of resources in 

order to provide a service. Queuing research has a plethora of applications and is widely discussed in 

various disciplines which include telecommunication, call center design, computer networks etc. Erlang 

(1909) is considered to be the pioneer of queuing theory (Gross and Harris, 1998) through his article 

on telephone traffic problems in 1909.  

Queuing research and most of the models aim at optimizing performance measures and the early works 

on queuing (Kendall, 1951) concentrated on equilibrium theory. Then the focus shifted to the design, 

running and performance of the system under consideration (van Ackere and Larsen, 2009). Most of 

these models took an aggregated view and were modeled assuming static conditions, exogenous arrival 

and service rates and were analyzed in steady-state. Naor (1969) and Yechiali (1971) proposed the idea 

of levying tolls in order to reduce queue size i.e. customers who wish to use the facility must pay a 

price.  

These are seminal papers which started the interest in studying decisions involved in queuing problems. 

Naor (1969) studied the impact of customer decisions using an M/M/1 (a single server model with 

Poisson arrivals and exponentially distributed service times) queuing system where customers decide 

whether to join or not based on the system congestion they observe. He thus introduced the idea of 

limiting the number of customers being served. Yechiali (1971) picked up on this idea and extended it 

by charging customers a reneging penalty. What we infer from their work is that a social optimum 

could be achieved if selfish customers are penalized. The work of Naor and Yechiali was taken up, 
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generalized and extended by several authors including Stidham (1985; 1992; 1989), Mendelson and 

Yechiali (1981), Dewan and Mendelson (1990), van Ackere (1995), Rump and Stidham (1998), 

Zohar et al. (2002), Haxholdt et al. (2003), van Ackere et al. (2006; 2009) to name a few. van Ackere 

and Larsen (2007) present an overview of a selection of seminal papers that contributed to the study of 

agents’ decisions in a queuing system. van Ackere and Larsen (2007) classify the literature based on 1) 

whether both arrival and service rates are exogenous or endogenous; and 2) whether both processes are 

stochastic or deterministic. In this thesis, the table is extended by including experimental work and 

adding a methodological dimension to the classification. Table 2.1 shows this classification and a brief 

overview of all the papers presented in the table follows. 

Edelson and Hildebrand (1975) build on Naor (1969) and Yechiali (1971; Yechiali and Naor, 1971) 

and propose an M/M/1 queuing model where they consider different types of customers, i.e. they 

introduce a heterogeneous structure of customers' willingness to wait. The models discussed so far are 

restricted to fixed capacity queuing systems and study the optimal balking policy as a function of the 

number of waiting customers present in the queue. Dewan and Mendelson (1990) focus on capacity 

and consider a joining decision policy in an environment where users’ delay cost is important. They 

developed a static model that assumes a nonlinear delay cost structure to find a trade-off between the 

internal admission price for service and capacity adjustment decisions. This price depends on the 

demand materialized each period and the expected delay cost for that demand.  

Another variant of the Dewan and Mendelson (1990) study is the work by Stidham (1992). He 

concludes that in the optimization problem of Dewan and Mendelson it is not guaranteed that one 

finds a global minimum, it might be a local one. Rump and Stidham (1998) take this analysis a step 

further by considering a sequence of discrete time-periods. They assume that steady-state is reached in 

each-time period, i.e. there is no stochastic dependence between the periods. Customers view each  
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Stochastic Deterministic 

Analytical Simulation Experimental Analytical Simulation Experimental 

Arrival rate exogenous 
Edelson and 
Hildebrand 

(1975) 
  Agnew (1976)   

Arrival rate 
endogenous 

& service 
rate 

exogenous 

State 
dependent 

Naor (1969) 
Yechiali (1971) 

Boots and Tijms 
(1999) 

Whitt (1999) 

van Ackere 
(1995) 

   

Rapoport 
(2004, 2010) 
Stein et al. 

(2007) 

Steady state 

Dewan and 
Mendelson 

(1990) 
Stidham (1992) 

Zohar et al. 
(2002) 

 Edelson (1971)   

Dynamic 
Rump and 

Stidham (1998) 
    

Seale et al. 
(2005) 

Arrival and 
service rate 
endogenous 

Steady state Ha (1998, 2001)   Agnew (1976)   

Dynamic     

Haxholdt et al. 
(2003) 

van Ackere and 
Larsen (2004) 

van Ackere et al. 
(2006) 

van Ackere et al. 
(2010) 

 

 

Table 2.1: Literature overview (adapted from van Ackere and Larsen, 2007) 
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-period as a separate experience. Although the underlying model is of a stochastic nature the model is 

analysed as a deterministic dynamic system. Rump and Stidham provide one important extension to 

queuing theory, since they allow for adaptive customer feedback. Unlike in the previous study by 

Stidham, the next period's price prediction in their study is a combination of predicted prices and the 

actual observed ones. This is achieved using exponential smoothing. An interesting result of their study 

is that they demonstrate that this feedback mechanism might eventually lead to chaotic behaviour if the 

equilibrium is unstable. This aspect of chaotic patterns is later taken up by Haxholdt et al. (2003) who 

present a deterministic dynamic model. Ha (1998; 2001) adopts a similar approach to that of Dewan 

and Mendelson (1990): he focuses on pricing problems of service facilities but differs in that the 

service rate is selected by cost conscious customers rather than by the service provider. Zohar et al. 

(2002) use a discrete event simulation approach to model a dynamic learning model where expectations 

are formed through accumulated experience, and support their model with empirical studies.  

Boots and Tijms (1999) study a multi-server model where customers wait for a certain time only and 

leave the system if service has not begun within that time. An example of this system would be a call 

centre service wherein customers give up due to impatience after being put on hold for more than 20 

seconds. Finally, Whitt (1999) studied stochastic birth-and-death processes and demonstrated the 

advantage of communicating anticipated delays to customers upon arrival, or providing state 

information to allow customers to predict waiting times. This leads to higher customer satisfaction, and 

thus a better possibility of repeat business.  

Besides the above mentioned stochastic models there has also been a wide range of deterministic 

approaches to queuing. Edelson (1971) considers a congestion model in which commuters choose 

between taking a train or driving a car to get to work on a daily basis. He then derives optimal highway 

tolls in order to maximize the profit with respect to the above mentioned possibilities. Agnew (1976) 
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investigated the dynamic behaviour of congestion systems by using nonlinear differential equations to 

represent the relation between the queue length, and the arrival and service rates of the system. 

Haxholdt et al. (2003), van Ackere and Larsen (2004), van Ackere et al. (2006) study behavioural 

aspects in queuing by analysing the feedback process involved in the customers’ decision regarding the 

choice of  queue in a discrete time simulation framework. They extend this model (van Ackere et al., 

2011) to analyse the feedback process involved in the manager’s decisions. Haxholdt, et al. (2003) and 

van Ackere, et al. (2006, 2011) use system dynamics (SD) to develop this feedback based model, 

whereas van Ackere and Larsen (2004) adopt an agent based approach using cellular automata (CA). 

The CA approach looks into customers' individual experiences, and how by using local information 

they make decisions. The SD approach captures the average perceptions of customers and assumes 

decisions based on global information.  

The experimental approach (Freidman and Sunder, 1994) has been adopted quite recently to study 

queuing problems characterized by endogenous arrival rates and state dependent feedback. Rapoport et 

al. (2004), Seale et al. (2005) and Stein et al. (2007)  study single server queues by designing an n-

person game to show that at the aggregate level we get highly predictable patterns even though we 

observe chaos at the individual level. Rapoport et al. (2010) take the previous study further by studying 

two different batch queuing models, one with constant server capacity, and the other with variable 

server capacity. The experiment was designed to uncover behavioural regularities that govern arrival and 

staying out decisions. 

The above literature overview clearly indicates the shift from the traditional approaches (i.e. design and 

performance optimization) towards behavioural studies in queuing. This thesis extends this trend by 

using an agent based modelling framework (cellular automata) to develop a model where customers co-

evolve with the facility that serves them.  

The next chapter provides an overview of the research methodologies used in this thesis. 

12



 

 

CHAPTER 3: RESEARCH METHODOLOGIES 

In this chapter, the research methodologies that are used in the thesis are presented. A brief history of 

the methodology, the idea, foundations and seminal papers are discussed. 

3.1 AGENT-BASED MODEL (ABM) 

“Part of the inhumanity of the computer is that, once it is competently programmed and working 

smoothly, it is completely honest”       Isaac Asimov 

This section discusses the agent based modeling framework. A possible definition for an agent is given, 

followed by an overview of the agent based modeling literature and foundations. 

3.1.1 Introduction 

Agent-based modeling (ABM) and Multi-agent simulation (MAS) are a relatively new computational 

modeling paradigm that is used to model and study individual agents’ interactions and how these 

interactions affect the system as a whole. ABM (North and Macal, 2007) is being widely used in 

businesses to aid decision making and also as a research methodology in the study of complex adaptive 

systems. ABM encompasses the concepts of complex systems, game theory, sociology, evolutionary 

computation, and artificial intelligence, and blends them together to solve practical issues. ABMs help 

us to understand the micro-macro behavior of complex systems, i.e. to see how micro features 

(individuals in a population coded with certain behavioral rules) result in complex macro behavior (i.e. 

a key notion that a simple behavioral rule can lead to complex system behavior). Since the 1990’s, ABM 

has been used to solve a variety of problems which include predicting the spread of epidemics, 

population dynamics, and agent behavior in stock markets and traffic congestion, and to study 

consumer behavior in marketing.  
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In the sections below a brief description of an agent is provided followed by a literature overview 

describing the background of ABM.   

3.1.2 Defining an agent 

There is no accepted formal definition for an agent and many researchers have their own view points 

on what characterizes an agent (Macal and North, 2006). Bonabeau (2002) considers an independent 

entity (e.g. software module, individual etc.) to be an agent which can have either primitive capabilities 

or adaptive intelligence. Casti (1997) proposes the idea that agents should have a set of rules governing 

environmental interactions, and another set of rules that defines its adaptability. Mellouli et al. (2003) 

points to the adaptive and learning nature that should be present in an entity to qualify being called an 

agent. The basic idea that comes out of these discussions is that an agent should be proactive i.e. it 

should interact with the environment in which it dwells. One possible definition of an agent could be: 

“Agents are boundedly rational individuals acting towards a goal using simple decision-making rules 

and experiencing learning, adaptation and reproduction”. 

An agent as shown in figure 3.1 can be characterized as follows:  

1) Can be identified i.e. an individual with attributes, and rules governing its behavior. 

2) Dwells in an environment, and interacts with other agents in this environment. 

3) Adaptable i.e. ability to learn. 

4) Has an objective, so that it can compare its behavior relative to this objective. 
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Figure 3.1: Agent 

3.1.3 ABM literature and foundations 

The idea of agent-based modeling and simulation can be traced to the 1940’s when von Neumann 

(Heims et al., 1984) proposed the theoretical concept of a machine that reproduced itself. This idea 

was extended by Ulam who proposed a grid framework containing cells which led to cellular automata 

(Gutowitz, 1991; Wolfram, 2002). Conway’s “Game of Life” used a two dimensional CA and by 

applying a simple set of rules created a virtual world. Schelling, by using coins and graph paper showed 

how collective behavior results when individuals interact following simple rules. Axelrod’s prisoners' 

dilemma (Axelrod, 1997) uses a game theoretical approach to agent based modeling and Reynolds' 

flocking model paved the way for the first biological agent based model. Even though there were these 

noteworthy contributions towards the idea of an agent based framework this idea did not take off due 

to computational limitations.  
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The availability of computational hardware in the 1990’s led to the development of various agent based 

modeling software. During this period a wide gamut of literature was published providing insights into 

the use of the agent-based modeling framework. Epstein and Axtell (1996) in their “Sugarscape” ABM 

explore social processes like pollution, reproduction, migrations etc. Gilbert and Troitzsch (2005) in 

their book “Simulation for the social scientist” explain the use of computational models in social 

sciences and how to choose models for specific social problems. Holland (1992; 2001), considered to 

be a pioneer in the field of complex adaptive systems, popularized genetic algorithms which use ideas 

from genetics and natural selection. Holland and Miller (1991) discuss how artificial agents can be 

used in economics theory and Miller and Page (2007) provide a clear idea of complex adaptive systems 

(CAS) which are considered to be a building block for ABMs. ABMs, which are rule based adaptive 

agents interacting in dynamic environments have strong roots in CAS. Complex adaptive systems look 

into the emergence of complex behavior when individual components interact. Examples of CAS 

include stock markets, ant colonies, social networks, political systems and neural systems to name a few 

(Miller and Page, 2007). ABMs adopt a bottom-up approach towards modeling, thus deviating from 

the system dynamics methodology. For an overview of ABM refer to Samuelson (2000), Bonabeau 

(2002), Samuelson (2005), Samuelson and Macal (2006) and Macal and North (2007). 

In this thesis a cellular automata based ABM is developed which is presented in section 4.1; hence this 

paragraph explains the general idea of CA. Cellular automata are mathematical representations of 

complex systems wherein individual components interact based on local rules to produce patterns of 

collective behavior. Because of their simplicity, CA’s are used to build conceptual models to study 

general pattern formation. Even though CA has been around since the early 1900’s, the seminal paper 

of Wolfram in 1983 saw the emergence of CA as a way to model complexity (Ilachinski, 2002). 

Wolfram (1983) studied a very simple class of CA that he termed elementary cellular automata. He 

used a simple one-dimensional CA wherein each cell can occupy one of the possible two states (ON or 

OFF); and each cell has one neighbor on each side. He introduces the idea of neighborhood by 
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grouping a cell with its neighbors (forming a neighborhood comprising 3 cells). Wolfram was intrigued 

by the complexity that emerged out of this collection of simple rules that made him believe that 

complexities in nature might follow similar mechanisms. For more information regarding CA refer to 

Wolfram (2002). 

ABMs thus span a wide area of topics and are becoming popular among both the academic community 

and the business world. In academics it serves as an exploratory tool and large scale decision support 

models help to answer real world policy issues. North and Macal (2007) use EMCAS (Electricity 

Market Complex Adaptive System) as an example of a practical application of ABMs. EMCAS is an 

ABM that is used to study restructured electricity markets and deregulation. The traditional modeling 

frameworks (e.g. models of economic markets) require a lot of assumptions in order to solve the 

problems analytically, thus not providing a realistic view. The widespread adoption of agent-based 

modeling confirms the need for a different approach towards capturing complexities in nature.  

The next section introduces evolutionary computation and genetic algorithms.  

3.2 EVOLUTIONARY COMPUTATION & GENETIC ALGORITHMS 

"I have called this principle, by which each slight variation, if useful, is preserved, by the term Natural 

Selection."         Charles Darwin 

This section first briefly gives an overview of evolutionary computation, and genetic algorithms. Then a 

detailed description of the steps involved in genetic algorithms is described. 

3.2.1 Introduction 

Human curiosity and the desire to lead a comfortable life have led to the development of science and 

technology. We have slowly and steadily built a wide gamut of knowledge about everything under the 

sky and above it. With this knowledge we have developed complex systems to control many aspects of 
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our living and learnt through interactions with nature that not everything is under our control. The 

advent of computers and the advances we have been making in computing have increased our ability to 

predict and control nature.  

Computer scientists like Alan Turing, John von Neumann, and others have looked at biology and also 

nature in order to achieve their visions; which lead to the use of computers to mimic the human brain, 

creating artificial life like robots etc. Biologically inspired computing has led to the development of 

fields like neural networks, machine learning and evolutionary computation (of which genetic 

algorithms are a widely used heuristic algorithm).  

In the following sections a brief history of evolutionary computation and the concept of genetic 

algorithm are presented. 

3.2.2 Evolutionary Computation  

Darwin, a naturalist, proposed the principles of natural selection. He envisaged evolution as an iterative 

process and put forth the notion of survival of the fittest. During the same period Mendel was looking 

into the nature of inheritance in plants, and the process of mutation; he is considered to be the pioneer 

in the field of genetics. These two ideas are at the core of evolutionary computation. Delving into the 

details of genetics and Darwinian evolutionary principles is beyond the scope of this thesis.  

Computer scientists in the 1950’s and 1960’s started researching the use of evolution and natural 

selection (Darwin and Wilson, 2006) as an optimization tool for solving engineering problems. Fogel, 

along with Owens and Walsh (Fogel, 1999), developed a technique called “evolutionary programming” 

wherein finite state machines representing candidate solutions evolved by mutating their state transition 

diagrams and then the fittest among them were selected. In Germany, Rechenberg (1965; 1994) used 

“evolutionary strategies” to solve complex engineering problems (optimize real valued parameters for 

devices like airfoils). John Holland (1992) invented “Genetic Algorithms (GA’s)” while trying to use 
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the idea of natural adaptation on computer systems. The ideas put forth by Fogel, Rechenberg and 

Holland form the field of evolutionary computation.  

3.2.3 Genetic Algorithms (GA’s) 

GA’s are a widely used optimization technique belonging to the class of evolutionary computation 

based algorithms. The use of GA’s was popularized by Holland (2001) and is based on the principles 

of natural evolution and the evolutionary strategy of the survival of the fittest (Darwin and Wilson, 

2006). The GA evaluates a population of solutions using a fitness function and converges to an 

optimal solution. GA’s are adaptive heuristic search algorithms which incorporate concepts from the 

principles of evolution put forth by Darwin. GA’s are random to a certain extent, but represent 

intelligent exploitation in that they use historical information to direct the optimization search into the 

region of better performance within the search space. The next sub-sections describe the steps of a 

simple genetic algorithm. 

3.2.3.1 Population Representation 

At each generation (iteration), the GA evaluates the performance (referred to as fitness) of the different 

members of a population. The standard representation of this population is an array of bits, but in 

some cases if the variables to be optimized are continuous then floating point representations are used.  

3.2.3.2 Optimization Variables and Cost Function 

A genetic algorithm like any other optimization technique needs to define the optimization variables 

and requires a fitness function to evaluate the solution space. For example let’s say the idea is to 

minimize the function:  

f (x,y) = 2x + 5xy  

subject to the constraints : 3 ≤ x ≤ 6 and 1 ≤ y ≤ 8. 
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Where f represents the cost function and x, y the variables to be optimized. 

3.2.3.3 Variable bounds  

Since the GA is a search technique it must be limited to exploring a reasonable region of the variable 

space. In some problems constraints are provided as in the above mentioned example.  If the initial 

search space is not known then we must ensure that enough diversity is provided in the initial 

population.  

3.2.3.4 Initial Population  

The GA starts off with an initial population (a search space). As explained above care should be taken 

so that the initial population has enough diversity if the search space is not known. The size of the 

population depends on the problem under study; usually the population is generated randomly covering 

the range of the search space. 

3.2.3.5 Selection  

The next step in the GA is the selection process, i.e. the survival of the fittest: not all members move on 

to the next step of the evolutionary process. Each of the members of the population is evaluated based 

on the cost function and sorted (if it is a minimization problem, then, members of the population are 

sorted in descending order i.e. lowest to highest cost function value). Generally the best performing 

50% of the population are retained to create offspring’s.  

3.2.3.6 Pair and Mate  

There are different ways of pairing the retained members of a population. Random pairing and single 

point crossover mating are explained here. Let us consider that we keep the best performing 50% of the 

population. So we have to replenish the population with the other 50% and this is achieved through 

mating. 
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The following example shows how single point crossover works. Assume P1 and P2 are a randomly 

selected pair representing the parameters to be optimized (e.g. x and y) and O1, O2 their offspring’s. 

Then  

P1 = [x1, y1]   P2 = [x2, y2]  

Possible combinations (pairings) are: 

Pairing 1 = [x1, y1]    pairing 3 = [x1, y2] 

Pairing 2 = [x2, y1]    pairing 4 = [x2, y2] 

The pairings 1 and 4 represents the parents who are retained while parings 2 and 3 are the 

recombination of the parents (offspring) and become the new population members in the next 

generation.  

3.2.3.7 Mutation: 

Mutation helps to maintain diversity and keeps check on premature convergence within the population. 

In the absence of mutations, the population would become increasingly homogeneous, halting the 

optimization process.  The choice of the mutation rate must strike a balance between the risk of losing 

good individuals and not increasing variety in the population sufficiently. The number of mutations is 

calculated by the following formula: 

# of mutations = mutrate * (PopN -1) * Nvar 

where, mutrate is the mutation rate, PopN the size of population of CA’s, and Nvar the optimization 

variables Then population members on whom the mutation takes place are randomly chosen. For 

example if the number of mutations is 3, the chosen members could be  

[1, 5], [7, 3] and [2, 8]. 
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If the variables to be optimized can take values between 1 and 10, the mutated members could be  

[3, 5], [7, 9] and [4, 8] 

3.2.3.8 Next Generation  

At the end of this process we have a new population and the cost of each individual is again evaluated 

as in step 3.2.3.5. 

3.2.3.9 Convergence check  

The convergence check keeps track of whether an acceptable solution is reached or a set number of 

iterations are exceeded, at which point the algorithm is stopped.  

Most GA’s keeps track of the population statistics in the form of mean and best cost for each 

generation. This chapter provided a brief introduction to evolutionary computation and more 

specifically to genetic algorithms and the various steps involved in genetic algorithms.  

The next chapter introduces experimental methods and a brief history of the evolution of experimental 

economics. 

3.3 EXPERIMENTAL METHODS 

I gradually became persuaded that the subjects, without intending to, had revealed to me a basic truth 

about markets that was foreign to the literature of economics.    Vernon L. Smith 

In this section we first introduce experimental methods and then give a quick overview of the history 

and foundations of experimental methods and experimental economics. 

3.3.1 Introduction 

Experimental methods (Friedman and Sunder 1994) can be broadly defined as a scientific approach 

where researchers study causal processes in a controlled environment. This scientific approach spans 
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physics, chemistry, psychology, biology and more recently economics. An experiment is a scientific 

method which is conducted to test a hypothesis. The first step in any experimental method is problem 

definition, i.e. building a hypothesis. Next, an experiment can be conducted to confirm or reject the 

hypothesis. These experiments can range from being personal (example: sampling different wines to 

select one’s favourite) to highly controlled and sophisticated experiments (example: CERNs large 

hadron collider where scientists across the globe try to understand the laws of nature).  

3.3.2 An experiment 

Figure 3.2 gives a holistic idea regarding the steps involved in an experiment. To go through the steps 

we use a very simple example of spontaneous generations as devised by the famous microbiologist 

Louis Pasteur. During the 1800’s biologists believed that micro-organisms grew from non-living things 

postulating spontaneous generation, i.e. life comes into existence without any medium. So the goal for 

Louis Pasteur was to disprove this notion. The problem definition and hypothesis for him were to 

contradict spontaneous generation.  

The next step is data collection through experiments. Pasteur set up two experiments. In experiment 1 

he used a glass flask containing broth with an s-curved spout; he then boiled the flask to kill any 

bacteria that might be in it. The flask was then left to see if any micro-organisms grew in them. In 

experiment 2 Pasteur used a similar glass flask except that it did not have an s-curved spout. He boiled 

this flask like before to kill any bacteria, and left the flask to see if micro-organisms grew in this flask.  

Data analysis and interpretation in economics generally involve statistical analysis, but for Pasteur it 

was what he observed from his experiments. He found out that in experiment 1 there was no bacterial 

growth, whereas in experiment 2 there was bacterial growth. Here the control was the s-curved spout to 

check the effect of environment on bacterial (micro-organic) growth. Also Pasteur repeated this 

experiment in different locations and environments to ensure that the results were correct. 
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Figure 3.2: Steps in an experimental method 

The final stage of an experimental method is confirming or refuting the hypothesis; Pasteur thus 

through his experiment disproved what biologists at his time believed to be spontaneous generation.  

In the next section we take a brief peek into the history and foundations of experimental methods and 

experimental economics. 

3.3.3 History and foundations of experimental methods and experimental economics  

The use of experiments to understand theories and principles of nature has always been on shaky 

grounds. Physics as we know it now, was considered non-experimental. It took great minds such as 

Galileo, Newton and Einstein to introduce the notion of experiments in modern physics. Antoine 

Lavoisier helped develop quantitative chemical experiments, thus adding an experimental flavour to 

chemistry. Biology for a long time was considered non-experimental as it was a living science (i.e. its 

subjects were living organisms). Mendel through his experiment on pea plants and Pasteur through his 
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experiments to develop vaccines made modern biology experimental. Over the last century we have also 

seen the evolution of experimental psychology.  A quote from Friedman and Sunder (1994) rightly 

explains the development (page 1) “History suggests that a discipline becomes experimental when 

innovators develop techniques for conducting relevant experiments. The process can be contagious, 

with advances in experimental technique in one discipline inspiring advances elsewhere.” 

Experimental methods in economics were shunned and considered impractical. But over the last few 

decades we have seen the transformation and the use of experimental methods in economics. The use of 

experiments in economics came into the picture mainly due to the innovative scientific approaches 

(statistics, mathematics, and computer simulations) that were used to study the real world economy 

(Guala, 2008). Von Neumann and Morgenstern’s Theory of Games and Economic behaviour (2007) 

and development of game theory and decision theory set the ball rolling for experimental economics. 

Princeton University’s mathematicians between the 40’s and 60’s used game theoretical puzzles to back 

up their theoretical claims. Schelling’s “The strategy of conflict” (Schelling, 2005) is an example of this 

development. Siegel and Fouraker (1960) tried to combine economics and psychology to understand 

bargaining behaviour. Siegel and Fourakers’ experiments introduced the idea of using real incentives 

and also the implementation of strict between-subject anonymity (Guala, 2008). Herber Simon is 

considered to be a source of inspiration for the development of experimental economics. Selten, a 

trained economist and mathematician who also understood experimental psychology, put together von 

Neumann and Morgenstern’s work along with Simon’s bounded rationality to contribute towards 

social science research (Guala, 2008).  

Experimental economics owes its much acclaimed usage and presence to the work of Smith (1982; 

1989). Smith and Charles Plott were instrumental in setting the rules for experimental design and put 

forth the ideas of economic experiments. For a detailed reading on the history of experimental 

economics refer to Guala (2008).  
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The literature on experimental methods in economics (Friedman and Sunder, 1994) focuses on three 

basic principles that need to be followed while designing an experiment: 1) Realism, this refers to the 

difference that generally exists between simulation models and experiments. Sterman (1987) talks about 

this difference by pointing to the fact that simulation models can capture the physical structure of the 

system under study, but decision rules of these models must correspond to the actors who use them. 

Most of the models in general are governed by rules set by the modeller and not by the agents who use 

them. Experimental economics should try to bridge the gap that exists between models and reality 

(Grossklags, 2007). 2) Control and repetition; a control is needed in the experiment in order to 

observe the effects of a variable under study (this is what we call treatments). Control ensures that the 

experimental data is a result of manipulations made by the experimenter in the experimental 

environment. Repetition on the other hand is needed to have a check on the variability observed in the 

data. 3) Induced-value theory; Friedman and Sunder point out that the key idea behind induced-value 

theory is to “induce” pre-specified characteristics in subjects. To accomplish this, experimenters should 

come up with a reward mechanism that conveys the message to subjects, that the reward they receive is 

related to their performance and not allowing them to be satiated. These are the three important 

principles that need to be kept in mind while designing experiments. For a detailed reading on this 

topic refer to Friedman and Sunder, 1994. 

Chapter 3 introduced the methodologies that have been adopted in this thesis. Main contributors and 

basic ideas behind these methodologies have been described. There might be other contributors and 

techniques that have not been discussed. For detailed readings refer to the bibliography. 

The next chapter is a collection of three scholarly papers that presents the contribution of the thesis 

towards the study of behavioural queuing systems. 
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CHAPTER 4 PAPERS 

4.1 THE MICRO-DYNAMICS OF QUEUING: UNDERSTANDING THE FORMATION OF 

QUEUES  

(with Carlos Delgado, Erik R Larsen and Ann van Ackere) 

ABSTRACT 

Most work in queuing theory is performed at an aggregate level, with linear models for which closed 

form solutions can be derived. We are interested in creating a better understanding of how queues are 

formed by taking a bottom-up approach to their formation. We use a cellular automata framework to 

structure a set of agents who must choose which service facility to use. After using the facility, they 

update their expectations of sojourn time based on their own experience, and information received from 

their neighbors’. Based on these updated expectations, they make their choice for the next period. We 

find that, after an initial transition period, customers mostly reach a quasi-stable situation, where the 

average sojourn time is close to the Nash equilibrium and social optimum, unless agents forget one of 

the facilities. We analyze different parameterizations’ of the agents' decision rules, and consider 

homogeneous and heterogeneous agent populations. 

INTRODUCTION  

Queuing theory has since its inception mainly dealt with an aggregated or systems level view of the 

processes involved. Typically, customers arrive following a stochastic process, in many cases a Poisson  

process; after waiting a certain time they receive service and then disappear, not to be seen again (Gans 

and Zhou, 2003; Gross and Harris, 1998). The focus was on being able to establish a closed form 

solution for the model, which implies that the model is linear, and the main objective was to find the 

"optimal" capacity of the service facility, i.e. the capacity that maximizes profit or welfare. There have 

been noteworthy exceptions from this general scheme, such as Haxholdt et al. (2003) and Law et al 

(2004) . More recently there has been a movement towards studying behavioral issues in operations 
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management (Gino and Pisano, 2008; (Bendoly et al., 2010), which has to some (limited) extent also 

impacted queuing research. This work includes a number of empirical studies, mainly in the area of 

service marketing (A. K.Y. Law et al., 2004), where researchers have studied the effect of queuing on 

return rates to the same outlets. Theoretical work has looked at including feedback into the models, so 

that customers may decide to return or not to the same service facility (Haxholdt et al., 2003, van 

Ackere et al., 2006). Finally, some experimental studies have also begun to question certain taken for 

granted assumptions in queuing (Bielen and Dumoulin, 2007). Still, very little has been done to 

attempt to understand the impact of individual decision making; i.e. how does individual expectation 

formation affect the creation and dissolution of queues, and the selection of service facilities based on 

past experience?  

In this paper, we begin to address these issues by looking at how individuals form expectations, and 

how the interactions of individuals influence the formation of queues. We develop an agent based 

model which represents a population of decision makers who repeatedly have to make a choice about 

which service facility to use. After choosing a service provider and experiencing the actual sojourn time, 

they update their expectations based on this new experience, and take this into account when making a 

choice for the next period. We structure the agents in a cellular automaton, to be able to define a 

neighborhood and the interactions between the individual agents / decision makers. Our model can be 

seen as a collective choice model with negative externalities, as an agent does not know the choice of the 

other agents when making a decision; however, these other agents' choices of service facility 

significantly influence the resulting sojourn times.  

Using a disaggregated agent based framework (e.g. cellular automata) provides a number of advantages 

over the more traditional approach when aiming to understand the micro dynamics of the formation of 

queues. While each agent makes a locally rational choice, the macro (aggregated) dynamics might be far 

away from the optimum. This is similar to the micro-macro problem in the social sciences (or forward-
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backward problems in physics, see Gutowitz, 1991). We can study the aggregated outcome of the way 

in which individual agents form expectations, e.g. how they update their expectations based on 

experience and the effect of information in the system. This allows us to get an insight into better ways 

of designing service facilities, compared to the more traditional “top-down” approach which tries to 

infer the individual behavior from the aggregated data. The latter task is in most cases impossible, 

unless strict neoclassical (unrealistic) conditions are assumed.   

Such a micro foundation approach has been used in other areas, including traffic where detailed studies 

of how the aggregated traffic builds on individual choices of travel routes have helped shed new light 

on the effect of road restrictions (one-way systems, design of exits etc) (Benjamin et al., 1996). In 

physics and biology, agent based models have likewise improved both theoretical and practical 

understanding of a number of phenomena (Deutsch and Dormann, 2005); in the social science they 

have been used in areas such as sociology (Caruso et al., 2007), management (Lomi and Larsen, 1996) 

and many others.   

In this paper we develop a model of individual choice, where each agent decides each period which 

service facility to use. Having used the chosen facility, agents update their expectation of the sojourn 

time for that service facility and use information from other agents they communicate with to update 

expectations about other service facilities. The next period, the agents again choose which service 

facility to use based on these updated expectations. We study how the agents adjust to the system and 

to each other as time evolves, as the sojourn times depend on the number of agents choosing each 

station that period. The next section describes the motivation and the development of the model. This 

is followed by a discussion of the simulation results, while the final section contains our concluding 

comments and suggestions for further work.  

MODEL DESCRIPTION 

We consider a group of customers who, each period, must choose which service facility (referred to as 
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queues) to patronize. They make their choice based on the sojourn time which they expect to face at 

the different facilities. We model this situation using a one-dimensional cellular automaton (CA) 

(Gutowitz, 1991; Wolfram, 1983; 1994) which assumes local interactions between intelligent adaptive 

agents. We call the agents intelligent because they have a memory (expectation) which contains the 

expected sojourn time for each facility.  

We assume a ring structure wherein each cell of the CA represents an agent. Each agent has exactly two 

neighbors’, one on each side. The parameter K defines the number of neighbors (referred to as the K-

neighborhood (Lomi et al., 2003)) from whom there is information diffusion. The neighborhood 

represents for instance a social network encompassing colleagues, friends, people living next-door etc. 

As an example, if K = 1 and A is a set of N agents {A1, A2,…, Ai,…, AN }, then agent Ai will interact 

with agents Ai-1 and Ai+1.  

We use the following notation: there are N agents, who each period choose one of Q queues. Each 

queue has a service rate μ and an arrival rate λjt. Note that μ is exogenous and common to all queues, 

whereas λjt is endogenous and represents the number of agents choosing queue j in period t. At the end 

of a period, each agent updates his expectation of the sojourn time based on two sources of 

information: his own experience, and that of his neighbors’ (van Ackere and Larsen, 2004). Based on 

his own experience, he will update his estimate of the sojourn time at his chosen service station using an 

exponentially weighted average with weight α: 

                            M ijt = α * M ijt-1 + (1-α) * W jt-1              (1) 

M ijt denotes agent i’s memory (expectation) for queue j at time t, and W jt-1 his experience in queue j at 

time t-1. The expected sojourn time at t (M ijt) is thus the weighted average of the previous expectation 

M ijt-1 and the most recent experience W jt-1. 

The logic behind the weight α is as follows:  for α = 0, no weight is given to the past, thus giving full 
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weight to the most recent experience. A value of α = 1 implies inertia, i.e. no updating of expectations. 

Thus, the higher the value of α, the more conservative the agent is towards new information, while a 

lower value means agents consider their recent experiences to be more relevant. This updating method 

is known as adaptive expectations (Nerlove, 1958) or exponential smoothing (Gardner, 2006). 

The second source of information comes from the experience of the agent's neighbors’. The agent 

checks which neighbor experienced the shortest sojourn time at time t-1. Using the same logic as 

described above for his own experience, the agent will update his expectation for the queue used by this 

neighbor using parameter β. In the special case where the facility chosen by the agent and that chosen 

by his best performing neighbor coincide, the agent only updates his expectation once, using the 

minimum of α and β as weight. The queue for the next period is chosen based on these updated 

expectations. In case of a tie between two or more facilities, he will in order of preference stay where he 

was, select the facility used by his neighbor, or choose randomly. To summarize, the flow of the model 

is as follows: at time t = 0, agents are allocated randomly to a queue, with each queue having equal 

probability. They experience a sojourn time and learn about their neighbors’ experience. They update 

their expectation based on this information and use these updated expectations to select the queue with 

the shortest expected sojourn time for period 1. These new choices lead to new experiences and 

information, and the updating and decision process is repeated. 

Next we need to define the sojourn time W jt at queue j at time t, given that λ jt agents selected this 

queue. Let us consider an M/M/1 system (i.e. a one-server system with Poisson arrivals and 

exponential service times, see e.g. Gross and Harris, 1998) in steady state. For such a system, the 

expected number of people in the system (L) satisfies equation (2): 















1
L       (2) 

where ρ denotes the utilization rate λ/μ. Recalling the well-known Little’s law 
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    L = λ * W       (3) 

equations (2) and (3) imply that W equals   

 


1
W .       (4) 

Unfortunately, these equations are only valid in steady state, which requires ρ < 1. We need a 

congestion measure which can be used for a transient analysis where at peak times the arrival rate 

temporarily exceeds the service rate. Consider for instance the case of a toll bridge where during peak 

time there is clustering of commuters: it takes a while for this queue to disappear. We have therefore 

attempted to identify a congestion measure that satisfies the behavioral characteristics of equations (2) 

to (4), but remains well-defined when ρ ≥ 1. Such a measure should satisfy the following criteria: 

(i) If ρ equals zero, the number of people in the facility, L, equals zero (Equation 2); 

(ii) L increases more than proportionally in ρ (Equation 2); 

(iii) When the arrival rate tends to zero, the sojourn time W is inversely proportional to the service 

rate µ (Equation 4); 

(iv) When the arrival rate and service rate increase proportionally, leaving ρ unchanged, 

the waiting time W decreases (Equations 2 and 3); 

(v) Little's Law is satisfied (Equation 3). 

With these requirements in mind, we define L jt as follows: 

   jtjtjtjtjtL   2)1( .      (5) 

Using Little's law and the definition of ρ yields the average sojourn time 

    
μ

+
μ

jtλ
=jtW

1

2
.       (6) 
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Experimental Setup  

Cellular automata are used in many disciplines as a way of modeling a variety of phenomena from 

coffee speculation and traffic models to the growth of organizational populations (Bandini et al., 1997; 

Lomi and Larsen, 1996; Wahle et al., 2001). The agents of a CA model are endowed with memory, 

which makes this framework more suitable for investigating our problems. We model the agents’ 

memory using adaptive expectations as described above. As our model cannot be solved analytically, we 

turn to simulation as a method of analysis. We use a CA with 120 agents (cells) and 3 facilities (states), 

an adequate size to observe the phenomena we are concerned with. We also experimented with a larger 

number of agents; this did not change the results in any significant way. 

Each agent is allocated an initial memory for the expected sojourn time for each facility; these 

memories are distributed randomly around the optimal average sojourn time. We simulate the models 

for 50 periods, which is sufficient to show the development of the automata and (in most cases) reach a 

form of steady state (i.e. the behavior remains the same for longer simulations). We have run much 

longer simulations to verify this. The agents choose between three identical facilities. It is important to 

note that all agents choosing a specific facility experience the same sojourn time, i.e. we do not consider 

order of arrival: we report the average sojourn time.  This is also consistent with our assumption of 

simultaneous choice and synchronous updating of the agents. The parameters used in the simulation are 

shown in table 4.1. Given that the three facilities are identical, the social optimum and the Nash 

equilibrium coincide and correspond to the case where agents are equally distributed, 40 choosing each 

of the three facilities. This results in a sojourn time of 1.8 time units.   

RESULTS 

We present aggregated results before giving a more detailed discussion of the behavior of individual 

agents. Figure 4.1 shows the spatial-temporal evolution of the automaton: the agents are on the y-axis 
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and the x-axis represents time. The colors indicate the chosen facility of a particular agent at a given 

time (black = facility 1, grey = facility 2, white = facility 3). We see that initially the agents try out 

different facilities depending on their randomly allocated initial expectations. In the first few time 

periods different facilities are tested, e.g. at time = 4 the majority chose facility 2 (grey), thus 

generating a long sojourn time. Consequently, in the following period (time 5) no agents use facility 2, 

 

Parameter 
 

Value 
 

 

Description 
 

Q 
 

3 
 

Number of service facilities 
 

 

N 
 

 

120 
 

Population size (Number of agents) 
 

μ  

 

{5,5,5} 
 

Service rate  
 

α 
 

 

{0-1} 
 

Weight to memory w.r.t. own experience 
 

β 
 

 

{0-1} 
 

Weight to memory w.r.t. neighbors’ experience 
 

Tsim 
 

 

50 
 

Simulation time 
 

K 
 

 

1 
 

Neighborhood Size 

 

Table 4.1: Parameter values used for the base case as well as the range used for experiments. 

-and most turn to facility 1 (black). This transitional behavior continues until time 10. Next, a set of 

more stable choices emerges over the next 5 time periods. After period 15, the majority of agents stay 

with the same facility for the remaining 35 periods, while a minority keeps switching between two 

different facilities. E.g. agent 80 switches between facilities 1 and 2 in a fairly regular pattern. Agents 

switching between 2 facilities (note that none switches between all three facilities) create the boundaries 

for the "stable" agents: the information thus provided removes any incentive to switch. 

In Figure 4.2a we observe the evolution of the average sojourn time for the system as well as the 

minimum and maximum across the three queues. Referring to what we observed in figure 4.1, we see 

that in the transition phase the average sojourn time occasionally peaks near 4.0, which is more than 

twice the Nash equilibrium value of 1.8. These peaks occur when the agents are clustered in two 

queues. From period 15 onwards, the average travel time is almost constant, with only very minor 
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variation (in this case less than 3 percent), again in line with the observations in the spatial-temporal 

figure. It is worth noting that in the transition period some agents experience very low sojourn times, 

e.g. at times 4 and 9 this value is below 0.4 (0.36 and 0.32), less than 10% of the average sojourn time 

for these periods. At the same time some agents experience very long sojourn times (close to 4.5), but 

this is only about 12% more than the average sojourn time. After period 20, the maximum and 

minimum sojourn times remain close to the average; deviations don’t exceed 17% of the average. These 

remaining variations are created by the agents who change facility on a regular basis, as seen in figure 

4.1. This switching by a few agents creates a kind of symmetry in the minimum and maximum sojourn 

times – increasing the sojourn time for the facility they move to while reducing it at the facility they 

leave (see figure 4.2a). 

 

Figure 4.1: The spatial-temporal evolution of the choice of service facility over fifty periods. Each color 

represents a facility (Black = facility 1, Grey = facility 2, White = facility 3) 

Figure 4.2b shows the minimum and maximum sojourn times for (i) the whole period and (ii) the 

steady-state period (i.e. after period 25) for each of the 120 agents (on the x-axis). Looking at the 

overall minimum and maximum, we observe that most agents, at some point, experience sojourn times 

of 4.48; only a few have a maximum of 4.32. While the maximum sojourn time is more or less the 
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same for all agents, there are significant differences among the minimum sojourn times which vary from 

0.32 to 1.72, i.e. by a factor of more than 5. These extreme values are part of the initial transition 

phase, where the agents are still learning and trying out different options. However, it is worth recalling 

that all have had bad experiences at some point in this phase. 
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Figure 4.2a:  Shows the average sojourn time as well as the minimum and maximum experienced by any 

of the 120 agents in a given time period. 
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Figure 4.2b: Shows the minimum and themaximum sojourn time experienced by any of the agents (i) 

over the full 50 periods (ii) for the steady state period of 25-50.  

Looking at the minimum and maximum sojourn time in steady state we see that the agents have 

“settled down” in a much more structured way and that there is relatively little difference between the 
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minima and the maxima (with a minimum of 1.52 and a maximum of 2.08). These differences are 

caused by the few agents who keep changing facility, as observed in figure 4.1. Furthermore, the 

changes in the minima and maxima curves occur on the borders between groups of agents using the 

same facility. For instance, in figure 4.2b the steady-state maximum increase from 1.9 to 2.1 

corresponds to agents 19 and 20 who alternate between facilities 1 and 3 (recall figure 4.1) in steady 

state.  

Figure 4.3a shows the actual and expected average sojourn times for the 3 facilities over the simulation 

period for one particular agent (agent 20). Given the previous discussion, it is not surprising that the 

actual sojourn times in the three facilities exhibit large fluctuations in the initial phase. In the steady-

state period we still observe some fluctuations due to the switching behavior of agents located on the 

"borders" (recall figure 4.1). 

It is also interesting to consider how the behavior varies across facilities. For instance, facility 1 has 

initially somewhat less dramatic fluctuations in the initial phase, while facility 3 experiences less 

fluctuations in steady state. To illustrate the expectation formation process for an individual agent, 

Figure 4.3a also shows the expected sojourn time for agent 20. The first observation is that his 

expected sojourn times fluctuate significantly less than the actual sojourn times – i.e. the adaptive 

expectation process works as a smoothing filter for the agents' expectations.  We also see that for this 

particular agent the expected sojourn time for facilities 1 and 3 follow the actual sojourn time, with the 

previously discussed smoothing effect. But the expected sojourn time for facility 2 remains high, as 

neither this agent nor his neighbors’ return to this facility after two visits early on. This results in this 

expectation not being updated, and remaining at 35% above the expectations for the other two 

facilities. Agent 20 thus considers facility 2 to be particularly slow. 

Figure 4.3b shows agent 20’s choice of facility for each time period. His first period choice, based on 

the initial expectations is facility 2, followed by facilities 3 and 1, returning to facility 2 in period 4, 
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and followed by facility 3 in periods 5 and 6. After this, facility 1 remains the preferred choice until 

period 22.  As a neighbor starts using facility 3 in period 17, the expectation for this facility converges  
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Figure 4.3a: The realized sojourn time and the expectation (memory) of agent 20 
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Figure 4.3b: Facility frequented by agent 20 
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Figure 4.4: A spatial-temporal simulation with the same parameters as was used in figure 4.1 but with a 

different set of initial conditions, developing a different pattern of choices, ending up “forgetting” one 

of the facilities. 

quickly to the actual sojourn time (see figure 4.3a), resulting in agent 20 choosing this facility as the 

one with the lowest expected sojourn time in period 23. At this point the agent starts switching 

between facilities 1 and 3, with a regular pattern emerging after period 35: a sequence of 11313113.  

As in all cellular automata, the initialization of the memory for each agent will influence the evolution 

of the automaton, i.e. partly shape the choices of the agents (Voorhees, 1996). Another way of looking 

at this is to say that they are path dependent, i.e. the choices which an agent faces at a particular time 

depend on his previous choices as well as on the choices of the other agents. However, this does not 

mean that they are random: if the automaton is initialized with the same set of random expected 

sojourn times, it will reproduce the exact same behavior. In figure 4.4 we illustrate this as well as 

another phenomenon that we can observe in the automata: if the agents in the initial transition have 

had a (string of) very bad experience(s) with one facility, the expected sojourn time for this facility 

becomes so large that it keeps the agents away from this facility in the future. We use the same set-up 

as before: (α, β, K) = (0.5, 0.5, 1), but with a different initialization of the agents' memories. While we 

39



 

 

see what appears to be very similar behavior in the first few periods, a significant change occurs in 

period 8: all the agents have chosen the same facility. This has driven the expected sojourn time for this 

facility to a level which makes it so unattractive that it is never used again. Consequently, although it 

would be an extremely attractive choice, nobody discovers this. In the first 10 periods the maximum 

sojourn time reaches 5 in period 8, whereas in the example shown in figure 4.2a the maximum was only 

4.48. The consequence of the loss of a facility is that the average sojourn time is significantly above the 

Nash equilibrium (2.65 versus 1.8) in this simulation.  

To illustrate the dependence of the sojourn time on initial conditions, figure 4.5 shows the distribution 

of the average sojourn time in steady state for 1000 simulations with the same set of parameters as 

above (α, β, K) = (0.5, 0.5, 1), but different initial expectations. While more than 80% of the average 

sojourn times are between 1.8 and 2.0, a small number (5%) of averages fall in the interval [2.65, 

2.72]. These are the cases where one of the facilities is forgotten. Overall we can see that the results are 

relatively robust and only a small proportion of the time do agents forget a facility. 
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Figure 4.5: The distribution of average travel time for 1000 simulation with different initial conditions 

for α and β = 0.5 

We are interested in how the choice of α and β influences the sojourn time, i.e. is it best for the agents 

to react fast and incorporate as much new information as possible or is it a better strategy to have a 
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higher level of inertia and only slowly update the expectations?  We therefore vary α from 0 to 1 in 

increments of 0.1, and for each α we consider 5 different values of β: 0.0, 0.3, 0.5, 0.7, and 1.0. As 

discussed above, the average sojourn time is influenced by the initial randomly allocated expectations of 

sojourn times for the different facilities. To account for this we run 1000 iterations for each of these 

(α, β) combinations and calculate the average and the standard deviation of the sojourn times. The 

averages are shown in figure 4.6.  

The first observation is that, except for β equal to 1.0, the average sojourn time decreases in α for 

values below 0.6, then remains fairly constant, and finally increases once α reaches 0.9. In other words, 

up to a certain point, a slower updating of the expectations based on the agents' own experience 

generally leads to a better overall performance of the automaton. For β equal to 1.0, the average sojourn 

time decreases in α.  

 

0 0.2 0.4 0.6 0.8 1



1.5

2

2.5

3

A
v
e

ra
g
e

 S
o

jo
u

rn
 T

im
e

 = 0.0

 = 0.3

 = 0.5
 = 0.7

 = 1.0

 

Figure 4.6: The average sojourn time as a function of α for selected values of β. Each recorded values 

of α represents the average of 1000 simulations with different initial values. Note that for reasons of 

legibility the Y-axis starts at 1.5. 
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Taking a closer look at the influence of β on the resulting sojourn time, we see that, at least until α 

reaches 0.9, the worst we can do is to adopt one of the “extreme” updates with β = 1 or β = 0, i.e. 

substituting the expectations with the neighbors’ new experience or ignoring this information. Both of 

these lead to equally poor results, unless α is close to 1: in some cases the average sojourn time is 40% 

higher than the best among the 5 selected β values. It is also clear that extremely fast updating of 

expectations using the agents’ own experience is worse than no updating. The difference in performance 

among the three other values of β is much smaller across most of the α range: only a few percent until 

α reaches 0.8. Overall the best values are obtained with a relatively high α and a medium β. In other 

words, more conservative agent populations who have a certain degree of skepticism with regard to the 

most recent experiences are doing better than populations who follow an aggressive strategy and put 

much weight on the current experience. 

Next we run two experiments where α and β are respectively relatively small (both 0.1) and quite large 

(0.9). The first case implies that the agents' memory is updated very fast. In the second case agents put 

little emphasis on the current experience but rely on their past experience, i.e. their expectations.  

In the first case, agents react very strongly to the experienced sojourn time: a single bad experience can 

turn them off a specific facility forever. Consequently it is fairly common that by the time steady state 

is reached, one of the facilities is forgotten. This implies that on average, such populations perform 

rather poorly. In those instances where they avoid this trap, their average sojourn time is close to the 

Nash equilibrium. Figures 4.7a and 4.7b show such a case. The fast updating implies that behavior is 

quite volatile during the transition period, but the agents quickly converge to a steady state: the average 

sojourn time equals 1.835, and the behavior is similar to the base case. 

Figure 4.7c illustrates the case where α and β are equal to 0.9. The very slow updating of expectations 

is reflected in a very fragmented distribution of facility choice, there is no coherence of fairly large 

groups of neighbors’ making the same choice as in the base case and in for small α and β values. 
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Because of the slow updating, information diffuses slowly and an agent is likely to stay for much longer 

with the same choice. This can be seen in the transition phase where the coherence appears in the time 

dimension (agents' choice over time) rather than in the space dimension: many agents keep the same 

choice for the first 5 to 10 periods.  Still, in steady-state the average sojourn time, 1.833 is close to the 

Nash equilibrium. For these parameter values, it is extremely rare that a facility is not used in steady 

state. 
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Figure 4.7: Results for different values of α and β. In (a) and (b) α=β=0.1 while in (c) and (d) 

α=β=0.9 
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Next we consider heterogeneous agents: we randomly allocate α and β values to the agents, i.e. agents 

no longer have homogenous updating of their expectations. The results are shown in figure 4.8. Recall 

that with homogeneous agents we observed grouping at the macro-level, except in the case of large α 

and β values (figure 4.7c). Here we have relatively little coherence in the formation of groups of 

neighboring agents making the same choice. The largest group is 18 agents in figure 4.8a, comparable 

to figure 4.7c. Figure 4.8b shows the corresponding average sojourn time, which in steady state is 

similar to figure 4.7d, except for the large fluctuations and range for the initial 25 periods. The steady 

state sojourn time is 1.891. 

It is clear that the exact expectation formation process is of great importance for understanding the 

emergence of relatively stable agent choices. A change in the speed and/or homogeneity of the updating 

process influences the spatial outcome significantly, while the change in average sojourn time is relative 

small, typically less than 5%, which could be dismissed as not important.  
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Figure 4.8: Results from a run where α and β are allocated randomly to each agent 
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CONCLUSION 

We have discussed how it is possible to begin to investigate the micro foundation for queuing by 

defining and studying the formation of expectations for single agents and the macro consequences for 

the system. While queuing systems have mainly been studied at the aggregated level, with customers 

arriving following an externally defined distribution, and without repeat service, we are interested in 

how the structure and interaction of the individual customers create queues at the service locations and 

in particular how repeated experiences influence the formation of these queues.  

We can conclude that populations who update their expectations extremely fast using the agents’ own 

experience generally perform poorly. Overall, agents who treat new information from their neighbors 

cautiously but have sufficient trust in their own experience are more likely to perform well. 

While the aggregated outcomes of our simulations show that there are differences in the average 

sojourn time, these are relatively small, but these are the differences that queuing typically has been 

focusing on. What we have shown is that although there is relatively little difference in the average 

sojourn time, there are great differences in the spatial temporal dimension and in the formation of the 

individual agents' expectations and choices. These differences are not yet well understood and need to 

be investigated in more detail. By looking at the individual level we can begin to get a better 

understanding of how information should be distributed and targeted to different agents who have to 

decide which facility to use. This is potentially relevant for a wide range of service facilities, ranging 

from traffic modes to supermarkets. 

The next step is to verify the model using an experimental approach, to get a better understanding of 

the actual decision making process. Another aspect is introducing more choice in the model, in 

particular timing. This would allow agents to also decide when to use the facility, i.e. introducing a 

tradeoff between the preferred time (leaving at 8am) and the shortest sojourn time (leaving before 

7am).  
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4.2 MODELLING DECISION MAKING IN AN AGENT BASED QUEUING 

SYSTEM USING CELLULAR AUTOMATA AND GENETIC ALGORITHMS.  

(with Erik R Larsen and Ann van Ackere) 

ABSTRACT 

In this paper we propose an agent based framework based on genetic algorithms (GA). In section 4.1, 

we introduced an agent based framework using cellular automata (CA). The CA model equips agents 

with information and decision making capabilities. The GA model in this paper takes the agent based 

framework one step further, and models the learning of populations as they experience the 

consequences of queuing. Through the GA we model how populations evolve, and optimize their 

behavior based on their experiences. 

INTRODUCTION 

Queuing research has since the seminal paper by Agner Krarup Erlang (1909) been studied extensively 

with an aggregated view of the processes involved. The design and performance of the facility under 

study have been the focus of most studies, with the customers using the facility arriving following a 

known exogenous distribution. However, many queuing situations are repeated choices among several 

facilities based on previous experiences. There has been an increasing interest in this type of behavioral 

studies in operations management, for example empirical studies in service marketing (A. K.Y. Law et 

al., 2004; Bielen and Demoulin, 2007), which concentrate on the impact of queue length on the return 

rate of customers. Of late a number of theoretical models include feedback to understand customers' 

satisfaction and its effect on the customers' decision to return to the facility (Haxholdt et al., 2003; van 

Ackere et al., 2006). In spite of all these models and research, little attention has been given to the 

impact of individual choice on queue formation and understanding of the effects of expectations and 

experiences. 
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In this paper we deviate from the traditional approaches of queuing and model customers who evolve 

and optimize their behavior based on their experiences using genetic algorithms. Genetic algorithms 

(Goldberg, 2009; Haupt and Haupt, 2004b; Holland, 2001; Mitchell, 2001) are a very commonly 

used evolutionary computation based optimization technique. GA’s have been used successfully in a 

variety of applications including solving the traveling salesman problem (Moon et al., 2002), 

operational research (Reeves, 1997), game theoretical models (Hurd and Hamblin, 2007), 

organizational theory (Bruderer and Singh, 1996) and engineering optimization (Gen and Cheng, 

1997).  

This paper builds on the paper presented in section 4.1, and looks into collective learning i.e. the model 

optimizes the overall performance of the system. This model is a step further in the design of 

intelligent decision makers. Similar to the paper in section 4.1 we incorporate previous experience into 

the model by using adaptive expectations (Nerlove, 1958). Agents use adaptive expectations for 

updating their expectations regarding sojourn time; and this information is used to choose among 

several alternative facilities. The model presented in section 4.1 and this model applies to situations 

where customers routinely require a service. Their loyalty, i.e. the decision to return to the facility, is 

dependent on their past experiences. A few examples of these situations include person who goes 

monthly to the bank, a person who goes to supermarkets on a weekly basis, and a person who 

commutes every day to work (choosing alternative routes) among others.  

The paper is organized as follows. The methodology section after this brief introduction presents the 

model. This is followed by the results section where we provide illustrative examples to highlight the 

proposed approach, and a concluding discussion section.  
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METHODOLOGY 

In this paper we consider a group of customers, who routinely choose a facility from a multi-channel 

system. The choice of the service facility is based on their expectations of sojourn time and the 

information available to them through a network (local interactions). This network, called 

neighborhood, could be envisioned as a social network consisting of friends, family members, 

colleagues, neighbors etc. and also physical networks.  

We model this evolving/learning agent based framework by using a combination of a one dimensional 

Cellular automata (CA) (Gutowitz, 1991; Wolfram, 1983; Wolfram, 1984; Wolfram, 2002) and 

Genetic Algorithms (GA) (Haupt and Haupt, 2004a; Mitchell, 2001). The CA represents the agent 

based system and defines the structural properties (i.e. information network) whereas the GA is used to 

optimize the behavioral parameters of the model; thus representing an evolving agent based system. The 

CA model is described in section 4.1; hence in the following paragraphs we describe how a genetic 

algorithm is used to model evolving populations of agents (i.e. population of CA’s that contain agents). 

GAs are a widely used optimization technique belonging to the class of evolutionary computation 

based algorithms as proposed by Rechenberg (1994). The use of GAs was popularized by Holland 

(2001), and is based on the principles of natural evolution and the evolutionary strategy of the survival 

of the fittest (Darwin and Wilson, 2006). The GA evaluates a population of solutions using a fitness 

function and converges to an optimal solution. GA’s are adaptive heuristic search algorithms which 

incorporate concepts from the principles of evolution put forth by Darwin. GAs are random to a 

certain extent, but represent intelligent exploitation in that they use historical information to direct the 

optimization search into the region of better performance within the search space. Figure 4.9 provides a 

quick overview of the GA process. The following sections explain the cost function, and GA steps in 

detail. 
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Figure 4.9: GA flowchart 
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We use a Genetic Algorithm (GA)  (Goldberg, 2009; Mitchell, 2001) to analyze and optimize the CA 

i.e. find the best combination of behavioral parameters (α, β) for the CA. Recall that α is the weight to 

memory given to own experience, and β the weight to memory given to neighbors’ experience. This 

helps us to understand how agents’ adapt their decision process to improve system performance (i.e. 

minimizing the sojourn 

time). It is a two variable optimization problem and the cost function we use to evaluate the fitness of 

parameters is the average sojourn time of the system given by:  

     
Tsim

Tsim

t N

Nqueue

j
jtjtW

Wav







 1

1


       (8) 
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j
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jtλ
=jtW

1

2
       (9) 

W jt is the sojourn time for each agent at queue j (with service rate µj), given that λ jt agents selected this 

queue at time t. Tsim is the simulation period, N the number of agents, and Nqueue the number of 

queues. For a detailed description of equation 9 refer to section 4.1. The next sections describe the 

steps involved in the GA:  

Population Representation, variable bounds and initial population: To begin the GA needs a 

population (Haupt and Haupt, 2004b) to start with and in our case this population is composed of 

CAs, each of which is characterized by its value of the parameters α and β, the values of which are 

randomly chosen between 0 and 1. We use a continuous GA instead of the more commonly used 

binary GA. In a binary GA, the variable to be optimized is represented by a string of bits. Hence, there 

must be a way of converting continuous values into binary and vice versa. In order to reduce 

quantization errors we need to increase the number of bits representing the variables. In order to avoid 
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the above mentioned issues we use a continuous GA. The variables α and β both range between 0 and 

1, hence these bounds will be incorporated in the model. 

Natural Selection: In this step the survival of the fittest as proposed by Darwin (Darwin and Wilson, 

2006) is incorporated. We rank the members of the population based on their cost as defined by (8). 

We sort them in a descending order of cost (i.e. minimum to maximum value, this being a minimizing 

problem). Then, the best performing members of the population are kept for mating and the rest 

discarded. For example, we use 50% as the selection rate in our base case i.e. the best performing 50% 

of the CA population are kept for mating. We denote the initial population size PopN and the size of 

the selected population Nsel. Thus the fittest members of the initial population survive and pass over 

their traits (α and β values) to the next generation.  

Pair and Mate: In order to replenish the population; pairing and mating (Haupt and Haupt, 2004b; 

Mitchell, 2001) is done with the selected members of the initial population. There are different ways of 

pairing the selected CAs. We adopt random pairing in order to achieve diversity among the selected 

CAs. We have to replenish the population with (PopN - Nsel) members. The number of matings for this 

replenishment is (PopN - Nsel) / 2 matings as each mating produces two offsprings containing traits 

from each parent. We adopt a single point crossover wherein each parent contributes a variable to the 

offspring. Single point crossover is a commonly used mating method used in GAs. The following 

example explains how this mating method works. Let P1 and P2 be the randomly selected pair 

representing the parameters (α and β) to be optimized. O1 and O2 represent their offspring’s. Then 

P1 = [α1, β1] and P2 = [α2, β2] 

Possible pairings are: 

Pairing 1 = [α1, β1], Pairing 2(O1) = [α2, β1],  

Pairing 3(O2) = [α1, β2], and Pairing 4 = [α2, β2] 
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Pairing 1 and 4 represents the parents who are retained while pairings 2 and 3 are the offsprings 

(recombination of the parents becoming the new population members, the next generation). 

Mutation: In order to ensure diversity in the population and thus prevent premature convergence 

within the population, mutation (Haupt and Haupt, 2004b) is done. The mutation rate should be 

chosen so as to strike a balance between the possibility of losing good members and the need to 

provide diversity in the population. In the absence of mutations, the population would become 

increasingly homogeneous, halting the optimization process.  We vary the mutation rate from 1% to 

15% of the population of CA’s. The number of mutations are calculated by the following formula: 

# of mutations = mutrate * (PopN -1) * Nvar     (10) 

where, mutrate is the mutation rate, PopN the size of population of CA’s, and Nvar the optimization 

variables (α and β in our case). For example, if we set the mutation rate to 15%, and for a population 

size of 50 CA’s, we have the number of mutations to be approximately equal to 15.We then randomly 

select 15 CA’s among the population and replace the α or β value with a random number between 0 

and 1. This ends the process of mutation. 

Next Generation and Convergence: We have a new population (PopN) of CA’s at the end of the 

mutation process and the sequence described above is repeated for the new generation. A convergence 

check keeps track of whether an acceptable solution is reached or a set number of iterations are 

exceeded, at this point the algorithm is terminated.  

To summarize, the GA uses the CAs' average sojourn time as its cost function to optimize the 

parameters α and β in order to achieve optimality.  
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SIMULTION SETUP  

The simulation setup for the GA consists of a population of CA’s each with 120 agents and 3 queues. 

The base case for our GA model consists of the following values: 1) population size of 50 CA’s, 2) 

homogenous service rate of 5 agents per unit of time for each CA, 3) simulated for 50 generations, 4) 

mutation rate set to 5%, and 5) selection rate set to 50%. Table 4.2 summarizes all the parameters 

used in the simulation. 

Parameters Description Value 

   
Pop Size of CA population 50 

n No of agents of each CA 120 

m No of facilities/queues of each CA 3 

µ 

MR 

SR 

Gen 

Service rate for each CA 

Mutation rate 

Selection rate 

No of generations 

5 

5% 

50% 

50 

 

Table 4.2: Parameter values for base case 

We also perform a sensitivity analysis on the GA parameters i.e. mutation rate, selection rate and 

population size. The mutation rate is varied from 0 to 15%, the selection rate between 10 and 90% 

and the population size from 50 to 200. The convergence criterion for the GA is the number of 

generations (50) and in every generation each CA is run for 500 time periods. Finally, we consider a 

case with heterogeneous service capacity (i.e. 3, 5 and 7 agents per unit of time for facilities 1, 2 and 3 

respectively). We use two random number generators (seeds): 1) at the start of the simulation, each 

agent (i.e. 120 x 50 CA’s) is allocated an initial memory for the expected sojourn time for each facility; 

these are distributed randomly around the optimal average sojourn time and, 2) the initial population 

of CA’s behavioral parameters α and β values. MATLAB, a numerical computing environment is used 

to implement our model.  
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RESULTS 

The following section shows illustrative results to highlight the approach of this paper. Figure 4.10 

show how, for the base case, the GA improves the performance of the CA model over generations. The 

X-axis represents the generations and the Y-axis each generation’s average cost. We see that the initial 

population average is 1.99 and over a few generations (4 generations) the GA has brought it down to 

1.86 (note : for clarity the Y-axis starts at 1.6). Using equation 8 we can calculate that the minimum 

average sojourn time this system can achieve is 1.8 which corresponds to both the Nash equilibrium 

and social optimum.  

The GA brings down the average sojourn time close to the best possible performance in as little as four 

generations. The effect of mutation can be seen in the fifth generation: the population average increases, 

indicating a deterioration of performance. Also we see fluctuations in the average over generations 

pointing to the fact that mutation tries to provide diversity in the population and thus preventing 

premature convergence. If we had not incorporated mutation into the GA, we would increase the 

likelihood of ending up at a local rather than a global minimum. Care should be taken regarding the 

setting up of the mutation rate as too high a value will result in loosing good members of the 

population and low values result in local minima. The figure also shows the best performing CA for 

each generation.  

Figure 4.11 shows how (for the base case) the GA brings down the average sojourn time values from 

the first generation to close to the Nash (1.8) at the end of the convergence criterion i.e. after 50 

generations. The horizontal axis in figure 4.11 represents the generations.  
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Figure 4.10: Population average of all CA’s (average sojourn time) for each generation 

 
(a) First generation CA’s average sojourn time 

 
(b) Last generation CA’s average sojourn time 

 

Figure 4.11 

55



 

 

Figure 4.12 shows the results for the heterogeneous service capacity case. For this illustrative example, 

we set the mutation rate at 1%, the selection rate at 50%, and population size and number of 

generations at 50. Here, we see that the GA brings the average cost from 1.72 to 1.65 at generation 6. 

This is an improvement of 4% in just six generations which is quite significant in many systems. This 

value is also quite close to the Nash value of 1.63 (approximately) as calculated using equation 8 for 

heterogeneous service rate. In this case, the last generation average sojourn time value is approximately 

at 1.64, hence yielding an optimal combination of behavioral parameters that is very close to the Nash 

value of 1.63. The figure also shows the best CA in each generation. The following paragraphs explain 

the sensitivity analysis performed on various GA parameters. 

 

Figure 4.12: Population average of all CA’s (average sojourn time) for each generation 

 

Table 4.4 shows results for the sensitivity analysis of the mutation rate i.e. the impact of the mutation 

rate on the overall performance of the GA. The last two columns of the table are the average 

performance across all CA’s for the initial population (IP) and the last generation (LG) respectively. 
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The table shows the best α and β values for the last generation. In table 4.4 we keep all other GA 

parameters set to the base case values and vary just the mutation rate from 0% to 15% for the 

homogenous service capacity case. We infer from the homogenous service rate values that some 

mutation is needed, but too high a mutation rate is not good because it might eliminate too many good 

members from the population. The best α and β values for the last generation are quite close to each 

other for all the mutation rate values. Table 4.3 describes the notations used in the tables that follow.  

 

S.R. Selection Rate 

MR Mutation Rate 

Gen Number of generations 

Pop Size of population 

IP Initial Population 

LG Last Generation 

 

Table 4.3: GA parameter notations 

 

 
S.R = 50%, N = 120, Time = 500, Pop = 50, Gen = 50 

α β Average cost (IP) Average cost (LG) 

MR0 0.802 0.886 1.994 1.810 

MR1 0.787 0.886 1.994 1.807 

MR5 0.816 0.876 1.994 1.809 

MR10 0.771 0.864 1.994 1.819 

MR15 0.774 0.886 1.994 1.825 

 

Table 4.4: Varying the mutation rate for homogenous service rates. 

Figure 4.13.a shows the effect of the mutation rate on the population average over generations. The 

figure shows the results when the mutation rate is varied for the homogenous service rate CA model. In 

figure 4.13.a (a) from a population average of 1.994 (initial population) the GA brings the population 

average to 1.807 (last generation). This is almost a 10% improvement and brings the overall system 

performance close to the Nash value of 1.8. For higher mutation rates this improvement is around 8% 

and we clearly see the high fluctuations as shown in figures 4.13.a(c and d). 
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(c) 10% MR           (d) 15% MR  

Figure 4.13.a: Population average over generations while varying the mutation rate for homogenous 
service rates 

 
Table 4.5 and figure 4.13.b show the heterogeneous service capacity case where all the GA parameters 

are set to the base case values, and the mutation rate is varied between 0 and 15%. In this case we see 

that the last generation average sojourn time (for all the CA’s) decreases for 1% mutation rate and then 

observe a sharp increase for 5% mutation rate. We can also see that the best α value for the 5% 

mutation rate is significantly different from the best α value for the other cases, indicating a local 

optimum. For mutation rates of 10% and 15% we see that last generation average sojourn time 

decreases compared to 5% mutation rate, but increases steadily compared to 1% mutation rate. In 

figure 4.13.b (a) the population average decreases from 1.723 (initial population) to 1.638 (last 
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generation). This is a 5% improvement and it brings the overall system performance close to the Nash 

value of 1.627. For the 5% MR, the performance is just improved by 0.9%. 

 
S.R = 50%, N = 120, Time = 500, Pop = 50, Gen = 50 

α β Average cost (IP) Average cost (LG) 

MR0 0.664 0.930 1.723 1.639 
MR1 0.744 0.924 1.723 1.638 
MR5 0.347 0.756 1.723 1.708 

MR10 0.742 0.470 1.723 1.643 

MR15 0.992 0.997 1.723 1.660 

 
Table 4.5: Varying the mutation rate for heterogeneous service rate. 
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(a) 1% MR                                                         (b) 5% MR 
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(c) 10% MR                                                      (d) 15% MR 

Figure 4.13.b: Population average over generations while varying the mutation rate for heterogeneous 

service rates 
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Table 4.6 shows the result when the selection rate is varied and all the other GA parameters are set to 

the base case values except the mutation rate which is set to 1%. (i.e. less diversity in generations). In 

the case of homogeneous service rates, selection rates of 25% and 60% resulted in higher average 

sojourn times. For the 60% selection rate, the value of α is significantly different from the other values 

in table 4.4, and this case has the highest average sojourn time. This might be a local optimum. Most of 

the average sojourn time values for homogenous service rates are quite close to the Nash value (1.8). 

For heterogeneous service rates, a very low selection rate of 25% gave slightly higher average sojourn 

time values. The average sojourn time values are close to the Nash (1.627) in all the cases.  

 

M.R = 1%, N = 120, Time = 500, Pop = 50, Gen = 50 

Homogenous service rate Heterogeneous service rate 

α β 
Average 
cost (IP) 

Average 
cost 
(LG) 

α β 
Average 
cost (IP) 

Average 
cost 
(LG) 

SR25 0.800 0.858 1.994 1.815 0.679 0.927 1.723 1.643 

SR50 0.787 0.886 1.994 1.807 0.744 0.924 1.723 1.638 

SR60 0.698 0.873 1.994 1.822 0.728 0.929 1.723 1.638 

SR75 0.795 0.873 1.994 1.807 0.694 0.903 1.723 1.639 
 

Table 4.6: Varying the selection rate 

Table 4.7 portrays the results when the population size is varied, the mutation rate is kept at 1%, and 

all other GA parameters are set to the base case values. From the table we see that there are only minor 

variations in average sojourn time for homogenous service rates. The lowest value is when the 

population size is 50, where the sojourn time (1.807) is very close to the Nash (1.8). For the 

heterogeneous service rate we see that a population size of 100 results in the lowest average sojourn 

time value of 1.628. It is to be noted that the best solution achieved in the last generation for both 

homogenous service rate and heterogeneous service rate is very close to their respective Nash values. 
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M.R = 1%, S.R. = 50%, N = 120, Time = 500, Gen = 50 

Homogenous service rate Heterogeneous service rate 

α β 
Average 
cost (IP) 

Average 
cost 
(LG) 

α β 
Average 
cost (IP) 

Average 
cost 
(LG) 

P50 0.787 0.888 1.994 1.807 0.743 0.992 1.723 1.638 

P100 0.749 0.849 2.031 1.813 0.986 0.996 1.728 1.628 

P150 0.810 0.874 2.032 1.814 0.772 0.995 1.709 1.630 

P200 0.777 0.851 2.011 1.815 0.917 0.981 1.701 1.635 
 

Table 4.7: Varying the population size 

CONCLUSIONS 

In this paper we show how by using a genetic algorithm we model the evolution of customers as they 

experience the consequences of queuing. The GA model we present in this paper looks into collective 

learning i.e. it optimizes the overall welfare of the system rather than the individual performance. Using 

a genetic algorithm we modeled customers who optimize their behavior through learning from their 

past experiences and information at their disposal. This paper is a step further in the design of 

intelligent decision makers. In the previous paper, i.e. the CA model, we assumed that the behavioral 

parameters (α and β) in the adaptive expectations based rule are given and fixed for a given simulation 

run. By using a GA, we improved the CA model by enabling the group of agents to change their 

behavioral parameters based on their experiences.  

We illustrated how the genetic algorithm minimizes the average sojourn time of the system within a 

few generations. In the previous paper we showed the influence of α and β on the sojourn time. We 

concluded that slower updating of the expectations based on the agents’ own experience results in a 

better overall performance of the CA. The GA results corroborated the findings of the CA model.  

We also conducted sensitivity analysis to show the effects of the GA parameters on the optimization 

process. We found that the mutation rate has a significant influence on the optimization process. For 

both the homogenous and heterogeneous case a 1% mutation rate gave the best results. A 5% mutation 
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rate gave the worst average sojourn time value of 1.708 for the heterogeneous service capacity. We also 

illustrated the influence of selection rate and size of population. Varying the population size did not 

have a significant influence on the results. The selection rate did not have a significant influence in the 

case of heterogeneous service rates, while 60% selection rate gave a relatively higher average sojourn 

time value (1.822) for the homogenous case 

Concerning the GA, we are interested in investigating the use of different techniques in each phase. For 

example using weighted pairing instead of random pairing. In weighted pairing, the population member 

with the lowest cost has the greatest probability of mating than the population member with the 

highest cost. Another interesting approach would be a comparative analysis of other heuristics such as 

swarm intelligence, ant colony optimization, simulated annealing etc. along with GA’s to see the 

effectiveness of these techniques for the problem we are concerned with.  
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4.3 A TALE OF THREE RESTAURANTS: AN EXPERIMENTAL APPROACH 

TO UNDERSTANDING DECISION MAKING IN QUEUEING SYSTEMS 

(with Carlos Delgado, Ann van Ackere and Erik R. Larsen) 

ABSTRACT 

In this paper we show how through a simple experimental setup, we can study decision making in a 

multi-channel service facility. The agent based framework described in the first paper is used to design 

this experimental study. We show how the experiment was set up to collect data from human subjects 

who take the role of a virtual agent. This experimental data helps us to validate the proposed agent 

based framework, to compare decision making strategies, and analyze the effects of behavioral 

parameters on decision making. 

INTRODUCTION 

We humans are important entities; we design the systems around us and influence their functioning. 

Behavioral operations analyze the behavior of human beings in complex decision problems. Most of the 

analytical and simulation models in operations consider these human agents to be rational, but the fact 

is human beings are not rational. Understanding human behavior and the role of cognition in complex 

human behavior has recently received attention in economics, finance, marketing, etc., but is largely 

absent in the field of operations. Gino and Pisano (2008) argue that operations management (OM) 

should also follow this approach and incorporate behavioral and cognitive factors into OM models. 

Economists for a long time assumed people to be rational and built their models based on this 

assumption. In reality people have limited capability to process information and they follow rules of 

thumb in their decision making, i.e. humans are boundedly rational (Gino and Pisano, 2008). 

Economic models these days have moved away from the assumption that human beings are rational, 

and try to explain and predict behavior. This has also trickled into the fields of finance and marketing. 
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There has also been a trend to use laboratory experiments to understand complex decision making. 

Experimental studies of economic behavior have flourished since the 1980s’, largely due to the efforts 

of Smith (1982; 1989). Sterman (1987) talks about how direct experiments could be used to validate 

decision rules proposed by simulation models. In his 1989 paper Sterman uses a stock management 

system called the “Beer Distribution Game” to show how individual decision making generates 

aggregate dynamics that are far away from optimal behavior. Aksin and Mehrotra (2007) talk about 

modern day call centers and the need to understand behavioral issues in such an environment. They talk 

about customer satisfaction and retention of service based on customer service experiences. In the 

context of experiments in queuing, Rapoport et al. (2004) study queuing problems with endogenous 

arrival rates in batch queues. They design a non-cooperative n-person game to identify if customers’ 

individual decisions lead to coordinated solutions. This idea was then taken up and extended by Seale 

et al. (2005), Stein et al. (2007) and Rapoport et al. (2010). For a detailed reading on experimental 

methods for economists refer to Friedman and Sunder (1994) and for a history of experimental 

economics refer to Guala (2008).  

In this paper we aim to understand the influence of individual decision making on the formation of 

queues. We use experimental methods (Friedman and Sunder, 1994; Smith, 1982) and design a 

laboratory experiment to collect information on how human subjects, who take up the role of a virtual 

agent, make decisions. The cellular automata agent based model described in the previous papers is 

used to design the experiment. We compare the collected data to the agent based model and observe 

the effects of various conditions (both behavioral and structural) on the human subjects’ decision 

making. 

The paper is organized as follows: we first briefly discuss the agent based model and discuss the typical 

collective behavioral patterns observed. We also show the effect of behavioral parameters and the 
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influence of initial conditions on the collective behavioral patterns. Finally, we present the experimental 

design and discuss the observations made based on the results of the experiments. 

THE AGENT BASED QUEUING MODEL 

In this section, we very briefly describe the agent based queuing model as proposed in the previous 

papers. We consider a group of customers who choose a service facility each time period based on their 

expectation of sojourn time at each facility. A one dimensional cellular automata (Gutowitz, 1991; 

Wolfram, 1984) is used to model such a system. 

The model assumes a ring structure, as shown in figure 4.14. Each cell of the CA (cellular automata) is 

an agent who has two neighbors, one on each side. The parameter ‘K’ in the model defines the 

neighborhood (Lomi et al., 2003) i.e. the number of neighbors on each side from whom the agent gets 

local information (van Ackere and Larsen, 2004). The neighborhood in real life could be considered as 

a social network consisting of friends, colleagues, next door neighbors etc. or any physical network.  

 

 

 

 

 

 

Figure 4.14: Structure of cellular automata agent based queuing model 

Refer to section 4.1 for a detailed description of the agent based framework used for the experimental 

study. 
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Simulation setup for the agent based model 

The CA model consists of 120 agents and 3 service facilities. In this study we fix the neighborhood size 

at K = 1 i.e. two neighbors for each agent, one on each side. We experiment with both homogeneous 

and heterogeneous service rates. In one set of simulations we use identical service rates for all three 

facilities (µ = 5; 5 agents per unit of time) and in the other we use 3, 5 and 7 as service rates for 

facilities 1, 2 and 3 respectively. We also experiment with different values for the behavioral parameters 

α and β. To explain the observed collective behavior, we show the case where the agents use the same 

behavioral parameters value of α = β = 0.1. Finally, the model is simulated for 60 time periods. This is 

sufficient to observe the evolution of the automata and for the model to reach steady state, i.e. the 

collective behavior remains the same for longer simulations. Each agent is allocated an initial value for 

the memory of the expected sojourn times for each facility. These values are distributed randomly 

around the lowest achievable average sojourn time.  

Nash equilibrium 

Given that the three facilities are identical (µ = 5), the Nash equilibrium corresponds to the case where 

agents are equally distributed, 40 choosing each of the three facilities. This results in a sojourn time 

value of 5.4 time units. For variable service capacity with the values µ = 3, 5, and 7 the Nash 

equilibrium results in a sojourn time value of 4.88 time units. 

Simulation results 

Figures 4.15 and 4.16 portray the collective behaviors and the aggregate results (average sojourn time) 

that are observed when simulating the agent based queuing model. Figures 4.15 (a, b, c) and 4.16 (a, b, 

c) are for homogenous service rates (i.e. µ = 5 for all service facilities) and figures 4.15 (d, e, f) and 

4.16 (d, e, f) are for heterogeneous service rates of 3, 5, and 7 agents per unit of time for facilities 1, 2 

and 3 respectively. 
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Figure 4.15 shows the spatial-temporal evolution of the choice of service facility over 60 time periods. 

The figure illustrates the case where the behavioral parameters are α = β = 0.1 i.e. the agents update 

their expectations fast, relying more on recent experiences. In each sub-figure, the x-axis represents the 

simulation time and the y-axis the 120 agents. The colors in the figure indicates the facility chosen by 

each agent each time period. The color code is as follows: black = facility 1, grey = facility 2 and white 

= facility 3.  

We observe that there is always an initial learning phase whose length can vary. During this phase 

agents learn about the system by exploring various facilities. For example, in figure 4.15 (a), the 

learning phase is 8 time periods after which we observe a pattern emerging. For instance, agent 1 in 

figure 4.15 (a) tries the facilities in the following sequence 21323132 and then settles in facility 1 

(black). This observed behavior is highly dependent on the initial allocated expected sojourn time 

values. This learning phase also results in high average sojourn time value as seen in figure 4.16 (a), the 

average sojourn time peaks at 15 time units at time period 8. The average sojourn time is high due to 

the fact that agents are trying out various facilities. This results in significantly more than 40 agents 

showing up at the same facility at a given period, and thus resulting in congestion at that facility. After 

this learning phase we see patterns emerging as illustrated in figure 4.15.  

In figure 4.15 we present three typical collective behaviors observed for homogenous and 

heterogeneous service rates. The three behaviors are the following: (i) a stable pattern after the learning 

phase as seen in figures 4.15 (a) and 4.15 (d), (ii) a few agents are still switching facilities and not 

settling down as shown in figures 4.15 (b) and 4.15 (e) and (iii) a facility is forgotten as in figures 4.15 

(c) and 4.15 (f).  
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(b)              (e) 
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(c)                   (f) 

Figure 4.15: Evolution of agents’ choice of service facility for homogenous (a, b, c) and heterogeneous 

(d, e, f) service rates. 
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(a)                 (d) 

 

(b)              (e) 

 

(c)           (f) 

Figure 4.16: Average sojourn time with minimum and maximum value 
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In figures 4.15 (a) and 4.15 (d), as explained above, after the learning phase a stable pattern emerges. 

During the learning phase we see that the average sojourn time fluctuates heavily. From figure 4.16 (a), 

we see that the maximum sojourn time goes up to 15 time units, which is almost three times the Nash 

value (5.4). In figure 4.16 (d), we observe the same: at time period 3 it peaks at 15.58 which is again 

more than three times the Nash value (4.88). After this phase, the system reaches a kind of steady state 

and the average sojourn time stabilizes around 5.46 (for 4.15 (a)) and 4.96 (for 4.15 (d)) respectively; 

these values are very close to the social optimum and Nash value. The slight fluctuation we see in 

sojourn time values are due to a few agents switching facilities. 

Figures 4.15 (b) and 4.15 (e) show the case where a few agents do not settle down and keep trying 

different facilities. We refer to this behavior as non-stable because we do not observe a stable pattern 

even if we run the simulation for a longer time. This is evident from the sojourn time graphs of figures 

4.16 (b) and 4.16 (e) where the average sojourn time keeps fluctuating. The average sojourn time values 

at steady state for 4.15 (b) and 4.15 (e) are 6.11 and 5.00 respectively.  

Finally, figures 4.15 (c) and 4.15 (f) portray the case when one facility is forgotten. In the example 

shown, facility 1 (black) is forgotten. Note that for the heterogeneous case the black facility has the 

lowest service rate of 3 agents per unit of time. The reasoning why a facility is forgotten is what we call 

a reputation effect due to information diffusion. For example, in figure 4.15 (c), at time period 5, 114 

agents show up at facility 1. This results in a high average sojourn time value for that facility, hence a 

bad reputation. Due to local interactions this information diffuses among the agents resulting in facility 

1 being avoided for periods 6 and 7 respectively. Finally, we see at period 9, facility 1 being used by all 

the 120 agents causing congestion at the facility and eventually forgotten completely. Note we use low 

behavioral parameter value (α = β = 0.1) in this example i.e. agents update their expectations relying 

heavily on recent experience.   
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In figure 4.15 (f) we see that 105 agents use facility 3 during time period 2. This is more than 72 

(equilibrium value) agents which resulted in a high sojourn time value as shown in figure 4.16 (f). 

Facility 3 was almost not used at time period 3. At period 3, facility 1 which has a low service rate was 

used by significantly more than 12 (equilibrium value) agents. This resulted in a very high sojourn time 

and bad reputation for facility 1. Even though facility 1 is used by a few agents the next few periods, 

the bad reputation at time period 3 resulted in the facility being forgotten completely after time period 

6. The average sojourn times in steady state are 7.81 and 5.43 time units respectively as shown in 

figures 4.15 (c) and 4.15 (f). These values are significantly higher than the Nash values of 5.4 and 4.88 

respectively. 

We have presented a few interesting results through figures 4.15 and 4.16 to show the potential 

behaviors of our model. The figures show how a simple self-organizing system based on local 

information is useful to study behavior in queuing systems. The next sections discuss the experimental 

approach. 

THE EXPERIMENT 

Herbert Simon (Simon, 1979) in his Nobel Prize acceptance speech emphasized the fact that the 

classic assumption of perfect rationality does not hold true. Economic models these days have moved 

away from the perfect rationality assumption. After Smith’s 1982 paper, the adoption of experimental 

methods to understand economic behavior gained momentum. Sterman (1987) talks about how 

experiments could be used to validate decision rules used in simulation models. He points to the fact 

that it is straightforward to model a real physical system, but understanding and representing decision 

rules for such systems is difficult. Sterman (1989), using a simulated production and distribution 

system (called the “Beer Distribution Game”), applies experimental methods to study macro dynamics 

from individual behavior. Rapoport et al. (2004) take a similar approach in the context of queuing. 

They design a non-cooperative n-person game to identify if customers’ individual decisions lead to 
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coordinated solutions. This again looks into individual behavior and how it influences and leads to 

macro dynamics. 

We adopt a similar approach to that of Sterman and Rapoport. The behavioral queuing model as 

described in the previous section is used to design a laboratory experiment (Friedman and Sunder, 

1994). In the simulation model, we used an adaptive expectation based decision rule. We showed 

through figures 4.10 and 4.11 how different collective behaviors could be observed. Individual decision 

making and its influence on the systems performance (i.e. average sojourn time of the system) was 

illustrated. The aim of this experimental approach is to collect experimental data to validate the 

decision rule as described previously. We try to answer the following questions through this 

experimental approach:  

1) How do customers adapt based on system behavior? 

This is an interesting question because it will help us to see how customers learn from the system that 

serves them, and how they use this information (i.e. regarding the state of the system) to their benefit. 

2) How does an individual customer influence the performance of the system? 

We would like to see how an individual human subject influences the entire system for good or bad, 

which in turn gives an idea regarding information diffusion. 

3) Do we see the same behavior as we observed in the simulated model? 

This question will help us validate our agent based framework. Through the simulation model we 

showed three common collective behaviors. We would like to see how the model behaves when a 

virtual agent is replaced by a human subject (instead of 120 virtual agents we will have a human subject 

and 119 virtual agents). 

4) What decision making strategy does the human subject adopt? 
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This question will help us validate the adaptive expectation based decision rule that we propose in the 

agent based framework. We would like to see if adaptive expectations are a good way to model human 

subjects’ decision making.  

5) Do structural and behavioral parameters influence the human subject’s decision making? 

Through this question we would like to see if some environments are more difficult to survive in than 

others. The structural properties define the system and we would like to see how subjects perceive this 

and react. Behavioral parameters define the importance agents give to their own information and to that 

of their neighbors’. This will help us understand which information agents use in order to make their 

decisions. And finally 

6) How are human subjects’ decisions influenced by the information available to them? 

This question also points to the importance of information and helps us to understand how subjects 

use the available information to their advantage.  

Experimental protocol 

The experiment is designed using the guidelines from experimental economics as suggested by Smith 

(1982) and Friedman and Sunder (1994). The human subjects for the experiment were selected from 

the University of Lausanne’s database, which includes students from finance, management, economics 

and engineering.  A total of 197 students were invited to take part in sixteen experimental treatments 

and each student could earn up to a maximum of 35 Swiss francs. The experiment was conducted in 

the informatics lab of the business school at the University of Lausanne and was supervised by two 

facilitators.   

Upon arrival, students were assigned personal computers and seated in such a way that there was no 

interaction with other students. Once seated the students were provided with a hard copy of experiment 
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instructions and a consent form, which should be signed before starting the experiment. A short 

introduction regarding the computer interface and the task was given.  

The experiment has been designed to study how customers choose a service facility (restaurants in our 

case) based on their experiences. The task for each subject is to make one decision each time period, i.e. 

choice of restaurant, and provide estimates of the waiting time (sojourn time) he/she would expect at 

each of the restaurants. At the start of the experiment initial estimates for each restaurant were 

provided. For the subsequent time periods subjects were provided with information regarding sojourn 

time at their chosen restaurant, their previous day’s expectations for the restaurants and the best 

performing virtual neighbors’ chosen restaurant and sojourn time. The subjects were asked to enter the 

following information using the interface each experimental time period: 1) choice of restaurant and 2) 

their expectations for the three restaurants. The interface and instructions used in the experiment are 

provided in the appendix of this paper. 

The reward for the subjects was based on their performance. Performance is measured based on their 

cumulative sojourn time achieved at the end of the experiment. Minimizing the cumulative sojourn 

time was the goal for the subjects. The subjects made decisions for 60 experimental periods and on an 

average completed the experiment in 60 minutes.  

Treatments 

The treatments explore the following: 

1) Compare the behavioral patterns observed during simulation with that of the experimental 

results. 

2) The influence of structural properties of the system on subjects’ decision making i.e. 

homogenous and heterogeneous service capacities. 

3) Finally, the effect of behavioral parameters α and β on subjects decision making. 
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The following paragraphs explain what the treatments are.  

Recall that in figure 4.15 we show three system level collective patterns that we observe while 

simulating. We have three treatments based on the observed collective behavior. 

(1) Stable pattern after the initial learning phase (naming convention S) 

(2) Non-stable pattern where the system does not settle down (naming convention NS), and  

(3) Stable pattern with a forgotten facility (naming convention F).  

In order to explore the effect of behavioral parameters we use the following three parameter values for 

our treatments:  

(1) α, β = 0.1 i.e. agents update their expectations fast, relying more on recent experience (naming 

convention 1). (2) α, β = 0.5 i.e. agents give equal weight to past expectations and recent experiences 

(naming convention 5), and (3) α, β = 0.9 i.e. inertia to recent experiences, relying more on past 

expectations (naming convention 9). 

Each system level collective pattern treatment can thus take one behavioral parameter value. We have 

nine treatments if we combine the collective pattern with that of the behavioral parameter values. We 

could not observe forgotten collective behavior with behavioral parameter value 0.9, hence we exclude 

this combination. We thus have eight treatments. 

Finally, we would like to understand the influence of structural properties of the system on subjects’ 

decision making. Hence we have homogenous service capacity and heterogeneous capacity treatments.  

For each of these treatments we have eight treatments as previously described, resulting in a total of 16 

treatments. We refer to the homogenous service capacity treatments as group E treatments and 

heterogeneous capacity treatments as group D treatments. Tables 4.8, 4.9 and 4.10 summarize the 

condition for each treatment. 
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The naming convention is as follows. For example, ES5, E stands for equal/homogenous service 

capacity, S stands for stable pattern as observed while simulating without a human subject, and finally, 

5 stands for the behavioral parameter value (α=β=0.5) that is used in this treatment. In ENS5, NS 

stands for the case where we observe a non-stable pattern. F in EF5 is the case where a facility is 

forgotten. The above mentioned naming convention is also used for heterogeneous capacity, in these 

treatments letter D stands for different/heterogeneous service capacity. 

Treatment Service capacity 
Simulation 
Behavior 

Alpha and beta values 

ES5 5,5,5 Stable pattern 0.5 

ES9 5,5,5 Stable pattern 0.9 

ES1 5,5,5 Stable pattern 0.1 

ENS5 5,5,5 Non-stable pattern 0.5 

ENS9 5,5,5 Non-stable pattern 0.9 

ENS1 5,5,5 Non-stable pattern 0.1 

EF5 5,5,5 Forgotten facility 0.5 

EF1 5,5,5 Forgotten facility 0.1 

 

Table 4.8: Treatment conditions for homogenous service capacities 
 

 

Treatment Service capacity 
Simulation 
Behavior 

Alpha and beta values 

DS5 3,5,7 Stable pattern 0.5 

DS9 3,5,7 Stable pattern 0.9 

DS1 3,5,7 Stable pattern 0.1 

DNS5 3,5,7 Non-stable pattern 0.5 

DNS9 3,5,7 Non-stable pattern 0.9 

DNS1 3,5,7 Non-stable pattern 0.1 

DF5 3,5,7 Forgotten facility 0.5 

DF1 3,5,7 Forgotten facility 0.1 

 
Table 4.9: Treatment conditions for heterogeneous service capacities 
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Alpha & beta 
values 

Interpretation 

0.5 equal weight given to both past expectation and recent experience 

0.1 
agents expectations updated very fast i.e. relying more on recent 

experience 

0.9 little emphasis on recent experience 
 

Table 4.10: Behavioral parameter values interpretations 
 

RESULTS 

We start discussing the results of the experiments by first looking at individual behavior and the 

choices of the human subjects. We then discuss the aggregated results, and finally make a comparison 

between treatments. 

The panels in figure 4.17 show a selection of collective behaviors that we observed. The panel shows 

the influence of a human subject’s decisions on the overall behavior of the system. As in figure 4.15, we 

present examples for the three typical patterns that we observed. It is to be noted that agent 1 is the 

human subject. 

Figures 4.17 (a, b and c) are for homogenous service rates and figures 4.17 (d, e and f) for 

heterogeneous service rates. Figures 4.15 and 4.17 can be compared, note that virtual agent 1 in figure 

4.15 is replaced by a human subject. Figure 4.17 (a) follows the same pattern as figure 4.15 (a): after 

the learning phase we see a stable pattern emerging. At period 8 facility 2 (grey) is chosen by all the 

agents, thus causing a very high sojourn time for this facility. The facility is avoided for the next two 

time periods due to its bad reputation. At period 11 the human subjects decide to choose facility 2, this 

decision results in the availability of local information regarding facility 2 for the neighboring agents 

who thus return to it. 
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(a) ES1 subject 8          (d) DS1 subject 3 
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(b) ENS1 subject 11          (e) DNS1 subject 10 
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(c) EF1 subject 2          (f) DF1 subject 8 

Figure 4.17: Evolution of players choice of service facility for homogenous (a, b, c) and heterogeneous 

(d, e, f) service rates. 
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Another interesting result is observed in figure 4.17 (d). Comparing the simulation result as illustrated 

in figure 4.15 (d), we expected just a stable collective pattern. What we see is that facility 1 is forgotten 

in figure 4.17 (d). Facility 1 is the one with the lowest service capacity (µ=3) hence, if too many agents 

use this facility it will result in a high sojourn time. We see from figure 4.17 (d) that the human subject 

used facility 1 only once, during the entire 60 days experimental period i.e. at period 3. After period 

28, due to congestion at facility 1, the virtual agents decide to abandon this facility. At period 32 all 

the agents and the human subject throng facility 3, resulting in a very high sojourn time. The decision 

of all the agents to use facility 3 (resulting in extremely high sojourn time) at period 32 brought back 

facility 1 at period 33. The fact that facility 1 has the lowest service capacity, and 35 agents (optimal 

value =12) used this facility implies that at period 34 facility 1 is permanently forgotten due to the 

past experiences. 

In figure 4.17 (c) at period 7 all the agents choose facility 3 resulting in a very high sojourn time. This 

bad experience resulted in the facility being avoided by the 119 virtual agents at period 8. But because 

the human subject decided to choose facility 3 in period 8, it was not forgotten. We see the same 

behavior in figures 4.17 (e) in period 14, and 4.17 (f) in period 11 where the human subjects’ decision 

to use facility 1 made the information regarding facility 1 available to the virtual agents. 

Figures 4.18 and 4.19 portray individual decision making for group E and group D treatments. Recall 

that we refer to homogenous service capacity treatments as group E treatments and heterogeneous 

service capacity treatments as group D treatments. In these figures we compare virtual agent 1’s (of the 

simulation) decision making with that of the human subject (who takes the role of the virtual agent 1 

in the experiment). Note that we present selective results to highlight human subjects’ decision making, 

and the influence of their decisions on the overall system performance.  
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(a)        (d) 

 

(b)         (e) 

  

(c)        (f) 

Figure 4.18: Individual decision making for homogenous service capacity treatments virtual agent (a, b, 

c) vs human subject (d, e,f). 
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(a)          (d) 

  

(b)           (e) 

  

(c)              (f) 

Figure 4.19: Individual decision making for heterogenous service capacity treatments virtual agent (a, b, 

c) vs human subject (d, e,f). 

A first glance at figures 4.18 and 4.19 shows how a human subject introduces variability into the 

system. Even though subjects might be following a particular strategy and be better off at that, subjects 

sometimes choose randomly. The influence of the human subjects’ decisions’ on the overall collective 

behavior was explained in the previous sections and shown in figure 4.17. In figure 4.18 (d) we see that 
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subject 8 chose the same facility as the virtual agent for the first three periods. Subject 8 uses facility 2 

most of the time except for 7 time periods where she tries out facilities 1 and 3. Subject 8’s average 

sojourn time (4.6) i.e. her performance was much better than the overall system performance (6.63), 

simulated system performance (6.35) and the Nash equilibrium value (5.4). Subject 11 of treatment 

ENS1 showed switching behavior. This subject’s performance (5.66) was slightly better than the 

overall system (6.06) but higher than the Nash equilibrium value (5.4). Finally, subject 2 of treatment 

EF1 chooses facility 2 until period 6, facility 3 from period 7 until 12 and facility 1 from 13 to 24. 

She then moves back to facility 2, but after period 38 she switches between the facilities.  

In figure 4.19 (d) subject 3 of DS1 treatment sticks mostly to facility 2 from period 11 to 31, similar 

to virtual agent 1 of the simulation. The subject then switches between facilities 2 and 3, neglecting 

facility 1. Note that facility 1 has the lowest service capacity (3) hence subject 3 did not find it 

appealing. Subject 10 of treatment DNS1 in figure 4.19 (e) uses facility 1 most of the time. Even 

though facility 1 has the lowest service capacity, this subject chose facility 1 and performed well. The 

subject performed (4.83) well below the overall system performance (5.4) and a little below the Nash 

equilibrium value (4.88). Finally, subject 8 of treatment DF1 switches between the facilities and does 

not settle down.  

Tables 4.12 and 4.13 give an overview of the total number of subjects in each treatment and the 

observed collective behavior. The tables also compare the performance of the system for simulated and 

experimental results. As explained in the agent based queuing model section, simulating the model we 

observed three distinct system level collective patterns: Pattern ‘S’ wherein the agents follow a kind of 

stable pattern after the learning phase; pattern ‘C’ where the agents do not stabilize /settle down and 

finally pattern ‘F’ where a facility is forgotten. Table 4.11 defines the variables that are used in tables 

4.12 and 4.13 respectively. 
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Variable Definition 

W_S_Exp_Stable 
Average of subjects average sojourn time of the system in the experiment for 

whom stable pattern was observed 

W_S_Exp_Non-stable 
Average of subjects average sojourn time of the system in the experiment for 

whom non-stable pattern was observed 

W_S_Exp_Forgotten facility 
Average of subjects average sojourn time of the system in the experiment for 

whom forgotten facility pattern was observed 

W_S_Sim Average sojourn time of the system, simulated results 

 
 

Table 4.11: Notations for variables in tables 4.12 and 4.13. 
 
 

  
ES5 ES9 ES1 ENS5 ENS9 ENS1 EF5 EF1 

Total subjects 12 12 12 12 13 12 12 12 

Stable 
1 

(8%) 
0 

2 
(17%) 

0 0 
2 

(17%) 
2 

(17%) 
3 

(25%) 

Non-stable 
11 

(92%) 
12 

(100%) 
10 

(83%) 
12 

(100%) 
13 

(100%) 
10 

(83%) 
10 

(83%) 
9 

(75%) 

Forgotten facility 0 0 0 0 0 0 0 0 

 

W_S_Exp_Stable 5.8  6.46   6.35 5.99 6.33 

W_S_Exp_Non-stable 6.06 5.68 6.19 6.03 5.72 6.12 6.21 6.29 

W_S_Exp_Forgotten facility         

W_S_Sim 6.08 5.71 6.35 5.93 5.67 6.08 8.21 8.44 

 

Table 4.12: Human subjects and the observed behavioral patterns for group E treatments. 

Table 4.12 shows the results for group E treatments. We start with the ‘S’ case treatments. It can be 

seen that out of the 36 subjects in these treatments, we observed a relatively stable pattern at the system 

level for only three subjects. For the ‘NS’ case treatments, as expected we observed non-stable pattern at 

the system level for 35 subjects of the total 37 subjects. Finally, for the ‘F’ treatments we observed non-

stable system level pattern for a vast majority of the subjects. The lower part of the table shows the 

average system performance of the subjects for each treatment. We see that the performance is better 

than the simulated results for most of the treatments except ENS5, ENS9 and ENS1. Note that the 
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performance of the system in the ‘F’ treatments is significantly better than the simulated results. We 

can conclude by interpreting that the tendency of the human subjects to try a facility at some random 

point of time during the experiment does not allow the system to stabilize, and makes it less likely to 

forget a facility. This shows not only the influence of the human subjects but also the effect of 

information diffusion among agents.  

Table 4.13 shows the group D treatment results. For the ‘S’ treatments, for a majority of the subjects 

we observed a non-stable pattern at the system level. For treatment DS1 in table 4.13 we see one 

subject with a forgotten facility. This is subject 3 as explained previously through figure 4.17 (d). We 

expected a stable pattern but due subject 3’s decisions a facility is forgotten. All the subjects in this 

treatment performed better than the system, and subject 7 in particular had an average sojourn time 

value of 4.14 which was well below the Nash equilibrium value of 4.88. In the ‘NS’ treatments, we 

observed a stable pattern for only four subjects of the total of 37 subjects. Finally, in the ‘F’ treatments 

we observed non-stable pattern in 22 of the total 24 subjects. The performance of the subjects were 

quite close to the simulated results for the ‘S’ treatments except subject 3 of treatment DS1. For the 

‘NS’ treatments performance was also quite close to the simulated results except treatment DNS5. The 

subjects of treatment DNS5 performed significantly better than the simulated results. Finally, as 

expected subjects for ‘F’ treatments performed better than the simulated results. 

Tables 4.12 and 4.13 support the conclusion of figure 4.17, that human subject have a significant 

influence on the evolution of the overall collective pattern of the system. Intuitively, human subjects 

can be considered as random elements in the agent based model. Most of the time we see a non-stable 

pattern due to the curious nature of the human subjects. Even though they might be doing well at the 

current facility, they explore the other facilities, and only in rare cases like in figure 4.17 (d) is a facility 

forgotten. Also we could say that even though they might be following a particular strategy and be 
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better off at that, subjects sometimes choose randomly (later on we will discuss this randomness the 

subjects introduce).  

Through subject 8 of treatment ES1 i.e. figure 4.17 (a), we show how information diffuses. Facility 2 

was forgotten after period 8, but because the human subject chose the facility in period 11, new 

information regarding facility 2 was available for the other agents. Summarizing, the above sections 

show the influence of a human agent on the systems’ overall performance (i.e. how a single subject can 

influence the macro behavior), and how information diffuses among agents in a simple agent based 

queuing model with local interactions. 

 DS5 DS9 DS1 DNS5 DNS9 DNS1 DF5 DF1 

Total subjects 13 13 13 13 12 12 12 12 

Stable 0 0 
1 

(8%) 
1 

(8%) 
0 

3 
(25%) 

0 
2 

(17%) 

Non-stable 
13 

(100%) 
13 

(100%) 
11 

(85%) 
12 

(92%) 
12 

(100%) 
9 

(75%) 
12 

(100%) 
10 

(83%) 

Forgotten facility 0 0 
1 

(8%) 
0 0 0 0 0 

 

W_S_Exp_Stable   5.2 5.07  5.3  5.42 

W_S_Exp_Non-stable 5.08 5.02 5.32 5.09 5.08 5.33 5.24 5.43 

W_S_Exp_Forgotten facility   5.61      

W_S_Sim 5.06 5.04 5.26 5.28 4.98 5.42 5.58 5.64 

 

Table 4.13: Human subjects and the observed behavioral patterns for group D treatments. 

We now turn to the aggregated results of the treatments. In figures 4.20 (a) and 4.21 (a) we compare 

the average sojourn time of the system (experimental and simulated) with the equilibrium values for 

homogenous and heterogeneous service capacity treatment groups. Figures 4.20 (b) and 4.21 (b) 

compare the average of the subjects’ sojourn time (experimental), the average of the corresponding 

virtual agents’ sojourn time in the simulation, and the equilibrium values for group E and D treatments. 
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Note that the average sojourn time is calculated for the last 25 periods. We calculate for the last 25 

periods because during simulation we observed that the system reaches steady state during this period. 

Table 4.14 defines the variables that are used in figures 4.20 and 4.21. Figures 4.20 and 4.21 are an 

add-on that corroborates to the discussion we had previously. 

 Variable Definition 

Overall 
System 

W_SS_S(25)_Exp 
Average sojourn time of the system for the last 25 time periods with 

human subjects 

W_SS_S(25)_Sim 
Average sojourn time of the system for the last 25 time periods without 

human subjects 

Individual W_ SS_P(25)_Exp 
Average sojourn time of the subject for the last 25 time periods with 

human subjects 

Simulation W_ SS_VA(25)_Sim Average sojourn time of virtual agent 1 for the last 25 time periods 
 

Table 4.14: Notations for variables in figures 4.20 and 4.21 

At the system level in both the groups, we see that performance is quite close to the Nash equilibrium 

except in a few cases, but at the individual level the performance was better than the equilibrium value 

in many treatments. The human subjects performed better than the virtual agent in most of the 

treatments.  

In the group E treatments at the system level (figure 4.20 (a)) the experimental results were better than 

the simulated results for treatments ENS5, ENS1, EF5 and EF1. The performance for treatments EF5 

and EF1 (experiment) were considerably better because they are the case where a facility is forgotten in 

the simulation. As explained earlier, human subjects introduce randomness, hence the chances of 

forgetting a facility are very low. The results of treatments ES5, ES9 and ES1 were as expected. In 

these treatments the simulated results are slightly better than the experimental results. Note that these 

treatments represent the stable collective pattern. The human subjects’ decision making resulted in the 

system taking a longer time to stabilize which resulted in a slightly higher average sojourn time. At the 

individual level (figure 4.20 (b)) in many treatments the subjects’ performance were better than the 

equilibrium and virtual agents (simulated) performance. The subjects’ mindset was such that their goal 
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is to maximize their earning through the experiment. The decision they make might be good for them, 

but for the overall system it might not be good.  

The aim of the group D treatments was to see how subjects perceive information regarding the 

structure of the system i.e. heterogeneous service capacity. We do not see major differences in the 

aggregated results (figure 4.21(a)) for the experiment and simulation results. The significant differences 

we see are for treatments DF5 and DF1. This is a surprising result because we expected decision 

making to be more difficult for the heterogeneous capacity treatments. In most of the cases, 

performance was close to the simulated model, and we observed relatively rational behavior from the 

subjects. At the individual level (figure 4.21(b)) we see that the human subjects’ performance is better 

than the virtual agents. The average performance of subjects in treatment DS9 was better than the 

virtual agent and the equilibrium value. 

 

 

 

Figure 4.20 (a): Experimental (Exp) and simulated (Sim) average sojourn time in steady state for group 

E treatments. 
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Figure 4.20 (b): Experimental (Exp) and simulated (Sim) average sojourn time in steady state for group 

E treatments. 

 

 

 

Figure 4.21(a): Experimental (Exp) and simulated (Sim) average sojourn time in steady state for group 

D treatments. 
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Figure 4.21(b): Experimental (Exp) and simulated (Sim) average sojourn time in steady state for group 

D treatments. 

 

We next compare the outcomes of the various treatments by using the Wilcoxon Rank-sum test. The 

Wilcoxon Rank-Sum test is a non-parametric statistical test to compare two independent samples. This 

test does not require that the populations have normal distributions. We use this test because i) the 

sample size for each treatment is small and ii) we do not have information regarding distribution of 

data. Tables 4.15 and 4.16 show the corresponding p-values for groups E and D respectively. Recall 

that we refer to homogenous and heterogeneous service capacity treatments as group E and group D 

treatments respectively. 

We did not expect to see significant differences in group E, ‘S’ treatments, except for the treatments 

which showed non-stable and forgotten facility collective behavioral patterns. Considering a 0.05 

significance level, from the p-values of table 4.15, we can conclude that average sojourn time in steady 

state for treatment ENS1 is on an average significantly different from treatments ES5, ENS5 and EF1. 
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Group E 

Col Mean  - 
Row Mean P-

Values 
ES5 ES9 ES1 ENS5 ENS9 ENS1 EF5 

ES9 0.7508       

ES1 0.0885 0.8174      

ENS5 0.8852 0.5443 0.0120*     

ENS9 0.1027 0.3841 0.3409 0.0605    

ENS1 0.0153* 0.3262 0.1331 0.0022* 0.9349   

EF5 0.1746 0.7508 0.908 0.1058 0.4146 0.1937  

EF1 0.7508 0.7728 0.1189 0.7508 0.1573 0.0262* 0.4024 

 

Table 4.15: P-values of Wilcoxon Rank-Sum test for the average sojourn time in steady state of 

subjects for group E treatments. 

 

The significant difference between treatments ENS1 and ENS5 is evidence to the effect of behavioral 

parameters. Recall that 1 and 5 refers to behavioral parameter values of 0.1 and 0.5 respectively. ENS1 

and ENS5 have similar structural properties except that their behavioral parameters are different. The 

average sojourn time in steady state for subjects in treatment ENS1 (5.07) is lower than that of ENS5 

(5.46) as shown in figure 4.20 (b). In this case giving more weight to current experience resulted in 

better performance than giving equal weight.  The significant difference we see between treatments 

ENS1 and EF1 can be attributed to the influence of the initial conditions on the performance. These 

two treatments have similar behavioral parameter values, the only difference being the seed used to 

obtain the collective behavioral pattern (i.e. non-stable (ENS1) and forgotten facility (EF1)).  The 

significant difference observed between the treatment pairs ENS5 (vs) ES1, and ENS1 (vs) ES5 is that 

they have different behavioral parameter values and initial conditions. In the case of ENS5 and ES1, 

the average sojourn time in steady state for subjects in treatment ES1 (5.26) is lower than that of 

ENS5 (5.46). In this case it means relying more on current experience resulted in better performance. 
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The same can be said about the significant difference observed between treatments ENS1 and ES5. 

ENS1’s average sojourn time in steady state for subjects (5.07) is lower than ES5’s (5.36).   

Figure 4.22 uses a box and whisker plot to show the distribution of average sojourn time in steady state 

of subjects for group E treatments. The box plot acts as an add-on to the Wilcoxon Rank-sum test to 

show the significant difference we observed between a few treatments. There are three outliers in the 

box plot. The outlier in treatment ES5 is subject 12 who earned the maximum pay-off among all the 

subjects in the treatment (CHF 30). The average sojourn time of subject 12 (4.42) was well below the 

average of all subjects in the treatment (5.36).  The outlier in treatment EF1 is subject 5, this subject’s 

performance was also well below the treatment’s average and he also earned the maximum pay-off 

among all the subjects in the treatment (CHF 30). Unlike the other two outliers, the outlier (subject 9) 

in treatment ENS5 did not earn the maximum pay-off.  

 

 

 

 

 

 

 

 

 

Figure 4.22: Box plot for the average sojourn time in steady state of subjects for group E treatments. 
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Group D 

Col Mean  - 
Row Mean P-

Values 
DS5 DS9 DS1 DNS5 DNS9 DNS1 DF5 

DS9 0.0009*       

DS1 0.0148 0.1580      

DNS5 0.6240 0.0044* 0.0426*     

DNS9 0.8695 0.0016* 0.0192* 0.7424    

DNS1 0.0008* 0.9783 0.3549 0.0043* 0.0013*   

DF5 0.0337 0.1345 0.5135 0.1142 0.0493* 0.1841  

DF1 0.0077* 0.6051 0.5135 0.0223* 0.0110* 0.7508 0.2479 

 

Table 4.16: P-values of Wilcoxon Rank-Sum test for the average sojourn time in steady state of 

subjects for group D treatments. 

Table 4.16 shows the p-values for group D treatments. We did not expect to see a significant 

difference within the same behavioral pattern (i.e. stable pattern). Treatment DS5 was found to be 

significantly different from treatments DS9, DNS1, DF5 and DF1. The average sojourn time in steady 

state for subjects in treatment DS5 (4.97) is significantly higher than the average sojourn time in steady 

state for subjects in treatments DS9 (4.57) and DS1 (4.58). We used the same initial conditions for 

DS5 and DS1 treatments; hence we can conclude that this significant difference is due to the 

behavioral parameters. Also we can say that in this case relying more on current experience resulted in 

better performance. DS5 (4.97) was also significantly different from treatments DNS1 (4.61) and 

DF1 (4.62). The obvious reason for this significant difference is due to the effect of initial conditions 

and also the effect of behavioral parameters. Overall, we can say that extreme behavioral parameter 

values gave better results. 

Treatment DS9 is significantly different from treatments DNS5 and DNS9. The average sojourn time 

at steady state for subjects in treatment DS9 (4.57) is lower than that of DNS9 (4.85). This difference 
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is obviously due to initial conditions as the behavioral parameters value are the same. Also the average 

sojourn time in steady state for subjects in treatment DS9 (4.57) is significantly different from DNS5 

(4.87).  We also see, on average, significant differences in the average sojourn time in steady state for 

subjects for the following treatments: DS1 (4.58) significantly different from DNS5 (4.87) and DNS9 

(4.85), DNS5 (4.87) significantly different from DNS1 (4.61) and DF1 (4.62), and finally, DNS9 

(4.85) significantly different from DNS1 (4.61), DF5 (4.77) and DF1(4.62). In most of the cases the 

difference we observe is because of the seed (initial conditions) used to generate the collective 

behavioral pattern. Also another observation is that, using a very low behavioral parameter value (0.1) 

resulted in better performance.  

 

 

 

 

 

 

 

 

Figure 4.23: Box plot for the average sojourn time in steady state of subjects for group D treatments. 

The box plot of figure 4.23 show the distribution of average sojourn times in steady state for subjects 

from group D treatments. The plot corroborates the significant differences we observed in table 4.9. 

We have five outliers in the box plot. The outlier in treatment DS5 is subject 10 with an average 

sojourn time of 4.75 which is well below the average value of 4.97. The outlier in treatment DS1 is the 
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worst performing subject among all the treatments. Subject 3 earned only CHF 15 while the average 

amount earned by the subjects in this group was CHF 28.75. Subject 3’s spatial temporal graph was 

explained in the previous section (Recall figure 4.12(d) where facility 1 was forgotten). Outlier in 

DNS5 is subject 13. Finally, the two outliers in treatment DNS1 corresponds to subjects 3 and 10. 

The average sojourn time in steady state of these subjects were well below the average sojourn time 

value among all subjects (4.61) in the treatment.  

 Code Strategies 

S1 Following the best Neighbor 

S2 Choosing the best restaurant the agent knows 

S3 Choosing the worst restaurant the agent knows 

S4 Choosing the restaurant which the agent doesn't know or the earliest chosen restaurant 

S5 Choosing the restaurant which the agent doesn't know or the last chosen restaurant 

S6 Always choose 1 

S7 Always choose 2 

S8 Always choose 3 

S9 Alternate between 1 and 2 

S10 Alternate between 1 and 3 

S11 Alternate between 2 and 3 

S12 Alternate between 3 and 2 

S13 Alternate between 3 and 1 

S14 Alternate between 2 and 1 

S15 Moving between the 3 restaurants (1, 2, 3) 

S16 Moving between the 3 restaurants (1, 3, 2) 

S17 Moving between the 3 restaurants (3, 2, 1) 

S18 Moving between the 3 restaurants (3, 1, 2) 

S19 Moving between the 3 restaurants (2, 3, 1) 

S20 Moving between the 3 restaurants (2, 1, 3) 

S21 Moving between the 3 restaurants (1,2,3,2,1,2,3) 

S22 Moving between the 3 restaurants (2,3,2,1,2,3,2) 

S23 Moving between the 3 restaurants (3,2,1,2,3,2,1) 

S24 Moving between the 3 restaurants (1,2,3,3,2,1,1,2,3) 

S25 Moving between the 3 restaurants (2,3,3,2,1,1,2,3,3) 

S26 Moving between the 3 restaurants (3,3,2,1,1,2,3,3,2) 

S27 
Adaptive Expectations strategy by choosing the restaurant with lowest expected waiting 
time  

S28 
Adaptive Expectations strategy by choosing the restaurant with highest expected waiting 
time 

Table 4.17: Collection of strategies that could be used to choose a restaurant 
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Next we consider a collection of strategies (as shown in table 4.17) that could be adopted to choose a 

restaurant/facility. These collections of strategies are not exhaustive. The following approach is taken 

to extract decision making strategies adopted by subjects in the experiment. Using excel we simulated 

the model using each of the strategies of table 4.17 as the decision rule for choosing the restaurant. For 

example strategy S1, the restaurant chosen by the quickest neighbor is always chosen. No other 

information is used. In a similar fashion the strategy S6, here, restaurant 1 is chosen all the time, 

ignoring all other information. We then compare the choice of subjects with that of the simulated 

model (i.e. decision rule based on strategies presented in table 4.17). The result of this approach is 

portrayed in table 4.18. 

From table 4.18 we can say that the strategies subjects adopted can be modeled using adaptive 

expectations. In the agent based queuing model described earlier, we used adaptive expectations based 

decision rules (choosing the facility with the minimum expected value). S27 accounted for 47% of 

subjects in group E treatments and 56% of subjects in group D treatments. This is the same strategy 

that was used in the simulation model, thus supporting the case that an adaptive expectations based 

decision rule is a good way to represent human decision making. Also, S28, an adaptive expectation 

based strategy, but choosing the facility with the maximum expected value is quite common among 

group E treatments (33% of subjects). We also see that around 20% of subjects adopted other 

strategies in group E treatments and 25% in group D treatments. Other strategies include following the 

best performing neighbor, choosing the worst facility or just following facility 1 etc.
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Strategy 

Group E treatments  Group D treatments  

% of 

Players 

Matching percentage 
Cumulative waiting 

time (Score) 
% of 

Players 

Matching percentage 
Cumulative waiting 

time (Score) 

Interval Median Interval Median Interval Median Interval Median 

S27 47% [48%, 98%] 68% [276, 374] 332 56% [48%, 100%] 64% [238, 335] 295 

S28 33% [46%, 92%] 62% [271, 342] 314 19% [44%, 74%] 60% [264, 321] 278 

Others 20% [46%, 96%] 62% [277, 358] 309 25% [52%, 100%] 70% [249, 331] 286 

 

Table 4.18: Matching strategies with that of human subjects’ strategies. 

 

S27      Adaptive expectations by choosing the restaurant with the lowest expected waiting time. 

S28      Adaptive expectations by choosing facility with the highest expected waiting time. 

Others: 

S1 Following the best Neighbour 

S2 Choosing the best restaurant according to the information he knows (his previous experience and that of their best performing neighbour) 

S3 Choosing the worst restaurant according to the information he knows 

S4 Joining the restaurant which he doesn't know or the oldest which he joined 

S5 Joining the restaurant which he doesn't know or the last which he joined 

S6 Always choose restaurant 1 
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Through table 4.18 we show that adaptive expectations based strategies are a good way to represent 

human decision making, but may not be the best approach. The results also point to the importance of 

feedback i.e. information regarding the state of the system or experiences at facilities. Adaptive 

expectations’ based rules are basically feedback models wherein the future state is dependent on past 

states. We can link feedback to customer satisfaction, i.e. return of customers depends on their past 

experiences.  

For adaptive expectations based decision rules, we need to estimate the coefficient of expectations. 

Table 4.19 shows these coefficients. We used the evolutionary solver in excel to estimate the 

combination of behavioral coefficients (α and β) for subjects who use strategies S27 and S28 across 

treatment groups. In table 4.19 (a) we show the distribution of behavioral parameter values in group E 

treatments for strategy S27. 16 subjects have an α value between 0.1 and 0.9 and 19 subjects have a β 

value between 0.1 and 0.9. This suggests that most of the behavioral parameter values lie within this 

range. It is to be noted that there exist values very close 0.1 and 0.9 in this range. We then looked at 

individual performance i.e. subjects who earned the most (CHF 30 and above) among this set of 

subjects. Only 4 subjects performed extremely well. Subject 8 in treatment ES1, subject 4 in ENS1, 

and subjects 7 and 9 in EF5 had performed extremely well with strategy S27. For these subjects a high 

α and β resulted in good performance, except for subject 9 (treatment EF5) whose values were 0.03 

and 0.4. Subjects 4 and 13 in ENS9 were the worst earning just CHF 15. For group D treatments in 

table 4.19 (b) subject 10 in DNS5, subjects 2 and 7 in DNS1, subjects 7 and 11 in DF5 and subjects 

4 and 6 in DF1 were the best performers. Subjects in treatment DF5 were the best in group D 

treatments earning an average of CHF 29. Here also we saw α and β values to be greater than 0.7. We 

can thus conclude that even though alpha and beta values for many subjects lie between 0.1 and 0.9, 

this need not give the best performance.
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Group E            Group D 

              S27 S27 

α 

β 
  

α 

β 
 

 
<= 0.1 0.1-0.9 >= 0.9 

   
<=0.1 0.1-0.9 >=0.9 

 
<= 0.1 0 10 1 11 

 
<=0.1 1 5 0 6 

0.1-0.9 2 8 6 16 
 

0.1-0.9 3 24 7 34 

>= 0.9 1 1 3 5 
 

>=0.9 1 10 1 12 

  
3 19 10 

    
5 39 8 

 
  

 (a) (b) 

                 S28 S28 

α 

β 
  

α 

β 
 

 
<= 0.1 0.1-0.9 >= 0.9 

   
<= 0.1 0.1-0.9 >= 0.9 

 
<= 0.1 2 1 0 3 

 
<= 0.1 1 0 0 1 

0.1-0.9 7 9 0 16 
 

0.1-0.9 3 11 1 15 

>= 0.9 0 1 7 8 
 

>= 0.9 0 5 13 18 

  
9 11 7 

    
4 16 14 

 
 

    (c) (d) 

  

Table 4.19: Human subjects distribution across various alpha and beta values for strategies S27 and S28 among group treatments 
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Now we look at tables 4.19 (c and d) to analyze the distribution of behavioral parameters for strategy 

S28. For group E treatments we see from table 4.19 (c) that 16 subjects have α value between 0.1 and 

0.9 whereas β values are more or less evenly spread. We then looked at individual performance i.e. 

subjects who earned the most (CHF 30 and above) among these subjects. 8 subjects performed 

extremely well in this group. The beta values for all the subjects were less than 0.5 and for three 

subjects less than 0.05. The alpha values had a range of 0.01 to 0.8. For the group D treatments in 

table 4.19 (d) there were 15 subjects who performed extremely well i.e. earned a pay-off greater than 

CHF 30. Most of the alpha and beta values were high except for a few subjects.  

We can conclude that among the best performing group of subjects, high alpha (greater than 0.8) and 

beta values ranging between 0.6 and 0.9 were quite common. In section 4.1 through figure 4.6 (page 

41) we pointed out that relatively higher α value and medium β value results in a better performance. 

This analysis makes this claim more robust.  

CONCLUSION 

In this paper we have shown how a simple experimental set up can be used to validate a behavioral 

queuing model. We first introduce the behavioral queuing framework. Simulation indicates that at the 

aggregate level the system might look stable but, at the individual level, it might not be the case. The 

individual behavior is a useful level at which we can understand how agents learn about the system, 

update their information and thus adapt.  

Then, human subjects take the role of a virtual agent in an experiment, and choose a service facility 

every time period based on past experience and local information. We see from the results that human 

subjects who take the role of virtual agents have a significant influence on the collective behavior. We 

interpret that human subjects introduce randomness, hence not forgetting a facility in most of the 

situations. Only in rare cases is a facility forgotten. Looking at the aggregated results we see that 
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generally system level performance is quite bad compared to the equilibrium value, but many a times at 

the individual level, subjects performed better than the Nash equilibrium. This answers the question 

that we raised regarding the effect of a single human subject on the performance of the system and how 

subjects adapt based on the behavior of the system. We also saw that the collective patterns we observe 

in the experiment are comparable to that of the simulated results.   

Through the Wilcoxon test we explain why the treatments have significant differences. We show the 

influence of initial conditions and behavioral parameters on the average sojourn time of the subjects 

and also on the subjects’ decision making. We then illustrate that an adaptive expectations based 

strategies are a good way to represent human decision making, but may not be the best as far as 

performance is concerned. This validates the decision rule (based on adaptive expectations) that we 

proposed in the simulation model. Finally, we show the distribution of behavioral parameters alpha and 

beta for the adaptive expectations based strategies. For the adaptive expectation strategy where the 

restaurant is chosen with the lowest expected waiting time, alpha and beta values greater than 0.7 

resulted in better performance. High alpha value (greater than 0.8) and beta values between 0.6 and 0.9 

were common in adaptive expectation strategy where the restaurant with the highest expected waiting 

time is chosen. This result corroborates with the findings of the first paper. 

As a part of future work, further exploration of experimental data might give a better idea regarding 

how subjects perceive information. We had provided them with a questionnaire concerning what 

information they used to make decisions. We can use the answers to understand how the subjects 

process information and what information they use for decision making.  
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APPENDIX 

 

A: Computer Interface 
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B: Subject Instructions (Base case treatment ES5) 

“A tale of three restaurants” 

Instructions for the participants 

NOTE: PLEASE DO NOT TOUCH THE COMPUTER BEFORE BEING ASKED TO DO SO 

 

Welcome to the experiment on decision making in a service industry. The instructions for this 

experiment are simple. If you follow them carefully and make good decisions, you may earn up to CHF 

35 (the money will be credited to your bank account). You are free to halt the experiment at any time 

without notice. However, if you do not pursue the experiment until the end, you will not receive any 

payment. This experiment is funded by the Swiss National Science Foundation (Grant 

100014_126584). If you have any questions before or during the experiment, please feel free to raise 

your hand and a monitor will come to assist you. 

We assure you that the data we collect during the course of this experiment will be held in strict 

confidence. Anonymity is guaranteed; information will not be reported in any manner or form that 

would allow associating names with individual players. 

Description of Experiment 

This experiment has been designed to study how individual members of a population choose a service 

facility based upon their expectations and past experiences. Below is a short explanation of the system 

you will interact with during the experiment. It is a relatively simple system where you have to make 

one decision each time period (the choice of a service facility) and provide estimates of the time you 

would expect to spend at each of the service facilities.  

 

102



 

 

The situation  

You are a student at the university and everyday during lunch time, i.e. at 12:00, you have three 

restaurants (the service providers) to choose from for lunch. The three restaurants have similar pricing 

and offer food of comparable quality. They are located in three different parts of the campus, at equal 

distance from you. Consequently, you must make your choice before observing the crowd at the 

different restaurants. 

 In the experiment, you will be playing with virtual customers who have the same task, i.e., to decide 

which restaurant to join every day. Thus you will be queuing with some of them in your chosen 

restaurant. Once you decide which restaurant to use, you cannot change your decision, you must wait 

for service. 

The Waiting time is the time between the moment you arrive and the moment you receive your meal. 

This time depends on how many people (virtual customers and you) have chosen that restaurant and 

the service capacity of the restaurant.  

The Service Capacity is the number of customers a restaurant can, on average, service per minute. The 

three facilities have the same service capacity (5 customers/ minute), which remains constant 

throughout the experiment. 

Your Expected waiting time is time that you expect to spend at the different restaurants. At the start of 

the experiment initial estimates for each restaurant will be provided.   

Information available: each period you will be informed of the waiting time at your chosen facility. You 

also have two virtual neighbors who will inform you of the restaurant they selected and how long they 

waited. 
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Your Task 

As a customer, you must decide each day where to go for lunch. Your goal for this experiment will be 

to minimize the total waiting time over the 60 simulated days (i.e. the sum of your daily waiting times 

over these 60 days) by choosing each day the restaurant you believe will have the shortest waiting time 

that day. You will need approximately 1 hour to complete the experiment.  

To help you make this decision you will receive the following information each day: 

1) The time you waited at the restaurant you selected the previous day 

2) Your previous waiting time expectations for the three restaurants , and 

3) The information from your virtual neighbors about their previous choice and experienced 

waiting time.  

Each day you will enter into the graphical user interface of the experiment the following information: 

1) Your choice of restaurant and 

2) Your expectation of waiting time at each of the three restaurants 

Interface  

All the interaction will take place through the interface on your computer screen. The information is 

the same as what we have provided in these instructions. Please ask the facilitator to have a trial run to 

test out the software. 
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Payment 

Please note that if you want to participate in this experiment you must sign the consent form on your 

desk. This form must be signed before the start of the experiment. 

The payment for this experiment consists of a guaranteed participation fee of CHF 15, plus a bonus 

which will depend on your performance. Your performance is measured by your total waiting time over 

the 60-day experiment. The lower your total waiting time, the larger the bonus you will receive. This 

bonus will vary between CHF 0 and CHF 20.  

If you do not pursue the experiment until the end, you will not receive any payment. 

At the end of the experiment, you will be asked to complete and sign a form with your name, student 

ID number, email address, account information and amount earned, and indicating whether or not you 

are employed by the university.  

We will be happy to answer any questions you may have concerning this experiment.  

If you have no further questions, please ask the experiment facilitator to begin. Good luck and enjoy 

the experiment! 
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CHAPTER 5: CONCLUSION 

Queuing is a very common phenomena that we witness and encounter on a day to day basis. Queuing 

theory and its problems span a broad range of applications and have been studied extensively in various 

disciplines. Traditional queuing research has relied more on analytical techniques and focused on 

designing an efficient system. These analytical models assumed static conditions, exogenous arrival and 

service rates, and were analyzed in steady-state. On the contrary, most queuing systems are dynamic, 

and the customers using the system make decisions based on their perception of the state of the system. 

The decision processes of customers who use these queuing systems have also been largely neglected. 

Quite recently researchers have attempted to move away from this classical approach of queuing. This 

dissertation is in line with such a trend and looks into the micro-dynamics of queuing to understand 

the formation of queues. The main contribution of this dissertation is towards the field of behavioral 

operations and emphasizes the need to incorporate behavioral and cognitive factors into the models 

(Gino and Pisano, 2008). 

The bulk of the thesis consists of three research papers. The first paper sets the tone for the thesis and 

its contributions. The key contribution of this paper is the use of agent based modeling as a 

methodology for the study of queue formation. The idea is to investigate the micro features i.e. 

individual decision making and the macro consequences for the system. The primary aim of this paper 

is to emphasize the need to look at the spatial temporal dimension in order to understand expectation 

formation, and in turn, its influence on decision making. Also looking at the individual level helps to 

see how information diffuses and how this information is used in decision making. This is relevant for 

service facilities we encounter on a day to day basis like traffic, supermarkets etc. By introducing an 

agent based queuing model the thesis has opened up avenues for future research in the area of 

behavioral operations (Gino and Pisano, 2008).  
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The second paper takes the agent based framework one step further by modeling a population of CA’s 

who evolve based on the consequences of their queuing. The key contribution of this paper is the use 

of genetic algorithms to model CA’s (each of which consists of agents) who optimize their behavior by 

learning from the system. The agents learn and choose the service facility based on past experience and 

the local information available to them. This model works at the population level and optimizes the 

performance of the system. The results of the paper show how genetic algorithms improve the 

performance of the CA model and bring the overall system performance close to the Nash equilibrium. 

The contribution of this paper is that it further develops the intelligence of decision makers in the 

agent based model. It enables the population of CA’s to change behavioral parameters, thus allowing 

them to adapt behavior based on their experiences. 

The third paper shows how an experiment can be designed to investigate and validate the behavioral 

queuing model presented in the first paper. The main contribution of this paper is the use of 

experimental methods to validate the agent based queuing model. This approach follows the approach 

of Sterman (1987, 1989) and Rapoport (2004), who use experimental methods to understand decision 

making. The paper shows how to design an experimental setup by using the agent based behavioral 

queuing framework. A human subject replaces a virtual agent in the agent based model and decides the 

facility to use based on the information available to them. The aim of this approach is to validate the 

findings of the agent based model and also to see what strategies subjects adopt to choose the service 

facility. The experiment shows that human subjects have a significant influence on the overall system 

behavior. The paper also shows that adaptive expectations based decision rules are a good way to 

represent human decision making. This paper thus contributes towards the psychology of queuing, and 

the use of experimental methods to build confidence in decision making simulation models.  

The key contribution of this thesis is towards the area of behavioral operations. Through three 

scholarly papers the thesis shows how a behavioral framework can be modeled, simulated and validated. 
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Also the thesis shows that by adopting methodologies like agent based simulation and experimental 

methods, one can limit assumptions that simplify system complexity. This results in models that are 

closer to real life queuing problems. The thesis not only contributes to the areas of operations research 

and management science, but its findings can be applied to other disciplines like manufacturing, 

information systems, industrial engineering to name a few. The table 4.17 shows the positioning of the 

three papers presented in the thesis and the conference papers to which I contributed pointing, to the 

contribution made to literature. 

LIMITATION AND FUTURE WORK 

The dissertation is not without limitations and the following paragraphs addresses those limitations 

and the avenues for future work. 

The agent model presented in the dissertation is a neighborhood based system which is relevant to 

understand social processes that we encounter. The structure of the model is such that each agent 

interacts with a fixed number of neighbors. This is a limitation, because, in reality this is not fixed. 

This could be easily rectified in the model by having heterogeneous neighborhood sizes, but the idea 

was to show how a simple agent based framework can help us understand the micro-dynamics of 

queuing. 

The agents in the model are homogenous except for their location in the one-dimensional lattice and 

initial conditions. The model has synchronous updating; agents follow similar expectation formation 

and have identical computational capabilities. These are reasonable at the cellular level but not in 

reality. The aim of the model is to show how a simple self-organizing agent based queuing system can 

be designed. The model helps us to understand the micro-dynamics of queuing and the effects of 

individual decision making on the performance of the system. This limitation can be resolved by having 

heterogeneous agents with different decision making strategies and computational capabilities. 
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Stochastic Deterministic 

Analytical Simulation Experimental Analytical Simulation Experimental 

Arrival rate exogenous 
Edelson and 

Hildebrand (1975) 
  Agnew (1976)   

Arrival rate 
endogenous 

& service 
rate 

exogenous 

State dependent 

Naor (1969) 
Yechiali (1971) 

Boots and Tijms 
(1999) 

Whitt (1999) 

van Ackere (1995)   

(Sankaranarayanan 
et al., 2011c) 

(Sankaranarayanan 
et al., 2011b) 

(Sankaranarayanan 
et al., 2011a) 

(Sankaranarayanan 
et al., 2010) 

(Sankaranarayanan 
et al., 2009) 

(Delgado et al., 
2011b) 

(Delgado et al., 
2011a) 

Rapoport (2004, 
2010) 

Stein et al. (2007) 
(Sankaranarayanan 

et al., 2011d) 

Steady state 
Dewan and 

Mendelson (1990) 
Stidham (1992) 

Zohar et al. (2002)  Edelson (1971)   

Dynamic 
Rump and Stidham 

(1998) 
    Seale et al. (2005) 

Arrival and 
service rate 
endogenous 

Steady state Ha (1998, 2001)   Agnew (1976)   

Dynamic     

Haxholdt et al. 
(2003) 

van Ackere and 
Larsen (2004) 

van Ackere et al. 
(2006) 

van Ackere et al. 
(2010) 

 

 

Table 4.20: Contribution to literature 
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MATLAB is an extremely useful scientific tool and extensively used by researchers. MATLAB works at 

the matrix level and stores matrices in contiguous blocks of virtual memory. Hence, the largest matrix 

that can be created and stored is limited by the computers contiguous free virtual space available. The 

dissertation presented a one-dimensional agent based framework and MATLAB worked fine. If a two-

dimensional model is to be developed and the K-neighborhood increased, then we need to look at agent 

based toolkits like Repast, Mason etc. for modeling. 

As a part of future work, an interesting extension to the CA model would be to have complex rules or 

mixed strategy rules for agents. In this way agents decide what rule to use based on the state of the 

system. Concerning the GA, at the methodological level an interesting approach would be to investigate 

other heuristic search techniques and compare them with the GA. Another interesting extension to the 

framework is to add another group of agents, the managers of the facility. They will compete for 

customers by optimizing their facility based on customers’ reactions.  

The experiment we designed was based on the agent based model. We replaced a single virtual agent 

with a human subject and found interesting collective behavior. We thus had 119 virtual agents and a 

human subject interacting. An extension for the experimental study is to have only human subjects; this 

would be a network game wherein subjects will have specific human neighbors’ (friends, colleagues etc.) 

and thus not interacting with virtual agents who follow specific rules.  Finally, more results could be 

squeezed out of the data collected through the experiment. For example, we had asked the subjects to 

answer a questionnaire after completing the experiment.  The first question concerns the strategy 

adopted for choosing a restaurant, and the second one related to the information they used to make 

their decisions. We can use this to find out how subjects perceive information.  
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