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This paper is a modest tribute to the memory of Lester Dubins.

Abstract. We prove results on the existence of Doléans-Dade measures and of the Doob-Meyer decompo-

sition for supermartingales indexed by a general index set.

1. Introduction

By Doob’s theorem, a supermartingale indexed by the natural numbers decomposes uniquely into the

difference of a martingale and an increasing, predictable process; moreover, both such processes are uniformly

integrable if the supermartingale is so. The relative ease of working with increasing processes explains

the prominent role of this result in stochastic analysis and in the theory of stochastic integration and it

motivates the interest for possible extensions to more general settings. Meyer [21] proved that, under the

usual conditions, Doob’s decomposition exists for right continuous supermartingales indexed by the positive

reals if and only if the supermartingale is of class D. Doléans-Dade [10], later followed by Föllmer [13]

and Metivier and Pellaumail [20], was the first to represent supermartingales as measures over predictable

rectangles and to prove that a supermartingale is of class D if and only if its associated measure is countably

additive. The first proof making no use of the usual conditions was obtained by Mertens [19].

In this paper we consider the case of processes indexed by a family of sets. We obtain results for super-

martingales belonging to three different classes: D0, D and D∗. In Theorem 1 we prove that the class D0

property is necessary and sufficient for the existence of a (finitely additive) Doléans-Dade measure associated

with a supermartingale. We then consider supermartingales of class D and show that this property is not

enough to imply the existence of a suitable version of the Doob Meyer decomposition, save when the index set

is linearly ordered. Looking for a more stringent condition, we prove in Theorem 3 that supermartingales of

class D∗ may be decomposed as required. In Corollary 1 we fully characterise supermartingales of uniformly

integrable variation. Eventually, we show that the class D, the class D∗ and the uniform integrable variation

property are equivalent when the index set is linearly ordered.

Many papers over the years have treated the case of stochastic processes indexed by general sets, starting

from the seminal work of Cairoli and Walsh [3], in which the index set consists of rectangles in R2
+ with one

vertex in the origin. A rather complete list of references appears in the bibliography of the book by Ivanoff

and Merzbach [16], where a general treatment of this topic is offered. The works more directly related to ours

are those of Dozzi, Ivanoff and Merzbach [11] and of Slonowsky [24], who obtain a form of the Doob Meyer

decomposition. Also relevant are the papers of Ivanoff and Merzbach [15], who extend such decomposition
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by a localization argument, and, to a much lesser extent, of De Giosa and Mininni [8], dealing with measures

associated with supermartingales. A very recent but less relevant contribution is the paper by Yosef [25].

Part of the interest raised by this topic is for the additional mathematical machinery needed in order to

obtain the results of Doob and Meyer in a more general setting. All of the aforementioned works, some of

which draw in turn from an unpublished paper of Norberg [23], apply classical techniques, based on right

continuity, separability and uniform integrability. In order to make this possible, a large number of set-

theoretical as well as of topological restrictions on the index set has to be introduced. We take here a

different approach in which the index set is given a minimal structure with no topological content. Likewise,

the notion of predictability we adopt is elementary and, hopefully, intuitive. Our approach is based once

more on the fundamental idea that supermartingale decompositions are related to a corresponding property

of the Doléans-Dade measure associated with it. The mathematical novelty lies in the choice to work with

finitely additive measures which has the advantage of making easier the proofs concerning existence although

at the cost, as usual with finite additivity, of accepting non uniqueness.

2. Preliminaries and notation

We fix some general notation, mainly in accordance with [12]. When S is a set, 2S denotes its power set

and 1S its indicator function. If Σ ⊂ 2S , typically an algebra, the symbols ba(Σ) (resp. ca(Σ)) and B(Σ)

designate the spaces of bounded, finitely (resp. countably) additive set functions on Σ and the closure of

the set of Σ simple functions with respect to the supremum norm, respectively. We prefer ba(S) to ba(2S)

and B(S) to B(2S). The space of integrable functions with respect to some m ∈ ba(Σ) is denoted L(m).

Finitely additive measures are identified with the linear functional arising from the corresponding expected

value so writing µ(f) is preferred
∫
fdµ. P(Σ) designates the collection of those elements P of ba(S)+ whose

restriction P |Σ to Σ is a countably additive probability measure (thus P ∈ P(Σ) need not be itself countably

additive). We recall two useful facts on finitely additive probabilities that we shall use repeatedly (see [2,

Theorem 3.2.10, p. 70] and [5, Theorem 1, p. 588]):

Lemma 1. Let Σ0 ⊂ 2S be an algebra and Σ ⊂ 2S a σ algebra, µ ∈ ba(Σ0)+ and P ∈ P(Σ). Then,

(i) there is µ̄ ∈ ba(S)+ with µ̄|Σ0 = µ;

(ii) for each f ∈ L(P ) there exists a P a.s. unique element P (f |Σ) of L(P |Σ) such that

(1) P (f1F ) = P (P (f |Σ)1F ) F ∈ Σ.

Thus, any (countably additive) probability measure on some algebra Σ may be extended to an element of

P(Σ) while the conditional expectation relatively to Σ remains well defined.

We take two sets Ω and I as given, put Ω̄ ≡ Ω× I and, for s, t ⊂ Ω̄, we write s ≤ t whenever t ⊂ s. s < t

means s ≤ t and s ∩ tc 6= ∅. t(i) denotes the i-section {ω ∈ Ω : (ω, i) ∈ t} of t, {s < t} =
⋃
i∈I(s ∩ tc)(i):

thus {s < ∅} is just the projection of s on Ω. The special case where I = R+ and some probability measure

P on Ω is given will be referred to as the classical theory.

Also given are a collection T of subsets of Ω̄ containing Ω̄ and ∅ and a filtration A = (At : t ∈ T ), that

is an increasing collection of algebras of subsets of Ω satisfying:

(2) F ∩ (s ∩ tc)(i) ∈ As ∩At and F ∩ {s < t} ∈ As ∩At s, t ∈ T, F ∈ As, i ∈ I.

One should remark that in the present setting the second inclusion in (2) does not follow from the first one

and must therefore be explicitly assumed. Define also A =
⋃
t∈T At and F = σA . We denote by D the
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family of all finite, disjoint collections

(3) d = {sn ∩ tcn : n = 1, . . . , N} with sn, tn ∈ T, sn ≤ tn n = 1, . . . , N.

In the classical theory, T would typically be some family of stochastic intervals such as ]]τ,∞[[ or [[τ,∞[[

with τ a stopping time (which explains our choice to define partial order by reverse inclusion). The literature

has treated the case in which each t ∈ T is deterministic, i.e. of the form t = Ω × J with J ⊂ I, and may

then be identified with a subset of I. Dozzi et al. [11] and Slonowsky [24], e.g., take T to be a collection

of closed subsets of a (locally) compact topological space and assume, among other things, that T is closed

with respect to countable intersections. The index set T is said to be regular if it is closed with respect to

finite unions and intersections.

3. Finitely Additive Supermartingales

A finitely additive process (on A) is an element m = (mt : t ∈ T ) of the product space
∏
t∈T ba(At).

A particular case of special importance is that of classical, integrable processes, X ∈
∏
t∈T L(P |At), for

some given P ∈ P(F ) with which one associates the finitely additive process (mt : t ∈ T ) defined by letting

dmt = XtdP for all t ∈ T . A finitely additive process m is bounded if ‖m‖ ≡ supt∈T ‖mt‖ <∞.

We speak of the finitely additive process m as a finitely additive supermartingale if

(4) mt|As ≤ ms s, t ∈ T, s ≤ t.

As a consequence of the assumption Ω̄, ∅ ∈ T , all finitely additive supermartingales are actually bounded.

Alternatively, when T is a directed set and m a bounded, finitely additive supermartingale, one may avoid

assuming ∅ ∈ T by letting m∅(F ) = lim{t∈T :F∈At}mt(F ) for all F ∈ A .

A process f : Ω̄→ R is elementary, f ∈ E , if it may be written in the form

(5) f =
N∑
n=1

fn1sn∩tcn with fn ∈ B(Asn
), sn, tn ∈ T, sn ≤ tn n = 1, . . . , N,

while we write f ∈ E ∗ if (5) applies with fn ∈ B(A ) for n = 1, . . . , N . A subset of Ω̄ is predictable if it

belongs to the algebra P generated by the elementary processes1.

The next property is crucial in the following developments.

Definition 1. A finitely additive supermartingale m is said to be of class D0 if

(6) 0 ≥
N∑
n=1

fn1sn∩tcn ∈ E imply
N∑
n=1

(msn
−mtn)(fn) ≤ 0.

The following lemma shows that when the index set is sufficiently well behaved, then the class D0 property

simplifies to a condition which is entirely familiar in the classical framework.

Lemma 2. Let T be regular. A finitely additive supermartingale m is of class D0 if and only if it is regular,

i.e. if it satisfies

(7) (ms∪t −mt)(F ) = (ms −ms∩t)(F ∩ {s < t}) s, t ∈ T, F ∈ As∪t.

1The terminology here is motivated by our focus on the Doob Meyer decomposition but, given that the collection T is

entirely arbitrary, P may well be taken to be the family of optional stochastic intervals or of progressively measurable sets, in

the classical approach.
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Proof. Given that F ∈ As∪t implies 0 = 1F1(s∪t)∩tc − 1F∩{s<t}1s∩(s∩t)c ∈ E , a finitely additive super-

martingale of class D0 clearly meets (7). The converse is proved by induction. If 0 ≥ f11s1∩tc1 ∈ E and m is

regular, then (ms1 −mt1)(f1) = (ms1 −mt1)(f11{s1<t1}) ≤ (ms1 −mt1)(supi f1s1∩tc1(i)) ≤ 0. Assume that

(8)
N−1∑
n=1

(msn
−mtn)(fn) ≤ 0 when 0 ≥

N−1∑
n=1

fn1sn∩tcn ∈ E

and let 0 ≥ f =
∑N
n=1 fn1sn∩tcn ∈ E . To start a recursion, define I0

n = sn ∩ tcn,

(9) Ikn = Ik−1
n ∩ Ik−1

k = I0
n ∩

k⋂
j=1

Ij−1
j and fk =

N∑
n=1

fn1Ik
n

= f1⋂k
j=1 I

j−1
j
≤ 0.

It is easily seen that, letting s0
n = sn and t0n = tn, then Ikn = skn ∩ (tkn)c where

(10) skn = (sk−1
k ∩ sk−1

n ) ∪ tk−1
n and tkn = (sk−1

n ∩ tk−1
k ) ∪ tk−1

n , k = 1, . . . , N.

Let also s =
⋂N
n=1 s

N
n and t = s ∩

⋃N
n=1 t

N
n . Observe that s, skn, t

k
n, t ∈ T and that skn ≤ sk+1

n ≤ tk+1
n ≤ tkn.

Moreover, INn =
⋂N
j=1 I

j−1
j = s ∩ tc for n = 1, . . . , N which implies

(11) sNn = tNn ∪ (s ∩ tc) ⊂ tNn ∪ s = sNn and s ∩ tNn = s ∩
(
(sNn )c ∪ tNn

)
= s ∩ (sc ∪ t) = t

We then draw the following implications. First,

0 ≥ fk−11(sk−1
k )c =

∑
n 6=k

fn1sk−1
n ∩(tk−1

n ∪sk−1
k )c =

∑
n 6=k

fn1sk−1
n ∩(sk

n)c

and likewise 0 ≥
∑
n 6=k fn1tkn∩(tk−1

n )c so that, by (8),
∑N
n=1(msk−1

n
− msk

n
)(fn) ≤ 0 and

∑N
n=1(mtkn

−
mtk−1

n
)(fn) ≤ 0, and thus

N∑
n=1

(msk−1
n
−mtk−1

n
)(fn) ≤

N∑
n=1

(msk
n
−mtkn

)(fn) 1 < k ≤ N.

Second, from (11) and (7), (msN
n
−mtNn

)(fn) = (mtNn ∪s−mtNn
)(fn) = (ms−ms∩tNn )(fn) = (ms−mt)(1{s<t}fn).

We conclude that
N∑
n=1

(msn
−mtn)(fn) ≤

N∑
n=1

(msN
n
−mtNn

)(fn) = (ms −mt)

(
1{s<t}

N∑
n=1

fn

)
≤ (ms −mt)

(
sup
i
f(i)

)
≤ 0.

and that thus (8) holds for any integer N > 1. �

All finitely additive supermartingales are regular when the index set is deterministic (or even linearly

ordered). In the classical theory the optional sampling theorem extends this conclusion to càdlàg super-

martingales indexed by bounded stopping times, provided the usual conditions apply. As is well known, this

theorem is far from obvious with a general index set (see [14] and [18]) and it may actually fail even with R+

as the index set unless the usual conditions hold. All finitely additive supermartingales in this paper will be

regular.

A regular index set has other two interesting properties.

Lemma 3. Let the index set T be regular. Then,

(i) each f ∈ E may be written in the form
∑N
n=1 fn1sn∩tcn where fn ∈ B(Asn

) n = 1, . . . , N and the

collection d = {sn ∩ tcn : n = 1, . . . , N} is disjoint, i.e. d ∈ D ;

(ii) writing δ′ ≥ δ whenever δ, δ′ ∈ D and each s∩ tc ∈ δ may be written as
⋃N
n=1 sn∩ tcn with sn∩ tcn ∈ δ′

and sn ⊂ s for n = 1, . . . , N makes D into a directed set.
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Proof. Write f ∈ E in the form
∑K
k=1 f

′
k1s′k and denote by {π1, . . . , πN} the collection of non empty subsets

of {1, . . . ,K}. For n = 1, . . . , N , define (with the convention
⋃

∅ = ∅)

(12) sn =
⋂
k∈πn

s′k, tn = sn ∩
⋃
j /∈πn

s′j and fn =
∑
k∈πn

f ′k.

Then clearly, f =
∑N
n=1 fn1sn∩tcn . Given that all collections in D are disjoint, to prove the second claim it

is enough to consider δ = {s ∩ tc} and δ′ = {u ∩ vc} and to apply (12) to the collection {s, t, u, v}. �

The preceding results naturally raise interest for regular index sets and induce to consider whether the

original model may be embedded into one which possesses this property or is endowed with additional

mathematical structure. This point was first made quite clearly by Dozzi et al. [11] and Ivanoff and

Merzbach [16] (but see the comments in Section 6). To fix terminology, consider a finitely additive process

m̄ defined on some filtration Ā =
(
Āu : u ∈ U

)
where T ⊂ U ⊂ 2Ω̄,

At ⊂ Āt and m̄t|At = mt t ∈ T.

We then say that Ā and m̄ are extensions of A and m respectively. The existence of extensions of a given

finitely additive supermartingale turns out to be related to the time honoured question of whether finitely

additive supermartingales may be represented as measures on Ω̄, i.e. the existence of Doléans-Dade measures.

Theorem 1. Let m be a finitely additive supermartingale. The following are equivalent:

(i) m is of class D0;

(ii) m admits a Doléans-Dade measure, that is an element of the set

M (m) =
{
λ ∈ ba(Ω̄)+ : λ((F × I) ∩ t) = (mt −m∅)(F ), F ∈ At, t ∈ T

}
;

(iii) for any filtration Ā which extends A there is a finitely additive supermartingale m̄ of class D0 on Ā
which extends m.

If either one of the above conditions holds there exist a finitely additive martingale µ and a finitely additive

increasing process α (defined as in [1, p. 287]) such that

(13) mt = µt − αt t ∈ T.

Proof. For t ∈ T , let Lt = {f1t : f ∈ B(At)} and define φt : Lt → R implicitly as φt(f1t) = (mt−m∅)(f).

Then Lt is a linear subspace of B(Ω̄) and φt a linear functional on it. Given our assumption Ω̄ ∈ T , (i) is

easily seen to be equivalent to

(14) sup

{
N∑
n=1

(mtn −m∅)(fn) : 1 ≥
N∑
n=1

fn1tn ∈ E

}
<∞

and corresponds to requiring that the collection (φt : t ∈ T ) is coherent in the sense of [6, Corollary 1, p.

560]: thus (i) is equivalent to (ii). For λ ∈M (m) and H ⊂ Ω̄, define λH ,mλ
H ∈ ba(Ω) by letting

(15) λH(F ) = λ((F × I) ∩H) and mλ
H = mλ

∅ + λH F ⊂ Ω,

where mλ
∅ ∈ ba(Ω) is an extension of m∅ from A to 2Ω. Thus, (mλ

H : H ⊂ Ω̄) is an extension of m to

(2Ω : H ⊂ Ω̄) and (iii) is proved by simply letting m̄ = (mλ
u|Au : u ∈ U). It is clear from (15) that m̄ is

a finitely additive supermartingale of class D0 (since λ ∈M (mλ)) and an extension of m. The implication

(iii)→(i) is obvious. Assume (ii), choose λ ∈M (m) and define

(16) µt = mλ
Ω̄

∣∣At and αt = λtc |At t ∈ T.
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Given that α coincides with the restriction to A of the family (λtc : t ∈ T ) in ba(Ω) which is increasing in t

and such that λΩ̄c = 0, α is indeed a finitely additive increasing process. �

The choice of treating M (m) as a subset of ba(Ω̄) opens the door to the apparent arbitrariness implicit

in the existence of a multiplicity of Doléans-Dade measures. This situation is almost unavoidable with finite

additivity and will be a constant throughout the next sections. Let us recall that in the classical theory a

Doléans-Dade measure is defined as an element of ca(P)+ and its existence requires the supermartingale

to be of class D. We believe that this additional property, briefly discussed in the following section, is not

really essential to obtain several interesting results, such as the Doob Meyer decomposition. Moreover, our

approach has the advantage of making clear that some important properties, such as the class D0 and the

ones to be introduced later, do not depend on the underlying filtration, that is on the actual unfolding of

information as embodied in the filtration.

Implicit in Theorem 1 (and Lemma 4) is also the conclusion that a regular finitely additive supermartingale

may be extended to a filtration endowed with a regular index set if and only if it is of class D0. We shall

return on this point in section 6.

Of course, (13) is only a rather primitive version of the Doob Meyer decomposition. Among other things

its existence does not automatically imply the class D0 property as finitely additive increasing process may

in this setting fail to be of class D0. (13) has been first obtained by Armstrong [1] (see also [5, Corollary 1,

p. 591]). Our task is now to improve on it by requiring additional properties on Doléans-Dade measures.

4. Class D Supermartingales

A particularly interesting special case is that of classical supermartingales that we treat, in accordance

with [5], without the assumption of a given probability measure. To avoid additional notation we assume in

what follows (and without loss of generality) that At is a σ algebra for each t ∈ T .

Let m be a finitely additive supermartingale on A and define

(17) M uc = {λ ∈ ba(Ω̄)+ : λΩ̄|F ∈ ca(F )} and M uc(m) = M uc ∩M (m).

Definition 2. A finitely additive supermartingale m is of class D if m∅ ∈ ca(A ) and M uc(m) 6= ∅.

Of course a finitely additive supermartingale of class D is of class D0 too. There are two immediate reasons

of interest for this family of finitely additive supermartingales. First, if m is of class D and λ ∈ M uc(m)

there exists Pλ ∈ P(F ) such that m∅, λΩ̄|F � Pλ|F . Exploiting (15), it follows that mλ
H

∣∣F � P |F
for every H ⊂ Ω̄. But then, if AH ⊂ F is any σ algebra, one may define the following family of random

quantities

(18) Xλ
H =

d mλ
H

∣∣AH

dPλ|AH
H ⊂ Ω̄.

In other words, and given that λ ∈ M uc(mλ), a finitely additive supermartingale m of class D may be

represented as a classical supermartingale of class D on any filtration of sub σ algebras of F indexed by

some sub collection of 2Ω̄. This property, as defined above, is thus independent of the given filtration.

Second, returning to (16), one easily realizes that the decomposition (13) admits a version in which µ and

α may be represented as classical processes, but not necessarily adapted. In fact, letting At and Āt be the

Radon Nikodym derivatives of αt with respect to P |At and of λtc |F with respect to Pλ|F respectively, the

former process is adapted but not necessarily increasing while the latter is increasing but not adapted.
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A more classical version of the class D property would be the following:

Definition 3. A finitely additive supermartingale is said to be of class Dα if m is regular and there exists

P ∈ P(F ) such that for any η > 0 and some δ > 0, P
(⋃N

n=1 Fn

)
< δ implies

∑N
n=1 |mtn |(Fn) < η whenever

{Fn : Fn ∈ Atn , n = 1, . . . , N} is a disjoint collection.

For each disjoint collection {Fn : Fn ∈ Atn , n = 1, . . . , N} it would be tempting to consider the set

τ =
⋃N
n=1 Fn × tn as a stopping time. Likewise, if X is a classical supermartingale one may interpret

the random quantity
∑N
n=1Xtn1Fn

as the value Xτ of X at the stopping time τ . The class Dα property

amounts thus to a uniform integrability property across stopping times with finitely many values and is thus

comparable (but more general) to the one originally considered by Meyer [21]. In the next section it will be

shown (see Corollary 2 and Theorem 3) that the class Dα and D properties are equivalent and imply the

Doob Meyer decomposition, if T is linearly ordered (a conclusion that generalises [4, theorem 4, p. 799]).

Lemma 4. Let m be a finitely additive supermartingale and consider the following properties: (i) m is of

class D, (ii) there exist λ ∈M (m) and P ∈ P(F ) such that limk λ(fk) = 0 whenever
〈
fk
〉
k∈N is a sequence

in E and limk P (supi∈I |fk(i)| > η) = 0 and (iii) m is of class Dα. (i) and (ii) imply (iii); if T is linearly

ordered, (iii) implies (ii).

Proof. Let m be a finitely additive supermartingale and λ ∈M uc(m). Then, F ∈ At implies

|mt|(F ) ≤ (mt −m∅)(F ) + |m∅|(F ) = λt(F ) + |m∅|(F ) ≤ λΩ̄(F ) + |m∅|(F ),

so that if {Fn : Fn ∈ Atn , n = 1, . . . , N} is a disjoint collection we have
∑N
n=1 |mtn |(Fn) ≤ (λΩ̄ +

|m∅|)
(⋃N

n=1 Fn

)
. The proof of the implication (i)→(iii) is completed by choosing P ∈ P(F ) such that

m∅, λΩ̄|F � P |F . (ii)→(iii) is clear. For the converse, observe that when T is linearly ordered, and m is

of class Dα then necessarily m is of class D0, by Lemma 2: choose λ ∈M (m). If f =
∑N
n=1 fn1tn∩tcn+1

∈ E ,

let f∗0 = 0 and f∗n = supk≤n |fk|. Then the inequality f ≤ c+ ‖f‖B
∑N
n=1 1{f∗n>c≥f∗n−1}1tn implies

(19) λ(f) ≤ c‖λ‖+ ‖f‖B

(
|m∅|(f∗ > c) +

N∑
n=1

|mtn |(f∗n > c ≥ f∗n−1)

)
.

We conclude that if P ∈ P(F ) is as in Definition 3 and
〈
fk
〉
k∈N is a sequence in E such that supi |fk(i)|

converges to 0 in P probability, then limk λ(fk) = 0. �

The implication (iii)→(i) for the case of a linearly ordered index set will given in the next section.

5. The Doob Meyer Decomposition

In the classical theory, the existence of a predictable increasing process associated with class D super-

martingales rests on the existence of a predictable compensator of each element of ca(P) and the fact that

this may be represented as an increasing process. We encounter two difficulties in adapting this approach

to our setting. First, the elements of M uc(m) need not be countably additive in restriction to P. To prove

this implication, Dellacherie and Meyer exploit a Dini/Daniell argument [9, lemma p. 185] which requires

(local) compactness of the index set. Second, a suitable notion of predictable compensator and of predictable

projection is not available here2. In fact, compactness and separability of the index set imply that the class

D property defined above is equivalent to countable additivity of Doléans-Dade measures relatively to P.

2In Dozzi et al. [11, A3, p. 516] a related operator is introduced by assumption.
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For the rest of this section we shall assume, without further mention, that T is a regular index set. In

view of Theorem 1 this may be done with no loss of generality when the finitely additive supermartingales

considered are of class D0.

Fix P ∈ P(F ). For given d ∈ D define the following elementary process

(20) Pd
P (b) =

∑
s∩tc∈d

P

(
inf

i∈s∩tc
b(i)
∣∣∣∣As

)
1s∩tc b ∈ B(Ω̄),

where the conditional expectation is defined as in Lemma 1. We shall use the following fact:

Lemma 5. Let P ∈ P(F ) and define the mapping Pd
P : B(Ω̄) → E implicitly via (20). For given f0 ∈ E

and f1, f2 ∈ E ∗, there is d0 ∈ D such that

Pd
P (f0) = f0 and Pd(f1 + f2) = Pd(f1) + Pd(f2) for all d ≥ d0.

Proof. Given Lemma 3, it is enough to suppose fi to be of the form fi = hi1si∩tci with si∩tci ∈ D fi ∈ B(A )

for i = 1, 2 and f0 ∈ B(As0). Let d0 ∈ D be such that d0 ≥ {si ∩ tci : i = 0, 1, 2}. Then d ∈ D and d ≥ d0

imply

Pd
P (fi) =

∑
{s∩tc∈d:s∩tc⊂si∩tci , s⊂si}

P (hi|As)1s∩tc ,

from which the claim follows straightforwardly. �

Theorem 2. Let λ ∈M uc, P ∈ P(F ) and λΩ̄|F � P |F . There is λP ∈ ba(Ω̄)+ such that λP
Ω̄

∣∣F vanishes

on P |F null sets and3

(21) λP (fg) = LIM
d∈D

λ
(
Pd
P (f)g

)
f ∈ E ∗, g ∈ E .

If λP |σP and λ|σP are countably additive then

(22) λP (fh) = λ
(
λP (f |σP)h

)
f ∈ E ∗, h ∈ B(σP).

Proof. Consider the functional γ : B(Ω̄) → R defined as γ(f) = LIMd∈D λ
(
Pd
P (f)

)
for any f ∈ B(Ω̄).

Then, γ is a concave integral in the sense of [6, Definition 1, p. 560], it is linear on E ∗ by Lemma 5 and

such that γ = λ in restriction to E ; moreover, γ(b) = 0 for all b in L = {g ∈ B(Ω̄) : P (supi∈I |g(i)| >
η) = 0 for all η > 0}. Given that L is a linear space, then [6, Lemma 2, p. 560] implies that there exists

λP ∈ ba(Ω̄)+ such that

λP (g) = 0 and λP (f) ≥ γ(f) g ∈ L , f ∈ B(Ω̄).

If g ∈ E and f ∈ E ∗, then

λP (fg) = γ(fg) = LIM
d∈D

λ(Pd
P (fg)) = LIM

d∈D
λ(Pd

P (f)g).

The last claim is obvious. �

Theorem 2 establishes the existence of a P predictable compensator, λP , associated with any λ ∈ M uc

and P ∈ P(F ) such that λΩ̄|F � P |F . In the classical theory this concept interplays with the notion of

predictable projection and requires countable additivity on P. The failure of this latter property is overcome

by means of the approximation procedure adopted in (21).

3LIM denotes the Banach limit.
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Definition 4. Let λ ∈ M uc and P ∈ P(F ) be such that λΩ̄|F � P . Any λP ∈ ba(Ω̄)+ meeting (21) will

be referred to as a P predictable compensator of λ.

Remark that if λ ∈ M uc(m) for some finitely additive supermartingale m, then its P compensator λP

is itself a Doléans-Dade measure for m, i.e. λP ∈ M (m). It is, however, not possible to conclude that

λP ∈M uc(m) in the general case: under finite additivity λP
Ω̄

may well vanish on P null while failing to be

absolutely continuous. The class D property has then to be reinforced into the following.

Definition 5. A finitely additive supermartingale m is said to be of class D∗ if it is of class D and if there

is λ ∈M uc(m) which admits as its P predictable compensator an element λP of M uc(m).

When P ∈ P(F ), (At : t ∈ T ) is a P increasing process if P (0 = AΩ̄ ≤ As ≤ At) = 1 for all s, t ∈ T with

s ≤ t. (Bt : t ∈ T ) is then a modification of A if P (At = Bt) = 1 for all t ∈ T .

Theorem 3. Let m be a finitely additive supermartingale of class D∗. Then for some P ∈ P(F ) there exists

one and only one (up to modification) way of writing

(23) mt(F ) = P ((M −At)1F ) t ∈ T, F ∈ At,

where M ∈ L(P ) and A is an increasing process, adapted to A and such that

(24) P

∫
fdA = LIM

d∈D
P

∫
Pd
P (f)dA f ∈ E ∗.

Proof. Let λ ∈ M uc(m) and fix P ∈ P(F ) such that m∅, λ|F � P |F . Let also λP ∈ M uc(m) be the P

compensator of λ. Define mλP

as in (15) and let M and A′t to be the Radon Nikodym derivatives of mλP

Ω̄

∣∣∣F
and λPtc

∣∣F with respect to P |F . (23) is thus a version of (13). Clearly,

(25) P

∫
fdA′ = P

∑
s∩tc∈d

fs(A′t −A′s) = λP (f) for all f =
∑

s∩tc∈d

fs1s∩tc ∈ E ∗.

Therefore, (21) implies that (24) holds for A′ and its modifications, among which, we claim, there is one

which is adapted. In fact, if b ∈ B(F ), s0 ∈ T and P (b|As0) = 0, then, choosing d ∈ D such that d ≥ {sc0}

Pd
P (b)1sc

0
=

∑
{s∩tc∈d:s∩tc⊂sc

0}

P (b|As) 1s∩tc =
∑

{s∩tc∈d:s∩tc⊂sc
0}

P
(
b1{s<s0}

∣∣As

)
1s∩tc = 0,

a conclusion following from (2) and the fact that P
(
b1{s<s0}

∣∣As

)
= P

(
P (b|As0)1{s<s0}

∣∣As

)
. Thus λPsc

0
(b) =

λP (b1sc
0
) = 0 and, letting As = P (A′s|As) and F ∈ F ,

(26) P (A′s1F ) = λPsc(F ) = λPsc (P (F |As)) = P (A′sP (F |As)) = P (As1F ).

A is thus an adapted modification of A′ and therefore itself an increasing process meeting (24). Suppose

that P (N |At)−Bt is another decomposition such as (23). Then if F ∈ At and d ∈ D

P

∫
Pd
P (1F1t)dA = −P

∫
Pd
P (1F1t)dX = P

∫
Pd
P (1F1t)dB

and, if both A and B meet (24), P (At1F ) = P (Bt1F ). �

Remark that Theorem 3 is actually weaker than the classical Doob Meyer decomposition first of all because

the class D∗ property is only a sufficient condition. Indeed the predictable increasing process A generates a

measure on Ω̄ which satisfies (21) by construction, but it is hard to prove that its F marginal is countably

additive. This difficulty is due to the lack of an appropriate topology on the underlying space. Second, we
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established uniqueness only up to a modification rather than indistinguishability, a circumstance which is

almost unavoidable in the absence of separability of the index set and of right continuity of the process.

It should also be remarked that it may not be possible to establish the above decomposition if the index

set T is not regular. Of course, a finitely additive supermartingale of class D∗ may always be extended

to a class D∗ finitely additive supermartingale on a filtration endowed with a regular index set and thus

admitting a Doob Meyer decomposition. However, the intervening increasing process A may not be adapted

to the original filtration while its projection on it may not be increasing. On the other hand the class D∗
property is a global property and is thus preserved under any enlargement of the filtration. In fact, if m

is a finitely additive supermartingale of class with λP ∈ M ∗(m) and if Ā = (Āu : u ∈ U) is an extension

of A with
⋃
u∈U Āu ⊂ F , then, using (15), m̄ = (mλP

u |Āu : u ∈ U) is clearly an extension of m to Ā such

that λP ∈ M ∗(m̄). It appears therefore that the decomposition of Doob and Meyer depends more on the

structure of the index set than on the filtration.

A less general decomposition is based on a further uniform integrability condition for processes.

Corollary 1. Let m be a finitely additive supermartingale. Then the following are equivalent:

(i) there exists λ ∈M uc(m) and P ∈ P(F ) such that m∅, λΩ̄|F � P |F and

(27) lim
P (F )→0

sup
d∈D

λ(Pd(1F×I)) = 0;

(ii) m admits a Doob Meyer decomposition (23) where the increasing process A satisfies (24) and is of

uniformly integrable variation, i.e. such that

(28) lim
P (F )→0

sup
d∈D

P

(
1F

∑
s∩tc∈d

(P (At|As)−As)

)
= 0.

Proof. It is clear that if a Doob Meyer decomposition exists with A as the P increasing process and P ∈ P(F )

then (27) and (28) are equivalent. Thus, in view of Theorem 3, we only need to prove that (27) implies

that m is of class D∗. But this follows from the inequality LIMd∈D λ(Pd(1F×I)) ≤ supd∈D λ(Pd(1F×I))

characterising Banach limits. �

The characterisation provided in Corollary 1 is less satisfactory than it may appear at first sight. In

fact the property involved is significantly stronger than what is considered in the classical setting. Even

increasing processes may fail to be of uniformly integrable variation.

The special case of a linearly ordered index set is eventually considered, with the aim of showing that

the aforementioned properties generalize more classical ones. A natural example of this special case is easily

obtained by extracting from any partially ordered index set a maximal linearly ordered subset. A more

explicit example may be given by taking U = R+ × R+ to be endowed with lexicographic order in terms of

which (x1, y1) ≥ (x2, y2) if and only if either (i) x1 > x2 or (ii) x1 = x2 and y1 ≥ y2.

Corollary 2. Let m be a finitely additive supermartingale and let T be linearly ordered. Then the following

are equivalent: (i) m is of class D, (ii) m is of class Dα, (iii) m satisfies (27), (iv) m is of class D∗.

Proof. (i)→(ii) was proved in Lemma 4. If T is linearly ordered then each d ∈ D may be taken to be of the

form {sn ∩ scn+1 : n = 1, . . . , N − 1}. Assume (ii) and choose λ ∈M (m) and P ∈ P(F ) as in Definition 3.
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If F ∈ F , η > 0 and d ∈ D then, letting M∗n(F ) = sup{k≤n} P (F |Ask
) we have, exactly as in (19),

(29) λ(Pd
P (F )) ≤ η‖λ‖+ ‖f‖B

(
|m∅|(M∗N (F ) > η) +

N∑
n=1

|mtn |(M∗n(F ) > c ≥M∗n−1(F ))

)
.

Given that, by Doob maximal inequality, limP (F )→0 P (M∗N (F ) > η) = 0 uniformly in N , we conclude that

(27) holds. The implication (iii)→(iv) was obtained in the proof of Corollary 1; (iv)→(i) is obvious. �

6. Some Remarks on the Literature

In the preceding sections we considered the possibility of extending finitely additive supermartingales

to settings possessing more structure. This extension was achieved in (15) and was based on the class

D0 property; the possibility of extending classical supermartingales was considered for class D processes

for which we established (18). Most papers in the literature, including Dozzi, Ivanoff and Merzbach [11,

Proposition 2.1], Ivanoff and Merzbach [15, p. 85], Ivanoff and Sawyer [17, Proposition 6, p. 3] and De Giosa

and Mininni [8, p. 74], obtain an additive extension based on a lemma by Norberg [23, Proposition 2.3, p.

9] concerning functions defined on lattices. In this section we shall briefly examine this approach, that does

not make use of any other assumption, and show that this is troublesome.

Fix P ∈ P(F ) and consider the semi-algebra

(30) T (d) = {s ∩ tc : s, t ∈ T, s ≤ t}.

According to the aforementioned references, any process X = (Xt : t ∈ T ) admits an additive extension to

T (d) defined by letting

(31) Xs∩tc = Xs −Xt s ∩ tc ∈ T (d).

This should be compared to the extensions mH and XH defined in (15) and in (18) respectively. The

former is indeed additive but requires the class D0 property; the second is not even additive because of the

measurability requirements. We provide two examples in which the lack of the class D0 property and of

measurability hinder the validity of the extension defined in (31).

Example 1. Let T consist of finite unions of rectangles in R2 with one vertex in the origin, as in Cairoli

and Walsh [3]. Let At = B(R2) be the Borel σ algebra of R2, for each t ∈ T , and l ∈ ba(B(R2)) be the

product Lebesgue measure. Define the finitely additive supermartingale (mt : t ∈ T ) implicitly by letting

mt(F ) = l(t)l(t ∩ F ) F ∈ B(R2), t ∈ T.

Let s1, t1, u ∈ T be rectangles with t1 ⊂ s1 ⊂ uc. Let s2 = s1 ∪ u and t2 = t1 ∪ u: s2, t2 ∈ T . Of course,

(msi
−mti)(Ω) = l(si)2 − l(ti)2 for i = 1, 2 so that

(ms2 −mt2)(Ω) = (ms1 −mt1)(Ω) + 2l(u)(l(s1)− l(t1)).

If l(u) > 0 and l(s1) > l(t1) this result contradicts (31) since s1 ∩ tc1 = s2 ∩ tc2.

In the preceding example it is clear that the finitely additive supermartingale considered is not of class

D0 and that (31) fails exactly for this reason. This difficulty does not arise in the framework adopted by

Norberg [23], where the index set consists of all lower sets ↓ f ≡ {g ∈ L : g ≤ f} of elements f of some

lattice L . In terms of Example 1, we would have si =↓ fi and ti =↓ gi for some fi, gi ∈ L . Then si ≤ ti
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is equivalent to fi ≥ gi and s1 ∩ tc1 = s2 ∩ tc2 holds if and only if either fi = gi – and thus si ∩ tci = ∅ – for

i = 1, 2 or f1 = f2 and g1 = g2: in either case the extension (31) is indeed well defined.

The extension (31) may however be inconsistent even in the case of finitely additive supermartingales of

class D.

Example 2. Let At be a σ algebra for each t ∈ T . Suppose that si, ti ∈ T for i = 1, 2 with si ≤ ti, t1 ≤ t2

and si = ti ∪ tcj for i 6= j, fix P ∈ P(F ) and consider the process X = (P (F |At) : t ∈ T )c for some F ∈ F .

Then (31) implies P (F |At2) = P (F |As2) − P (F |As1) + P (F |At1). However it is easily seen that, letting

F vary in At2 , this is contradictory unless At2 = At1 ∨As2 , a restriction that has therefore to be explicitly

assumed.

It is significant that the more recent contributions to this literature, [16, Definition 3.1., p. 54], [25,

Definition 5, p. 1084], treat the additive extension (31) as part of the definition of a set-indexed process.
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