
Compilation and design automation
for extensible embedded processors

Doctoral Dissertation submitted to the

Faculty of Informatics of the University of Lugano

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Paolo Bonzini

under the supervision of

prof. Laura Pozzi

May 2009

Dissertation Committee

Jason Cong University of California, Los Angeles
Tulika Mitra National University of Singapore
Wayne Wolf Georgia Institute of Technology
Walter Binder University of Lugano
Matthias Hauswirth University of Lugano

Dissertation accepted on 27 May 2009

Supervisor PhD program director

prof. Laura Pozzi Fabio Crestani

i

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been
submitted previously, in whole or in part, to qualify for any other academic
award; and the content of the thesis is the result of work which has been carried
out since the official commencement date of the approved research program.

Paolo Bonzini
Lugano, 27 May 2009

ii

Abstract

During the last few years, the attention to system-on-chip processors focused
on customizability and specializing functional units for particular applications.
Such processor extensions can increase performance in domains such as crypto-
graphy and DSP, without incurring the power cost of superscalar RISC processors
and the complexity of entirely customized integrated circuits.

Since it is extremely desirable that tools automate the design of accelerator
units as much as possible, compilation takes on a new extended meaning in this
context—the compiler’s job is not only to produce optimized assembly code for
a machine, but also to find the optimal machine for which to compile.

The two different subproblems involved in this task are to automatically
generate the best instruction-set extensions (ISEs), and to use them extensions,
i.e. finding them in the user’s applications. Therefore, most of the thesis deals
with formalizing these combinatorial problems in general, characterizing them
for particular architectures, reducing them whenever possible to well known
graph optimization tasks, and solving them.

Another wholly different part of compilation for extensible embedded pro-
cessors is to understand and solve the unique challenges that are posed to a com-
piler that can actually shape its target machine. In particular, existing compila-
tion techniques can be redesigned and retuned to find even better instruction-set
extensions—just like a general purpose compiler will transform the program to
maximally exploit the target processor’s machine language.

Since this subject exposes many different facets, this thesis touches areas
such as compilation, combinatorial optimization, and hardware design. Results
presented include: complexity proofs for several algorithms and problems from
existing literature; a framework for automated discovery of custom instructions,
which is reused in different contexts and for different customization technolo-
gies; and techniques for analyzing the effect of compiler optimizations on ISE
search. All contributions are prototyped in complete compilation and simulation
environments.

iii

iv

Contents

Contents v

1 Introduction 1

2 Related work 5
2.1 Customizable processor hardware . 5

2.1.1 Application-specific functional units 6
2.1.2 Accelerating computation using more powerful functional

units . 7
2.1.3 Coarse-grained reconfigurable architectures 8

2.2 Extensible processors and compilation technology 9
2.2.1 Compilation techniques for accelerators 9
2.2.2 Compilation techniques for customizable processors 10

2.3 A framework for customizable processor compilation 12
2.4 Summary . 16

3 Enumeration algorithms for a customizable processor compiler 17
3.1 Data-flow graphs . 17
3.2 Maximal convex subgraph enumeration 19

3.2.1 Independent set formulation 20
3.2.2 A fast algorithm for maximal independent sets 25

3.3 I/O constrained enumeration . 35

4 Covering algorithms for a customizable processor compiler 45
4.1 Problem formulation . 46
4.2 Non-overlapping subgraphs and generalized exact covers 48
4.3 Covering in the presence of isomorphism 51

4.3.1 Establishing isomorphism of candidates 51
4.3.2 Greedy covering . 52
4.3.3 Optimal covering . 55

v

vi Contents

4.4 Experimental results . 61

5 Technology mapping 67
5.1 The EGRA architecture . 67

5.1.1 Cell architecture . 69
5.1.2 Array architecture . 72

5.2 Technology mapping for the EGRA 73
5.2.1 Lowering to the RAC instruction set 74
5.2.2 Partitioning of the candidate 76
5.2.3 Cluster scheduling . 78
5.2.4 Candidate retiming . 79

5.3 The complexity of I/O scheduling . 81
5.3.1 Problem formalization . 81
5.3.2 NP-completeness proof . 83

6 Building a compiler for customizable processors 87
6.1 Motivation and problem formulation 88
6.2 Optimization in a compiler for customizable processors 89

6.2.1 The transformation space . 90
6.2.2 Finding the best transformation set 92

6.3 Experimental results . 98

7 Conclusions 103

A Terminology 105

B Publication reference 107

Bibliography 109

Chapter 1

Introduction

Designing an embedded system entails many choices, and the outcome may
often depend on non-technical factors; economic ones such as time-to-market
may be especially relevant. Several ways have thus been proposed to mediate
between a general-purpose processor’s flexibility and ease of use, and a custom
integrated circuit’s performance in terms of speed and power consumption. One
particular solution, which enjoyed support from several vendors, augments the
processors with accelerator units accessible through instruction set extensions
(ISEs) as shown in Figure 1.1).

ALU MULT LD/ST out1 = F(in1, in2)
out2 = G(in2, in3)

Register file

ADD SUB
AND OR

XOR

MUL LOAD
STORE

ISE1 ISE2
 ... ISEn

Figure 1.1. A customizable processor includes, in addition to the tra-
ditional functional units, one or more application-specific functional
units (AFU) that can be activated with application-specific instruction
set extensions (ISE).

1

2

Tools to effectively design accelerators for a specific application have not yet
enabled complete automation of the process; still, independent of the under-
lying accelerator technology, automated toolchains are necessary to provide all
the supposed benefits of customization. Hence, they are fundamental for wider
acceptance of extensible processors. The problem that these tools should solve
can be informally stated as follows: given an application and a target acceleration
platform, decide which parts of the code should be mapped onto the accelerator in
order to maximize performance.

This can be called the mapping problem; solving it entails effectively search-
ing for good instruction set extensions (design automation) and using them in
applications (compilation), and it is the topic of this thesis. The main claim
is that a substantial part of this problem can actually be solved without con-
sidering at all the target technology, or at least abstracting it into a small set
of parameters or oracles; we substantiate this claim by analyzing existing work
from the state of the art. The first practical consequence is the definition of a set
of subproblems that, together, provide a solution to the mapping problem. We
define these subproblems and propose specific interfaces that should be obeyed
by the algorithms solving the problems; this allows easy reconciliation of differ-
ent solution strategies. This set of subproblems and interfaces is called a solution
framework throughout the work.

The thesis begins with a survey of related work (chapter 2). The chapter
explores the customization techniques that have been proposed for embedded
processors, as well as the corresponding approaches to compilation for this kind
of processor. Incredibly many different architectural solutions for accelerators
exist in the literature, and so many different algorithms were conceived to com-
pile on them; therefore, only a small part of which could be presented here.
Still, the quality of the comparison with related work for existing papers is sadly
very low, so that (to the best of our knowledge) there is no published survey of
these techniques.

Section 2.3 then attempts to fill the gap by proposing a generalization of most
existing research—the aforementioned solution framework. This has two main
purposes. First, it may help other researchers filling the blank left by the lack of
an extensive comparative survey of the state of the art. Second, it lays grounds
for the next chapters of the thesis, in which new solutions for the subproblems
are presented, together with new results or improved formulations regarding
existing solutions.

The two subproblems are enumerating possible instructions (“candidates”)
and covering, which is the process of choosing which candidates will actually be

3

used and where in the program. They are respectively the topic of Chapter 3
and Chapter 4.

The contributions of Chapter 3 include new formulations of the enumeration
problem which are more general or more easily understood, as well as new
results on existing algorithms. In particular, it shows how some instances of the
enumeration problem can be reduced to enumeration of independent sets; this
provides an interesting parallel with covering which, in a very broad sense, is
an optimization problem on independent sets [Guo et al., 2003]. The chapter also
includes the description and experimental results for a very simple yet very fast
algorithm for independent set enumeration.

However, the most interesting result of Chapter 3 is the proof that a well
known enumeration algorithm [Pozzi et al., 2006] has time complexity polynomial
in the basic block size—instead, this algorithm had been wrongly conjectured
in the literature as having exponential worst case complexity. The chapter also
presents a generalization of this same algorithm which can be used in different
scenarios to make the execution even faster.

Chapter 4 formalizes covering in a novel and more general way than what ex-
ists in the literature. This new formalization includes the possibility to detect iso-
morphic candidates interprocedurally, thus avoiding useless reconfiguration or
duplication of silicon. New algorithms, both greedy and optimal, are presented
that can use isomorphism information effectively and without excessive run-time
cost. The chapter’s results also show how to go easily from an intraprocedural
solution to an interprocedural (whole-program) solution. Finally, the chapter
ends with experimental results on the feasibility and gain from isomorphism-
aware search, and from optimal (as opposed to greedy) search.

As mentioned before, however, the proposed framework defines not only
subproblems to be solved, but also oracles that aid in retargeting the framework
to new hardware. An example of this is found in Chapter 5, where the design
of a coarse-grained reconfigurable accelerator is presented together with a set
of technology mapping steps that target the accelerator. Some of these steps can
themselves be seen as enumeration and covering problems, and as such they
reuse some of the results of Chapter 3.

As a brief aside, the chapter is concluded with a theoretical result, showing
that I/O scheduling, one of the involved steps (first presented by Pozzi and Ienne,
2005), is NP-complete.

All the steps described so far are already sufficient to construct a compiler
for a customizable processor. However, can something else be added for in-
creased effectiveness? This is of course true for complex accelerators that target
entire loops (as opposed to a set of instructions in a single basic block), on

4

which advanced pipelining techniques are necessary to achieve the best possible
speedups; the final chapter of this thesis shows that the framework analyzed so
far is by no means the end of the story. Traditional compiler transformations can
be revisited and tuned again to produce not only the best possible code, but also
the best possible ISE. The chapter analyzes a case study of two code transforma-
tions, if-conversion and loop unrolling, and shows how both can indeed benefit
the search for ISE.

Chapter 2

Related work

This chapter surveys existing work on customization of processors, regarding
both hardware design (Section 2.1) and compilation (Section 2.2). The goal of
this chapter is to present existing work on the topic, spanning almost 15 years,
and to classify and evaluate the state-of-the-art.

The outcome of the survey is in Section 2.3, where we propose a frame-
work for compilation to an extensible processor. This framework is adaptable to
multiple hardware targets, and is separated in well-defined steps with a clean
interface. These steps are then analyzed one by one in the next three chapters.

2.1 Customizable processor hardware

Customization of processors is an alternative to high-level synthesis, in that it
can achieve high levels of performance without totally abandoning cheap and
accessible software execution. In high-level synthesis, an application-specific
circuit is built from the combination of a finite-state machine for control plus a
combinational datapath; in a customizable processor instead assembly language
replaces the finite-state machine, and the datapath is based on the processor’s
standard functional unit, augmented with other application-specific units acces-
sible via instruction set extensions. Potentially, this can decrease the costs of the
final product, by eliminating or limiting non-recurring engineering work of pro-
ducing custom integrated circuits.

Among the very first examples of instruction set extensions, [Rauscher and

Agrawala, 1978] is especially striking. The techniques proposed in the article are
based on writable microcode and, while the concept of control storage is almost
not found anymore on modern processors, still they anticipate many of the con-
cepts of a modern customizable processor. The authors go as far as proposing

5

6 2.1 Customizable processor hardware

automatic generation of microcode—in other words, they define the concept of
a compiler for customizable processors:

. . . we replace the code generation phase of a compiler by a procedure
that [. . .]:

1. generates a microprogram that defines an architecture for effi-
ciently supporting the higher level language program being com-
piled (this includes interpreting the machine language programs
of the newly defined architecture), and

2. generates the machine language program for the defined archi-
tecture that represents the higher level language program being
compiled.

Two main strategies exist for customization of a processor’s instruction set.
One is to equip the processor with configurable functional units (accelerators)
that are programmed separately and are invoked by extended instructions. The
second is to make the additional units completely custom and application-
specific; this possibility can be implemented either on reconfigurable hardware
or on ASIC technology.

2.1.1 Application-specific functional units

Processors sold as IP cores are often configurable; characteristics such as caching,
availability of an MMU, multiplier/divider timings can be defined by the cus-
tomer. Some designs may take this customizability one step further, letting user
augment the processor with arbitrary functional units written in a hardware
description language (HDL). These units will typically implement application-
specific computation in order to make them faster. For example, bit manipula-
tions can be sped up greatly because, in a hardware realization, they can often
be achieved simply by a bunch of wires.

Reconfigurable hardware is a natural match for such a processor, as an ASIC-
based implementation will still bear the cost of fabricating chips. In order to
increase the benefits of reconfigurability, Wirthlin and Hutchings’s Dynamic In-
struction Set Computer (DISC, 1995) proposes to exploit FPGA hardware even
more via run-time reconfiguration. This allows “paging” instruction set exten-
sions in and out of the array, depending on the program’s needs. A similar
approach is that of Chimaera, by Ye et al. [2000], where the processor core is
augmented with a reconfigurable functional unit. The RFU consists of a small,

7 2.1 Customizable processor hardware

run-time reconfigurable array of FPGA-like logic blocks, and can host several
instruction set extensions.

The possibility to define application-specific functional units is in fact avail-
able on commercial FPGA boards, for example those based on Altera’s Nios-II
processor [Altera Corp., 2002]. However, on boards whose general purpose proces-
sor is not realized on the FPGA (such as some high-end Xilinx boards; see Xilinx
Inc., 2006), there’s a high price to pay for reconfigurability and for the inter-
face between the hard-wired register file and the application-specific functional
units. For this reason, instruction set extensions are more often used with soft
cores or, alternatively, are realized on an ASIC. Using a custom integrated circuit
heavily sacrifices flexibility, especially in the view of software upgrades; how-
ever this road was followed for example by Tensilica (with the Xtensa processor;
see Turley, 1999) and ARC.

Other researchers have suggested using special-purpose reconfigurable hard-
ware to implement a custom datapath for application-specific functional units.
While still more or less “fine-grained”, the logic blocks of such a fabric has
markedly different design goals compared to an FPGA. The Chimaera project
for example proposed a custom logic block that includes lookup tables, but has
no sequential elements such as flip flops or latches [Hauck et al., 1997]. A more
radical approach is that of Garp [Hauser and Wawrzynek, 1997], whose logic blocks
operate on 2-bit quantities and include two 4-1 multiplexers, a small shifter, a 3-
input adder. The Stretch reconfigurable fabric from Tensilica has an even bigger
logic block based on 4-bit ALUs [Rupp, 2003].

2.1.2 Accelerating computation using more powerful func-
tional units

Adding a generic programmable functional unit may not be considered, strictly
speaking, as producing a customized processor, as the instruction set in this case
is fixed for each applications. However, the compilation techniques for these
two cases are similar; in either case, multiple computations are grouped into a
single invocation of either a custom instruction or the accelerator unit. Grouping
occurs at the data-flow level, with limited attention to loops and control flow1.

Razdan and Smith [1994] present an accelerator, the PFU (Programmable
Function Unit) that is basically a set of small RAMs plus an interconnection that
adds more flexibility and allows any input bit to be used as an input for one or

1One notable exception is if-conversion (see Section 6.2), which is used to aggregate instruc-
tions from different basic blocks and execute them in parallel.

8 2.1 Customizable processor hardware

more RAMs. Besides implementing arbitrary sequences of boolean and shift op-
erations, the paper details how the PFU can be used to implement if-conversion
(predication). However, the technique is strongly limited by the impossibility to
perform arithmetic in the PFU; speedup on SPECint92 is 16% or lower on all but
one benchmark.

A more convincing approach is given by the CCA (Configurable Computation
Accelerator) presented by Clark et al. [2003]. The CCA includes several ALUs
organized into rows, and with a flexible interconnect between rows; different
rows may support a different set of operations—for example some may support
shift operations, others may support adds, and others may support only logical
or move operations. The CCA is a relatively big device (it may include a dozen
or more ALUs) and has a fixed, multi-cycle delay.

2.1.3 Coarse-grained reconfigurable architectures

Besides FPGAs, several other reconfigurable architectures (CGRAs) have been
proposed which are coarse-grained [Hartenstein, 2001]. In a CGRA, the structure of
the processing element is such that not all boolean functions can be implemented
by it—this defines the reconfigurable fabric’s grain.

However, the definition is broad, and the actual coarseness of the elements
differs widely in the design. For example, the cell will usually implement a single
arithmetic operation, but is actually a general purpose processor in designs such
as RAW [Waingold et al., 1997] or ADRES [Mei et al., 2002]. This makes the respective
merits of different coarse-grained architectures hard to assess.

In addition, different approaches have been envisioned also for the CGRA’s
level of integration in the architecture hierarchy. For example, Morphosys [Singh

et al., 2000] uses an 8x8 array of processing elements as a coprocessor, commu-
nicating with the processor via FIFO buffers; instead, ADRES has a more tight
coupling with the underlying VLIW core and is able to access data from a shared
register file.

Coprocessors usually have complex control unit that is able to execute entire
loops in a pipelined fashion; designs sitting closer to the processor can instead be
regarded as an accelerator, in the fashion described in the previous section. We
present such a CGRA-based accelerator design—the Expression-Grained Recon-
figurable Array (EGRA)—in Chapter 5. Its main characteristic is a computational
element including several ALUs with a flexible interconnect; the most similar
example in the state-of-the-art is probably the Flexible Computational Compo-
nent [Galanis et al., 2006] which, while targeted more specifically to DSP kernels,
is similar to our processing element in size and set of allowed operations. Un-

9 2.2 Extensible processors and compilation technology

like Galanis et al., however, our design does not have a fixed structure, but can
be tuned to achieve varying levels of complexity and coarseness.

2.2 Extensible processors and compilation technology

Given a customizable architecture, its wide acceptance depends on the avail-
ability of tools to effectively design the extensions needed by a specific ap-
plication. Complete automation, while desirable, is not generally available in
vendor-provided tools; these usually aid in the task, but still require the custom
instructions to be hand-coded in a HDL.

Nevertheless, a large number of approaches were tried to solve this problem,
which can be stated as follows: given an application and a target acceleration plat-
form, (a) decide which parts of the code should be mapped onto the accelerator in
order to maximize performance, and (b) provide an implementation of these parts
on the accelerator. The first part is of particular interest, since the related tech-
niques can often be applied to different kinds of hardware; the general approach
followed is to split the process further in two parts, generation of custom instruc-
tion candidates and matching them in the program [Kastner et al., 2002; Guo et al.,

2003]. These two steps, which will be called enumeration and covering in this
thesis, can be done sequentially [Clark et al., 2006], or they can be iterated [Kastner

et al., 2002; Atasu et al., 2003].
The rest of this section will analyze separately two different kinds of solu-

tion to this problem. In the case of fully customizable processors, the hardware
allows huge flexibility, but the solution becomes more expensive; in the case of
accelerators, such as complex functional units or coarse-grained reconfigurable
architectures, the obtainable speedups are relatively low, but compilation be-
comes more affordable.

2.2.1 Compilation techniques for accelerators

Because of the small footprint of accelerators, and of the small program portions
that can be mapped onto it, most research on the topic of compilation for accel-
erators relied on greedy algorithms. Such techniques are simple to implement.
Broadly speaking, they start at a “seed” and form small groups of instructions
around it satisfying the accelerator’s specifications. Example of such techniques
can be found in articles by Clark et al. [2003] or Sun et al. [2004].

Regarding coarse-grained reconfigurable arrays, the challenge of mapping
applications on a variety of CGRAs, or in other words to achieve easy retar-

10 2.2 Extensible processors and compilation technology

getability, has never been tackled systematically so far. The reason for this, un-
doubtedly, lies in the profound differences between the processing elements and
interconnect used by different architectures. Most of the previous work concen-
trated on a single design, and the potential for generalization was rarely pointed
out. Two notable exceptions are the work of Lee et al. [2002] regarding loop-
level code transformations, and of Chattopadhyay et al. [2008] on architecture
description languages for CGRAs.

For example, DRESC [Mei et al., 2002] is a compiler for coarse-grained recon-
figurable architectures that performs modulo scheduling and place-and-route for
topologies with an arbitrary interconnect. The techniques it uses are designed
for the ADRES architecture, but can be used in general for CGRAs employing
VLIW processors as functional units. Of particular interest in DRESC is also the
representation of the target architecture as a routing graph modeling elements
such as functional units, register files, multiplexers and buses.

Yoon [2008] and Ahn [2006] studied different approaches for mapping appli-
cations onto possibly heterogeneous CGRAs. They provided an ILP formulation
of CGRA place-and-route and proposed two efficient algorithms for the same
problem: one first groups elements into columns, and then lays out the nodes
on the grid [Ahn et al., 2006]; the other uses techniques from planar graph draw-
ing [Yoon et al., 2008]. These strategies are very flexible and can use cells as rout-
ing elements—the former only in special cases, while the latter in much more
flexible ways.

Guo et al. [2003] present an algorithm to extract templates and find them
in an application. This technique is not necessarily related to coarse-grained
reconfigurable systems, and is in general applicable to customizable processors.
It is equivalent to the subgraph enumeration step introduced in Section 2.3 and
analyzed in depth in the next chapter.

2.2.2 Compilation techniques for customizable processors

Techniques for customizable processor compilation are in general simpler, but
computationally more intensive, than those for accelerators. Only simple con-
straints have to be satisfied for a subprogram to be executable in hardware, and
especially for ASIC technologies it is easy to establish the gain of doing so.

Even very simple formalizations of the problem can actually yield surpris-
ingly good results. This is the case for the work of Atasu et al. [2003], where
an algorithm is proposed to find the best performing instruction set extension in
a basic block. Despite relying on a greedy methodology to find more than one

11 2.2 Extensible processors and compilation technology

++ + +

a) b)

Figure 2.1. Operation duplication in Cong et al. [2004]. a) Only a single
output is considered for every chosen subgraph. The shaded node is
not considered an output of either dashed subgraph, even though it
has edges leaving the subgraphs. b) In order to move both subgraphs to
hardware, the shaded left shift has to be duplicated (computed twice).

instruction, and not taking recurrence into account2, this article has the merit
of showing the feasibility of exact solutions to the problem. Many definitions
introduced in this paper are used throughout the literature as well as in this the-
sis (Section 3.1); this is also the algorithm (in the refined version of Pozzi et al.,
2006) that we analyze in depth in Section 3.3.

One important classification criterion is the preference for finding very large
instructions that can execute very efficiently (this is the case for Atasu et al.),
or rather for small program pieces that are found multiple times [Goodwin and

Petkov, 2003]. The latter approach can use greedy algorithms such as those for
accelerators; it does not achieve very high speedups, but it has the advantage
that instruction selection is much simpler for small instruction extensions and
can be made optimal [Aho et al., 1988; Liao et al., 1995]. In fact, there is little work
on reuse of complex custom instructions, except for special cases such as reuse
within a single basic block.

Of course, there are several practical obstacles to an effective implemen-
tation. For example, bit-width analysis of the source program can be needed
to avoid excessive area usage and to correctly estimate the effectiveness of an
hardware implementation [Stephenson et al., 2000; Mahlke et al., 2001]. These were
included also in the experimental platform used for this thesis.

In the remainder, we shall highlight a few works that attack the problem in
unique ways, touching on aspects that have been otherwise ignored.

Cong et al. [2004] propose a formalization of this problem that exhibits sev-
eral unique traits. In particular, duplicating the same operation across multiple
ISE is not considered in general in the literature, while it occurs naturally us-

2Both of these limitations will be tackled in Chapter 4 of this thesis.

12 2.3 A framework for customizable processor compilation

ing Cong et al.’s methodology (Figure 2.1). In addition, another desirable prop-
erty of this approach is that extensions can be chosen so that they obey a given
area budget. The main limitation of this work is that it splits the covering phase
between candidate selection (driven by area constraints) and matching (driven
by performance criteria). This decoupling may result in unused candidates or
otherwise non-optimal choices.

Regarding the actual implementation of extensions on silicon, the most inter-
esting publication on this subject is Brisk’s [2004]. In this work, the authors show
how to build a single datapath for multiple instructions and how to share hard-
ware resources used by different extensions. An apparently similar technique
is proposed by Peymandoust et al. [2003], who applies algebraic techniques to
find expressions that are subsets of others. The two techniques however have
different purposes; while Brisk et al. aims at reducing silicon area, Peymandoust
et al.’s technique is used to allow higher reuse of instructions.

Finally, research on customizable processor is closely related to the area of
code compression, and the same algorithms can often be used profitably in
both applications. For example, recognizing the presence of multiple isomor-
phic instruction-set extension within a basic block is the same problem as effec-
tively using echo instructions [Brisk et al., 2005] or other DISE (dynamic instruction
stream editing) techniques [Corliss et al., 2003].

2.3 A framework for customizable processor compi-
lation

This chapter surveyed a body of research in the field of compilation for exten-
sible embedded processors. A natural step is then to classify existing literature
according to criteria that can hint at challenging problems and unexplored re-
search in this field. In particular, such criteria may include the following three:

• desired search scope, that is whether the algorithm will look at small parts
of the applications (basic blocks) or bigger parts (possibly the entire code);

• desired analysis effort, for example how hard the algorithm will look for
similarities between different parts of the application;

• characteristics of the accelerator; this criterion will be left aside momen-
tarily, as we are concerned mostly with the target-independent part of the
compiler.

13 2.3 A framework for customizable processor compilation

analysis effort→

no isomorphism
exact
isomorphism

generalized
isomorphism

datapath
synthesis

search
scope

→

single basic block
single subgraph

exact
Pozzi et al., 2006
Pozzi and Ienne, 2005
Bonzini and Pozzi, 2007a

none

preliminary
Clark et al., 2003
Peymandoust
et al., 2003

incomplete
Brisk et al., 2004

multiple basic blocks
single subgraph

exact
Pozzi et al., 2006

single basic block
multiple subgraphs

simple accelerators
Clark et al., 2006

multiple basic blocks
multiple subgraphs

simple subgraphs
Goodwin and Petkov, 2003
Cong et al., 2004

Table 2.1. Classifying related work according to search scope and anal-
ysis effort. The algorithms presented in this thesis cover the first three
columns of the table.

Four different search scopes can be considered, corresponding to search for
single or multiple instructions, into one or more basic blocks. We also propose
four possible analysis efforts, namely: considering every candidate instruction
in isolation; considering all isomorphic candidates together; grouping different
candidates into one that subsumes the functionality of all the original candi-
dates; merging different candidates into a single area-efficient datapath. Based
on this scheme, past work in this field is summarized in Table 2.1.

As it can be seen, most research concerned the simplest analysis effort,
with some exceptions mentioned earlier in this chapter—in particular the work
of Brisk et al. [2004] and Peymandoust et al. [2003]. Literature on increasing the
search scope is also limited, possibly because Pozzi et al. [2006] showed the in-
tractability of searching for the best instruction set extensions (ISEs) in a global
fashion (either intra- or inter-procedurally). However, the problems of a limited
scope are real and will be presented in Section 4.4.

In short, past literature proposed solutions that are very valuable, but only
solve easier instances of the problem. In addition, the solution were often appli-
cable only to specific instances, and not easily extendible to different cases. The
scheme proposed in some cited works is depicted in Figure 2.2(a)(b)(c).

The simplest example, in Figure 2.2(a), splits the job in two phases that exe-
cute alternatively. These are searching for potentially useful custom instructions
(subgraph search), and choosing, iteratively, the ones that will be actually used
in the code (unoptimal covering).

14 2.3 A framework for customizable processor compilation

most profitable
subgraph
for each
basic block

full subgraph
enumeration

optimal
unate covering

list of
subgraphs

list of feasible
subgraphs

c)

full subgraph
search

a)

full subgraph
enumeration

list of
subgraphs

b)

extract subgraph,
 search next

greedy covering

subgraph
isomorphism

"Iterative"
(greedy) covering

list of selected
subgraphs

list of selected
subgraphs

I/O
scheduling

gain subgraphA2

list of selected
subgraphs

yes
yes
no

subgraph
enumeration

technology
mapping

graph
isomorphism

list of
subgraphs

gain,
feasibility subgraph

d)

graph covering

list of selected
subgraphs with
isomorphism info

A
B
A
A
C

yes
yes
no

yes
no

isomorphism
with previously

tested subgraphs
subgraph

Figure 2.2. Schematic representation of the existing literature, and pro-
posed framework for the subgraph mapping problem. a) The Iterative
algorithm [Atasu et al., 2003; Pozzi et al., 2006]. b) Pipelined I/O [Pozzi and
Ienne, 2005]. c) Optimal subgraph mapping on a Custom Computing
Accelerator (CCA) [Clark et al., 2006]. d) The proposed framework.

Figure 2.2(b) depicts the approach of Pozzi and Ienne [2005] and Verma et al.
[2007] to overcome the limit of 2 inputs and 1 output per instruction that is
present in most customizable processors. This approach, which we’ll examine
more closely in Section 5.3, is to add an I/O scheduling phase that readjusts
subgraph gains by considering a limited-bandwidth register file—an instance of
what we broadly call technology mapping.

The last work depicted, by Clark et al. [2006], also decomposed the problem
solution in several phases, all of which were solved optimally; in addition to
exact subgraph enumeration [Pozzi et al., 2006], the authors proposed an optimal
covering phase based on branch-and-bound.

Seeking to develop a more general problem formulation, we developed
a framework for solving the problem of compiling for a particular customiz-
able processor. The framework is shown together with these diagrams in Fig-
ure 2.2(d), so that its generality can be appreciated.

Our approach partitions the solution of the mapping problem into two main
phases, namely subgraph enumeration and graph covering, and two oracles for
isomorphism detection and technology mapping. The problem is solved opti-
mally if exact algorithms are employed for all steps—however, heuristics can be
used in any of the phases, or might have to be used in some instances because of

15 2.3 A framework for customizable processor compilation

complexity. This partitioning, together with a clearly specified interface between
phases, makes sure that the solutions to the subproblems can be easily recon-
ciled, and makes the framework more directly retargetable to a wider range of
accelerators.

The enumeration and covering steps, as well as a technology mapping step,
can also be identified in the diagrams of Figure 2.2(b)(c)(d). However, none
of them identifies a flexible and retargetable solution. Instead, in our proposal
all of the steps, except technology mapping, can be implemented with platform-
independent, retargetable algorithms. These algorithms can be parameterized
according to target-dependent characteristics such as microarchitectural or area
constraints, thus tuning them without changing their implementation. These,
together with the presence of a clear interface around the single step that needs
to be fully reengineered, makes this framework applicable to many different
architectures.

The rest of this section explains the steps in the framework.

Subgraph enumeration reads an application’s intermediate representation and
generates the set of all potential custom instructions. These candidates are
called subgraphs, for consistency with existing literature and because they
actually are subgraphs in the preferred intermediate representation for this
step (which is presented in Section 3.1).

Section 2.2 of this chapter surveyed several very effective algorithms for
subgraph enumeration. Subgraph enumeration algorithm in general do
not vary depending on the targeted accelerator. However, as in a retar-
getable compiler, they should accept the description of the target as an
input, and use it to constrain their output to only include valid graphs.

Examples of possible limitations include: the maximum number of inputs
or outputs in a subgraph; the maximum length of the dependency chain in
the subgraph; the maximum area of the candidate; a set of operations that
cannot be mapped onto the accelerator. In some of these cases, the con-
straint can actually be used to provide asymptotic speedups of the search,
as will be shown in Chapter 3.

Isomorphism detection which groups together potential custom instructions
that all perform the same function. Unrolled loops, macro expansion, func-
tion inlining, generation of addresses for array accesses will all cause the
same code to appear multiple times. Therefore, isomorphism detection is
an important step for many targets, where it enables hardware reuse.

16 2.4 Summary

This thesis does not present any original algorithm for this pass, since
state-of-the-art graph isomorphism algorithms can be used effectively. The
usage of the oracle in covering is discussed in Chapter 4.

Technology mapping is the phase where target-dependent details are concen-
trated. Given an input subgraph, it assesses the feasibility of moving
it to hardware and the gain of doing so; the covering step (explained
later) treats the technology mapping step as an oracle. The accelerator-
dependent subgraph isomorphism pass of Clark et al. [2006], which is a
filter for ISE candidates that cannot be realized on the chosen accelerator,
can be seen as a technology mapping step.

Technology mapping can be a challenging problem on its own. For ex-
ample, precise estimation of the gain might require modulo scheduling
and/or place-and-route on some accelerators, such as coarse-grained re-
configurable architectures. Technology mapping often involves scheduling
algorithms that are NP-complete (see Chapter 5).

For this reason, the framework includes the possibility of using more than
one technology mapping algorithm, each refining the analysis of the pre-
vious one. It is then possible to start with a fast mapping algorithm, and
only apply more precise techniques to some of the subgraphs.

How technology mapping is used in covering is discussed in Chapter 4; an
example of technology mapping is then described in Chapter 5.

Graph covering selects a set of non-overlapping custom instructions to actually
be implemented and used. The final set is chosen based on the output
of the previous phase as well as the information computed by technology
mapping. Covering is formalized, and algorithms to solve it are presented,
in Chapter 4.

2.4 Summary

In this chapter, we presented several schemes to enable acceleration of embed-
ded applications, including—but not limited to—the introduction of application-
specific functional units. Based on the compilation schemes devised in the past
for these technologies, we developed a generic framework for compilation and
design automation on extensible processors.

In the following chapters, each step in the framework will be presented in
detail, together with novel algorithms and with related experimental results.

Chapter 3

Enumeration algorithms for a
customizable processor compiler

In this chapter, we will detail possible solutions for the first phase of the frame-
work presented in Section 2.3. As a foundation that will apply to the next chap-
ters as well, we introduce data-flow graphs and present several definitions that
will aid in the description and analysis of algorithms.

We then introduce the most basic enumeration problem (maximal convex
subgraph enumeration) in Section 3.2, and examine the effects on complexity of
the introduction of additional constraints. In Section 3.3 we prove that bound-
ing the number of inputs and outputs of valid subgraphs reduces the problem
from exponential to polynomial in the size of the data-flow graph, for any given
maximum number of inputs and outputs.

The bound on inputs and outputs, however, is not the only possible one.
Section 3.3 defines a framework to deal with more complex constraints such as
limited length of the dependency chain.

3.1 Data-flow graphs

The data-flow graph (DFG) of a basic block is an intermediate representation
of the statements of the basic block that emphasizes the def-use relationship
between statements. A DFG is defined by the set of its nodes V and the set of its
edges E. An edge u→ v between two nodes1 signifies that a value produced by
statement u is an input to statement v.

1Appendix A describes the notation used in this and the following chapters for graphs (both
direct and non-direct) and pseudocode.

17

18 3.1 Data-flow graphs

W

a) b)

A B C

YX X Y

A B C

W

c) d)

W

A B

X Y

C

X Y

A B C

W

Figure 3.1. a) A simple data-flow graph for a basic block such that W,
X and Y are live at the exit of the basic block; b-c-d) Three convex
cuts of the graph. Nodes with a double border are outputs and shaded
nodes are inputs.

The out-degree of a node can vary, but its in-degree is equal to the number
of non-constant operands of the statement. Therefore, once statements have
been lowered to expose the desired associativity of operator, data-flow graphs
are characterized by a low bound on the in-degree. One exception to this rule is
subroutine calls, which can have arbitrarily high in-degree.

The graph G may have an arbitrary number of root nodes Iex t , that is nodes
that have no predecessors. These nodes represent input variables of the basic
block, i.e. variables that are used in the basic block and live at its beginning.

Nodes that are live at the end of the basic block are also special and are
called external outputs; they form another set of nodes, Oex t . Assuming dead
code elimination has been performed, nodes without a successsor—i.e. whose
value is unused within the basic block—are all live at the end of the basic block.
Other values however may still not die within the basic block while being used
within it. For example, Figure 3.1(a) shows an example data-flow graph with 3
roots (nodes A, B, C) and 2 outputs without successors (X and Y). Remember,
however, that X and Y are not necessarily the sole members of Oex t; rather, any
value that is live at the end of the basic block will be included in it. In the rest
of this section we assume that W is live at the end of the basic block.

19 3.2 Maximal convex subgraph enumeration

It is useful to transform G into a single-root, single-sink graph, by augment-
ing it with a single node that is a predecessor of every node in Iex t . We also create
an additional node (the sink) and connect Oex t to the sink. On such a rooted,
direct, acyclic graph we can then define the concept of cut and in particular of
convex cut:

Definition 1 (Cut): A cut S is a subgraph of a graph G. The inputs of S are the
set I of predecessor vertices of those edges which enter the cut S from the rest
of the graph G, that is I =

⋃

v∈S pred(v)\S. Similarly, the outputs of S are the set
O of vertices which are part of S, but have at least one successor v /∈ S.

Definition 2 (Convex cut): A cut S is convex if there is no path from a node
u ∈ S to another node v ∈ S which contains a node w /∈ S.

In the remainder of this chapter, the terms cut and subgraph (and of course,
convex cut and convex subgraph) will be used interchangeably. The shaded areas
in Figure 3.1(b)(c)(d) are all examples of a convex cut. Nodes with a double
border are outputs and shaded nodes are inputs; for example the cut of Fig-
ure 3.1(b) has inputs {B, C , W} and a single output Y .

The objective of enumeration is then to emit a list of convex cuts subject to
several constraints. A very generic constraint is to emit only cuts that do not
include any node from from a subset F ⊆ V of forbidden nodes, that is nodes
whose computation cannot be performed on the requested accelerator. These
nodes corresponds to subroutine calls and possibly other operations: if the ISE
cannot access memory, loads and stores will be forbidden; similarly, floating-
point math operations will be marked as forbidden if only integer data can be
manipulated by the accelerator. The artificial root and sink nodes are also for-
bidden.

The remainder of this chapter will examine enumeration algorithms under
different sets of constraints.

3.2 Maximal convex subgraph enumeration

First of all, we consider the basic case in which the only requested constraints
are convexity and S ∩ F = ;. Furthermore, we restrict the solution to maximal
cuts, where adding another node u ∈ V\F to the cut will violate the convexity
constraint; Figure 3.2(a) shows a graph and one of its maximal cuts.

If the solution is restricted to maximal cuts, the problem can be formalized
as follows:

20 3.2 Maximal convex subgraph enumeration

Problem 1 (Maximal convex subgraph enumeration): Given a direct acyclic
graph G with nodes V and edges E, and a set F ⊆ V of forbidden nodes, enumer-
ate the maximal elements of the set {S : S is a convex cut of G and S ∩ F = ;}.

There are two reasons for this choice. First, if all the cuts have to be enumer-
ated, then even very simple graphs will have an exponential-size output2. Take
for example binary trees: subtrees of a tree are convex cuts, and a tree with n
nodes has an exponential number of subtrees [Sloane, 2009, sequence A157679].

Second, problem 1 admits an elegant solution via reduction to a maximal
independent set problem. This reduction is interesting for various reasons:

• it shows how the notions of maximum/maximal independent sets, appears
throughout different problems in this field and with different definitions
of the conflict graph3;

• it allows to use the efficient algorithm for maximal independent sets of
Section 3.2.2;

• it makes it easy to establish the worst case complexity of maximal convex
subgraph enumeration.

3.2.1 Independent set formulation

Problem 1 was first introduced by Verma et al. [2007]. Verma’s solution is based
on the definition of a cluster graph representing nodes that can stay together in
a convex subgraph. Maximal cliques in this graph then correspond to maximal
convex subgraphs of the input DFG.

This section will present a formulation of the maximal subgraph enumeration
problem that is simpler in two ways. First, we present it as an independent set
enumeration problem; the relationship to clique enumeration should be clear
from the observation that any maximal independent set S ⊂ G is a clique in
the complement graph G. Independent set formulations are common in the
literature (see for example Pothineni et al., 2007 and Guo et al., 2003), because
the graph on which independent sets are enumerated (typically called a conflict
graph) often has an intuitive definition. This is the case for maximal subgraph
enumeration too.

2See also Figure 3.11 and Theorem 3 on page 38.
3It is common to call a graph a conflict graph whenever its coloring or its maximal indepen-

dent sets have an important meaning for the problem at hand.

21 3.2 Maximal convex subgraph enumeration

x

a

c

b d

f

e

g

h

y

a)

g

a

b c f

d
e

h

c)

FP FSnode

a

b

c

d

e

f

g

h

{}

{x}

{x}

{}

{}

{x}

{x}

{x,y}

{x,y}

{}

{y}

{y}

{y}

{y}

{}

{}

b)

Figure 3.2. a) A data-flow graph (dark nodes are forbidden) and a max-
imal convex cut (others are {a, d, e} and {g, h}; b) The corresponding
F P and FS sets; c) The conflict graph and the independent set cor-
responding to the convex cut. The thick and thin edges form two
bipartite subgraphs (Theorem 2).

Second, we omit the clustering step of Verma et al., and prove in Section 3.2.2
that this step is equivalent to a node-ordering optimization in the enumeration
of maximal independent sets or cliques; it can then be performed separately
from the construction of the conflict graph, which is the topic of this section.

Together, these two changes simplify the formulation to the point that it can
be described with a single, very simple formula (see Theorem 2 on page 24).
In addition, it is easily established from the independent that enumeration of
maximal convex subgraphs has the same exponential worst-case tme complexity
as enumeration of cliques or maximal independent sets. In other words, neither
our reduction nor Verma’s are turning a P problem into an EXPTIME problem.

The maximal independent set problem is a well known combinatorial prob-
lem [Garey and Johnson, 1979] that can be stated as follows:

Problem 2 (Maximal independent set enumeration): Given an undirected
graph G with nodes V and edges E, enumerate all of its independent sets, i.e.
all subsets S ⊆ V such that no edge is contained in S, and that at least one edge
is contained in S ∪ {u} for any u /∈ S.

We will present a fast algorithm for this problem in Section 3.2.2.

22 3.2 Maximal convex subgraph enumeration

Like Verma et al., we start by defining a relation on pairs of nodes P ⊆
(G−F)×(G−F), such that (u, v) ∈ P if and only if there is a valid subgraph of G
that includes both u and v. For example, in the graph of Figure 3.2(a), the three
nodes b, d and g are part of the shaded maximal convex subgraph; therefore,
the three pairs (b, d), (b, g), and (d, g) are—together with many others—all
part of P.

Given two nodes u and v such that (u, v) ∈ P, it is possible to form a convex
subgraph by including all the paths from u to v in the subgraph. For example, all
convex subgraphs including d and g will all include nodes c and f too, because
convexity requires inclusion of the two paths d → f → g and d → c→ f → g.

The only case in which (u, v) /∈ P is if there is a path between u and v
including one forbidden node. In this case, u and v cannot coexist in any convex
graph. Again referring to figure 3.2(a), (a, c) /∈ P because the forbidden node x
lies on the path a→ x → c.

To compute P, we start from the following functions on nodes:

F P(u) = Pred(u)∩ F

FS(u) = Succ(u)∩ F

representing respectively forbidden predecessors and forbidden successors.
These are tabled, for the same example data-flow graph, in Figure 3.2(b).

Then, for each pair of nodes (u, v) there are three possible cases to consider:

• there is no path from u to v, and no path from v to u; then the subgraph
{u, v} is unconnected but convex. Therefore, both pairs (u, v) and (v, u) are
in P. Furthermore, in this case Pred(u)∩Succ(v) = Pred(v)∩Succ(u) = ;,
hence F P(u)∩ FS(v) = F P(v)∩ FS(u) = ;.

• there is a path from u to v and (since G is acyclic) no path from v to u.
Paths connecting u and v go through successors of u and predecessors of
v:

(u, v) ∈ P ⇔ FS(u)∩ F P(v) = ;
(v, u) ∈ P ⇔ FS(u)∩ F P(v) = ;

On the other hand, Pred(u)∩ Succ(v) = ;, hence F P(u)∩ FS(v) = ;.

• there is a path from v to u and no path from u to v. This case is dual to
the previous, with paths connecting u and v going through successors of v

23 3.2 Maximal convex subgraph enumeration

and predecessors of u:

(u, v) ∈ P ⇔ F P(u)∩ FS(v) = ;
(v, u) ∈ P ⇔ F P(u)∩ FS(v) = ;

On the other hand, Pred(v)∩ Succ(u) = ;, hence F P(v)∩ FS(u) = ;.

Then, the following definition can be used:

(u, v) ∈ P⇔(F P(u)∩ FS(v)) = ; ∧ (F P(v)∩ FS(u)) = ; (3.1)

which is equivalent to the one given by Verma et al.. Note that P is by definition
symmetric, so from now we will use (u, v) to represent an unordered pair of
nodes.

The definition of equation (3.1) can be reversed to obtain the complement
relation C:

(u, v) ∈ C⇔(F P(u)∩ FS(v)) 6= ; ∨ (F P(v)∩ FS(u)) 6= ;

C is also symmetric, and each pair in it marks the existance of a path between
two nodes that includes a forbidden node.

The pairs in C and P can also be used as the edges in a non-direct graph;
in the case of C the resulting graph is called the conflict graph. The non-direct
graph in Figure 3.2(c) for example represents the conflict graph for the (direct)
data-flow graph of Figure 3.2(a).

We now prove the key property of the complement relation, which allows to
turn every instance of Problem 1 into an instance of Problem 2:

Theorem 1: Given a conflict graph whose vertices are G − F and whose adja-
cency matrix is C , a subset S of vertices forms a maximal independent set of the
conflict graph if and only if S is a maximal convex subgraph of G.

Proof. Suppose that a convex subgraph S includes nodes
�

s1, s2, ..., sn
	

. Since
no two nodes in a convex subgraph conflict, for any two nodes u and v in the
subgraph (u, v) /∈ C and (v, u) /∈ C . Then, u and v are not connected in the
conflict graph. Therefore, each convex subgraph corresponds to an independent
set of the conflict graph.

To establish the converse, and to prove that maximal convex subgraphs
correspond to maximal independent sets of the conflict graph, assume that
S =

�

s1, s2, ..., sn
	

is a maximal independent set of the conflict graph, and that
the corresponding subgraph in G is not convex. Then S must include two nodes

24 3.2 Maximal convex subgraph enumeration

u and v such that a path connecting u and v includes a node w /∈ S. Let’s assume
without lack of generality that the path is u→ w→ v.

u and v do not conflict, so F P(v)∩ FS(u) = ;. Furthermore, FS(w) ⊆ FS(u)
and F P(w) ⊆ F P(v) because u precedes w and w precedes v in a topological
order of G’s nodes.

Now, given any w′ ∈ S, one of these three cases will occur:

• if there is neither a path w′→ w nor a path w→ w′, (w, w′) /∈ C .

• if there is a path w′→ w, i.e. w′ ∈ Pred(w), then

F P(v)∩ FS(w′) = ; from (w′, v) /∈ C
hence F P(w)∩ FS(w′) = ;
hence (w, w′) /∈ C

• if there is a path w→ w′, i.e. w′ ∈ Succ(w), then

F P(w′)∩ FS(u) = ; from (u, w′) /∈ C
hence F P(w′)∩ FS(w) = ;
hence (w, w′) /∈ C

Since w does not conflict with any w′ ∈ S, the hypothesis that S was maximal is
contradicted. 2

It is also possible to prove a handy construction of the conflict graph:

Theorem 2: C =
⋃

f ∈F Pred(f)× Succ(f). That is, the conflict graph is a union
of |F | complete bipartite graphs.

Proof. If two nodes u, v ∈ G− F conflict, there must be a forbidden node f such
that there is a path u→ f → v. Then, u is a predecessor of f , v is a successor of
f , and (u, v) ∈ Pred(f)× Succ(f).

The converse is also true. For all f ∈ F , and all (u, v) ∈ Pred(f)× Succ(f),
then f ∈ FS(u) and f ∈ F P(v). Then FS(u) ∩ F P(v) 6= ;, and u and v conflict.
2

Finally, it is worth noting that the reduction of the problem to maximal in-
dependent set enumeration is not turning a P problem to an EXPTIME problem.
This can be seen in two ways. The first is that there exist algorithms that enu-
merate maximal independent sets in polynomial time per generated set; if one
could prove that the number of maximal convex subgraphs is bounded poly-
nomially, the reduction would still have polynomial complexity. The second is

25 3.2 Maximal convex subgraph enumeration

a) b)

bc

c

a

ab

b

ef

f

d

de

e

hi

i

g

gh

h ...

a

b c

g

h i

d

e f

...

Figure 3.3. a) A graph with 3n non-forbidden and 2n forbidden nodes.
b) The corresponding conflict graph has 3n maximal independent sets,
which is the highest possible number of independent sets for a graph
with 3n nodes.

that, however, there are indeed graphs with an exponential number of convex
subgraphs. In fact, the graph in Figure 3.3(a) has 3n/3 number of subgraphs
where n is the number of non-forbidden nodes in the graph. This is the highest
possible number of subgraphs, because in this case the conflict graph—shown in
Figure 3.3(b)—is the Moon-Moser graph [Moon and Moser, 1965].

We now proceed to examine how to efficiently enumerate maximal indepen-
dent sets.

3.2.2 A fast algorithm for maximal independent sets

In the implementation of a fast algorithm for the maximal independent set prob-
lem, it is very important to achieve the fastest possible manipulation of the data
structures representing the graphs. In particular, nodes that have at least one
neighbor in the current solution should be found and excluded as cheaply as
possible. For this reason, researchers have proposed to use special represen-
tation of the input graph such as binary decision diagrams [Coudert, 1997], or
special auxiliary data structures that are queried during the execution of the
algorithm [Eppstein, 2005].

In this section, we present a fast algorithm to enumerate maximal indepen-
dent sets on relatively sparse graphs (density < 70%). The algorithm is based on
a technique known as dancing links that allows fast deletion and reinsertion of
nodes into doubly-linked lists—in this case, into the adjacency lists of the graph.

26 3.2 Maximal convex subgraph enumeration

Dancing links were named and popularized by Knuth, who used them to
solve another combinatorial problem, the enumeration of exact covers4 [Knuth,

2000].
The technique we present shares the same overall structure as Knuth’s al-

gorithm X for exact covers. In particular, the core steps are: the determinis-
tic, heuristic choice of a pivot in order to limit the branching factor; the non-
deterministic choice of a component v of the solution; reduction of the input
after including v in the solution; exploration of the subtree. Figure 3.4 spe-
cializes these steps to the maximal independent set enumeration problems, and
DETERMINISTIC-MIS unfolds the nondeterministic step into backtracking.

However, after unfolding the pseudocode and rewriting the nondeterministic
steps into backtracking, the actual algorithms are noticeably different. Even the
input, which is in both cases a sparse matrix, has very different characteristics. In
the exact cover algorithm, the matrix is rectangular and is the incidence matrix
of a hypergraph; in the maximal independent set algorithm it is the adjacency
matrix of a graph, and is square symmetric. In addition, while the exact cover
algorithm always includes the pivot column in the solution, in our case all but
one branches will include a neighbor of the pivot rather than the pivot itself.

We will now present the steps of the backtracking algorithm one by one.

Choice of the pivot. The nondeterministic steps of the algorithm include a
recursive call, and as such they contribute substantially to the complexity of the
algorithm. Each execution of the nondeterministic steps adds a level to a search
tree that is implicitly visited depth-first and in preorder.

Whenever different subproblems will lead to the same solution, it is a well
known heuristic to prefer branching on the one that minimizes the search tree’s
branching factor [Golomb and Baumert, 1965]. In our case, this means choosing the
vertex which has the fewest neighbors. We can do this easily with cost O (n) by
maintaining an edge count for the vertices.

The positive effect of this heuristic on solution speed dwarfs the cost of walk-
ing the vertex list at the beginning of each recursive invocation of DETERMINISTIC-
MIS. For example, for any undirected graph, if u and v are vertices with the same
set of adjacent vertices, and S is a maximal independent set, then

x ∈ S ⇔ y ∈ S

4Interestingly, the optimization version of the exact cover problem is also common in cus-
tomizable processor compilation; it is the problem called unate covering by [2006]; it will also
be mentioned later, in Section 4.2.

27 3.2 Maximal convex subgraph enumeration

NONDETERMINISTIC-MIS(G)
if G has zero vertices, return the current solution
Deterministically choose a vertex p
Non-deterministically choose a vertex v ∈ {p} ∪ N(p)
Include v in the partial solution
Remove vertices in N(v) from G
Invoke recursively on the reduced graph G

DETERMINISTIC-MIS(G)
if G has zero vertices, return the current solution
Deterministically choose a vertex p
for each vertex v ∈ {p} ∪ N(p) do

Include v in the partial solution
Remove from G the vertices in N(v) and the corresponding edges
Invoke recursively on the reduced graph G
Add back to G the vertices in N(v) and the corresponding edges
Remove v from the partial solution

Figure 3.4. An algorithm for maximal independent set enumeration

(To prove this, observe that x and y do not have an edge connecting them.
Otherwise, y would be adjacent to x and vice versa; the two would not have
the same set of adjacent vertices. Then, suppose x ∈ S and y /∈ S; since no
adjacent vertex of x is part of S, the same can be said for all vertices adjacent to
y . Then {y} ∪ S is also an independent set, contradicting the hypothesis that S
in maximal. The same reasoning applies for the case when x /∈ S and y ∈ S).

Nodes with the same set of neighbors are common in real-world graphs. In
fact, for the particular case of unconstrained maximum subgraph enumeration,
this optimization is equivalent to the clustering operation that Verma et al. per-
form as part of the construction of the input graph for clique enumeration. A MIS
solver could similarly look for vertices with the same set of neighbors, delete all
but one, and merge the two labels. In the case of DANCINGLINKS-MIS, however,
this is not necessary, for as soon as one of x and y is added to the solution, the
other will have no neighbors and will be included immediately in S.

Graph representation. Since the algorithm does not require any query of the
form “is u ∈ N(v)?”, the natural representation of the graph uses adjacency lists
rather than a bit matrix. In this representation, only the 1 elements of the matrix

28 3.2 Maximal convex subgraph enumeration

A B C Droot

a) b)

A

B

D

C

A A

B

C

B

C

D D

Figure 3.5. a) A simple undirected graph; b) Its in-memory representa-
tion using circular linked lists and pointers between dual direct edges.

are connected to a memory object. In addition, there is one such memory object
for each column: this column header is represented as a dummy edge (u, u), and
also includes a “horizontal” linked list of vertices.

The input matrix is symmetric, so each undirected edge (u, v) is represented
by two 1 elements corresponding to u → v and its dual v → u. Instead of
providing both same-source and same-destination linked lists, only the former
are explicit. However, each edge u→ v has a pointer to its dual, so that same-
destination edges can be visited too. As will be apparent later, this solution
enables efficient maintenance of the linked lists when vertices are removed and
added back to the list.

Figure 3.5 depicts the in-memory representation of a simple graph. The
diagram should be seen as wrapping at the four sides, i.e. as a torus.

“Dancing links”. The crux of “dancing links” is a simple technique to put back
removed items of a doubly-linked list. If removing is done with the two opera-
tions

x .next.prev = x .prev, x .prev.next= x .next (3.2)

then it can be undone with the two other assignments

x .next.prev = x , x .prev.next= x (3.3)

This works because, while x .prev and x .next are no longer part of the linked
list’s chain, they still retain their value and can be used to remember where the

29 3.2 Maximal convex subgraph enumeration

a) b)

Figure 3.6. Efficiently backtracking node removal on a circular list. It is
possible to go from a) to b) and vice versa with only two assignments
and no extra storage, provided that all the reinsertions (b → a) are
done in reverse order compared to the removals (a→ b).

node was placed in the linked list. This is shown graphically in Figure 3.6: the
operations of 3.2 go from Figure 3.6(a) to Figure 3.6(b), while 3.3 restores the
pointers as in Figure 3.6(a).

Applying this technique to single nodes of the list is trivial; however, it can
be extended to sequences of removals and insertions as long as two important
invariants hold. First of all, restoring operations must be done in reverse order,
so that it can be proved that x .prev and x .next are pointing into the list when
they are accessed. Second, there must be a way to reach nodes that are removed
this way even after the actions of (3.2) are applied. In other words, there must
be a way to access the nodes from outside the list that is being manipulated; if
x .prev.next and x .next.prev were the only ways to get to x , it would be impos-
sible to restore the pointer during the backtracking phase.

The idea of dancing links–based algorithms, then, is to have two paths to
each removed node, and only invalidate one such path during recursive calls.
In Knuth’s exact cover algorithm, the paths correspond to rows and columns of
the matrix. In our case, instead, we only have per-column linked lists, but to
those we add (thanks to the symmetry of the input matrix) the links between
dual edges such as u→ v and v→ u.

Removing a vertex v from G entails hiding one row and one column of the
adjacency matrix that represents the graph; if the steps of rule (3.2) are used,
backtracking can then use rule (3.3). Columns are always accessed by walking
the horizontal list embedded in the column headers, so that hiding a column can
be done by applying the dancing links technique to the list of column headers;
in this case only one node is being hidden (resp. shown), so saving the column
header of v into a local variable is enough in order to show it later. However,
since the column is hidden, there is no need to hide nodes in the corresponding
vertical list: and because the nodes on the removed row are exactly the duals of

30 3.2 Maximal convex subgraph enumeration

the nodes in v’s vertical list, the dual links and the vertical list together provide
the “from outside” path that is needed to apply rule (3.3) when backtracking.

Eliminating duplicates. The algorithm presented in Figure 3.4 has the problem
of sometimes finding duplicate independent sets with different orderings. In the
case of Figure 3.5, the algorithm processes B first (eliminating A and D and thus
finding set {B, C}) and then C (eliminating the same nodes and finding {C , B}).
To avoid this unfortunate case, we want solutions containing B to be considered
invalid while processing C . More generically:

• a total order ≺ is established between vertices of the graph;

• all pairs of nodes v1 and v2, corresponding to two pivots p1 and p2, and
such that v2 is part of both {p1} ∪ N(p1) and {p2} ∪ N(p2), must appear in
the solution according to the total order ≺ (i.e. v1 must come before v2 if
v1 ≺ v2).

This test can easily be embedded in the backtracking algorithm DETERMINISTIC-
MIS by adding an “invalidity count” to each column header. The final algorithm
is presented in Figure 3.7, where the steps left as pseudocode are applications
of the dancing links rules (3.2) and (3.3).

Complexity analysis. The space complexity of the algorithm is obviously
O (E + V), since the algorithm does not need any data except an O (V) list of
vertices, an O (E) sparse-matrix representation of edges, and an O (V) array
hosting the current solution.

The time complexity of algorithms for EXPTIME problems is usually ex-
pressed in terms of asymptotic time per generated solution. For example, Epp-
stein [2005] proves that his algorithm achieves constant time per generated set
on bounded-degree graphs. However, the time complexity of DANCINGLINKS-MIS
is difficult to compute for two reasons. First, not all the search tree branches
generate a valid independent set, due to the presence of duplicates and to the
duplicate elimination test explained earlier in this section. Second, each solu-
tion is not generated independently: work done at the higher levels of a tree is
amortized across all the independent sets that include that node.

These two phenomena have opposite effects on the complexity. The first
one, if ignored, will result in underestimated complexity; the second one instead
will cause overestimation. For simplicity, we will ignore both of them. On one
hand, these results should not be considered rigorous; on the other hand, we
empirically found them to hold well in practice, as we will show.

31 3.2 Maximal convex subgraph enumeration

DANCINGLINKS-MIS(G, S)
if G has zero vertices, return S
bestLen=+∞
for each vertex v of G do

if |N(v)|< bestLen then
bestLen= |N(v)|
p = v

for each vertex v ∈ {p} ∪ N(p) do
v.count= v.count+ 1
if v.count= 1 then

Remove v from the horizontal list of column headers
for each edge v→ u in v’s vertical list do

Remove its dual u→ v from u’s vertical list
DANCINGLINKS-MIS(G, S ∪ {v})
for each edge v→ u in v’s vertical list in reverse order do

Add back its dual u→ v to u’s vertical list
Add back v to the horizontal list of column headers

for each vertex v ∈ {p} ∪ N(p) do
v.count= v.count− 1

Figure 3.7. Detailed pseudocode for maximal independent sets enu-
meration

Each recursive invocation of DANCINGLINKS-MIS has complexity O
�

deg2
�

where deg is the maximum degree of a node in the graph. Since an independent
set of size S is built over S recursive invocation of the routine, the complexity is
O
�

S deg2
�

. This shows that the algorithm is especially suited to sparse graphs.
If the degree of every node is the same, then deg = E/V and the complexity
becomes O

�

S E2/V 2�.

Performance measurements. In order to analyze the effectiveness of the algo-
rithm of Figure 3.7, we compared its performance with another state-of-the-art
algorithm, the ZDD-based technique described by Coudert [1997]. We consider
ZDD-MIS instead of other algorithms such as Eppstein’s [2005], because even
though it requires specialized data structures and algorithms, these are common
in BDD packages such as CUDD [Somenzi, 1998; Mishchenko, 2001] and JDD [Vahidi,

2003].
Note that although enumerating maximal cliques is trivially equivalent to

enumerating maximal independent sets (a clique of G is an independent set of

32 3.2 Maximal convex subgraph enumeration

the complement graph G), it is in general unwise to use algorithms designed
for one problem to solve the other, because heuristics designed for one prob-
lem might not work as well on reductions5. In fact, an implementation of the
bitmask-based clique enumeration technique described by Knuth [2008, exercises

132–133] did not terminate for most of the sparse graphs considered in this sec-
tion.

The performance of BDD-based algorithms is often surprising, and their com-
plexity is not well known except for very special cases. Furthermore, they are
difficult to tune because of issues such as variable ordering and garbage col-
lection performance. However, ZDDs in practice are less susceptible to these
problems [Minato, 1993], making the algorithms of Coudert [1997] a good match
for combinatorial problems on graphs.

As we will show, however, the dancing links algorithm beats ZDDs consis-
tently on sparse graphs, and has the additional benefit of achieving optimal
space complexity. Its working set has size O (E + V) and will almost always fit
in the L2 cache of a modern machine; instead, ZDDs are essentially an appli-
cation of dynamic programming, and in cases where the computation does not
terminate in a short time they would need an extremely high amount of memory.

The graphs in table 3.1 mostly come from toy problems, but are anyway
more realistic than random graphs. Furthermore, they make it possible to run
the algorithms on the same problem with different graph sizes.

The used graphs are:

n-partite is a 480-vertex complete n-partite graph. This family includes dense
graphs, which should be the worse-case behavior of DANCINGLINKS-MIS
according to the simple analysis presented earlier; furthermore, it is the
optimal case for ZDD-MIS.

n-queens is the attack graph for the queen chess piece in an nxn chessboard.
Each vertex corresponds to a square in the chessboard, and there is an
edge between two vertices if two queens in the corresponding squares
would attack each other.

5For example, the column-ordering heuristic of DANCINGLINKS-MIS is able to detect common
patterns in graphs and speed up enumeration noticeably. One such pattern is vertices with
a single neighbor. If u is such a vertex and its sole neighbor is v, it is possible to delete u,
enumerate MIS on the reduced graph, and add back u to all the maximal independent sets
that do not include v. Since choosing u yields a branching factor of 2, DANCINGLINKS-MIS will
consider u close to the beginning of the search, splitting the search between independent sets
including u but not v, and independent sets including v but not u

33 3.2 Maximal convex subgraph enumeration

n-rooks is the same graph for the rook. The number of independent sets, which
are all of size n, is n!. These two families of graphs were chosen as an
example of a graph with small independent sets.

n-kings is the same graph for the king, where the size of independent sets . The
size of independent sets varies between dn/2−1e2 and dn/2e2. This family
of graphs were chosen as an example of a graph with large independent
sets.

n-europe, n-asia, n-euras are the adjacency graphs for continental European
states, continental Asian states, and for continental states in Europe and
Asia together.

n-usa is the adjacency graph for successively bigger subsets of the 48 contiguous
states of the US (excluding D.C.). n-usa includes the first n states sorted
by postal code. These two families of graphs were chosen as examples of
bounded-degree graphs, and have large independent sets (they are also
planar).

aes is a real-world example of maximal subgraph enumeration, consisting of
three different basic blocks, where accesses to non-constant memory are
considered as forbidden. This is the only application we found that took a
measurable amount of time, and did terminate in a reasonable time.

Table 3.1 shows a performance comparison between the two chosen algo-
rithms. DANCINGLINKS-MIS is faster on all benchmarks except (as expected) for
the very dense n-partite graphs. Table 3.2 compares the actual complexity mea-
sured on the chessboard graphs with the predicted complexity O

�

S deg2
�

. This
shows that the negative effect of enumerating duplicated independent sets is in
practice negligible, and that the actual complexity is usually lower.

Summary. In this section, we presented a fast and elegant algorithm to enu-
merate maximal independent sets of a graph, and particularly of a sparse graph.

The algorithm is able to discover characteristics of the graph thanks to a
vertex ordering heuristic, but does not attempt to identify special structures of a
graph, such as disconnected components or articulation points. Such structures
cause combinatorial explosion of the number of independent sets of the graph,
and can be problematic for algorithms that (like DANCINGLINKS-MIS) simply do
brute-force enumeration.

34 3.2 Maximal convex subgraph enumeration

graph nodes edges # sets DANCINGLINKS-MIS ZDD-MIS
2-partite 480 57 600 2 2.83s <0.01s
3-partite 480 76 800 3 5.19s <0.01s
4-partite 480 86 400 4 8.06s <0.01s
8-partite 480 100 800 8 10.50s <0.01s
12-partite 480 105 600 12 11.40s <0.01s
20-partite 480 108 000 20 12.30s <0.01s
30-partite 480 111 360 30 12.50s <0.01s
40-partite 480 112 320 40 12.90s <0.01s
48-partite 480 112 800 48 13.10s <0.01s
8-rook 64 448 40 320 0.23s 0.53s
9-rook 81 648 362 880 2.28s 4.73s
10-rook 100 900 3 628 800 24.20s 52.10s
8-queen 64 728 10 188 0.02s 0.33s
9-queen 81 1 056 57 600 0.14s 3.26s
10-queen 100 1 470 376 692 0.98s 31.50s
11-queen 121 1 980 2 640 422 7.20s 518.40s
7-king 49 156 201 611 0.11s 0.28s
8-king 64 210 6 214 593 3.78s 9.97s
9-king 81 272 391 918 650 230.30s —
32-usa 32 41 7 770 <0.01s 0.16s
40-usa 40 73 53 246 0.04s 1.19s
48-usa 48 105 219 062 0.18s 15.60s
36-asia 36 56 1 336 <0.01s 0.05s
47-europe 47 86 29 397 0.02s 0.87s
83-euras 83 149 29 275 464 16.50s 803.00s
aes-1 67 452 2 041 0.14s 0.26s
aes-2 69 480 2 289 0.17s 0.34s
aes-3 356 44 896 15 601 1.29s 3.97s

Table 3.1. Comparison of DancingLinks-MIS and Zdd-MIS

complexity per enumerated set
family ind. set size max. degree theoretical actual
n-queen O (n) O (n) O

�

n3� O (n)
n-rook O (n) O (n) O

�

n3� O (n)
n-king O

�

n2� O (1) O
�

n2� O (n)

Table 3.2. Worst-case and actual complexity of DancingLinks-MIS for
three families of graphs.

35 3.3 I/O constrained enumeration

W

a) b)

X Y

A B C

X Y

A B C

W

Figure 3.8. Two convex cuts; nodes with a double border are outputs
and shaded nodes are inputs. a) A cut with two inputs and two outputs;
b) Three inputs and one outputs.

In our experiments, the real-world example of convex subgraph enumer-
ation md5 did not terminate in 24 hours with DANCINGLINKS-MIS6. While
DANCINGLINKS-MIS was running, it enumerated almost 1011 independent sets;
however, because of the presence of disconnected components, it had only
explored a small fraction of the solution space. Similarly, maximal independent
set enumeration took several hours for the graph of the continental states of
Europe, Asia and Africa, due to the presence of an articulation point (Egypt).

In these cases, the search space could be split in multiple subspaces, explored
one by one with DANCINGLINKS-MIS. Partial solutions can then be expressed ef-
fectively as a ZDD and then combined using the basic combination-set operators
described by Minato [1993], thus reconciling these two approaches to combina-
torial enumeration.

3.3 I/O constrained enumeration

One possible way to make enumeration faster is to reduce the number of enu-
merated subgraphs by introducing additional validity constraints. At least in a
naïve implementation of a custom instruction, there is a direct relationship be-
tween the number of inputs and/or outputs in a subgraph and the number of
read/write ports in the register file. Therefore, limiting the number of inputs
and/or outputs in a subgraph has always been considered by the research com-
munity as an “obvious” way to cap the complexity of subgraph enumeration.
This is a very strong limitation, which would discard even very simple graphs
such as those of Figure 3.8.

6It also had to be killed after a few minutes for ZDD-MIS due to excessive memory usage.

36 3.3 I/O constrained enumeration

Alippi et al. [1999] present an interesting result considering one output but
still allowing an unlimited number of inputs. In this case, it is possible to per-
form enumeration in a single O (n) step, because the maximal subgraphs are dis-
joint. This also helps in covering, which can be performed greedily on disjoint
subgraphs (see also Section 4.2). Unfortunately, this effective solution does not
extend well to more general cases where both the inputs and outputs are limited.

Limiting both the inputs and the outputs leads to the following problem:

Problem 3 (I/O constrained subgraph enumeration): Given a direct acyclic
graph G, a set of forbidden nodes F , and a maximum number of inputs Nin and
of outputs Nout, enumerate all the convex cuts S ⊆ G under the constraints that
|I (S)| ≤ Nin, |O (S)| ≤ Nout, and S ∩ F = ;.

The problem can be solved efficiently by combining multiple branch-and-
bound strategies. This approach was presented by Atasu et al. first [2003] and
later refined by Pozzi et al. [2006]. Since these are applied on top of an exhaustive
enumeration—i.e. the algorithm branches twice on every node, trying all cuts
that include it and all cuts that exclude it—the complexity is trivially O (2n). It
is however interesting to see whether there exist better lower bounds, possibly
polynomial in the size n of the graph. In fact, Pozzi et al., as well as Chen et al.
[2007], observe that in practice the run-time of the algorithm grows slowly with
n, and much faster with the limit in the number of inputs and outputs.

Chen et al. [2007] even prove that the output size of Problem 3 is polynomial
in n; the polynomial complexity would hence be achieved by a trivial algorithm
enumerating all Nin+Nout-uples of nodes, and checking whether they satisfy the
convexity criterion and have indeed Nout outputs7. Such an algorithm, however,
would not be practical [Bonzini and Pozzi, 2006a].

The proof we present in this section, indeed, is the first that shows that a fast
algorithm for Problem 3 has polynomial time complexity in n.

Algorithm. As a first step in the proof, we provide the details of a fast imple-
mentation of the algorithm outlined in Pozzi et al. [2006]. While both Atasu et al.
[2003] and Pozzi et al. [2006] only overviewed how to implement the branch-and-
bound criteria in an efficient manner, examining the details is necessary to prove
the algorithm’s complexity.

7For example, in Figure 3.1(b) of page 18 the cut with inputs (A, B) and output X has an
additional internal output W ; Bonzini and Pozzi [2006a] detail how this fact can actually be
used to optimize the search.

37 3.3 I/O constrained enumeration

a) b) c)

0 1

32

5 6

87

sink

4

0 1

32

5 6

87

sink

4

0 1

32

5 6

87

sink

4

Figure 3.9. Eliminating invalid cuts. Supposing Nin = 2, Nout = 2,
and that the search has reached node 2 (in reverse topological order,
i.e. starting from node 8), these three cuts are all rejected: a) has three
outputs (5-7-8), b) has three permanent inputs (4-5-6), c) is not convex.
Entire branches of the search tree can be skipped: the cuts are invalid
independent of whether or not node 2 is part of the cut.

The basic idea of the algorithm is to order nodes topologically and process
them backwards; this allows several optimizations because the following invari-
ants hold8:

1. Adding to a convex cut S a node u that (in the chosen topological order)
comes before every node v ∈ S, will not remove any output from S.

2. Adding to a convex cut S a node u that (in the chosen topological order)
comes before every node v ∈ S, will not remove from I (S) the inputs
coming after u in the topological order. These inputs are called permanent.

3. Adding to a non-convex cut a node u that (in the chosen topological order)
comes before every node v ∈ S, will not restore the convexity of the cut.

From each of these invariants we can derive a condition that, if broken, al-
lows to discard the entire search tree under S. These conditions, represented in
Figure 3.9, are respectively that |O(S)| > Nout, that |

�

ui ∈ I(S) : i ≥ index
	

| >
Nin, and that S is not convex.

The pseudocode in Figure 3.10 is an implementation of the algorithm. Func-
tion SEARCH tries adding to S all the nodes

�

ui ∈ V : i < index
	

, and expects as

8Proofs are included in Atasu et al. [2003] (invariants 1 and 3) and Pozzi et al. [2006].

38 3.3 I/O constrained enumeration

SEARCH(S, index, npermin, nout)
� u0 to u|G|−1 represent nodes of G, ordered topologically
� u|G| is the artificial sink node
� The search is started with SEARCH(;, |G|, 0, 0).
if uindex 6∈ S then

if ∃v ∈ succ(uindex) : v ∈ S then
npermin = npermin + 1

if npermin > Nin then return
else

if uindex ∈ F then return
if ¬∀v ∈ succ(uindex) : v ∈ S then

nout = nout+ 1
if nout > Nout then return
if S is not convex then return
if |I (S)| ≤ Nin then S is a valid cut

if index > 0 then
SEARCH(S ∪

�

uindex−1

	

, index− 1, npermin, nout)
SEARCH(S, index− 1, npermin, nout)

Figure 3.10. Subgraph enumeration algorithm from Pozzi et al. [2006].

a precondition that S does not include any of them. It also assumes that the last
node in the topological order is forbidden. This is true because the last node in
the order will have no successors and, after the artificial sink node vsink is added,
it will be the only node without a successor.

Our O (1) implementation of search tree pruning works as follows. Function
SEARCH maintains a count of outputs and permanent inputs, i.e. nodes that are
inputs for all the cuts in the nodes that will be explored recursively; these are
those inputs ui ∈ I (S) such that i ≥ index. These two counts are updated on
every recursive call. If the number of outputs or permanent inputs exceeds,
respectively, Nout or Nin, exploration of an entire branch of the search tree can be
avoided.

Note that of the three invariants, the third is only needed to prove the cor-
rectness of the algorithm; the first two instead are also central to proving its
complexity. In fact, we can prove the following theorem:

Theorem 3: The I/O constrained enumeration algorithm of Atasu et al. [2003]

has exponential worst-case time complexity.

39 3.3 I/O constrained enumeration

Figure 3.11. A complete n-node tree is a data-flow graph with an ex-
ponential number of convex subgraphs.

Proof. The only difference between this algorithm and the one of Pozzi et al.
[2006] is that the former does not consider condition 2, while the latter does.
Then, consider a data-flow graph G which is actually an upside-down complete
binary tree, with n nodes none of which is forbidden (see Figure 3.11). This
graph has only one maximal subgraph enumeration, but Problem 3 requires all
subgraphs satisfying the constraints to be enumerated.

Since condition 2 is not considered, the algorithm behaves in the same way,
and has the same complexity, independent of Nin’s value. The algorithm will
compute the same set of subgraphs for Nin = 1 or Nin = n, even though most of
them will obviously be discarded if Nin is low.

For high enough Nin, any subtree of G is a valid subgraph. The num-
ber of such subtrees is exponential in the number of nodes [Sloane, 2009, se-

quence A157679; see also sequences A004019 and A115590]. This proves the theorem.
2

The same reasoning applies if invariant 1 is removed.

Complexity analysis. Based on this implementation, we will now prove that,
in addition to the exponential O (2n) upper bound for time, this algorithm also
admits an alternative bound of O

�

nNin+Noutτ(n)
�

, where τ(n) is the complexity of
processing a leaf of the search tree and of the convexity test (whichever is more
expensive). Our proof is constructive; we transform the pseudocode so that the
different upper bound is clearly visible. Still, all the versions of the pseudocode
have the same complexity; no further optimizations are introduced.

The first step is to move to the caller the update of npermin and nout according
to how many successors of uindex are in the cut. The modified pseudocode of
Figure 3.13 shows that the three cases of Figure 3.12 are possible:

40 3.3 I/O constrained enumeration

a) b) c)

N N N

including
node N

excluding
 node N

including
node N

excluding
 node N

including
node N

excluding
 node N

N output N outputN N

perm.
input

N

perm.
input

N

Figure 3.12. Updating npermin and nout after N is included/excluded
from the current cut. a) Node N has zero successors in the cut; b)
node N has at least one successor in the cut and at least one successor
not in the cut; c) node N’s successors are all part of the cut.

• if the node has zero successors in the cut, adding it to the cut will create
an output;

• if the node has at least one successor in the cut, and at least one successor
not in the cut, adding it to the cut will create an output, and excluding it
will turn it into a permanent input;

• if the node’s successors are all part of the cut, adding it to the cut will not
create an output, but excluding it will still create a permanent input.

In order to query how many successors of any node are part of S, a side table
is updated every time nodes are added and removed from the cut. When node
u is added or removed, the count changes for all its predecessor, giving a cost of
O
�

din
�

, where din is the maximum in-degree of G, for each recursive call. This
cost is smaller than τ(n), because the convexity test can also be done in O

�

din
�

time, and thus can be ignored.
We then proceed to transform one of the two recursive calls into iteration.

In Figure 3.14, each recursive call then increments one of npermin or nout. Since
npermin < Nin and nout < Nout, there can be no more than Nin+Nout recursive calls
active at any time, each of which will execute the while loop at most n times.
This proves the complexity result given at the beginning of this section.

Pozzi et al. [2006] actually describe a more general condition for declaring an
input permanent. In addition to all inputs coming after uindex in the topological

41 3.3 I/O constrained enumeration

SEARCH-2(S, index, npermin, nout)
if npermin > Nin ∨ nout > Nout then return
if uindex ∈ S then

if uindex ∈ F then return
if S is not convex then return
if |I (S)| ≤ Nin then S is a valid cut

if index > 0 then
if ¬∃v ∈ succ(uindex−1) : v ∈ S then

� No successors are in the cut
SEARCH-2(S ∪

�

uindex−1

	

, index− 1, npermin, nout+ 1)
SEARCH-2(S, index− 1, npermin, nout)

elseif ¬∀v ∈ succ(uindex−1) : v ∈ S then
� Some (but not all) successors are in the cut
SEARCH-2(S ∪

�

uindex−1

	

, index− 1, npermin, nout+ 1)
SEARCH-2(S, index− 1, npermin+ 1, nout)

else
� All successors are in the cut
SEARCH-2(S ∪

�

uindex−1

	

, index− 1, npermin, nout)
SEARCH-2(S, index− 1, npermin+ 1, nout)

Figure 3.13. Moving checks to the caller.

order, all forbidden inputs (including external inputs I ex t) are permanent. Since
they cannot be included in the cut, adding nodes to S will not remove forbidden
inputs from I (S). This allows the algorithm to achieve even better complexity in
practice.

Adding this more efficient condition to our implementation is easy. For the
pseudocode in Figure 3.13, for example, it suffices to add the following line at
the very beginning of the function:

npermin = npermin+ |(I (S)\ I
�

S \
�

uindex
	�

)∩ F |

Constraining enumeration with data-flow analysis. Earlier in this section, we
showed how I/O constraints can be advantageous and can provide lower com-
plexity bounds. We now further extend this observation, presenting a framework
to design algorithms according to specific enumeration constraints, with even
better performance.

42 3.3 I/O constrained enumeration

SEARCH-3(S, index, npermin, nout)
start= index
while index ≥ 0∧ npermin ≤ Nin ∧ nout ≤ Nout ∧

∧ S ∩ F = ; ∧ S is convex do
if uindex ∈ S ∧ |I (S)| ≤ Nin then S is a valid cut

index = index− 1
if index > 0 then

if ¬∃v ∈ succ(uindex) : v ∈ S then
SEARCH-3(S ∪

�

uindex
	

, index, npermin, nout+ 1)
elseif ¬∀v ∈ succ(uindex) : v ∈ S then

SEARCH-3(S ∪
�

uindex
	

, index, npermin, nout+ 1)
npermin = npermin+ 1

else
SEARCH-3(S, index, npermin+ 1, nout)
S = S ∪

�

uindex
	

S = S\
�

ui : i < start
	

Figure 3.14. Eliminating one recursive call.

An example is given by the task of enumerating valid subgraphs for a CCA
(Configurable Computation Accelerator; see Clark et al., 2006). Besides the num-
ber of inputs and outputs, in this case valid subgraphs have to be subgraphs also
of a “template” data-flow graph representing the capabilities of the CCA.

A conservative approximation of this additional constraint is to limit the max-
imum depth of valid subgraphs, so that it does not exceed the maximum depth
of the accelerator. This leaves precise filtering of invalid subgraphs to a separate
check, as done by Clark et al. [2006] (see also Figure 2.2), but the technique pre-
sented here however performs subgraph enumeration faster, and runs subgraph
isomorphism fewer times.

The maximum depth poses a strong bound on the size of the output. Assum-
ing that the maximum depth is Nrows and the in-degree of the data-flow graph
is limited by d, the number of valid subgraphs is at most dNrows nNout subgraphs.
This is considerably smaller than nNin+Nout , since d is usually 2 or 3 and Nrows is
≤ 7 [Clark et al., 2004]; this means that the solution of Problem 3 includes many
graphs (the very large ones) that are of no interest. In fact, Clark reported enu-
meration times well over 10 minutes for large basic blocks [Clark et al., 2006].

43 3.3 I/O constrained enumeration

DF-SEARCH(S, index, npermin, nout)
� u0 to u|G|−1 represent nodes of G, ordered topologically
� u|G| is the artificial sink node
� The search is started with SEARCH(;, |G|, 0, 0).
� OU T[v] and IN[v] are the propagated data-flow values for v.
� ∧ and f (·) define the data-flow analysis semilattice
� limit(·) defines the data-flow characteristics of a node
if uindex 6∈ S then

if ∃v ∈ succ(uindex) : v ∈ S then
npermin = npermin + 1

if npermin > Nin then return
else

if uindex ∈ F then return
OU T[v] =

∧

v∈S∩succ(uindex)
f (IN[v])

IN[v] = OU T[v]∧ limit(v)
if IN[v] =⊥ then return
if ¬∀v ∈ succ(uindex) : v ∈ S then

nout = nout+ 1
if nout > Nout then return
if S is not convex then return
if |I (S)| ≤ Nin then S is a valid cut

if index > 0 then
DF-SEARCH(S ∪

�

uindex−1

	

, index− 1, npermin, nout)
DF-SEARCH(S, index− 1, npermin, nout)

Figure 3.15. Data-flow-based constrained enumeration algorithm.

We will now show how to define this problem using a data-flow analysis
framework [Aho et al., 1988]. This makes it easy to extend the algorithm to more
complex cases.

This is a backwards data-flow analysis problem—for example, the depth of a
node depends on the depth of all successors. As common in data-flow analysis,
the propagation of values is described by a semilattice and a transfer function,
which is called f (·) in the pseudocode of Figure 3.15. A node is only added to the
subgraph if its associated value is not the bottom element ⊥ of the semilattice.

The valid depths of a node in a subgraph, for example can be represented by
a semilattice on the set {0, 1, . . . , Nrows}; the meet operator is a ∧ b = min(a, b),
the minimum of the two depths, so that 0 is the bottom element ⊥ and Nrows is

44 3.3 I/O constrained enumeration

the top element >. The transfer function is f (x) = x − 1; note that the transfer
function need not be defined on ⊥, because it is only applied to nodes that are
part of the subgraph.

The data-flow framework includes another function to cater for more compli-
cated constraints. This is limit(·) and it associates an element of the semilattice
to each node; it is used to specify the data-flow characteristics of each node. In
this simple example, it is always equal to > (the neutral element of the meet
operator), since nodes can be placed at any level.

The solution of the problem has to be recomputed for every candidate sub-
graph; this is not a problem because the data-flow graph is acyclic, hence the
solution can be computed in a single reverse topological order visit. In fact, each
node can be visited as it is added to the graph, as in Figure 3.15, thus embedding
the solution directly in the enumeration algorithm.

A complete application of the data-flow framework will be shown in Sec-
tion 5.2.2. As we will show in that section, data-flow-based enumeration listed
valid subgraphs of large basic blocks, under constraints similar to the ones pre-
sented in this section, in less than a millisecond.

Chapter 4

Covering algorithms for a
customizable processor compiler

If enumeration gives the answer to the question “what can be used as a cus-
tomizable instruction?”, covering is the process of deciding “what will be used
as a customizable instruction” and where. The purpose of this step is to select a
set of custom instructions to be actually implemented and used.

Covering is an optimization problem. Therefore, the solution of the problem
is the set of instruction set extensions with the highest merit. While we used the
term gain for the outcome of technology mapping passes, merit is computed by
the covering algorithm based on the gain—for example it may include profiling
information to favor frequently executed instructions. In this chapter, we will
compare different approaches to covering with different complexities, ranging
from greedy to NP-complete.

Section 4.1 formalizes the problem of covering including the detection of
subgraphs that are isomorphic, that is perform the same function. This is an im-
portant addition to the covering pass, because unrolled loops, macro expansion,
function inlining, generation of addresses for array accesses will all cause the
same code to appear across multiple basic blocks; detecting this is necessary in
order to achieve good speedups with only a few instruction set extensions.

After this introductory step, starting from Section 4.2 the case of non-
overlapping custom instructions is analyzed in depth. First the simplest cases
of covering are solved. These pose no limit on the number of instruction set
extensions chosen, force the merit of a subgraph to be computed upfront, and do
not consider the presence of multiple isomorphic copies of the same subgraph.

Then, in Section 4.3 the case of a bounded number of custom instructions is
treated, together with two orthogonal extensions to the basic problem. Multiple

45

46 4.1 Problem formulation

technology-mapping steps can be added, allowing fast conservative estimates of
an instruction’s merit to be refined in successive steps. Alternatively, isomor-
phism can be taken into account; the approach presented in this chapter is able
to detect isomorphism across basic blocks or even procedures, and it can favor
smaller instructions with higher reusability while retaining the ability to find
sizable (30–40 nodes) instructions.

4.1 Problem formulation

In this section, we show a generic formulation of covering. The inputs to cover-
ing are:

• a set of graphs, G = {G1, G2, ..., Gi}, representing the application’s basic
blocks.

• sets of subgraphs Si = {Si1, Si2, ..., Si j} representing all potential instruction
set extension instances within each basic block Gi. We will call S the set
⋃

Gi∈G Si of candidate subgraphs taken from all basic blocks, i.e. the set of
all candidates in the application.

• a function MC(·) that takes a subset of S, representing the occurrences of
custom instructions that were selected for hardware execution, and return
the merit of the choice (for example an estimate of saved clock cycles).

and the problem to be solved can be stated very simply.

Problem 4 (Custom instruction covering): Select a subset C of S that maxi-
mizes MC(C).

In the remainder of this chapter, covering will be analyzed almost exclusively
under the further constraint that the chosen subgraphs do not overlap. Before,
however, we analyze the components of MC(C) more closely. This helps under-
standing the rationale behind the limitation to non-overlapping subgraphs.

The merit function can be chosen more or less arbitrarily. Here we propose a
simple merit function estimating the number of clock cycles saved by a particular
choice of instruction set extensions. This definition does not depend on the
covering algorithm, but rather on the characteristics of the program and the
target hardware. Its components are:

• the execution frequency fi of each graph Gi, to be gathered by profiling,

47 4.1 Problem formulation

• a node latency function λsw(·) returning the time needed to execute a node
of the graph G when it is not part of a custom instruction (this latency can
be fractional if the processor is superscalar);

• a subgraph latency function λhw(·) returning the time needed to execute a
subgraph Si j as a custom instruction.

Note that both λsw(·) and λhw(·) are latencies for a single microprocessor instruc-
tion; the overall cost of a basic block is the sum of λsw for all nodes executed as
regular instructions, and λhw for nodes placed in an ISE. Based on this intuition,
it is possible to define the merit function in terms of these latencies.

The cost of executing a basic block in software is of course
∑

gi∈Gi
fiλsw(gi).

If parts of it are moved to custom instructions, the λsw won’t have to be included
anymore, and on the other hand the λhw appears for the chosen subgraphs.

It is almost always assumed that the removed nodes are the same that form
the chosen subgraphs1, that is

⋃

Si j∈C Si j. Then, the two contributions to the
merit function are as follows:
∑

gi∈
⋃

Si j∈C Si j
fiλsw(gi) is the savings from removed instructions

−
∑

Si j∈C fiλhw(Si j) is the additional cost from hardware execution.
(4.1)

This however is not enough, as not all values of C may be valid—the con-
straint that chosen subgraphs should not overlap is an example. Therefore, a
predicate pC(·) is introduced which establishes whether the chosen subset C of
custom instructions is acceptable. This predicate is what really distinguishes dif-
ferent covering algorithms.

As an example, here are two possible definitions of it. The first corresponds
to non-overlapping subraphs, while the second accepts a collection of extensions
if it fits the available silicon area Amax , with Ahw(Si j) being the area needed to
include a subgraph Si j on the accelerator:

pC(C) ⇔ Si j ∩ Sik = ; ∀Si j, Sik ∈ C (4.2)

pC(C) ⇔
∑

Si j∈C

Ahw(Si j)< Amax (4.3)

1A notable exception to this definition, as pointed out in Chapter 2, is made by Cong et al.
[2004]. The approach used in that paper might occasionally duplicate computations not only
across multiple custom instructions, but also between software and hardware. It is possible to fit
this in the proposed generic definition of a merit function by introducing a dummy instruction
set extensions for each of these duplicated nodes.

48 4.2 Non-overlapping subgraphs and generalized exact covers

These two very different problems have exactly the same formalization ex-
cept for the validity predicate pC(·). Note that so far isomorphism has not
been taken into account; this would complicate the definition of pC(·) in equa-
tion (4.3), though not in (4.2).

Based on this and on (4.1), the final definition of MC(·) is as follows:

MC(C) =

(
∑

gi∈
⋃

Si j∈C Si j
fiλsw(gi)−

∑

Si j∈C fiλhw(Si j) if pC(C)

−∞ otherwise
(4.4)

Different definitions of pC(·) may drive the choice of the algorithms used.
For example, (4.3) reminds of the definition of the knapsack problem; in fact, a
dynamic programming solution can be used successfully in this case [Cong et al.,

2004].
In addition, some particular definitions might allow simplifications in equa-

tion (4.4), giving rise to more specific problems. This is what happens in the
case of non-overlapping subgraphs, given by equation (4.2).

4.2 Non-overlapping subgraphs and generalized ex-
act covers

The main advantage of disallowing overlapping sugraphs is that, because sub-
graphs of different basic blocks cannot overlap by construction, it is possible to
solve the problem one basic block at a time and combine the solutions at the end.
This is important even if, as we shall show, the problem remain NP-complete
within a basic block.

In the context of our framework, however, the constraint of nonoverlapping
subgraphs has an additional property that is of great interest. This is the pos-
sibility to express MC(·) in terms of the merit of single subgraphs rather than in
terms of λsw(·) and λhw(·). This is true because, in this case, each node will only
be counted once in the

∑

gi
fiλsw(gi) term of equation (4.4).

We will call M(·) the merit of a subgraph. When expressed in terms of the
node (software) and subgraph (hardware) latencies, its definition is as follows:

M(Si j) =−λhw(Si j) +
∑

gi∈Si j

λsw(gi) (4.5)

This is exactly the gain computed by the technology mapping passes and, in fact,
can be taken as a definition of gain.

49 4.2 Non-overlapping subgraphs and generalized exact covers

When equation (4.5) is used to simplify the definition of MC(C), this be-
comes:

MC(C) =

¨ ∑

Si j∈C fi M(Si j) if no two subgraphs overlap

−∞ otherwise

While covering a single basic block gi, it is possible to take out the scaling
factor fi and simply sum M(Si j)—i.e. the gain from technology mapping—across
the chosen subgraphs. The result is the maximum weighted set packing problem:

Problem 5 (Maximum weighted set packing): Given a binary matrix A, con-
sider all sets of rows such that no column has more than one 1. Given a weight
function wi for each row, find the solution S that maximizes

∑

i∈S wi.

This problem is NP-complete and is related to the exact cover problem, which
is also NP-complete [Garey and Johnson, 1979]. As in the exact cover problem, in
every column there can be at most one 1; however for some columns it may also
be acceptable to have no 1.

In our case, the matrix has one column per node in the basic block and one
row for each candidate subgraph Si j, with ones corresponding to the nodes that
are in Si j. Also, all columns may have no 1: this is the same as stating that all
subgraphs can be kept as software implementations.

The matrix can be seen as the incidence matrix of a hypergraph: the set
of nodes in the hypergraph is the same as in the data-flow graph, while each
candidate ISE is represented by an hyperedge the includes all the nodes in the
ISE. This is shown in Figure 4.1(a).

This problem is solved with a branch-and-bound algorithm by Clark et al.
[2006] for a particular merit functions, namely M(Si j) = |Si j|. In the general
case, it can be reduced to the maximum weighted independent set problem via
the following construction, depicted in Figure 4.1(b)(c).

Theorem 4: Let A be the incidence matrix in an instance of Problem 5. It is
possible to construct a conflict graph with one vertex for each row of A (with
weight wi), and whose edges are created as follows: for each column of A,
include a clique consisting of all the rows that have a 1 in that column. The
maximum weighted independent set of the conflict graph is also the solution to
the maximum weighted generalized exact cover instance.

Proof. Two vertices of the conflict graph are adjacent if and only if there is a
column such that both of them have a 1 there; therefore all independent sets are

50 4.2 Non-overlapping subgraphs and generalized exact covers

a) b)

A

B

C

DE

A

B

C

D
E

c)

A
C

E

B

D

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 4.1. Evaluating the merit of a search tree leaf. a) A hypergraph
whose hyperedges represent occurrences of custom instructions. b) In
the corresponding conflict graph an edge connects two overlapping
occurrences. c) An optimal choice of extensions corresponds to a
maximum independent set of the conflict graph.

also valid generalized covers and vice versa. In particular, since the weight of
an independent set S is also

∑

i∈S wI , the maximum weighted independent set is
also the maximum weighted generalized exact cover. 2

It is interesting to notice the parallel between this construction, which gives
the conflict graph in terms of a clique decomposition, and the one of Sec-
tion 3.2.1, which gave the conflict graph in terms of a bipartite graph decompo-
sition.

This construction is also connected to the concept of a primal graph of a
hypergraph. The primal graph of a hypergraph H is defined to have the same
vertices as H, and edges between all pairs of vertices contained in the same edge
of H. Therefore, every hyperedge of H becomes a clique of the primal graph.
This leads to the following theorem:

Theorem 5: Let H be the hypergraph whose incidence matrix is A and let H∗ be
its dual. Then the conflict graph is the primal graph of H∗.

Proof. Since H∗’s nodes are the edges of H, the primal graph of H∗ has a node
for each edge of H. This is also true of the conflict graph.

H∗ has an edge x for each node u of H; x includes each and every edge of
H that contains u. Then, each node u of H becomes in the primal graph of H∗

a clique, which is formed by all edges of H that include u. Again, this matches
exactly the construction of the conflict graph given by Theorem 4. 2

In turn, every maximum weighted independent set (MWIS) problem can be
easily turned into an instance of problem 5 Let G be the graph for which the

51 4.3 Covering in the presence of isomorphism

MWIS is sought; then every edge in G can be taken as a 2-hyperedge of H∗.
Constructing the dual of H∗ gives an equivalent maximum weighted generalized
exact cover problem.

4.3 Covering in the presence of isomorphism

So far, we presented covering algorithms that do not cap the number of distinct
ISE that are selected. While this can be a viable choice in some cases, in general
the target instruction set will pose such a limit. In this case, the ability to detect
equivalent ISE and only include them once is very useful in order to enhance the
quality of the generated extensions.

Search algorithms that explore the data-flow graph and generate ISE in a
single step (for example ITERATIVE, from Pozzi et al., 2006) can perform iso-
morphism tests during the exploration. For example, the ITERATIVE algorithm
exhaustively enumerates all valid subgraphs of a data-flow graph (basic block)
and tracks at any time only one subgraph, which is the most profitable subgraph
found so far. If it finds a subgraph with the same merit as the current best, ITER-
ATIVE can check the two subgraphs for isomorphism and include both subgraphs
in the output.

While this is already quite effective, it has two major limitations. First, since
the search works one basic block at a time, this enhancement will not detect
replicas that occur in different basic blocks. Secondly, it will always, for example,
prefer an ISE which is the biggest but occurs only once, rather than a slightly
smaller one occurring twice. The results we’ll present in Section 4.4 will show
that this case happens quite often in practice.

4.3.1 Establishing isomorphism of candidates

In the framework of Section 2.3, the isomorphism identification pass adds to the
covering another input besides the ones of Section 4.1. Isomorphism informa-
tion consists of a partition of S into n equivalence classes U1, U2, ..., Un, all of the
elements of an equivalence class being isomorphic to each other.

Isomorphism detection is treated as a black box. Most past work on the
subject looked for structurally isomorphic subgraphs, using generic graph iso-
morphism algorithms such as nauty [McKay, 1981] or vf2 [Cordella et al., 2004]. In
principle, however, the same flow can also accommodate tests for behavioral
equivalence. For example, graph rewriting (see also Section 5.2.1) or algebraic
techniques [Peymandoust et al., 2003] could be applied to some or all of the sub-

52 4.3 Covering in the presence of isomorphism

graphs in the list, and structural isomorphism could be verified on the resulting
list.

Since isomorphism detection algorithms are used as oracles, an efficient im-
plementation should not rely only on the speed of the isomorphism test, but it
should also try to limit the number of invocations of the test. This is worst-case
quadratic in the number of subgraphs, since in principle each of them should
be compared with every other subgraph. However, it is possible to partition the
subgraphs according to various features (the number of nodes, inputs or out-
puts; the software cost; the length of the critical path; and so on) and only test
isomorphism between subgraphs for which all the features match.

By separating the n subgraphs into p partitions (assumed of equal size), the
number of queries will be O

�

p(n/p)2
�

= O
�

n2/p
�

. The number of partitions
is in general high enough that this improvement speeds up the algorithm by
several orders of magnitude, and makes an isomorphism-aware compilation flow
reasonably fast.

The isomorphism oracle can also be optimized by making sure that the search
is pruned effectively. Algorithms such as nauty or vf2 let their clients label the
graph vertices and edges arbitrarily, and then prune and speed up the search
whenever non-matching labels are encountered.

The meaning of vertex labels is intuitive in a data-flow graph, as it represents
either a variable name (for input nodes) or an operator symbol (for expression
nodes). Edge labels, instead, identify whether the source node is the LHS or
RHS of the operator described by the destination node: the data-flow graphs
corresponding to a− b and b− a, for example are not isomorphic, because the
edges linking a to − are labelled respectively as LHS and RHS. It is possible to
implement a very limited kind of behavioral equivalence test by giving the same
label to edges leading to a commutative operator, so that the data-flow graphs
corresponding to a+ b and b+ a are indeed isomorphic.

4.3.2 Greedy covering

The challenge is now to devise a covering algorithm that processes subgraphs
labeled with merit information M(·) and with isomorphism information.

The one presented in Figure 4.2 proceeds greedily, picking the best candi-
date ISE and its occurrences (a set of non-overlapping isomorphic subgraphs)
at every step. The algorithm alternates between two phases, namely finding a
valid covering for a single candidate, and determining if that candidate can be
the next greedy choice.

53 4.3 Covering in the presence of isomorphism

COVER-SINGLE-CANDIDATE(candidate, chosen)
� candidate is a set isomorphic subgraphs
� chosen is a set of nodes that were previously

chosen as part of an ISE
N = chosen
O = {}
OCC = {}
for each element S in candidate do

if N ∩ S = ; ∧
there are no o1, o2 ∈ O, s1, s2 ∈ S such that
there is a path from o1 to s1

and a path from s2 to o2 then
N = N ∪ S
O = O ∪ outputs of S
OCC = OCC ∪ {S}

return OCC

COVER(candidates, chosen)
� candidates is a set of sets. Each element of

candidates includes many isomorphic subgraphs
� chosen is a set of nodes that were previously

chosen as part of an ISE
H = HEAP-NEW

V = {}
for each element c in candidates do

HEAP-INSERT-NODE(H, M(c), c)
while HEAP-MAX(H) /∈ V do

c = HEAP-EXTRACT-MAX(H)
OCC = COVER-SINGLE-CANDIDATE(c, chosen)
HEAP-INSERT-NODE(H, M(OCC), OCC)
V = V ∪ {OCC}

return HEAP-MAX(H)

Figure 4.2. A greedy covering algorithm.

The first phase (COVER-SINGLE-CANDIDATE) eliminates overlapping replicas
from each candidate set of isomorphic subgraphs. The reason for this step is
that of course the covering algorithm may only choose one among all the sub-
graphs that include a given program node. In particular, when a node appears

54 4.3 Covering in the presence of isomorphism

in several isomorphic subgraphs, this phase associates each node to at most one
such subgraph. After choosing the first ISE, in addition, this phase will also
discard subgraphs that overlap a previously chosen extension.

This selection process is run on the family of isomorphic subgraphs that has
the highest merit. What is left to do for a greedy algorithm is then to recognize
whether this family is in fact the single best possible ISE. If this is not the case,
the algorithm shall find another candidate for which to find a valid covering.

A simple and efficient implementation will be described in the remainder
of this section. We call a candidate valid if its covering has already been com-
puted by COVER-SINGLE-CANDIDATE; otherwise the candidate is termed invalid.
The overall merit of a candidate is the sum of all the merits from each occur-
rence; and since COVER-SINGLE-CANDIDATE will only discard some copies of the
subgraph, it may only decrease the merit of the candidate. Therefore, the merit
of an invalid candidate may overestimate the real figure, while the merit of a
valid candidate is correct.

The algorithm then looks repeatedly at the candidate with the highest maxi-
mum merit. If it is valid, it can be chosen immediately; otherwise the merit may
be overestimated, and we need to find the candidate’s cover using COVER-SINGLE-
CANDIDATE—after which the candidate is valid, and the algorithm repeats. After
each call to COVER-SINGLE-CANDIDATE, the algorithm may or may not be chosen
depending on how much the valid covering caused its merit to decrease.

The efficient implementation of the algorithm is based on a binary heap data
structure. Heaps store a set of values, each associated with a key, and allow a fast
(O
�

log n
�

) implementation of two operations: insert-node (insert a key-value
pair), extract-max (delete the pair whose key is maximum2). The maximum can
also be read non-destructively (operation max) in constant time. The algorithm
using this data structure is also shown in Figure 4.2.

Multi-step greedy covering. In the framework of Section 2.3 the covering
phase may rely on more than one technology mapping algorithm. By evaluat-
ing the hardware cost of a given subgraph with increasing detail—theoretically,
down to the level of logic synthesis—it is possible to restrict more expensive
analyses only to the best candidates, and dually, to run only the fastest technol-
ogy mapping routines on the entire list of subgraphs.

The algorithm easily extends to the case when multiple technology mapping
subroutines are available, As remarked in Figure 4.3, in this case the merits

2Of course, heaps can be implemented so as to extract the pair whose key is minimum. In
general, however, only one of extract max and extract min can be implemented, short of coupling
two effectively independent data structures.

55 4.3 Covering in the presence of isomorphism

COVER-MULTI-TM(candidates, chosen, max tm)
� candidates is a set of sets. Each element of candidates

includes many isomorphic subgraphs
� chosen is a set of nodes that were previously chosen as part

of an ISE
� For every candidate c, merit functions obey M1(c)> M2(c)>

> . . .> Mmax tm(c)
H = HEAP-NEW

for each element c in candidates do
HEAP-INSERT-NODE(H, M1(c), c, 0)

while true do
(c, pass) = HEAP-EXTRACT-MAX(H)
if pass = max tm then

return c
if pass = 0 then

OCC = COVER-SINGLE-CANDIDATE(c, chosen)
pass = pass+ 1
HEAP-INSERT-NODE(H, Mpass(OCC), pass)

Figure 4.3. Supporting multiple technology mapping steps.

computed by the subroutines on a subgraph S will be MC 1(S) > MC 2(S) > . . . >
MC max tm(S), and the algorithm will refine the estimate for the top element of
the heap until it reaches the most precise one.

4.3.3 Optimal covering

Clark et al. [2006] give an optimal branch-and-bound covering algorithm for the
special merit function M(Si j) = |Si j|. This special case is important because it
achieves optimality if the search is limited to one-cycle instructions, and the cost
of executing any node in software is also the unit cost. In this case the merit of
a candidate of size s is s− 1. Adding 1 to the merit of each and every candidate
does not change the choices of the covering algorithm, so the subgraph size s
itself can be used as the merit function.

In general, however, different factors can complicate the merit function:

• the cost of hardware execution can be higher than one cycle, especially if
synchronous components (such as memories) are included in the ISE, or if

56 4.3 Covering in the presence of isomorphism

the register file bandwidth is a bottleneck [Pozzi and Ienne, 2005; Verma et al.,

2007];

• the cost of software execution can be fractional and thus not proportional
to the basic block size. For example, when if-conversion is used, the cost
of operations in the conditionally-executed basic blocks should be scaled
by the basic blocks’ execution frequencies;

• the cost of software operations included in ISEs might be higher than one
cycle, for example when custom instruction can include load nodes [Biswas

et al., 2006]. This is the case for the experimental platform we used, since it
allows the accelerator to include read-only memories.

Therefore, we present a different optimal solution to the covering problem
(with isomorphism, non overlapping solutions, and a bounded number of in-
structions Umax).

Because of the bound on the number of chosen instruction, a first idea could
be to perform exhaustive search on the whole universe of subgraphs S; given |S|
candidate ISEs, the worst-case complexity of this approach would be O

�

|S|Umax
�

.
Of course, since |S| can be as high as 106, this has to be augmented with pruning
strategies to be usable in practice.

Optimizing exhaustive search. First of all, we will describe a branch-and-
bound criterion for this algorithm, described in Figure 4.4(a). It relies on run-
ning the search after the candidates have been grouped into equivalence classes.
The equivalence classes U1, ..., Un, furthermore, are sorted according to the max-
imum merit that they can contribute (from highest to lowest), and higher-merit
classes are always tried first.

Let m1, ..., mn be the merit of each equivalence class. Then, at any point,
if C is a partial solution, m is its merit, and the next equivalence class to be
examined is Uk, the merit bound is mmax = m+

∑

k≤i<k+Umax−|C |
mi. If the best

merit achieved so far is greater than or equal to mmax , it is useless to examine
Uk or any equivalence class that follows it.

Once a leaf of the search tree is reached, it is necessary to evaluate the merit
of the entire solution (Problem 5). A secondary pruning criterion, shown in
Figure 4.4(b), can be used to avoid evaluating the merit of each and every leaf
of the search tree. To this end, for each subgraph in the solution (including

57 4.3 Covering in the presence of isomorphism

gain so far=50

gain so far=70

max. gain left = 20

gain so far=0

bound = 70 + 20 = 90

A

B
C

gain of A = 40 (4 per node)
gain of C = 36 (3 per node)
gain of B = 30 (5 per node)

previous bound = 40+36+30 = 106

sum of per-node gains: 96

a) b)

U = 4 max

ISE left = 3

ISE left = 2
 4 4
 4 4 4
 4 4 4 3 3 3
 4 5 5 3 3 3
 5 5 3 3
 5 5 3 3

Figure 4.4. Pruned exhaustive search. a) ISEs are examined in order
of decreasing size. When n search levels are left, the bound is given
by the current merit, plus the merit of the next n ISEs to be examined.
b) For search tree leaves, the bound is refined to skip the evaluation
of MWIS for most of the leaves. A covers 10 nodes, B covers 6, C
covers 12 (total 28), but together they only cover 25 nodes; the “sum
of per-node merits” criterion only counts the three overlapped nodes
once.

overlapping copies) we compute a per-node merit:

mi j =

¨

fi M(Si j)/|Si j| if a subgraph isomorphic to Si j is part of the solution
0 otherwise

Then, we compute the maximum merit for each node n, which is
maxi, j:n∈Si j

mi j, and sum these values over all the nodes in the application.
In other words, we look at subgraphs that could cover that particular node, and
take the highest per-node merit. The merits of all the nodes are then summed,
yielding an upper bound to the solution’s merit3.

Unlike the previous criterion, this one is only useful for search tree leaves
and does not allow to prune the search; however, it provides a better estimate
of the solution’s merit, and therefore it decreases the number of MWIS instances
to be solved.

3Rather than redoing work unnecessarily for every leaf, it is of course possible to compute
the merits and their sum incrementally during the exploration of the search tree.

58 4.3 Covering in the presence of isomorphism

ITERATIVE-OPTIMAL(S, count)
1 Cgreed y = GREEDY(S, count)
2 repeat
3 C = Cgreed y

4 repeat
5 Cprev = C
6 C = BRANCH-BOUND-OPTIMAL({s ∈ S : ∃s′ ∈ Cprev, s ∩ s′ 6= ;}, count)
7 while C 6= Cprev

8 Cgreed y = GREEDY({s ∈ S : ∀s′ ∈ C , s ∩ s′ = ;} ∪ C , count)
9 while Cgreed y better than C

Figure 4.5. An iterative, optimal covering algorithm

Despite these improvements, however, exhaustive search is still impractically
expensive and, for all but the smallest inputs, even a solution with Umax = 2
may require unreasonable time. For this reason, we developed a more practical
optimal algorithm, which couples exhaustive search (on a reduced universe)
with greedy search.

Optimal hybrid search. In this algorithm, called hybrid search, exhaustive
search is used to improving a pre-existing solution, while greedy search ensures
that the search does not get stuck on a local optimum (which would be possible
because of the reduced universe).

This algorithm is based on the following observation:

Theorem 6: There is a node that is covered both by the greedy solution and by
an optimal solution.

Proof. Let C be a greedy solution to problem, where {UC1, ...UCUmax
} are the

candidates in C , grouped according to their equivalence class, and m1 ≥ m2 ≥
. . .≥ mUmax

are the total merits achieved by each equivalence class. If the greedy
solution is optimal, the theorem is trivially true.

Otherwise, we can use the following proof by contradiction. Let C+ be an
optimal solution that is disjoint from C .

Let UC+k be the highest-merit set of isomorphic subgraphs in C+, and let its
merit be m+k ; k is the lowest value such that m+k > mi ∀i : k ≤ i ≤ Umax . Such a
set exists because the total merit m+ of C+ is higher than the total merit of C (if
it does not exist, m+ < Umax mUmax < m leading to a contradiction). Since UC+k

59 4.3 Covering in the presence of isomorphism

total gain:
40+16+8 = 64

total gain:
36 + 36 = 72

total gain:
36 + 36 + 8 = 80

a) b) c)

Figure 4.6. Sample execution of the optimal hybrid algorithm. (a) Re-
sult of greedy search. (b) Exact search is run on a reduced universe to
improve the previous solution. (c) Greedy search is run again to find
solutions not explored by the previous steps.

has no node in common with any subgraph in C , a greedy algorithm should have
considered and chosen UC+k instead of UCk. 2

This theorem is the basis of the algorithm in Figure 4.5. The algorithm ap-
plies the exact branch-and-bound algorithm to a restricted universe consisting
only of the candidates overlapping a pre-existing solution; this universe often con-
sists of a few hundred or less candidates, making exhaustive search fast enough
to be practical. If the exact algorithm finds a better solution, it is followed by an-
other greedy run to include candidates that do not overlap the currently chosen
ones—i.e., candidates that were not considered—and so on until the solution is
not improved.

An example execution for Umax = 3 is found in Figure 4.6. Figure 4.6(a)
shows the solution S1 found by the greedy algorithm, consisting of three ISEs
that, together, achieve a merit of 64. Figure 4.6(b) shows how exhaustive search
examined candidates overlapping the current solution, and found a new cover-
ing S2 that has only two ISEs and still achieves a better merit. A further greedy
run adds a third ISE to the current covering and obtains solution S3, shown in
Figure 4.6(c). The algorithm then iterates; if exhaustive search cannot find a
better solution, S3 is optimal and is returned.

We proceed to prove the liveness and correctness of the algorithm.

Theorem 7: The algorithm terminates.

60 4.3 Covering in the presence of isomorphism

HYBRID(S, count, depth)
1 C = ;
2 for i = 0 to max(0, count − depth) do
3 n=min(count − i, depth)
4 Cstep = ITERATIVE-OPTIMAL(S, n)
5 if i+ depth= count then
6 C = C ∪ Cstep

7 else
8 UC1 = most profitable group of isomorphic subgraphs in Cstep

9 C = C ∪ UC1

10 S = {s ∈ S : ∀s′ ∈ UC1, s ∈ s′ = ;}

Figure 4.7. An approximate covering algorithm

Proof. Both the exact and the greedy runs will return a pre-existing covering
if they cannot find a better one (for example, they won’t oscillate between two
equivalent solutions): therefore, each run can only improve the merit or reduce
the number of distinct ISEs (which cannot happen Umax or more times). Since
the maximum merit achievable is bounded, the algorithm will converge. 2

Theorem 8: The algorithm computes an optimal solution.

Proof. Let us consider the properties of C after line 6; let {UC1, ...UCUmax
} be the

candidates in C , grouped according to their equivalence class, and m1, ..., mUmax

be the total merits achieved by each equivalence class.
If an optimal solution covers only nodes that C covers, C is also optimal.

There cannot be a better solution with a subgraph covering some nodes in C and
some outside C: the exact search at line 6 would have included that subgraph
and found the optimal solution.

There could exist a better cover C+, including a set of isomorphic subgraphs
that is disjoint from all the subgraphs in C . We call this set UC+k and its merit
m+k ; k is the lowest value such that m+k > mi ∀i : k ≤ i ≤ Umax . Such a set exists
because the total merit m+ of C+ is higher than the total merit of C (again, if it
does not exist, m+ < Umax mUmax < m leading to a contradiction).

Since UC+k has no node in common with any subgraph in C , UC+k (or another
ISE which is also disjoint from C and has higher merit) will be chosen before UCk

by the greedy run at line 8. In either case the algorithm, while not finding the
optimal solution, will recognize this and run another cycle. 2

61 4.4 Experimental results

Approximate (d-optimal) hybrid search. The algorithm in the previous sec-
tion is a substantial improvement over naïve branch-and-bound, as it allows to
search more instruction set extensions (usually between 3 and 6) in a matter of
minutes. However, its scalability is also limited.

Therefore, we propose using a hybrid algorithm, whose pseudocode is in Fig-
ure 4.7. In this technique, optimal search is run to select a number of candidates
d ≤ Umax ; d is called the depth of the search. However, if d < Umax , only one
candidate (the best one) is selected, and search is started again on the remaining
parts of the input. In other words, candidates are chosen one at a time greedily,
but “with an eye” to the next few choices.

This trick keeps most of the efficiency of the greedy algorithm but is also
able to dodge its disadvantages, because depths as small as 2 or 3 are in general
enough to outperform greedy search. In the remainder of this chapter we’ll refer
to the hybrid algorithm with depth d as d-optimal, since it can obviously find an
optimal result if Umax = d.

4.4 Experimental results

The experimental results presented in this section demonstrate the effectiveness
of isomorphism-aware covering, and compare the speedup achievable by the
algorithms of Figure 4.2 (greedy) and 4.7 (d-optimal).

We implemented these techniques in a toolchain for extensible processors
based on GCC, extended as described in Chapter 6, and SimpleScalar/ARM. The
reader should refer to Section 6.3 for the details of the simulated architecture.

The implementation follows the framework of Section 2.3, using exact algo-
rithms for enumeration and isomorphism check. For enumeration we used the
I/O constrained algorithm of Section 3.3; for isomorphism we used the vf2 al-
gorithm [Cordella et al., 2004], a bottom-up algorithm that is well suited to graphs
that exhibit regularity, and only needs space linear in the size of the graph.

The implementation of the proposed algorithms require fast manipulation
of the sets Ui from the problem input. Since these are combination sets on
the nodes of the data-flow graphs, we used zero-suppressed binary decision di-
agrams [Minato, 1993]. These allow a memory efficient representation of com-
bination sets and support complex operations on them, including extraction of
overlapping sets from a universe [Okuno et al., 1998].

For comparison with the state-of-the-art, we also implemented an alternative
approach that is able to map multiple equivalent ISE onto the same instruction,
but on the other hand does not use isomorphism to guide the search. This

62 4.4 Experimental results

64

112

160

 5 10 15 20 25 30 35 40 45

of

 r
ep

lic
as

size of ISE

4

Figure 4.8. Extensions obtained from the seven benchmarks we used,
plotting the instruction’s size versus the number of replicas found.
(The top half of the y axis uses a different scale).

algorithm simply picks the highest-merit candidate in a basic block repeatedly,
until it finds Umax + 1 distinct extensions; then it keeps the Umax best choices4.

The algorithms are evaluated on seven programs from the MiBench
suite [Guthaus et al., 2001].

First of all, we analyze the effectiveness of our proposed algorithms, as well
as of recurrence-aware ISE search. Figure 4.8 plots the size of the custom in-
struction found in our suite of seven MiBench programs, versus the number of
replicas found for each instruction. For this plot, we ran the greedy covering
algorithm with a constraint of 4 inputs, 2 outputs.

Two notable facts can be observed. The most evident is that in some cases
the algorithm was able to find a very high number of replicas for simple ISE—up
to 160. These mostly occur in the aes benchmark, for which a non-recurrence-
aware algorithm cannot find any profitable extension. Instead, interprocedural
recurrence-aware techniques can map a considerable number of instructions to
application-specific functional units. We can also see that the algorithm was able
to find a few replicas (3 or 4) even for large subgraphs composed of 30 to 40
nodes. In other words, recurrence-aware covering is not limited to finding small
extensions that, like multiply-accumulate instructions, many processors already
implement.

4The lookahead is needed to find replicas of the Umax -th best choice.

63 4.4 Experimental results

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60

cu
m

ul
. i

ns
tr

uc
tio

ns
 s

av
ed

ISE size

search
enum+cover

Figure 4.9. Cumulative number of instructions that were moved to
hardware, as the size of the ISE varies. Overall, state-of-the-art algo-
rithm saved 1,500 (static) instructions in the seven selected bench-
marks; our technique saved 2,400.

Another view of the same data is offered by the cumulative histogram in
Figure 4.9. This chart plots how many instructions are removed (Y axis) by in-
struction set extensions up to a certain size (X axis). Every step on the Y axis
indicates an ISE size (on the X coordinate) that was selected in the benchmarks.
Steep increases correspond to ISE sizes that save a high number of (static) in-
structions.

The top line refers to the method of Figure 4.2, while the bottom line rep-
resents the current state of the art. Increases are more pronounced for the top
line, meaning that the algorithm we presented is more effective than the state
of the art; they are also shifted to the left, showing that the new implementation
may sometimes prefer smaller instructions (20-30 nodes) to bigger ones (40-60
nodes) that don’t have any replica.

The very steep increase at the extreme left of the chart also corresponds
to aes, where only small extensions (< 10 nodes) can be found and the new
algorithm is much more effective.

Figure 4.10 shows the speedups obtained with greedy covering for differ-
ent I/O constraints and algorihm. Note that the speedups obtained are often
very tangible. The inherent problems of employing a greedy algorithm are also
evident here from two phenomena: first, the isomorphism-aware algorithm is
in some cases (sha, rawcaudio) slower than the state-of-the-art; second, the
speedup of the 4-2 constraint sometimes is inferior to that of lower constraints.

64 4.4 Experimental results

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

sp
ee

du
p

rawcaudio rawdaudio aes bitcount blowfish des sha
4-1 3-2 4-2 4-1 3-2 4-2 4-1 3-2 4-2 4-1 3-2 4-2 4-1 3-2 4-2 4-1 3-2 4-2 4-1 3-2 4-2

iterative [1]
greedy

2-optimal

Figure 4.10. Speedups obtained with different covering algorithms and
I/O constraints.

Iterative greedy 2-optimal
rawcaudio 0.00% 7.44% 0.00%
rawdaudio 18.27% 15.45% 0.00%
aes 0.00% 0.00% 0.00%
bitcount 0.80% 0.79% 0.80%
blowfish 0.00% 1.39% 0.00%
des 0.00% 0.00% 0.00%
sha 5.00% 0.00% 0.00%

Table 4.1. Additional speedup achieved by lower constraints, com-
pared to the 4-2 constraint. Non-zero values are caused by the non-
optimality of the three algorithms.

The latter kind of failure, detailed in Table 4.1, can complicate design space
exploration, since switching to higher constraints will not necessarily improve
performance. Most of these effects can be avoided by switching to the d-optimal
algorithm; 2-optimal search achieves most of the benefit of fully exact search
not only in terms of speedup, but also in terms of “coherency” in the solution.
Residual anomalies (e.g. aes and blowfish, 4-1) are due to the difference be-
tween the estimates that the search algorithms work on, and the actual gains
obtained after simulation.

Another point to analyze is the effectiveness of the pruning heuristics. The
results are in Table 4.2. For each I/O constraint, the first column gives the ratio

65 4.4 Experimental results

4-1 3-2 4-2
considered leaves considered leaves considered leaves

rawcaudio 5 / 108 1 48 / 885 17 360 / 2 207 125
rawdaudio 149 / 201 464 140 / 696 199 1 293 / 1 958 88
aes 1 112 / 1 233 1 2 749 / 229 127 1 1 112 / 1 233 1
bitcount 6 040 / 9 481 26 4 836 / 18 572 502 44 669 / 86 021 44
blowfish 3 / 75 1 145 / 3 539 29 69 / 3 719 1
des 1 687 / 6 792 4 554 1 781 / 14 232 1 8 933 / 45 579 1
sha 33 / 90 1 37 / 297 1 322 / 703 1

Table 4.2. Ratio of considered candidates to the total number of enu-
merated candidates, and number of search graph leaves that branch-
and-bound cannot exclude.

greedy 2-optimal 3-optimal
rawcaudio 0.05s 0.08s 40.75s
rawdaudio 0.05s 0.10s 119.65s
aes 9.45s 10.20s 318.60s
bitcount 13.75s 33.10s —
blowfish 0.07s 0.07s 2.85s
des 2.55s 24.50s —
sha 0.02s 0.02s 0.02s

Table 4.3. Compilation time for the greedy algorithm, as well as for
increasingly accurate approximate searches (4 inputs, 2 outputs).

between the number of candidates used by the pruned optimal search and the
total number of candidates enumerated; the second columns gives the number
of leaves explored, that is the number of MWIS instances that must be solved.
We can see that, especially for the biggest benchmarks only a very small fraction
of the candidates is actually explored.

Finally, Table 4.3 shows compilation times for the greedy, 2- and 3-optimal
algorithms. This also shows that the pruning techniques can be very effective:
on bitcount, for example, the first exhaustive search examines over 44,000 can-
didates, yet compilation time grows only by a factor of three between greedy
and 2-optimal.

After 2-optimal, compilation time grows much faster, testifying to the com-
plexity of the problem. However, it is important to note that, when the search
terminated in less than 8 hours, higher search depths did not improve results
over 2-optimal. Only for sha did we measure a small (1%) improvement with

66 4.4 Experimental results

5-optimal search, but in general 2-optimal did a good job with a relatively small
cost in terms of compilation time.

Chapter 5

Technology mapping

This chapter analyzes a sample technology mapping methodology for custom in-
structions, thus concluding the presentation of the proposed compilation frame-
work. In particular, we consider an example of coarse-grained reconfigurable
architecture, the EGRA (Expression-Grained Reconfigurable Array). Coarse-
grained reconfigurability is often proposed as the solution to the flexibility prob-
lems of ASIC and the performance problems of fine-grained platforms such as
FPGAs. However, compiling for CGRAs poses peculiar problems because of
the unique combination of spatial execution abilities with arithmetic-level pro-
grammability.

In this chapter, we first introduce the EGRA and its main processing
element—the Reconfigurable ALU Cluster (RAC). We then propose a mapping
flow for EGRAs that estimates the advantage of executing the subgraphs on
hardware and at the same time produces the program bitstream for the EGRA.
The chapter is concluded with the presentation of a theoretical result, namely,
an NP-completeness proof of I/O scheduling, an important step of a compilation
flow for customizable processors [Pozzi and Ienne, 2005; Verma et al., 2007].

5.1 The EGRA architecture

In the earliest examples of reconfigurable architecture such as the PLA (Pro-
grammable Logic Array), mapping of “applications” (Boolean formulas in sum-
of-product form) is immediate. As in Figure 5.1(a), each gate in the application
is mapped in a 1-to-1 fashion onto a single gate of the architecture).

However, this organization does not scale as applications to be mapped
get more complex. For this reason, CPLDs and FPGAs instead use elementary
components—PLAs themselves, or look up tables as in Figure 5.1(b)—as build-

67

68 5.1 The EGRA architecture

1 to 1 mapping

fi
n

e
g

ra
in

PLA

CGRA EGRA

a)

c) d)

B

C

D

F

E

A

B C DA

F

E

B C D

A

E F 32-bit ALU

B

AB A

E C D

F

A B

Cluster
of ALUs

Gate

many to 1 mapping

FPGA

b)

A

B

A B

LUT

co
ar

se
 g

ra
in

Figure 5.1. Parallel between the evolution of fine-grained architectures
from simple programmable devices to FPGAs (a and b), and the evo-
lution of CGRAs from simple cells to the EGRA proposed here (c and
d).

ing blocks, and glue them with a flexible interconnection network. Then, pro-
gramming one cell corresponds to identifying more than one gate in the Boolean
function representation.

Introducing this additional level is a winning architectural choice in terms of
both area and delay, but such innovations cannot be successful unless algorithms
are available to efficiently map applications to the new architecture—and indeed
efficient algorithms came along to this purpose, e.g., FlowMap [Cong and Ding,

1994].
An orthogonal step was the introduction of higher granularity cells—see Fig-

ure 5.1(c). Fine-grained architectures provide high flexibility, but also high in-
efficiency if input applications can be expressed at a level coarser than boolean
(e.g. as 32-bit arithmetic operations). Coarse-Grained Reconfigurable Arrays
(CGRAs) provide larger elementary blocks that can implement such applications
more efficiently, without undergoing gate-level mapping.

A variety of CGRA architectures exist (see Section 2.1) but the process of
mapping applications to current CGRAs is usually not very sophisticated: a single
node in the application intermediate representation gets mapped onto a single
cell in the array (again, 1-to-1 mapping). Instead, we propose to employ an
array cell that consists of a group of programmable ALUs, supporting efficient
computation of entire subexpressions in a single cycle. This cell is the RAC, and

69 5.1 The EGRA architecture

....................................

output a output b

Constants
...

DATA SWITCHBOX FLAGS SWITCHBOX

DATA SWITCHBOX FLAGS SWITCHBOX

[2,1] [2,2] [2,M]...

[K,1] [K,2]

DATA SWITCHBOX

From
neighbor cells

Constants
(from context)

...
From bus

...
From output

DATA SWITCHBOX

[1,1] [1,2] [1,3] [1,N]...

Constants
...

Figure 5.2. Datapath of a Reconfigurable ALU Cluster (RAC).

the resulting array architecture (Figure 5.1(d)) is the EGRA; we consider the
introduction of the RAC as the moral equivalent of the switch from single gates
to LUTs that characterizes modern fine-grained reconfigurable architectures.

5.1.1 Cell architecture

The RAC datapath consists of a multiplicity of ALUs, with possibly heteroge-
neous arithmetic and logic capabilities, and can support efficient computation
of entire subexpressions, as opposed to single operations. It is inspired by the
Configurable Computation Accelerator proposed by Clark et al. [2004]. However,
we use this structure as a replicable element; this has important consequences.
First of all, it opens up the possibility to create combinational structures using
multiple RACs; unlike Clark’s design, in which a CCA has a fixed multi-cycle la-
tency, this favours designs featuring a smaller number of rows and with a latency
smaller than half a cycle. Furthermore, it removes the limit on the number of in-
puts and outputs, because a pipelining scheme [Pozzi and Ienne, 2005] can be used
to move data in and out of the array; this allows scheduling of more complex
applications and consequently higher gains.

ALUs are organized into rows (see Figure 5.2) connected by switchboxes. It
is important to have flexible routing between ALUs on neighbouring rows, be-

70 5.1 The EGRA architecture

.

reg

datapath

from neighbors from bus
... ...

stall cs_row
cs_col

context

..
.

.
.

.

.

to bus

to neighbors
p

ro
g

ram
 w

o
rd

.

.

context memory

reg

. .

out a out b

.

Figure 5.3. Block scheme of a RAC composed of datapath, context
memory and bypassable registers on the outputs.

cause subexpressions extracted from typical embedded applications often have
complex connections that are not captured well by simpler topologies. This or-
ganization allows the usage of a simple array topology (we used nearest neigh-
bour) without incurring high penalties on place-and-route.

The inputs of the RAC (see again Figure 5.2) are taken from the neighbour-
ing cells’ outputs, from the outputs of the cell itself, or from a set of constants
specified separately for each RAC; the inputs of the ALUs in subsequent rows are
routed from the outputs of the previous rows or again from the constants.

The number of rows, the number of ALUs in each row and the functionality of
the ALUs is flexible and can be customized for different applications, for example
depending on cycle time and area constraints.

The number and size of the constants is also defined at exploration time. If
their width is less than the datapath width, their content is zero-extended1. The
value of the constants, instead, is part of the configuration bitstream and can be
different for each cell.

ALU design. As in other CGRAs, the basic processing element of our cell design
is an ALU. Unlike in the fine-grained domain, it is not possible to define a generic
component that can implement arbitrary functions, as is the case of the PLD or

1The availability of operations such as A+ B makes it possible to store negative values even
if the constants themselves are zero-extended.

71 5.1 The EGRA architecture

A

B

op1 + op2 + flag

flag ? op1 : op2

1

GEU(A)

BUS input 1

dataout(A)

BUS input 2

constant 0

node opcode flag sourceop1 source op2 source

A

flag op1

op1 op2

B

X Y

0

op2

Figure 5.4. Programming a RAC. This example shows how two ALUs
can be connected to compute an unsigned subtract with saturation,
(X >= Y) ? X - Y : 0. The node computing the subtraction also
performs the comparison. The multiplexer node B uses both the data
output and the unsigned ≥ flag of the subtraction node A.

data opcodes flag opcodes
out = A & (B⊕ flagsext) 0
out = A | (B⊕ flagsext) 1
out = A⊕ (B⊕ flagsext) =
out = flag ? A : B 6=
out = A+ B+ flagzex t signed <
out = A+ B+ flagzext signed ≥
out = A� B unsigned <
out = A�rot B unsigned ≥
out = A�arith B
out = A�logical B
out = A�rot B

Table 5.1. List of supported opcodes. Note that the 1-bit flag input will
be sign- or zero-extended depending on the opcode.

the LUT. Therefore, expressions are realized in our architecture by clustering
more than one elementary unit (ALU) in one cell.

Four types of ALUs can be instantiated. The simplest one is able to perform
bitwise logic operations only; the other three add respectively a barrel shifter
(with support for shifts and rotates), an adder/subtractor, and both the shifter
and adder. The list of operations in a full-featured unit is in Table 5.1.

A peculiar element in the design of the RAC is flags. These are inspired by the
program status word of a microprocessor, and are significantly more powerful

72 5.1 The EGRA architecture

than the carry chains available in many reconfigurable architectures (for exam-
ple, Stretch [Rupp, 2003] or PipeRench [Goldstein et al., 1999]). They enable efficient
implementation of if-conversion, which is important when automatically map-
ping software representations onto hardware. ALUs can act as a multiplexer,
choosing one of the two 32-bit inputs based on another ALU’s flags; then, one
or more cells will evaluate both arms of a conditional, and a multiplexer will
choose between the two.

The operation of flags is explained graphically in Figure 5.4. First, each op-
eration can generate three 1-bit flags: a zero flag used for equality comparisons,
an unsigned ≥ flag (equivalent to the carry flag of general-purpose processors),
and a signed < flag (equivalent to N ⊕ V , where N and V are the sign and over-
flow flags). Dually, each operation has three operands, two being 32-bit values
and the third being a 1-bit value. The third operand can be hardcoded to zero
or one, or it can come from the flags that another ALU generated; incoming flag
values can also be complemented, thus giving a total of eight possible flag op-
codes (also listed in Table 5.1). Complementing the flag, and/or exchanging the
operands of the comparison, allows to test all possible conditions on both signed
and unsigned operands.

5.1.2 Array architecture

The EGRA architecture is composed of a collection of RACs with the described
datapath (cells). Each of them also has a context memory, included in Fig-
ure 5.3, which stores a number of configuration words allowing the cell to be
programmed according to the desired functionality.

The array is connected to the processor bus: inputs can be taken from the
register file and broadcast to the cells, while outputs can be sent to the register
file from selected cells per cycle (one per write port in the register file).

In addition to the cells, the EGRA includes a global control unit. This unit is
in charge of managing the transfers to the RACs’ context memory, selecting con-
texts, stalling cells until their output data is consumed, and connecting their out-
puts to the bus. The control unit is also programmable through its own context
memory. Since they are not relevant to the implementation of technology map-
ping, we do not detail the structure of the control unit, the connection between
the cells, and the possible extensions to the model. We urge the reader instead to
refer to existing publications on the subject; Ansaloni et al. [2008] describe the
architecture of the EGRA, while Ansaloni et al. [2009] analyze the advantages
of introducing heterogeneous processing elements, such as local memories and
specialized arithmetic components (in particular multipliers).

73 5.2 Technology mapping for the EGRA

maximal subgraph
enumeration

(subgraph)
covering

(cluster)
covering

cluster
enumeration

scheduling
retiming

clustered graph gain

cell template

program

lowering

1 2

3
4

5 6

9

clustering

I/O
scheduling

7

8

Figure 5.5. Scheme of the technology mapping passes for the RAC
compilation flow.

5.2 Technology mapping for the EGRA

The proposed mapping flow, which is designed to fit the framework discussed in
the previous chapters, is drawn in Figure 5.5.

The proposed mapping flow is designed to have as input maximal subgraphs,
extracted through the algorithm of Section 3.2.2. Each maximal subgraph is
called a candidate; in order to measure its gain, it needs to be undergo several
additional steps that are grouped in three technology mapping passes: lowering,
clustering, I/O scheduling.

The former converts the data-flow graph to a form similar to that of Fig-
ure 5.4, where all operations are expressed through the opcode set of the RAC.
For example, C logical operations are rewritten to use the RAC’s flags; lowering
is represented in Figure 5.5 by filled circles in the candidate’s data-flow graph.
This step is detailed in Section 5.2.1.

Clustering instead is more complex and can be decomposed further in several
steps: cluster enumeration, cluster covering and scheduling/retiming. These
three steps are in fact a “mini-occurrence” of the same mapping framework,
which is used in this case to map a single ISE onto many RACs. After this step,
the bitstream for the EGRA is known and each operation is assigned to a par-

74 5.2 Technology mapping for the EGRA

ticular ALU of a particular RAC. The enumeration and covering techniques are
described in Section 5.2.2, while the rationale and techniques for scheduling and
retiming (the “inner” technology mapping steps) are described in Sections 5.2.3
and 5.2.4.

The last technology mapping step is I/O scheduling. Since the subgraphs do
not need to have any constraint in term of number of inputs and outputs; in case
these exceed the bandwidth of the register file, this pass serializes them across
multiple cycles. For this step we do not describe any novel algorithms, referring
instead to those of Pozzi and Ienne [2005] and Verma et al. [2007]; as anticipated,
however, Section 5.3 proves the NP-completeness of this problem.

More complex tasks are in later technology mapping passes by design. As
mentioned in Section 4.3.2, not all of the candidate maximal subgraphs go
through all of this steps. The lowering step for example, while being fast to
execute, will already compute simple lower bounds on the cycles needed to ex-
ecute the candidate on the accelerator (and equivalently, upper bounds on the
gain). These bounds can also conservatively include the register file bandwidth
and the number of inputs and outputs, even though the actual scheduling of
register file accesses occurs only at the end. This way, the framework avoids
executing the expensive steps for clearly suboptimal subgraphs.

5.2.1 Lowering to the RAC instruction set

The first technology mapping step, operation lowering, enables effective usage
of the capabilities of the RAC, in particular the flags architecture. Flags can be
used to drive multiplexers, thus implementing if-conversion as in the example of
Figure 5.4, but they will also be used to implement C logical operations (i.e. us-
ing the truth value of a comparison in an arithmetic operation) and to transform
special nodes that are included in the intermediate representation, such as ab-
solute value and minimum/maximum.

In all cases, comparisons must be transformed to an operation (a subtraction
or an exclusive OR) that will compute flags; users of the comparison can then
test a particular condition on those flags. In addition, operands of the compar-
ison can be manipulated in order to support conditions that the ALUs cannot
generate, i.e. > and ≤.

These transformations are implemented using graph rewriting; this was a
natural choice since the entire compilation flow is based on a data-flow graph
intermediate representation. In this system, the set of lowering rules constitutes
a grammar, with each rule is described by a pair of graphs—a template to be
matched in the candidate data-flow graph, and a replacement graph that will

75 5.2 Technology mapping for the EGRA

0

A B

0

GEU

0

GEU

a) b) c)

SEL SEL SEL

A B A B

>= - - - -

Figure 5.6. Lowering a data-flow graph to the set of operations sup-
ported by the cells. This example shows a saturating unsigned sub-
traction. a) The DFG representing the C source A >= B ? A - B : 0.
b) The comparison is transformed into a subtraction and the appro-
priate flag (unsigned greater-than-or-equal) is tested in the SEL node.
c) Common subexpression elimination merges the two subtraction
nodes into one.

SEL

8

a)

B

A 8

!=

&

0

0

c)

SEL

B

A 8

& 0

NE
SEL

8

b)

B

A 8

&

0

0

XOR

NE

Figure 5.7. Peephole optimization during lowering. a) Example is
taken from the ADPCM benchmark. b) Equality and inequality com-
parisons are converted to exclusive-ORs. c) Comparisons with zero do
not need a separate node, because the AND node is already comput-
ing the right value of the flags.

be substituted for it. Graph rewriting is a very powerful technique, and several
libraries are available to program graph rewriting systems. In particular, we used
the GrGen library [Geiß et al., 2006].

The graph grammar for lowering is small, consisting of only 10 rules; exam-
ple applications of these rules are shown in Figures 5.6 and 5.7. In both cases,
the leftmost graph in the figure shows the intermediate representation coming
out of compilation, including comparison operators such as ≥ and 6=. These are
transformed into flag tests in the second graph; for equality/inquality tests they

76 5.2 Technology mapping for the EGRA

can be transformed into an exclusive OR, while other tests are changed into a
subtraction.

Figure 5.6(c) and 5.7(c) show that additional simplifications can then be
performed, in particular CSE and peephole optimization. These steps were also
described as graph rewriting rules, using approximately the same number of
rules as for lowering. The common subexpression elimination optimization is
shown in Figure 5.6(c), and it allows to use both the numeric and flag outputs
of a single node. The peephole optimization example of Figure 5.7(c) instead
shows how comparisons with zero can be merged in the node that computes
the other operand of the comparison. In both cases, this results in less strict
requirements for the number of ALUs, and possibly in a shorter latency for the
instruction set extension.

5.2.2 Partitioning of the candidate

The lowering step produces a new DFG, where the set of used operations
matches closely the capabilities of a single ALU of the EGRA. In other words,
technology mapping defines how the array’s ALU will execute each operation
in the data-flow graph. The next step is to coarsen the granularity, and find a
mapping at the RAC level; to this end, the partitioning phase clusters operations
that will execute in the same cell. The output is a new graph that collapses these
clusters to a single node; this graph more closely represents the execution of the
candidate DFG on the EGRA.

Covering the candidate with a number of clusters is in turn a multi-step
process, comprising enumeration of the possible clusters, analyzing their tim-
ing characteristics (for example eliminating those that exceed the chosen cycle
time), and then selecting, among the enumerated and valid ones, a set of clusters
that partitions the candidate.

Clusters can also be seen as data-flow graphs. The most important difference
between the candidate subgraphs enumerated as the first step of the process,
and the cluster graphs considered here, is that clusters are constrained to the set
of computations that a cell can perform. The constraints are as follows:

1. clusters should be convex;

2. clusters should have no more outputs than the RAC has;

3. the maximum depth of the cluster is constrained by the number of rows in
the RAC;

77 5.2 Technology mapping for the EGRA

4. not all rows of the RAC can execute all operations;

5. cluster rows should not be wider than RAC rows.

The third constraint is important, as it allows adaptation of the algorithms
from Section 3.3, in particular the data-flow based technique of Figure 3.15.
While the RAC does not have a limit on inputs, the constraints on depth and
on the kind of operation can be performed limit the number of clusters that are
enumerated.

The last example of Section 3.3 already showed the definition of a simple
lattice implementing depth-constrained enumeration. We can improve on that
result so that the fourth constraint above is also checked at enumeration time.

Since the generic data-flow-based algorithm takes care of convexity and of
the number of outputs, enumeration successfully filters the first four constraints
above. The width of the RAC rows is checked instead after the operations in the
cluster are assigned to the ALUs in the RAC (scheduling; see Section 5.2.3).

The value that we propagate along the nodes of a candidate is the set of rows
of the cell that can implement the node’s operation. This is efficiently stored in
a bitmask, using a bit per cell row. This bitmask has two components, one that
depends on the data-flow analysis and one that is static.

The latter is computed beforehand for every opcode used by the intermediate
representation, and its value can be used to initialize the field when a node is
added to the cluster; we will call this per-opcode bitmask the op-mask. So, for
the example RAC of Figure 5.8(a), the op-mask of SEL nodes2 is 110. In this
case, the value 110 includes rows that support logic operations (all three do)
and have a flag input (the two bottom rows). The op-mask for addition is also
110 (this time, because the top row does not have an adder) and the op-mask
for shifts is 101.

The second component instead is computed as follows. If b j is the bitmask
of node j, the index MSB(b j) of the most significant set bit of b j indicates the
last RAC row in which b j can run; predecessors of j will have to be allocated on
a row in the range 0 to MSB(b j)− 1. The data-flow–sensitive bitmask is then
(1 � MSB(b j)) − 1, and this value is ANDed with the op-mask to obtain the
bitmask for the newly added node.

This corresponds to the following definitions:

• given a bitmask m (the OUT bitmask for a node), f (m) (the corresponding
IN bitmask) is equal to (1� MSB(m))− 1.

2Since masks are read like binary numbers, the most significant bit (corresponding to the
bottom line of the RAC) is written first.

78 5.2 Technology mapping for the EGRA

1 2

b)

1 2

c)

NE

NE

110

010

001 001

NE

MSB=0

MSB=1

MSB=2

Logic, shift

Logic, add

Logic, add,
shift

001 001

110

010

CBACBA

SEL SEL

a)

Figure 5.8. Scheduling operations in a RAC. a) A cell template. b)
A cluster that has edges spanning multiple rows. The enumeration
algorithm assigns bitmasks to each operation, corresponding to the
rows on which the operation can be executed. c) By placing ops on the
row indexed by the MSB, one obtains the as-late-as-possible schedule;
in this case, 2 ALUs must be configured to pass the value through, and
1 must pass the equality flag.

• the per-node data-flow function limit(v) is equal to v’s op-mask.

• given two bitmasks a and b, a ∧ b is equal to the logical AND of the bit-
masks.

• ⊥, the lattice value that causes the subgraph to be declared invalid and
the search to be pruned, is the empty bitmask 0.

After a list of clusters is found, finding a partitioning is equivalent to covering
the candidate with clusters—as mentioned earlier, partitioning is in fact another
occurrence of the same mapping framework analyzed throughout this thesis. It
is possible to use a greedy covering algorithm that tries to place the deepest
available cluster on the critical path. Deep clusters have higher utilization rates,
and minimize the routing delay on the critical path both within a RAC and in
the entire array.

5.2.3 Cluster scheduling

The purpose of scheduling is to ascertain the validity of the cluster and inserting
pass-through operations for values and/or flags, whenever they are needed. This
process is closely related to retiming, because the way operations are scheduled
influences the critical path delay of the RAC, and consequently the latency of the
computation on the EGRA.

79 5.2 Technology mapping for the EGRA

The starting point for scheduling are the bitmasks obtained by the data-
flow enumeration algorithm, shown in Figure 5.8(b). The simplest possible
scheduling algorithm uses the MSB of the bitmask to allocate each node to a
RAC row; this corresponds to as-late-as-possible scheduling—the strategy used
in Figure 5.8(c). In order to perform ASAP scheduling, instead, one would visit
the cluster in topological order, and pick the least significant bit that is both set,
and placed on a row below all the predecessors. Exhaustive search can also be
performed by adding backtracking to the ASAP strategy.

The number of elements needed on each row is computed by summing the
number of computation nodes allocated to the row, and the pass-through nodes
that are added between the rows. If a j is the row on which node j is allocated,
first of all s j, the maximum row for all the successors of j, is computed. Then,
a pass-through node is needed for rows in the range (a j, s j). This can also be
expressed as a bitmask, by evaluating (1� s j)− (1� (a j + 1)).

5.2.4 Candidate retiming

The EGRA architecture may allow a sequence of cells to execute in the same
cycle, as long as the total critical path delay is shorter than the cycle time. This
allows creation of relatively complex combinational structures and improves the
number of instructions per cycle. However, because of this the compiler has
the additional task of computing the run-time delays of the EGRA, in order to
optimally insert registers.

Figure 5.9(a) shows latency data for the RAC’s components. This can be
computed beforehand, for example with Synopsys Design Compiler, but it is
actually only a worst-case value for a particular RAC design. Since programming
is done in advance, it is known that the switching activity of some arithmetic or
logic components will not affect the outputs; if these components are on the
critical path, a RAC’s delay at run-time will be better than the value computed
by Design Compiler.

For example, the adder is on the critical path of a full-featured ALU (support-
ing logic, add/subtract and shift/rotate operations). However, in the specific
configuration of Figure 5.9(b), we know that the switching activity on the first
row’s adders will not influence the outputs, and therefore that the adders’ la-
tency will not affect the critical path! Since the compiler knows how the RACs
are programmed, it should be able to obtain a refined estimate for each RAC
taking part in the computation.

To achieve this objective, the compiler includes a simple model of the RAC’s
structure. This model splits the delays in operation delays (that depend on a

80 5.2 Technology mapping for the EGRA

opcode delay

>> 0.1062
+ 0.1329
SEL 0.0764

row mux delay

logic 0.0697
full 0.0963
other 0.0863

c)

1 2

b)

Logic, add,
shift

Logic, add

Logic only

CBA

SEL

a)

0.2025 0.2025
0.0963

0.1826 0.28880.4217

0.5678

0.2292

0.4484

0.5945

Figure 5.9. Computing the critical path delay. a) Synopsys Design
Compiler is used to compute the critical path delay of the ALU com-
ponents and of the multiplexer between rows. b) Knowing the actual
opcodes allows the compiler to produce a better estimate of the critical
path delay. c) The model that the compiler uses considers operation
and multiplexer delays separately.

node’s opcode) and multiplexer delays (that only depend on the cell template).
These delays can also be computed with Design Compiler, based on the de-
lays for various pieces of the RAC datapath; they can then be tabulated as in
Figure 5.9(c) and included in the compiler. In the example of Figure 5.9(b),
the configuration-specific delay is 4.5% better than the worst-case delay of Fig-
ure 5.9(a).

After the candidate graph is partitioned into clusters, this model is applied
to each cluster. After the delays are computed, the compiler does not need to
know how ALUs are connected inside each cluster. Therefore, nodes in the same
partition can be collapsed.

A retiming algorithm is then run on the candidate to insert registers between
clusters, using a user-provided cycle time. Since data-flow graphs are acyclic, we
can use a simple, linear time algorithm [Calland et al., 1998] to do so. Finally, I/O
operations between cells and register file are scheduled according to the scheme
of Pozzi and Ienne [2005]; this is an NP-complete problem (as we will prove in
Section 5.3), but the approximate algorithm of Verma et al. [2007] achieves good
results.

It is important to note that retiming must be run after partitioning, because
registers cannot be inserted in the middle of a cluster (i.e., in the middle of a
RAC): all cells participating to the computation must execute in less than a single
cycle, and their execution must lie within a single cycle. This is easily achieved
by running retiming after the clusters have been collapsed to a single node.

81 5.3 The complexity of I/O scheduling

a) c)

i

ij

 1 2 -
a = 1 2 1
 - 1 1

 0
c = 1
 2

j

r = 0 0 1

 2 3 -
 1 2 2
 - 3 4

 0 0 1
1
0
2

 3 3 -
 2 2 1
 - 3 3

 1 0 0
1
0
2

Reads Writes Reads Writes

b)

A B C

D

E F

.4 .6 .3

.5

.3 .3

sink

A B

C

F

D

E

B C

A F

D

E

d)

Figure 5.10. The I/O scheduling problem: a) a data-flow graph whose
I/O constraints exceeds the bandwidth of the register file; b) its integral
critical path delay matrix A, and the row/column vectors correspond-
ing to a register file with 2 read ports and 1 write port; c) a permutation
of R and C giving a non-optimal solution; the permutation of R gives
the order of inputs, while the permutation of C gives outputs in re-
verse order; d) a permutation of R and C corresponding to an optimal
solution.

5.3 The complexity of I/O scheduling

As we mentioned multiple times in this chapter, I/O serialization is an effective
strategy to implement instruction set extensions with large numbers of inputs
or outputs. These schemes maps inputs and outputs on the available register
file ports by distributing register file accesses over more than one cycle. The
new problem that arises is then to find a valid serialization for I/O between the
processor and the custom functional unit, according to a given constraint on
the number of register file accesses per cycle. Figure 5.10(a) shows a dataflow
graph with 3 inputs and 3 outputs, while Figures 5.10(c) and 5.10(d) show two
of its possible schedules for a register file with 2 read ports and 1 write port. The
former takes five cycles, while the latter is optimal and takes only four.

In this section we will briefly analyze the I/O scheduling problem, and then
prove its NP-completeness in Section 5.3.2.

5.3.1 Problem formalization

I/O scheduling was presented first by Pozzi and Ienne [2005] and solved there
using brute force. The solver enumerated exhaustively all possible schedules of

82 5.3 The complexity of I/O scheduling

the inputs, looking for the one which exhibited the smallest latency. This allows
to minimize not only the latency of the ISE (i.e. the makespan of the schedule),
but also the number of registers used.

On the other hand, the complexity of this approach is prohibitive. If Nin is the
number of inputs in the ISE, and Nread is the number of register file read ports,
the number of cases to be enumerated is

�

Nin

Nread

��

Nin− Nread

Nread

�

. . .
�

Nread

Nread

�

=
Nin!

Nread!Nin/Nread
(5.1)

= O
�

Nin!

Nread
Nin

�

= O

�

�

Nin

Nread

�Nin
�

Evaluating each of these cases is relatively cheap (linear in the number of
nodes in the ISE), but exhaustive search clearly does not scale; for Nin = 14 and
Nread = 2, the possible schedules are already half a billion, and 81 billion for
Nin = 16. In fact, this is the reason why Verma et al. [2007] propose a heuristic
algorithm of polynomial complexity for this problem.

In the remainder of this section, we adopt their formulation of I/O scheduling
as a matrix problem, which we present shortly. The delays between the inputs
and outputs of the circuit are embodied by a matrix A of integral critical path
delays between inputs and outputs, and the number of registers is defined by
two vectors R and C3:

ri =
�

i

Nread

�

c j =
�

j+ Nwrite− 1

Nwrite

�

(5.2)

Figure 5.10(b) shows the matrix formulation of I/O scheduling for the dataflow
graph of Figure 5.10(a). As in the picture, elements of A will be set to −∞ in
case there is no path between an input and an output.

The problem is then the following:

Problem 6 (I/O scheduling): Given a maximum number of inputs and outputs
that can be scheduled in any cycle (respectively Nread and Nwrite), let R and C be
defined as in equation (5.2). Then, given an Nin × Nout matrix A, find permuta-
tions π and σ respectively of {0,1, . . . , Nin−1} and {0, 1, . . . , Nout−1}, such that

3We assume 0-based indices in the rest of the chapter.

83 5.3 The complexity of I/O scheduling

the following expression is minimized:

λ=max
i, j
(rπi
+ ai j + cσ j

) (5.3)

The outcome λ of the minimization is the latency of the resulting ISE; in-
puts will be scheduled at cycle rπi

and outputs at cycle λ− cσ j
. Figures 5.10(c)

and 5.10(d) show, together with the graphical representation, two numeric so-
lutions for the input data of Figure 5.10(b), both numerically and graphically. It
is easy to see that, consistently with the graphical representation, the first of the
two numerical solutions has higher λ than the second.

Verma reports that their polynomial solution to this problem always found
the optimal latency for the cases in which brute-force search would terminate;
however, they did not have a proof of optimality. In fact, in the remainder of this
section we will prove the NP-completeness of problem 6.

5.3.2 NP-completeness proof

First of all, we prove that I/O scheduling is in NP. We then introduce the decision
version of the problem:

Problem 7 (Decision version of I/O scheduling): Given a maximum number
of inputs and outputs that can be scheduled in any cycle (respectively Nread and
Nwrite), let R and C be defined as in equation (5.2). Then, given an Nin × Nout

matrix A, and a latency λ, find whether or not there exist permutations π and σ
respectively of {0,1, . . . , Nin− 1} and {0, 1, . . . , Nout− 1}, such that the following
expression is true:

max
i, j
(rπi
+ ai j + cσ j

)< λ (5.4)

The two permutations π and σ are a certificate for problem 7. Furthermore,
their size is O

�

Nin+ Nout

�

, while the size of the problem input is O
�

NinNout

�

.
Therefore, the problem admits a polynomial certificate and is in NP.

In order to prove the other direction, we reduce a particular flowshop
scheduling problem to I/O scheduling. The scheduling problem we use is 2-
machine flowshop with delays and unit job lengths (denoted shortly as F2UD),
and has been proved to be strongly NP-complete by Yu [2004; 1996].

84 5.3 The complexity of I/O scheduling

Problem 8 (F2UD): Given two machines M1 and M2, n jobs j (j = 0, 1, . . . , n−
1) whose execution takes 1 unit of time on M1 and 1 unit of time on M2, and a
delay vector l j, we define:

• t1 j as the time at which the first half of job j is scheduled. For any two
jobs j and k, t1 j 6= t1k.

• t2 j as the time at which the second half of job j is scheduled. For any two
jobs j and k, t2 j 6= t2k. Furthermore, for any job j, t2 j ≥ t1 j + l j + 1.

• T j = t2 j + 1 as the completion time of job j.

The problem is then to find a schedule for the jobs that minimizes the
makespan

T =max
j

T j (5.5)

We reduce F2UD to I/O scheduling with Nread = Nwrite = 1. Thus, we prove
strong NP-completeness of I/O scheduling even for Nread = Nwrite = 1. In this
case, equation (5.3) simplifies to the following:

λ=max
i, j
(πi + ai j +σ j) (5.6)

because ri = i and c j = j. Furthermore, we set Nin = Nout = j, a j j = l j + 1,
and ai j = −∞ everywhere except on the main diagonal. This further reduces
equation (5.6) to

λ=max
i
(πi + li + 1+σi) (5.7)

Given π and σ that correspond to an optimal solution (i.e., to a minimal
value of λ), we can derive the scheduling times at M1 and M2 from π and σ
respectively, by setting i.e. t1 j = π j and t2 j = λ−σ j. This is a valid solution for
2-machine flowshop scheduling, because

t2 j = λ−σ j

= max
i
(πi + li + 1+σi)−σ j

≥ π j + l j + 1+σ j −σ j (5.8)

= π j + l j + 1

= t1 j + l j + 1

This solution has makespan T = λ + 1, and is also an optimal solution.
Suppose there existed a solution of problem 8 with a makespan T ′ < T . We

85 5.3 The complexity of I/O scheduling

can assume without loss of generality that the t ′2 j vector in the solution is a
permutation of {T ′− n, . . . , T ′− 2, T ′− 1}—if this was not the case, it would be
possible to shift the execution of the second half of one or more jobs in order to
satisfy this condition. Likewise, we can assume that the t ′1 j vector in the solution
is a permutation of {0,1, . . . , n− 1}, by anticipating the execution of some jobs
on M1 if this was not the case.

Then, by setting π′j = t ′1 j, and σ′j = T ′ − 1− t ′2 j, we have a solution of I/O
scheduling with latency:

λ′ = max
j
(π′j + l j + 1+σ′j)

= max
j
(t ′1 j + l j + T ′− t ′2 j)

= T ′+max
j
(t ′1 j + l j − t ′2 j) (5.9)

≤ T ′− 1

< T − 1= λ

This implies λ′ < λ, which contradicts the optimality of the I/O schedule
given by π and σ.

86 5.3 The complexity of I/O scheduling

Chapter 6

Building a compiler for customizable
processors

The techniques shown in the previous chapters can be summarized like this: just
like a retargetable compiler reads a machine description as input and uses that
to generate code for different machines, a compiler for a customizable processor
generates first the machine description depending on the input application (Fig-
ure 6.1) and then code for this specialized machine.

The specific step of generating the machine description, embodied by the
selection of instruction set extensions, can be organized in the simplest possible

source code

machine code

machine
description

RETARGETABLE
COMPILER

machine code

custom machine
description

CUSTOMIZABLE
PROCESSOR

COMPILER

a) b)

source code basic machine
description

Figure 6.1. a) A retargetable compiler reads in a machine description
and generates code for it. b) A compiler for a customizable processor
can generate the description of the best machine for a given applica-
tion, and then produce code for it.

87

88 6.1 Motivation and problem formulation

case as described in Section 2.3. However, more complex organizations can
arise from the following observation: are traditional compiler techniques, aimed
at standard (non customizable) microprocessor execution, suitable for this new
compilation process, i.e., compilation including the definition of Instruction Set
Extensions? Or do traditional techniques need to be redesigned, or at least
retuned, in order to be beneficial in this new scenario?

In this final chapter we argue that there is indeed a need to revisit traditional
compiler transformations, noticing that techniques for automated ISE selection
can expose to the compiler information about which optimizations will benefit
ISE selection and which will be neutral or detrimental. We will first examine our
motivation for this work in Section 6.1, and then propose a problem formaliza-
tion and solution technique in Section 6.2.

6.1 Motivation and problem formulation

Figure 6.2(a) shows a C function that updates a 16-bit CRC starting from an
input byte. The compiler can simplify the code a good deal using techniques

uint16_t crc (uint16_t crc, uint8_t data)
{
unsigned char i, x, carry;
for (i = 0; i < 8; i++)
{
x = ((data & 1)

^ ((unsigned char) crc & 1));
data >>= 1;
if (x == 1)
{
crc ^= 0x4002;
carry = 1;

}
else
carry = 0;

crc >>= 1;
if (carry)
crc |= 0x8000;

else
crc &= 0x7fff;

}
return crc;

}

uint16_t crc (uint16_t crc, uint8_t data)
{

unsigned char i, x;
for (i = 0; i < 8; i++)

{
x = (data ^ (unsigned char) crc) & 1;
data >>= 1;
if (x)

{
crc ^= 0x4002;
crc >>= 1;
crc |= 0x8000;

}
else

crc >>= 1;
}

return crc;
}

a) b)

Figure 6.2. a) C code for updating a 16-bit CRC; b) Same code after
algebraic simplification, jump threading and value range propagation.

89 6.2 Optimization in a compiler for customizable processors

such as algebraic simplification, jump threading and value range propagation,
as shown in Figure 6.2(b). Still, this is not yet a good starting point for ISE
search since identification techniques, as shown in the previous chapters, usually
identify extensions only within a single basic block level. Therefore, only small
sections in this code could be identified as custom instructions.

However, this snippet hides very high potential. By performing if-conversion
and total loop unrolling prior to ISE identification, the CRC function is trans-
formed into a single basic block. In other words, this makes the computation
purely combinational, so that all of it can be included in a single custom instruc-
tion.

Of course, we cannot expect a compiler for a non-customizable processor to
aggressively perform such transformations systematically: a traditional compiler
is guided by heuristics that limit register pressure and code size increase. But in
the case of an extensible processor, the code will actually be compiled down to
a single instruction and all intermediate results are transformed into wires, so
that no register pressure and no cache pollution problems arise.

6.2 Optimization in a compiler for customizable
processors

In the previous chapters the chosen intermediate representation was the data-
flow graph (Section 3.1), since the search for instruction-set extensions was done
primarily within a single basic block. A more generic intermediate representa-
tion howeer will be more similar to a collection of control/data-flow graphs
(CDFGs), one per function, capturing both control and data flow behavior of an
application: for each node (basic block) in the control-flow graph, a data flow
graph is associated to it.

We propose a technique for ISE-targeted CDFG transformations that, despite
its simplicity, can catch significant optimization opportunities. By this technique,
before ISE identification we transform the CDFG into a semantically equivalent
one, yielding higher gain from the subsequent ISE identification phase (Fig-
ure 6.3. The problem is then reduced to finding the best set of transformations
to apply, which is formalized as follows:

Problem 9 (ISE-targeted code transformation): Given a control/data-flow
graph C DFG and a set of possible transformations to be applied to it in different
spots, select the point in the transformation space that maximizes ISE gain, i.e.,

90 6.2 Optimization in a compiler for customizable processors

ISE-targeted
optimizations

C code

compiler
front-end

Assembler
 code

ise_1 ...

ISE
identification

rest of
compilation

Figure 6.3. By applying ISE-targeted transformations to the code, bet-
ter high-performance extensions can be found by ISE identification.
Therefore, a set of possible CDFG transformations is considered, and
the one yielding the best ISE is selected.

select the transformed C DFG′ that, when fed to the chosen ISE identification
algorithm, exposes and returns the ISE with highest gain.

The peculiar point of our solution is that not only code transformations are
applied in an attempt to improve the quality of the custom instructions, but the
resulting extensions are examined to discard transformations that turned out to
be useless. This bidirectional flow of information between the optimizations and
the ISE search algorithms avoids excessive code size increase, and still allows
to use traditional compiler heuristics effectively after custom instructions have
been selected.

We apply this technique to two control-flow transformations, if-conversion
and loop unrolling. This small set is enough to show how ISE identification can
benefit greatly from specialized heuristics in a compiler targeting customizable
processors.

6.2.1 The transformation space

First of all, we study the meaning of the transformation space, depicted in Fig-
ure 6.4. Once a set of possible transformation types has been defined, differ-
ent spots in the intermediate representation can be identified where one of the

91 6.2 Optimization in a compiler for customizable processors

for (...) {

if (...) {

}

}

A

B

B

A
....

....

yes no

total 0

a)

if (...)

for (...) {}

else

A

B

for (...) {}C
....

....
00

....
02

22

A

C

B

....

b)

....
....

02

yes no

2

total total total

total

Figure 6.4. Transformation space, for two examples: crc (a) and des (b).
For every spot in the application where a transformation can be trig-
gered (labeled as A and B in the first code snippet, and A, B and C in
the second), a decision has to be taken on whether to apply the trans-
formation, and how, e.g. with which factor in the case of unrolling.
Each leaf represents a transformed CDFG, semantically equivalent to
the initial one, but different leaves may expose a different set of ISE.

transformations can potentially be triggered. In the example of Figure 6.4(a),
modeled on Figure 6.2, there are 2 such spots, labeled A and B.

The transformation space can be represented as a tree where every level con-
siders one transformation spot. For transformations types such as if-conversion
the choice is binary, and the left branch indicates that the transformation is
performed. For loop unrolling, instead, different unrolling factors may also be
chosen. Leaves of the tree represent CDFGs that are semantically equivalent to
the initial one and can be obtained by applying the different transformations.
The space thus appears to grow very fast in the number of transformation spots.

We consider a predefined order for transformation spots to be explored: in-
nermost first, and then in order of appearance in the code. Note that the order

92 6.2 Optimization in a compiler for customizable processors

of application of transformations does not change the resulting CDFG for the set
of transformation types we have chosen.

Of course an obvious solution to problem 9 is to exhaustively explore the
transformation space, applying ISE identification to each point, and then select-
ing the one yielding maximum gain. However this solution is not viable when
many transformation spots are considered, and in addition, it has the drawback
of possibly applying ISE identification to points corresponding to huge basic
blocks, perhaps resulting from total unrolling—remember that the complexity
of enumeration and covering, grows relatively fast with the number of nodes
in the basic block. Therefore it is essential to anticipate which points can be
eliminated from the search.

In fact, the solution we propose actually applies ISE identification to a single
point only. Based on the outcome, it is able to select the one point that is the
solution to problem 9.

6.2.2 Finding the best transformation set

In order to do so, we propose the following steps:

1. Select a single point in the space, to which ISE identification will later
be applied. This corresponds to traversing once the transformation space,
taking a decision at each level, in order to reach a leaf. The rules for taking
such decisions depend on the transformation type, and are explained in the
following subsections.

2. Apply ISE identification to the CDFG corresponding to the chosen point.

3. Analyze the chosen extensions and identify the transformations actually
exploited by it. Select as a winner point the one corresponding to those
transformations.

This can be understood better in Figure 6.5. Step 1 of the algorithm de-
scribed above selects the leftmost leaf of the tree (indicated with a square) as
the one to be fed to ISE identification. This corresponds to an if-converted and
totally unrolled CDFG. The rules leading to this decision will now be explained.

If-conversion. An if-conversion pass can be beneficial to the creation of bet-
ter ISEs, as it can expose additional parallelism and exploit multiplexers in the
synthesized functional units. However, unconditional if-conversion can have ad-
verse effects on performance. After if-conversion, the then and else branches will

93 6.2 Optimization in a compiler for customizable processors

....

....

yes no

total 0

a)

b)

....

....

yes no

total 02

c)

2

STEP 1

STEP 2 STEP 3

d)

yes no

total 02

e)

....

STEP 2 STEP 3

tested
committed

tested committed

tested

Figure 6.5. A pictorial description of the algorithm’s operation. a) In
step 1, a leaf is chosen as the single CDFG that is searched for in-
struction set extensions. b) In step 2, one identified ISE is analyzed
and found to contain nodes from the first and last iteration c) step
3 therefore detects that loop unrolling is exploited, and commits the
total-unrolling choice. Since edges to the multiplexer (not shown) are
also included in the ISE, if-conversion is committed too.
d) and e) In this case the ISE only spans 2 iterations instead, therefore
only two-iteration unrolling is committed. The winner in this case is
not the point on which ISE selection was attempted.

always execute, and this may induce a greater penalty than removing one or
more branches. For a simple, non-superscalar processor, this may happen if the
sizes and frequencies of the two branches are heavily skewed: in other words, if
one branch is much bigger and also rarely executed.

94 6.2 Optimization in a compiler for customizable processors

In fact, even when the architecture supports predicated execution, traditional
compilers usually perform if-conversion only if the then and else branches consist
of very few instructions. In our case, the compiler can attempt if-conversion
unconditionally, and then roll back the transformation if no ISE will benefit from
it.

We can apply if-conversion whenever we find a CDFG region composed of
three or four basic blocks and satisfying topology constraints, as in Figure 6.6.
In this case, the compiler can take a left-branch in the transformation space,
during step 1 of the proposed algorithm. The basic blocks must be connected
appropriately to represent if-then or if-then-else constructs, with a header, a junc-
tion, and one or two conditionally executed blocks. The junction will be the
sole exit of the region; note that (unlike the conditionally executed blocks) the
junction may have predecessors coming outside the region1. Furthermore, the
conditionally executed blocks must not contain any memory access or procedure
call, and their outputs must be used only in the junction block’s φ function.

Unrolling. Unrolling can expose ISE in two ways. A single, disconnected
multiple-output ISE can span across multiple iterations, performing them in par-
allel (we call this an opportunity for horizontal unrolling) or, if loop carried
dependences exist, a single connected ISE can chain multiple iterations (vertical
unrolling).

Step 1 of the proposed algorithm requires the compiler to choose an unrolling
factor at every level of the transformation tree. This corresponds to a factor that
is foreseen to be the maximum one, above which no further ISE potential can be
exposed.

For spots that consist of a single basic block, with a self-loop and only one
additional outgoing edge, the whole loop body may be covered with a single
ISE. The compiler checks if this is possible, and computes the highest value of
the unrolling factor n for which this condition holds. The following sets are
obtained from the data-flow graph and φ functions of the loop body:

Hin the inputs that must be provided to the ISE for each iteration. This is the
number of operations in the basic block that cannot be computed in hard-
ware: for example, memory accesses or results of function calls.

1This is acceptable because we are only interested in its φ functions, not in its code. We will
only examine two φ arguments, coming from the other blocks in the if-converted region.

95 6.2 Optimization in a compiler for customizable processors

1

1

>>

datacrc

^

crc1

>>

crc 4002

8000

^

|

&

==

1

1

>>

1

8

i

+

<

a)

〈bb1〉
i1 = φ(0, i2)
data2 = φ(data1, data3)
crc2 = φ(crc1, crc5)
x1 = (data2 ˆ crc2) & 1
data3 = data2 >> 1
if (x1 == 1) goto 〈bb2〉 else goto 〈bb3〉
〈bb2〉

crc3 = ((crc2 ˆ 0x4002)>> 1) | 0x8000
goto 〈bb4〉
〈bb3〉

crc4 = crc2 >> 1
goto 〈bb4〉
〈bb4〉

crc5 = φ(crc3, crc4)
i2 = i1+ 1
exit1 = i2 < 8
if (exit1) goto 〈bb1〉
〈bb5〉

return crc5

b)

1

1

>>

data
crc

^1

>>

4002

8000

^

|

&

==

1

1

>> 1

8

i

+

<

c)

〈bb1〉
i1 = φ(0, i2)
data2 = φ(data1, data3)
crc2 = φ(crc1, crc5)
x1 = (data2 ˆ crc2) & 1
data3 = data2 >> 1
crc3 = ((crc2 ˆ 0x4002)>> 1) | 0x8000
crc4 = crc2 >> 1
crc5 = (x1 == 1) ? crc3 : crc4
i2 = i1+ 1
exit1 = i2 < 8
if (exit1) goto 〈bb1〉
〈bb5〉

return crc5

d)

Figure 6.6. a-b) CDFG and SSA representation of the crc example after
the compiler’s scalar optimization passes; c-d) CDFG and SSA after
if-conversion replaced the region by a single basic block.

96 6.2 Optimization in a compiler for customizable processors

Hout the outputs that the ISE should yield on each iteration. Again, these follow
from language characteristics that cannot be mapped to hardware: in this
case, values that are passed to subroutines or written back to memory.

Vin the inputs that are connected to an output without passing through a node in
Hin. When the loop is unrolled, only one value every n needs to be passed
to the ISE. The ISE can compute the values of these inputs autonomously
for the n− 1 unrolled copies of the loop.

Vout the outputs reachable from the inputs in Vin without passing through a node
in Hin. Likewise, the program need not receive the value of these outputs
from the ISE, except for iterations n, 2n, etc.

Tin the subset of Vin nodes that have a constant value at the beginning of the
loop. If the loop is totally unrolled, the initial value of these inputs can be
hard-coded in the ISE.

Tout the subset of Vout nodes that are dead at the end of the loop. If the loop is
totally unrolled, the final value of these outputs need not be communicated
back to the program. For example, the loop index usually contributes to
both Tin and Tout .

For example, the CDFG in Figure 6.6(c) has Hin = Hout = ; because it does
not contain any subroutine call or memory access. Vin includes all 3 inputs i, data
and crc. Vout includes all 4 outputs (thick-bordered nodes). From Figure 6.6(d)
we see that Tin contains only i1, defined by a φ function whose value is zero
at the beginning of the loop. Tout contains i2, data3 and exit1—all of which are
dead at the end of the loop.
|Hin| and |Hout | pose a strong limit on the unrolling factor, above which an

ISE will not cover all unrolled iterations. Horizontal unrolling puts two or more
identical blocks in the same ISE, so that they are executed in parallel. Having
|Hin| inputs and |Hout | outputs on each iterations means that, after unrolling by
a factor of n, the ISE would need n|Hin| inputs and n|Hout | outputs.

Completing this reasoning, we obtain useful inequalities that reduce the
transformation space exploration. These provide an upper limit to the unrolling
factor, above which no further benefit can be exposed to the ISE selection pass.

97 6.2 Optimization in a compiler for customizable processors

If a loop is unrolled partially by a factor of n, a hypothetical ISE that covers
the whole loop body will have the following number of inputs and outputs:

totin = n|Hin|+ |Vin|
totout = n|Hout |+ |Vout |

If the loop is totally unrolled, instead, the number of inputs and outputs will
be lower:

totin = n|Hin|+ |Vin| − |Tin|
totout = n|Hout |+ |Vout | − |Tout |

Now, we transform the equations above into inequalities by noticing that totin

and totout should not exceed the number of maximum inputs and outputs al-
lowed for an ISE. These inequalities effectively prune the transformation search
space, because they limit the number of unrolling factors that need to be ex-
plored.

The compiler, during step 1 of the proposed algorithm, will pick the high-
est integral n that satisfies the above inequalities and that, for a loop rolling a
constant number times, divides the number of iterations. If no value of n is a
solution, no ISE can cover the whole loop body. Then, the compiler will still un-
roll the loop by 2, to look for small ISEs across loop iterations—remember that
unrolling is not definitive until an ISE is found that can exploit it.

In the case of Figure 6.6(a) we have totin = 2 and totout = 1. This means
that the whole loop can be placed into an ISE with an input/output constraint
equal to 2-1, and the compiler will perform total unrolling of the loop. If the
program includes other code that is hotter, the loop might not be placed in
an application-specific functional unit, and unrolling will not be committed in
the compiler’s intermediate representation. If the ISE is chosen, however, the
processor will be able to update the CRC in a single clock-cycle and without any
memory access.

Applying transformations on the CDFG. Both if-conversion and unrolling are
easy to perform on SSA-form CDFGs.

If-conversion merges the header with the conditional blocks. New nodes are
created for each of the junction block’s φ functions; their definition at the bot-
tom of the fused region consists of a ?: expression representing a multiplexer,

98 6.3 Experimental results

and replaces the two arguments of the φ function that correspond to the con-
ditional blocks. Possibly, the junction will enter the fused region as well (if the
conditional blocks are its only predecessors). If this is the case, φ functions will
be eliminated completely.

To perform unrolling, instead, multiple copies of the loop are created and
juxtaposed in the same graph. Then, edges are created between each of the
copies’ outputs and the next copy’s inputs. In case of total unrolling, inputs
that are constant in the first iteration are hard-coded. Both these operations are
easily done by looking up the region’s φ functions.

A single ISE may span multiple iterations, so we have to ensure that loop
unrolled n times will run for a number of iterations that is a multiple of n. In
our implementation, this requires the loop test to be a comparison between a
basic induction variable and a loop invariant.

In either case, fusion will enable outputs of some DFGs to be merged with
inputs of other graphs, creating new edges in the fused graph; furthermore,
variables that are not live at the exit of the region may be removed from the list
of outputs.

The compiler tracks new data-flow edges created by the transformations. Af-
ter ISE search, if an instruction includes a newly created edge, the compiler
finalizes the transformation by committing it on its SSA-based intermediate rep-
resentation.

6.3 Experimental results

The ISE-targeted unrolling and if-conversion heuristics we presented were im-
plemented in the same toolchain used for Section 4.4, using GCC and Sim-
pleScalar/ARM.

Our extension of SimpleScalar can accept the definitions of up to seven ISEs,
each with up to four inputs and up to two outputs; ISE descriptions are written in
C and dynamically linked to the simulator. The compiler’s machine description
was modified to generate assembly code for the extensions; the actual meaning
of these instructions, however, is obviously defined only during the compilation
of user programs.

After ISE selection, the compiler finds the selected occurrences in its inter-
mediate representation, and modifies it to use extended instructions instead of
software evaluation. The compiler also emits C code for the instructions, which
SimpleScalar will dynamically link to.

99 6.3 Experimental results

XScale
Branch predictor 8k bimodal, 2k 4-way BTB
Fetch queue 4 instructions
Fetch/decode width 1 instruction
Issue width 1 instruction, in-order
L1 i-cache 32k, 32-way set-assoc.
L1 d-cache 32k, 32-way set-assoc.
L2 cache None
Memory bus width 32-bit
Memory latency 12 cycles

Table 6.1. Configuring SimpleScalar for a popular ARM implementa-
tion

if-conversion ISE-targeted unrolling traditional unrolling
rawcaudio yes no no
rawdaudio yes no no
aes no yes yes
blowfish no no yes
des no yes no
sha no yes yes
bitcount no yes yes
crc yes yes no

Table 6.2. Transformations that trigger during compilation of the
benchmarks.

The benchmarks were compiled with GCC’s -O2 optimization level, enabling
feedback-directed optimization and inter-procedural analysis. Note that GCC’s
usual unrolling heuristics are not disabled, because ISEs cause code size reduc-
tion and may cause them to trigger more often.

We tuned SimpleScalar to match the architecture of the XScale, a single-
issue processor with in-order execution (6.1). The latency and area of custom
instructions were estimated using data from Artisan UMC 0.18µm technology
and simple bitwidth analysis techniques. While memory operations are not in-
cluded in extended instructions, read-only global arrays are an exception as they

100 6.3 Experimental results

 0

 1

 2

 3

 4

 5

sp
ee

du
p

ra
wca

ud
io

ra
wda

ud
io

ae
s

bit
co

un
t

blo
wfis

h
de

s
sh

a cr
c

ISE
ifconv, unroll, ISE

Figure 6.7. Speedup obtained on customizable processors, without
(solid), and with CFG transformations (hatched).

can be converted to hardware lookup tables in the ISE. Area estimates from the
compiler take into account bits that are always 0 or 1 in the tables.

Figure 6.7 shows the result of running the benchmarks on an augmented
XScale. For the first bar, ISEs were identified without transforming the CDFGs,
while for the second one, our ISE-targeted transformation strategies were en-
abled. It can be noticed that the proposed strategies can improve performance
tangibly (hatched over solid bar), up to 4x for crc, and 1.55x on average.

In one benchmark only, des, performance is not improved. This is due to the
fact that while the ISE identification algorithm used is exact in selecting a single
ISE in a single basic block, it is actually greedy in selecting multiple ISEs, i.e. it
is greedy in the covering phase. This is further elaborated later in the text.

Table 6.2 shows the set of transformations that the compiler picks for each
benchmark. Encryption benchmarks are especially suited to unrolling, because
they are composed of many identical rounds. The motivational example in Sec-
tion 6.1 shows a performance gain from CDFG transformations close to 4x.
As expected, both transformations improve performance on this benchmark.
Other tests usually benefit from either if-conversion or loop unrolling, but not
both. The inner loops in rawcaudio and rawdaudio span more than one basic
block even after if-conversion, and thus are not unrolled; on the other hand,
if-conversion gives a substantial improvement. Most crypto benchmarks do not

101 6.3 Experimental results

 0

 1

 2

 3

 4

ar
ea

ra
wca

ud
io

ra
wda

ud
io

ae
s

bit
co

un
t

blo
wfis

h
de

s
sh

a cr
c

ISE
ifconv, unroll, ISE

Figure 6.8. Area cost of the AFUs that were generated without (solid),
and with CFG transformations (hatched).

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2

co
de

 s
iz

e
ra

tio

ra
wca

ud
io

ra
wda

ud
io

ae
s

bit
co

un
t

blo
wfis

h
de

s
sh

a cr
c

unroll, no ISE
ISE

ifconv, unroll, ISE

Figure 6.9. Code size on a non-customizable processor with unrolling,
and on a customizable processor without and with CFG transforma-
tion. 1.0 = non-customizable processor, no unrolling.

102 6.3 Experimental results

benefit from if-conversion as their inner loops mostly consist of table lookups.
If these tables are constant, the compiler will move them inside the ISEs: for
this reason, these applications can achieve speedups as high as crc, but only at
a substantial area cost.

Figure 6.8 shows the area needed by ISEs for all benchmarks. In most cases,
the identified ISEs include ROMs. These can be up to 2 kbit in size, and each
have up to four ports. Our toolchain does not take into account area in order to
choose the best ISE; however, these figures are probably overestimated because
they assume that ROMs are implemented with multiplexers, and do not take into
account block memories that might be built into reconfigurable fabrics.

While not directly related to ISE-targeted optimization techniques we de-
scribe, one other interesting observation is possible. ISEs cause code size re-
duction, so the compiler may choose to unroll more loops after ISEs are selected
than it would have before; sometimes, the same loops that were already unrolled
by our pass are expanded further. Indeed, the plots in figure 6.9 show the code
size reduction benefits of an extended instruction set, and how these still hold
when CDFG transformations are applied. Of course, unrolling will yield larger
code; still, for many benchmarks, the code size improvement from instruction
set extensions offsets the greater footprint of unrolled loops.

Chapter 7

Conclusions

This work’s hypothesis was that a generalization of existing research results
(the framework), together with the specification of the common parts of these
solutions (the interfaces) is a powerful way to solve a problem in an easily
adapted way. Adaptation means being able to use the solution in a different
context—either targeting a new technology, or improving some of the underly-
ing algorithms—while keeping most of the implementation in place.

The claim, then, is that this hypothesis can be applied in the context of com-
pilation for extensible embedded processors. The various parts of the proposed
framework, which is defined based on a survey of existing work, were analyzed
in depth and adapted to different technologies and uses; well-known algorithms
were analyzed or generalized, and new ones were developed whenever needed.

Regarding the first step of the framework, enumeration, we adapted a tech-
nique used for the exact cover enumeration problem, and produced a new algo-
rithm for independent set enumeration. This algorithm is fast, easy to implement,
and requires a small amount of memory to run. We also analyzed a very well-
known algorithm from the state-of-the-art in depth, proving an optimal lower
bound on its time complexity. The proof hints that the algorithm is fast because
it considers all of the constraints and is able to prune its search based on each of
them; we then extended the idea so that additional speed can be gained if the
output is even more constrained.

Regarding the second step of the framework, covering, we noticed how inter-
procedural covering can be easily reduced to the intraprocedural version. Based
on this, we analyzed the relative merits of greedy and optimal solutions of the
intraprocedural problem. We also introduced isomorphism-aware search, show-
ing that information on recurrence on the same ISE can effectively improve the
quality of the extensions generated for more difficult benchmarks.

103

104

Finally, we noticed how the proposed framework is not restricted to searching
multiple extensions in a program; rather, it can also be used to find a mapping
for a single extension to a coarse-grained reconfigurable architecture (and in
particular the EGRA, whose design is outlined in Chapter 5).

Is there any other interesting work to do on compilation for extensible pro-
cessors? Sure. The last chapter of the thesis showed that searching for the
best set of ISEs provides only half of the solution; it is akin to having the best
instruction selection pass in a traditional compiler, but no loop optimizations,
no conditional execution, no alias analysis. Compilers like this exist [Thompson,

1990], but extracting performance from a modern processor requires all those
optimizations and more.

Existing compilation techniques, especially loop-oriented ones such as soft-
ware pipelining, hint at which transformations need to be revisited so that they
can help finding even better instruction-set extensions. This is especially impor-
tant for accelerators that can execute entire loops autonomously, such as most
coarse-grained reconfigurable accelerators. As researchers from various institu-
tions start to appreciate the importance of having a single tool capable to target
different CGRAs, it is our hope that the ideas presented in this thesis help with
the design of such a framework.

Appendix A

Terminology

Non-direct graphs.
V Set of vertices of the graph
E Set of edges of the graph
u, v, w Vertices of the graph
(u, v) An edge between u and v
u→ v, v→ u An edge between u and v; used when a path is being followed
N(u) Neighbors of a vertex u

Direct graphs.
V Set of vertices of the graph
E Set of edges of the graph
u, v, w Vertices of the graph
u→ v An edge from u to v
pred(u) Immediate predecessors of u, i.e. {v ∈ V : v→ u ∈ E}
succ(u) Immediate successors of u, i.e. {v ∈ V : u→ v ∈ E}
Pred(u) All predecessors of u, i.e. nodes from which there is a path to u
Succ(u) All successors of u, i.e. nodes reachable from u

Pseudo-code.
x .field Accessing structs
� text. . . Comments

105

106

Appendix B

Publication reference

Part of the material in this thesis was already published in conference and jour-
nal publications, as well as in technical reports. This appendix details the corre-
spondence between this thesis and previous publications.

Section 2.3: P. Bonzini and L. Pozzi. A retargetable framework for automated
discovery of custom instructions. In Proceedings of the 18th International
Conference on Application-specific Systems, Architectures and Processors,
pages 334–41, Montréal, Canada, July 2007.

Section 3.1: P. Bonzini and L. Pozzi. Polynomial-time subgraph enumeration for
automated instruction set extension. In Proceedings of the Design, Automa-
tion and Test in Europe Conference and Exhibition, pages 1331–36, Nice,
France, Apr. 2007.

Section 3.3: P. Bonzini and L. Pozzi. On the complexity of enumeration
and scheduling for extensible embedded processors. Technical Report
2008/07, University of Lugano, Lugano, Switzerland, Dec. 2008. URL
http://www.inf.unisi.ch/file/pub/46/bonzini-pozzi-2008-07.

pdf.

Sections 4.3 and 4.4: P. Bonzini and L. Pozzi. A retargetable framework for
automated discovery of custom instructions (cit.).

P. Bonzini and L. Pozzi. Recurrence-aware instruction set selection for ex-
tensible embedded processors. IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, 16(10), Oct. 2008.

Chapter 5 except Section 5.3: G. Ansaloni, P. Bonzini, and L. Pozzi. Design and
architectural exploration of expression-grained reconfigurable arrays. In

107

108

Proceedings of the 6th Symposium on Application Specific Processors, pages
26–33, Anaheim, CA, June 2008.

P. Bonzini, G. Ansaloni, and L. Pozzi. Compiling custom instructions onto
expression-grained reconfigurable architectures. In Proceedings of the In-
ternational Conference on Compilers, Architectures, and Synthesis for Em-
bedded Systems, pages 51–60, Atlanta, GA, Oct. 2008.

Section 5.3: P. Bonzini and L. Pozzi. On the complexity of enumeration and
scheduling for extensible embedded processors (cit.).

Chapter 6: P. Bonzini and L. Pozzi. Code transformation strategies for extensi-
ble embedded processors. In Proceedings of the International Conference on
Compilers, Architectures, and Synthesis for Embedded Systems, pages 242–
52, Seoul, South Korea, Oct. 2006.

Bibliography

M. Ahn, J. Yoon, Y. Paek, Y. Kim, M. Kiemb, and K. Choi [2006]. A spatial mapping
algorithm for heterogeneous coarse-grained reconfigurable architectures. In
Proceedings of the Design, Automation and Test in Europe Conference and Ex-
hibition, pages 363–68. European Design and Automation Association 3001
Leuven, Belgium, Mar. 2006.

A. V. Aho, R. Sethi, and J. D. Ullman [1988]. Compilers: Principles, Techniques and
Tools. Addison-Wesley, Reading, MA, 1988.

C. Alippi, W. Fornaciari, L. Pozzi, and M. Sami [1999]. A DAG based design
approach for reconfigurable VLIW processors. In Proceedings of the Design,
Automation and Test in Europe Conference and Exhibition, pages 778–79, Mar.
1999.

Altera Corp. [2002]. Custom instructions for the Nios embedded processor. Ap-
plication Note AN-188-1.1. San Jose, CA, Apr. 2002.

G. Ansaloni, P. Bonzini, and L. Pozzi [2008]. Design and architectural exploration
of expression-grained reconfigurable arrays. In Proceedings of the 6th Sympo-
sium on Application Specific Processors, pages 26–33, Anaheim, CA, June 2008.

G. Ansaloni, P. Bonzini, and L. Pozzi [2009]. Heterogeneous coarse-grained pro-
cessing elements: a template architecture for embedded processing accelera-
tion. In Proceedings of the Design, Automation and Test in Europe Conference
and Exhibition, Nice, France, Mar. 2009. To appear.

K. Atasu, L. Pozzi, and P. Ienne [2003]. Automatic application-specific instruction-
set extensions under microarchitectural constraints. In Proceedings of the 40th
Design Automation Conference, pages 256–61, Anaheim, CA, June 2003.

P. Biswas, N. Dutt, P. Ienne, and L. Pozzi [2006]. Automatic identification of
application-specific functional units with architecturally visible storage. In

109

110 Bibliography

Proceedings of the Design, Automation and Test in Europe Conference and Exhi-
bition, pages 212–17, Munich, Germany, Mar. 2006.

P. Bonzini and L. Pozzi [2006a]. Polynomial-time subgraph enumeration for au-
tomated instruction set extension. Technical Report 2006/07, University of
Lugano, Lugano, Switzerland, Dec. 2006. URL http://www.inf.unisi.ch/

file/pub/15/bonzini-pozzi-2006-07.pdf.

P. Bonzini and L. Pozzi [2006b]. Code transformation strategies for extensible
embedded processors. In Proceedings of the International Conference on Com-
pilers, Architectures, and Synthesis for Embedded Systems, pages 242–52, Seoul,
South Korea, Oct. 2006.

P. Bonzini and L. Pozzi [2007a]. Polynomial-time subgraph enumeration for auto-
mated instruction set extension. In Proceedings of the Design, Automation and
Test in Europe Conference and Exhibition, pages 1331–36, Nice, France, Apr.
2007.

P. Bonzini and L. Pozzi [2007b]. A retargetable framework for automated dis-
covery of custom instructions. In Proceedings of the 18th International Confer-
ence on Application-specific Systems, Architectures and Processors, pages 334–
41, Montréal, Canada, July 2007.

P. Bonzini and L. Pozzi [2008a]. On the complexity of enumeration and scheduling
for extensible embedded processors. Technical Report 2008/07, University of
Lugano, Lugano, Switzerland, Dec. 2008. URL http://www.inf.unisi.ch/

file/pub/46/bonzini-pozzi-2008-07.pdf.

P. Bonzini and L. Pozzi [2008b]. Recurrence-aware instruction set selection for
extensible embedded processors. IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, 16(10), Oct. 2008.

P. Bonzini, G. Ansaloni, and L. Pozzi [2008]. Compiling custom instructions onto
expression-grained reconfigurable architectures. In Proceedings of the Inter-
national Conference on Compilers, Architectures, and Synthesis for Embedded
Systems, pages 51–60, Atlanta, GA, Oct. 2008.

P. Brisk, A. Kaplan, and M. Sarrafzadeh [2004]. Area-efficient instruction set
synthesis for reconfigurable system-on-chip designs. In Proceedings of the 41st
Design Automation Conference, pages 395–400, San Diego, USA, June 2004.

111 Bibliography

P. Brisk, J. Macbeth, A. Nahapetian, and M. Sarrafzadeh [2005]. A dictionary
construction technique for code compression systems with echo instructions.
In Proceedings of the 2005 ACM Conference on Languages, Compilers, and Tools
for Embedded Systems, pages 105–14, New York, NY, USA, June 2005. ACM
Press.

P. Y. Calland, A. Mignotte, O. Peyran, Y. Robert, and F. Vivien [1998]. Retiming
DAG’s. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 17(12):1319–25, Dec. 1998.

A. Chattopadhyay, X. Chen, H. Ishebabi, R. Lupers, G. Ascheid, and H. Meyr
[2008]. High-level modelling and exploration of coarse-grained re-configurable
architectures. In Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition, pages 1334–39, Munich, Germany, Mar. 2008.

X. Chen, D. L. Maskell, and Y. Sun [2007]. Fast identification of custom instruc-
tions for extensible processors. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 26(2):359–68, Feb. 2007.

N. Clark, H. Zhong, and S. Mahlke [2003]. Processor acceleration through auto-
mated instruction set customization. In MICRO 36: Proceedings of the 36th An-
nual International Symposium on Microarchitecture, pages 129–40, San Diego,
CA, Dec. 2003.

N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner [2004]. Application-
specific processing on a general-purpose core via transparent instruction set
customization. In MICRO 37: Proceedings of the 37th Annual International
Symposium on Microarchitecture, pages 30–40, Washington, DC, USA, Dec.
2004. IEEE Computer Society.

N. Clark, A. Hormati, S. Mahlke, and S. Yehia [2006]. Scalable subgraph mapping
for acyclic computation accelerators. In Proceedings of the International Con-
ference on Compilers, Architectures, and Synthesis for Embedded Systems, pages
147–57, Seoul, South Korea, Oct. 2006.

J. Cong and Y. Ding [1994]. Flowmap: An optimal technology mapping algorithm
for delay optimization in lookup-table based FPGA designs. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 13(1):1–12, Jan.
1994.

J. Cong, Y. Fan, G. Han, and Z. Zhang [2004]. Application-specific instruction
generation for configurable processor architectures. In Proceedings of the 2004

112 Bibliography

ACM/SIGDA 12th International Symposium on Field Programmable Gate Arrays,
pages 183–89, Monterey, CA, Feb. 2004.

L. Cordella, P. Foggia, C. Sansone, and M. Vento [2004]. A (sub)graph isomor-
phism algorithm for matching large graphs. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 26(10):1367–72, Oct. 2004.

M. L. Corliss, E. C. Lewis, and A. Roth [2003]. DISE: A programmable macro
engine for customizing applications. In Proceedings of the 30th Annual Inter-
national Symposium on Computer Architecture, volume 0, pages 362–73, Los
Alamitos, CA, USA, June 2003. IEEE Computer Society.

O. Coudert [1997]. Solving graph optimization problems with ZBDDs. In Pro-
ceedings of the European Conference on Design and Test, pages 224–28, Mar.
1997.

D. Eppstein [2005]. All maximal independent sets and dynamic dominance for
sparse graphs. In Proceedings of the sixteenth annual ACM-SIAM symposium on
Discrete algorithms, pages 451–59, Philadelphia, PA, USA, Jan. 2005. Society
for Industrial and Applied Mathematics.

M. Galanis, G. Theodoridis, S. Tragoudas, and C. Goutis [2006]. A high-
performance data path for synthesizing DSP kernels. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 25(6):1154–62,
June 2006.

M. R. Garey and D. S. Johnson [1979]. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman, New York, 1979.

R. Geiß, G. V. Batz, D. Grund, S. Hack, and A. Szalkowski [2006]. GrGen: A fast
SPO-based graph rewriting tool. In Proceedings of the 3rd Internatial Confer-
ence on Graph Transformations, Natal, Brazil, Sept. 2006.

S. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. R. Taylor, and
R. Laufer [1999]. PipeRench: A coprocessor for streaming multimedia acceler-
ation. In Proceedings of the 26th Annual International Symposium on Computer
Architecture, pages 28–39, May 1999.

S. W. Golomb and L. D. Baumert [1965]. Backtrack Programming. Journal of the
ACM (JACM), 12(4):516–24, 1965.

113 Bibliography

D. Goodwin and D. Petkov [2003]. Automatic generation of application specific
processors. In Proceedings of the International Conference on Compilers, Ar-
chitectures, and Synthesis for Embedded Systems, pages 137–47, San Jose, CA,
Oct. 2003.

Y. Guo, G. J. Smit, H. Broersma, and P. M. Heysters [2003]. A graph cover-
ing algorithm for a coarse-grain reconfigurable system. In Proceedings of the
2003 ACM Conference on Languages, Compilers, and Tools for Embedded Sys-
tems, pages 199–208, New York, NY, USA, July 2003. ACM.

M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown [2001].
MiBench: A free, commercially representative embedded benchmark suite.
In Proceedings of the IEEE 4th Annual Workshop on Workload Characteriza-
tion, pages 3–14, Dec. 2001. URL http://www.eecs.umich.edu/mibench/

Publications/MiBench.pdf.

R. Hartenstein [2001]. A decade of reconfigurable computing: A visionary retro-
spective. In Proceedings of the Design, Automation and Test in Europe Conference
and Exhibition, pages 642–49, Mar. 2001.

S. Hauck, T. W. Fry, M. M. Hosler, and J. P. Kao [1997]. The Chimaera recon-
figurable functional unit. In Proceedings of the 5th IEEE Symposium on Field-
Programmable Custom Computing Machines, pages 87–96, Napa Valley, CA,
Apr. 1997.

J. R. Hauser and J. Wawrzynek [1997]. Garp: A MIPS processor with a recon-
figurable coprocessor. In Proceedings of the 5th IEEE Symposium on Field-
Programmable Custom Computing Machines, pages 12–21, Napa Valley, CA,
Apr. 1997.

R. Kastner, A. Kaplan, S. Ogrenci Memik, and E. Bozorgzadeh [2002]. Instruction
generation for hybrid reconfigurable systems. ACM Transactions on Design
Automation of Electronic Systems (TODAES), 7(4):605–27, Oct. 2002.

D. E. Knuth [2000]. Dancing Links. In J. Davies, B. Roscoe, and J. Woodcock,
editors, Millenial Perspectives in Computer Science, pages 187–214. Palgrave,
Houndmills, England, 2000.

D. E. Knuth [2008]. Fundamental Algorithms, volume 4, pre-fascicle 1a of The Art
of Computer Programming. Addison-Wesley, Reading, MA, 2008.

114 Bibliography

J.-E. Lee, K. Choi, and N. Dutt [2002]. Mapping loops on coarse-grain reconfig-
urable architectures using memory operation sharing. Technical Report #02-
34, Center for Embedded Computer Systems, University of California at Irvine,
Sept. 2002.

S. Liao, S. Devadas, K. Keutzer, and S. Tjiang [1995]. Instruction selection using
binate covering for code size optimization. In Proceedings of the International
Conference on Computer Aided Design, pages 393–99, San Jose, CA, Nov. 1995.

S. Mahlke, R. Ravindran, M. Schlansker, R. Schreiber, and T. Sherwood [2001].
Bitwidth cognizant architecture synthesis of custom hardware accelerators.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
20(11):1355–71, Nov. 2001.

B. D. McKay [1981]. Practical graph isomorphism. Congressus Numerantium, 30:
45–87, 1981. URL http://cs.anu.edu.au/people/bdm/nauty/.

B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins [2002]. DRESC:
A retargetable compiler for coarse-grained reconfigurable architectures. In
Proceedings of the IEEE International Conference on Field-Programmable Tech-
nology, pages 166–73, Dec. 2002.

S. Minato [1993]. Zero-suppressed BDDs for set manipulation in combinatorial
problems. In Proceedings of the 30th Design Automation Conference, pages
272–77, New York, NY, USA, 1993. ACM Press.

A. Mishchenko [2001]. An introduction to Zero-Suppressed Binary Decision
Diagrams, June 2001. URL http://www.eecs.berkeley.edu/~alanmi/

publications/2001/tech01_zdd.pdf.

J. Moon and L. Moser [1965]. On cliques in graphs. Israel Journal of Mathematics,
3(1):23–28, 1965.

H. G. Okuno, S. Minato, and H. Isozaki [1998]. On the properties of combination
set operations. Information Processing Letters, 66(4):195–99, May 1998.

A. Peymandoust, L. Pozzi, P. Ienne, and G. De Micheli [2003]. Automatic instruc-
tion set extension and utilization for embedded processors. In Proceedings of
the 14th International Conference on Application-specific Systems, Architectures
and Processors, pages 103–14, The Hague, The Netherlands, June 2003.

115 Bibliography

N. Pothineni, A. Kumar, and K. Paul [2007]. Application specific datapath ex-
tension with distributed i/o functional units. In Proceedings of the 20th In-
ternational Conference on VLSI Design, pages 551–58, Bangalore, India, Jan.
2007.

L. Pozzi and P. Ienne [2005]. Exploiting pipelining to relax register-file port con-
straints of instruction-set extensions. In Proceedings of the International Con-
ference on Compilers, Architectures, and Synthesis for Embedded Systems, pages
2–10, San Francisco, CA, Sept. 2005.

L. Pozzi, K. Atasu, and P. Ienne [2006]. Exact and approximate algorithms for
the extension of embedded processor instruction sets. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, CAD-25(7):1209–
29, July 2006.

T. G. Rauscher and A. K. Agrawala [1978]. Dynamic problem-oriented redefini-
tion of computer architecture via microprogramming. IEEE Transactions on
Computers, 27(11):1006–14, Nov. 1978.

R. Razdan and M. D. Smith [1994]. A high-performance microarchitecture with
hardware-programmable functional units. In MICRO 27: Proceedings of the
27th Annual International Symposium on Microarchitecture, pages 172–80, San
Jose, CA, Nov. 1994.

C. R. Rupp [2003]. Multi-scale Programmable Array. U.S. Patent 6633181, Oct.
2003.

H. Singh, L. Ming-Hau, L. Guangming, F. J. Kurdahi, N. Bagherzadeh, and E. M.
Chaves Filho [2000]. Morphosys: An integrated reconfigurable system for data-
parallel computation-intensive applications. IEEE Transactions on Computers,
49(5):465–81, May 2000.

N. J. A. Sloane [2009]. The On-Line Encyclopedia of Integer Sequences, 2009.
URL http://www.research.att.com/~njas/sequences/.

F. Somenzi [1998]. CUDD: Colorado University Decision Diagram Package, 1998.
URL http://vlsi.colorado.edu/~fabio/CUDD/.

M. Stephenson, J. Babb, and S. Amarasinghe [2000]. Bitwidth analysis with
application to silicon compilation. In Proceedings of the ACM SIGPLAN’00 Con-
ference on Programming Language Design and Implementation, pages 108–20,
Vancouver, Canada, June 2000.

116 Bibliography

F. Sun, S. Ravi, A. Raghunathan, and N. K. Jha [2004]. Custom-instruction syn-
thesis for extensible-processor platforms. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 23(2):216–28, Feb. 2004.

K. Thompson [1990]. Plan 9 C compilers. In UNIX—The Legend Evolves. Proceed-
ings of the Summer 1990 UKUUG Conference, pages 41–51, 90 1990.

J. Turley [1999]. Tensilica CPU bends to designers’ will. Microprocessor Report,
8 Mar. 1999.

A. Vahidi [2003]. JDD, a pure Java BDD and Z-BDD library, 2003. URL http:

//javaddlib.sourceforge.net/jdd.

A. K. Verma, P. Brisk, and P. Ienne [2007]. Rethinking custom ISE identification: A
new processor-agnostic method. In Proceedings of the International Conference
on Compilers, Architectures, and Synthesis for Embedded Systems, pages 125–
34, Salzburg, Austria, Oct. 2007.

E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank,
P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal [1997]. Baring it
all to software: Raw machines. Computer, 30(9):86–93, Sept. 1997.

M. J. Wirthlin and B. L. Hutchings [1995]. A dynamic instruction set computer.
In Proceedings of the 3rd IEEE Symposium on Field-Programmable Custom Com-
puting Machines, pages 99–107, Napa Valley, CA, Apr. 1995.

Xilinx Inc. [2006]. The Virtex-5 User Guide, Oct. 2006. URL http://direct.

xilinx.com/bvdocs/userguides/ug190.pdf.

Z. A. Ye, A. Moshovos, S. Hauck, and P. Banerjee [2000]. CHIMAERA: A high-
performance architecture with a tightly-coupled reconfigurable functional
unit. In Proceedings of the 27th Annual International Symposium on Computer
Architecture, pages 225–35, Vancouver, Canada, June 2000.

J. W. Yoon, A. Shrivastava, S. Park, M. Ahn, R. Jeyapaul, and Y. Paek [2008].
SPKM: A novel graph-drawing based algorithm for application mapping onto
coarse-grained reconfigurable architectures. In Proceedings of the Asia and
South Pacific Design Automation Conference, pages 776–82, Seoul, South Ko-
rea, Jan. 2008.

W. Yu [1996]. The Two-machine Flow Shop Problem with Delays and the One-
machine Total Tardiness Problem. PhD thesis, Eindhoven University of Tech-
nology, 1996.

117 Bibliography

W. Yu, H. Hoogeveen, and J. Lenstra [2004]. Minimizing Makespan in a Two-
Machine Flow Shop with Delays and Unit-Time Operations is NP-Hard. Journal
of Scheduling, 7(5):333–48, Oct. 2004.

