
Architectural Exploration and Scheduling Methods

for Coarse Grained Reconfigurable Arrays

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Giovanni Ansaloni

under the supervision of

Prof. Laura Pozzi

September 2011

Dissertation Committee

Prof. Matthias Hauswirth Università della Svizzera Italiana, Switzerland
Prof. Mariagiovanna Sami Università della Svizzera Italiana, Switzerland

Prof. Nikil Dutt University of California - Irvine, USA
Prof. Paolo Ienne Ecole Polytechnique Fédérale de Lausanne, Switzerland
Prof. Marco Platzner Universität Paderborn, Germany

Dissertation accepted on 9th September 2011

Prof. Laura Pozzi
Research Advisor

Università della Svizzera Italiana, Switzerland

Prof. Michele Lanza
PhD Program Director

i

I certify that except where due acknowledgement has been given, the work presented in
this thesis is that of the author alone; the work has not been submitted previously, in whole
or in part, to qualify for any other academic award; and the content of the thesis is the result
of work which has been carried out since the official commencement date of the approved re-
search program.

Giovanni Ansaloni
Lugano, 9th September 2011

ii

To Lugano, for being there. Twice.

iii

iv

Sará un bel souvenir
L. Ligabue

v

vi

Abstract

Coarse Grained Reconfigurable Arrays have emerged, in recent years, as promising candidates
to realize efficient reconfigurable platforms. CGRAs feature high computational density, flexible
routing interconnect and rapid reconfiguration, characteristics that make them well-suited to
speed up execution of computational kernels.

A number of designs embodying the CGRA concept have been proposed in literature, most
of them presenting specific, ad-hoc solutions. This thesis instead takes a more general ap-
proach, focusing on techniques that can be adapted to arrays having different architectural
features, enabling experimental comparisons and exploration of the design space.

At the hardware level, a template virtual prototype, named Expression Grained Reconfig-
urable Array, is introduced. Instances can be derived from the template at design time, varying
the architecture structure as well as the characteristics of its different blocks. Presented design
space explorations include the search of an efficient multi-ALU structure to be used as compu-
tational cell and exploration of heterogenous elements to support parallel execution of whole
kernels.

EGRA instances are defined at the RTL level. This feature makes it possible to simulate their
behavior employing a digital simulation environment. The thesis illustrates a co-simulation
framework to evaluate whole applications compiled for EGRA-accelerated systems, taking into
account the impact of non-kernel code and reconfiguration overhead.

Success of an architecture paradigm strongly depends on the availability of automated
strategies to map applications onto it. The thesis tackles mapping issues at two levels: it
proposes a recursive algorithm to partition kernels according to available hardware resources,
and it presents a novel modulo scheduling framework, which considers combinatorial chains
of computation and routing operations.

The thesis touches the areas of architectural exploration, automated kernel mapping and
system integration of CGRAs, providing a quantitative analysis of the efficiency of proposed
methods over State of the Art ones. It also outlines a comprehensive hardware/software co-
exploration framewok, able to investigate opportunities and pitfalls of coarse grained reconfig-
uration.

vii

viii

Acknowledgements

Four years of hard work have borne their fruits. One of them is, of course, this thesis, a
compendium of the efforts that challenged me along the way. Others are less tangible, but
not less precious: the experience I gathered on identifying worthwhile research questions and
investigating them is maybe the single most important result of my studies.

During all of the PhD, my advisor Laura Pozzi has been invaluable in leading me by exam-
ple; for her guidance, and for constantly being present with the right advice, she will always
have my gratitude.

Many people have helped me progress on my research path, either through collaborations,
informal discussions or by lifting my morale in time of need. I won’t try to list them, with the
risk of leaving someone out, but to everyone goes my appreciation for making USI-Lugano such
a great work environment.

Nikil Dutt and his group at UC Irvine were fundamental in opening new horizons and better
my research. Their kindness and their help have been a great gift.

Because the apple never falls far from the tree, I wish to thank Dante and Antonietta.
Finally, no words are enough to thank Simona for her love, and for making my life beautiful.

ix

x

Contents

Contents xi

List of Figures xv

List of Tables xix

1 Introduction 1

2 Background and Motivation: Explicitly Parallel Architectures 5
2.1 The end of frequency scaling . 5

2.1.1 Power wall . 6
2.1.2 Verification wall . 7

2.2 Beyond single cores . 7
2.3 Multi-cores . 9
2.4 GPGPUs . 10
2.5 Field Programmable Gate Arrays . 12

2.5.1 Embedded FPGAs . 13
2.5.2 CGRAs . 13

2.6 A conceptual comparison . 14

3 Coarse Grained Reconfigurable Arrays: State of the Art 17
3.1 CGRA architectures . 18

3.1.1 Linear arrays . 18
3.1.2 Mesh arrays . 19
3.1.3 Homogeneous and heterogeneous arrays . 20
3.1.4 CGRA design space and its exploration . 20

3.2 Computational kernels processing and scheduling 21
3.2.1 Identification and technology mapping . 21
3.2.2 Partitioning . 22
3.2.3 Scheduling . 23

3.3 System Integration . 24

4 The EGRA template: CGRA Architectural Design Space Exploration 27
4.1 Introduction . 27
4.2 Related work . 31
4.3 RAC architecture . 32

4.3.1 Cell architecture . 32

xi

xii Contents

4.3.2 Architectural exploration . 35
4.3.3 Experimental Results . 36

4.4 EGRA array architecture . 39
4.4.1 Control unit . 42
4.4.2 EGRA operations . 43
4.4.3 Experimental results . 44

4.5 EGRA memory interface . 46
4.5.1 Memory architecture . 47
4.5.2 Architectural Exploration . 47

4.6 Conclusion . 51

5 Application Mapping: Branch-and-bound Partitioning and Slack-aware Scheduling
on Coarse Grained Arrays 53
5.1 Introduction . 53

5.1.1 Kernels scheduling on CGRAs . 54
5.1.2 Kernels partitioning . 54

5.2 Related Work . 57
5.2.1 Scheduling . 57
5.2.2 Partitioning . 58

5.3 Slack-Aware Scheduling Framework . 59
5.3.1 Expansion of the input DFG . 59
5.3.2 Generation of an initial schedule. 60
5.3.3 Calculating the cost of a schedule. 61
5.3.4 Iterating in search of a valid solution. 62

5.4 Slack-aware Scheduling evaluation . 62
5.4.1 Test architectural parameters . 62
5.4.2 Experimental methodology . 64
5.4.3 Automatically generated data flow graphs 64
5.4.4 Kernels from benchmark applications . 67

5.5 Kernels partitioning framework . 67
5.5.1 Problem formalization . 67
5.5.2 Single cut identification . 69
5.5.3 Exact multiple cuts identification . 70
5.5.4 Iterative multiple cuts identification . 71
5.5.5 Greedy partitioning . 72

5.6 Partitioning experimental evaluation . 72
5.7 Conclusion . 74

6 System Integration: EGRA as Intelligent Memory 77
6.1 Introduction . 77
6.2 Related Work . 79
6.3 EGRA-host communication . 79
6.4 Hardware-Software platform . 81

6.4.1 Software components . 82
6.4.2 Hardware components . 83

6.5 Experimental results . 84
6.6 Conclusion . 87

xiii Contents

7 Concluding Remarks and Possible Extensions 89
7.1 Local register files . 90
7.2 Energy and power consumption . 90
7.3 Configurations and data transfer overhead . 90
7.4 Architectural meta-model . 91

Bibliography 93

xiv Contents

Figures

1.1 CGRAs are inspired by fine grained reconfigurable arrays. They are tailored to
map computational kernels, instead of boolean functions. 2

1.2 Shaded boxes illustrate the conceptual flow of architectural evaluation and ap-
plication mapping for coarse grained meshes. The thesis proposes novel ap-
proaches on multiple aspects in the field (white boxes). 3

2.1 Microprocessor clock rates of intel products vs. projects from the international
roadmap for semiconductors in 2005 and 2007 (ITRS [2007]). 6

2.2 Moore’s law keeps progressing, as smaller fabrication technologies allow for
more and more transistors to be integrated on the same die, but traditional
sources of performance improvements (ILP and clock frequencies) have reached
a plateau (ITRS [2007]). 8

2.3 A typical CPU and GPU block scheme: the GPU devotes more transistors to data
processing (from NVIDIA Corp. [2010b]). 10

2.4 Floating-Point Operations per Second for the CPU and GPU (data from NVIDIA
Corp. [2010b]). 11

2.5 Field Programmable Gate Array Evolution (from Xilinx Corp.). 12

2.6 Morhosys: an example CGRA mesh Lee et al. [2000]. 13

3.1 Conceptual comparison of different CGRAs, with respect to granularity of tiles
and mesh heterogeneity. The EGRA template introduced in Chapter 4 presents
a high degree of coarseness and heterogeneity. 18

3.2 Application mapping on CGRAs: kernel identification, technology mapping, par-
titioning, scheduling. 21

4.1 Parallel between the evolution of fine grained architectures’ cells from simple
gates to FPGAs’ LUTs (a and b), and the evolution of CGRAs’ cells from single
ALUs to RACs, proposed here (c and d). 29

4.2 Parallel between the evolution of fine grained architectures’ meshes from ho-
mogenous to heterogenous (a, b and c), and the evolution of CGRAs’ meshes to
the EGRA proposed here (d, e and f). 30

4.3 Datapath of the Reconfigurable ALU Cluster. 33

xv

xvi Figures

4.4 Programming a RAC. This example shows how two ALUs can be connected to
compute an unsigned subtract with saturation, (X >= Y) ? X - Y : 0. The
node computing the subtraction also performs the comparison. The multiplexer
node B uses both the data output and the unsigned ≥ flag of the subtraction
node A. 34

4.5 Speedups obtained by 872 RACconfigurations on rawcaudio 37
4.6 Speedups obtained by 872 RACconfigurations on rawdaudio 37
4.7 Speedups obtained by 872 RACconfigurations on des 38
4.8 Speedups obtained by 872 RACconfigurations on sha 38
4.9 RAC design of the maximum-speedup Pareto point configuration, for a) rawdau-

dio; b)rawcaudio; c) crypto benchmarks (des, sha); d) all four benchmarks. . . . 39
4.10 Manually derived spatial place-and-route of rawdaudio, for two cell designs. a)

RACs as in Figure 4.9a. b) Each RAC only has one ALU. Straight arrows represent
nearest neighbour connections, angled arrows refer to bus lines. 39

4.11 EGRA instance example: a 5x5 mesh with 15 RACs, 6 memory cells and 4 mul-
tipliers. 41

4.12 autcor loop kernel DFG: a) clustering; b) scheduling; c) place and route. 42
4.13 Speedup obtained on custom-tailored and generic EGRA instances executing

benchmark kernels. 45
4.14 Comparison of speedups obtained by EGRAs with different characteristics: fully-

featured instances, single-ALU instances and EGRAs without embedded memories. 46
4.15 Area occupation of EGRA instances used to execute the benchmark kernels. . . . 50
4.16 Kernel iteration execution time of benchmark application over EGRA instances. . 50

5.1 a) registered and b) unregistered routing through a CGRA mesh. 55
5.2 Pseudo-code and related DFGs of a small computational kernel, for the sake of

an example, (a) before and (b) after partitioning. Partitioning causes a decrease
in the size and depth of the graphs to be mapped onto hardware, but it increases
their memory needs, as each edge crossing partition boundaries requires mem-
ory to store data passed between sub-kernels. 56

5.3 a) An example DFG and b) Its slack-aware mapping on a 3x2 heterogeneous
EGRA. 59

5.4 Routing nodes insertion on a DFG, with the annotation of the critical path length
relative to the clock period. 60

5.5 a) Expanded DFG mapping on the scheduling space. b) After redundant nodes
deletion. c) Resulting DFG with annotation of routing times. The combinatorial
chain of nodes 2 and 8 violates the timing constraint. 61

5.6 a) Slack Violation Table and b) Modulo Resource Table derived from the schedul-
ing space in Figure 5.5. 61

5.7 Example EGRA instance composed of 2 multipliers, 4 memory cells and 14 RACs,
used for slack-aware scheduling evaluation. 63

5.8 Slack-aware vs. slack-oblivious using modulo and spatial scheduling strategies:
success rate of test DFGs. 65

5.9 Slack-aware vs. slack-oblivious using a) modulo and b) spatial scheduling strate-
gies: achieved Initiation Interval. 65

xvii Figures

5.10 Sub-kernel depth is limited by available control words: Depth(DFG) words are
necessary if iterations are mapped in sequence (left), while 2 ∗ Depth(DFG)−1
are used when employing modulo scheduling (right). 68

5.11 Single cut identification: a non-convex cut (a) and a cut with one memory ref-
erence and two outputs (b). 68

5.12 Single cut identification: abstract search tree of the DFG in Figure 5.11, consid-
ering MaxSize = 3, Max Mems = Max Depth = 2. 0 → node not included in
cut, 1→ node included. 70

5.13 Abstract search tree for multiple cuts identification. 70
5.14 fft partition using a) iterative/exact and b) greedy methodologies, considering

Maxsize = 11, Max Mems = 5, Max Depth=∞. Iterative and exact partition-
ing result in 3 cuts, greedy partitioning in 7. 72

5.15 Top: partitioning quality using exact, iterative and greedy algorithms. Bottom:
efforts required to reach solution using iterative and exact algorithms. Varying
Max Mems with Maxsize = |V |/2, Max Depth=∞. 73

5.16 Top: partitioning quality using exact, iterative and greedy algorithms. Bot-
tom: efforts required to reach solution using iterative and exact algorithms.
Varying Maxsize with Max Mems = 5 for all benchmarks except viterbi, dct
(Max Mems = 6) and idct (Max Mems = 7). Max Depth=∞. 73

5.17 Top: partitioning quality using exact, iterative and greedy algorithms. Bot-
tom: efforts required to reach solution using iterative and exact algorithms.
Varying Max Depth with Max Mems = 5 for all benchmarks except viterbi, dct
(Max Mems = 6) and idct (Max Mems = 7). Maxsize =∞. 74

5.18 Partition of dct, iterative strategy, with Maxsize = 30, Max Mems = 7, Max Depth=
10. 75

6.1 Example of an EGRA instance architecture and interface 78
6.2 Generic EGRA cell block scheme . 81
6.3 Block scheme of the EGRA Hw-Sw co-simulation framework 82
6.4 Example of kernel computation (from histogram benchmark): original C code

(a), execution on EGRA instance (b). 83
6.5 IMem vs. explicit data transfer speedup over benchmark kernels 86
6.6 IMem vs. explicit data transfer speedup over benchmark applications 86

xviii Figures

Tables

2.1 Comparison of explicitly parallel computing platforms and their evolution 14

4.1 List of supported opcodes . 34
4.2 Datapath area and delay for different RAC configurations 35
4.3 Performance of placed and routed rawdaudio kernel on EGRA instances 40
4.4 Performance of placed and routed rawcaudio kernel on EGRA instances 40
4.5 Performance of placed and routed sha kernel on EGRA instances 40
4.6 Characteristics of EGRAs optimized for different benchmarks 43
4.7 Synthesized EGRA instances area and critical path 44
4.8 Initiation Interval (II) and parallelism achieved by loop kernels executing on the

EGRA . 44
4.9 Scratchpad and memory-cells based EGRA instances characteristics, tailored to

different benchmark kernels. 48
4.10 Achieved performance of scratchpad and memory-cells based EGRA instances

executing benchmark kernels. 49

5.1 CGRA scheduling methodologies. 57
5.2 Critical path delay of different RAC operations. 64
5.3 Critical path delay resulting from data routing, multiplication and memory cells

read/write operations. 64
5.4 Experimental framework. 65
5.5 Schedulability and performance of benchmark DFG kernels scheduled using dif-

ferent methods. 66
5.6 Benchmarks characteristics . 71
5.7 Relative cut size comparison aggregated by benchmark 76

6.1 Synopsis of machine description parameters . 80
6.2 Characteristics of EGRAs optimized for different benchmarks 84
6.3 Speedups over kernels execution . 84
6.4 Area and critical path of EGRAs optimized for different benchmarks 85

xix

xx Tables

Chapter 1

Introduction

Reconfigurable (or field-programmable) arrays are modular architectures that can perform ex-
ecution of applications in a spatial way, much like a fully custom integrated circuit, but retain
the flexibility of programmable processors by providing the opportunity of reconfiguration.

Commercially available reconfigurable arrays, like FPGAs (Fiels Programmable Gate Ar-
rays), are designed as a matrix of look-up tables and flip-flops that can be programmed on
site to perform different functionalities, dictated by a configuration bitstream. FPGAs have en-
joyed growing success as technology scalings made them suited for increasingly complex tasks,
and it is now not uncommon for them to embed a whole microcontroller system (System on a
Programmable Chip, SOPC). Commercially available FPGAs, proposed by vendors such as Al-
tera [2011] and Xilinx [2011], are today used in a wide range of applications, spanning from
simple glue-logic replacement, to digital signal processing, to run-time reconfigurable SOPCs.

The ability to support application-specific features that are not "set in stone" at fabrication
time would suggest reconfigurable architectures as good candidates for being integrated in
computing systems as customizable accelerators. Nonetheless, the bit-level reconfigurability
they present results, for most applications, in a huge performance penalty with respect to fixed
implementations.

Coarse Grain Reconfigurable Arrays (CGRAs) narrow the performace gap of fine grained
arrays with respect to ASICs by employing coarser basic elements, thus minimizing the over-
head due to reconfiguration and the unavoidable difference in efficiency of reprogrammable
architectures with respect to single-function ones.

They propose a paradigm shift with respect to FPGAs: instead of considering boolean for-
mulas (in turn representing gates and connections of a digital circuit) and mapping them onto a
mesh composed of look-up tables, CGRAs accept as input a Data Flow Graph (DFG) describing
operations and their dependencies, usually extracted from the single-assignment intermediate
representation of a software loop. The application DFG is then mapped on an array of com-
puting elements, embedding one or more ALUs. Figure 1.1 graphically shows similarities and
differences between fine and coarse grained reconfigurable arrays.

Research has been fervent in the coarse grained field in recent years; nonetheless many
aspects are still to be investigated, partially due to the complex, multi-faceted task of devising
both an efficient CGRA structure and an automated strategy to map applications on it. The two
aspects are tightly intertwined, and the thesis presents contributions on both of them.

The first contribution, described in Chapter 4, is the introduction of a hardware template

1

2

fine grain coarse grain

FPGA CGRA

A

B

A B

LUT

B C D

A

E F

ALU

B A

E C D

F

Figure 1.1. CGRAs are inspired by fine grained reconfigurable arrays. They are tailored to
map computational kernels, instead of boolean functions.

(the EGRA, Expression Grained Reconfigurable Array), developed to investigate the CGRA archi-
tectural design space. The chapter reports comparative studies of different CGRA configura-
tions, derived from the template: its first part deals with the evaluation of the performance of
diverse computing cells to be employed as CGRA tiles, varying their coarsenss from single ALUs
to complex ALU clusters. Entire, heterogeneous meshes and their performance when execut-
ing benchmark kernels are then considered. A third study compares different arrangements to
support embedded memories in a coarse-grained mesh, using either a multi-ported dedicated
memory on the side of the array, or memory cells scattered inside it.

The CGRA concept is especially promising in scenarios where intensive, well defined loops
(kernels) dominate execution time1. The second thesis contribution, described in Chapter 5,
presents a novel methodology to schedule kernels on CGRAs. The technique allows for fully
heterogeneous meshes to be targeted; additionally, it supports combinatorial chaining of com-
putation and routing, increasing schedulability and run-time performance of mapped kernels.
Also in Chapter 5, a branch-and-bound approach is introduced to partition computational ker-
nels under the tight architectural constraints typically present in the CGRA scenario, so that
complex DFGs can be divided into cuts, whose size matches the capabilities of the underlying
hardware.

The last thesis contribution, detailed in Chapter 6, investigates system-level performance
of platforms embedding a CGRA accelerator. It describes a hardware/software co-simulation
framework, instrumental in investigating speedups obtained by CGRA-enabled systems over
entire benchmarks. The framework integrates the RTL model of a coarse grained reconfig-
urable array in a System-on-a-chip (SoC), for which standard C code can be compiled and
resulting execution accurately simulated. In this way, whole computing systems can be evalu-
ated when running complete applications, including their non-kernel (non-accelerated) parts,
and overheads due to configurations and data transfers.

1The notion of whether a loop is "well defined" in this context is not univocal, but always implies that it does not
contain recursions and calls to functions that are not in-lined.

3

!"#$"%&'

()"$*+,-*.$'

-$)'#"/0#(*$1'

!"#$"%&'

2-#**.$($1'

3%-,"4'#.56"'

-$)'

&,7")5%($1'

8-#)0-#"'

&9$67"&(&'

:22%(,-*.$' :#,7(6",65#-%'

2-#-;"6"#&'

8-#)0-#"'<'

&.=0-#"''

,./&(;5%-*.$'

>?@:'

7-#)0-#"''

;.)"%'

AB-%5-*.$'

!"#$%&'#$(')*+$(,

-#"..*$/$0,

12#%3'#4#"5,

6%&5(+2/$0,

7$850"#.*$,#6,

/$8522/05$8,

959*":,

;<=>,859-2#85,

•!,%522,(56/0$'6-#%5,,,,

,,5?-2*"#.*$,

•!,956&,(56/0$'6-#%5,,

,,5?-2*"#.*$,

Figure 1.2. Shaded boxes illustrate the conceptual flow of architectural evaluation and appli-
cation mapping for coarse grained meshes. The thesis proposes novel approaches on multiple
aspects in the field (white boxes).

The different challenges addressed by the thesis conceptually belong to a unified landscape;
Figure 1.2 illustrates it, highlighting the thesis contributions and their mutual relations. Work
exposed in this thesis builds on previous research (Bonzini and Pozzi [2008], Bonzini and
Pozzi [2007]) on instruction set extension identification and rewriting. Techniques introduced
in these papers are adapted and expanded in the context of CGRAs in Bonzini et al. [2008]; the
interested reader can refer to these works for a detailed description of the front-end compilation
steps targeting the proposed EGRA template.

Novel research is here introduced and detailed at the compilation back-end level, address-
ing application partitioning and scheduling, and at the architectural level, leveraging the EGRA
template parametric nature. The approach is cross-fertilizing: hardware features, and software
techniques exploiting them, can be evaluated when applied to each other, either exploring the
efficiency of a compilation framework on a target CGRA platform, or evaluating diverse hard-
ware solutions when executing compiled kernels. This holistic view was essential in driving
the research exposed in Chapters 4 - 6.

4

Content of the thesis is organized as follows: Chapter 2 acknowledges the increasing in-
terest in the research community for the opportunities and challenges of explicitly parallel
architectures, a broad field of which coarse grained reconfigurable arrays are part. It justifies
why the software-level sequential abstraction has become untenable in recent years, and how
different approaches have tackled explicit parallelism, highlighting conceptual differences and
similarities. Chapter 3 narrows its focus to the CGRA research field, giving an overview of
proposed architectures and application mapping methods, relating research presented in the
thesis with the State of the Art.

Chapter 4 details the developed architectural template and related cell- and mesh- level ar-
chitectural explorations, while Chapter 5 describes novel strategies for kernel partitioning and
scheduling. Chapter 6 proposes a hardware/software co-simulation flow for CGRA-accelerated
systems evaluation. Finally, concluding remarks are given in Chapter 7, wrapping up the thesis
content and suggesting future directions to expand the presented work.

Some of the research strategies and related experimental evidence being part of the thesis
have been published in peer-reviewed conference proceedings and journals: the coarse grained
architectural template has been the focus of Ansaloni, Bonzini and Pozzi [2008a], Ansaloni
et al. [2009] and Ansaloni, Bonzini and Pozzi [2011], while the scheduling framework was
introduced in Ansaloni, Tanimura, Pozzi and Dutt [2011]. The CGRA partitioning strategy is
a recent development, a related paper describing it has been submitted (Ansaloni and Pozzi
[2011]). Also relevant to this thesis are two non-peer reviewed papers: Ansaloni, Bonzini and
Pozzi [2008b] and Ansaloni, Najvirt and Pozzi [2008], the latter exploring system simulation
issues.

Chapter 2

Background and Motivation:
Explicitly Parallel Architectures

2.1 The end of frequency scaling

In the past decades, the performance of sequential computing has increased at an exponen-
tial pace, achieving a 100 billion speed-up in a sixty years span. Performance has doubled
roughly every 18 months, thanks to technology advancements that made available faster and
smaller transistors at each technology node. Increased transistor switching speed increased ICs
clock frequency, while greater integration made possible for complex control circuitry to mask
execution parallelism at the micro-architectural level, maintaining the illusion of sequential
execution at the application level.

Asanovic et al. [2009] argue that, during these years of exponential growth, the major
architectural concern was to maintain this abstract sequential interface toward applications
above all other considerations. According to Asanovic, increased transistor count and power
dissipation were secondary matters, as long as the programming model remained unchanged.
Superscalar machines presenting out-of-order execution and speculative execution, prefetching
and deep cache hierarchies were common design choices to realize high-performance micropro-
cessors, all in an effort to increased performance while preserving the sequential programming
model, even at the expenses of computational efficiency.

The trend was particularly evident in the general purpose domain (comprising CPUs for
desktop and laptop computers) but present even in the embedded systems one, as applications
evolved from simple controllers to complex multimedia machines. In fact, even if power effi-
ciency is always been an important factor for embedded and mobile appliances, the complexity
and computing power of high-end embedded processors has risen sharply in the past years,
forcing designers to adopt complex strategies to constrain power and energy consumption.

The sequential programming model could be stretched until two fundamental limits were
reached: the power an integrated circuit can dissipate in a practical way, and the ever increas-
ing cost of design and verification of complex digital circuitry. The first limit is often referred
to as the "power wall" in literature, while the second is termed the "verification wall". The
two walls forced an abrupt change in the way computation is performed by hardware ICs and
programmed in software, terminating the race to higher and higher clock frequencies that

5

6 2.1 The end of frequency scaling

Figure 2.1. Microprocessor clock rates of intel products vs. projects from the international
roadmap for semiconductors in 2005 and 2007 (ITRS [2007]).

dominated the industry until the last decade.
Figure 2.1 reflects this shift, plotting the projected microprocessor clock rates of the In-

ternational Technology Roadmap for Semiconductors in 2005 and in 2007 (data from ITRS
[2007]). The 2005 prediction was that clock rates should have exceeded 10GHz in 2008,
reaching 15GHz in 2010. Note that Intel products were in 2008 far below even the conserva-
tive 2007 prediction.

2.1.1 Power wall

Up until about 2003, exponential increase in processor performance has been fed by constant
electric field frequency scaling. In those years, as process geometries scaled downward, the ca-
pacitance of transistors also scaled down, in turn driving in the same direction voltage supplies
and transistor threshold voltages. These effects combined meant that smaller transistors were
invariably faster ones, without sacrificing power consumption.

As manufacturers have shrunk chip features below the 90 nm scale, however, the technique
began to reach its limits as thresholds could not be scaled indefinitely without hampering the
ability of transistors to block current when in the inactive state, resulting in more and more
current leaking through digital circuits, even when no transistor activity is performed.

Leakage currents put a hard limit in reduction of threshold voltages, and this in turn meant
the supply voltage could not be reduced correspondingly. Processors soon started hitting the
power wall, as adding more transistors to a core gave only incremental improvements in serial
performance, while adding up in the total power budget1.

The issue of power density has become the dominant constraint in the design of new pro-
cessing elements, and ultimately limits clock frequency growth for future microprocessors. The

1Some chip designs, such as the Intel Tejas, were ultimately cancelled due to power consumption issues.

7 2.2 Beyond single cores

direct result has been a stall in clock frequency that is reflected in the flattening of the per-
formance growth rates of individual cores starting in 2002 (as noted by Shalf [2007]). This
contributed to a significant course correction in the IT semiconductor roadmap (see again Fig-
ure 2.1) reflecting the reduced prominence of single-core performance respect to the overall
computing capability of systems comprising multiple, parallel cores.

2.1.2 Verification wall

Technology issues, like current leakage, are one factor forcing the IC industry to embrace ex-
plicit parallelism; but design cost considerations are as much as important. In the era of con-
stant electric field frequency scaling, single core designs became increasingly complex, adding
hardware control features to hide parallelism below the instruction set: out-of-order execution
(and related reordering buffers), sophisticated caching mechanism and other latency-hiding
circuitry fueled the increase in core transistor count and the design cost of new ICs.

The number of transistor that can be integrated on a single die and the efficiency in de-
signing them both grew exponentially in the past years, but automation in the design process
followed a slower curve than Moore’s law, leading to what is commonly known as design-
productivity gap. Consequence of the gap was skyrocketing cost for new cores (Kahng [2001]),
as design and verification efforts made ever more sophisticated single cores a less viable so-
lution to increase performance, leading the way for multi-core designs whose single elements
can be independently designed and verified, leaving only the on-chip interconnect study as a
global problem.

Finally, as transistors physical dimensions continue to shrink, random defects are becom-
ing more common, due to random process variations. The trend favors systems composed
of simple, modular elements over ones composed of bigger and more complex ones, because
single points of failure are reduced in the former case, resulting in more resilient ICs whose
performance is less impacted by low chip yield.

2.2 Beyond single cores

The power and verification walls force a change in the traditional programming model, the
only way out being explicit parallelism: breaking the sequential programming abstraction as
was taken for granted in the past decades. It is however not clear what kind of computing
architecture should take its place. Considerable effort has been undertaken by the research
community as well as commercial vendors to go beyond the single processing core paradigm.

Three trends can be identified:

• Thanks to shrinking fabrication technologies, multiple, fully featured cores can be real-
ized and interconnected on the same die. The strategy is one of incremental evolution of
single core designs.

• A more radical approach is the emergence of many-cores. These parallel architectures
derive from fixed function Graphic Processing Units, but present flexible computing ca-
pabilities. They are increasingly successful in speeding up execution of applications that
can be decomposed in a large number of independent threads.

8 2.2 Beyond single cores

Figure 2.2. Moore’s law keeps progressing, as smaller fabrication technologies allow for more
and more transistors to be integrated on the same die, but traditional sources of performance
improvements (ILP and clock frequencies) have reached a plateau (ITRS [2007]).

• An even more disruptive path derives its roots from reconfigurable architectures such as
Field Programmable Gate Arrays (FPGAs). Research and commercial efforts in this field
is two-pronged: on one side, FPGA-like structures are embedded inside microprocessors
to perform fast bit-width data manipulation in a parallel way. On the other, studies
have focused on specialized arrays for speeding up arithmetic computations, maintaining
a flexible connection scheme akin to traditional FPGAs, but employing a sea of ALUs
(instead of look-up tables) to parallelize execution. ICs realizing this last paradigm are
termed Coarse Grained Reconfigurable Arrays (CGRAs).

All three strategies aim at boosting execution performance through parallelization, going
beyond micro-architectural Instruction Level Parallelism, which has indeed flattened since 2000
(Figure 2.2). Nonetheless, they achieve parallelization at different levels: multi-core architec-
tures maintain backward compatibility, allowing for legacy serial applications to be run on a
single core, and mostly delegating load balancing on multiple cores to the Operating System or
leveraging specialized APIs to realize application level parallelism. Multi-cores are well-suited
for a general-purpose computing, and this path is indeed followed by major manufacturers of
desktop microprocessors, like Intel (Intel Corp. [2006]) and AMD (AMD Corp. [2005]).

Many-core architectures present quite different characteristics. The closest industrial em-
bodiment of the many-core concept is the General Purpose Graphics Processing Unit (GPGPU).
It is constituted by hundreds of processing elements, sharing memory space and each execut-
ing private threads. GPGPUs are an evolution of fixed-function GPUs, employing programmable
processing elements instead of dedicated pipelines. Their increased flexibility (with respect to
earlier GPUs) make them attractive solutions for a wide range of massively parallel applica-

9 2.3 Multi-cores

tions.
Embedded FPGAs are small reconfigurable meshes, that can be programmed to realize

special purpose bit manipulations, either as reprogrammable functional units or as repro-
grammable peripherals. Usually, net-lists of functionalities to be implemented are defined
through Hardware Description Languages (HDLs) or high level synthesis, and can be changed
at run-time, adding flexibility at the hardware level and offering support for realizing dynamic
instruction set processors.

Similarly to GPGPUs, CGRAs parallelize computation using distributed hardware resources,
but they are organized quite differently. Instead of assigning each thread to a single element,
execution of every computing flow on CGRAs is a collaborative effort by many elements, prop-
erly interconnected at run-time. Coarse grained arrays adopt the flexible routing network
typical of their fine grained siblings (the FPGAs), but at a much coarser granularity, usually
employing data channels between four and thirty-two bits wide. Thanks to their coarse grained
nature, CGRAs can achieve short reconfiguration times, while the parallel arrangement of their
computing units is well suited for spatial execution of computational kernels. These character-
istics make them apt to accelerate embedded and Digital Signal Processing (DSP) applications,
which are mainly composed of repetitive and computationally intensive loops.

The reminder of this chapter gives some insight on the characteristics of multi-cores (Sec-
tion 2.3) and GPGPUs (Section 2.4), highlighting the differences in execution model and, con-
sequently, in the programming one. Section 2.5 briefly describes the architectural structure of
FPGAs and their evolution.

Coarse Grained Reconfigurable Arrays, as well as their evolution from FPGAs, are intro-
duced in Subsection 2.5.2. The State of the Art in proposed architectures and programming
models implementing the Coarse Grained Reconfigurable Array concept, focus of this thesis, is
discussed in detail in Chapter 3.

2.3 Multi-cores

Once the power and verification walls put a limit to the complexity of individual cores, major
microprocessors manufacturers shifted their focus to the integration of multiple, smaller and
power efficient cores on the same die, considering it the only way to take advantage of ever
increasing numbers of transistors available on chip and sustain performance scaling.

The frequency scaling trend has been substituted by core count scaling, with doubling the
number of processors, or cores, at each technology generation. The incremental path towards
multi-core chips (two, four, or eight cores) has forced the software industry to expose par-
allelism to application developers explicitly. Applications developed for multi-cores aim at
maximizing performance by distributing their loads on multiple units; legacy code can still be
supported on single units, even if their run-time performance is far from optimal.

OS-managed load balancing, in fact, becomes increasingly inefficient as the number of
cores scales, because granularity applied at task level is just too coarse to make an efficient
use of resources in many cases; consequently, efforts have been undertaken to expose paral-
lelism management to application programmers. Two different approaches have been pursued
towards this goal: either based on explicit APIs, or relying on code annotation.

MPI (HP Corp. [2007]) is an implementation of the first strategy; it defines library function
to support development of parallel code. It is highly successful in the high-end technical com-
puting community, where clusters of multi-core processors are common, but requires consider-

10 2.4 GPGPUs

Figure 2.3. A typical CPU and GPU block scheme: the GPU devotes more transistors to data
processing (from NVIDIA Corp. [2010b]).

able effort in deriving efficient implementations when applications must be ported to multiple
architectures. Even when the target architecture is fixed, application parallelization is far from
trivial, as care must be taken to manage communication and access to shared resources to
avoid concurrent programming errors like deadlocks.

Goal of OpenMP (Chapman et al. [2008]) is to assist programmers in the parallelization
process allowing for incremental code transformations (starting from a sequential version). It
relays on pragma annotations to state which sections should be execute parallely, which data
should be private and how execution should be synchronized.

2.4 GPGPUs

Multi-cores break the sequential paradigm exposing explicit parallelism to software, but retain
fully featured processing elements, able to execute general purpose code; the approach main-
tains compatibility with serial applications and does not restrict their generality with respect
to single core microprocessors. In multi-cores, core number is restricted by their complexity, as
a large amount of control logic makes impossible to effectively lower transistor count per core
more than a (rather high) threshold, in turn limiting multi-cores performance when executing
applications that expose massive parallelism. Integration of hundreds or thousands of cores on
a single die is possible only if dedicated architectures executing special purpose applications
are considered; to distinguish them from multi-cores, this family of ICs are termed many-cores.

Many-core architectures use much simpler, lower-frequency cores than the fully-featured
processors used in multi-cores, resulting in more substantial power and performance benefits.
Moreover, the presence of many simple computing units, lacking complex control and caching
mechanisms, makes it possible to devote a larger portion of resulting ICs to actual computation
than is feasible with multi-cores (Figure 2.3).

In many-cores, hundreds to thousands of computational threads per chip are possible, each
executing on a small data set in parallel and allocated to individual cores with little inter-core
communication. Long-latency loads and stores to main memory can then be masked by shuf-
fling threads execution on the computing units, instead of deep cache hierarchies. Ultimately,
these architectures enable an exponential growth in explicit parallelism, and their performance
increase is greatly outpacing general purpose microprocessors, as shown in Figure 2.4.

11 2.4 GPGPUs

Figure 2.4. Floating-Point Operations per Second for the CPU and GPU (data from NVIDIA
Corp. [2010b]).

Obtaining maximum speedup out of an application mapped on a many-core platform re-
quires for application developers knowledge of the underlying architecture. In particular, prob-
lems must be properly parallelized and care must be taken to adapt them to many-cores’ tricky
memory structure, which is explicitly exposed to the programmer and is more akin to software-
managed scratchpad memories than traditional caches.

The industrial incarnation of the many-core paradigm is the General Purpose Graphics Pro-
cessing Unit. GPGPUs evolved from graphic processors in the last decade, when GPU man-
ufacturers replaced fixed custom pipelines of previous generation GPUs with a mesh of more
general-purpose processing cores. Whereas traditional GPUs only specialized in drawing an im-
age data to the screen, modern GPGPUs cores can be programmed, using a variant of C Code.
The most popular software environment for GPGPU programming are C for CUDA (NVIDIA
Corp. [2010a], a proprietary framework developed by NVIDIA) and OpenCL (NVIDIA Corp.
[2010b], a collaborative effort managed by the Khronos Group). Both frameworks enable
application developers to directly interface with many-core hardware and execute parallel ap-
plications on it.

GPGPUs are able to address problems presenting high data parallelism and arithmetic in-
tensity, which is the ratio of arithmetic operations with respect to control and memory ones.
Cluster of cores in a GPGPU execute in a SIMD (Single Instruction Multiple Data) fashion,
minimizing the required control flow logic. Many applications that process large data sets can
use a data-parallel programming model to speed up computations: in traditional GPU applica-
tions, like 2D and 3D image processing, large sets of pixels and vertices are mapped to parallel
threads; added flexibility in GPGPUs made possible for many algorithms outside the field of
image rendering and processing to be parallelized.

12 2.5 Field Programmable Gate Arrays

Figure 2.5. Field Programmable Gate Array Evolution (from Xilinx Corp.).

Increasing interest in porting non-graphics applications to GPGPUs is a consequence of the
growing gap in peak performance between microprocessors and graphic units. Even if extract-
ing maximum performance from GPGPU hardware requires considerable effort, encouraging
results have been reported in accelerating scientific workloads, like molecular dynamics (Elsen
et al. [2006]) and Monte Carlo simulations (Preis et al. [2009]).

2.5 Field Programmable Gate Arrays

FPGA architectures are meshes of logic elements, each embedding look-up tables (LUTs) and
flip-flops, connected by configurable switch-boxes. The actual boolean function implemented
by each LUT and how logic elements are connected with each other determines the desired
functionality, as dictated by a program bitstream. Functionalities can be defined by applica-
tion designers using HDLs or system-level tools like SOPCBuiler (Altera [2010]), and can be
changed on the field, or even remotely.

FPGAs have enjoyed a tremendous success in the past decade, as integration allowed for in-
creasingly complex circuits to be mapped onto them. Moreover, specialized units (hard macros)
have been added on the side of the sea of logic elements: among them, embedded memories,
DSP units and whole microprocessors are the most common.

As illustrated in Figure 2.5, this "bigger and better" evolution have greatly enlarged the
possible application fields of FPGAs: historically, reconfigurable chips were first introduced
to substitute discrete elements on PCB boards, performing glue logic among other ICs. The
availability of greater number of resources have enabled them to implement more complex
tasks, like the integration of custom peripherals. Since dedicated hardware blocks have become
available, even some performance-critical functionalities, like Digital Signal Processing (DSP),
can be efficiently mapped on FPGAs.

Starting around 2002, processors embedded into FPGAs, and the possibility to reconfigure
only portions of high-end meshes, made possible for powerful SoCs to be realized on a single
chip, tightly integrating software and (reconfigurable) hardware tasks. Today FPGAs present

13 2.5 Field Programmable Gate Arrays

Figure 2.6. Morhosys: an example CGRA mesh Lee et al. [2000].

many complex functionalities, and vendors are targeting different markets with specialized IC
families, being them either logic, DSP or memory intensive.

2.5.1 Embedded FPGAs

As commercial FPGAs became bigger and added more capabilities, some research efforts fo-
cused instead on small reconfigurable IP blocks, to be encapsulated in strategic positions inside
traditional SoCs (Wilton and Saleh [2001]). Systems with hardware programmable parts, in
fact, can implement flexible peripherals, bus interfaces and/or processing units inside cores,
becoming more adaptable to different applications (Magarshack and Paulin [2003]).

Embedded FPGAs (eFPGAs) have different constraints with respect to traditional ones: in
particular, to maintain performance level comparable to the SoC of which they are part, energy
consumption must be minimized, utilizing specialized architectural organizations as the one
proposed by Kusse and Rabaey [1998].

Reconfiguration times are also an issue, especially when eFPGAs are employed close to
the computational core. In this setting, overlapping computation and configuration to mask
overhead becomes mandatory, an example being the Chimaera configurable functional unit
introduced by Hauck et al. [1997], which provides eight independently reconfigurable cores
able to enrich a host instruction set with custom operations.

2.5.2 CGRAs

While flexibility is the major driver for FPGA adoption in different scenarios, they nonethe-
less present other desirable features. In particular, their parallel nature makes them good
candidates for implementing reconfigurable accelerators; indeed some tasks, relaying on bit-
width manipulation (like cryptographic algorithms), present high performance when mapped

14 2.6 A conceptual comparison

Architecture Application Field Parallel Efficient Evolution Application Field

Single-core General Purpose no no Multi-core General Purpose
GPU Graphic Processing yes yes Many-core Parallel Computing

FPGA yes no
eFPGA

Embedded Systems
Reconfigurable (Reconf. IP Macros)
Digital Circuits

CGRA
Embedded Systems
(Comput. Kernels)

Table 2.1. Comparison of explicitly parallel computing platforms and their evolution

onto them. Other applications, like DSP, can make good use of hardwired macros to increase
throughput.

In the general case, however, execution of arithmetic operations on FPGA meshes is quite
inefficient, due to their bit-width granularity. This application scenario would be especially
interesting to implement parallel execution of small, compact loops characterizing embedded
systems applications; to support it, dedicated arithmetic units, small reconfiguration time and
streamlined control logic is needed.

Architectures embodying the concept are named Coarse Grained Reconfigurable Arrays.
They are composed of meshes of ALUs (instead of FPGAs’ logic elements) and provide word-
(instead of bit-) level routing. These characteristics have important consequences, as they
increase their efficiency when mapping computational kernels derived from software applica-
tions. Figure 2.6 provides the architectural block scheme of Morphosys (Lee et al. [2000]), a
representative CGRA mesh.

CGRAs can be either considered as VLIW machines employing a large number of functional
units and presenting a sparse interconnection scheme, or as special-purpose FPGAs, targeting
arithmetic-intensive operations. A third perspective is to regard them as many-core architec-
tures whose units are not assigned one or more thread each, but instead collaborate in the
execution of an application using a dynamic local interconnect.

2.6 A conceptual comparison

Multi-cores, many-cores and CGRAs are all resulting from the strive for parallelism that super-
seded the strive for higher clock frequencies once the power and verification walls were hit. It
can be argued that a convergence of quite different types of ICs is undergoing, each family of
architectures being inspired from the strong points of the others.

Table 2.1 highlights this evolution: single core microprocessors are well-suited for gen-
eral purpose computing, but can’t exploit massive parallelism. On the other hand, GPUs are
very efficient number-crunching architectures when applied to graphics processing, but, until
the introduction of more flexible capabilities, were specialized to one particular problem. FP-
GAs, finally, expose to application developers an extreme degree of flexibility and parallelism.
Nonetheless, flexibility comes at a cost, especially in area, run-time performance and power
consumption; moreover, FPGA reconfiguration time is often not acceptable if the execution
model allows, and the application requires, different functionalities to be shuffled at run time.

To derive more efficient FPGA-like structures, one approach is to reduce their size and em-
bed them inside SoCs as IP macros, taking advantage of FPGAs ability to manipulate data at

15 2.6 A conceptual comparison

the level of individual bits either to increase flexibility at the system periphery or to implement
custom functional units at its core. A different strategy is to increase the coarseness of basic ele-
ments, targeting arithmetic operations (as in many-cores), but retaining a spatial interconnect,
so that computational intensive tasks can be mapped and executed in a parallel way utilizing
many computation elements at once. This approach has marked the introduction of Coarse
Grained Reconfigurable Arrays.

The convergence is conceptual, as each architecture family retains its specificity: while
many-cores have greatly expanded the possible applications with respect to GPUs, they still
focus on massively parallel applications. In the same way, CGRAs remain special purpose ar-
chitectures, targeting acceleration of embedded systems applications, where the great majority
of execution time is spent on relatively small, compact computational kernels.

CGRAs are novel architectures, and many of their aspects remain to be studied, in particular
regarding their architectural features, integration in wider systems and application mapping.
The thesis proposes advances over the State of the Art on these three fields.

16 2.6 A conceptual comparison

Chapter 3

Coarse Grained Reconfigurable
Arrays: State of the Art

Coarse Grained Reconfigurable Arrays have attracted considerable research in the past two
decades, as partially summarized by Hartenstein [2001]. This is due, on one side, to their
promise to provide flexibility and efficient computing, making them an interesting solution for
accelerating computational kernels in the domains of embedded systems applications and digi-
tal signals processing. On the other, on the novel challenges they presented at the architectural
and application mapping level.

An implementation of the coarse grained reconfigurable paradigm is multi-faceted. The
capability of computational elements composing a CGRA have to be defined and elements
have to be connected efficiently. A variety of architectures have been proposed, presenting
different characteristics, especially in terms of the coarseness of the array: proposed tiles vary
from multi-bit look-up tables or single small-width ALUs to fully featured RISC processors
or rich multi-ALU clusters. Figure 3.1 provides a conceptual comparison of the architectures
described in Section 3.1, considering two dimensions: coarseness of constituting tiles and their
heterogeneity, which is the presence of different cell types specialized for different functions.

A hardware platform is only useful as long as a sensible strategy can be envisioned to map
applications onto it. Compilation and scheduling for CGRAs are tricky, because high computa-
tional density must be aimed for in an environment presenting a sparse connection topology. To
address them, ideas in literature are borrowed from distant fields, spanning from mapping for
multi-context FPGAs to scheduling for Very Long Instruction Word (VLIW) processors. These
efforts are described in Section 3.2.

One last important aspect regards the integration of a CGRA accelerator in a computing
system. Well-thought integration is especially important to minimize the overhead due to data
transfers between the accelerator and the host and to minimize overhead due to reconfigura-
tion. Solutions proposed by related works are discussed in Section 3.3.

Comparisons between related works and novel concepts investigated in the thesis are briefly
introduced here. Thesis contributions are also put in perspective, citing relevant literature, in
separate sections of each chapter.

17

18 3.1 CGRA architectures

!"#$%&'()

$#*+)

+,-.#*%&'()

$#*+)
/
00
/
1
)2
3
/
0+
*
-
*
++
)

/00/1)4*5*03.*-*,51)

43!3.*-*3"+) 4*5*03.*-*3"+)

6/7,8)7,9*6*-24)

!,::#*%.0/,-*:)

$#*+)

;<<)

87%;7=&)

7,<3=/)

>/50,?)

;7<&)

6*!/02)

>30943@1+)

6&A)

>3-54,"!)

>30/)

7&<B%C77)

<4/!/#*3-)

6@7&)

!"#$%

Figure 3.1. Conceptual comparison of different CGRAs, with respect to granularity of tiles
and mesh heterogeneity. The EGRA template introduced in Chapter 4 presents a high degree
of coarseness and heterogeneity.

3.1 CGRA architectures

3.1.1 Linear arrays

The most apparent characteristic of a coarse grained array is the arrangement of its tiles.
While CGRAs draw inspiration from FPGAs, some of the proposed implementations depart
from two-dimensional meshes typical of their fine grained siblings, positioning elements in a
one-dimenensional linear configuration.

RaPiD (Ebeling et al. [1996]) is composed of a linear array of diverse functional units,
implementing ALUs, multipliers and memories. A collection of functional units forms a RaPiD
cell, that is replicated sixteen times to constitute the complete array. Units are connected
using segmented buses (fourteen are present in the RaPiD-1 prototype) that can be chained
and buffered to connect distant functional units. Proper connection of functional units can
efficiently implement regular datapaths for DSP applications.

PipeRench (Goldstein et al. [1999]) consists of a reconfigurable datapath that enables
execution of many virtual pipelines stages through few physical ones. The function of each
physical stage is assigned at each clock cycle according to the desired virtual function by rapidly
rotating configurations.

The FCC (Flexible Compute Accelerator, proposed by Galanis et al. [2006]) is a linear
array of elements allowing for combinatorial chaining of operators. As opposed to the above-
mentioned designs, each FCC cell is not composed of a single ALU but by a two-by-two cluster
of computing elements, allowing for added flexibility, as a rich set of expressions, instead of
single operations, can be supported. Employment of complex computing cells is a recurring

19 3.1 CGRA architectures

theme in CGRA designs; the concept of expression grained reconfigurable arrays is investigated
in Chapter 4, using a two-dimensional mesh template.

3.1.2 Mesh arrays

The most used arrangement of tiles in proposed CGRAs is a two-dimensional mesh or thorus,
presenting a mix of nearest-neighbor and long-distaince lines, in the form of either point-to-
point dedicated connections or shared buses.

One of the first mesh-based CGRA designs is the Data-Path FPGA (Cherepacha and Lewis
[1996]), which strongly resembles a FPGA array, but employs a four-bit width for routing. By
considering groups of bits instead of single ones, the DP-FPGA can reduce the control logic
employed in switch-boxes and Look-Up Tables (LUTs), increasing efficiency when regular data-
paths are executed on it. The term middle grained array is probably more apt to describe this
array, given the small bit-width and the use of LUTs in its basic cells.

PiCoGa-III by Campi et al. [2007] also works on four-bit slices. It is inspired by the DP-
FPGA, but differentiates itself by employing an ALU and a LUT in each cell in parallel, so that
both boolean and arithmetic operations can be efficiently hosted. It relies on fast, hardware
managed reconfiguration to achieve high computational density in a small area, using a scheme
similar to the one implemented in the proposed EGRA template, which is described in Chapter
6.

Another middle grained example is the FPCA (Field Programmable Counter Array, Brisk
et al. [2007]), that proposes specialized cells employing compressor trees to speed up execution
of arithmetic operations. The design has two distinct areas: one presents standard LUT-based
tiles for single bit operations, the other compressor tree cells for arithmetic ones.

Matrix (Mirsky and DeHon [1996]) embeds features of both coarse and fine grained archi-
tectures, employing a simple ALU and fine grained logic in every cell. Matrix cells are connected
through nearest neighbour connections and horizontal-vertical long lines, in a similar way to
the EGRA template.

The majority of CGRAs are instead specialized toward execution of arithmetic operations,
not including fine grained support for mapping boolean functions. One example is the RE-
MARC array, proposed by Miyamori and Olukotun [1999], which is composed of an eight-by-
eight mesh of nanoprocessors, each including a 16-bits ALU and small input, output and data
register files. It targets cryptographic and video compression applications.

A similar structure is realized in the Morphosys array (Lee et al. [2000]), where recon-
figurable cells consisting of a 28-bit ALU, a multiplier and a barrel shifter are embedded in a
planar arrangement and connected using a rich point-to-point scheme. Small register files, on
the side of each cell, are used to store scalar data generated during execution.

A trend in the evolution of CGRAs has been to enlarge the datapath width and to employ
more capable and complex computational elements. In the context of single-ALU cells, the
most striking example is RAW, introduced by Waingold et al. [1997], which employs fully
featured RISC cores connected through a Network-on-a-Chip (NoC), representing a point of
contact between CGRAs and multi-core architectures.

Another, complementary evolutionary path increased the number of ALUs in each reconfig-
urable cell, so that complex expressions, instead of single operations, can be executed by CGRA
tiles at each clock cycle. In this way, one more degree of flexibility is added to these architec-
tures, retaining a simple control logic and high computational density. This category of CGRAs
is well represented by the Montium array, introduced by Heysters and Smit [2003], which

20 3.1 CGRA architectures

presents a complex datapath embedded in each tile. The datapath is specialized to efficiently
support DSP applications like signal correlation and filtering.

A more general tile is employed by Lanuzza et al. [2007] in MORA, having dedicated logic
and arithmetic subsections, and supporting the most common operations utilized in the em-
bedded systems domain. Another example of clustered cells design is PACT-XPP (Baumgarte
et al. [2003]), which uses an 8-ALU datapath in some elements to support execution of ex-
pressions. MORA and PACT-XPP cells represent fixed solutions, in contrast to the parametric
Reconfigurable ALU Cluster (RAC), the novel computational cell introduced in this thesis.

3.1.3 Homogeneous and heterogeneous arrays

CGRA designs that were firstly introduced presented a homogeneous structure, with identical
elements replicated throughout the mesh. The previously mentioned Remarc and Morphosys
arrays are examples of this category. To increase computational density and adaptability, het-
erogenous CGRAs have been proposed in recent years, breaking away from the concept of a
general-purpose cell, able to execute all operations supported by a mesh, and proposing instead
specialized ones. In heterogenous CGRAs, operations that statistically are more frequently ex-
ecuted can take advantage of more hardware support than ones that are seldom recurring.

Specialized ALU and multiplier cells are the most common example: Chameleon (Tang
et al. [2000]) utilizes clusters of cells, each one having seven ALUs and two multipliers and
forming, in their parlance, a tile that is then replicated to form a 108-cells array. A different
layout is considered by Kim et al. [2005]. In their work, the described RSPA mesh presents
multipliers external to the reconfigurable mesh, shared by the reconfigurable tiles as needed
by the application.

PACT-XPP also consideres cells with different memory and computation capabilities. Scat-
tering memory cells inside the reconfigurable array leads to higher bandwidth with a smaller
area footprint than it is possible utilizing an external memory. The thesis further investigates
the concept in Chapter 4; the EGRA template described there completely decouples storage
and computing support by employing dedicated type of tiles inside EGRA instances.

3.1.4 CGRA design space and its exploration

Previously illustrated designs leverage empirical engineering expertise to devise efficient solu-
tions for intended application fields. As CGRAs diversify and become more complex, possibly
employing clustered cells and/or heterogenous elements, the need arises for quantitative eval-
uation of architectural choices.

One notable effort in this field is the paper of Bouwens et al. [2007], exploring different
interconnection topologies and register files arrangements for the ADRES reconfigurable array.
Results show that a moderately rich interconnection among cells and small local register files
is the most performing setting for executing a number of benchmark applications.

A CGRA modeling framework has been presented by Chattopadhyay et al. [2008]. Starting
by a user-defined high level description, the framework can model tiled architectures with
possibly heterogeneous elements inside tiles. An HDL implementation can be derived and
synthesized to enable performance comparisons.

On the other side of the spectrum, the Morpheus integrated circuit, developed by Kuhnle
et al. [2008], presents a physical platform comprising reconfigurable IP elements with different
granularities: a fine-grained embedded FPGA, a middle grained PiCoGa and a PACT-XPP, all

21 3.2 Computational kernels processing and scheduling

!" #" $"

%" &"

'()*+,-.+/*"
0)-12"

3.445*6"
7.8++/*5*6" 9-1)(:;5*6"

<" /8"

=" <"

>">"

="?1"@"

!" $"

%" #" &"

Figure 3.2. Application mapping on CGRAs: kernel identification, technology mapping, par-
titioning, scheduling.

instantiated on the same chip and communicating with a Network-on-Chip. The platform
enables rapid comparative evaluations of these three technologies.

The major difficulty of developing high-quality design exploration tools is to envision hard-
ware templates that are flexible enough to mimic a wide variety of possible structures. In
exploring the performance of complex CGRA cells presented in Chapter 4, we took our inspi-
ration from the parametric Custom Compute Accelerator introduced by Clark et al. [2005].
The CCA is intended as a stand-alone functional unit; in the thesis a similar circuit was instead
used as a replicable element in a coarse grained mesh.

3.2 Computational kernels processing and scheduling

As illustrated in Figure 3.2, mapping of kernels on coarse grained array requires multiple com-
pilation steps. Kernels have to be extracted from applications and expressed as Data Flow
Graphs (DFGs), using some sort of intermediate representation. DFGs have then to be trans-
formed, to adapt them to the technological features of a specific hardware platform, and par-
titioned so that each part doesn’t overuse hardware resources. Finally, operations must be
associated with computational elements and routing must be performed. This section presents
research efforts investigating each of these tasks; related advances over the State of the Art
introduced by the thesis are described in Chapter 5.

3.2.1 Identification and technology mapping

First step in scheduling an application on a CGRAs is to identify its intensive loops (kernels),
whose execution is to be performed by a reconfigurable mesh. Kernels have to be well formed:
they must not present recursion, irregular exits and function calls that cannot be inlined. Most
often, only loops whose iteration count is constant-bound, such as "for" loops, are supported,
in order to minimize the amount of hardware control logic.

While these constraints somehow restrict the applicability of application acceleration using
CGRAs, they are usually satisfied in the DSP domain and in the embedded systems field. One

22 3.2 Computational kernels processing and scheduling

further restriction is that only innermost loops are usually considered (as exemplified in the
paper by Mei et al. [2002]); standard loop transformations such as loop unrolling can be
applied to increase the number of nodes of a data flow graph up to a desired size.

Identification of application sections to be accelerated has been the target of various re-
search efforts in the instruction set extension field, where tight micro-architectural constraints
are present, such as input-output number and forbidden operations. Exact and approximate al-
gorithms to solve this problem has been proposed by Pozzi et al. [2006]. Kernels identification
for CGRAs is a simpler problem, because possible candidates are restricted to loops. Identifica-
tion is then either done using manual code annotation, as in the PACT-VC compiler by Cardoso
and Weinhardt [2002b], or every innermost loop is considered for CGRA execution. This last
strategy is pursued by the DRESC compiler for the ADRES array (Mei et al. [2002]).

Technology mapping is the process of transforming kernels to express them in terms of
features supported by the coarse grained mesh. This pass is crucial to both make a kernel
schedulable and to increase its execution performance. Technology mapping transformations
are usually performed at the intermediate representation (IR) level, such as the single assign-
ment lcode employed by DRESC (Chang et al. [1991]). Using a proper IR, branches present in
a kernel, e.g. if-than-else statements, can be converted into multiplexer operations, supported
by the vast majority of CGRAs.

The FELIX framework, developed by Morra et al. [2005], uses a term rewriting technique,
inspired by the model checking field, to derive alternative, more efficient implementations of
a given kernel. The above-mentioned PACT-VC compiler performs loop unrolling and vector-
ization to increase a kernel size; limited support for kernel splitting via loop disserving is also
supported.

Bonzini et al. [2008] presents a set of ten graph rewriting rules to adapt the GCC intermedi-
ate representation of loop bodies to EGRA instances features. Clustered cells, such as the ones
present in the EGRA template, pose an additional challenge to technology mapping, which is to
appropriately group operations into expressions that can be executed by a multi-ALU cell, max-
imizing utilization. In the same paper, a solution to this problem, using a branch-and-bound
algorithm, is also proposed. Later chapters of the thesis assumes the availability of properly
identified and technology mapped data flow graph representations of computational kernels;
the interested reader can refer to the work of Bonzini for a description of these steps in the
EGRA scenario.

3.2.2 Partitioning

CGRAs attractiveness resides in their computational efficiency, in terms of throughput per unit
time, unit area and/or unit power. To achieve high efficiency, coarse grained meshes employ
simple support logic and small internal memories, limiting the size and complexity of data flow
graphs that can be mapped onto them. Kernels exceeding the constraints imposed by a given
CGRA architecture must than be partitioned into sub-kernels to obey such constraints.

Techniques to perform partitioning include the approach illustrated by Kaul and Vemuri
[1998], which assumes applications that are naturally divided into tasks that can be grouped
to form partitions. Partitioning is then formalized as a non-linear programming problem. Given
the exponential complexity of the formulation, solutions are provided up to a limited number
of tasks and partitions.

The Kernighan-Lin network flow algorithm (Kernighan and Lin [1978]) provides an ef-
ficient heuristic to accomplish graph partitioning, but only considers undirected graphs. Its

23 3.2 Computational kernels processing and scheduling

extension to acyclic data flow graphs is presented by Liu and Wong [1998]. The implemen-
tation, intended for circuit mapping on time-multiplexed FPGAs, performs subsequent graph
min-cuts until constraints are met.

Purna and Bhatia [1999] introduce two heuristic algorithms for partitioning kernels: a
level-based approach groups together nodes presenting the same depth1, while a cluster-based
one tends instead to group together nodes with common predecessors. The first methodol-
ogy aims at maximizing parallelism regardless of bandwidth requirements, the second tries to
strike a balance between achieved parallelism and memory footprint size. Nodes are assigned
in a single DFG traversal, achieving linear convergence time but also solutions distant from
optimality in many cases.

Binary recursion over abstract search trees, illustrated in Pozzi et al. [2006] in the context
of instruction set extension identification, is a promising methodology to perform partitioning,
too. Appropriate recursion bounding can limit algorithm run-time, and the partitioning can
be performed either exactly or, more efficiently, in a locally exact way. Chapter 5 presents
and discusses such implementation targeted to CGRA partitioning, formalizing algorithms and
related constraints.

3.2.3 Scheduling

Data flow graph mapping on CGRAs presents similarities both with FPGA place and route and
VLIW compilation. As in FPGAs, functional units are spatially distributed, routing resources
are limited, and tiles can be used either for computation or as pass-through to route data. As in
VLIWs, execution is dynamic at run time, with cells performing different operations in different
clock cycles.

Some mapping techniques only consider spatial placement of operations on a reconfig-
urable mesh. Lee et al. [2003] propose decomposing the mapping problem in row placement
and mesh placement, assuming dedicated connections to a multi-ported memory bank for each
row of CGRA elements. In the first phase, clusters of operations that can be mapped in a single
CGRA row are identified, while in the second different clusters are properly assigned to differ-
ent rows. In this way, dimensions of the problem are reduced from two to one, resulting in fast
convergence.

The papers by Ahn et al. [2006] and Kim et al. [2005] expand on the previous work by
including support for shared resources performing heavy computation, like multipliers. In the
targeted RSPA, pipelined multipliers are shared among tiles belonging to the same row, the
added constraint being managed by the clustering step. Lee, Ahn and Kim works are restricted
to CGRAs composed of identical rows.

The ability of CGRA tiles to perform both computation and routing is addressed by Yoon
et al. [2008]. The split-push kernel mapping scheme employed in this work considers routing
nodes as well as operation nodes when mapping a DFG on a mesh; multiple routing nodes can
be collapsed on the same cell if they connect operations placed at a short distance from each
other. Investigated mappings on a homogeneous mesh are of comparable quality with respect
to the ones obtained using an exact ILP formulation.

Other research efforts consider both spatial and temporal dimensions. Goal of these works
is to take advantage of parallelism present on a CGRA mesh by partially overlapping execution
of different iterations of a kernel. The technique, called modulo scheduling (illustrated by Rau

1Depth of a node is its distance to the furthest node without predecessors, as defined by Rau [1996]

24 3.3 System Integration

[1996]), is an established compiler optimization originally devised for VLIW architectures. Re-
search in the field assumes registered connections between cells, so that computing or passing
through them always takes one clock cycle. Improvements obtained by relaxing this constraint
are present in Chapter 5, targeting fully heterogenous EGRA instances.

Mei et al. [2003] adapted modulo scheduling to CGRAs by representing the software ap-
plication and the hardware architecture (replicated for each time step) as directed graphs.
Simulated annealing iterations are used to converge to a solution from an initial, possibly in-
valid, DFG placement. The employed detailed architecture representation leads to lengthy
compilation time; the issue is addressed by Hatanaka and Bagherzadeh [2007], that simplify
the hardware representation decoupling resource reservation and scheduling. An additional
feature introduced in their work is the support for heterogeneous reconfigurable arrays and
shared communication resources.

Park et al. [2006] propose a heuristic, called modulo graph embedding, inspired by graph
layout. By placing nodes greedily, modulo graph embedding is able to speedily schedule com-
plex DFGs onto homogenous meshes. The scheduler places nodes in order of increasing depth,
trying to minimize both distance to predecessors and distance to nodes with common suc-
cessors. Scheduling slots in the leftmost row are utilized first, and the scheduling space is
appropriately skewed to acknowledge non-utilized resources at each scheduling pass.

In most modulo scheduling adaptations to the CGRA scenario operation placement is done
before data routing. The methodology illustrated by Park et al. [2008], instead, promotes
routing as the major scheduling concern. The edge-centric approach exposed in their work
route DFG connections on a scheduling space until all inputs of an operation are available in
one cell, which is the position (in space and time) where the operation is executed.

All the above-mentioned works focus on maximizing utilization of computing resources
during scheduling. A different perspective is described in a recent work authored by Kim
et al. [2010], which assumes a multi-banked memory on the side of computing resources.
The resulting scheduler tends to place operations accessing the same data on cells sharing the
same memory bank connection, thus reducing data duplication. Memory constraints are also
considered in the research illustrated in Chapter 5, in the different scenario of CGRA meshes
embedding memory cells.

3.3 System Integration

CGRAs are almost never conceived as stand-alone units. The necessity then arises to interface
them efficiently with various other components in a SoC, especially with a general purpose
host. The execution model is one where a microprocessor acts as master, on one side executing
non-kernel code, on the other managing configuration of the CGRA and transfer of datasets of
kernels to and from the accelerator.

Integrating a CGRA in a system is a more challenging that integrating a single-core Recon-
figurable Functional Unit. RFUs, in fact, execute small code segments, usually the size of a
basic block, as exemplified by the CCA (Clark et al. [2005]) and Chimaera (Ye et al. [2000])
architectures. In this context, granting access to the host register file usually suffice to avoid a
bandwidth bottleneck; nevertheless addition of a small number of shadow registers private to
the RFU have been shown to be beneficial by Cong et al. [2005] to support complex instruction
set extensions.

Some coarse grained arrays are also interfaced at the register file level. Bouwens et al.

25 3.3 System Integration

[2007] utilize a clever dual VLIW-CGRA view to execute kernel and non-kernel code on the
ADRES architecture. In their layout, the first row of functional units can be used as a VLIW
machine, while the whole eight-by-eight mesh is activated to parallelize execution of compu-
tational kernels.

A more general solution decouples the host processor from the reconfigurable array by em-
ploying dedicated memory buffers. PiCoGa, developed by Campi et al. [2007], presents mul-
tiple memory banks to store processed arrays and dedicated storage for fast access to scalar
variables; individual PiCoGa tiles can access data through a programmable crossbar intercon-
nect. A similar solution is proposed in Morphosys (Lee et al. [2000]), which embeds a frame
buffer divided in two banks to allow for overlapping of computation, executed by the reconfig-
urable array, and data transfers, managed by a DMA unit.

In many embedded systems applications data is sequenced serially. To leverage this char-
acteristic, the Zippy array introduced by Plessl and Platzner [2005] employes FIFO queues
(instead of RAM blocks) to provide input and store output data, and a bus interface to commu-
nicate with the host. FIFOs require simpler control logic with respect to RAMs, resulting in a
streamlined implementation.

A different research direction investigates Networks-on-a-Chip (NoCs) as a viable intercon-
nection solution in a CGRA context. Research has been undertaken to integrate them both
for local communication inside a reconfigurable array and for data transfers to external SoC
elements. The Tartan architecture (Mishra and Goldstein [2007]) is organized in a hierarchi-
cal way, having switch-boxes managing low-level interconnects and NoCs routers deployed to
steer global routing. The Morpheus chip, designed by Kuhnle et al. [2008], uses instead a NoC
to connected the host and multiple reconfigurable elements presenting different flexibility/ef-
ficiency tradeoffs, from an embedded FPGA to a coarse grained array.

Works previously illustrated in this section are computation-centric, their focus being on
integration of host and CGRA computation capabilities. Proposed Intelligent Memory solutions
(like the IRAM described in Patterson et al. [1997]) have reversed this paradigm, adopting a
memory-centric approach. Works on intelligent memories investigate opportunities offered by
embedding computational elements inside RAM banks, allowing for data manipulations with
limited main processor interference.

Belonging to this field is also FlexRAM (Kang et al. [1999]). A FlexRAM chip includes
intelligent elements at different levels: many small integer engines and a single low issue
superscalar microprocessor are embedded in each memory bank, while a conventional cache
hierarchy and a host processor is provided for non-accelerated portions of applications. A
simple ring network is adopted for inter-chip communication.

Given the distributed nature of processing on intelligent memories and the intensive, repet-
itive tasks associated with in-memory computations, reconfigurable hardware appears to be a
good candidate to implement data manipulation inside memory banks. ActivePages (Oskin
et al. [1998]) investigated the concept by enriching a standard DRAM chip with small embed-
ded FPGAs connected to each memory bank. Authors report considerable speedups and small
area overhead due to the reconfigurable fabric.

Interfacing CGRAs as intelligent memories is an attractive solution, given the fast recon-
figuration times and the computing densities attainable by coarse grained arrays. Chapter 6
explores this opportunity, introducing a hardware/software co-simulation framework for eval-
uating execution of whole applications on systems comprising a coarse-grained reconfigurable
accelerator.

26 3.3 System Integration

Chapter 4

The EGRA template: CGRA
Architectural Design Space
Exploration

4.1 Introduction

Reconfigurable (or field-programmable) arrays are flexible architectures that can perform exe-
cution of applications in a spatial way—much like a fully-custom integrated circuit—but retain
the flexibility of programmable processors by providing the opportunity of reconfiguration.

These features would suggest reconfigurable architectures as particularly good candidates
for being integrated in customizable processors. Unfortunately, other drawbacks have kept
reconfigurable arrays from becoming a largely adopted solution in this field. Among different
factors, the performance and area gap that still exists between reconfigurable and hardwired
logic is certainly one of the most important. The problem of bridging this gap has been the
focus of much research in the last decades, and important advances have been made. Research
exposed in this chapter goes in the direction of decreasing such gap further.

A walk through related historical background will help stating this chapter’s aims and
contributions. In the earliest examples of reconfigurable architectures such as the PLA (Pro-
grammable Logic Array), mapping of “applications” (boolean formulas in sum-of-product form)
is immediate. In fact, each gate in the application is mapped in a 1-to-1 fashion onto a single
gate of the architecture (Figure 4.1a).

However, this organization does not scale as applications to be mapped get more complex.
For this reason, CPLDs and FPGAs instead use elementary components—PLAs themselves, or
look up tables—as building blocks, and glue them with a flexible interconnection network.
Then, programming one cell corresponds to identifying a cluster of gates in the boolean function
representation (Figure 4.1b). Introducing this additional level is a winning architectural choice
in terms of both area and delay.

An orthogonal step was the introduction of higher granularity cells (Figure 4.1c). Fine
grain architectures provide high flexibility, but also high inefficiency if input applications can
be expressed at a level coarser than boolean (e.g. as 32-bit arithmetic operations). Coarse Grain
Reconfigurable Arrays provide larger elementary blocks that can implement such applications

27

28 4.1 Introduction

more efficiently, without undergoing gate-level mapping.
A variety of CGRA architectures exist (Chapter 3 proposes a survey of the field), but the

process of mapping applications to current CGRAs is usually not very sophisticated: a single
node in the application intermediate representation gets mapped onto a single cell in the array
(again, 1-to-1 mapping). Instead, the architecture described in this chapter (Figure 4.1d)
employs an array of cells consisting of a group of ALUs with customizable capabilities. We
consider this the equivalent of the evolution from single-gate cells to LUT-based ones observed
in the fine grain domain.

This complex, coarse grained cell is termed RAC (Reconfigurable ALU Cluster), and the
architecture that embeds it EGRA (Expression Grained Reconfigurable Array). The first idea
explored in this paper is therefore a mesh of RACs, as shown in Figure 4.1d. This is described
and evaluated in Section 4.3.

As a second step we consider the EGRA at the architecture level and focus our attention
on the mesh. Again we make a parallel with historical background through Figure 4.2. Re-
configurable architectures’ design evolved at the mesh level also, as FPGA meshes changed
from a homogenous sea of logic elements (as in Figure 4.2a) to complex heterogenous arrays,
embedding dedicated hardwired blocks for memory storage and for specific computations (as
in Figure 4.2b). The presence of dedicated memory and computational blocks boost FPGAs
performance for certain classes of applications, like digital signal processing. Heterogeneity,
together with technology scaling, has been instrumental in expanding FPGA application fields
form simple implementations of custom peripherals to whole systems on a programmable chip.

Moreover, including local memory elements into custom functional units has been shown to
be beneficial by previous studies on automatic identification of instruction-set extensions (Bis-
was et al. [2006]). Starting from these assumptions, we improve on the homogeneus EGRA
instance studied in Section 4.3 and represented in Figure 4.2d, investigating the benefits of
integrated storage and multiplication units inside the EGRA (Figure 4.2e). This is studied and
evaluated in Section 4.4.

Heterogeneity indeed introduces non-obvious benefits in the coarse grained scenario: if
a reconfigurable mesh is able to execute all operations in a loop (memory loads, arithmetic
calculations, and memory stores) it is possible to go beyond the customizable processor model,
and to offload execution control to the accelerator in order to aggressively pipeline the loop,
an execution paradigm first proposed by Mei et al. [2002]. Therefore, still in Section 4.4, we
outline how EGRA instances can efficiently support the execution of modulo-scheduled loops.

As a third step we explore memory interfaces. Local memory can be interfaced in a variety
of configurations, and different solutions have been proposed in CGRA research project as well
as commercial FPGAs, sometimes with different solutions coexisting on the same architecture
(as in Figure 4.2c). We make the same step in EGRA evolution (Figure 4.2f) and study the
EGRA memory interface in Section 4.5.

The three studies carried out in this chapter (cell level, heterogeneus architecture level, and
heterogeneous memory interface level) have in common a strong focus on design space explo-
ration. In order to understand the tradeoffs involved at the three design levels we don’t propose
a single array implementation that are solely the result of the designer’s expertise; rather, the
EGRA enables a systematic and comparative study, by virtue of it being a template from which
a number of architectural instances can be derived—either generic, or tailored to implement
the computational kernels of a particular benchmark. The case studies presented through-
out the chapter use this approach to show how scratchpad memories, arithmetic clusters and
multipliers offer together enough flexibility to implement a wide variety of kernels.

29 4.1 Introduction

1 to 1 mapping many to 1 mapping

fi
n

e
 g

ra
in

c
o

a
rs

e
 g

ra
in

PLA FPGA

CGRA EGRA

a) b)

c) d)

A

B

B

C

D

F

E

A

B C DA

F

E

A B

LUT

B C D

A

E F

32-bit ALU

B

A

B A

E C D

F

A B

Cluster

of ALUs

Gate

Figure 4.1. Parallel between the evolution of fine grained architectures’ cells from simple
gates to FPGAs’ LUTs (a and b), and the evolution of CGRAs’ cells from single ALUs to RACs,
proposed here (c and d).

To sum up, in this chapter a new architecture, the EGRA, is introduced; its design is in-
vestigated at the cell, array, and memory interface level through evaluation and comparison of
several different instances of the template. Ultimately, this work can then be seen as an explo-
rative step towards the design of an efficient, compact accelerator, that can be reconfigured to
suit a wide range of applications.

Presented contributions are:

• A new design for the combinational part of coarse grain reconfigurable arrays is en-
visioned. The Reconfigurable ALU Cluster, the complex cell at the heart the EGRA’s
arithmetic, supports efficient computation of entire subexpressions, as opposed to sin-
gle operations. In addition, RACs can generate and evaluate branch conditions and be
connected either in a combinational or a sequential mode.

30 4.1 Introduction

(Section 4.3)

fi
n

e
 g

ra
in

a)

LUT

homogenous cells

b)

heterogenous cells

RAC MEM

MULT

LUT MEM MULT

c)

heterogenous mems

LUT
BIG_MEM

MULT
MEM

c
o

a
rs

e
 g

ra
in MEM

MULT

BIG_MEM

f)e)d)

RAC RAC

RAC RAC RAC

RAC RAC RAC

RAC RAC RAC
RAC RAC RAC

RAC RAC

RAC RAC

RAC RAC

RAC RAC

(Section 4.4) (Section 4.5)

Figure 4.2. Parallel between the evolution of fine grained architectures’ meshes from homoge-
nous to heterogenous (a, b and c), and the evolution of CGRAs’ meshes to the EGRA proposed
here (d, e and f).

• A template architecture for heterogeneous CGRA design is described, accommodating
different types of computational element and local storage of data, and able to execute
modulo scheduled computational kernels. EGRA instances can be derived to perform dif-
ferent design space explorations: it is applied here at three different level, to investigate
clustered computational cells, heterogeneous meshes and memory interfaces.

The remainder of this chapter is structured as follows. Section 4.2 relates the presented
content with related works; Section 4.3 details the structure of the EGRA’s RAC cell and
presents synthesis results for different instances of the architecture; Section 4.4 introduces
the heterogeneous array, describing the different types of cells employed and how they operate
to execute pipelined computational kernels; Section 4.5 explores different interfaces for local
storage of data, giving trade-offs between complexity of the memory structure and achieved
speed-up of applications.

31 4.2 Related work

4.2 Related work

In the past years, several CGRAs have been proposed (Hartenstein [2001]). The definition is
broad, and includes designs that differ widely even in the very “coarseness” of the cell. For
example, the cell will usually implement a single execution stage, but may also include an
entire execution unit (Rapid, Fisher et al. [2001]) or can even be a general purpose processor
(RAW, Waingold et al. [1997]).

The work that most resembles the proposed RAC structure is probably the Flexible Compu-
tational Component proposed by Galanis et al. [2006] which, while targeted more specifically
to DSP kernels, is similar to the RAC in size and set of allowed operations. However, the
authors do not present an exploration methodology to explain quantitively their choices.

ADRES (Mei et al. [2002], Mei et al. [2004]) also features a complex VLIW cell. Even
though it lacks the ability to perform multi-stage computations within a cell, it features strong
instruction-level parallelism capabilities that can be exploited by the compiler through software
pipelining.

The architectural choices that drove the above-mentioned designs are usually the result of
the designer’s expertise, more than of systematic, quantitative exploration of the design space.
Therefore, the resulting designs have a fixed structure. Even when some flexibility is present
(as in ADRES or Rapid), results for exploration are presented only for high-level cycle-base ex-
ploration, or not given at all. The work of Bouwens et al. [2007] is somehow an exception as it
demonstrates design space exploration at the synthesis level for the ADRES architecture. How-
ever, it focuses on CGRA high level topology, without investigating the structure and coarseness
of the processing elements as done here.

The RAC cell design is inspired by the Configurable Computation Accelerator structure (CCA)
proposed by Clark et al. [2004]. The CCA is used as a stand-alone accelerator, while RACs
are replicated in a mesh structure. Also, RACs introduce several other novel aspects, such
as the ability to build combinational functions from multiple expressions and support for if-
conversion. For the latter, we use a peculiar “flag” design that is inspired by the program
status word of a microprocessor and more powerful than the carry chains available in many
reconfigurable architectures (e.g.: Stretch, Rupp [2003]).

Most CGRAs (as, for example, Morphosys introduced by Lee et al. [2000] and MORA by
Lanuzza et al. [2007]) present a homogeneous structure, with identical processing elements
replicated in a planar arrangement; nonetheless some works did investigate heterogeneous
CGRAs: Mei et al. [2005] present some results over multipliers placement in the ADRES archi-
tecture, while PACT-XPP (Baumgarte et al. [2003]) employs two types of cells with different
storage and computation capabilities. EGRA instances differs from the above-mentioned ar-
chitectures by decoupling groups of ALU operations from multiplications and by separately
supporting computation and memory on different cells of the reconfigurable mesh. The ap-
proach leads to a better equalization of critical paths over different elements and to a flexible
design space.

A common trait of reconfigurable architectures is the presence of local storage connected to
logic or computational elements by high-bandwidth lines. StratixII FPGAs from Altera embed
different sized memories to support different requirements, while in the coarse grained domain
a wide range of solutions have been proposed: the memory component can be a small general-
purpose scratchpad, as in DREAM (Campi et al. [2007]) and ADRES (Mei et al. [2004]), or a
buffer interface sitting between the computational cells and the system RAM, as in MorphoSys,
which also implements a small register file local to every cell.

32 4.3 RAC architecture

The EGRA template differs from DREAM in that scratchpad memories can be scattered
around the array, in the form of specialized memory cells. By giving the possibility to distribute
the memories on the array, their I/O requirements (number of ports) can be tightly limited.
Furthermore, the array interconnect can be reused as a data/address bus, removing the need
for a separate connection between the computational and storage elements of the array.

The proposed EGRA template can store values at three hierarchical levels: inside the cells,
in specialized memory cells and in a multi-ported scratchpad outside the mesh; this flexibility
allows for data to be stored and retrieved efficiently and for novel comparative studies, like the
one presented in Section 4.5, to be performed.

Effective pipelining of the loop, enabling different parts of multiple iterations to execute
simultaneously, is key to extract performance from CGRAs. EGRA instances explicitly support
modulo scheduling (Rau [1996]), a software pipelining technique apt at coping with resource
constraints, such as the number of I/O ports on a scratchpad memory or the number of mul-
tipliers in the mesh, which has proven well suited in the CGRA domain (see, for instance,
DRESC, Mei et al. [2002]). The contribution of this thesis in advancing the State of the Art in
the field of application mapping is illustrated in Chapter 5.

4.3 RAC architecture

This section presents the investigation of the EGRA at the cell level: it describes the RAC, its
function and the exploration and evaluation of various RAC instances.

4.3.1 Cell architecture

The RAC datapath consists of a multiplicity of ALUs, with possibly heterogeneous arithmetic
and logic capabilities, and can support efficient computation of entire subexpressions, as op-
posed to single operations. As mentioned in Section 4.2, it is inspired by the Configurable
Computation Accelerator (CCA) proposed by Clark et al. [2004]. However, this structure
is used as a replicable element within a reconfigurable array architecture; this has important
consequences. First of all, it opens up the possibility of creating combinational structures (in
Clark’s design, a CCA has a fixed multi-cycle latency) chaining multiple RACs; this favours de-
signs featuring a smaller number of rows. Furthermore, it removes the limit on the number of
inputs and outputs, because a pipelining scheme (along the lines of the one proposed by Pozzi
and Ienne [2005]) can be used to move data in and out of local memories connected to or
embedded in the array; this allows scheduling of more complex applications and consequently
higher gains.

ALUs are organized into rows (see Figure 4.3) connected by switchboxes. It is important to
have flexible routing between ALUs on neighbouring rows, because subexpressions extracted
from typical embedded applications often have complex connections that are not captured
well by simpler topologies. This organization allows the usage of a simple array topology (as
described in Section 4.4) without incurring high penalties on place-and-route.

The inputs of the RAC (see again Figure 4.3) are taken from the neighbouring cells’ outputs,
from the outputs of the cell itself, or (optionally) from a set of constants; the inputs of the
ALUs in subsequent rows are routed from the outputs of the previous rows or again from the
constants.

33 4.3 RAC architecture

....................................

output a output b

Constants

...

DATA SWITCHBOX FLAGS SWITCHBOX

DATA SWITCHBOX FLAGS SWITCHBOX

[2,1] [2,2] [2,M]
...

[K,1] [K,2]

DATA SWITCHBOX

From
neighbor cells

Constants
(from context)

...

From bus
...

From output

DATA SWITCHBOX

[1,1] [1,2] [1,3] [1,N]
...

Constants

...

Figure 4.3. Datapath of the Reconfigurable ALU Cluster.

The number of rows, the number of ALUs in each row and the functionality of the ALUs is
flexible and can be customized by the designer. In fact, they constitute the RAC exploration level
explained in Section 4.3.2. The number and size of the constants is also defined at exploration
time. If the datapath is wider than the constants, their value is sign- or zero- extended.

Being a reconfigurable design, the processing element includes not only a datapath, but
also a context memory, which stores a number of possible configuration words and can be
programmed according to the desired functionality of the cell at configuration time. Configu-
rations controls the switch-boxes routing data through each RAC and between them, operations
performed into datapath elements and values of embedded constants.

As in other CGRAs, the basic processing element of our cell design is an ALU. Unlike in
the fine grain domain, it is not possible to define a generic component that can implement
arbitrary functions, as is the case of the PLD or the LUT. Therefore, expressions are realized
in our architecture by clustering more than one elementary unit (ALU) in one cell. Four types
of ALUs can be instantiated. The simplest one is able to perform bitwise logic operations
only; the other three add respectively a barrel shifter (with support for shifts and rotates), an
adder/subtractor, and both the shifter and adder. The list of operations in a full-featured unit
is in Table 4.1.

Each operation can generate three 1-bit flags: a zero flag, an unsigned ≥ flag (equivalent to
the carry flag of general-purpose processors), and a signed < flag (equivalent to N ⊕ V , where

34 4.3 RAC architecture

Table 4.1. List of supported opcodes

data opcodes flag opcodes
out = A & (B⊕ f lagsex t) 0
out = A | (B⊕ f lagsex t) 1
out = A⊕ (B⊕ f lagsex t) =
out = f lag ? A : B 6=
out = A+ B+ f lagzex t signed <
out = A+ B+ f lagzex t signed ≥
out = A� B unsigned <
out = A�rot B unsigned ≥
out = A�ari th B
out = A�logical B
out = A�rot B

A

B

op1 + op2 + flag

flag ? op1 : op2

1

GEU(A)

BUS input 1

dataout(A)

BUS input 2

constant 0

node opcode flag sourceop1 source op2 source

A

flag op1

op1 op2

B

X Y

0

op2

Figure 4.4. Programming a RAC. This example shows how two ALUs can be connected to
compute an unsigned subtract with saturation, (X >= Y) ? X - Y : 0. The node computing
the subtraction also performs the comparison. The multiplexer node B uses both the data
output and the unsigned ≥ flag of the subtraction node A.

N and V are the sign and overflow flags). Other conditions can be tested by complementing
the flag, and/or exchanging the operands of the comparison. Dually, each operation has three
operands, two being 32-bit values and the third being a 1-bit value that will be sign- or zero-
extended depending on the ALU opcode.

The third operand can be hardcoded to zero or one, or it can be taken from another ALU’s
output flags, possibly complemented. This gives a total of eight possible flag opcodes, also listed
in Table 4.1. Figure 4.4 illustrates and example of how complex expressions can be supported
by RACs composing flag and arithmetic operations. A framework to automate expression map-
ping is presented in Bonzini et al. [2008].

35 4.3 RAC architecture

Table 4.2. Datapath area and delay for different RAC configurations

of
ALU type

ALUs per row
rows 1 2 3

area (µm2) delay (ns) area (µm2) delay (ns) area (µm2) delay (ns)

1

log 7 141 0.45 15 001 0.51 28 926 0.55
log+sh 11 695 0.62 30 627 0.66 48 029 0.71

log+add 9 125 0.63 22 802 0.75 35 124 0.85
log+sh+add 12 438 0.71 35 105 0.76 53 837 0.86

3

log 10 586 0.75 30 971 0.98 57 384 1.06
log+sh 21 740 1.29 66 490 1.51 113 648 1.66

log+add 14 926 1.54 44 054 1.88 71 716 2.18
log+sh+add 27 672 1.57 77 472 1.89 125 552 2.32

5

log 12 458 1.05 43 793 1.49 86 560 1.68
log+sh 32 455 1.93 100 165 2.43 168 760 2.68

log+add 20 186 2.13 65 134 2.67 114 034 2.97
log+sh+add 40 583 2.37 123 294 2.78 202 633 3.18

Flags enable efficient implementation of if-conversion—important when automatically map-
ping software representations onto hardware. In fact, ALUs can act as multiplexers, choosing
one of the two 32-bit inputs based on another ALU’s flags. This way, cells can evaluate both
arms of a conditional, and choose between the two via a multiplexer.

4.3.2 Architectural exploration

Choosing the configurable architectural features—RAC granularity, number of constants in a
RAC, number of contexts in the array to mention a few—is not at all an obvious task and should
be guided by performance evaluation. Therefore we define an exploration level where a number
of cell and array features can be automatically varied and evaluated in different experiments.

Design-space exploration was made feasible by the availability of a compilation flow that
can speedily evaluate many different design choices, whose implementation is detailed in Bon-
zini et al. [2008]. Currently, this compilation flow is available for homogeneous arrays only,
such as the ones considered in this section. For the more complex, heterogeneous arrays consid-
ered in the next two sections, considerable manual effort was involved in the mapping process,
instead.

The flow automatically extracts graphs from frequently executed loops; graph nodes are
clustered into groups fitting a single RAC (these groups are the EGRA expressions), and placed
on the array by (optimistically) considering that no pass-through cell is needed on the critical
path. The structure of the RAC is defined in a machine description, shared by the hardware and
compilation flows.

In order to investigate area and delay figures of the RAC datapath, we synthesized different
versions using Synopsys Design Compiler and TSMC 90nm front-end libraries. This has been
instrumental in achieving two goals: on one hand, collected data is used by the compiler to
compute the performance of Instruction Set Extensions (ISEs) mapped onto the array; addi-
tionally, it gives insights on the efficiency of various EGRA configurations as a digital circuit,
both in term of occupied silicon area and clock speed.

36 4.3 RAC architecture

Table 4.2 gives area and delay results for some of the different datapath configurations
explored. All numbers refer to a datapath without embedded constants and with an equal
number of ALUs on every row—neither of these, however, are actual limitations of the RAC
template.

4.3.3 Experimental Results

Evaluation of RAC designs. In order to evaluate different RAC designs, DFGs were gathered
from four MiBench benchmarks (Guthaus et al. [2001]) using a GCC-based compiler front-end.
The graphs were then automatically tested with 872 different RAC configurations, employing
RACs of one to three rows; the largest one had 5 ALUs on the first row, 4 ALUs on the second,
and 2 on the third. The register file bandwidth is limited to 2 reads and 1 write; higher
bandwidth values would yield higher speedups.

A single kernel is identified by the compiler in the case of the two audio benchmarks
(rawcaudio and rawdaudio), performing respectively ADPCM encoding and decoding, while
the two crypto benchmarks des and sha use four.

Estimated clock cycle savings are plotted in Figures 4.5 to 4.8. Speedup is calculated as
follows:

speedup =
tot c ycl

tot c ycl −
∑

all ISEs(c yclsw − c yclhw) · f req

where freq is the number of times the ISE is executed, c yclhw is the latency of the ISE on the
EGRA, and cyclsw is the cost of executing the ISE without custom instructions (both measured
in clock cycles). Because cyclhw is integer and bounded by cyclsw, the plotted speedups can take
only a few discrete values, as observed in the figures.

Obtained speedup results show that multi-ALU cells outperform single-ALU cells found in
more traditional CGRA designs. In fact, cells consisting of only one row correspond to the
low-area points in the plottings, and have barely noticeable speedups.

Figure 4.9 shows four RAC designs. The first two represent the configuration of the maximum-
speedup Pareto point, i.e. achieves the maximum speedup at minimal area cost, for each of the
audio benchmarks; the third achieves maximum speedup on both crypto benchmarks; the last
finally performs well on all benchmarks but costs noticeably more area than specialized cells.
It is important to note that trivially merging the features of the cells in Figures 4.9a and 4.9b
would use more area than Figure 4.9d, without improving performance.

All three solutions are 2-row RACs. It is interesting that, despite the apparent similarity
between the design of the RAC and the CCA, they are much smaller than the examples of
Configurable Computation Accelerator presented by Clark et al. [2004]. The reason is that
RACs can be connected to form combinational structures. This features puts smaller cells to an
advantage, since they will usually have higher utilization rates without sacrificing speed.

Evaluation of EGRA versus CGRA. To further investigate RACs’ architectures, EGRA meshes
were compared to a more traditional CGRA; i.e., the use of Clusters of ALUs as array cells, as
opposed to using a single ALU. The latter solution has been proposed by the vast majority
of CGRA designs like, among others, Morphosys (Lee et al. [2000]) and ADRES (Mei et al.
[2004]).

We mapped computational kernels from rawdaudio, rawcaudio and sha benchmarks. For
each kernel, three experimental settings were considered: 1-ALU meshes, meshes composed
by best performing RACs from the given kernel and meshes composed by the “generic" RAC

37 4.3 RAC architecture

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0 0.5 1 1.5 2

s
p
e
e
d
u
p

area (mm
2
)

Figure 4.5. Speedups obtained by 872 RACconfigurations on rawcaudio

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 0 0.5 1 1.5 2

s
p
e
e
d
u
p

area (mm
2
)

Figure 4.6. Speedups obtained by 872 RACconfigurations on rawdaudio

38 4.3 RAC architecture

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 0 0.5 1 1.5 2

s
p
e
e
d
u
p

area (mm
2
)

Figure 4.7. Speedups obtained by 872 RACconfigurations on des

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 0 0.2 0.4 0.6

s
p
e
e
d
u
p

area (mm
2
)

Figure 4.8. Speedups obtained by 872 RACconfigurations on sha

39 4.4 EGRA array architecture

a) b) d)

logic only logic + shift logic + add logic + shift + add

c)

Figure 4.9. RAC design of the maximum-speedup Pareto point configuration, for a) rawdaudio;
b)rawcaudio; c) crypto benchmarks (des, sha); d) all four benchmarks.

1

5

2

3

8

9 12

11

4

6 7

10

13

1

2

3

4

5

6

8

7

10

9

12

11

14

21

13

16

15

19

20

17

18

22

24

25232627

a) b)

Figure 4.10. Manually derived spatial place-and-route of rawdaudio, for two cell designs. a)
RACs as in Figure 4.9a. b) Each RAC only has one ALU. Straight arrows represent nearest
neighbour connections, angled arrows refer to bus lines.

described in Figure 4.9d; this last case being considered to avoid over-tuning of the cell de-
sign. Figure 4.10 gives an example of resulting mappings in the rawdaudio case using the best
performing RAC (a) and a single ALU (b).

As shown in Tables 4.3 through 4.5, RACs leads to faster execution on all three computa-
tional kernels, even when a generic RAC structure is considered; meshes composed by RACs
achieved a speedup of up to 26% compared to single-ALU ones. Area penalty is not huge, and
in some cases, as in rawcaudio, complex cells even lead to a smaller implementation, due to
the smaller number of cells needed to map the kernel (as each cell is able to execute more than
one operation).

4.4 EGRA array architecture

This section presents the investigation of the EGRA at the array level: it describes the EGRA
heterogeneous mesh and architecture, the coexistence of various types of cells (RACs, multipli-
ers, memories) and their performance, and the ability to perform modulo scheduling.

The EGRA structure is organized as a mesh of cells of three different types: RACs, memories

40 4.4 EGRA array architecture

Table 4.3. Performance of placed and routed rawdaudio kernel on EGRA instances

rawdaudio
RACa generic RACb ALU

Cell area (µm2) 45 943 64 585 21 860
Cell delay (ns) 1.36 1.64 0.93
Array size 4x4 4x3 6x5
Array area (µm2) 735 088 775 020 655 800
Iteration time (ns) 10.88 11.48 12.09

aas in Figure 4.9a
bas in Figure 4.9d

Table 4.4. Performance of placed and routed rawcaudio kernel on EGRA instances

rawcaudio
RACa generic RACb ALU

Cell area (µm2) 46 129 64 585 21 860
Cell delay (ns) 1.35 1.64 0.93
Array size 5x4 5x4 9x7
Array area (µm2) 922 580 1 291 700 1 377 180
Iteration time (ns) 16.20 19.68 20.46

aas in Figure 4.9b
bas in Figure 4.9d

Table 4.5. Performance of placed and routed sha kernel on EGRA instances

shaa

RACb generic RACc ALU

Cell area (µm2) 47096 64 585 21 860
Cell delay (ns) 1.46 1.64 0.93
Array size 3x2 3x2 4x4
Array area (µm2) 282 576 387 510 349 760
Iteration time (ns) 7.30 8.2 8.37

afirst kernel only
bas in Figure 4.9c
cas in Figure 4.9d

41 4.4 EGRA array architecture

ALU

cluster

 Mem
ALU

cluster

ALU

cluster

ALU

cluster

 Mem Mem Mem

ALU

cluster

 Mem
ALU

cluster

ALU

cluster

ALU

cluster

ALU

cluster

ALU

cluster

 Mem
ALU

cluster

 Mem

 Mult Mult

 Mult Mult

ALU

cluster

ALU

cluster

ALU

cluster

ALU

cluster

Figure 4.11. EGRA instance example: a 5x5 mesh with 15 RACs, 6 memory cells and 4
multipliers.

and multipliers (see Figure 4.11). The number and placement of cells for each type is part
of the architecture parameter space. As such, it is decided at design time and can vary for
different instances of the EGRA. Cells are connected using both nearest-neighbour connections
and horizontal-vertical buses, with one such bus per column and row of the array. External to
the mesh, a control unit orchestrates execution over the EGRA and a multi-ported scratchpad
memory can be instantiated (see Section 4.5).

Every EGRA cell present an I/O interface, identical for all cell types, a context memory, and
a core, that implements the specific functionality of the cell.

The interface part takes care of the communications between cells, and between each cell
and the control unit. It is in charge of connecting the datapath with the outside of the cell
by sending inputs to the datapath, providing values from the registers and the datapath to the
neighbours, and placing them on the row-column buses if requested.

The context memory is where cells store their configuration; depending of the cell type
(RAC, memory, multiplier) the word size and format of the context memory will vary. For ex-
ample, multipliers have a fixed-function unit, and consequently the configuration word mostly
deals with the routing of data for the interface part.

Each cell can store several configuration words, so that the entire array can hold several
contexts; the number of contexts is also part of the architectural specification that is given at
design time. Each context is composed of a configuration word per cell; the control unit can

42 4.4 EGRA array architecture

1

i

+

mux

+

bool

NOT

LD

*

NOP

>>

+

acc

A

B

C

D

E

F

A

B

C B A

C D B

Initiation
Interval

C

ALU cluster

Multiplier

Memory

a)

b)

c)

Prologue

Steady state

Epilogue

E C A B

F C D B

E C B

F C D

E

F

lag

16

EB

A D F

Figure 4.12. autcor loop kernel DFG: a) clustering; b) scheduling; c) place and route.

activate a different context on every clock cycle.
The rest of the cell is the actual implementation of the datapath and/or storage. For mem-

ory cores, this also include an address generation unit, so that multiple arrays can be mapped
in the same memory cell in different areas; different data widths are supported (from 8- to 32-
bit accesses) and are selected at reconfiguration time, while memory size is instead specified
at design time.

4.4.1 Control unit

The control unit is explicitly designed to support modulo scheduling, a software pipelining
technique that increases inter-iteration parallelism and cell utilization by allowing different
iterations of the loop to partially overlap (Rau [1996]).

Modulo-scheduled loops present a prologue part, an iterated steady state part and an epi-
logue part. The host processor communicates the desired number of iterations to the accelera-
tor and the length of prologue, steady state and epilogue. It also dictates if some scalar inputs
or outputs, global to the kernel, have to be connected to array cells.

The control unit program counter is incremented on every clock cycle until it completes the
prologue and the first iteration of the steady state, then it goes back at the start of the steady
state, looping through it for the requested number of iterations. Execution is terminated with

43 4.4 EGRA array architecture

Table 4.6. Characteristics of EGRAs optimized for different benchmarks

Benchmark mesh size cells typea ALU cluster typeb memory (bits)

aifirf 3x3 6 C 1 MU 2 M 3-AL 2-SL 1 024 x 2
autcor 2x3 4 C 1 MU 1 M 3-ASL 2-AL 128
fbital 3x3 6 C 3 M 3-AL 2-ASL 4 096 x 3
fft 5x3 9 C 4 MU 2 M 2-AL 2-ASL 4 096 x 2
life 4x4 15 C 1 M 3-ASL 2-AL 4 096
rawdaudio 5x3 14 C 1 M 2-ASL 1-L 2 048
viterb 5x3 9 C 6 M 3-ASL 2-ASL 512 x 6
generic 5x5 15 C 4 MU 6 M 3-ASL 2-ASL 4 096 x 6

aC: ALU clusters; MU: multipliers; M: scratchpad memories
bALUs in each row and supported operations. A: arithmetic; S: shift-rotate; L: bitwise logical. For example, 2-AL

represent a row with 2 ALUs supporting arithmetic and logic operations, but no shifts/rotates.

a single activation of the epilogue.

On every clock cycle, generated data must be exchanged between the processing elements
and loaded or stored in memory resources. To this end, the control unit distributes the id
of the context to be executed to the cells, orchestrating execution. As the control unit limit
itself to activate different control words inside the tiles, it can be made agnostic their internal
implementation and architectural parameters, leading to a small and efficient design.

Some conditions must be verified for a loop to be mapped on the array, the most stringent
of them is that the number of iterations must be known before the loop starts; this condition
is usually met for kernels in the embedded systems domain. Loops must also employ only
operations supported by the instance elements (for example, no multiplications are allowed if
no multipliers are instantiated). Finally, resources must not be overused; this last constraint is
in fact less hard then it seems, as memory footprint can be lowered by software transformations
like loop tiling, and complex loops can be partitioned in simpler ones, employing a technique
such as the one described in Chapter 5.

4.4.2 EGRA operations

The EGRA can be set in two operational modes: DMA mode and execution mode. DMA mode
is used to transfer data in bursts to the EGRA, and is used both to program the cells (includ-
ing initial content of the cells’ output registers) and to read/write from scratchpad memories.
Scratchpad memory transfers can happen either around a loop, or at program initialization if
the scratchpads are used to store read-only look-up tables. In execution mode, the control unit
orchestrates the data flow between the cells as explained earlier in this section.

Chapter 6 describes how EGRA instances con be integrated in a computing systems. Most
extensible processors, like Altera NiosII or Tensilica Xtensa, support variable-latency custom
instructions; in this case, after execution mode is triggered by invoking a special instruction on
the host processor, the host processor can stall until the loop is completed and the EGRA asserts
a "done" signal. By embedding input and output vectors entirely in scratchpad memories, a
kernel can be run with a single special instruction, possibly surrounded by DMA transfers.

44 4.4 EGRA array architecture

Table 4.7. Synthesized EGRA instances area and critical path

Benchmark area (µm2) crit. path (ns)

aifirf 600 454 2.06
autcor 648 734 2.03
fbital 974 547 1.89
fft 1 136 287 2.15
life 1 332 020 1.71
rawdaudio 750 951 1.59
viterb 1 018 894 1.98
generic 2 699 577 2.16

Table 4.8. Initiation Interval (II) and parallelism achieved by loop kernels executing on the
EGRA

Benchmark II avg. active cells/cycle avg. ops/cycle

rawdaudio 15 2.6 5.2
fft 3 5 8
life 9 8.25 16.25
fbital 3 3.33 5
autcor 2 4 5.5
aifirf 2 4.5 7.5
viterb 3 5.6 10

4.4.3 Experimental results

To analyze the performance of the architecture template mesh, the parametric RTL design for
the cells and control unit was implemented and validated. Various EGRA instances performance
figures were retrieved using Synopsys Design Compiler to synthesize them on TSMC 90nm
front-end cell libraries.

Loop kernels from seven benchmarks were considered: aifirf (fir filter), autcor (autocorre-
lation calculation), fbital (bit allocation alogorithm), viterb (convolutional packet decoding),
fft (Fourier transform) from the EEMBC automotive and telecommunications suites (Halfhill
[2000]), rawdaudio (audio decode) from MiBench (Guthaus et al. [2001]), life (game of life)
from MIT bitwise benchmarks (Bitwise [1999]).

Choosen kernels were simple enough to be scheduled by hand, and yet illustrative of ap-
plications from different fields and with different memory and computational requirements.
For example, fft requires the highest number of multipliers, viterb makes good use of multiple
memories, while rawdaudio and life include mostly arithmetic operations.

For each benchmark, a custom-tailored EGRA was designed; Table 4.6 shows the character-
istics of each of these specific architectures: the number of cells in the array, their type (ALU
clusters, multipliers or memories), the type of ALU cluster used, and the total amount of mem-
ory present in the array. Table 4.7 reports total area and critical path of the different designs
after synthesis. These architectures were instrumental in validating the EGRA model and to
obtain initial indications on the EGRA capabilities.

45 4.4 EGRA array architecture

1

5

10

15

20

25

aifirf autcor fbital fft life rawdaudio viterb

s
p

e
e

d
u

p

specific
generic

Figure 4.13. Speedup obtained on custom-tailored and generic EGRA instances executing
benchmark kernels.

The last row of Table 4.6 and Table 4.7 show the characteristics of a generic EGRA mesh,
i.e., an array that was designed so that all benchmarks kernels analysed could be mapped onto
it. Such array configuration is actually the one shown in Figure 4.11 and consists in a 5x5
mesh, with an area of 2.7mm2.

To map kernels into specific and generic architectures, their most intensive loops were ex-
tracted; these represented 80% to 99% of the execution time of the whole application in the
test cases considered. Arithmetic-logic operations of kernels were then grouped so that ev-
ery group could be mapped onto one ALU cluster cell, and modulo scheduling was performed
(Figure 4.12). While done manually in this study, algorithms exist for these steps to be auto-
mated (e.g.: Mei et al. [2002] and the one illustrated in Chapter 5).

The effectiveness of the acceleration is heavily dependent on the degree of parallelism of
the benchmarks. This in turn depends on the presence of dependencies in the loop, as well
as on the distribution of the different operation types. The amount of parallelism obtained is
shown by the average number of cells or operations that are active at any clock cycle. This
data, and the initiation interval (II) obtained in each mapping, is summarized in Table 4.8.

To obtain speedups of EGRA-accelerated execution, as opposed to microprocessor-only,
each benchmark was run through SimpleScalar/ARM, tuned to simulate an XScale processor
with a 624 MHz clock1. The number of cycles needed to run the kernels on the XScale was then
compared with those needed on various EGRA architectures. Figure 4.13 shows the speedup
obtained by running benchmarks on a processor powered either with the application-specific
EGRAs of Table 4.6 (labeled specific) or with the generic one of Figure 4.11.

As it can be observed, speedups as high as 21x can be obtained in the best case. Speedups on
the generic architectures are marginally lower for benchmarks that do not need multiplications,
due to the slightly bigger critical path associated with multiplier cells. A strategy to leverage

1624 MHz is the maximum working frequency of the XScale PXA310 processor, also fabricated in 90nm technology

46 4.5 EGRA memory interface

1

5

10

specific
aifirf

generic specific
autcor

generic specific
fbital

generic

s
p
e
e
d
u
p

EGRA
1ALU

 no mem

Figure 4.14. Comparison of speedups obtained by EGRAs with different characteristics: fully-
featured instances, single-ALU instances and EGRAs without embedded memories.

differences in critical paths to ease routing by combinatorially chaining cells is presented in
Chapter 5.

For three specific kernels, fbital, autcor and aifirf, we additionally compared the architec-
tures of Table 4.6 with limited ones, in order to assess the advantage provided by the character-
istics of the EGRA. In particular, we substituted ALU clusters with single-ALU cells, and avoided
the usage of memory cells. The former shows the advantages of evaluating whole expressions
in a cell as opposed to single operations; the latter causes all communication to go through the
host processor and assesses the benefit of embedding memory in the array.

Results, plotted in Figure 4.14, show that both ALU clusters and scratchpad memories are
beneficial to increase speedups on benchmark applications. In the absence of those, the net
speedup is, in some cases, minimal. On the other hand, the two features are substantially
orthogonal. Clustered cells have the advantage of allowing complex operations to be exe-
cuted in a single clock cycle; complementarily, memory-capable EGRAs fare better compared
to memory-less templates thanks to the parallelization of load/store operations on different
scratchpads. Therefore, depending on the benchmark, either or both features can improve the
speedups obtained by the EGRA. This is true either when kernels are mapped to custom-tailored
instances or to the generic one represented in Figure 4.11.

4.5 EGRA memory interface

This section presents the investigation of the EGRA at the memory interface level: it describes
the various interfaces that can be implemented by the EGRA template, and their exploration
and performance.

47 4.5 EGRA memory interface

4.5.1 Memory architecture

As discussed in Section 4.2, an aspect of paramount importance in designing an efficient accel-
erator is the implementation of its storage requirements. The EGRA template enables explo-
ration of different solutions: a data register is provided at the output of computational cells,
memory cells can be scattered around the array (an approach similar to the PACT-XPP archi-
tecture, Baumgarte et al. [2003]), and a scratchpad memory can be instantiated outside the
reconfigurable mesh (as has been proposed by DREAM, Campi et al. [2007]). Memory solu-
tions can be freely mixed to better suite requirements, and comparative studies can be carried
out with different loads.

Different memory instantiations are better suited for different tasks, as registers of computa-
tional cells are usually employed to pipeline computation, while memory cells and the external
scratchpad can store input/output data array and intermediate results. Data can be either read-
only during execution, implementing look-up table or substitution boxes, or it can be writable
by computational elements as directed by configuration words, which drives the write-enable
and read-enable signals during loop executions. Data can be exchanged from and to the host
system around execution via DMA transfers.

Both memory cells and the scratchpad are configurable in size and supported addressing
modes (from 8 to 32 bits), and can store both signed and unsigned values. The scratchpad can
have between one and four read-write ports. Multiple arrays can be placed in a single memory
block by providing base addresses in the memory control word. This strategy streamlines
the interface towards the computational cells, as only the index of the required data is to be
presented to the memory, which transforms it according to its configuration to obtain the local
memory address. At every clock cycle, sources for array index and data inputs, as well as
addressing mode and base address, can be changed as needed by the mapped application.

4.5.2 Architectural Exploration

To evaluate design choices on test cases, kernel mapping of the applications described in Sec-
tion 4.4.3 were further investigated. For each kernel, ad-hoc EGRA instances were designed,
presenting different memory structures: either memory cells scattered around the mesh, or a
single scratchpad with a number of read and write ports between one and four. The archi-
tectural choices, along with the data-flow graph dependencies of the kernels, determine the
II (Initiation Interval) achievable by modulo scheduling kernels iterations, as they limit the
number of loads and stores being performed in a single clock cycle. Table 4.9 summarizes the
number and type of employed cells, as well as resulting II of mapped computational kernels;
Table 4.10 shows resulting area and loop initiation time of the configurations, determined as
I I ∗ cri t ical_path.

Figures 4.15 and 4.16 plot the occupied silicon area of the instances and their performance,
expressed in time used to execute a kernel loop iteration, the latter being calculated by mul-
tiplying the maximum operational clock frequency and the loop II. The two graphs, therefore,
represent the costs and benefits of the architectural choices.

A number of insights can be derived by analyzing the results. The area cost of adding ports
depends on two factors: the area of the memory itself and that of the computational cells used
to provide the indexes to access memory locations. Memory area in turn is affected by memory
size and by the number of cells it is connected to, the second factor impacting the width of
multiplexers connecting data to and from the mesh. Port addition is, for example, particularly

48 4.5 EGRA memory interface

Table 4.9. Scratchpad and memory-cells based EGRA instances characteristics, tailored to
different benchmark kernels.

Benchmark Memory Mesh Kernel Initiation
arrangement structure Interval (II)

autcor

memory cells 4 C 1 MU 1 M 2
scratchpad - 1port 3 C 1 MU 2
scratchpad - 2ports 3 C 1 MU 1
scratchpad - 3ports 3 C 1 MU 1
scratchpad - 4ports 3 C 1 MU 1

fft

memory cells 9 C 4 MU 2 M 6
scratchpad - 1ports 5 C 4 MU 10
scratchpad - 2ports 5 C 4 MU 6
scratchpad - 3ports 5 C 4 MU 6
scratchpad - 4ports 5 C 4 MU 5

viterbi

memory cells 14 C 6 M 3
scratchpad - 1ports 12 C 6
scratchpad - 2ports 12 C 5
scratchpad - 3ports 12 C 4
scratchpad - 4ports 12 C 4

life

memory cells 14 C 2 M 9
scratchpad - 1ports 15 C 10
scratchpad - 2ports 20 C 5
scratchpad - 3ports 28 C 3
scratchpad - 4ports 32 C 3

aifirf

memory cells 6 C 1 MU 2 M 2
scratchpad - 1ports 5 C 1 MU 3
scratchpad - 2ports 5 C 1 MU 2
scratchpad - 3ports 5 C 1 MU 2
scratchpad - 4ports 5 C 1 MU 2

fbital

memory cells 6 C 3 M 3
scratchpad - 1ports 6 C 5
scratchpad - 2ports 6 C 3
scratchpad - 3ports 6 C 3
scratchpad - 4ports 6 C 3

rawdaudio

memory cells 14 C 1 M 15
scratchpad - 1ports 15 C 15
scratchpad - 2ports 15 C 15
scratchpad - 3ports 15 C 15
scratchpad - 4ports 15 C 15

histogram mem cells + 1port scratch 3 C 1 M 3

49 4.5 EGRA memory interface

Table 4.10. Achieved performance of scratchpad and memory-cells based EGRA instances
executing benchmark kernels.

Benchmark Memory Instance critical Loop initiation Instance
arrangement path delay (ns) time (ns) area (µm2)

autcor

memory cells 1.7 3.40 648 734
scratchpad - 1port 1.75 3.50 648 142
scratchpad - 2ports 1.75 1.75 701 170
scratchpad - 3ports 1.76 1.76 710 994
scratchpad - 4ports 1.81 1.81 962 802

fft

memory cells 2.15 12.90 1 136 287
scratchpad - 1ports 2.14 21.40 915 871
scratchpad - 2ports 1.98 11.88 930 067
scratchpad - 3ports 2.01 12.06 995 157
scratchpad - 4ports 2.12 10.60 1 360 855

viterbi

memory cells 1.98 5.94 1 018 894
scratchpad - 1ports 1.61 9.66 874 416
scratchpad - 2ports 1.75 8.75 1 172 240
scratchpad - 3ports 1.77 7.08 1 236 547
scratchpad - 4ports 1.79 7.16 1 299 307

life

memory cells 1.71 15.39 1 332 020
scratchpad - 1ports 1.72 17.20 1 240 715
scratchpad - 2ports 1.77 8.85 1 707 500
scratchpad - 3ports 1.79 5.37 2 383 406
scratchpad - 4ports 1.86 5.58 2 727 323

aifirf

memory cells 2.03 4.06 567 507
scratchpad - 1ports 2.06 6.18 492 584
scratchpad - 2ports 2.11 4.22 512 270
scratchpad - 3ports 2.17 4.34 539 797
scratchpad - 4ports 2.19 4.38 554 112

fbital

memory cells 1.83 5.49 974 547
scratchpad - 1ports 1.84 9.20 770 995
scratchpad - 2ports 1.84 5.52 826 374
scratchpad - 3ports 1.85 5.55 961 702
scratchpad - 4ports 1.87 5.61 1 060 623

rawdaudio

memory cells 1.59 23.85 750 951
scratchpad - 1ports 1.61 24.15 795 286
scratchpad - 2ports 1.62 24.30 824 635
scratchpad - 3ports 1.64 24.60 875 082
scratchpad - 4ports 1.65 24.75 888 178

histogram mem cells + 1port scratch 1.33 3.99 5 630 657

50 4.5 EGRA memory interface

1

2

3

autcor fft viterbi life aifirf rawdaudio fbital

a
re

a
 (

m
m

2
)

1 port
2 ports
3 ports
4 ports

mem-cells

Figure 4.15. Area occupation of EGRA instances used to execute the benchmark kernels.

10

20

30

40

50

autcor fft viterbi life aifirf rawdaudio fbital

ti
m

e
 (

n
s
)

1 port
2 ports
3 ports
4 ports

mem-cells

Figure 4.16. Kernel iteration execution time of benchmark application over EGRA instances.

51 4.6 Conclusion

costly in the life case, that employs a quite large memory (1 KB) and mesh. Required computa-
tional elements tend to increase as the number of ports grow, if multiple indexes are needed to
address the memory ports with maximum parallelism, as in the case or the life benchmark; on
the other hand, the autcor benchmark requires one more cell when a single ported scratchpad
is considered to store an intermediate result lacking two simultaneous reads.

Adding memory ports to the scratchpad memory speeds up execution as long as memory
accesses are the bottleneck of the system; after that point, the added memory ports present
no execution time benefit (actually, the critical path worsens slightly due to increased circuitry
complexity); in the examples provided, going from three to four ports was detrimental on all
test cases.

Confronting memory-cells based instances and scratchpad based ones shows how differ-
ent kernels are better suited to different strategies: kernels presenting a high number of ac-
cesses to small data arrays benefit from the parallelism offered by multiple memory cells like
in the viterbi kernel, while bigger data collections are better supported by an external memory.
Adding multiple ports to the scratchpad ultimately offsets the benefit of scattering the memory
in most benchmarks, but with an increased area cost of the resulting array.

Even if memory cells and multi-ported scratchpads are comparatively studied in this work,
EGRA instances can freely mix them, as the implementation of the MIT-bitwise histogram ker-
nel shows. The kernel presents a small look-up table array and a bigger data array; the former
naturally fits in memory cell, while the latter is better placed in the scratchpad memory. Char-
acteristics of the instance tailored to this kernel can be found in the last row of Table 4.9, while
its performance is indicated in Table 4.10.

4.6 Conclusion

This chapter describes the EGRA, and outlines different ways to explore the design space of
this architectural template. The EGRA template features complex cells’ design (RACs), various
modes of memories implementations and efficient support for modulo-scheduled loops, en-
abling designers to investigate choices at multiple levels of the architectural hierarchy. Given
the EGRA parametric nature, embodied in its machine description, different design aspects can
be speedily evaluated, as the machine description parameters provide a simple, unified interface
for EGRA instances generation.

The EGRA flexibility is exploited in this chapter to investigate performance of complex
RACs, showing how they outperform simpler ones on a set of embedded system benchmarks;
its support of heterogeneous cells is instrumental in developing instances mapping whole com-
putational kernels; finally, its capability to instantiate multiple memory types gives insights on
trade-offs in implementing storage requirements.

The EGRA template can be further expanded to accomodate other kinds of fixed-function
units, and to include layout considerations. For example, irregular mesh topologies could be
devised automatically in the presence of different-size processing elements.

The evolution of coarse-grained architectures should not happen in isolation; in particular,
the support of an automated mapping methodology of computational kernels onto architectural
instances explored in the next chapter presents a natural complementarity to the architectural
exploration presented here.

52 4.6 Conclusion

Chapter 5

Application Mapping:
Branch-and-bound Partitioning and
Slack-aware Scheduling on Coarse
Grained Arrays

5.1 Introduction

An effective methodology to map applications onto CGRAs has to consider multiple constraints,
due to the parallel execution paradigm, sparse interconnection topology and, in some cases,
heterogenous computational elements featured by these architectures. The first part of the
chapter introduces a scheduling framework that automates modulo scheduling on heteroge-
neous CGRAs, considering an EGRA instance as the target architecture. The scheduler copes
with limitations typically present on coarse grained meshes; more than that, it leverages differ-
ences in delays of various operations, which a CGRA always exhibits at run-time, to appropri-
ately and effectively route data. We call this ability “slack-awareness”. Slack-aware scheduling
is beneficial in a coarse grained reconfigurable environment, as more complex applications can
be mapped for a given mesh size and more efficient schedules can be achieved, compared to
State of the Art methods.

CGRAs present streamlined control logic and memory capabilities, which in turn tightly con-
strains the complexity of computational kernels that can be successfully mapped on hardware
resources. In order to handle complex applications, it is important to devise efficient strategies
to partition kernels into pieces that can be scheduled and processed on such reconfigurable
accelerators. The second part of this chapter describes an exact and an iterative solution to the
partitioning problem, based on recursive searches over abstract trees. Experimental evidence
suggests that the iterative method is computationally feasible even for fairly large kernels. It
also achieves a partition quality close to optimality, and of much higher quality with respect to
greedy algorithms.

53

54 5.1 Introduction

Contributions of this chapter are:

• A novel framework to automate scheduling of computational kernels on coarse grained
reconfigurable arrays is described. The slack-aware scheduler here presented is able
to chain computation and routing operations to better exploit available architectural
capabilities.

• A recursive partitioning algorithm is illustrated. The algorithm can cope with architec-
tural constraints typically present on CGRA meshes: limited computation, control and
memory resources.

5.1.1 Kernels scheduling on CGRAs

Many strategies have been proposed to accomplish application mapping on CGRAs; however,
all previous efforts consider time in discrete chunks, assuming that each operation executed
on a CGRA tile consumes a full clock cycle. Contribution to the research field exposed in this
chapter focuses instead on exploiting slack, the difference between the clock period and the
critical path of execution of an operation, to combinatorially chain computation and routing.
Careful utilization of slack time makes it possible to increase routability on a reconfigurable
mesh, leading to higher quality schedules of applications without impacting the working clock
frequency.

The intuition behind the approach is presented in Figure 5.1: if communication between
cells must be registered, operation B must be executed three cycles after operation A; on the
other hand, if cycle time allows it, and unregistered communication is supported, B can be
executed immediately after A. This strategy presents no penalty in maximum clock frequency if
operation A, and routing data through cells, is fast enough compared to the slowest operation
performed on the mesh.

This chapter presents a novel scheduling strategy that considers both registered and un-
registered communication among tiles, resulting in an efficient utilization of computational
resources, thus allowing the mapping of more complex kernels, and with a better execution
performance, than is done by the State of the Art, which consists of slack-oblivious methodolo-
gies.

Slack-aware scheduling is evaluated when targeting an Expression Grained Reconfigurable
Array instance, as described in Chapter 4, showcasing how scheduling can be adapted to an
architectural template of which widely different instances can be derived parametrically, com-
prising heterogeneous cells and without restrictions on their arrangement. Investigated con-
cepts are anyway more general and applicable to any CGRA architecture featuring registered
and unregistered connections among tiles.

5.1.2 Kernels partitioning

CGRAs are able to extract loop-level parallelism from loops typical of embedded and DSP
applications, and indeed research efforts have been undertaken to automate the application
mapping process, notable examples being the works of Mei et al. [2003], Lee et al. [2003] and
the one proposed here. A problem generally overlooked by proposed scheduling frameworks
is how to deal with computational kernels whose size exceeds available hardware resources.
Exceeding of resources can result from the limitation of three physical entities in the array: the
first, obvious one, is the number of cells perfoming computation (ALUs, or cluster of ALUs); the

55 5.1 Introduction

!"#$%&"'(

)*+,%%"-((

'"#$%&"'(

,.(/.(

0

)
0
(

0

)

Figure 5.1. a) registered and b) unregistered routing through a CGRA mesh.

second, the number and size of internal memories; and the third, less obvious, is the number
of configurations that the array can hold.

Loop fission, a compilation technique developed to improve data locality and described by
Kennedy and Kinley [1994], is a useful approach in this context. In fact, a well-conceived
partition of kernel computation can produce smaller pieces, which a scheduler can map in
sequence on CGRA hardware resources. On the other side of the coin, kernels fission introduces
issues of its own, as it may add pressure on the limited memory resources present on CGRAs
accelerators.

As a simple illustrative example, consider the pseudo-code of a kernel, and its DFG repre-
sentation, in Figure 5.2-a. If the computational requirement of the kernel exceeds that allowed
by the underlying platform, the kernel can be partitioned, as it is done in the example along
the dashed line.

The resulting partition includes two sub-kernels (Figure 5.2-b), each of which has a de-
creased operation count and depth, but an increased memory footprint. In fact, all edges
crossing partition boundaries (corresponding to scalar variables c and d in the example) must
be promoted to arrays, so that the values produced at each iteration can be stored in internal
memory, and later passed on from one sub-kernel to the other.

The storage capacity needed by a sub-kernel is therefore the sum of 1) the memories already
referenced by the computation of the sub-kernel itself and 2) those created by the partitioning.
In the example, the storage capacity needed by the first sub-kernel is: the size of aArr, plus the
size of the two newly created memories (each needing I ter items, I ter being the loop iteration
count).

The second part of this chapter presents an efficient algorithm for partitioning loops to be
executed on CGRAs. The inspiration from the proposed algorithm is taken from one published
in a different field, that of Instruction Set Extensions identification. In particular, the employed
branch-and-bound methodology is mutated by the one introduced by Atasu et al. [2003] and
refined by Pozzi et al. [2006]. The algorithm is adapted to fit our slightly different needs, it is
applied for the first time to loop partitioning, and its efficiency is investigated.

Sections 5.5 and 5.6 illustrate and evaluate an exact and an iterative technique to per-
form kernel partitioning under constraints present in CGRA architectures: limited computation,
memory and configuration resources. Results are compared with a state of the art algorithm,
the cluster-based greedy algorithm described by Purna and Bhatia [1999]. We show that the
proposed algorithm performs partitionings of tangibly better quality than Purna and Bhatia
[1999], while still scaling gracefully as problem size increases.

56 5.1 Introduction

…
for(i = 0; i < Iter; i++){

 c = aArr[i] + CONST1;
 d = aArr[i] – CONST1;

 e = c >> CONST2;
 f = d << CONST2;

 gArr[i] = e*f;
}

…

for(i = 0; i < Iter; i++){

 e = cArr[i] >> CONST2;

 f = dArr[i] << CONST2;
 gArr[i] = e*f;

}

…

!"##$ %&'()*$

+"##$,"##$

-$

.$

%&'()/$

0"##$

+"##$,"##$

11$ 22$

3$

…
for(i = 0; i < Iter; i++){

 cArr[i] = aArr[i] + CONST1;
 dArr[i] = aArr[i] – CONST1;

}

!4$

54$

!"##$
%&'()*$

%&'()/$

0"##$

-$

.$

11$ 22$

3$

-$

-$

*$

*$

*$

Figure 5.2. Pseudo-code and related DFGs of a small computational kernel, for the sake of
an example, (a) before and (b) after partitioning. Partitioning causes a decrease in the size
and depth of the graphs to be mapped onto hardware, but it increases their memory needs,
as each edge crossing partition boundaries requires memory to store data passed between
sub-kernels.

The present chapter details novel strategies to perform partitioning and scheduling of ker-
nels. Comparisons with related efforts proposed in literature are provided in Section 5.2.
Content of the chapter than illustrates the slack-aware scheduling strategy in Sections 5.3, pro-
viding experimental evidence of its performance in Section 5.4. A novel technique for kernel
partition, based on branch-and-bound recursion, is detailed in Sections 5.5 and 5.6.

To better highlight effectiveness of the two frameworks, partitioning and scheduling are
evaluated separately. Nonetheless, they are conceptually part of a unified framework to auto-
mate mapping of computational kernels onto CGRA accelerators. A comprehensive evaluation
of the two interfaced environments it therefore a natural extension of the research presented
in this chapter, and is planned as future work.

57 5.2 Related Work

Table 5.1. CGRA scheduling methodologies.

Scheduling strategy
Spatial Modulo

DRESC, Mei et al. [2002]
SPKM Yoon et al. [2008] Hatanaka and Bagherzadeh [2007]
SMP Ahn et al. [2006] Graph Embedding, Park et al. [2006]

Resource Pipeline, Kim et al. [2005]

5.2 Related Work

5.2.1 Scheduling

An evolution pattern among proposed CGRAs has brought researchers to consider increas-
ingly complex computational cells. Early proposed CGRAs, in fact, used tiles made of single
ALUs (as exemplified by Morphosys, Lee et al. [2000] and ReMarc, Miyamori and Olukotun
[1999]), while later designs employed more complex building blocks, able to evaluate expres-
sions (groups of operations), as in PACT-XPP (Baumgarte et al. [2003]) and Montium (Heysters
and Smit [2003]). The difference in computation time among operations supported by tiles
increases with their complexity, as some expressions can be evaluated faster than others.

The transition from homogeneous to heterogenous structures has been another recent de-
velopment; notable implementations of heterogenous CGRAs include RSPA, introduced by Kim
et al. [2005] and Chameleon (Tang et al. [2000]). Heterogeneity is another factor increasing
differences in computation time, as slower and faster cells have to cohabit on the same array.

It is worth mentioning that the present, slack-aware, approach is not only important in
presence of heterogeneous and/or complex cells. Granted that heterogeneity in tiles’ com-
putation times increases in these scenarios, an important point to note is that reconfigurable
architectures, even when homogeneous, always exhibit heterogeneous computation times in tiles,
depending on operations executed on cells. If a tile containing an ALU is configured to perform
an addition, while another is configured to perform a boolean operation, their delay will vary
greatly, even though the two tiles are identical (as in homogeneous architectures).

Slack awareness aims at exploiting this imbalance to improve routability. To do so, the
output register of each tile in a mesh must be by-passable, so that combinatorial (same-clock)
chains of operations can be executed in different cells. While standard in FPGAs’ logic ele-
ments, this mechanism is not typically present in CGRAs. It is instead a feature of the EGRA
architectural template described in Chapter 4, target of the mapping methodology introduced
here.

Slack-aware scheduling improves on approaches previously proposed in literature. Some
of these efforts, taking inspiration from FPGA placing and routing, have considered spatial
mapping as a way to maximize execution parallelism. Examples of this strategy are SPKM,
authored by Yoon et al. [2008] and SMP, Ahn et al. [2006]. These works acknowledge the
dual function (computation and data routing) of CGRA cells but neglect the opportunity to
combinatorially chain cells to speed up execution.

A modulo scheduling approach has instead been taken by Mei et al. [2002], Hatanaka
and Bagherzadeh [2007] and Park et al. [2006]. In these papers, both space and time di-
mensions are considered during mapping—as opposed to a spatial approach—borrowing from

58 5.2 Related Work

the modulo scheduling technique employed on VLIW architectures (described by Rau [1996]).
However, proposed modulo scheduling algorithms for CGRAs also overlook critical paths issues
by assuming only registered connections between tiles, so that each operation consumes an en-
tire clock cycle. This presents a negative performance impact, as shown in the experiments
section, in both cases of spatial and modulo scheduling.

Another approach is Kim et al. [2005] research on resource pipelining, investigating how
slow tiles can be pipelined and integrated with faster ones. We go one step further, as slack-
aware scheduling can be applicable even when the divide between “slow" and “fast" tiles is
not clear-cut and, again, when the execution time on a given tile depends on the operation
scheduled onto it, dictated by configuration.

5.2.2 Partitioning

Application partition to cope with limited hardware resources is also the focus of many research
efforts, as it presents itself in a variety of scenarios.

The first scenario is that of partitioning methodologies targeting FPGAs. Kaul and Vemuri
[1998] propose an NLP formulation to optimally solve temporal partitioning of applications
for time-multiplexed FPGAs. This approach assumes an application is split in well-formed
tasks beforehand, and does not scale above a limited number of tasks. The same problem
is tackled by Liu and Wong [1998] by adapting the Kernighan-Lin (KL, Kernighan and Lin
[1978]) network-flow based algorithm to directed graphs; however the KL approach cannot
directly guarantee that the number of edges in each sub-graph, and therefore the memory
requirements of a sub-graph, is within given bounds.

In the context of high-level synthesis, Purna and Bhatia [1999] propose a cluster-based
heuristic to map DFGs to multi-FPGA boards while minimizing communication bandwidth.
The algorithm has a linear complexity but, as highlighted in Subsection 5.5.5, often fails to
identify good candidate partitions, especially when dealing with fairly complex computational
kernels.

Instruction Set Extension (ISE) identification aims at identifying groups of operations to be
implemented as custom functional units with constrained inputs and outputs. Research in these
direction has been undertaken by Yu and Mitra [2004] and Pozzi et al. [2006] among others.
Given the high similarity between the ISE problem and the one tackled here, the pursued
strategy is to adapt an efficient ISE algorithm, the one proposed by Pozzi et al. [2006], to the
scenario of loop partitioning. The algorithm illustrated in Section 5.5 presents a different set
of constraints to the one in the paper by Pozzi, and it is here proposed for a different aim, that
of loop partitioning, for the first time.

Previous works on kernels scheduling for CGRAs for the most part assume the problem size
is small enough, compared to available resources, and present methodologies to map applica-
tions. In this context, partitioning can be seen as a necessary pre-processing step, producing
computational kernels to be mapped.

In the proposed methodology, based on loop fission, sub-kernels execute until completion
for has many iterations as needed, with reconfiguration happening only at their boundaries.
An alternative approach is loop disserving, described by Cardoso and Weinhardt [2002a] as
applied to the PACT-XPP CGRA, in which the underlying hardware is reconfigured inside loop
bodies many times at each kernel iteration. Loop disserving does not need temporary arrays to
store intermediate data, but presents a much higher configuration overhead.

59 5.3 Slack-Aware Scheduling Framework

5.3 Slack-Aware Scheduling Framework

Goal of a CGRA scheduler is to modulo map a Data Flow Graph (DFG), representing an itera-
tion of a computational kernel, onto the target architecture, i.e., onto a scheduling space rep-
resenting a computational mesh. This problem is known to be NP-Complete (Shields [2001]),
therefore a heuristic is devised to solve it.

Figure 5.3a shows an example DFG to be mapped, while Figure 5.3b exemplifies a possible
valid mapping achieved using a slack-aware methodology on a 3x2 EGRA instance with nearest-
neighbour connections and composed of four ALU clusters and two memory cells (a detailed
overview of the architecture is given in Chapter 4). The graph can be executed in 3 cycles,
because it combinatorially chains routing through two tiles between operations 1 and 3 in a
single clock cycle.

In a nutshell, the proposed scheduling algorithm starts from an initial mapping that is high
performance but possibly invalid, and iterates in search of a valid solution via a simulated
annealing strategy. If a valid solution is not found with the currently sought high performance,
the performance is lowered and the iteration starts again. Each step of the proposed algorithm
will now be explained.

5.3.1 Expansion of the input DFG

To account for the dual use of CGRA cells (computation and routing), the input DFG is ex-
panded by inserting routing nodes. On each edge, the number of routing nodes must be
sufficient to completely traverse the scheduling space, whose time dimension is bounded by
the maximum as-late-as-possible (ALAP) among operations to be mapped (as defined by Rau
[1996]), while its space dimension corresponds to the physical size of the reconfigurable mesh.
This approach is an extension of Yoon et al. [2008] from a spatial to a modulo-constrained en-
vironment. For each edge:

routing_nodes_number(ed ge) =

max(N_ROWS+ N_COLS− 3, max(ALAP(op)))

In the case of the considered example, this amounts to 2 routing nodes, and the graph is
expanded accordingly (Figure 5.4).

!"#$%&"'(

)*+,%%"-((

'"#$%&"'(

,.(/.(

0

12
!34(

565(

0(

2(

1(

Figure 5.3. a) An example DFG and b) Its slack-aware mapping on a 3x2 heterogeneous
EGRA.

60 5.3 Slack-Aware Scheduling Framework

!"

#"

$"

%&%"

'()"

'*+,&"

-."

/"

0"

1"

2"

3"

4"

!"

#"

$"

5."

1#6"

#$6"

#$6"

3/6"

#$6"

#$6"

#$6"

#$6"

1#6"

Figure 5.4. Routing nodes insertion on a DFG, with the annotation of the critical path length
relative to the clock period.

5.3.2 Generation of an initial schedule.

The scheduling space is a three dimensional graph replicating the CGRA structure size, cells’
types and topology max(ALAP(op)) times (3 times in the example). The graph edges connect
to both the same time plane (representing unregistered connections) and to the following plane
(representing registered connections).

To generate an initial schedule, three steps are performed (and illustrated in Figure 5.5a-b):
first, operations are placed in the scheduling space on cells that support them and respecting
their precedence constraints. Then, routing nodes are mapped to connect such operations, by
employing the A* algorithm (formalized by Hart et al. [1968]). Finally, redundant routing
nodes are deleted; routing nodes can be redundant either because they carry the same data
of a node already scheduled on the same position (node 4 or 6, Figure 5.5a-b) or if they are
placed at the position of their successor operation node (node 7 and node 9, Figure 5.5a-b).

Figure 5.5c shows the mapped DFG, decorated with registers among planes, and annotated
with delays.

In the following, details are given of the second step, routing nodes mapping. Routing
nodes on the cells between a scheduled predecessor operation (cel lpred) and a successor one
(cel lsucc) is handled as a problem to find the least costly path between them on the scheduling
space. The cost of a routing cell (cel lrout) is defined as:

g(cel lrout) = distance(cel lpred , cel lrout)

+ max(distance(cel lpred , cel lsucc)

, (−tpred + tsucc))

× #overused_cel ls_in_a_path

h(cel lrout) = distance(routing_node, cel lsucc)

cost(cel lrout) = g(cel lrout) + h(cel lrout)

61 5.3 Slack-Aware Scheduling Framework

!"#"$"

!"#"%"

!"#"&"

%

'

&

(

)

*

+

,

-

./"

%

'

(0*"

+

,

&

(0*"

+"

,"

%"

&"

'"

!"#$% &'1"

,+1"

(&1"

2/" 3/"

Figure 5.5. a) Expanded DFG mapping on the scheduling space. b) After redundant nodes
deletion. c) Resulting DFG with annotation of routing times. The combinatorial chain of
nodes 2 and 8 violates the timing constraint.

!"##$%&'"($

)$ *$ +$,$ -$.$

/!!012&!3$ 4$)$)$)$!")$

/1"526/&$

&/'"$
)$ *$ +$

)$ 7$ 4$ 4$

*$ 7$ 7$ #"

+$ 7$ 7$ $"

28$ 98$

Figure 5.6. a) Slack Violation Table and b) Modulo Resource Table derived from the schedul-
ing space in Figure 5.5.

where g is a path-cost function between the predecessor cell and a mapped routing node cell
and h a heuristic function that estimates the remaining hops to the successor cell. tpred and
tsucc represent clock cycle planes of predecessor and successor operations, respectively.

5.3.3 Calculating the cost of a schedule.

The initial schedule, constructed in the previous step and shown in Figure 5.5, is not valid,
as explained in the following. To check whether a schedule is valid or not, a Slack Violation
Table (SVT) and a Modulo Resource Table (MRT) are derived, the former keeping track of timing
violation, the latter of resource overuse.

Timing violation occurs when a path from register to register exceeds cycle time. Delays
over paths are calculated, and a table is kept that indicates the amount of violation on each

62 5.4 Slack-aware Scheduling evaluation

edge. In the example, see Figure 5.5c and 5.6a, the SVT indicates a violation between nodes 2
and 3. Indeed, delay from 2 to 3 accounts to 107% of cycle time, as node 2 is computed at t =
1, and its output is routed to the cell below it without registering the result.

Resource overuse occurs when more than what can be supported by a cell is mapped onto it.
This can happen in two cases: 1) when a cell is being used to route more than a single value,
2) when a cell is being used to compute an operation, and to route a different value.

Information on resource overuse is stored in the MRT, and a note is needed here on modulo
scheduling, to explain the MRT. Modulo scheduling aims at maximizing parallelism by pipelin-
ing successive iterations of kernels execution; the distance (in clock cycles) between two iter-
ations is defined as the Initiation Interval (II). To account for pipelining, the scheduling space
must be folded according to the II when considering resource overuse; the resulting MRT is
composed of exactly II rows, and contains the usage of each resource added modulo II. Figure
5.6b illustrates the Modulo Resource Table for the initial placement in Figure 5.5, considering
II = 1. It can be noticed that cell 5 is overused, as it hosts node 6-4 at t = 0 and node 2 at t =
1.

This scheme can be easily extended to more complex topologies, including shared commu-
nication links, modeled as resources able to accommodate routing cells only. Indeed, results
presented in Section 5.4 do consider local buses.

Once the MRT and the SVT are computed, a placement cost can be derived by adding up
overuse and timing violations:

placement_cost =
∑

cel ls,buses

(max ((MRTi , t − 1), 0)) +α ∗
∑

ed ges

(SV To p)

where MRTi,t are the elements of the modulo resource table, SV Top the elements of the
slack violation table and α a parameter trading off the importance given to each violation type
(an α = 0.3 was empirically determined as a good balance in the experiments presented in
Section 5.4).

5.3.4 Iterating in search of a valid solution.

If the current schedule is not valid, a new one is created: an operation node is unscheduled
together with its successor and predecessor routing nodes, freeing up related resources; the
operation node is then remapped and related routing is performed to and from the node; a
new cost value is computed and the move is accepted depending on its cost and the current
(ever-decreasing) temperature. The process is repeated until a valid mapping is found (with
placement_cost = 0) or if the maximum number of tries has been reached.

If a valid solution has not been found after a number of iterations, a less aggressive map-
ping, of lower performance, is tried. This can be obtained by either increasing nodes mobility
by augmenting their ALAP, or by increasing the Initiation Interval. The former can be beneficial
to overcome timing violations, the latter to alleviate resource overuse.

5.4 Slack-aware Scheduling evaluation

5.4.1 Test architectural parameters

Target platform for evaluation of the benefits of slack-awareness is, in this study, an EGRA
instance parametrized as a 5 x 4 mesh, composed by 14 RACs, 4 memory cells and two mul-

63 5.4 Slack-aware Scheduling evaluation

RAC

MEM RAC MEM

MULT

RAC RAC

RAC RAC

RAC

RAC

MULT

RAC RAC RAC RAC

MEM RAC MEM RAC

!"#$

Figure 5.7. Example EGRA instance composed of 2 multipliers, 4 memory cells and 14 RACs,
used for slack-aware scheduling evaluation.

tipliers. Considered RACs are composed of five ALUs in two rows, while multiplier cells are
capable of both signed and unsigned multiplication, and memory cells are single-ported, 1kB in
size and presenting 32-bits data addressing. Cells are connected using both dedicated nearest-
neighbour connections and horizontal/vertical local buses. The EGRA instance is illustrated in
Figure 5.7; features of the EGRA template detailing its architectural parameters are described
in Chapter 4.

Data shown in Tables 5.2 and 5.3, first row, highlight the different critical path of different
array tiles, depending on their type. In the case of RAC tiles, the critical path also depends
on the operation performed on the cell. Results were obtained synthesizing the EGRA instance
RTL implementation employing Design Compiler from Synopsys and TSMC 90nm libraries.

Assuming a clock period equal to the critical path of the slowest cell (the multiplier), Ta-
bles 5.2 and 5.3 show, in the second row, the percentage of clock period taken by each cell
performing their supported operations. When this percentage is low, some routing hops can
be accomodated in the same cycle, as shown in the motivational example of Figure 5.1b. The
third row of Tables 5.2 and 5.3 show how many routing hops can be performed after compu-
tation and in the same clock cycle, without violating timing constraints. For example, a RAC
configured to execute two boolean operations can chain two routing hops before exhausting
cycle time, while a memory operation just one; results of a RAC performing two additions in
two subsequent rows must be immediately registered.

This data highlights how heterogenous computation times can be leveraged to increase
schedulability of kernels without increasing the clock period, and is used to derive scheduling
results presented in this section.

64 5.4 Slack-aware Scheduling evaluation

Table 5.2. Critical path delay of different RAC operations.

RAC
bool-bool bool-sh bool-add sh-sh sh-add add-add

critical path (ns) 0.67 0.85 0.98 1.03 1.16 1.29
% of a 1.37 ns

49 62 71 75 84 94
clock period

routing hops 2 1 1 1 0 0

Table 5.3. Critical path delay resulting from data routing, multiplication and memory cells
read/write operations.

route mult mem
critical path (ns) 0.31 1.37 0.85
% of a 1.37 ns

23 100 62
clock period

routing hops 3 0 1

5.4.2 Experimental methodology

Performance of slack-aware scheduling was evaluated by applying it to two approaches em-
ployed in the State of the Art: spatial mapping and modulo scheduling.

In spatial mapping, the scheduling space is two-dimentional, and execution of just one
operation on each cell is allowed for every kernel iteration, which is the approach of Yoon et al.
[2008] and Ahn et al. [2006]. In modulo scheduling, the scheduling space has both a space and
a time dimension, so that different operations can be executed at different times on the same
cell (the strategy used by Mei et al. [2002], Hatanaka and Bagherzadeh [2007] and Park et al.
[2006]). In each case, each operation consumes an entire clock cycle (slack-obliviousness), or
slack-awareness can be applied to allow for combinatorial chains of operations. This leads to
the four scenarios depicted in Table 5.4.

5.4.3 Automatically generated data flow graphs

Automatically generated DFGs were scheduled on the EGRA instance presented in Figure 5.7,
using the four above-mentioned methodologies. DFGs ranged from 6 to 15 operation nodes,
and one hundred of them were considered for each DFG size.

DFGs presented diverse shapes and characteristics: nodes were set to have one or two
predecessors, with 50% probability in each case; nodes’ types were randomly assigned with a
probability matching the composition of the target mesh (10% multiplications, 20% memory
operations, 70% RAC operations). The clock period was set to be equal to 1.37ns (the time used
by the slowest operation, multiplication); consequently, allowed unregistered routing for the
slack-aware scheduler followed data presented in Tables 5.2 and 5.3. Three thousand simulated
annealing cycles were performed before increasing the Initiation Interval; application mapping
failed when I I reached max(ALAP), a situation where loops are not pipelined at all.

Data plotted in Figure 5.8 shows the percentage of successful mappings for each DFG size

65 5.4 Slack-aware Scheduling evaluation

Table 5.4. Experimental framework.

slack-oblivious slack-aware
Spatial A B
Modulo C D

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

#!!"

(")" *" +" #!" ##" #$" #%" #&" #'"

,-."

/,012345"

163732"

10/,012345"

1-
44
8
11
".
3
98
":
;
<"

/-=>8.",?"/,@81"

=,@-2,"

12345A3B3.8"

=,@-2,"

12345A,>2CDC,-1"

163732""

12345A3B3.8"

163732""

12345A,>2CDC,-1"

!"

""

#"

$"

Figure 5.8. Slack-aware vs. slack-oblivious using modulo and spatial scheduling strategies:
success rate of test DFGs.

!"

!#$"

%"

%#$"

&"

&#$"

'"

'#$"

(")" *" +" %!"

,-./01"23",2405"

67".24-82"

6
9
0
16
:
0
";
,
<=
6
=
2
,
";
,
>0
19
6
8"

6
9
0
16
:
0
";
,
<=
6
=
2
,
";
,
>0
19
6
8"

/7"5?6=68"

!"

!#$"

%"

%#$"

&"

&#$"

'"

'#$"

(")" *"

@01<05%"

@01<05&"

586ABC6D610"

586ABC2/8<9<2-5"

,-./01"23",2405"

!"95#"#" $"95#"%"

Figure 5.9. Slack-aware vs. slack-oblivious using a) modulo and b) spatial scheduling strate-
gies: achieved Initiation Interval.

66 5.4 Slack-aware Scheduling evaluation

Table 5.5. Schedulability and performance of benchmark DFG kernels scheduled using dif-
ferent methods.

Benchmark DFG Exp. DFG Scheduling Success II
nodes nodes method (%)

autocorr 5 35

modulo-sl.aware 100 1.04
modulo-sl.obl. 100 1.59
spatial-sl.aware 100 1.04
spatial-sl.obl. 98 2.09

conven 5 35

modulo-sl.aware 100 1.00
modulo-sl.obl. 92 2.32
spatial-sl.aware 100 1.00
spatial-sl.obl. 77 2.32

aifirf 6 48

modulo-sl.aware 100 2.00
modulo-sl.obl. 51 2.25
spatial-sl.aware 100 2.01
spatial-sl.obl. 40 2.98

mpegcorr 8 62

modulo-sl.aware 100 2.66
modulo-sl.obl. 0 -
spatial-sl.aware 0 -
spatial-sl.obl. 0 -

iquant 9 69

modulo-sl.aware 100 2.08
modulo-sl.obl. 0 -
spatial-sl.aware 0 -
spatial-sl.obl. 0 -

fbital 9 81

modulo-sl.aware 100 3.22
modulo-sl.obl. 0 -
spatial-sl.aware 0 -
spatial-sl.obl. 0 -

using slack-aware and slack-oblivious mappings, both in a modulo and spatial setting. Modulo
scheduling presents a better schedulability than a spatial alternative, as resources can be better
utilized; more importantly, the graph highlights that slack-aware scheduling maps more DFGs.
For example, 90% percent of 10-nodes DFGs where successfully mapped using slack-aware in
modulo scheduling, while the same figure is around 10% for the corresponding slack-oblivious
strategy.

In addition to being able to map more DFGs, slack awareness also improves performance of
mapped applications. Figure 5.9a compares the average Initiation Interval of DFGs which were
successfully mapped, in modulo scheduling, with both a slack-aware and a slack-oblivious strat-
egy. The slack-aware scheduler achieves on average a 33% smaller II, corresponding to a 33%
faster execution of the mapped kernel. A similar comparison in a the spatial environment (Fig-
ure 5.9b) is less clear-cut because the spatial mapping doesn’t take full advantage of increasing
II, so that in most cases either a DFG is mapped right away or is not mapped at all.

67 5.5 Kernels partitioning framework

5.4.4 Kernels from benchmark applications

DFGs of computational kernels extracted from the EEMBC [1997] benchmark suite were also
considered, again employing the EGRA instance described in Figure 5.7 and retaining the sim-
ulated annealing parameters used for the previous experiments. Each kernel was mapped one
hundred times starting from different initial conditions. Table 5.5 illustrates the size of the
DFGs before and after graph expansion, the percentage of successful mappings and the aver-
age Initiation Interval achieved with a slack-aware method compared to slack-oblivious one
using modulo and spatial scheduling methods.

Results are in line with the ones obtained for randomly generated DFGs: slack-aware mod-
ulo scheduling is able to map all six benchmarks, while simpler strategies fail in the three
most complex kernels. In all cases, slack awareness improves the chance of a kernel to be
successfully mapped and the performance of obtained solutions.

5.5 Kernels partitioning framework

Efficient scheduling strategies, like the one described in the previous sections, increase the
complexity of kernels that can be successfully mapped on constrained hardware resources.
Nonetheless, applications whose size exceed the capabilities of target architectures must be
split into multiple sub-kernels to be properly handled. In the following part of the chapter, a
formalization of such partitioning problem is given, together with exact and iterative branch-
and-bound strategies to solve it. Obtained solutions are evaluated in comparison with a State-
of-the-Art greedy algorithm.

5.5.1 Problem formalization

Let G{V, E} be a Direct Acyclic Graph (DAG), where nodes V represent operations executed in
an iteration of a computational kernel and E dependencies among operations. Nodes v ∈ V
can be computation nodes or memory-access nodes. In the latter case nodes have an attribute
mv that has an index unique for each array that the kernel processes. Different memory-access
nodes can have the same mv attribute if they read/write on the same array.

A cut S is a sub-graph of G, where S ⊆ G, containing the nodes assigned to a sub-kernel. A
partition P of G is a set of non-overlapping Si cuts covering all nodes of G. Let IN(Si) be the
set of predecessor nodes of those edges crossing the cut boundary into Si , and OU T (Si) the set
of predecessor nodes of edges crossing the cut boundary out of Si .

Goal of partitioning is to assign each node of G to a cut, such that each cut does not violate
memory, size, depth and convexity constraints. A merit function is then used to discern lower-
and higher- quality solutions among the valid ones. Constraints and merit function are detailed
as follows.

Cut Size. To cope with the limited number of computation elements present in a CGRA
mesh, the size of each cut should not exceed a threshold. Schedulability for a give mesh size,
in fact, strongly correlates with the application DFG size, as shown in the works of Yoon et al.
[2008] and Ansaloni, Tanimura, Pozzi and Dutt [2011] (the latter illustrated previously in this
Chapter) among others.

Cut Depth. During execution, CGRAs activate a control word at each clock cycle, so that
cells can perform the proper operation at the proper time. CGRAs support a limited number of
control words, in turn limiting the maximum depth of DFGs that can be mapped onto them.

68 5.5 Kernels partitioning framework

!"#$%&'

"(&)*("+#'

,+-.%+'

!/0&-.%"#$'

-
&
1
(
0
'2
'3
'

Figure 5.10. Sub-kernel depth is limited by available control words: Depth(DFG) words are
necessary if iterations are mapped in sequence (left), while 2∗Depth(DFG)−1 are used when
employing modulo scheduling (right).

!"

#" $"

%"

&'&()*""

(+'),-(."

,)/01&'-2""

(+'),-(."

!"

#" $"

%"

,3" 43"

Figure 5.11. Single cut identification: a non-convex cut (a) and a cut with one memory
reference and two outputs (b).

Two scenarios can be envisioned, as illustrated in Figure 5.10: if kernel iterations are sub-
sequently executed on a mesh, max Depth(Si) = (nC trlWords− P), were P is a user-defined
relaxation parameter to ease DFG scheduling on the reconfigurable mesh. If instead itera-
tions are modulo scheduled (as considered, for example, by Mei et al. [2003]), we have that
max Depth(Si) = (((nC trlWords+ 1)/2)− P) in the case of explicit prologue and epilogue.

Cut memory footprint. As discussed in Subsection 5.1.2, after kernel fission a sub-kernel
might require excessive data storage with respect to underlying hardware. Given a cut Si , MSi

is defined as the set of all distinct mv attributes of each v ∈ Si . The cardinality of MSi
indicates

the internal memory requirement of a cut Si . In addition, IN(Si) indicates the number of
temporary arrays which are input to the sub-kernel, while OU T (Si) the number of arrays that
are generated by executing the sub-kernel. The contribution of these three elements must not
exceed the amount of memory available in the hardware.

Local and global convexity. Local convexity is a property of a cut, imposing that no path
through G exists that exits and re-enters a valid cut Si . The constraint ensures that all inputs
to a cut can be ready when the cut is to be executed. Figure 5.11-a shows a non locally-convex
cut.

69 5.5 Kernels partitioning framework

Global convexity is instead a property of a partition; it states that once all cuts of a partition
are collapsed into single nodes, the resulting graph is acyclic. A globally convex partition allows
for at least one order in which sub-kernels can be scheduled in sequence, as each cut Si can be
either a predecessor or a successor of another cut S j of the partition, but not both.

Merit Function. Kernel fission forces a sequential barrier in execution of sub-kernels on
a CGRA accelerator. To ensure maximum parallelism given the above-mentioned constraints,
the number of sub-kernels should be minimized. A solution employing a small number of large
sub-kernels also minimizes the overhead due to reconfiguration and transfer of the data-set in
and out of the accelerator.

Problem Formulation. The kernel fission problem can now be formalized as follows.
Given a DFG representation of a kernel G{V, E} and indexes of its memory references mvi

,
find a partition P = {S1, S2, ..., Sn} of G such that

1) ∀ Si , size of Si < MaxSize
2) ∀ Si , depth of Si < Max Depth
3) ∀ Si , |MSi

|+ IN(Si) +OU T (Si)< Max Mems
4) all Si are locally convex, P is globally convex
5) |P| is minimized

The partitioning problem is solved either exactly or iteratively, employing the algorithm
described in Atasu et al. [2003] and later refined in Pozzi et al. [2006], adapting it to the loop
partitioning problem. The explanation of such methodologies is reprised here, for completeness
and clarity, stating differences when needed. Firstly, an algorithm is detailed identifying the
single largest valid cut given a kernel DFG and architectural constraints. The problem is then
expanded to consider a complete DFG partitioning; an exact, but computationally expensive,
solution is proposed in Subsection 5.5.3, while much less-expensive iterative one is illustrated
in Subsection 5.5.4. In Subsection 5.5.5, instead, the linear-time greedy approach adopted in
Purna and Bhatia [1999] is summarized, used for comparison purposes in Section 5.6.

5.5.2 Single cut identification

The single cut identification algorithm starts by a topological sorted graph G, where a node u
precedes v in the order if Depth(u)< Depth(v).

The algorithm uses binary recursion to span an abstract search tree. At each bisection of
the tree, two branches are considered, respectively including or excluding a node v ∈ G from a
cut S, considering each vi in topological order.

The size of the search tree thus constructed is obviously exponential, but effective pruning
can be performed to restrict the search space. Two straightforward pruning conditions, which
are not present in Pozzi et al. [2006] as they are specific to this problem formulation, examine
the depth and the size of the cut when nodes are added to it: if Max Depth or MaxSize are
exceeded, adding further nodes to S by expanding the underlying search branch cannot result
in a valid solution (it violates underlying-platform resources).

Other pruning conditions are related to subgraph convexity and input-output count, and
apply to graphs that are topological sorted. If a cut is non-convex, there is no way to recover
local convexity by adding nodes that come later in the topological order (Figure 5.11-a). More-
over, the number of inputs IN(S) present in a cut can only increase by adding nodes with
greater depth, as is the number of referenced arrays.

70 5.5 Kernels partitioning framework

!"

!"

!"

!"!"!"!"!"!"!"!"

!"

!"

!"
!"

#"

#"

#" #" #" #"#"#"

#"
#"

#"

#"

#"

#"#"

$%&'()" *+,"-+*.&)(/()"

*+)("

!"

0"

1"

2"

Figure 5.12. Single cut identification: abstract search tree of the DFG in Figure 5.11, consid-
ering MaxSize = 3, Max Mems = Max Depth= 2.
0→ node not included in cut, 1→ node included.

!"

!"

!"#"
#"

#"

#"

$%&'"

#"

!"

("

("("

#" #" #" #" #" #")")")")")")"

Figure 5.13. Abstract search tree for multiple cuts identification.

Finally, outputs of a cut S become non-recoverable, i.e. they cannot exit OU T (S), once a
successor of a node v ∈ S is excluded from S. Consider Figure 5.11b: if node 3 is not part
of S, adding any further node to the cut will not remove node 1 from OU T (S); these outputs
are named permanent and the set containing them OU TP(S). The pruning condition due to
memory constraints is therefore derived as:
|MS |+ IN(S) +OU TP(S)< Max Mems

The use of permanent outputs is also described in Pozzi et al. [2006]. The pruning condition
is here slightly different as it is the sum of inputs, outputs and internal memories that must
be constrained. Figure 5.12 shows the abstract search tree for the simple 4-nodes DFG of
Figure 5.11. It can be noticed that just six of sixteen possible cuts are valid (the empty cut is
never considered). More importantly, some search region can be pruned away before a leaf is
reached.

5.5.3 Exact multiple cuts identification

It is possible to extend the previously illustrated algorithm to multiple cuts, substituting binary
recursion with an N -ary one, where each branch corresponds to assigning a node to one of N
cuts.

71 5.5 Kernels partitioning framework

Benchmark Nodes Edges Arrays Array accesses
fft 22 31 2 8
rgbcmyk 24 34 2 7
rgbhpg 30 37 2 10
rgbiq 33 40 2 6
viterbi 36 51 5 14
dct 93 126 3 16
idct 94 145 3 24

Table 5.6. Benchmarks characteristics

Without loss of generality, symmetric solutions can be avoided by assigning node v1 to cut
S1 unconditionally, let v2 be part of either S1 or S2 and so on, increasing by one the number of
possible choices, at each level. The resulting abstract search tree is shown in Figure 5.13.

The lower bound on the number of cuts in a partition is K = d(|V |/MaxSize)e, while
the upper bound is |V |, which corresponds to assigning every node in G to a different cut.
As discussed in Subsection 5.5.1, partitions employing the smallest number of cuts are desir-
able. Therefore, a search for solutions employing the smallest possible number of cuts, K , is
performed first. If no valid partition with cardinality K is found, the algorithm proceeds by
seeking a valid partition with K + 1, K + 2, ... , |V | cuts.

The exact algorithm is guaranteed to find an optimal solution to the partitioning problem if
said solution exists within constraints. However, its exponential complexity makes it intractable
in some cases.

This algorithm is very similar to the one presented in Atasu et al. [2003] and Pozzi et al.
[2006]. The difference lays in the figure of merit of the problem, which, in turn, guides the
search in a different way. In the ISE problem, the merit to be maximised is the collective gain
of selected ISEs, i.e. selected subgraphs, and graph nodes that are left-out (branch at 0, in the
exact algorithm) do not influence the merit function—they are to be executed in software. In
other words, a partition made of few large subgraphs, but also many single-node subgraphs
(those left-out), can be an optimal solution in the problem formulation of Atasu et al. [2003]
and Pozzi et al. [2006]. However, for the problem tackled here, a winning partition must
have minimum cardinality. Correspondently, a branch at 0 is not considered: each node must
belong to a subgraph, and a valid partition’s goodness is measured in terms of minimising its
cardinality.

In practice, the Exact partitioning algorithm can deal with slightly larger subgraphs than
that of Atasu and Pozzi. Graph sizes up to 36 nodes are dealt with in the experimental results,
while a size of less than 30 is reported by Atasu et al. [2003].

5.5.4 Iterative multiple cuts identification

The iterative strategy performs single cut identification multiple times, until either all nodes are
assigned or no valid partition is found. At the first iteration, the largest cut obeying constraints
is optimally identified, and its nodes marked accordingly. Successive iterations optimally search
for other valid cuts that exclude already assigned nodes.

This iterative strategy differs from the exact one as it does not guarantee that the partition
with smallest cardinality is found, but the solution space is greatly reduced, as the same search
tree as in Subsection 5.5.2 is employed multiple times, preserving high efficiency.

72 5.6 Partitioning experimental evaluation

!" #"

!"

!"

!"

#"

#"

#"

!" #"

!"

!"

!"

#"

#"

#"

$%" &%"

!"

#" $"

!"

#"

$"

%"

&"
'"

("

Figure 5.14. fft partition using a) iterative/exact and b) greedy methodologies, considering
Maxsize = 11, Max Mems = 5, Max Depth =∞. Iterative and exact partitioning result in 3
cuts, greedy partitioning in 7.

5.5.5 Greedy partitioning

An even faster strategy is the greedy one, which assigns each node exactly once according to
some metrics. In particular, a cluster-based partitioning algorithm, published by Purna and
Bhatia [1999], is described here.

Greedy algorithms can achieve linear complexity; the above mentioned cluster-based algo-
rithm is O(|E|+ |V |). It is the best performing algorithm among the ones investigated by Purna
and Bhatia [1999].

Cluster-based partitioning performs a top-down sweep of the application DFG, and sched-
ules to a cut Si the “ready" node with maximum depth. At each iteration, the ready list is
updated, adding those nodes whose predecessors have already been scheduled. The algorithm
adds nodes to a cut until constraints are not violated; when this happens, the violating node is
assigned to a new cut.

5.6 Partitioning experimental evaluation

To compare the proposed partitioning methodologies, kernels were extracted from the EEMBC
benchmark suite (EEMBC [1997]); their characteristics are summarized in Table 5.6.

Three round of experiments were conducted, varying the requirement relative to 1) maxi-
mum storage, 2) control logic and 3) computation capability, respectively (Figures 5.15 – 5.17).
Executing its implementation on a standard computer, the iterative algorithm converged at

73 5.6 Partitioning experimental evaluation

!"

#"

$!"

$#"

%!"

%#"

&" '" #" (" &" '" #" (" &" '" #" (" &" '" #" (" '" #" (" &" '" #" (" &" '" #" (")"

*+,,-."

/0,+"

123456"

70" +*894.:" +*8;2*" +*8/<" =/0,+8/" -90" /-90"

$>?@!!"

$>?@!%"

$>?@!'"

$>?@!("

$>?@!A"

&" '" #" (" &" '" #" (" &" '" #" (" &" '" #" (" '" #" (" &" '" #" (" &" '" #" (")"

/0,+"

123456"

70" +*894.:" +*8;2*" +*8/<" =/0,+8/" -90" /-90"

B
=
*
C
1
-
,
DE
,
+E
5
+0
"

F
,
9G
+D
/=
,
"H
5
66
D"

I5JI,4D"

I5JI,4D"

,J590"

,J590"

Figure 5.15. Top: partitioning quality using exact, iterative and greedy algorithms. Bottom:
efforts required to reach solution using iterative and exact algorithms. Varying Max Mems
with Maxsize = |V |/2, Max Depth=∞.

!"#$%%&

!"#$%'&

!"#$%(&

!"#$%)&

!"#$%*&

)& +& !'&)& +& !'&)& +& !'&)& +& !'& +& !'& !,&)& +& !'& !,&)& +& !'& !,&

-./0&

123456&

%&

,&

!%&

!,&

)& +& !'&)& +& !'&)& +& !'&)& +& !'& +& !'& !,&)& +& !'& !,&)& +& !'& !,&

70//89&

-./0&

123456&

:.& 07;<49=& 07;>27& 07;-?& @-./0;-& 8<.& -8<.&

:.& 07;<49=& 07;>27& 07;-?& @-./0;-& 8<.& -8<.&

A
@
7
B
1
8
/
CD
/
0D
5
0.

E
/
<F
0C
-@
/
&G
5
66
C&

H5IJ-K/&

H5IJ-K/&

/I5<.&

/I5<.&

Figure 5.16. Top: partitioning quality using exact, iterative and greedy algorithms. Bottom:
efforts required to reach solution using iterative and exact algorithms. Varying Maxsize with
Max Mems = 5 for all benchmarks except viterbi, dct (Max Mems = 6) and idct (Max Mems =
7). Max Depth=∞.

most in a matter of seconds; on the contrary, it was not possible to obtain exact solutions in a
reasonable time for the two most complex kernels (dct and idct).

When both exact and iterative did complete, results were similar, in many cases identical;
identified partitions where along the lines of solutions an expert programmer would identify,
as the dct partition obtained by the iterative algorithm presented in Figure 5.18 illustrates.

On the other hand, in all but the simplest cases, the greedy methodology trailed well behind
the ones based on recursive searches, resulting in smaller and more numerous sub-kernels. A
graphical comparison of the methods, presented in Figure 5.14, shows how the lack of flexi-

74 5.7 Conclusion

!"

#"

$!"

$#"

%!"

%#"

&" '" #" (" &" '" #" (" &" '" #" (" &" '" #" (" &" '" #" (" &" '" #" (" &" '" #" ("

)*++,-"

./+*"

012345"

$678!!"

$678!%"

$678!'"

$678!("

$678!9"

&" '" #" (" &" '" #" (" &" '" #" (" &" '" #" (" &" '" #" (" &" '" #" (" &" '" #" ("

./+*"

012345"

:/" *);<3-=" *);>1)" *);.?" @./+*;." ,</" .,</"

:/" *);<3-=" *);>1)" *);.?" @./+*;." ,</" .,</"

A
@
)
B
0
,
+
CD
+
*D
4
*/
"

E
+
<F
*C
.@
+
"G
4
55
C"

H4IJ+1/>"

H4IJ+1/>"

+I4</"

+I4</"

Figure 5.17. Top: partitioning quality using exact, iterative and greedy algorithms. Bottom:
efforts required to reach solution using iterative and exact algorithms. Varying Max Depth
with Max Mems = 5 for all benchmarks except viterbi, dct (Max Mems = 6) and idct
(Max Mems = 7). Maxsize =∞.

bility of the greedy approach leads to a much worse partition given the same constraints with
respect to the iterative and exact solutions. The greedy cluster-based algorithm was particu-
larly ineffectual when big, complex cuts could be identified and exploited, as is the case of the
viterbi, dct and idct kernels.

An interesting consideration can be made regarding computation time: while exact parti-
tioning converged quite fast in a few selected cases, it was not able to do it consistently, present-
ing a hugely different required effort in different settings. Particularly demanding are searches
presenting a big gap between the upper threshold in number of cuts (d(|V |/MaxSize)e) and
the actual cuts necessary for a valid solution. In Figure 5.15, the experiments relative to rgbiq
with Max Mems = 3 exemplifies this effect.

Table 5.7, second column, compares the relative size of cuts obtained by the greedy and
the iterative methodologies, subdivided by benchmark and aggregated on all performed exper-
iments. The metric is computed as

(AvgS_size(i ter)− AvgS_size(greed y))/AvgS_size(greed y).

It can be noticed that cuts obtained by iterative partitionings are on average twice the size of
the ones identified by a cluster-based one, and as much as 172% bigger in the case of rgbiq.
Comparing in a similar way exact and iterative partitionings results in just 12% difference in
average size of cuts (and only 3% in the best case).

5.7 Conclusion

This chapter introduced methodologies to map complex data-flow graph, extracted from com-
putational kernels, onto coarse grained reconfigurable arrays. The problem is tackled from
two points of view: on one side, slack-aware scheduling is introduced to allow for better uti-
lization of resources, leveraging registered and unregistered connections among CGRA tiles.

75 5.7 Conclusion

!"# !$# !%# !&# !'# !(# !)# !*#

+"# ,$# +%# +&#

+'# ,(# +)# +*#

!"# !$# !%# !&# !'# !(# !)# !*#

!"

!"

#"

#"

#"

#" #"

$"

%"

Figure 5.18. Partition of dct, iterative strategy, with Maxsize = 30, Max Mems = 7,
Max Depth= 10.

76 5.7 Conclusion

Benchmark iterative/greedy(%) iterative/exact (%)
fft 89 -12
rgbcmyk 59 -15
rgbhpg 89 -17
rgbiq 172 -3
viterbi 113 -12
dct 100 -
idct 66 -
Average 98 -12

Table 5.7. Relative cut size comparison aggregated by benchmark

On the other, a novel loop fission technique is detailed to partition complex kernels into cuts
according to architectural constraints.

Slack-awareness leverages differences in computation time to allow for computation and
routing operations to be chained in the same clock cycle, increasing schedulability and exe-
cution performance for coarse grained meshes supporting either spatial mapping or modulo
scheduling. It is particularly beneficial in case of meshes composed by heterogeneous elements
and/or complex cells, which most likely presents differences in actual critical path depending
on cell type and performed operation.

The partitioning strategy is based on recursive searches over abstract trees, in which each
branch considers including or excluding an operation from a sub-kernel. The employed ap-
proach is inspired by a previous work on instruction set extensions (Pozzi et al. [2006]), modi-
fied to tackle the different scenario of efficient loop fission of kernels, in the context of systems
comprising a CGRA accelerator. The problem of single sub-kernel identification is solved op-
timally, taking into account architectural bounds derived by limited computation, control and
memory resources present in coarse grained meshes.

Sub-kernel identification is then extended, both exactly and iteratively, to kernel partition:
completely covering the application DFG assigning every kernel operation to sub-kernels. Ex-
perimental evidence shows that iterative partitionings result in average sub-kernel size that is
only marginally smaller than in the exact case, and twice the size than the one resulting by ap-
plying a State-of-the-Art cluster-based greedy algorithm (Purna and Bhatia [1999]). Moreover,
the low computational complexity of the iterative partitioning, with respect to the exact one,
makes it applicable to more complex cases.

Chapter 6

System Integration: EGRA as
Intelligent Memory

6.1 Introduction

Among the factors to be taken into account when devising a compact, efficient coarse grained
reconfigurable accelerator, tight system integration is of paramount importance. The solu-
tion proposed in this chapter interfaces the coarse grained reconfigurable array template (the
EGRA) with a host general purpose microprocessor, employing both a custom functional unit
interface, to configure the accelerator, and memory mapped ports, to store kernels’ datasets.

The approach combines low reconfiguration overhead and computing performance with
the flexibility needed for an architectural template – as opposed to a single architecture – to
be embedded in a computing system. Experimental evidence shows that RTL-level Hw-Sw co-
simulation of EGRA-accelerated systems results in up to 13x speedups over non-accelerated
benchmark applications.

Integration is achieved by granting the host visibility of internal EGRA memories. The
host knowledge of the EGRA is, in fact, mostly limited to its memory content, an abstraction
named "intelligent memory" in literature. Research on intelligent memory aims at embedding
computing elements in a memory hierarchy and offloading execution of parallel tasks to them.
Intelligent memories are treated as standard RAMs by the host system, and can indeed default
to them for non-accelerated tasks.

While small processors and embedded FPGAs have both been proposed to support dis-
tributed computation in intelligent memories, CGRAs can be a more promising candidate for
this task. This class of architectures combines flexible hardware execution, typical of FPGAs,
with fast reconfiguration time and computational density, due to the arithmetic elements that
constitute its cells. These characteristics are desirable in the intelligent memory scenario, in
which small and computationally intensive kernels of applications are sped up.

The combination of arithmetic and storage capabilities makes the EGRA able to efficiently
execute computational kernels in a parallel way, while its smart memory interface avoids data
transfers to and from the reconfigurable mesh and its related overhead. An EGRA instance
interfaced in this way can be seen as comprising two views: the reconfigurable mesh view
composed by heterogeneous coarse grained cells executing computational kernels, and the

77

78 6.1 Introduction

RAC Mult

 Mem

 Mult

RAC

RAC

RAC

 Mem

 Mem

RAC

RAC

RAC

RAC

...

SP SP SP

Dispatcher Control Unit
configurations

CI

slave
port

interfaces

custom
instruction

interface

HOST

Figure 6.1. Example of an EGRA instance architecture and interface

intelligent memory view as seen by the host processor.
In this scenario, kernel execution requires minimal intervention from outside the reconfig-

urable array: the microprocessor host being aware only of "intelligent" memory regions where
data manipulations can take place according to some reprogrammable functionality, that can
be streamed in (and activated on) the reconfigurable mesh.

The chapter presents a study of expression grained arrays integration as intelligent mem-
ories, made feasible by the EGRA template flexibility and the developed hardware/software
co-simulation environment. The template features and the architectural parameters, customiz-
able at design time, are detailed in Chapter 4, with integration and co-simulation solutions
being the focus of this chapter. The framework allows for RTL simulation of systems com-
prising a RISC host and an EGRA instance, embedded as components in a System on a Chip
(SoC).

The contribution of the chapter is two-fold:

• An intelligent memory scheme is proposed for integrating a Corse-Grained Reconfig-
urable Array template with a host system. The approach combines low-overhead re-
configuration and the flexibility needed to interface a wide variety of possible EGRA
instances.

• A hardware/software co-simulation framework is detailed, able to investigate systems
comprising EGRA accelerators and their performance when executing whole benchmark
applications, including reconfiguration overhead and non-kernel parts executed by the
host.

The reminder of this chapter is structured as follows: Section 6.2 compares the proposed
methodology with related research in the field, Section 6.3 details the proposed EGRA-host

79 6.2 Related Work

interface, Section 6.4 describes the overall framework developed to evaluate accelerator in-
stances. Section 6.5 shows results on achieved speedups, and Section 6.6 concludes the chap-
ter.

6.2 Related Work

Integration of reconfigurable architectural elements to speed up computation in SoC is a fervent
research topic. In particular, different solutions have been proposed to overcome the intrinsic
limitation of read and write ports available on host processors, which constitutes a bottleneck
with respect to the parallel nature of hardware execution.

Cong et al. [2005] have proposed the use of shadow registers to make more inputs available
to ad-hoc functional units; the solution does not scale over a very limited number of registers
and does not address multiple outputs, making it nonetheless viable for mapping basic blocks.
A similar strategy is applied by the Chimaera architecture described by Hauck et al. [2004],
that replicates a subset of the host register file to make many-inputs operations possible.

In the CGRA field, the host-accelerator interface is usually implemented at the register file
level (as in ADRES, Mei et al. [2004]) or with dedicated communication buffers (MorphoSys,
Lee et al. [2000], PiCoGa, Campi et al. [2007]). The former approach does not scale well as
the register file size and port count increases with application complexity, while the latter one
suffers from unavoidable time and area overheads as data is transferred between the host and
the accelerator memory.

A different perspective is considered by intelligent memory architectures, in which some
computational capabilities are directly embedded in RAM structures, as in the IRAM case (Pat-
terson et al. [1997]). This memory-centric approach eliminates the need for dedicated buffers
and related data transfers. FlexRAM (Kang et al. [1999]) uses small integer processors to be
integrated in memory banks, while ActivePages (Oskin et al. [1998]) employs embedded FP-
GAs. We suggest that CGRAs are instead better candidates for this type of task if arithmetic
operations have to be performed, as they marry efficient hardware execution with a much
faster reconfiguration time and a smaller area than fine grained arrays. In fact, CGRAs ability
to map arithmetic functions (instead of boolean ones) in their building blocks enables efficient
execution of Data Flow Graphs of computational kernels.

CGRAs proposed so far tend to have a fixed structure; the EGRA template instead, thanks to
its parametric nature, enables to quantitatively explore many aspects of CGRAs’ architectural
design space, as is done by the studies presented in Chapter 4. Given the widely different EGRA
instances that can be possibly generated, the integration methodology introduced here aims at
being suitable for accelerators with varying degrees of complexity.

To investigate performance of EGRA instances when integrated as intelligent memories in a
SoC, features of the hardware/software co-simulation environment provided by SOPCBuilder
(Altera [2010]) and Menthor Graphics Modelsim (Altera [2008]) is leveraged. The scope of
the concepts presented is anyway not limited to a specific vendor toolchain, and can be adapted
to any system whose host that can be expanded with variable-latency custom functional units.

6.3 EGRA-host communication

Envisioning a unified strategy to interface EGRA instances into a computing system presents
numerous challenges. First of all, the interface scheme must be flexible enough to accommo-

80 6.3 EGRA-host communication

EGRA elements Design parameters

Mesh
Size (rows and columns)
Cell type in each location
Number of contexts

RAC cells

Datapath depth
Number of ALUs in each stage
ALUs supported operations in each stage
Flags support (per stage)
Number of embedded constants

Multiplier cells Sign-Unsigned multiplication support

Memory cells
Size
Number of read-write ports
Supported addressing modes

Scratchpad memory
Size
Number of read-write ports
Supported addressing modes

Control Unit Control lines number

Table 6.1. Synopsis of machine description parameters

date widely different configurations to cope with the template parametric nature. Secondly,
communication between the sequential non-kernel part of an application, running on a host
system, and its parallelized kernels, executing on an EGRA instance, must be addressed, min-
imizing data transfers from both sides. Finally, as discussed below, the difference in access
patterns between configuration transfers and data transfers must be considered.

To configure an EGRA instance, cells must be programmed with the appropriate functional-
ity to be executed at each clock cycle. Cells provide a local configuration memory to store this
information, which contains a number of context words, activated in the proper order during
kernel execution (the architecture of a generic cell is illustrated in Figure 6.2). Context words
include control of the interface part of a cell (e.g.: which are its inputs, if row/column buses
must be driven), and that of its internal datapath, specific for each cell type. For RAC cells,
this part dictates operations to be executed by each ALU and the routing among RAC rows per-
formed by switchboxes, while in the case of memory cells, it states if a read or write operation
should be executed. It can be observed that the lenght of a context word varies depending on
the cell type and the values of related architectural parameters, which are described in Table
6.1. Moreover, only some contexts (of some cells) actively participate in a kernel execution and
thus need to be configured.

These two factors lead to a scattered access arrangement of context memories during an
EGRA instance configuration phase. Accesses to embedded memories, on the other hand,
present a more regular behaviour, their elements being usually read or written in sequence
by the host. The scenario calls for a differentiation between configuration transfers and data
memory accesses.

In the proposed implementation, illustrated graphically in Figure 6.1, EGRAs reconfigura-
tion is inspired by FPGAs bitstream download: configurations are transferred serially, using a

81 6.4 Hardware-Software platform

.

reg

from neighbours/buses

...

.

.

.

to neighbors/buses

reg

. .

out a

.

out b

context word

program counter

RAC, memory

or multiplier

* MEM

Figure 6.2. Generic EGRA cell block scheme

custom instruction interface, to a hardware dispatcher. The dispatcher in turn routes them to
the proper location in the cells’ configuration memories. By embedding the destination context
word index in the program bitstream, contexts can be programmed independently, allowing
for partial reconfiguration, ultimately reducing configuration time.

Working data sets (input/output arrays, look-up tables) are instead interfaced with slave
ports, mapped in the host system addressing space. Software applications can then access data
directly. In this respect, the host views the reconfigurable accelerator as an intelligent memory,
able to transform data as opposed to just store it. RISC processors can access a single data
item at a time; instead, during EGRA execution, multiple values can be read and written from
memories, greatly contributing to overall speedup. Memories can be interfaced with data width
of 8, 16 and/or 32 bits, corresponding to arrays of char, short or long values in C language.

6.4 Hardware-Software platform

To test performance of EGRA instances, a hardware/software co-simulation framework was
developed, its block scheme being illustrated in Figure 6.3. Commercially available tools are
leveraged whenever possible: SOPCBuilder from Altera is used to generate test platforms (com-
prising custom CGRA accelerators), while the NIOSII software development environment, also
from Altera, is employed to compile applications for the systems. Menthor Graphics Model-
sim is used to simulate execution, exploiting the SOPCBuilder-Modelsim interface described in
Altera [2008]. Finally, critical path and area occupation of EGRA instances are derived with

82 6.4 Hardware-Software platform

EGRA
TEMPLATE

BITSTREAM
GENERATOR

COMPUTATIONAL
KERNEL

DESCRIPTION

MACHINE
DESCRIPTION

COMPONENT

WRAPPER

NIOSII

BENCHMARK
APPLICATION
(with custom
instructions)

SOPC

SYNTHESIS
(Design Compiler)

AREA DELAY

HW-SW CO-SIMULATION
(Modelsim)

CLOCK CYCLES

Figure 6.3. Block scheme of the EGRA Hw-Sw co-simulation framework

Design Compiler from Synopsys.
Here the custom hardware components and the software ones, developed to generate and

test EGRA-enabled systems, are described.

6.4.1 Software components

As outlined in Figure 6.3, inputs of the framework are the machine description of the in-
stance to be evaluated and the description of the scheduled computational kernel(s) to be
mapped. Scheduling can be either hand-optimized, as it is done for this study, or derived from
a scheduling framework such as the one described in Chapter 5. The description is parsed
and transformed in a C header file containing the appropriate bitstream, implemented as a
series of control words to be transfered into the instance, controlling execution of the desired
functionality.

The header file is then included in the benchmark application, and computational kernels
are substituted by configuration code and by a single custom variable-latency instruction firing
execution. Figure 6.4a illustrates the original code of a kernel contained in the histogram
benchmark, Figure 6.4b the code controlling the same functionality when mapped on an EGRA
instance. It can be noticed that the latter does not contain an explicit loop, as looping is
managed and parallelized by the reconfigurable hardware; indeed, the actual loop execution
is composed by just one instruction in this scenario.

83 6.4 Hardware-Software platform

!"#$%#&&&&&&&&&'&&&&&&&()*&

…………………………………

&for (i = 0; i < L; i++) {
 cdf += histogram[i];

 gray_level_mapping[i] = ((cdf >> 6) - (cdf >> 14)) & 0xff;
}
…………………………………

#include “ctrl_words.h”

…………………………………

\\ programming EGRA control unit and cells
ALT_CI_WRAPPER_INSTR_INST(6, 0x00020000, 0x00000000);

ALT_CI_WRAPPER_INSTR_INST(7, LOOP_4_LOOP_CTRL_WORDS[1],
 LOOP_4_LOOP_CTRL_WORDS[0]);

ALT_CI_WRAPPER_INSTR_INST(7, LOOP_4_LOOP_CTRL_WORDS[3],
 LOOP_4_LOOP_CTRL_WORDS[2]);

…………………………………

\\ START EXECUTION
ALT_CI_WRAPPER_INSTR_INST(2, 0x80810000, 0x00000000);
…………………………………

+,&

-,&

Figure 6.4. Example of kernel computation (from histogram benchmark): original C code (a),
execution on EGRA instance (b).

6.4.2 Hardware components

EGRA instances are interfaced as components in a SoC, instantiating them inside a component
wrapper which connects the EGRA outer signals with the SoC bus and the custom instruction
interface. Role of the wrapper is to make deeper architectural levels of instances agnostic of
the system conventions; in the present study, the wrapper is the only component that has to be
manually edited to adapt it to different instances. Its structure is anyway trivial, mostly dealing
with signal renaming, and its generation could be possibly automated in a future refinement of
the co-simulation framework.

Apart from the EGRA instance, all other components used in the SoC are standard SOPC-
Builder ones: NIOSII/f high-end RISC processor is used to host non-kernel, non-accelerated
computation and to program and control the EGRA, while on-chip memory with a single-cycle
latency hosts program code and data; finally, a performance counter component is used to
collect the number of cycles spent in different phases of execution.

84 6.5 Experimental results

memory scrathpad
mesh RACs cells memory

Benchmark size cells typea structureb size (bytes) size (bytes)

histogram 2x3 4 C 2 M 2-ASL 2-AL 512 x 2 16k
bubblesort 2x4 5 C 1 MU 2 M 3-ASL 2-AL 512 x 2 0
median(1) 2x4 7 C 1 M 3-AL 2-L 64 0
median(2) 2x4 7 C 1 M 3-AL 2-L 64 32k

generic 2x5 7C 1 MU 2M 3-ASL 2-AL 512 x 2 32k

aC: RACs; MU: multipliers; M: memory cells
bALUs in each row and supported operations. A: arithmetic; S: shift-rotate; L: bitwise logical. For example, 2-AL

represents a row with 2 ALUs supporting arithmetic and logic operations, but no shifts/rotates.

Table 6.2. Characteristics of EGRAs optimized for different benchmarks

Sw execution EGRA execution
benchmark Cycles Cycles Config. overhead Speedup

histogram

Whole b.mark 810 751 82 854 332 9.79
Loop1 115 613 16 390 53 7.05
Loop2 2 059 262 39 7.86
Loop3 344 089 32 777 88 10.50
Loop4 4 883 265 77 18.43
Loop5 344 083 32 774 75 10.50

bubblesort

Whole b.mark 3 805 301 524 121 288 7.26
Loop1 4 117 262 79 15.71
Loop2 3 798 075 523 271 135 7.26
Loop3 3 090 263 74 11.75

median(1)
Whole b.mark 773 342 77 132 171 10.03
Loop2 748 671 52 281 171 14.32

median(2)

Whole b.mark 773 342 59 854 338 12.92
Loop1 15 408 3 084 105 5.00
Loop2 748 671 55 360 159 13.52
Loop3 9238 1 032 74 8.95

Table 6.3. Speedups over kernels execution

6.5 Experimental results

To measure performance of systems embedding EGRA instances, three benchmark applications
from the MIT-bitwise suite (Bitwise [1999]) were studied: bubblesort, histogram and median.
For every application, intensive loops were extracted—five are present in the histogram bench-
mark, while bubblesort and median have three. Kernels were then mapped on EGRA instances
and simulated to compare the number of cycles it takes to execute benchmarks on a NIOS-only
system, with respect to a NIOS+EGRA system.

Following the experimental methodology employed for EGRA design space exploration

85 6.5 Experimental results

mesh scratchpad max. clock
Benchmark area (mm2) area (mm2) freq. (MHz)

histogram 0.45 6.53 507
bubblesort 0.72 — 565
median(1) 0.35 — 598
median(2) 0.35 13.07 598

generic 1.08 17.54 505

Table 6.4. Area and critical path of EGRAs optimized for different benchmarks

(Chapter 4), considered instances included a custom-tailored one for each application, and
additionally a single EGRA instance (called generic) to accommodate all applications. The
characteristics of these instances can be seen in Table 6.2. Since the median benchmark re-
quires an expensive 32kb memory to map two non-critical loops, two implementations are
actually proposed and shown in the table: median(1) accelerates just the most critical loop,
while median(2) employs a scratchpad and accelerates all three loops.

Looking at the first four rows of Table 6.2, one can see the mesh size employed by each
benchmark, the distribution of cell types (RACs, multipliers, memories), the RACs’ structure
(note that all RACs featured in these istances consist of 4 to 5 ALUs, arranged in two levels),
and the size of memories. The last row corresponds to the generic instance. Its characteristics
are a superset of the instances above, but still fitting in a very contained area (instance areas
are shown later in this section).

Applications were run on a fully featured NiosII/f system simulated with Menthor Graphics
Modelsim. Execution cycles were counted, and compared, for NIOS-only versus NIOS+EGRA,
and are reported in Table 6.3. The table shows resulting execution clock cycles, as well as
speedup, of EGRA-accelerated execution over software one for every loop and for the three
whole benchmarks, as well as the reconfiguration overhead (in cycles). It is interesting to note
that substantial speedups are achieved, with a negligible reconfiguration overhead. This high-
lights the importance of coarse-grain versus fine-grain reconfiguration: a reduced flexibility
(leading to extremely small bitstreams) is traded for an increased speedup.

To measure the benefit of an intelligent memory approach (referred as IMem in Figures
6.6 and 6.5), speedups obtained by two less capable solutions were also investigated: in the
first case (appl_dma) data was transferred at application boundaries, while in the second
(loop_dma) data was explicitly copied in and out of the reconfigurable fabric at every ker-
nel execution. Resulting overheads greatly reduced performance in histogram and median(2),
while bubblesort and median(1) are less affected, being dominated by computation intensive
loops with small memory footprints. Speedups for every loop, in the intelligent memory and
memory buffer settings, are presented in Figure 6.5.

Finally, since comparing clock counts while ignoring latencies can be a pitfall, the tem-
plate RTL implementations were synthesized using Synopsys Design Compiler and TSMC 90nm
front-end libraries. Results are shown in Table 6.4. This table complements the speedup results
given earlier in this section, by showing that an execution frequency of over 500 MHz was
achieved on all instances.

86 6.5 Experimental results


































Figure 6.5. IMem vs. explicit data transfer speedup over benchmark kernels

















   















Figure 6.6. IMem vs. explicit data transfer speedup over benchmark applications

87 6.6 Conclusion

6.6 Conclusion

This chapter presented and investigated the integration of a Coarse Grained Reconfigurable
Architecture template in a computing system as an intelligent memory.

The proposed approach decouples the internal operation of the reconfigurable mesh from
its external view, as the accelerator transparently transforms data sets on smart memory re-
gions. The host-accelerator interface differentiates between configuration operations, where
data is transferred serially to mesh elements, and execution of accelerated functions, happen-
ing transparently in the shared host-accelerator memory. The presented scheme both minimizes
configuration overhead and minimizes the need for expensive data transfers to and from the
accelerator.

Moreover, the scalability of the approach allows for different architectural instances to be
seamlessly integrated, matching the flexibility of the developed architectural template and
enabling architectural exploration over different design dimensions.

To investigate performance of benchmark applications over systems embedding EGRA in-
stances, a comprehensive hardware/software co-simulation framework has been developed,
enabling inspection of application execution at the RTL level, and allowing precise quantifica-
tion of execution times.

Accelerated systems allowed for speedups (over whole applications) of up to 13x, while
maintaining aggressive critical path and area footprint of parametrically generated EGRA in-
stances.

88 6.6 Conclusion

Chapter 7

Concluding Remarks and Possible
Extensions

The Coarse Grained Reconfigurable Array paradigm poses novel challenges in many aspects,
spanning the whole hardware stack needed to generate meshes and execute computational ker-
nels, and the software stack that automatically compiles applications onto the reconfigurable
hardware.

The thesis presented the following innovations in the field:

• A CGRA architectural template (the Expression Grained Reconfigurable Array) was in-
troduced. Thanks to its parametric nature, the EGRA template enables exploration of
the CGRA design space. Three such explorations were presented, the first one focusing
on comparative evaluations of different implementations for multi-ALU computational
cells, the second on integration of heterogeneous elements with diverse computation and
storage capabilities, and the third on solutions for embedding memories inside meshes
and/or on their side.

• Novel application mapping techniques were described. On one side, slack-aware schedul-
ing was presented; the scheduler leverages heterogenous critical paths of different op-
erations to combinatorially chain computation and routing during execution, resulting
in better schedulability and run-time performance of applications. On the other, a novel
partitioning algorithm was detailed, able to efficiently divide complex computational
kernels into cuts, schedulable on constrained hardware resources.

• Integration of EGRA instances in complete computing systems was illustrated. The pre-
sented hardware/software co-simulation framework allows for system-wide evaluation
of SOCs embedding a CGRA accelerator, including the impact of non-kernel code and
overhead due to reconfiguration. By decoupling configuration and data transfers, the
integration scheme allows for minimization of overheads.

The EGRA architectural template was instrumental in performing the research here de-
scribed. Every step of the EGRA development, and that of its surrounding ecosystem, opened
up new possibilities for further research. This enabling aspect has been one of the most exciting
aspects of my PhD studies. The process is never-ending, and I often found myself in the difficult
position of deciding which directions to pursue. In the following paragraphs I describe some

89

90 7.1 Local register files

of the open research opportunities made possible by the EGRA and by the environment built
around it; I leave them as possible future work.

7.1 Local register files

As data is routed through a reconfigurable mesh, temporary values have to be stored in reg-
isters private to each cell. Registers are not fundamentally different from any other memory
structure, but they present a much smaller size and they support different functionalities with
respect to dedicated memory cells and/or scratchpad memories: registers contain scalar data
generated by computation, while scratchpads and memory cells store arrays being processed
by a computational kernel. The appropriate size of local register files, private to each cell,
has been investigated by Bouwens et al. [2007] in the context of the single-ALU ADRES re-
configurable array. The local output registers present in EGRA cells takes inspiration from this
study, nonetheless its applicability to a mesh including complex cells like the Reconfigurable
ALU Cluster, and supporting combinatorial chaining, would need further investigation.

7.2 Energy and power consumption

The thesis focuses on execution time as a metric to evaluate different design solutions, with the
assumption that execution speed can be transformed into energy savings if clever techniques
like clock and power gating or dynamic frequency/voltage scaling are applied. Nonetheless,
energy and power consumption can also be explicitly explored leveraging the proposed frame-
work. As the EGRA template is synthesizable, switching activities of transistors can be an-
notated before synthesis, retrieving the power/energy consumed by execution of a kernel for
evaluation. Trade-offs using different architectural choices or transistors libraries can than be
explored and compared. Architectural features implementing power management policies can
be also explored in this way.

7.3 Configurations and data transfer overhead

Relative speedup of computational kernels executing on a CGRA mesh with respect to exe-
cution on a host processor is of paramount importance to highlight CGRA effectiveness, but
other factors have to be accounted for to have a complete system-wide picture. Specifically,
overheads due to data and configuration transfers have to be taken in consideration, as well as
the impact of code sections that are kept on the host. In this perspective, the overall speed-up
obtained by an application executing on a system that embeds a CGRA is:

speedup =
execT ime(nonKernel) + con f i gT ime+ dataTrans f erT ime+ execT ime(kernel)

execT ime(SW)

where execTime(nonKernel) is the execution time of non-kernel, non-accelerated code, con-
figTime and dataTransferTime account for the overhead due to configuration and input/output
data transfer respectively, and execTime(kernel) is the execution time of kernels executing on
the CGRA; execTime(SW) is the execution time of the application when running on the host
system only.

91 7.4 Architectural meta-model

The hardware/software co-simulation framework described in this thesis can be used as a
virtual prototype to investigate this issue at the architectural level, as it makes possible to com-
pile and simulate applications on systems comprising a microprocessor and an EGRA instance,
observing the impact of the different execution phases and different interface mechanisms.
Such a study would be a generalization of the one proposed in Chapter 6.

Data transfers minimization should be the goal of any efficient system. The problem is
not trivial especially when applications are split into sub-kernels, as proposed in Chapter 5.
Effective strategies to schedule sub-kernels to minimize pressure on the memory systems, and
avoid as much as possible data transfers out of CGRA internal memories, is a natural extension
of the thesis work.

7.4 Architectural meta-model

The EGRA is an architectural template defined at the RTL level. This characteristic allows for
a detailed exploration of its instances and for their accurate simulation. The drawback of the
approach is the long turnaround time needed to explore the design space. Hardware synthesis,
employed to extract area and critical paths figures, is especially time consuming, so that an
EGRA meta-model (similar in principle to the one proposed by Mariani et al. [2009]) could
greatly broaden the design dimensions that can be explored in a given amount of time, at the
price of reduced accuracy of results. A first, fast pruning of a design space using the meta-
model followed by a more detailed one using the RTL description could result in both accurate
and rapid explorations.

92 7.4 Architectural meta-model

Bibliography

Ahn, M., Yoon, J., Paek, Y., Kim, Y., Kiemb, M. and Choi, K. [2006]. A spatial mapping algorithm
for heterogeneous coarse-grained reconfigurable architectures, Proceedings of the Design, Au-
tomation and Test in Europe Conference and Exhibition, European Design and Automation
Association 3001 Leuven, Belgium, pp. 363–368.

Altera [2008]. Simulating NiosII Embedded Processor Designs.
URL: http://www.altera.com/literature/an/an351.pdf

Altera [2010]. SOPC Builder User Guide.
URL: www.altera.mobi/literature/ug/ug_sopc_builder.pdf

Altera [2011]. Altera website: www.altera.com.
URL: http://www.altera.com/

AMD Corp. [2005]. AMD Multi-core White Paper.
URL: www.sun.com/emrkt/innercircle/newsletter/0505multicore_wp.pdf

Ansaloni, G., Bonzini, P. and Pozzi, L. [2008a]. Design and architectural exploration of
expression-grained reconfigurable arrays, Proceedings of the 6th Symposium on Application
Specific Processors, Anaheim, CA, pp. 26–33.

Ansaloni, G., Bonzini, P. and Pozzi, L. [2008b]. Evaluating flexible CGRA cells, Aether-Morpheus
Workshop, Lugano, Switzerland.

Ansaloni, G., Bonzini, P. and Pozzi, L. [2009]. Heterogeneous coarse-grained processing el-
ements: a template architecture for embedded processing acceleration, Proceedings of the
Design, Automation and Test in Europe Conference and Exhibition, Nice, France, pp. 542–547.

Ansaloni, G., Bonzini, P. and Pozzi, L. [2011]. EGRA: a Coarse Grained Reconfigurable Architec-
tural Template, IEEE Transactions on Very Large Scale Integration (VLSI) Systems 19(6): 1062–
1074.

Ansaloni, G., Najvirt, R. and Pozzi, L. [2008]. Interfacing a CGRA template as an intelligent
memory, Technical report, University of Lugano, Switzerland.

Ansaloni, G. and Pozzi, L. [2011]. An efficient loop partitioning algorithm for coarse grained
reconfigurable arrays, submitted paper, Proceedings of the 9th Symposium on Application Spe-
cific Processors.

93

94 Bibliography

Ansaloni, G., Tanimura, K., Pozzi, L. and Dutt, N. [2011]. Slack-aware scheduling on coarse
grained reconfigurable arrays, Proceedings of the Design, Automation and Test in Europe Con-
ference and Exhibition, Grenoble, France, pp. 1–4.

Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K., Kubiatowicz, J., Morgan, N.,
Patterson, D., Sen, K., Wawrzynek, J., Wessel, D. and Yelick, K. [2009]. A view of the
parallel computing landscape, Commun. ACM 52(10): 56–67.

Atasu, K., Pozzi, L. and Ienne, P. [2003]. Automatic application-specific instruction-set exten-
sions under microarchitectural constraints, Proceedings of the 40th Design Automation Con-
ference, Anaheim, CA, pp. 256–61.

Baumgarte, V., Elhers, G., May, F., Nuckel, A., Vorback, M. and Weinhardt, M. [2003]. PACT-XPP
- A Self-Reconfigurable Data Processing Architecture, Journal of Supercomputing 26(2): 167–
184.

Biswas, P., Dutt, N., Ienne, P. and Pozzi, L. [2006]. Automatic identification of application-
specific functional units with architecturally visible storage, Proceedings of the Design, Au-
tomation and Test in Europe Conference and Exhibition, Munich, Germany, pp. 212–217.

Bitwise [1999]. Bitwise benchmarks.
URL: http://www.cag.lcs.mit.edu/bitwise/bitwise_benchmarks.htm

Bonzini, P., Ansaloni, G. and Pozzi, L. [2008]. Compiling custom instructions onto expression-
grained reconfigurable architectures, Proceedings of the International Conference on Compil-
ers, Architectures, and Synthesis for Embedded Systems, Atlanta, GA, pp. 51–60.

Bonzini, P. and Pozzi, L. [2007]. Polynomial-time subgraph enumeration for automated in-
struction set extension, Proceedings of the Design, Automation and Test in Europe Conference
and Exhibition, Nice, France, pp. 1331–36.

Bonzini, P. and Pozzi, L. [2008]. Recurrence-aware instruction set selection for extensible em-
bedded processors, IEEE Transactions on Very Large Scale Integration (VLSI) Systems 16(10).

Bouwens, F., Berekovic, M., Kanstein, A. and Gaydadjiev, G. [2007]. Architectural exploration
of the ADRES coarse-grained reconfigurable array, Reconfigurable Computing: Architectures,
Tools and Applications, Vol. 4419 of Lecture Notes in Computer Science, Springer, Berlin, Ger-
many, pp. 1–13.

Brisk, P., Verma, A. K., Ienne, P. and Parandeh-Afshar, H. [2007]. Enhancing FPGA performance
for arithmetic circuits, Proceedings of the 44th Design Automation Conference, ACM, New York,
NY, USA, pp. 334–337.

Campi, F., Deledda, A., Pizzotti, M., Ciccarelli, L., Rolandi, P., Mucci, C., Lodi, A., Vitkovski,
A. and Vanzolini, L. [2007]. A dynamically adaptive DSP for heterogeneous reconfigurable
platforms, Proceedings of the Design, Automation and Test in Europe Conference and Exhibition,
pp. 1–6.

Cardoso, J. M. P. and Weinhardt, M. [2002a]. XPP-VC: A C compiler with temporal parti-
tioning for the PACT-XPP architecture, Proceedings of the 12th International Conference on
Field-Programmable Logic and Applications, Montpellier, France.

95 Bibliography

Cardoso, J. and Weinhardt, M. [2002b]. Xpp-vc: A c compiler with temporal partitioning for
the pact-xpp architecture, Field-Programmable Logic and Applications: Reconfigurable Com-
puting Is Going Mainstream, Vol. 2438 of Lecture Notes in Computer Science, Springer Berlin
/ Heidelberg, pp. 207–226.

Chang, P. P., Mahlke, S. A., Chen, W. Y., Water, N. J. and Hwu, W.-m. W. [1991]. IMPACT:
An architectural framework for multiple-instruction-issue processors, Proceedings of the 18th
Annual International Symposium on Computer Architecture, Toronto, Canada.

Chapman, B., Jost, G. and van der Pas, R. [2008]. Using OpenMP: portable shared memory
parallel programming, The MIT press, Cambridge, Massachusetts.

Chattopadhyay, A., Chen, X., Ishebabi, H., Lupers, R., Ascheid, G. and Meyr, H. [2008]. High-
level modelling and exploration of coarse-grained re-configurable architectures, Proceedings
of the Design, Automation and Test in Europe Conference and Exhibition, Munich, Germany,
pp. 1334–39.

Cherepacha, D. and Lewis, D. [1996]. DP-FPGA: an FPGA architecture optimized for datapaths,
VLSI Design 4(4): 329–343.

Clark, N., Blome, J., Chu, M., Mahlke, S., Biles, S. and Flautner, K. [2005]. An architecture
framework for transparent instruction set customization in embedded processors, Proceed-
ings of the 32st Annual International Symposium on Computer Architecture, Madison, Wiscon-
sin.

Clark, N., Kudlur, M., Park, H., Mahlke, S. and Flautner, K. [2004]. Application-specific pro-
cessing on a general-purpose core via transparent instruction set customization, MICRO 37:
Proceedings of the 37th Annual International Symposium on Microarchitecture, IEEE Computer
Society, Washington, DC, USA, pp. 30–40.

Cong, J., Fan, Y., Jagannathan, A., Reinman, G. and Zhang, Z. [2005]. Instruction set extension
with shadow registers for configurable processors, Proceedings of the 2005 ACM/SIGDA 13th
International Symposium on Field Programmable Gate Arrays, pp. 99–106.

Ebeling, C., Cronquist, D. C. and Franklin, P. [1996]. RaPiD: Reconfigurable Pipelined Datap-
ath, Proceedings of the 6th International Workshop on Field-Programmable Logic and Applica-
tions, Springer, Darmstadt, Germany, pp. 126–35.

EEMBC [1997]. EEMBC website.
URL: http://www.eembc.org/

Elsen, E., Houston, M., Vishal, V., Darve, E., Hanrahan, P. and Pande, V. [2006]. N-Body
simulation on GPUs, Proceedings of the 2006 ACM/IEEE conference on Supercomputing.

Fisher, C., Rennie, K., Xing, G., Berg, S. G., Bolding, K., Naegle, J. H., Parshall, D., Portnov,
D., Sulejmanpasic, A. and Ebeling, C. [2001]. An emulator for exploring RaPiD config-
urable computing architectures, Proceedings of the 10th International Conference on Field-
Programmable Logic and Applications, pp. 17–26.

Galanis, M., Theodoridis, G., Tragoudas, S. and Goutis, C. [2006]. A high-performance data
path for synthesizing DSP kernels, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 25(6): 1154–1162.

96 Bibliography

Goldstein, S., Schmit, H., Moe, M., Budiu, M., Cadambi, S., Taylor, R. R. and Laufer, R. [1999].
PipeRench: A coprocessor for streaming multimedia acceleration, Proceedings of the 26th
Annual International Symposium on Computer Architecture, pp. 28–39.

Guthaus, M., Ringenberg, J., Ernst, D., Austin, T., Mudge, T. and Brown, R. [2001]. MiBench:
A free, commercially representative embedded benchmark suite, Proceedings of the IEEE 4th
Annual Workshop on Workload Characterization, pp. 3–14.
URL: http://www.eecs.umich.edu/mibench/Publications/MiBench.pdf

Halfhill, T. R. [2000]. EEMBC releases first benchmarks, Microprocessor Report .

Hart, P., Nilsson, N. and Raphael, B. [1968]. A formal basis for the heuristic determination of
minimum cost paths, IEEE IEEE Transactions on Systems Science and Cybernetics 4(2): 100–
107.

Hartenstein, R. [2001]. A decade of reconfigurable computing: A visionary retrospective,
Proceedings of the Design, Automation and Test in Europe Conference and Exhibition, pp. 642–
649.

Hatanaka, A. and Bagherzadeh, N. [2007]. A modulo scheduling algorithm for a coarse-grain
reconfigurable array template, Proceedings of the 2007 IEEE International Parallel and Dis-
tributed Processing Symposium, 2007, pp. 1–8.

Hauck, S., Fry, T., Hosler, M. and Kao, J. [2004]. The Chimaera reconfigurable functional unit,
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 12(2): 206–217.

Hauck, S., Fry, T. W., Hosler, M. M. and Kao, J. P. [1997]. The Chimaera reconfigurable func-
tional unit, Proceedings of the 5th IEEE Symposium on Field-Programmable Custom Computing
Machines, Napa Valley, CA, pp. 87–96.

Heysters, P. and Smit, G. [2003]. Mapping of DSP algorithms on the MONTIUM architecture,
Parallel and Distributed Processing Symposium, p. 6pp.

HP Corp. [2007]. HP-MPI User’s Guide.
URL: docs.hp.com/en/B6060-96024/B6060-96024.pdf

Intel Corp. [2006]. Intel Multi-Core Processors.
URL: www.intel.com/technology/architecture/downloads/quad-core-06.pdf

ITRS [2007]. International technology roadmap for semiconductors. executive summary, 2005
and 2007.
URL: http://public.itrs.net/

Kahng, A. [2001]. Design technology productivity in the dsm era, Proceedings of the Asia and
South Pacific Design Automation Conference, pp. 443 –448.

Kang, Y., Huang, W., Yoo, S.-M., Keen, D., Ge, Z., Lam, V., Pattnaik, P. and Torrellas, J. [1999].
FlexRAM: toward an advanced intelligent memory system, Proceedings of the International
Conference on Computer Design, pp. 192–201.

Kaul, M. and Vemuri, R. [1998]. Optimal temporal partitioning and synthesis for reconfigurable
architectures, Proceedings of the 35th Design Automation Conference, Paris, France.

97 Bibliography

Kennedy, K. and Kinley, K. [1994]. Maximizing loop parallelism and improving data locality
via loop fusion and distribution, Lecture Notes in Computer Science 768: 301–320.

Kernighan, B. and Lin, S. [1978]. An efficient heuristic procedure for partitioning graphs, IEEE
Transactions on Computers pp. 1064–1068.

Kim, Y., Kiemb, M., Park, C., Jung, J. and Choi, K. [2005]. Resource Sharing and Pipelining in
Coarse-Grained Reconfigurable Architecture for Domain-Specific Optimization, Proceedings
of the Design, Automation and Test in Europe Conference and Exhibition, Munich, Germany,
pp. 12–17.

Kim, Y., Lee, J., Shrivastava, A. and Yoon, J. [2010]. Memory-aware application mapping on
coarse-grained reconfigurable arrays, International conference on High-Performance Embedded
Architectures and Compilers, pp. 171–185.

Kuhnle, M., Hubner, M., Becker, J., Deledda, A., Mucci, C., Ries, F., Coppola, A. M., Pieralisi, L.,
Locatelli, R., Maruccia, G., DeMarco, T. and Campi, F. [2008]. An interconnect strategy for a
heterogeneous, reconfigurable soc, IEEE Design and Test of Computers 25: 442–451.

Kusse, E. and Rabaey, J. [1998]. Low-energy embedded FPGA structures, Proceedings of the
1998 International Symposium on Low Power Electronics and Design., pp. 155–159.

Lanuzza, M., Perri, S. and Corsonello, P. [2007]. MORA: A New Coarse-Grain Reconfigurable
Array for High Throughput Multimedia Processing, Proceedings of the 7th Workshop on Sim-
ulation, Architectures and Modeling of Systems, Samos, Greece, pp. 159–168.

Lee, J., Choi, K. and Dutt, N. [2003]. An algorithm for mapping loops onto coarse-grained re-
configurable architectures, Proceedings of the 2003 ACM Conference on Languages, Compilers,
and Tools for Embedded Systems, pp. 183–188.

Lee, M.-H., Singh, H., Lu, G., Bagherzadeh, N., Kurdahi, F. J., Filho, E. M. C. and Alves, V. C.
[2000]. Design and implementation of the MorphoSys reconfigurable computing processor,
Journal of VLSI Signal Processing Systems 24(2–3): 147–164.

Liu, H. and Wong, D. [1998]. Network flow based circuit partitioning for time-multiplexed
FPGAs, Proceedings of the International Conference on Computer Aided Design, New York, NY,
USA, pp. 497 – 504.

Magarshack, P. and Paulin, P. [2003]. System-on-chip beyond the nanometer wall, Proceedings
of the 40th Design Automation Conference, pp. 419–424.

Mariani, G., Palermo, G., Slivano, C. and Zaccaria, V. [2009]. Meta-model assisted optimization
for design space exploration of multi-processor systems-on-chip, Proceedings of 12th Euromi-
cro Conference on Digital System Design, Architectures, Methods and Tools, DSD09, pp. 383–
389.

Mei, B., Lambrechts, A., Mignolet, J.-Y., Verkest, D. and Lauwereins, R. [2005]. Architec-
ture exploration for a reconfigurable architecture template, Design and Test of Computers
22(2): 90–101.

Mei, B., Vernalde, S., Verkest, D., De Man, H. and Lauwereins, R. [2002]. DRESC: A re-
targetable compiler for coarse-grained reconfigurable architectures, Proceedings of the IEEE
International Conference on Field-Programmable Technology, pp. 166–173.

98 Bibliography

Mei, B., Vernalde, S., Verkest, D., De Man, H. and Lauwereins, R. [2003]. Exploiting loop-
level parallelism on coarse-grained reconfigurable architectures using modulo scheduling.,
Proceedings of the Design, Automation and Test in Europe Conference and Exhibition, pp. 255–
261.

Mei, B., Vernalde, S., Verkest, D. and Lauwereins, R. [2004]. Design methodology for a tightly
coupled VLIW/reconfigurable matrix architecture: A case study, Proceedings of the Design,
Automation and Test in Europe Conference and Exhibition, pp. 1224–1229, vol.2.

Mirsky, E. and DeHon, A. [1996]. MATRIX: a Reconfigurable Computing Architecture With
Configurable Instruction Distribution and Deployable Resources, Proceedings of the 4th IEEE
Symposium on Field-Programmable Custom Computing Machines, IEEE, Napa Valley, CA, USA,
pp. 157–166.

Mishra, M. and Goldstein, S. [2007]. Virtualization on the tartan reconfigurable architecture,
Proceedings of the 17th International Conference on Field-Programmable Logic and Applica-
tions, pp. 323 –330.

Miyamori, T. and Olukotun, K. [1999]. REMARC: Reconfigurable multimedia array coproces-
sor, IEICE Transactions on Information and Systems 82(2): 389–397.

Morra, C., Becker, J., Ayala-Rincon, M. and Hartenstein, R. [2005]. FELIX: using rewriting-
logic for generating functionally equivalent implementations, International Conference on
Field Programmable Logic and Applications, pp. 25–30.

NVIDIA Corp. [2010a]. CUDA Programming Guide.
URL: developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/
NVIDIA_CUDA_Programming_Guide.pdf

NVIDIA Corp. [2010b]. OpenCL Programming Guide.
URL: developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/
NVIDIA OpenCL Programming Guide.pdf

Oskin, M., Chong, F. and Sherwood, T. [1998]. Active pages: a computation model for intelli-
gent memory, Proceedings of the 25th Annual International Symposium on Computer Architec-
ture, pp. 192–203.

Park, H., Fan, K., Kudlur, M. and Mahlke, S. [2006]. Modulo graph embedding: Mapping ap-
plications onto coarse-grained reconfigurable architectures, Proceedings of the International
Conference on Compilers, Architectures, and Synthesis for Embedded Systems, pp. 136–146.

Park, H., Fan, K., Mahlke, S., Oh, T., Kim, H. and Kim, H. [2008]. Edge-centric modulo schedul-
ing for coarse-grained reconfigurable architectures, Proceedings of the 17th International Con-
ference on Parallel Architecture and Compilation Techniques, pp. 166–176.

Patterson, D., Anderson, T., Cardwell, N., Fromm, R., Keeton, K., Kozyrakis, C., Thomas, R. and
Yelick, K. [1997]. A case for intelligent RAM, IEEE Micro 17(2): 34–44.

Plessl, C. and Platzner, M. [2005]. Zippy - a coarse-grained reconfigurable array with support
for hardware virtualization, Proceedings of the 16th International Conference on Application-
specific Systems, Architectures and Processors, pp. 213 – 218.

99 Bibliography

Pozzi, L., Atasu, K. and Ienne, P. [2006]. Exact and approximate algorithms for the exten-
sion of embedded processor instruction sets, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems CAD-25(7): 1209–29.

Pozzi, L. and Ienne, P. [2005]. Exploiting pipelining to relax register-file port constraints of
instruction-set extensions, Proceedings of the International Conference on Compilers, Architec-
tures, and Synthesis for Embedded Systems, San Francisco, CA, pp. 2–10.

Preis, T., Virnau, P., Paul, W. and Schneider, J. J. [2009]. GPU accelerated Monte Carlo simula-
tion of the 2d and 3d ising model, Journal of Computational Physics 228(12): 4468–4477.

Purna, K. and Bhatia, D. [1999]. Temporal partitioning and scheduling data flow graphs for
reconfigurable computers, IEEE Transactions on Computers 48(6): 579–590.

Rau, R. B. [1996]. Iterative Modulo Scheduling, International Journal of Parallel Processing
24(1): 2–64.

Rupp, C. R. [2003]. Multi-scale Programmable Array, U.S. Patent 6633181.

Shalf, J. [2007]. The new landscape of parallel computer architecture, Journal of Physics
Conference Series 78(1): 1–15.

Shields, C. [2001]. Area efficient layouts of binary trees in grids, PhD thesis, University of Texas
at Dallas.

Tang, X., Aalsma, M. and Jou, R. [2000]. A compiler directed approach to hiding configuration
latency in chameleon processors, Field-Programmable Logic and Applications: The Roadmap
to Reconfigurable Computing, Vol. 1896 of Lecture Notes in Computer Science, Springer Berlin
/ Heidelberg, pp. 29–38.

Waingold, E., Taylor, M., Srikrishna, D., Sarkar, V., Lee, W., Lee, V., Kim, J., Frank, M., Finch, P.,
Barua, R., Babb, J., Amarasinghe, S. and Agarwal, A. [1997]. Baring it all to software: Raw
machines, IEEE Transactions on Computers 30(9): 86–93.

Wilton, S. J. E. and Saleh, R. [2001]. Programmable logic IP cores in SoC design: opportunities
and challenges, Proceedings of the IEEE Custom Integrated Circuit Conference, pp. 63–66.

Xilinx [2011]. Xilinx website: www.xilinx.com.
URL: http://www.xilinx.com/

Ye, Z. A., Moshovos, A., Hauck, S. and Banerjee, P. [2000]. CHIMAERA: A high-performance
architecture with a tightly-coupled reconfigurable functional unit, Proceedings of the 27th
Annual International Symposium on Computer Architecture, Vancouver, Canada, pp. 225–35.

Yoon, J. W., Shrivastava, A., Park, S., Ahn, M., Jeyapaul, R. and Paek, Y. [2008]. SPKM: A novel
graph-drawing based algorithm for application mapping onto coarse-grained reconfigurable
architectures, Proceedings of the Asia and South Pacific Design Automation Conference, Seoul,
South Korea.

Yu, P. and Mitra, T. [2004]. Scalable custom instructions identification for instruction set exten-
sible processors, Proceedings of the International Conference on Compilers, Architectures, and
Synthesis for Embedded Systems, Washington, DC, pp. 69–78.

	Contents
	List of Figures
	List of Tables
	Introduction
	Background and Motivation: Explicitly Parallel Architectures
	The end of frequency scaling
	Power wall
	Verification wall

	Beyond single cores
	Multi-cores
	GPGPUs
	Field Programmable Gate Arrays
	Embedded FPGAs
	CGRAs

	A conceptual comparison

	Coarse Grained Reconfigurable Arrays: State of the Art
	CGRA architectures
	Linear arrays
	Mesh arrays
	Homogeneous and heterogeneous arrays
	CGRA design space and its exploration

	Computational kernels processing and scheduling
	Identification and technology mapping
	Partitioning
	Scheduling

	System Integration

	The EGRA template: CGRA Architectural Design Space Exploration
	Introduction
	Related work
	RAC architecture
	Cell architecture
	Architectural exploration
	Experimental Results

	EGRA array architecture
	Control unit
	EGRA operations
	Experimental results

	EGRA memory interface
	Memory architecture
	Architectural Exploration

	Conclusion

	Application Mapping: Branch-and-bound Partitioning and Slack-aware Scheduling on Coarse Grained Arrays
	Introduction
	Kernels scheduling on CGRAs
	Kernels partitioning

	Related Work
	Scheduling
	Partitioning

	Slack-Aware Scheduling Framework
	Expansion of the input DFG
	Generation of an initial schedule.
	Calculating the cost of a schedule.
	Iterating in search of a valid solution.

	Slack-aware Scheduling evaluation
	Test architectural parameters
	Experimental methodology
	Automatically generated data flow graphs
	Kernels from benchmark applications

	Kernels partitioning framework
	Problem formalization
	Single cut identification
	Exact multiple cuts identification
	Iterative multiple cuts identification
	Greedy partitioning

	Partitioning experimental evaluation
	Conclusion

	System Integration: EGRA as Intelligent Memory
	Introduction
	Related Work
	EGRA-host communication
	Hardware-Software platform
	Software components
	Hardware components

	Experimental results
	Conclusion

	Concluding Remarks and Possible Extensions
	Local register files
	Energy and power consumption
	Configurations and data transfer overhead
	Architectural meta-model

	Bibliography

