
Quasimartingales with a Linearly Ordered Index Set

Gianluca Cassesea,b
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Abstract

We consider quasi-martingales indexed by a linearly order set. We show that such processes are isomorphic
to a given class of (finitely additive) measures. From this result we easily derive the classical theorem of
Stricker as well as the decompositions of Riesz, Rao and the supermartingale decomposition of Doob and
Meyer.
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1. Introduction.

Rao’s Theorem (Rao, 1969b, Th. 2.3, p. 89) asserts that, under the usual conditions, each quasi-
martingale decomposes into the difference of two positive supermartingales. This decomposition turns
out to be a crucial step in the proof of the Bichteler Dellacherie theorem, the fundamental theorem of
semimartingale theory. We offer here a simple proof of this classical result without assuming right continuity
neither for the filtration nor for the processes. Moreover, we allow the index set to be just a linearly ordered
set. The setting is in fact the same as that proposed in Cassese (2007), where a version of the Doob Meyer
decomposition was obtained. A suitable example of a linearly ordered index set would be the whole real
line.

In our general model the main source of difficulty (and of interest) lies in the need to forsake the stopping
machinery, a most useful tool in stochastic analysis. We rather exploit the measure theoretic approach to
stochastic processes, inaugurated by Doléans-Dade (1968) and followed by many others, including Metivier
and Pellaumail (1975) and Dellacherie and Meyer (1982). In fact, we argue, the measure representation of
processes is useful also in the absence of countable additivity, on which the literature has focused hitherto.
The main result of this paper, Theorem 2, establishes that quasimartingales are isometrically isomorphic to
locally countably additive measures. We show that all classical decompositions follow straightforwardly.

2. The Model.

The following notation will be convenient. (Ω,F , P ) will be a standard probability space, ∆ a linearly
ordered set and (Fδ : δ ∈ ∆) an increasing family of sub σ algebras of F . All σ algebras considered include
the corresponding family of P null sets. Lp(Fδ) will be preferred to Lp(Ω,Fδ , P ), B(Fδ) to B(Ω,Fδ) (the
space of bounded, Fδ measurable functions on Ω) and Ω̄ to Ω×∆. F̄ will be the augmentation of F ⊗ 2∆

with respect to sets with P null projection on Ω. We shall also write ]δ1, δ2] for the (possibly empty) set
{δ ∈ ∆ : δ1 < δ ≤ δ2}.

All stochastic processes (Xδ : δ ∈ ∆) to be mentioned will be adapted, i.e. such that Xδ is Fδ measurable
for each δ ∈ ∆, but no form of right continuity is assumed. Two processes X and Y are considered as equal
up to modification whenever P (Xδ = Yδ) = 1 for all δ ∈ ∆ and all decompositions introduced later should
be understood to be unique in the above sense.
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Of special importance is the collection D of finite subsets of ∆, with generic element d = {δ1 ≤ . . . ≤
δN+1}, a directed with respect to inclusion. Dδ (resp. Dδ′

δ ) will denote the family of those sets {δ1 ≤ . . . ≤
δN+1} ∈ D such that δ1 = δ (resp. δ1 = δ and δN+1 = δ′).

To each d ∈ D we associate the collection

Pd =

{
N⋃
n=1

Fn×]δn, δn+1] : Fn ∈ Fδn , n = 1, . . . , N

}
(1)

and define P =
⋃
d∈D Pd and E =

⋃
d∈D B(Pd). Abusing notation, we use the symbol Pd also for the

operator Pd : B(F̄ )→ B(Pd) defined implicitly as

Pd(U) =
N∑
n=1

P (Uδn+1 |Fδn)1]δn,δn+1] (2)

A process A is increasing if P (0 ≤ Aδ1 ≤ Aδ2) = 1 for δ1 ≤ δ2 and infδ∈∆ P (Aδ) = 0; it is integrable if
supδ∈∆ P (|Aδ|) <∞. An increasing process A is natural if

P

(
b

∫
fdA

)
= LIM

d∈D
P

∫
Pd(b)fdA b ∈ L∞(F ), f ∈ E (3)

where LIM denotes here the Banach limit operator.

3. Quasi-martingales.

For each d ∈ D the d-variation of a process X is defined to be

V d(X) =
N∑
n=1

∣∣Xδn − P (Xδn+1 |Fδn)
∣∣ where d = {δ1, . . . , δN+1} (4)

A process X is a quasi-martingale if

‖X‖Q = sup
{
P
(
V d(X)

)
: d ∈ D

}
<∞ (5)

Quasi-martingales have been introduced and studied by Fisk (1965), Orey (1967) and Rao (1969b) who
proved the classical decomposition theorem in its general form. Related results were obtained by Stricker
(1975) and Stricker (1977) who proved uniqueness of the Rao decomposition. Our definition follows Rao
(1969b) and differs from the one adopted by (Stricker, 1977, p. 55) and by (Dellacherie and Meyer, 1982, p.
98), which requires quasi-martingales to be integrable, a property that we do not impose here. However, in
our setting supermartingales need not be quasi-martingales if not integrable.

Quasi martingales form a normed space with respect to ‖ · ‖Q if we only identify processes which differ
by a martingale. We will denote such space as Q. A quasi-potential X is a quasi-martingale which admits
a sequence 〈δn〉n∈N in ∆ such that limn P (|Xδ̄n |) = 0 for any sequence

〈
δ̄n
〉
n∈N such that δ̄n ≥ δn for

n = 1, 2, . . .. A potential is at the same time a quasi-potential and a positive supermartingale. Of course
the difference of two potentials is a quasi-potential.
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We shall make use of the following inequality, where d′ = {δ1, . . . , δN+1} and d = {δ1, δN+1}

P
(
V d

′
(X)

∣∣∣Fδ1

)
= P

(
N∑
n=1

∣∣Xδn − P (Xδn+1 |Fδn)
∣∣∣∣∣∣∣Fδ1

)

≥
N∑
n=1

∣∣P (Xδn |Fδ1)− P (Xδn+1 |Fδ1)
∣∣

≥

∣∣∣∣∣
N∑
n=1

P
(
Xδn −Xδn+1

∣∣Fδ1

)∣∣∣∣∣ (6)

=
∣∣Xδ1 − P

(
XδN+1

∣∣Fδ1

)∣∣
= V d(X)

We draw from (6) the following implications

Lemma 1. Let X be a quasi-martingale and 〈δn〉n∈N an increasing sequence. The net
〈
P (V d(X)|Fδ)

〉
d∈Dδ

and the sequence 〈P (Xδn∨δ|Fδ)〉n∈N both converge in L1(Fδ).

Proof. Let d′ = {δn1 , . . . , δnK+1}, d = {δ1, . . . , δN+1} ∈ Dδ and d ≤ d′. Then

V d
′
(X) =

K∑
k=1

∣∣Xδk − P (Xδk+1 |Fδk)
∣∣ =

N∑
n=1

∑
{δn≤δnk≤δn+1}

∣∣∣Xδnk
− P (Xδnk+1

|Fδnk
)
∣∣∣

so that, by (6),

P
(
V d

′
(X)

∣∣∣Fδ

)
=

N∑
n=1

P

P
 ∑
{δn≤δnk≤δn+1}

∣∣∣Xδnk
− P (Xδnk+1

|Fδnk
)
∣∣∣
∣∣∣∣∣∣Fδn

∣∣∣∣∣∣Fδ


≥

N∑
n=1

P
( ∣∣Xδn − P (Xδn+1 |Fδn)

∣∣∣∣Fδ

)
= P

(
V d(X)

∣∣Fδ

)
The net

〈
P (V d(X)|Fδ)

〉
d∈Dδ

is thus increasing but P (V d(X)) ≤ ‖X‖Q. Convergence in L1 follows then

from (Cassese, 2007, Lemma 1). Again by (6), we get that P
(∑N

n=1

∣∣P (Xδn |Fδ)− P (Xδn+1 |Fδ)
∣∣) ≤

P (V d(X)) ≤ ‖X‖Q which proves the second claim.

4. A Characterisation.

Quasi-martingales can be characterised as elements of the space ba(F̄ ), i.e. as bounded finitely additive
measures on F̄ . x ∈ ba(F̄ ) is locally countably additive, in symbols x ∈M loc, if x is countably additive in
restriction to Pd for each d ∈ D .

Theorem 2. There is an isometric isomorphism between Q and M loc determined by the identity

x(f) = −LIM
d∈D

P

∫
Pd(f)dX f ∈ B(F̄ ) (7)

In particular, each x ∈ M loc (resp. x ∈ M loc
+ ) corresponds via (7) to one and only one quasi-potential

(resp. potential) X which is necessarily integrable.
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Remark 1. If x and X are as in (7) then necessarily x(f) = LIMd∈D x(Pd(f)). Thus, if |x| denotes the
total variation measure of x and if H ∈P,

|x|(H) = sup
{g∈B(F̄),|g|≤1}

x(1Hg) = sup
{g∈B(F̄),|g|≤1}

LIMd∈D x(Pd(g)1H) ≤ sup
{h∈E ,|h|≤1}

x(h1H)

In other words, the restriction of |x| to P coincides with total variation of x|P.

Proof. Let X be a quasi-martingale. In view of the inequality
∣∣P ∫ Pd(f)dX

∣∣ ≤ ‖f‖B(F̄)‖X‖Q, the
right-hand side of (7) defines a continuous linear functional on B(F̄ ) and thus admits the representation
as an integral with respect to some x ∈ ba(F̄ ), (Dunford and Schwartz, 1988, Cor. IV.5.3, p. 259) with
‖x‖ ≤ ‖X‖Q. The correspondence between X and x is linear by the properties of the Banach limit. Given
that P

∫
hdX ≥ ‖X‖Q − ε for all ε > 0 and some h ∈ E with ‖h‖ ≤ 1, then ‖x‖ = ‖X‖Q. Fix d ∈ D and

let 〈Hk〉k∈N be a decreasing sequence in Pd with empty intersection. With no loss of generality we may
assume that d = {δ, δ′}. By definition, Hk = Fk×]δ, δ′] for some Fk ∈ Fδ. Then, by Remark 1

|x|(Hk) = sup
{h∈E ,|h|≤1}

x(h1Hk)

≤ sup
d∈Dδ′

δ

P

(
Fk

N∑
n=1

|Xδn − P (Xδn+1 |Fδn)|

)
= sup

d∈Dδ′
δ

P
(
FkP (V d(X)|Fδ)

)
By Lemma 1(i), P (V d(X)|Fδ) converges in L1(Fδ) and therefore P (FkV d(X)) converges with d ∈ Dδ′

δ

uniformly in k so that limk |x|(Hk) ≤ limk limd∈Dδ′
δ
P (FkV d(X)) = limd∈Dδ′

δ
limk P (FkV d(X)) = 0 which

proves that |x| ∈ M loc and, a fortiori, that the same is true of x. If X is a potential, it is then a quasi-
martingale associated to some x ∈M loc

+ .
Fix now x ∈M loc and let 〈δx(n)〉n∈N and 〈δx(n)〉n∈N be monotonic sequences in ∆ such that

lim
n
|x|(]δx(n), δx(n)]) = sup

δ,δ′∈∆
|x|(]δ, δ′]) (8)

Define xδ, xδ ∈ ba(F ) implicitly as

xδ(F ) = lim
n
x(F×]δx(n), δ]), xδ(F ) = lim

n
x(F×]δ, δx(n)]) F ∈ F (9)

Given that x is locally countably additive, then xδ|Fδ � P |Fδ and we denote by Xδ the corresponding
Radon Nikodym derivative. Clearly, P (|Xδ|) ≤ ‖x‖. If F ∈ Fδ and δ′ ≥ δ, then P (1F (Xδ − P (Xδ′ |Fδ)) =
x(F×]δ, δ′]) so that (7) is satisfied. Moreover limn P (|Xδ̄n |) ≤ limn limk |x|(]δx(n), δx(k)]) = 0 for any
sequence

〈
δ̄n
〉
n∈N such that δ̄n ≥ δx(n) for all n. If x ≥ 0 then it is obvious that X is a positive su-

permartingale. If Y were another quasi-potential corresponding to x via (7) then X − Y would be at
the same time a quasi-potential and a martingale. But then, for all δ ∈ ∆ and some sequence

〈
δ̄n
〉
n∈N,

P (|Xδ − Yδ|) ≤ limn P (|Xδ̄n∨δ − Yδ̄n∨δ|) = 0.

A conclusion implicit in Theorem 2 is that all quasi-potentials are integrable. Another consequence is the
following version of a result of (Stricker, 1977, Th. 1.2, p. 55).

Corollary 3 (Stricker). Let X be a quasi-martingale, (Gδ : δ ∈ ∆) a sub filtration of (Fδ : δ ∈ ∆) and
define XG

δ = P (Xδ|Gδ). Then the process XG is itself a quasi-martingale.

Proof. The restriction to the subfiltration preserves local countable additivity of the corresponding mea-
sure.

The issue of the invariance of the process structure with respect to a change of the underlying filtration was
also addressed in Cassese (2008).
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5. Decompositions.

The following version of Riesz decomposition follows immediately from Theorem 2.

Corollary 4. A process X is a quasi-martingale if and only if it decomposes into the sum

X = M +B (10)

of a martingale M and a quasi-potential B. The decomposition is then unique. Moreover, if X, M and B
are as in (10), then

(i) X is a (positive) supermartingale if and only if B is a potential (and M is positive);
(ii) If for any δ there is an integer n such that δx(n) ≥ δ, then M is uniformly integrable if and only if
{Xδx(n) : n = 1, 2, . . .} is so.

Proof. By Theorem 2, X corresponds to some x ∈ M loc and x, in turn, to a unique quasi-potential, B.
Given that ‖X −B‖Q = 0, then M = X −B is indeed a martingale. To be more explicit, we write

Xδ = lim
n
P
(
Xδx(n)∨δ

∣∣Fδ

)
+
dxδ
dP

∣∣∣∣
Fδ

= Mδ +Bδ (11)

the sequence 〈δx(n)〉n∈N being defined as in (8). To see that (11) is well defined, observe that the limit
appearing in it exists in L1(Fδ) (by Lemma 1) and that xδ(F ) = limn x(F×]δ, δx(n)]) = limn x(F×]δ, δx(n)∨
δ]) = limn P (1F (Xδ −Xδx(n)∨δ)) for all F ∈ Fδ . Moreover,

|P (1F (Mδ −Mδ′))| = lim
n

∣∣P (1F (Xδx(n)∨δ −Xδx(n)∨δ′))
∣∣ ≤ |x| ((]δx(n), δx(n) ∨ δ′])) = 0

so that M is a martingale and it is positive if X ≥ 0.
Claim (i) is a consequence of the fact that x ≥ 0 whenever X is a supermartingale. If {Xδx(n) : n =

1, 2, . . .} is uniformly integrable then P (|Mδ|1F ) ≤ supn P (|Xδx(n)|1F ) for any F ∈ Fδ , which implies
uniform integrability of M . The converse is obvious given that the collection {Mδx(n) : n = 1, 2, . . .} is
uniformly integrable by assumption while limn P (|Bδx(n)|) = 0 by construction.

It is noteworthy that, when the index set is order dense, e.g. ∆ = R, uniform integrability of the
martingale M does not require more than uniform integrability of X along a given sequence, i.e. of a
countable set. In Cassese (2007) it was shown that the class D property could likewise be restricted to
consider only stopping times with countably many values.

Corollary 5 (Rao and Stricker). A process X is a quasi-potential (resp. an integrable quasi-martingale)
if and only if it decomposes into the difference

X = X ′ −X ′′ (12)

of two potentials (resp. positive, integrable supermartingales) such that ‖X‖Q = ‖X ′‖Q+‖X ′′‖Q. Any other
decomposition Y ′ − Y ′′ of X as the difference of two potentials (resp. positive, integrable supermartingales)
is such that Y ′ −X ′ and Y ′′ −X ′′ are potentials (resp. positive, integrable, supermartingales).

Proof. Let X be a quasi-martingale isomorphic to x, x′− x′′ be its Jordan decomposition and X ′ and X ′′

the associated potentials as of Theorem 2.(i). Then, ‖X‖Q = ‖x‖ = ‖x′‖+ ‖x′′‖ = ‖X ′‖+ ‖X ′′‖. If X is a
quasi potential, then (12) follows from (11). If X is an integrable quasi-martingale with Riesz decomposition
M +B, then M is integrable. Define

M ′δ = lim
n
P
(
M+
δx(n)∨δ

∣∣∣Fδ

)
and M ′′δ = lim

n
P
(
M−δx(n)∨δ

∣∣∣Fδ

)
Observe that convergence takes place in L1(Fδ) as the corresponding sequences are increasing but norm
bounded. Let B = B′ − B′′ be the decomposition of the quasi-potential B into the difference of two
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potentials, following from the previous step and set X ′ = M ′+B′ and X ′′ = M ′′+B′′. Clearly, X ′ and X ′′

are positive supermartingales and satisfy (12). Moreover ‖X‖Q = ‖B′‖Q + ‖B′′‖Q = ‖X ′‖Q + ‖X ′′‖Q. Let
Y ′ − Y ′′ be a decomposition of X into two potentials (resp. positive, integrable supermartingales). Then
Y ′ corresponds to some y′ ∈M loc such that necessarily y′ ≥ x′ so that the potential part of Y ′ exceeds the
corresponding component of X ′. To conclude that the same is true of the martingale part (if any), observe
that Y ′ ≥ X+ so that

lim
n
P
(
Y ′δx(n)∨δ

∣∣∣Fδ

)
≥ lim

n
P
(
X+
δx(n)∨δ

∣∣∣Fδ

)
≥ lim

k
lim
n
P
(
P
(
Xδx(n)∨δ

∣∣Fδx(k)∨δ
)+∣∣∣Fδ

)
= lim

k
P
(
M ′δx(k)∨δ

∣∣∣Fδ

)
= M ′δ

We then obtain from (11) that Y ′−X ′ is indeed a potential (resp. positive, integrable supermartingale). It
is easily seen that the same is true of Y ′′.

Local countable additivity has not been much studied in the literature, given the exclusive attention paid
to the class ca(P) in the literature. Such attention was motivated by the proof offered by Doléans-Dade
(1968) that the Doob Meyer decomposition is equivalent, under the usual conditions, to countable additivity
over the predictable σ algebra. It was Mertens (1972) the first to provide a version of this result without
invoking such regularity assumptions, a result later proved in greater generality by (Dellacherie and Meyer,
1982, Th. 20, p. 414). A proof, in the setting of linearly ordered index set, was given in Cassese (2007)
based on a suitable extension of the class D property. A purely measure theoretic proof was provided in
(Cassese, 2008, Th. 4, p. 597) for processes indexed by the positive reals. This same argument will now be
easily adapted to the general setting considered here.

Theorem 6. Let x ∈M loc
+ be isomorphic to a potential X and define xF implicitly as

xF (F ) = x(F ×∆) F ∈ F (13)

Then xF � P if and only if there exist M ∈ L1
+ and an increasing, integrable, natural process A such that

Xδ = P (M |Fδ)−Aδ P a.s., δ ∈ ∆ (14)

The decomposition (14) is unique.

Proof. Assume that xF � P and recall the definition (9) of xδ ∈ ba(F )+. Observe that if F ∈
F then, xF (F ) = LIMd∈Dx(Pd(1F )) = LIMd∈D limn x(Pd(1F )1]δx(n),δx(n)]) = limn x(F×]δx(n), δ]) +
x(F×]δ, δx(n)]) = xδ(F )+xδ(F ), that is xF = xδ+xδ for all δ ∈ ∆. The inequality xδ ≤ xF guarantees that
xδ � P for all δ ∈ ∆. Let Aδ be the corresponding Radon Nikodym derivative. Then P (0 ≤ Aδ ≤ Aδ′) = 1
for all δ ≤ δ′. Choose b ∈ L∞(F ) and f ∈ E . Then f = f1]δ′,δ] for some δ′, δ ∈ ∆ and (7) implies

P

(
b

∫
fdA

)
= xδ(bf)

= x(bf1]δ′,δ])

= LIM
d∈D

x
(
Pd(b)f1]δ′,δ]

)
= LIM

d∈D
xδ
(
Pd(b)f

)
= LIM

d∈D
P

∫
Pd(b)fdA
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so that A is natural (and thus adapted). Moreover, letting M = dxF /dP and F ∈ Fδ we have

P (1FXδ) = lim
n
x(F×]δ, δx(n) ∨ δ]) + lim

n
P (1FXδx(n)∨δ) = xδ(F ) = xF (F )− xδ(F ) = P (1F (M −Aδ))

Suppose that N − B is another such decomposition. Then A and B are both natural and then for each
F ∈ Fδ ,

P (1FAδ) = LIM
d∈D

lim
n
P

∫ δ

δx(n)

Pd(F )dA = LIM
d∈D

lim
n
P

∫ δ

δx(n)

Pd(F )dB = P (1FBδ)
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Doléans-Dade, C., 1968. Existence du Processus Croissant Naturel Associé à un Potentiel de la Classe (D). Z. Wahrsch. Verw.
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