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Abstract

Recent years have seen the rapid growth of web-based applications such as
search engines, social networks, and e-commerce platforms. As a consequence,
our daily life activities rely on computers more and more each day. Designing
reliable computer systems has thus become of a prime importance. Reliability
alone is not sufficient however. These systems must support high loads of client
requests and, as a result, scalability is highly valued as well.

In this thesis, we address the design of fault-tolerant computer systems. More
precisely, we investigate the feasibility of designing scalable database systems
that offer the illusion of accessing a single copy of a database, despite failures.
This study is carried out in the context of large networks composed of several
groups of machines located in the same geographical region. Groups may be data
centers, each located in a local area network, connected through high-latency
links. In these settings, the goal is to minimize the use of inter-group links. We
mask failures using data replication: if one copy of the data is not available, a
replica is accessed instead. Guaranteeing data consistency in the presence of
failures while offering good performance constitutes the main challenge of this
thesis.

To reach this goal, we first study fault-tolerant multicast communication
primitives that offer various message ordering guarantees. We then rely on these
multicast abstractions to propose replication protocols in which machines hold
a subset of the application’s data, denoted as partial replication. In contrast to
full replication, partial replication may potentially offer better scalability since
updates need not be applied to every machine in the system. More specifically,
this thesis makes contributions in the distributed systems domain and in the
database domain.

In the distributed systems domain, we first devise FIFO and causal multicast
algorithms, primitives that ease the design of replicated data management pro-
tocols, as we will show. We then study atomic multicast, a basic building block
for synchronous database replication. Two failure models are considered: one in
which groups are correct, i.e., groups contain at least one process that is always
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up, and one in which groups may fail entirely. We show a tight lower bound on
the minimum number of inter-group message delays required for atomic mul-
ticast in the first failure model. When an arbitrary number of processes may
fail and process failures may not be predicted, we demonstrate that erroneous
process failure suspicion cannot be tolerated. We then present atomic multicast
protocols for the case of correct and faulty groups and empirically compare their
performance. The majority of the proposed algorithms are latency-optimal.

In the database domain, we extend the database state machine (DBSM),
a previously proposed full replication technique, to partial replication. In the
DBSM, transactions are executed locally at one database site according to the
strict two-phase locking policy. To ensure global data consistency, a certification
protocol is triggered at the end of each transaction. We present three certifi-
cation protocols that differ in the communication primitives they use and the
amount of information related to transactions they store. The first two algo-
rithms are tailored for local area networks and ensure that sites unrelated to a
transaction T only permanently store the identifier of T . The third protocol is
more generic since it is not customized for any type of network. Furthermore,
with this protocol, only sites that replicate data items read or updated by T are
involved in T ’s certification.
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Chapter 1

Introduction

If you know exactly what you are going to do,
what is the point of doing it?

Pablo Picasso

Demand for cheap and reliable computer systems has dramatically increased
over the years. Internet-scale applications rely on machines located in data cen-
ters spread around the globe to provide low response times and high availability
to clients. In this context, machines failures may have various causes ranging
from defective hardware to data center fires. A natural way of masking these
failures is by means of replication: as soon as one machine fails and cannot offer
its service anymore, one of its replicas takes over. The main challenge in achiev-
ing replication is to keep the state of the replicas consistent at all times, despite
machine crashes and the system’s asynchrony.

1.1 Motivation

To tackle the complexity of data replication, several fault-tolerant communica-
tion primitives have been defined [10; 32]. All of these primitives allow to
multicast messages to a set of processes, possibly located on different machines,
and ensure agreement on the set of messages delivered, despite failures and
unpredictable message delays. In addition, these communication abstractions
offer various message ordering guarantees, ranging from first-in-first-out order,
referred to as FIFO order, where messages originating from the same process
are delivered in the order they were multicast, to total order, where processes

1



2 1.1 Motivation

agree on the message delivery order. Atomic broadcast and multicast, primitives
that ensure total ordering of messages, have been used in numerous replication
schemes, notably in the context of distributed databases [2; 45; 33; 34; 47; 55;
62; 39; 46]. Thanks to the adequacy of the properties they offer, most of the
complexity involved in synchronizing database replicas is handled by the group
communication layer.

Previous work on group communication-based database replication has fo-
cused mainly on full replication. However, full replication might not always be
adequate. First, sites might not have enough disk or memory resources to repli-
cate the database fully. Second, full replication provides limited scalability since
every update transaction is executed by each replica. Third, when access locality
is observed, full replication is pointless. Replication in large networks, e.g., wide
area networks, is another interesting and related question. Two main reasons
motivate large area network replication: First, if clients accessing the database
are spread over a large geographical region, it is a good idea to place replicas
as close to the clients as possible so as to minimize the clients’ access latencies.
Second, to tolerate natural disasters such as earthquakes or hurricanes, database
replicas must be placed as far as possible from each other.

Efficient replication protocols offering these advantages require multicast al-
gorithms tailored for large networks. In general, these networks are composed of
several groups of machines located in the same geographical region. Groups may
be data centers, each located in a local area network (LAN), connected through
continental or even inter-continental links. The latency of intra-group and inter-
group communication links is often separated by several orders of magnitude.
Protocols should thus use inter-group communication links sparingly. In the
replicated systems we envision, high availability is provided inside groups by
tolerating machine crashes and across the system by coping with group crashes.

The main challenge addressed by this thesis is to provide partial replication
protocols that are scalable, use inter-group links sparingly, and are as resilient
to process failures as possible. Achieving all of these goals simultaneously is not
an easy task. In fact, existing protocols either (i) assume full replication, and
thus exhibit poor scalability, (ii) do not tolerate group crashes, or (iii) exhibit
prohibitive latencies in wide area networks. Motivated by these observations,
this thesis first studies multicast communication primitives that are at the core
of partial replication protocols. We then show how to build partial replication
protocols on top of these primitives.
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1.2 Research Contributions

This thesis provides four major contributions. In the distributed systems domain,
we study and devise multicast algorithms offering different message ordering
guarantees. In the database domain, we show how partial replication protocols
can be built on top of the adequate group communication primitives.

FIFO and Causal Multicast. FIFO and causal multicast help the programming
of distributed applications in various domains such as global snapshot construc-
tion [6], fair resource allocation [37], and replicated data management [57].
These group communication primitives have been extensively studied in the lit-
erature. However, previously proposed solutions either do not tolerate quasi-
reliable networks, in which a message sent can be lost because of the crash of
its sender, or disallow sending messages to groups the sender does not belong
to. In contrast, we propose algorithms that tolerate quasi-reliable networks, al-
low messages to be multicast to any subset of groups, and tolerate an arbitrary
number of process failures.

Atomic Multicast. We devise atomic multicast algorithms in large scale net-
works and seek to minimize the number of inter-group message delays between
the multicast of a message and its delivery. We study the minimal cost of multi-
cast in the case where groups are correct, i.e., groups contain at least one process
that is always up, and in the case of data center disasters, where groups may
crash entirely. In particular, we are interested in the consequences of requiring
multicast algorithms to be genuine: to deliver a message m, only m’s sender and
addressees may participate in the protocol. In the context of correct groups,
we show that genuine atomic multicast requires an extra inter-group communi-
cation step compared to its non-genuine counterpart. When failures cannot be
predicted and groups may crash entirely, we demonstrate that genuine multicast
demands perfectly accurate information about process failures: processes may
not erroneously suspect other processes to have crashed. As an alternative, we
devise a non-genuine protocol that weakens the failure detection requirements
and allows optimal message delivery latency.

Evaluation of Multicast Protocols. In the context of correct groups, genuine
multicast is more expensive in terms of latency than its non-genuine counter-
part. When choosing a multicast algorithm, it seems natural to question under
which circumstances a genuine algorithm is to be preferred over a non-genuine
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algorithm. We answer this question by experimentally evaluating the perfor-
mance of latency-optimal genuine and non-genuine algorithms proposed in this
thesis. As part of the empirical study, we assess the scalability of the protocols by
varying the number of groups, the proportion of global messages, and the load,
i.e., the frequency at which messages are multicast. To complete our study, we
measure the overhead of a disaster-tolerant multicast protocol presented in this
dissertation. We also identify a convoy effect in multicast algorithms that delay
the delivery of messages and propose techniques to reduce this effect.

Partial Replication. Partial replication allows database sites to replicate a sub-
set of the application’s data. Compared to full replication, higher transaction
loads can potentially be supported since updates need not be applied to all repli-
cas. We show how partial replication protocols can be built on top of multicast
primitives by extending the database state machine (DBSM), a replication tech-
nique initially proposed in the context of full replication [47]. In the DBSM,
transactions are executed locally on database sites according to the two-phase
locking policy. To guarantee global consistency, a certification protocol is trig-
gered at the end of each transaction. We present three different certification
protocols. The first two are tailored for local area networks and ensure that sites
unrelated to a transaction T only permanently store the identifier of T . The third
protocol is more generic since it is not customized for any type of network. Fur-
thermore, with this protocol, only sites that replicate data items read or updated
by T are involved in T ’s certification.

1.3 Thesis Outline

This thesis is organized as follows. Chapter 2 describes the system model, de-
fines fault-tolerant multicast and related problems, and provides database def-
initions and notations used throughout this thesis. Chapter 3 presents latency-
optimal FIFO and causal multicast algorithms that tolerate an arbitrary number
of process failures. Chapter 4 addresses the problem of atomic multicast in large
networks composed of several groups of machines, where intra-group and inter-
group communication latency are separated by several orders of magnitude. We
first consider that each group contains at least one correct process and then
relax this assumption by allowing groups to crash entirely. Chapter 5 empir-
ically compares genuine and non-genuine latency-optimal protocols proposed
in Chapter 4. Chapter 6 extends the database state machine to partial replica-
tion and proposes three protocols that are built on top of group communication
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primitives. Finally, Chapter 7 concludes this thesis and proposes future research
directions.
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Chapter 2

System Model and Definitions

A distributed system is one in which the failure of a computer you
didn’t even know existed can render your own computer unusable.

Leslie Lamport

A system model describes precisely and concisely all the hypotheses about the
system. We here define the system model assumed throughout this thesis, define
some fault-tolerant problems of interest to this work, and present important
database definitions.

2.1 Processes and Links

We consider a system Π = {p1, ..., pn} of processes which communicate through
message passing and do not have access to a shared memory or a global clock.
Processes may however access failure detectors [15]. We assume the benign
crash-stop failure model: processes may fail by crashing, but do not behave
maliciously. A process that never crashes is correct; otherwise it is faulty. The
maximum number of processes that may crash is denoted by f .

The system is asynchronous, i.e., messages may experience arbitrarily large
(but finite) delays and there is no bound on relative process speeds. Further-
more, the communication links do not corrupt nor duplicate messages and are
quasi-reliable, more precisely:

• uniform integrity: For any process p and message m, p receives m at most
once, and only if m was previously sent to p.

7



8 2.2 Fault-Tolerant Multicasts and Related Problems

• quasi-reliability: For any two correct processes p and q, and any message
m, if p sends m to q, then q eventually receives m.

We define Γ = {g1, ..., gm} as the set of process groups in the system. Groups are
disjoint, non-empty, and satisfy

⋃

g∈Γ g = Π. For each process p ∈ Π, group(p)
identifies the group p belongs to. A group g that contains at least one correct
process is correct; otherwise g is faulty.

2.2 Fault-Tolerant Multicasts and Related Problems

Group communication was initially proposed as part of the V kernel [17]. This
seminal paper introduced the idea of multicasting a message to a group of pro-
cesses hosted on different machines. Several message ordering semantics such
as causal and total order were later introduced in [10; 32]. All of these group
communication primitives ensure reliability—agreement on the set of messages
delivered—but offer various message ordering semantics. For example, causal
order stipulates that the message delivery order does not violate causality, i.e.,
if the multicast of a message m causally precedes the multicast of a message m′,
then processes do not deliver m′ unless they delivered m previously. With total
order, all processes deliver messages in the same order but not necessarily in
causal order.

These communication abstractions ease the design of distributed applica-
tions. For instance, causal multicast may be used to construct consistent global
snapshots of a distributed system [6]; total order multicast, also referred to as
atomic multicast, supports data replication by ensuring that all client operations
are executed in the same order at all replicas [37].

In Figure 2.1, we illustrate how an application interacts with the group com-
munication layer. To multicast a message m to a set of groups, the application
invokes the group communication abstraction. When a message m is ready to
be delivered, the application is notified through a deliver(m) callback. To im-
plement the reliability and various message ordering guarantees despite process
failures, the group communication layer uses the physical network to exchange
protocol messages with the other machines in the system.

Below, we define several reliable group communication primitives and one
agreement problem, namely consensus. These definitions, except for the uni-
form prefix order property of atomic multicast, are borrowed from [32]. Let A
be an algorithm solving a problem. We define R(A ) as the set of all admissible
runs ofA .
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Figure 2.1. The application and group communication layers.

Reliable Multicast Our algorithms use a uniform reliable multicast primitive
that allows to multicast messages reliably to a subset of the groups in Γ. For each
message m, m.dst denotes the groups to which the message is reliably multicast.
Let p be a process. By abuse of notation, we write p ∈ m.dst instead of ∃g ∈ Γ :
g ∈ m.dst∧p ∈ g. Uniform reliable multicast is defined by primitives R-MCast(m)
and R-Deliver(m), and satisfies the following properties:

• uniform integrity: For any process p and any message m, p R-Delivers m at
most once, and only if p ∈ m.dst and m was previously R-MCast.

• validity: If a correct process p R-MCasts a message m, then eventually all
correct processes q ∈ m.dst R-Deliver m.

• uniform agreement: If a process p R-Delivers a message m, then eventually
all correct processes q ∈ m.dst R-Deliver m.

FIFO Multicast FIFO multicast ensures that the delivery order of messages
multicast by some process q follows the order in which these messages were
multicast. More precisely, uniform FIFO multicast is defined by primitives F-
MCast(m) and F-Deliver(m) and satisfies the uniform integrity, validity, and uni-
form agreement properties of reliable multicast as well as the following property:

• uniform FIFO order: If a process p F-MCasts a message m before F-MCasting
a message m′, then no process in m.dst∩m′.dst F-Delivers m′ unless it has
previously F-Delivered m.

Causal Multicast Causal multicast is defined by primitives C-MCast(m) and C-
Deliver(m), and satisfies the uniform integrity, validity, and uniform agreement
properties of reliable multicast as well as the following property:
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• uniform causal order: For any two messages m and m′, if C-MCast(m) →
C-MCast(m′), then no process p ∈ m.dst ∩ m′.dst C-Delivers m′ unless it
has previously C-Delivered m.1

Atomic Multicast Atomic multicast allows messages to be A-MCast to any sub-
set of groups in Γ. For every message m, m.dst denotes the groups to which m
is multicast. A message m is multicast by invoking A-MCast(m) and delivered
with A-Deliver(m). Consider the set of messages processes A-Deliver. We define
the relation < on this set as follows: m < m′ iff there exists a process that A-
Delivers m before m′. Atomic multicast satisfies the uniform integrity, validity,
and uniform agreement properties of reliable multicast as well as:

• uniform prefix order: For any two messages m and m′ and any two pro-
cesses p and q such that {p, q} ⊆ m.dst ∩ m′.dst, if p A-Delivers m and
q A-Delivers m′, then either p A-Delivers m′ before m or q A-Delivers m
before m′.

• uniform acyclic order: The relation < is acyclic.

Informally, the uniform acyclic order property ensures that processes agree
on the order of messages they A-Deliver and forbids cycles from occurring in the
delivery sequence. Suppose three groups exist in the system, gx , g y , and gz, and
three messages mx ,z, my,x , mz,y are multicast such that message mi, j is addressed
to groups {gi, g j}. Without the uniform acyclic order property, we could have
mx ,z < my,x , my,x < mz,y , and mz,y < mx ,z. This scenario is problematic for the
following reason: suppose that group gi replicates object i and that message mi, j

writes i and reads j. Hence, with the message delivery order specified above,
there exists no serial order in which messages can logically be placed such that it
represents the global execution of these operations. Indeed, since message mi, j

writes i and reads j, the serial order SO must follow the message delivery order
MO. Since MO is cyclic, SO cannot be serial.

The uniform acyclic property alone is not sufficient however. Indeed, with-
out uniform prefix order, atomic multicast allows holes to appear in the message
delivery sequence. Consider a run R where three messages m1, m2, and m3 are
addressed to a group g. A process p of g A-Delivers m1, m2, and m3 in that
order. Another faulty member q of g A-Delivers m1 directly followed by m3. In

1The relation→ is Lamport’s transitive happened before relation on events [37]. Here, events
can be of two types, C-MCast or C-Deliver. The relation is defined as follows: e1 → e2 ⇔ e1, e2

are two events on the same process and e1 happens before e2 or e1 = C-MCast(m) and e2 =
C-Deliver(m) for some message m.



11 2.2 Fault-Tolerant Multicasts and Related Problems

R, the delivery sequence of q contains a hole: q does not A-Deliver m2. Note that
none of the properties of atomic multicast, apart from uniform prefix order, are
violated in R. In particular, uniform agreement does not force q to A-Deliver m2

since q is faulty. However, if we apply the uniform prefix order property to this
run, q is forced to A-Deliver m2 before m3. Indeed, by this property, either p A-
Delivers m3 before m2 or q A-Delivers m2 before m3. The first case is impossible
since p would A-Deliver m3 twice, contradicting uniform integrity. Hence, only
the second case is possible and q A-Delivers m2 before m3.

Protocols solving reliable, FIFO, causal, and atomic multicast may be gen-
uine, i.e., to deliver a message m, only the addressees of m participate in the
protocol [31]. More precisely:

• Genuineness: An algorithmA solving multicast is said to be genuine iff for
any run R ∈ R(A ) and for any process p, in R, if p sends or receives a
message then some message m is multicast and either p is the process that
multicasts m or p ∈ m.dst.

Broadcasts Reliable, FIFO, Causal, and Atomic broadcast satisfy the same prop-
erties as their respective multicast counterpart. With broadcast however, all
messages m are such that m.dst = Γ, i.e., messages are always broadcast to all
groups in the system. Note that for atomic broadcast, the uniform acyclic order
property is superfluous: the uniform prefix and integrity properties imply the
uniform acyclic order property.

In local-area networks, some implementations of reliable broadcast can take
advantage of network hardware characteristics to deliver messages in total order
with high probability [49]. We call such a primitive Weak Ordering Reliable
Broadcast, WOR-Broadcast.

Consensus We also assume the existence of a uniform consensus abstraction. In
the consensus problem, processes propose values and must reach agreement on
the value decided. Uniform consensus is defined by the primitives propose(v)
and decide(v) and satisfies the following properties:

• uniform integrity: If a process decides v, then v was previously proposed
by some process.

• uniform agreement: If a process decides v, then all correct processes even-
tually decide v.

• termination: Every correct process eventually decides exactly one value.
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2.3 Failure Detectors

Fischer, Lynch, and Patterson showed in [27] that consensus is not solvable
in an asynchronous system even if only one process is allowed to crash. To
circumvent this impossibility result, the research community proposed a num-
ber of approaches: randomized algorithms [8; 50], partially synchronous sys-
tems [26; 16], and failure detector oracles [15]. These oracles provide possibly
inaccurate information about process failures. For example, a failure detector
may suspect a process that has not failed or it may never suspect a process that
crashed. Many different failure detectors have been introduced in the litera-
ture, usually differing on what properties they ensure with regards to correct
processes (accuracy) and crashed ones (completeness).

Perhaps the most famous among all of them is the leader failure detector Ω,
which allows to solve consensus when a majority of processes are correct [14].
At each process p, this failure detector outputs the identity of a process leaderp

and ensures the following property: if there exists a correct process, then there
exists a correct process l and a time after which, for every correct process p,
leaderp = l.

A natural question to ask is what is the minimal amount of information a
failure detector needs to provide to solve a given agreement problem P, such as
consensus or atomic multicast for example. Such a “minimal” failure detector
is the weakest for solving P. More formally, a failure detector D1 is at least as
strong as a failure detector D2, denoted as D1 � D2, if and only if there exists an
algorithm that implements D2 using D1, i.e., the algorithm emulates the output
of D2 using D1. A failure detector D∗ is the weakest failure detector for P if
two conditions are met: we can use D∗ to solve P (sufficiency) and any failure
detector D that can be used to solve P is at least as strong as D∗, i.e., D � D∗

(necessity) [14].
When a majority of processes are correct, the weakest failure detector for

solving consensus isΩ [14]. When the number of process failures is not bounded,
Ω is not sufficient anymore. Solving consensus in this context requires Ω for live-
ness and the quorum failure detector Σ for safety [24]. Informally, Σ outputs
a set of trusted processes at each process such that: any two sets output at any
times and by any process intersect, and eventually every set output at correct
processes contain only correct processes.

In this thesis, we consider realistic failure detectors only, i.e., those that can-
not predict the future [22]. Delporte et al. show in [22] that, when an arbitrary
number of processes may fail, the weakest realistic failure detector for solving
consensus cannot make any mistakes about the alive status of processes, i.e., it
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may not stop trusting a process before it crashes. Additionally, it must eventu-
ally stop trusting all crashed processes. In the literature, this failure detector is
denoted as the perfect failure detector P . This result seems to contradict [24].
However, it does not: when we consider realistic failure detectors only and the
number of process failures is not bounded, P and Σ are equivalent [23].

2.4 Database Definitions

A database D = {x1, .., xn} is a finite set of data items. Database sites have a
partial copy of the database. For each site si (or process) in Π, Items(si) ⊆ D is
defined as the set of data items replicated on si. A transaction Ti is a sequence
of read and write operations on data items followed by a commit or abort op-
eration. A read and a write of transaction Ti on some data item x are respec-
tively denoted as ri[x] and wi[x]; ci and ai respectively denote the commit and
abort of Ti. For simplicity, we represent a transaction T as a tuple (id, rs, ws, up),
where id is the unique identifier of T, rs is the readset of T, ws is the writeset
of T and up contains the updates of T. More precisely, up is a set of tuples (x,
v), where, for each data item x in ws, v is the value written to x by T. For every
transaction T, Items(T) is defined as the set of data items read or written by T.
Two transactions T and T′ are said to be conflicting if there exists a data item
x ∈ Items(T)∩ Items(T′)∩ (T.ws∪ T′.ws). We define Site(T) as the site on which
T is executed. Furthermore, we assume that for every data item x ∈ D, there
exists a correct site si which replicates x, i.e., x ∈ Items(si). Finally, we define
Replicas(T) as the set of sites that replicate at least one data item written by T,
i.e., Replicas(T) = {si | si ∈ Π ∧ Items(si)∩ T.ws 6= ;}.

Database replication protocols may ensure different data consistency crite-
ria. In this thesis, we consider one-copy serializability (1-SR) [9]. Let H be a
replicated data history consisting of committed transactions only. History H is
1-SR iff H is view-equivalent to some one-copy serial history 1H, where H and
1H are view-equivalent iff the following holds:

1. H and 1H are defined over the same set of transactions,

2. H and 1H have the same read-x-from relationships on data items: ∀Ti, T j ∈
H (and hence, Ti, T j ∈ 1H): T j read-x-from Ti in H iff T j read-x-from Ti in
1H, and,

3. For each final write wi[x] in 1H, wi[xA] is also a final write in H for some
copy xA of x .
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Chapter 3

FIFO and Causal Multicast

First things first, but not necessarily in that order.

Doctor Who

Multicast abstractions ensure a similar reliability guarantee—agreement on
the set of messages delivered—but offer various message ordering properties.
Two of these properties, FIFO and causal order, are of special interest: they
ensure that a message m is not delivered at a process p that does not know
m’s context, where the notion of context is defined differently for each order
property. With FIFO order, the context of m at p is the messages that were
previously multicast by m’s sender and addressed to p. Causal order extends the
notion of context to all messages that causally precede m, i.e., messages that
are causally linked to m through a chain of multicast and delivery events. FIFO
and causal order help the programming of distributed applications in various
domains such as global snapshot construction [6], fair resource allocation [37],
and replicated data management [57].

FIFO and causal broadcast protocols have been extensively studied in the
literature. In this chapter, we propose FIFO and causal multicast protocols for
systems composed of a set of disjoint groups (e.g., server racks or data centers),
each containing several processes. In particular, we show that mechanisms de-
vised for FIFO and causal broadcast protocols are not applicable to multicast
protocols. As our main contribution, we propose FIFO and causal multicast al-
gorithms that offer several desirable properties. To the best of our knowledge,
these algorithms are the first to be simultaneously fast, scalable, flexible, and
highly resilient, in a precise sense, as we now explain.

15
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First, they are fast: messages can be delivered in two communication steps;
and we further show that this is optimal. Second, these protocols are scalable:
(i) to deliver a message m only the sender and the addressees of m participate
in the protocol, a property referred to as genuineness; and (ii) if n and m denote,
respectively, the number of processes and groups in the system, messages only
carry m counters to ensure FIFO order, and n×m counters to ensure causal order.
Since n is within a constant factor of m, this is optimal for causal multicast [36].
Third, the algorithms are flexible in the sense that a process p may multicast
messages to groups p does not belong to, that is, groups are “open". Finally,
our algorithms are highly resilient: they tolerate an arbitrary number of process
failures and can cope with quasi-reliable links.

This is in contrast to several multicast protocols [42; 44; 51; 53; 36], which
depend on reliable links—message delivery is guaranteed as long as the receiver
is correct, regardless of the correctness of the sender. Reliable links are not a
realistic assumption: to send a message m, the machine Mp hosting process p
typically inserts m into one (or more) local buffer before m is sent over the wire.
Hence, even though p thinks that m was successfully sent, m may still be lost in
case Mp crashes before m hits the wire.

3.1 Tolerating Quasi-reliable Networks

Devising multicast protocols that tolerate quasi-reliable links introduces diffi-
culties that were not discussed elsewhere. Figure 3.1 illustrates the problem.
Consider some process p that multicasts a message m1 to some group g2. Later,
p multicasts a message m2 to groups g1 and g2 and crashes. Message m2 is re-
ceived by processes in g1, and since m2 is the first message multicast from p to
g1, m2 is delivered by processes in g1. On the contrary, all messages sent from
p to members of g2 are lost. Note that this can happen because p crashes and
links are quasi-reliable.

...
g1

p

...
g2

multicast(m1) multicast(m2)
multicast protocol

deliver(m2)

Figure 3.1. The message delivery order violation problem.
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From the reliability guarantees of multicast, correct processes in g2 must
eventually deliver m2. However, if they do so, the ordering guarantees of FIFO
and causal multicast will be violated: members of g2 cannot deliver m1 before
m2 since m1 was lost. If messages were broadcast, then m1 would also be ad-
dressed to g1, and thus, g1 could help g2 by forwarding m1 to g2. With multicast
however, g1 does not even know about the existence of m1, since m1 was not
addressed to g1. In this chapter, we propose a mechanism to cope with this
problem despite an arbitrary number of process failures; the resulting FIFO and
causal multicast algorithms are as latency-efficient as their broadcast counter-
parts.

3.2 Related Work

FIFO and causal broadcast were originally specified as part of the Isis system [10].
In [32], FIFO broadcast is implemented by reliably broadcasting messages along
with a sequence number and by delivering messages in the sequence number
order.

The first implementation of causal broadcast uses a simple strategy [10]:
the causal history of delivered messages is piggybacked on each message to
be broadcast. The amount of information contained in messages is thus un-
bounded. In [51], causal order is ensured differently: messages carry control
information in the form of a matrix of counters, where each entry (p, q) denotes
the number of messages that were multicast from process p to q in the causal
history. This control information is used to know when messages can be safely
delivered. This algorithm does not tolerate process failures. A fault-tolerant
algorithm that ensures causal order using a similar technique appears in [32].
Although [32] specifies both causal broadcast and multicast, the algorithm given
considers the broadcast case only.

In [11], processes may belong to several groups at the same time but mes-
sages sent from a process p cannot be multicast to groups p is not a member of.
Using the terminology of [20], the protocol in [11] is closed-group. In this algo-
rithm, each message carries a vector of counters, and this for every group in the
system. Messages may be large if the number of groups is high. In contrast, [44]
only requires processes to append a vector of counters to messages, where the
size of the vector is equal to the number of groups. However, this protocol is not
fault-tolerant. In [53], the topology of the underlying network is used to reduce
the amount of information that must be appended to messages.

The necessary conditions on how much information should be stored at pro-
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Algorithm order type speed scalability flexibility resilience
latency requires open/closed processes requires

message group reliable
piggybacking? network?

[32] FIFO broadcast 2 no - crash-stop no
Afifo FIFO multicast 2 no open crash-stop no
[42] causal unicast 1 no - no failures yes
[32] causal broadcast 2 no - crash-stop no
[44] causal multicast 1 no closed no failures yes
[51] causal multicast 1 no open no failures yes
[53] causal multicast topology no open no failures yes

dependent
[36]1 causal multicast 1 no open crash-stop yes
[10] causal multicast 2 yes closed crash-stop no
[11] causal multicast 2 no closed crash-stop no
Acausal causal multicast 2 no open crash-stop no

Table 3.1. Comparison of the FIFO and causal multicast algorithms.

cesses and appended to messages to ensure causal order are presented in [36].
This paper also provides an information-optimal algorithm that does not need
any a priori knowledge of the communication network. The algorithm in [42]
does not append any information on messages but only considers the unicast
case and postpones the sending of messages until after all the previous messages
sent were acknowledged.

In this chapter, we present fault-tolerant and latency-optimal FIFO and causal
multicast protocols, respectively denoted as Afifo and Acausal. To the best of
our knowledge, these are the first algorithms that are at the same time open-
group and tolerate quasi-reliable networks. As discussed above, and later in
Section 3.3, implementing these primitives with a quasi-reliable communication
medium raises a problem that was not discussed elsewhere.

Table 3.1 provides a comparison of the algorithms. The last five columns
respectively indicate: the best-case latency of the algorithms, measured in the
number of communication delays; whether the algorithms resort to message
piggybacking or not; whether an algorithm A allows messages to be multicast
from a process p to groups p does not belong to, in which case we say thatA is
an open-group algorithm, or not, in which case we say thatA is a closed-group
algorithm; and the process as well as network failure resilience.

1The algorithm in [36] tolerates process crashes and has a latency of 1 message delay. This
does not contradict the lower bound of two message delays we show in this chapter. Indeed,
two message delays is minimal for algorithms that tolerate quasi-reliable links. However, the
algorithm in [36] requires reliable links.
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3.3 FIFO Multicast

In this section, we present a genuine FIFO multicast algorithm that tolerates an
arbitrary number of failures. This protocol is latency-optimal, as Section 3.5
shows.

In Algorithm Afifo, every message m is tagged with a sequence number, de-
noted as m.seq. Messages multicast by some process q are F-Delivered in the
sequence number order. To do so, every process p keeps track of the next mes-
sage F-MCast by q to be F-Delivered by p. This information is stored in a vari-
able denoted as nextFDel[q]p. So far, this is like the FIFO broadcast algorithm
in [32]. We now explain how Afifo differs from [32]. First, since messages may
be addressed to a subset of the system’s groups, messages do not carry a single
sequence number, as in [32], but an array of sequence numbers, one for each
group (see AlgorithmAfifo, lines 5-9).

AlgorithmAfifo 1
Genuine FIFO Multicast - Code of process p
1: Initialization
2: nbCast[g]← 0, for each group g B nb. of msgs. F-MCast to g
3: nextFDel[q]← 1, for each process q B next msg. F-MCast from q to be F-Delivered
4: msgSet← ; B set of messages received but not yet F-Delivered

5: To F-MCast message m {Task 1}
6: foreach g ∈ m.dst do
7: nbCast[g]← nbCast[g] + 1

8: m.seq← nbCast
9: send(m) to m.dst

10: When receive(m) or receive(m, OK)
11: if m 6∈msgSet then
12: if m.seq[group(p)] = nextFDel[m.sender] then
13: send(m, OK) to m.dst
14: else
15: send(m) to m.dst
16: msgSet←msgSet∪ {m}

17: When ∃m ∈msgSet : ∀g ∈ m.dst : received (m, OK) from all processes in Θg ∧
m.seq[group(p)] = nextFDel[m.sender]

18: F-Deliver(m)
19: nextFDel[m.sender]← nextFDel[m.sender] + 1
20: if ∃m′ ∈msgSet : m′.seq[group(p)] = nextFDel[m′.sender] then
21: send(m′, OK) to m′.dst

Second, recall the aforementioned problematic scenario specific to multicast:
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some process p F-MCasts a local message ml to some group g2; later, p F-MCasts
a global message mg to groups g1 and g2 and crashes. Message mg is received
by processes in g1, and since mg is the first message multicasts from p to g1,
mg is delivered by processes in g1. On the contrary, all messages sent from
p to members of g2 are lost. Note that this can happen because p crashes and
links are quasi-reliable. From the uniform agreement property of FIFO multicast,
correct processes in g2 must eventually deliver mg . However, if they deliver mg ,
the FIFO order property of FIFO multicast will be violated: members of g2 cannot
deliver ml before mg since ml was lost.

To solve this problem, before F-Delivering a message m, a process p ∈ m.dst
announces the addressees of m that it F-Delivered all messages m.sender previ-
ously F-MCast. To do so, p sends m’s addressees an OK message (lines 13 or 21).
Message m is then F-Delivered by p when p received an OK message from at
least one correct process of every correct destination group of m. This is imple-
mented by relying on failure detector Θ [4]. At each process, this oracle outputs
a list of processes that are trusted to be alive such that:

• Completeness: There is a time after which processes do not trust any pro-
cess that crashes.

• Accuracy: If some process never crashes then, at every time, every process
trusts at least one correct process that never crashes.

To ensure that p received an OK message from at least one correct process
of every correct destination group g of m, for every such group g, p waits to
receive an OK message from all processes trusted by Θg , i.e., the failure detector
Θ whose output is restricted to members of g (line 17).

This mechanism is also used to ensure uniform agreement: if there exists
a correct addressee of m, when p received an OK message from all processes
trusted by Θg , and this for every group g in m.dst, process p knows m was
received by at least one correct addressee of m. Hence, all correct processes in
m.dst will eventually receive m.

When a group g contains fewer than a majority of faulty processes, Θg can
easily be implemented as follows: a process p that wishes to query Θg periodi-
cally receives heartbeat messages from members of g along with a monotonically
increasing sequence number; the i-th output of Θg at p is any majority of heart-
beat messages with sequence number i. In the context of AlgorithmAfifo, Θg can
be implemented without adding extra messages: when p queries Θg at line 17,
p waits to receive a majority of OK messages from processes in g. We note, how-
ever, that when the universe of failure detectors is restricted to realistic ones
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and the number of process failures is not bounded, Θ is equivalent to the perfect
failure detector P [23].

3.4 Causal Multicast

We now present the first open-group causal multicast algorithm that tolerates
quasi-reliable communication links. This algorithm tolerates an arbitrary num-
ber of failures and is latency-optimal (c.f. Section 3.5).

The causal multicast algorithm Acausal relies on FIFO multicast and is block-
ing, that is, processes may delay the delivery of a message m for a later time
even though all the protocol messages to deliver m have been received.

In Algorithm Acausal, every process p keeps track of how many messages,
multicast by some process q, it has C-Delivered. This bookkeeping is done for
every process q of the system. At p, this information is stored in a vector denoted
as nbDelp, indexed by process id. This is like in the causal broadcast algorithm
in [32]. In this algorithm, to broadcast a message m, p F-BCasts m along with
nbDelp. Upon F-Delivering m, p inserts m in a list of messages msgLstp and
C-Delivers m as soon as it is the first message in msgLstp such that nbDelp ≥
m.nbDel.2 It is not hard to see why this algorithm works: since m.nbDel[q]
denotes the number of messages originating from q that causally precede the
multicast of m, C-Delivering m when it is the first message in msgLstp such that
nbDelp ≥ m.nbDel, ensures that causal order will not be violated.

...
g ′′

...
g ′

...
g

C-MCast(m) C-MCast(m∗)

C-Deliver(m∗) C-MCast(m′)

Figure 3.2. A causal relation between m and m′ that is blind for g.

In the multicast case, however, this algorithm does not work. Consider the
following causal relation between two messages m and m′, C-MCast(m) → C-
MCast(m′), both addressed to some group g that is denoted as blind for g. Fig-
ure 3.2 illustrates the scenario. Messages m and m′ are such that the causal

2Given any two vectors v1 and v2, we write v1 ≥ v2 instead of ∀q ∈ Π : v1[q] ≥ v2[q] for
simplicity.
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chain linking the events C-MCast(m) and C-MCast(m′) does not contain any
events of type C-Deliver of some message addressed to g, and let m′ be C-MCast
by a process different from m.sender. Intuitively, this causal relation is problem-
atic because processes in g may C-Deliver m and m′ in different orders. Indeed,
since the causal chain linking the events C-MCast(m) and C-MCast(m′) does not
contain any events of type C-Deliver of some message addressed to g, it is im-
possible to distinguish m from m′ by only comparing the number of messages
addressed to g that were C-Delivered in the causal history of events C-MCast(m)
and C-MCast(m′).3

AlgorithmAcausal 2
Genuine Causal Multicast - Code of process p
1: Initialization
2: nbCast[g][q]← 0, for each group g and process q B nb. msgs. q C-MCast to g in causal

history
3: nbDel[q]← 0, for each process q B nb. msgs. q C-MCast that p C-Delivered
4: msgLst← ε B list of messages F-Delivered but not yet C-Delivered

5: To C-MCast message m {Task 1}
6: foreach g ∈ m.dst do
7: nbCast[g][p]← nbCast[g][p] + 1
8: m.nbCast← nbCast
9: F-MCast (m) to m.dst

10: Function IsDeliverable(m)
11: return ∀q ∈ Π \ {m.sender} : m.nbCast[group(p)][q]≤ nbDel[q]

12: When F-Deliver(m)
13: msgLst←msgLst⊕m B add m at the tail of msgLst
14: while ∃m′ ∈ msg Lst : IsDeliverable(m′)
15: Let m′ be the first message in msgLst s.t. IsDeliverable(m′)

16: C-Deliver(m′)
17: nbDel[m′.sender]← m′.nbCast[group(p)][m′.sender]
18: foreach g ∈ Γ do
19: nbCast[g]←max(m′.nbCast[g], nbCast[g])
20: msgLst←msgLst	m′

To be able to distinguish messages m and m′ in the example above, processes
keep track of the number of messages C-MCast in the causal history instead of
the number of C-Delivered messages. This accounting is done on a group basis.

Hence, in addition to maintaining vector nbDel, each process p keeps track
of the number of messages addressed to any group g, originating from any pro-

3An event e is in the causal history of an event e′ iff e→ e′.
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cess q, that were C-MCast in its causal history, denoted as nbCast[g][q]p. This
variable is piggybacked on every C-MCast message m. Message m is then C-
Delivered at p as soon as it is the first message in msgLstp such that for all
processes q different from m.sender, m.nbCast[group(p)][q] ≤ nbDel[q], i.e., p
C-Delivered all messages addressed to group(p) that were C-MCast in the causal
history of event C-MCast(m). The delivery condition does not involve m.sender
since FIFO multicast ensures that messages multicast by the same process will
be delivered in the order they were multicast.

We now present the causal multicast algorithm Acausal in detail. To C-MCast
a message m, for any group g ∈ m.dst, p increments nbCast[g][p]p and F-
MCasts m along with the nbCast variable (lines 6-9). As soon as some pro-
cess q F-Delivers this message, q adds m at the end of msgLst (line 13) and
checks whether a message can be C-Delivered (line 14). If it is the case, the
first C-Deliverable message of msgLstp, m′, is C-Delivered. Before removing m′

from msgLst, nbDel[m′.sender] is updated and for all group g and processes q
of the system, nbCast[g][q] is set to the maximum between m′.nbCast[g][q]
and nbCast[g][q] so that nbCast[g][q] represents the number of messages orig-
inating from q and addressed to g that were C-MCast in the causal history of
C-MCast(m′) (line 19).

3.5 Latency Optimality

We show that for any message m there exists no uniform reliable multicast al-
gorithm A that tolerates quasi-reliable links and delivers m in one message
delay, whatever the destination groups of m are. This result is independent of
the genuineness ofA and shows the optimality of our uniform FIFO and causal
multicast algorithms. Indeed, if it were not the case we could get a more efficient
uniform reliable multicast algorithm by reducing it to causal or FIFO multicast,
a contradiction. Moreover, this result also applies to uniform reliable broadcast.
To see why, suppose there would exist a uniform reliable broadcast algorithm
Aur b that could deliver messages in one message delay. We could then devise
a non-genuine uniform reliable multicast algorithm that could deliver messages
in one message delay by relying onAur b, a contradiction.

We show this result in the synchronous round-based model which we briefly
recall now (see Chapter 2 in [40] for a formal description). Each process p has
a buffer, bufferp, that represents the set of messages that have been sent to p but
not yet received; p receives the message when it removes it from its buffer. In
any run of an algorithm, until it crashes, each process p repeatedly performs the
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following two steps, which define one round:

1. In the first step, p generates the (possibly null) messages to be sent to
each process based on its current state, and puts these messages in the
appropriate process buffers. If p crashes in round r, only a subset of the
messages created in r by p are put in the buffers.

2. In the second step, p determines its new state based on its current state
and on the messages received, and removes all messages from its buffer.

Proposition 3.5.1 In any system with n ≥ 3, f ≥ 2, and quasi-reliable links, for
any uniform reliable multicast algorithm A and any message m addressed to at
least two processes, there does not exist a run R of A in which m is R-MCast in
some round r and R-Delivered by some process q at the end of r.

Proof: Suppose, by way of contradiction, that such an algorithmA and run R of
A exist. In some round r of run R, some process p R-MCasts m and q R-Delivers
m at the end of round r. We build a run R′ that is indistinguishable from R to
q up to and including round r. In R′, p crashes in r and m is only received by
q. Moreover, q crashes just after R-Delivering m. Hence, in run R′, no correct
process in m.dst R-Delivers m, violating the uniform agreement property of A .
�

3.6 Discussion

FIFO and causal multicast ensure that a message m is not delivered at a pro-
cess p that does not know m’s context, where the notion of context is defined
differently for each order property. With FIFO order, the context of m at p is
the messages that were previously multicast by m’s sender and addressed to p.
Causal order extends the notion of context to all messages that causally precede
m, i.e., messages that are causally linked to m through a chain of multicast and
delivery events. These communication primitives are used in domains such as
global snapshot construction [6] and fair resource allocation [37]. Moreover,
we demonstrate in Chapter 4 how causal multicast can be used to implement
atomic multicast.

In this chapter, we showed that implementing these primitives in quasi-
reliable networks presents a challenge that did not appear elsewhere. We pro-
posed FIFO and causal multicast algorithms that are open-group and tolerate an
arbitrary number of process failures. These protocols are as latency-efficient as
their broadcast counterpart. In fact, they are latency-optimal.
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3.7 Proofs of Correctness

In the proofs below, we denote the value of a variable V on a process p at time t
as V t

p . Furthermore, for events of the type C-MCast and C-Deliver, we sometimes
add a subscript to denote on which process this event occurred.

3.7.1 The Proof of Algorithm Afifo

Proposition 3.7.1 (Uniform Integrity) For any process p and any message m,
(a) p F-Delivers m at most once, and (b) only if p ∈ m.dst and (c) m was previously
F-MCast.

Proof:

• (a) After p F-Delivers m, p increments nextFDel[m.sender]. Thus, the con-
dition of line 17 can never evaluate to true for m anymore.

• (b) Follows directly from the uniform integrity property of links and the
algorithm.

• (c) Process p F-Delivers m only if p received m. From the uniform integrity
property of links, m was sent by some process. Consequently, m was F-
MCast. �

Proposition 3.7.2 Uniform FIFO Order If a process p F-MCasts a message m
before F-MCasting a message m′, then no process in m.dst ∩ m′.dst F-Delivers m′

unless it has previously F-Delivered m.

Proof: Let q be any process in m.dst ∩m′.dst that F-Delivers m′, we show that q
F-Delivers m before. If q F-Delivers m′, then there is a time t before q F-Delivers
m′ at which nextFDel[m.sender]tq = m′.seq[group(q)]. From the definition of m,
m.seq[group(q)]< m′.seq[group(q)]. From lines 17-19, q must have F-Delivered
m before t, and thus before q F-Delivers m′. �

Definition 3.7.1 We define the binary relation pred on messages as follows,
m1 pred m2 iff:

1. m1.sender= m2.sender,

2. m1.sender F-MCasts m1 before m2, and

3. There exists at least one correct process in m1.dst∩m2.dst
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Moreover, let Gpred(m) = (V, E) be a finite DAG constructed as follows:

1. add vertex m to V

2. while ∃m1 ∈ V : ∃m2 6∈ V : m2 pred m1 do:
add m2 to V and add directed edge m2→ m1 to E

For any message m′ in Gpred(m), we say that m′ is at distance k of m iff the longest
path from m′ to m is of length k. We letMk be the subset of messages in Gpred(m)

that are at distance k of m.

Lemma 3.7.1 For any message m, if for all messages m′ in Gpred(m) all correct
processes in m′.dst receive m′, then all correct processes p ∈ m.dst eventually F-
Deliver m.

Proof: Assume that for all messages m′ in Gpred(m) all correct processes in m′.dst
receive m′. We prove that, for any k ≥ 0, all messages in Mk are eventually F-
Delivered by all their correct addressees. SinceM0 = {m}, this shows the claim.
Let x be the largest integer such that Mx 6= ;. We proceed by induction on k,
starting from k = x .

• Base step (k = x): Let mx be any message inMx and q be any correct pro-
cess in mx .dst. From the definition of x , (*) there exists no message mx+1

such that mx+1 pred mx . Since for all messages m′ in Gpred(m), all correct
processes in m′.dst eventually receive m′, q eventually receives mx . By
(*), mx is the first message F-MCast by m.sender such that q ∈ mx .dst, and
hence, mx .seq[group(q)] = 1. Therefore, all correct processes in mx .dst
eventually send(mx , OK) and by the reliability property of links, q even-
tually receives these messages. By the completeness property of Θ, there
exists a time after which q does not trust any process that crashes. Hence,
by the condition of line 17, q eventually F-Delivers mx .

• Induction step: Suppose the claim holds for k (0 < k ≤ x), we show it
holds for k− 1. Let mk−1 be any message inMk−1, g be any correct group
in mk−1.dst, and q be any correct process in g. We first show that (*) there
exists a time t at which nextFDel[m.sender]tq = mk−1.seq[group(q)]. Either
(a) mk−1 is the first message F-MCast to g or (b) not.

– In case (a), mk−1.seq[g] = 1. Since nextFDel[m.sender] is initialized
to 1, (*) holds.



27 3.7 Proofs of Correctness

– In case (b), there exists a message mk′ in Mk′ (x ≥ k′ > k − 1)
such that mk′ pred mk−1, g ∈ mk′ .dst ∩ mk−1.dst, and mk′ .seq[g] =
mk−1.seq[g]−1. By the induction hypothesis, q F-Delivers mk′ . There-
fore, (*) holds.

From the algorithm, since for all messages m′ in Gpred(m), all correct pro-
cesses in m′.dst eventually receive m′, all correct processes r in mk−1.dst
eventually receive mk−1. Consequently, from (*), all r send (mk−1, OK),
either at line 13 or at line 21. By the quasi-reliability property of links,
q eventually receive these messages. By the completeness property of Θ,
there exists a time after which q does not trust any process that crashes.
Consequently, by the condition of line 17, q eventually F-Delivers mk−1. �

Lemma 3.7.2 For any message m and any process p, if p sends (m, OK), then p
F-Delivered all messages m′ such that p ∈ m′.dst and m.sender F-MCast m′ before
m.

Proof: If m is the first message m.sender F-MCasts to group(p), the claim holds
trivially. Otherwise, let mx be the message such that p ∈ mx .dst and m.sender
F-MCasts mx just before m. Since p sends (m, OK), there exists a time t at
which nextFDel[m.sender]tp = m.seq[group(p)]. From lines 17-19, p must have
F-Delivered mx before t. By applying Proposition 3.7.2 multiple times, before
t, p also F-Delivered all messages addressed to group(p) that m.sender F-MCast
before mx . �

Proposition 3.7.3 (Uniform Agreement) If a process p F-Delivers a message m,
then all correct processes q ∈ m.dst eventually F-Deliver m.

Proof: LetMk be the subset of messages in Gpred(m) that are at distance k of m.
We first show that, for any k ≥ 0 and any message m′ inMk such thatMk 6= ;:
(1) m′ is received by all correct processes in m′.dst and (2) for each correct group
g ∈ m′.dst, there is a correct process q in g that sends (m′, OK). We proceed by
simultaneous induction on (1) and (2).

• Base step (k = 0):

– (1) Since p F-Delivers m, from the condition of line 17, p received an
(m, OK) message from all processes trusted by Θg , and this for every
group g ∈ m.dst. If there are no correct processes in m.dst, then the
base step of (1) holds trivially. Otherwise, by the accuracy property
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of Θ, p received an (m, OK) message from a correct addressee q of
m. Since q is correct, by the quasi-reliability property of links, every
correct process in m.dst eventually receives m from q.

– (2) Since p F-Delivers m, from the condition of line 17, for every
group g in m.dst, p received a message (m, OK) from all processes
trusted by Θg . By the accuracy property of Θ, for all correct group
g ∈ m.dst, p received message (m, OK) from a correct process q in g.
Hence, by the uniform integrity property of links, q sent (m, OK).

• Induction step: Suppose that (1) and (2) hold for k− 1 (k > 0), we show
that (1) and (2) also hold for k. Let mk−1 be any message inMk−1 and let
mk be any message inMk such that mk pred mk−1.

– (1) Because k > 0, from the definition of mk and the definition of the
pred relation, mk.sender F-MCasts mk before mk−1 and there exists
a correct process in mk.dst ∩ mk−1.dst. By the induction hypothe-
sis, for each group g in mk−1 containing at least one correct process,
there exists a correct process q in g that sends (mk−1, OK). Hence,
there exists a correct process q in mk−1.dst ∩ mk.dst such that q sends
(mk−1, OK). By Lemma 3.7.2, q F-Delivered mk. If there are no correct
processes in mk.dst, then the induction step of (1) holds trivially. Oth-
erwise, from the condition of line 17, q received an (mk, OK) message
from all processes trusted by Θg , and this for every group g ∈ mk.dst.
Hence, from the accuracy property of Θ, q received (mk, OK) from a
correct process r ∈ mk.dst. Therefore, by the quasi-reliability prop-
erty of links, every correct process in mk.dst eventually receives mk

from r.

– (2) From the definition of mk and the definition of the pred relation,
mk.sender F-MCasts mk before mk−1 and there exists a correct process
in mk.dst ∩ mk−1.dst. By the induction hypothesis, there exists a
correct process r ∈ mk.dst ∩ mk−1.dst such that r sends (mk−1, OK).
By Lemma 3.7.2, r F-Delivered mk. From the condition of line 17, r
received an (mk, OK) message from all processes trusted by Θg , and
this for every group g ∈ mk.dst. Hence, by the accuracy property of
Θ, for all correct group g ∈ mk.dst, r received (mk, OK) from a correct
process q in g. Therefore, By the uniform integrity property of links,
q sent (mk, OK).

Hence, from (1), all messages m′ ∈ Gpred(m) are received by all correct pro-
cesses in m′.dst. Therefore, by Lemma 3.7.1, all correct processes in m.dst F-
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Deliver m. �

Proposition 3.7.4 (Validity) If a correct process p F-MCasts a message m, then
eventually all correct processes q ∈ m.dst F-Deliver m.

Proof: Since p is correct, by the quasi-reliability property of links, for all mes-
sages m′ ∈ Gpred(m), all correct processes in m′.dst receive m. By Lemma 3.7.1,
all correct processes q ∈ m.dst eventually F-Deliver m. �

3.7.2 The Proof of Algorithm Acausal

Proposition 3.7.5 (Uniform Integrity) For any process p and any message m,
(a) p C-Delivers m at most once, and (b) only if p ∈ m.dst and (c) m was previously
C-MCast.

Proof:

• (a) Follows directly from the uniform integrity property of FIFO multicast
and from the fact that a message is removed from msgLstp after it is C-
Delivered.

• (b) Follows directly from the algorithm.

• (c) Process p C-Delivers m only if p F-Delivered m. From the uniform
integrity property of FIFO multicast, m was F-MCast. Consequently, m was
C-MCast. �

Lemma 3.7.3 For any message m such that m.nbDel is defined, any group g, and
any integer k,m.nbCast[g][m.sender] = k iff m is the k-th message m.sender
C-MCasts to g.

Proof:

• (⇒): From the algorithm, m.sender increments nbCast[g][m.sender]m.sender

at line 7 only (m.sender does not update nbCast[g][m.sender]m.sender at
line 19). Moreover, m.sender does so before every message C-MCast to
g. Therefore, since nbCast[g][m.sender] is initialized to 0, m is the k-th
message m.sender C-MCasts to g.

• (⇐): The same argument as in (⇒) is used to show that
m.nbCast[g][m.sender] = k. �
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Lemma 3.7.4 For any two messages m and m′ such that m.nbCast and m′.nbCast
are defined, and any group g, if C-MCast(m)→ C-MCast(m′), then m.nbCast[g]≤
m′.nbCast[g].

Proof: From the definition of the causal precedence relation, it is easy to see that
there exist processes p1, p2, .., pk and messages m1, m2, .., mk = m′ (k ≥ 2) such
that:

• p1 = m.sender

• pi C-MCasts mi for all 1≤ i ≤ k

• either (a) m= m1 or (b) p1 C-MCasts m before m1 and

• pi C-Delivers mi−1 before it C-MCasts mi, for all 2≤ i ≤ k

• In case (a), we show that for any 1≤ i < k, mi.nbCast[g]≤ mi+1.nbCast[g].
Process pi+1 C-Delivers mi before C-MCasting mi+1. Thus, from line 19
and because for any process q nbCast[g][q]pi+1

is monotonically increas-
ing with time, mi.nbCast[g]≤ mi+1.nbCast[g].

• In case (b), since for any process q nbCast[g][q]p1
is monotonically in-

creasing with time, m.nbCast[g][q] ≤ m1.nbCast[g][q]. To conclude the
proof, the same argument as in (a) is used to show that for any 1 ≤ i < k,
mi.nbCast[g]≤ mi+1.nbCast[g].

Lemma 3.7.5 For any processes p and q, any integer k, and any time t at which
p evaluates the condition of line 11, nbDel[group(p)][q]tp = k iff before t, p C-
Delivered the first k messages q C-MCasts to group(p).

Proof:

• (⇒) : We proceed by induction on k.

– Base step (k = 0): Since nbDel[group(p)][q]p is initialized to zero
and monotonically increasing with time, if at the time t at which p
evaluates line 11, nbDel[group(p)][q]tp = 0 then p did not C-Deliver
any message C-MCast from q before t.

– Induction step: Suppose that the claim holds for any l such that
0 ≤ l ≤ k − 1, we show that it also holds for k. Process p sets
nbDel[group(p)][q]p to k just after C-Delivering a message mk origi-
nating from q such that m.nbCast[group(p)][q] = k. From
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Lemma 3.7.3, mk is the k-th message q C-MCasts to group(p). Let
t ′ be the latest time before t at which p evaluates line 11 such that
nbDel[group(p)][q]t

′

p 6= nbDel[group(p)][q]tp. We show that (*)

nbDel[group(p)][q]t
′

p = k− 1.

Suppose, by way of contradiction, that nbDel[group(p)][q]t
′

p 6= k− 1.

Let k′ be the value of nbDel[group(p)][q]t
′

p . Either (a) k′ < k− 1 or
(b) k′ > k−1. We show that both (a) and (b) lead to a contradiction.

In case (a), from the induction hypothesis, before t ′ p C-Delivered
the first k′ messages C-MCast from q. Since k′ < k−1, either (a-
i), p does not C-Deliver the k-1-th message mk−1 C-MCast from
q or (a-ii) p C-Delivers mk−1 after mk.

· In case (a-i), since p C-Delivers mk, from the uniform FIFO
order property of FIFO multicast, p F-Delivers and inserts
mk−1 before mk in msgLstp. From Lemma 3.7.4,
mk−1.nbCast[group(p)][q] ≤ mk.nbCast[group(p)][q]. From
the condition of line 11 and since nbDel[group(p)][q]p is
monotonically increasing with time, p must have C-Delivered
mk−1 before mk, a contradiction to the fact that p does not
C-Deliver mk−1.

· In case (a-ii), the same argument as in (a-i) is used to obtain
a contradiction.

In case (b), since k′ 6= k and k′ > k − 1, k′ > k. Process p sets
nbDel[group(p)][q]p to k′ just after C-Delivering a message mk′

originating from q such that m.nbCast[group(p)][q] = k′. From
Lemma 3.7.3, mk′ is the k′-th message q C-MCasts to group(p).
Since t ′ < t, (**) p C-Delivers mk′ before mk. Since k < k′, from
the uniform FIFO order property of FIFO multicast, p F-Delivers
and inserts mk before mk′ in msgLstp. From Lemma 3.7.4,
mk.nbCast[group(p)][q] ≤ mk′ .nbCast[group(p)][q]. From the
condition of line 11 and since nbDel[group(p)][q]p is monotoni-
cally increasing with time, p C-Delivers mk before mk′ , a contra-
diction to (**).

From (*), nbDel[group(p)][q]t
′

p = k− 1. From the induction hypoth-
esis, before t ′ p C-Delivered the first k−1 messages C-MCast from q.
Therefore, before t, p C-Delivered the first k messages C-MCast from
q.

• (⇐): Either (a) k = 0 or (b) k > 0.
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– In case (a), if p did not C-Deliver any message C-MCast from q, since
nbDel[group(p)][q]p is initialized to zero, then nbDel[group(p)][q]tp =
0.

– In case (b), let mk be the k-th message C-MCast from q that p C-
Delivers. We show that (*) the last message C-MCast from q that
p C-Delivers before t is mk. Suppose, by way of contradiction, that
the last message mk′ C-MCast from q that p C-Delivers before t is
not mk. If before t, p C-Delivers the first k messages C-MCast from
q, then m′k is the k′-th message C-MCast from q to group(p) such
that k′ < k. From the uniform FIFO order property of FIFO multicast,
p F-Delivers and inserts mk′ before mk in msgLstp. From Lemma 3.7.4,
mk′ .nbCast[group(p)][q] ≤ mk.nbCast[group(p)][q]. Since p
C-Delivers mk, from the condition of line 11 and since
nbDel[group(p)][q]p is monotonically increasing with time, p
C-Delivers mk′ before mk. Since p C-Delivers mk before t, mk′ is
not the last message C-MCast from q that p C-Delivers before t, a
contradiction.

From Lemma 3.7.3, mk is such that mk.nbCast[group(p)][q] = k.
Therefore, from (*) and line 17, nbDel[group(p)][q]tp = k. �

Proposition 3.7.6 Uniform Causal Order For any messages m and m′, if C-
MCast(m)→ C-MCast(m′), then no process p ∈ m.dst∩m′.dst C-Delivers m′ unless
it has previously C-Delivered m.

Proof: Let q be any process in m.dst ∩ m′.dst that C-Delivers m′, we show that
q C-Delivered m before. Either (a) m.sender= m′.sender or (b) not.

• In case (a), since q C-Delivers m′, q F-Delivers m′. From the uniform FIFO
order property of FIFO multicast, (*) q F-Delivers m before F-Delivering
m′. Either (a-i) there exists a time at which m and m′ are in msgLstq or
(a-ii) not.

– In case (a-i), from (*) m can only appear before m′ in msgLstq. From
Lemma 3.7.4, m.nbCast[group(q)] ≤ m′.nbCast[group(q)]. Since at
line 15, processes C-Deliver the first message in msgLst such that the
condition of line 11 is satisfied, q C-Delivers m before m′.

– In case (a-ii), from (*) m is inserted in msgLstq before m′. Since pro-
cesses remove messages from msgLstq only after C-Delivering them
(line 20), q C-Delivers m before m′.
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• In case (b), from Lemma 3.7.4, m.nbCast[group(q)]≤ m′.nbCast[group(q)].
From the condition of line 11, there exists a time t before q C-Delivers
m′ at which q evaluates line 11 such that for any process r 6= m′.sender
nbDel[r]tq ≥ m′.nbCast[group(q)][r]. Hence, since m.sender 6= m′.sender,
nbDel[m.sender]tq ≥ m.nbCast[group(q)][m.sender]. Let k1 and k2 be
nbDel[m.sender]tq and m.nbCast[group(q)][m.sender] respectively. From
Lemma 3.7.3, m′ is the k2-th message m.sender C-MCasts to group(q).
From Lemma 3.7.5, before t, q C-Delivers the first k1 messages m.sender
C-MCasts to group(q). Therefore, since k1 ≥ k2, q C-Delivers m before m′.
�

Definition 3.7.2 Let m be a message, we define the finite DAG Gpred(m) = (V, E) as
follows:

1. add vertex m to V

2. while ∃m1, m2 s.t. m1 ∈ V ∧ C-MCast(m2) → C-MCast(m1) ∧ m1.dst ∩
m2.dst 6= ; do:
add m2 to V and add directed edge m2→ m1 to E

For any message m′ in Gpred(m), we say that m′ is at distance k of m iff the longest
path from m′ to m is of length k. We letMk be the subset of messages in Gpred(m)

that are at distance k of m.

Lemma 3.7.6 For any message m, if for all messages m′ ∈ Gpred(m) all correct
processes in m′.dst F-Deliver m′, then all correct processes in m.dst eventually C-
Deliver m.

Proof: Assume that for all messages m′ in Gpred(m) all correct processes in m′.dst
F-Deliver m′. We prove that, for any k ≥ 0, all messages in Mk are eventually
C-Delivered by their correct addressees. SinceM0 = {m}, this shows the claim.
Let x be the largest integer such that Mx 6= ;. We proceed by induction on k,
starting from k = x .

• Base step (k = x): Let mx be any message in Mx and q be any correct
process in mx .dst. From the definition of mx , (*) there exists no message
m′ such that C-MCast(m′)→ C-MCast(mx) and m′.dst ∩ mx .dst 6= ;. Let g
be any group in mx .dst and let r be any process different from mx .sender.
From (*), mx .sender never updated nbCast[g][r]mx .sender at line 19. There-
fore, m.nbCast[g][r] = 0. From the algorithm, nbDel[g][r]q is monoton-
ically increasing with time and hence nbDel[g][r]q ≥ m.nbCast[g][r] is
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always true. Since all correct processes in mx .dst eventually F-Deliver mx ,
from the condition of line 11, all correct processes in mx .dst eventually
C-Deliver mx .

• Induction step: Suppose that for any l such that x ≥ l > k ≥ 0 the
claim holds, we show the claim holds for k. Let mk be any message
in Mk and q be any correct process in mk.dst (if there exists no cor-
rect process in mk.dst, then the claim holds trivially). We show that (*)
for any process r different from mk.sender there exists a time t at which
nbDel[group(q)][r]tq ≥ mk.nbCast[group(q)][r].

If mk.nbCast[group(q)][r] = 0, then (*) holds trivially. Otherwise, from
line 19, there exists a message mr such that mr .sender = r, group(q) ∈
mr .dst, C-MCast(mr) → C-MCast(mk), and mr .nbCast[group(q)][r] =
mk.nbCast[group(q)][r]. From the induction hypothesis, q eventually C-
Delivers mr and sets nbDel[group(q)][r]q to mr .nbCast[group(q)][r]. Since
mr .nbCast[group(q)][r] = mk.nbCast[group(q)][r], (*) holds.

Since all correct processes in mk.dst eventually F-Deliver mk, from (*) and
since nbDel[group(q)][r]q is monotonically increasing with time, from the
condition of line 11, all correct processes in mk.dst eventually C-Deliver
mk. �

Proposition 3.7.7 (Uniform Agreement) If a process p C-Delivers a message m,
then all correct processes q ∈ m.dst eventually C-Deliver m.

Proof: LetMk be the subset of messages in Gpred(m) that are at distance k of m.
We first show that (*) for any k, all messages inMk are eventually F-Delivered
by all of their correct addressees.

• Base step (k = 0): Since p C-Delivers m, p F-Delivers m. From the uni-
form agreement property of FIFO multicast, all correct processes in m.dst
eventually F-Deliver m.

• Induction step: Suppose the claim holds for any l such that k ≥ l ≥ 0, we
show that the claims holds for k + 1. Let mk+1 be any message in Mk+1

and g be any correct group in mk+1.dst. Furthermore, let k′ be the largest
integer smaller than k + 1 such that there exists a message mk′ in Mk′ ,
g ∈ mk′ .dst ∩ mk+1.dst, and C-MCast(mk+1) → C-MCast(mk′). Either (a)
mk+1.sender = mk′ .sender or (b) not.
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– In case (a), by the induction hypothesis, all correct processes in g
eventually F-Deliver mk′ . Therefore, from the uniform FIFO order
property of FIFO multicast, all correct processes in g F-Deliver mk+1

before mk′ .

– In case (b), since C-MCast(mk+1) → C-MCast(mk′) and
mk+1.sender 6= mk′ .sender, from the definition of mk′ , mk′ .sender C-
Delivers mk+1 before C-MCasting mk′ . Hence, from the algorithm,
mk′ .sender F-Delivers mk+1. Therefore, from the uniform agreement
property of FIFO multicast, all correct processes in g eventually F-
Deliver mk+1.

By (*) and Lemma 3.7.6, all correct processes q ∈ m.dst eventually C-Deliver
m. �

Proposition 3.7.8 (Validity) If a correct process p C-MCasts a message m, then
eventually all correct processes q ∈ m.dst C-Deliver m.

Proof: LetMk be the subset of messages in Gpred(m) that are at distance k of m.
We show that (*) for any k, all messages inMk are eventually F-Delivered by all
of their correct addressees.

• Base step (k = 0): From the algorithm, p F-MCasts m. Since p is correct,
from the validity property of FIFO multicast, all correct processes in m.dst
eventually F-Deliver m.

• Induction step: Suppose the claim holds for any l such that k ≥ l ≥ 0,
we show that the claims holds for k + 1. The same argument as in the
induction step of Proposition 3.7.7 is used.

By (*) and Lemma 3.7.6, all correct processes q ∈ m.dst eventually C-Deliver
m. �
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Chapter 4

Atomic Multicast in Large Networks:
Algorithms

The most beautiful thing we can experience is the mysterious. It is
the source of all true art and all science. He to whom this emotion
is a stranger, who can no longer pause to wonder and stand rapt in

awe, is as good as dead: his eyes are closed.

Albert Einstein

Fault-tolerant multicast primitives are basic building-blocks for reliable dis-
tributed systems. Among these primitives, atomic broadcast and multicast are
of a particular interest as they support data replication [37].

We focus on multicast algorithms tailored for large networks, e.g., wide area
networks, composed of several groups of machines. Groups may be data centers,
each located in a local area network (LAN), connected through high-latency
communication links. In this context, protocols should use inter-group links
sparingly.

We first devise atomic broadcast and multicast algorithms when groups do
not crash, i.e., inside each group, there is at least one process that never fails. We
then investigate the same problem when groups may crash entirely. Ideally, we
would like to devise protocols that use inter-group links as sparingly as possible,
saving on both latency and bandwidth (i.e., number of messages).

From a problem solvability point of view, atomic multicast can be easily
reduced to atomic broadcast: every message is broadcast to all the groups in

37
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the system and only delivered by those processes the message is originally ad-
dressed to. However, this solution is not genuine since processes not addressed
by the message are also involved in the protocol. Hence, non-genuine multicast
(e.g., atomic broadcast) may be less scalable than genuine multicast: consider
a system composed of a large number of groups where messages are rarely ad-
dressed to more than a few groups. In this context, because of its genuineness
property, multicast should impose a lighter load on communication links than
non-genuine multicast, thus allowing for more scalability.

Nevertheless, we shall see that genuineness is an expensive property: in
the case of correct groups, it imposes a minimal message delivery latency that
is higher than the one of atomic broadcast and non-genuine atomic multicast.
Moreover, when groups can crash entirely, genuine multicast requires perfectly
accurate failure detection, i.e., erroneously suspecting a process to have crashed
cannot be tolerated.

4.1 Related Work

The literature on atomic broadcast and multicast algorithms is abundant [20];
we here review the papers most relevant to our protocols. To compare multicast
protocols we consider their best-case message delivery latency and inter-group
message complexity. These metrics are computed by considering a failure-free
scenario where a message is multicast by some process p to k groups (k ≥ 2),
including group(p). We let ∆ be the inter-group message delay and assume that
the intra-group delay is negligible.

4.1.1 Atomic Multicast

We identify three atomic multicast protocol categories: timestamp-based, round-
based, and ring-based. Timestamp-based protocols can be viewed as variations of
Skeen’s algorithm [10], a multicast algorithm designed for failure-free systems.
In this type of protocol, messages are assigned timestamps and two properties
are ensured: (a) processes agree on the final timestamp of each message and (b)
message delivery follows timestamp order. In round-based algorithms, processes
execute an unbounded sequence of rounds and agree on the set of messages
A-Delivered at the end of each round. Ring-based algorithms propagate mes-
sages along a predefined path, denoted as a ring, and ensure agreement on the
message delivery by relying on this topology.
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In addition to guaranteeing agreement on the message delivery order, proto-
cols also need to prevent holes in the delivery sequence. Algorithms categorized
as round-based and as ring-based get this property for free; for some timestamp-
based algorithms ensuring this property requires extra work however.

In [31], the authors show the impossibility of solving genuine atomic mul-
ticast with unreliable failure detectors when groups are allowed to intersect.
Hence, the algorithms cited below consider non-intersecting groups. We first
review algorithms that assume that all groups contain at least one correct pro-
cess, i.e., disaster-vulnerable algorithms, and then algorithms that tolerate group
crashes, i.e., disaster-tolerant algorithms.

Disaster-vulnerable Algorithms

Timestamp-based. In [52], the addressees of a message m, i.e., the processes to
which m is multicast, exchange the timestamp they assigned to m, and, once
they receive this timestamp from a majority of processes of each group, they
propose the maximum value received to consensus. Consensus and gathering
timestamp proposals from a majority of processes in each group, respectively,
ensure properties (a) and (b) of timestamp-based protocols. Once processes in
each destination group of m decide on m’s definitive timestamp, they exchange
their history of messages, that is, messages that were reliably delivered or de-
cided in consensus previously. This is to prevent holes in the delivery sequence.
Because consensus is run among the addressees of a message and can thus span
multiple groups, this algorithm is not well-suited for wide area networks. In the
best case, global messages are A-Delivered within 4∆.

In [28], inside each group g, processes implement a logical clock that is used
to generate timestamps; consensus is used among processes in g to maintain g ’s
clock. Every multicast message m goes through four stages: s0 through s3. In s0,
in every group g addressed by m, processes define a timestamp for m using g ’s
clock. This is g ’s proposal for m’s final timestamp. In s1, groups exchange their
proposals and set m’s final timestamp to the maximum among all proposals to
ensure property (a). In the last two stages s2 and s3, the clock of g is updated to
a value bigger than m’s final timestamp and m is delivered when its timestamp
is the smallest among all messages that are in one of the four stages. This
guarantees property (b). Timestamps can be implemented in different ways. For
example, each group g addressed by message m can define g ’s timestamp by
using the consensus instance number that decides on m (stage s1). Moreover,
a consensus instance may decide on multiple messages, possibly in different
stages. Since every consensus instance i may decide on messages in stage s2,
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after deciding in i, g ’s clock is set to one plus the biggest message timestamp
that i decided on. In the best case, messages are A-Delivered within 2∆, which
is optimal for genuine multicast algorithms [56].

In contrast to [28], the algorithm A dv
ge , presented in Section 4.2.2, allows

messages to skip stages. Messages that are multicast to one group only can
jump from stage s0 to stage s3. Moreover, even if a message m is multicast to
more than one group, at processes belonging to the group that proposed the
largest timestamp, i.e., m’s final timestamp, m skips stage s2. Since consensus
instances are run inside groups, the best-case latency and the number of inter-
group messages sent by A dv

ge are the same as in [28]. Nevertheless, we observe
in Section 5.3.2 that these optimizations allow to reduce the average delivery
latency under a broad range of loads.

Round-based. In Section 4.2.4, we present a non-genuine algorithm denoted
as A dv

ng . This protocol is faster than [28] and [56]: it can A-Deliver messages
within ∆, which is obviously optimal. This protocol is a disaster-vulnerable
version of the disaster-tolerant non-genuine algorithmA d t

ng , described below.
Ring-based. In [21], consensus is run inside groups exclusively. Consider a

message m that is multicast to groups g1, ..., gk. Message m is first multicast to
g1. Once a consensus instance decides on m, members of g1 A-Deliver m and
hand over this message to group g2. Every subsequent group proceeds similarly
up to gk. To ensure agreement on the message delivery order, before handling
other messages, every group waits for a final acknowledgment from group gk.
Two messages addressed to groups {g1, g2, g3} and {g2, g3, g4} respectively will
thus be ordered by g2. The latency of this algorithm is (k+ 1)∆.

Disaster-tolerant Algorithms

In Section 4.3, we present two disaster-tolerant algorithms. The first algorithm,
denoted asA d t

ge , is timestamp-based, genuine, and tolerates an arbitrary number
of failures but requires perfect failure detection. It has a latency of 6∆ and it
is an open question whether this is optimal for disaster-tolerant genuine atomic
multicast. The second algorithm A d t

ng is not genuine and requires a two-third
majority of correct processes, i.e., f < n/3, but only requires perfect failure
detection inside each group. Unreliable failure detection can also be tolerated
but at the cost of a weaker liveness guarantee. This protocol is round-based and
has a latency of 2∆. As a corollary of [38], this protocol is optimal.

It is worth noting that non-genuine atomic multicast could also be solved
with atomic broadcast. However, atomic broadcast protocols do not optimize
the latency of local messages.
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4.1.2 Atomic Broadcast

In [3], the authors consider the atomic broadcast and multicast problems in a
publish-subscribe system where links are reliable, publishers do not crash, and
cast infinitely many messages. Agreement on the message ordering is ensured by
using the same deterministic merge function at every subscriber process. Given
the cast rate of publishers, the authors give optimal algorithms with regards to
the merge delay, i.e., the time elapsed between the reception of a message by a
subscriber and its delivery. Both algorithms achieve a latency of ∆.

In [61], a time-based protocol is introduced to increase the probability of
spontaneous total order in wide area networks by artificially delaying messages.
Although the latency of the optimistic delivery of a message is ∆, the latency
of its final delivery is 2∆. Moreover, their protocol is non-uniform, i.e., the
agreement and prefix order properties of Chapter 2 are only ensured for correct
processes. A uniform protocol based on multiple sequencers is proposed in [64].
Every process p is assigned a sequencer that associates sequence numbers to the
messages p broadcasts. Processes optimistically deliver a message m when they
receive m’s sequence number. The final delivery of m occurs when the sequence
number of m has been validated by a majority of processes. The latency of this
algorithm is identical to [61].

In Section 4.2.3, we present a broadcast algorithm denoted as A dv
bcast . This

protocol relies on correct groups to allow for message delivery within only one
∆.

4.1.3 Analytical Comparison

Tables 4.1 and 4.2 respectively provide a comparison of the atomic broadcast
and multicast algorithms. To compute the inter-group message complexity, we
assume that there are n processes in the system. Furthermore, in the case of
atomic multicast, we consider that a message is addressed to k groups of d
processes. In the figures below, we also provide the resiliency and the failure
detectors required by the protocols. Two comments are now in order. First, we
note that the atomic broadcast algorithm in [61] is non-uniform, i.e., it guar-
antees the prefix order and agreement properties of Chapter 2 only for correct
processes. Second, the latency of the atomic multicast algorithm in [3] does not
contradict the lower bound of genuine atomic multicast. Indeed, their assump-
tions are different from ours, i.e., to ensure liveness of their multicast algorithm,
they require that each publisher multicast infinitely many messages to each sub-
scriber.
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Algorithm resiliency failure detector inter-group latency inter-group
latency optimal? msgs.

[61] f < n/2 system-wide Ω 2∆ yes O(n)
[64] f < n/2 system-wide Ω 2∆ yes O(n2)
A dv

bcast majority correct group-wide Ω ∆ yes O(n2)
in each group

at least one correct group-wide P
in each group

[3] only subscribers - ∆ yes O(n)
may crash

Table 4.1. Comparison of the atomic broadcast algorithms (∆ is the inter-group mes-
sage latency).

4.2 Disaster-vulnerable Atomic Multicast

In the context of correct groups, atomic broadcast and multicast establish an
inherent trade-off, as we now explain. For messages multicast to at least two
groups, we show that no genuine atomic multicast algorithm can hope to de-
liver messages within fewer than two inter-group message delays. This result
is proven under strong system assumptions, namely processes do not crash and
links are reliable. Moreover, this lower bound is tight, i.e., the fault-tolerant
algorithm A dv

ge of Section 4.2.2 and the algorithm in [28] achieve this latency
(as opposed to [28],A dv

ge reduces the number of intra-group messages sent, see
Section 4.2.2). A corollary of this result is that Skeen’s algorithm, initially de-
scribed in [10] and designed for failure-free systems, is also optimal—a result
that has apparently been left unnoticed by the scientific community for more
than 20 years.

We demonstrate that atomic multicast is inherently more expensive than
atomic broadcast in terms of latency. We do so by presenting a fault-tolerant
broadcast algorithm, denoted asA dv

bcast , that delivers messages within one inter-
group message delay. To achieve such a low latency, the algorithm is proactive,
i.e., it may take actions even though no messages are broadcast. Nevertheless,
we show how it can be made quiescent: provided that a finite number of mes-
sages is broadcast, processes eventually cease to communicate. The quiescent
version of A dv

bcast may, however, be as expensive as atomic multicast: in runs
where the algorithm becomes quiescent too early, that is, a message m is broad-
cast after processes have decided to stop communicating, m will not be delivered
in a single inter-group message delay, but in two. We show that this extra cost is



43 4.2 Disaster-vulnerable Atomic Multicast

Algorithm genuine? resiliency failure inter-group latency inter-group
detector(s) latency optimal? msgs.

[21] yes majority correct group-wide (k+ 1)∆ no O(kd2)
in each group Ω

[52] yes majority correct group-wide 4∆ no O(k2d2)
in each group Ω

[28] yes majority correct group-wide 2∆ yes O(k2d2)
in each group Ω

A dv
ge yes majority correct group-wide 2∆ yes O(k2d2)

in each group Ω
at least one correct group-wide

in each group P
A dv

ng no majority correct group-wide ∆ yes O(n2)
in each group Ω

at least one correct group-wide
in each group P

[3] yes only subscribers - ∆ yes O(kd)
may crash

A d t
ge yes f ≤ n system-wide 6∆ ? O(k3d3)

P
A d t

ng no f < n/3 group-wide 2∆ yes O(n2)
P

f < n/2 and 3∆
system-wide
♦P

Table 4.2. Comparison of the atomic multicast algorithms (d denotes the number of
processes per group, k is the number of groups addressed by the multicast message,
and ∆ is the inter-group message latency).

unavoidable, i.e., no quiescent atomic broadcast algorithm can hope to always
deliver messages within one inter-group delay.1

These two lower bound results stem from a common cause, namely the reac-
tiveness of the processes at the time when the message is cast. Roughly speaking,
a process p is said to be reactive when the next message m that p sends is in re-
sponse either to a local multicast event or to the reception of another message.
In Section 4.2.1, we first show that no atomic broadcast or multicast algorithm
can hope to deliver the last cast message m within one inter-group delay if m

1This result also holds for quiescent (genuine or non-genuine) atomic multicast algorithms.
The genuine case is already covered by the first lower bound result and is therefore irrelevant
here.



44 4.2 Disaster-vulnerable Atomic Multicast

is cast at a time when processes are reactive. To obtain the lower bounds, we
then show that (i) in runs of any genuine atomic multicast algorithm where one
message is multicast at time t, processes are reactive at t and (ii) in runs of any
quiescent atomic broadcast or atomic multicast algorithm where a finite number
of messages are cast, processes are eventually reactive forever.

To circumvent the latency lower bound of genuine atomic multicast, we pro-
vide a non-genuine multicast algorithm, denoted asA dv

ng , that is directly inspired
by A dv

bcast . Similarly to A dv
bcast , A

dv
ng may deliver global messages in a single

inter-group delay. Moreover,A dv
ng allows local messages to be delivered with no

inter-group communication.
These results help better understand the difference between genuine and

non-genuine atomic multicast. In particular, they point out a trade-off between
the optimal message delivery latency and message complexity of these two prob-
lems. Consider a partial replication scenario where each group replicates a set
of objects. If latency is the main concern, then every operation should be multi-
cast with a non-genuine primitive. This solution, however, has a higher message
complexity than genuine multicast: every operation leads to sending messages
to processes unrelated to this operation. To reduce the message complexity, gen-
uine multicast can be used. However, no genuine multicast algorithm can deliver
messages within fewer than two inter-group delays. This trade-off is explored
empirically in Chapter 5.

4.2.1 The Inherent Cost of Multicast

We establish the inherent cost of the genuine atomic multicast problem for mes-
sages that are multicast to multiple groups. We also show that quiescence has
a cost, i.e., in runs where a message m is cast at a time when the algorithm is
quiescent, there exists no algorithm that delivers m within fewer than two inter-
group message delays. We proceed in two steps. We first show that, if processes
are reactive when the last message m is cast, then m cannot be delivered within
fewer than two inter-group message delays. We then prove that (i) in runs of
any genuine atomic multicast algorithm where one message is multicast at time
t, processes are reactive at t and (ii) in runs of any quiescent atomic broad-
cast or atomic multicast algorithm where a finite number of messages are cast,
processes are eventually reactive forever.

The proofs are done in a model identical to the model of Chapter 2, except
that processes do not crash and links are reliable, i.e., they do not corrupt, du-
plicate, or lose messages. Moreover, we assume that the inter-group message
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delay is at least ∆ and the intra-group delay is negligible. We denote by A-XCast
an event of type A-BCast or A-MCast.

Definition 4.2.1 In a run R of an atomic broadcast or multicast algorithm, we say
that a process p is reactive at time t iff p sends a message at time t ′ ≥ t only if
either p A-XCasts a message in the interval [t, t ′] or p received a message sent in
the interval [t, t ′].

Proposition 4.2.1 In a system with at least two groups, for any atomic broadcast
or any atomic multicast algorithm A , there does not exist runs R1, R2 of A in
which processes are reactive at the time the last messages m1, m2 are A-XCast to at
least two groups, such that m1 and m2 are both A-Delivered within less than 2∆.

Proof: Suppose, by way of contradiction, that there exist an algorithm A and
runs Ri of A , i ∈ {1, 2}, such that, in Ri, mi is A-Delivered within less than 2∆.
Consider two groups, g1 and g2. In run Ri, process pi ∈ gi A-XCasts message
mi at time t to g1 and g2. We first show that (*) in Ri, at or after time t,
processes can only send messages m such that for a sequence of events e1 =
A-XCast(mi), e2, ..., ek = send(m), A-XCast(mi)→ e2→ ...→ send(m).2 Suppose,
by way of contradiction, that there exists a process p in Ri that sends a message
m at a time t ′i ≥ t such that the event send(m) is not causally linked to the event
A-XCast(mi). We construct a run R′i identical to run Ri except that message mi is
not A-MCast (note that processes are also reactive at time t in R′i). Since in Ri,
there is no causal chain linking the event A-XCast(mi) with the event send(m),
runs R′i and Ri are indistinguishable to process p up to and including time t ′i .
Therefore, p also sends m in R′i. Hence, since processes are reactive at time t
and no message is A-XCast at or after t, p must have received a message m′ sent
at or after t by some process q. Applying the same reasoning multiple times,
we argue that there must exists a process r that sends a message m′′ at time t
such that for some events e1 = send(m′′), e2, ..., ex−1 = send(m′), ex = send(m),
we have send(m′′) → ... → send(m′) → send(m). However, r cannot send m′′

because no message is A-XCast at or after t, a contradiction.
By the validity property of A and because there is no failure, all processes

eventually A-Deliver mi. Since mi is A-Delivered within less than 2∆ and the
inter-group latency is at least ∆, by (*), processes in gi A-Deliver mi before

2Events e1, ..., ek can be of four kinds, either send(m), receive(m), A-XCast(m), or A-
Deliver(m) for some message m. Moreover, the relation → is Lamport’s transitive happened
before relation on events [37]. It is defined as follows: e1 → e2 ⇔ e1, e2 are two events on the
same process and e1 happens before e2 or e1 = send(m) and e2 = receive(m) for some message
m.
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receiving any message from processes in g3−i sent at or after time t. Let t∗i > t
be the time at which all processes in gi have A-Delivered message mi. We now
build run R3 as follows. As in run Ri, pi A-XCasts mi. Runs Ri and R3 are
indistinguishable for processes in group gi up to time t∗i , that is, all messages
causally linked to the event A-XCast(m3−i) (including A-XCast(m3−i) itself) sent
from processes in group g3−i to processes in group gi are delayed until after t∗i .
Consequently, processes in group gi have all A-Delivered mi by time t∗i . By the
uniform agreement ofA , processes in g1 eventually A-Deliver m2 and processes
in g2 eventually A-Deliver m1. By the uniform prefix order property ofA , either
(i) processes in g1 A-Deliver m2 before m1 or (ii) processes in g2 A-Deliver m1

before m2. Cases (i) and (ii) violate the uniform integrity property of A since,
in case (i), processes in g1 A-Deliver m2 twice, and in case (ii), processes in g2

A-Deliver m1 twice, a contradiction. �

Proposition 4.2.2 For any run R of any genuine atomic multicast algorithm A
where one message m is A-MCast at an arbitrary time t, processes are reactive at
time t.

Proof: In run R, by the genuineness property of A , for any message m′ sent,
there exist events e1 = A-MCast(m), e2, ..., ex = send(m′) such that A-MCast(m)→
e2→ ...→ send(m′) (otherwise, using a similar argument as in Proposition 4.2.1,
we could build a run R′ identical to run R, except that no message is A-MCast in
R′, such that a process sends a message anyway, contradicting the fact that in R′

no message is A-MCast andA is genuine).
Consequently, for any process p, if p sends a message m′ at t ′ ≥ t, then either

p A-MCasts a message in the interval [t, t ′] or p received a message sent in the
interval [t, t ′]. �

Proposition 4.2.3 For any run R of any quiescent atomic broadcast or atomic
multicast algorithm A in which a finite number of messages are A-XCast, there
exists a time t such that for all t ′ ≥ t, processes are reactive at t ′.

Proof: In R, a finite number of messages are A-XCast. Because A is quiescent,
there exists a time t at or after which no messages are sent. It follows directly
that for all t ′ ≥ t processes are reactive at t ′. �

Although a consequence of Propositions 4.2.1 and 4.2.3 is that if the last mes-
sage m is cast when processes are reactive, then m cannot be delivered within
less than 2∆, in practice, multiple messages may bear this overhead. In fact,
this might even be the case in runs where an infinite number of messages are
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cast. Indeed, to ensure quiescence, processes must somehow predict whether
any message will be cast in the future. Hence, if no message is expected to be
cast, processes must stop communicating, and this may happen prematurely.

4.2.2 An Optimal Genuine Atomic Multicast Algorithm

In this section, we present a latency-optimal atomic multicast algorithm which is
inspired by the one from Fritzke et al. [28], an adaptation of Skeen’s algorithm
for failure-prone systems. We first explain the basic principle of our algorithm
and how it differs from [28]. We then explain our algorithm in detail.

Algorithm Overview

The algorithm associates every multicast message with a timestamp. To ensure
agreement on the message delivery order, two properties are ensured: (1) pro-
cesses agree on the message timestamps and (2) after a process p A-Delivers a
message with timestamp ts, p does not A-Deliver a message with a smaller time-
stamp than ts. To satisfy these two properties, inside each group g, processes
implement a logical clock that is used to generate timestamps; this is g ’s clock.
To guarantee g ’s clock consistency across members of g, processes use consen-
sus to maintain it. Moreover, every message m goes through the following four
stages:

• Stage s0: In every group g ∈ m.dst, processes define a timestamp for m
using g ’s clock. This is g ’s proposal for m’s final timestamp.

• Stage s1: Groups in m.dst exchange their proposals for m’s timestamp and
set m’s final timestamp to the maximum timestamp among all proposals.

• Stage s2: Every group in m.dst sets its clock to a value greater than the
final timestamp of m.

• Stage s3: Message m is A-Delivered when its final timestamp is the small-
est among all messages that are in one of the four stages and not yet
A-Delivered.

As mentioned above, our algorithm differentiates itself from [28] in several as-
pects. First, when a message is multicast, instead of using a uniform reliable
multicast primitive, we use a non-uniform version of this primitive while still
ensuring properties as strong as in [28].3 Second, in contrast to [28], not all

3Non-uniform reliable multicast ensures the same properties as its uniform counterpart de-
fined in Chapter 2, except for uniform agreement which is replaced by agreement: if a correct
process p R-Delivers a message m, then eventually all correct processes q ∈ m.dst R-Deliver m.
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messages go through all four stages. For messages that are multicast to only one
group, our algorithm allows them to jump from stage s0 to stage s3 directly. Also,
even for messages that are multicast to more than one group, on processes be-
longing to a group that has proposed a timestamp equal to the final timestamp
of m (the biggest proposal of all), m skips stage s2. We observe in Section 5.3.2
that the latter optimization allows to reduce the average delivery latency under
a broad range of loads.

The Algorithm in Detail

AlgorithmA dv
ge is composed of two concurrent tasks. Each line of the algorithm

is executed atomically. Apart from application data, messages are composed of
four fields: dst, id, ts, and stage. For every message m, m.dst indicates to which
group m is A-MCast, m.id is m’s unique identifier, m.ts denotes m’s current
timestamp, and m.stage defines in which stage m is. On every process p, four
global variables are used: K is p’s copy of group(p)’s clock and also denotes the
current consensus instance in execution or the next to be executed, propK forbids
p to propose more than one value per consensus instance, PENDING is the set
of messages that have not yet been A-Delivered, and ADELIVERED is the set of
A-Delivered messages. We explain Algorithm A dv

ge by describing the actions a
process p takes when a message m is in one of the four possible stages. We
illustrate the execution in Figure 4.1.

p1

px

...
g1

q1

qy

...
g2

r1

rz

...
g3

R-MCast(m)

stage s0

Consensus 10

propose(10, {m})

Consensus 5

propose(5, {m})

decide(10, {m})

decide(5, {m})

stage s1

send(TS, m)

m.ts← 10

stage s2

Consensus 6

propose(6, {m}) decide(6, {m})

K ← 11

stage s3

A-DeliveryTest()

Figure 4.1. Algorithm A dv
ge in the failure-free case when a message m is A-MCast to

groups g1 and g2. At the beginning of the run above, we assume that groups g1 and g2

have their variable K equal to 10 and 5 respectively.
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AlgorithmA dv
ge 3

Genuine Atomic Multicast - Code of process p
1: Initialization
2: K← 1, propK← 1, PENDING← ;, ADELIVERED← ;

3: procedure ADeliveryTest()
4: while ∃m ∈ PENDING : m.stage= s3 ∧

∀m′ ∈ PENDING : m′ 6= m⇒ (m.ts, m.id)< (m′.ts, m′.id) do
5: A-Deliver(m)
6: ADELIVERED← ADELIVERED∪ {m}
7: PENDING← PENDING \ {m}

8: To A-MCast message m {Task 1}
9: R-MCast(m) to m.dst

10: When (R-Deliver(m) ∨ receive(TS, m)) ∧
m 6∈ PENDING∪ ADELIVERED {Task 2}

11: m.ts← K
12: m.stage← s0

13: PENDING← PENDING∪ {m}

14: When (∃m ∈ PENDING : m.stage= s0 ∨ m.stage= s2) ∧
propK ≤ K

15: msgSet= {m | m ∈ PENDING∧ (m.stage= s0 ∨m.stage= s2)}
16: Propose(K , msgSet) B consensus inside group
17: propK← K + 1

18: When Decided(K , msgSet′)
19: foreach m′ ∈msgSet′ do
20: if |m′.dst|> 1 then
21: if m′.stage= s0 then
22: m′.ts← K
23: m′.stage← s1

24: send(TS, m′) to {q | q ∈ m.dst∧ group(q) 6= group(p)}
25: else
26: m′.stage← s3

27: else
28: m′.ts← K
29: m′.stage← s3 B second consensus not needed
30: PENDING← PENDING∪ {msgSet′} B add message or update its fields
31: K ←max(maxm′∈msgSet′(m′.ts), K) + 1
32: ADeliveryTest()

33: When ∃m ∈ PENDING : m.stage= s1 ∧
∀g ∈ (m.dst \ group(p)) ∃q ∈ g : received(TS, m) from q

34: TSset= {m.ts | ∃q ∈ m.dst : received (TS, m) from q}
35: if m.ts ≥maxts∈TSset(ts) then
36: m.stage← s3 B second consensus not needed
37: ADeliveryTest()
38: else
39: m.ts←maxts∈TSset(ts)
40: m.stage← s2
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Stage s0: For p to A-MCast m, p R-MCasts m to processes in m.dst. When
p R-Delivers m, if m has not been added to PENDING at line 30 or A-Delivered
before, p sets m.stage to s0 and adds m to the PENDING set. Note that p also
sets m’s timestamp to the current value of K to guarantee that every message in
PENDING is associated with a timestamp. In order for processes in each group
of m.dst to agree on their timestamp proposal, a consensus instance inside each
group is executed. Hence, p checks that propK ≤ K (line 14) to verify that
no consensus instance is currently running and, if it is the case, p proposes
m to the next consensus instance. Process p actually proposes all messages in
PENDING that are either in stage s0 or s2 to share the cost of consensus instances
among the set of messages proposed and to allow messages in different stages
to make progress in parallel. As soon as a consensus instance k decides on m
(m ∈ msgSet′ at line 18), p takes the following actions. First, if m is A-MCast
to more than one group, then m transitions to stage s1 and group(p)’s proposal
for m’s timestamp is k (lines 22-23). Otherwise, if m is A-MCast to one group
only, m’s final timestamp is k and m transitions to stage s3 directly (lines 28-29).
Indeed, at this point in time, processes in m.dst already agree on m’s timestamp
because p’s group is the only group in m.dst. Moreover, p’s copy of group(p)’s
clock, K , will be greater than m.ts after p executes line 31.

Stage s1: Process p sends its group’s proposal to all the groups in m.dst dif-
ferent from p’s group (line 24).4

Once p receives all the required timestamps’ proposals (line 33), p gathers
them in a set called TSset and computes the maximum value, max , of that set.
If the proposal of p’s group is bigger than or equal to max , then m can skip
stage s2. Indeed, at this point in time, p’s copy of group(p)’s clock, K , is already
bigger than m.ts, because p previously executed line 31. On the other hand, if
the proposal of p’s group is smaller than max , p sets m’s timestamp to max and
m transitions to stage s2 (line 39-40).

Stage s2: Process p then keeps on proposing m to consensus instances until
an instance k decides on m. When instance k terminates, m transitions to stage
s3 at line 26 and p sets K to a value greater than m’s final timestamp at line 31.

Stage s3: After m reaches stage s3 (at lines 26, 29, or 36), p checks whether m
can be A-Delivered by executing the procedure ADeliveryTest. This procedure A-

4This message also serves the purpose of propagating m. Consider a scenario where the
process that A-MCasts m is faulty and m is A-MCast to multiple groups. Because the reliable
multicast primitive we use is non-uniform, it is possible that only faulty processes in a group g
R-Deliver m. After processes in g decide on m in consensus and send the (TS, m) message at
line 24, since there is at least one correct process per group, we guarantee that correct processes
in m.dst receive m.



51 4.2 Disaster-vulnerable Atomic Multicast

Delivers m only if m has the smallest timestamp among all messages in PENDING
(line 4). If two messages m1 and m2 have the same timestamp, we break ties
using their message identifier. More precisely, (m1.ts, m1.id) < (m2.ts, m2.id) is
true either if m1.ts < m2.ts or if m1.ts = m2.ts and m1.id < m2.id.

4.2.3 An Optimal Atomic Broadcast Algorithm

In this section, we present the first fault-tolerant atomic broadcast algorithm
that can deliver messages in one inter-group message delay. Together with the
lower bound of Section 4.2.1, this shows that in the context of correct groups,
genuine atomic multicast is more costly in terms of inter-group latency than
atomic broadcast. We present the main idea of this algorithm and then explain
it in detail.

Algorithm Overview

To atomically broadcast a message m, a process p reliably multicasts m to the
processes in p’s group. In parallel, processes execute an unbounded sequence of
rounds. At the end of each round, processes deliver a set of messages according
to some deterministic order. To ensure agreement on the messages delivered in
round r, processes proceed in two steps. In the first step, inside each group g,
processes use consensus to define g ’s bundle of messages. In the second step,
groups exchange their message bundles. The set of message delivered at the end
of round r is the union of all bundles. Note that we also wish to ensure quies-
cence, i.e., if there is a time after which no message is broadcast, then processes
eventually stop sending messages. To do so, processes try to predict when no
further messages will be broadcast. When the algorithm predicts that messages
will no longer be broadcast, processes stop executing rounds. Our algorithm is
indulgent with regards to prediction mistakes, i.e., if processes become quies-
cent too early, they can restart so that liveness is still ensured. We explain below
how this is done.

The Algorithm in Detail

AlgorithmA dv
ng is composed of four concurrent tasks. Each line of the algorithm

is executed atomically. On every process p, six global variables are used: K de-
notes the current round number, propK forbids p to propose more than one value
per consensus instance, RDELIVERED and ADELIVERED are the set of R-Delivered
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and A-Delivered messages respectively, Msgs is used to store the groups’ message
bundles, and Barrier denotes the last round p currently thinks it will execute.

We explain how a message m is A-Delivered; Figure 4.2 illustrates the exe-
cution. To A-BCast m, a process p R-MCasts m to p’s group (line 5). When p
R-Delivers m, p adds it to RDELIVERED. At the beginning of every round r, p
proposes, in the next consensus instance, the set of messages that have been R-
Delivered but not A-Delivered yet (line 12). Note that this proposal may be the
empty set. When this instance decides on a set of messages msgSet′ (line 14),
p’s group message bundle in round r, p sends msgSet′ to all the groups different
from group(p). Process p then waits to receive the message bundles of round
r from all the other groups and A-Delivers the union of all bundles in some
deterministic order (lines 16-20).

p1

px

...
g1

q1

qy

...
g2

r1

rz

...
g3

R-MCast(m)

Consensus

Consensus

Consensus

send(1, {m})

send(1, ;)

send(1, ;)

A-Deliver(m)

Round 1

Figure 4.2. Algorithm A dv
bcast when a message m is A-BCast from p1.

In order to ensure quiescence, processes try to predict when no message will
be broadcast anymore. Our prediction strategy is simple: if no message was
A-Delivered in the current round (line 22), p leaves Barrier untouched, in which
case p will not execute the next round. This follows from the fact that K is
incremented by one at the end of each round (line 21), and if no message is
A-BCast anymore and all R-Delivered messages were A-Delivered, line 11 never
evaluates to true anymore and p does not execute further rounds.

To tolerate prediction mistakes, the algorithm proceeds as follows. Consider
a process p that broadcasts a message m after all processes have become quies-
cent. Let r be the last round processes executed. After processes in p’s group
R-Deliver m, line 11 evaluates to true and they start executing round r+1. To al-
low processes in other groups to restart executing rounds as well, after receiving
p’s group message bundle (line 8), these processes set Barrier to r + 1. Hence,
line 11 evaluates to true and they start round r + 1.
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AlgorithmA dv
bcast 4

Atomic Broadcast - Code of process p
1: Initialization
2: K← 1, propK← 1, RDELIVERED← ;, ADELIVERED← ;
3: Msgs← ;, Barrier← 0

4: To A-BCast message m {Task 1}
5: R-MCast(m) to group(p)

6: When R-Deliver(m) {Task 2}
7: RDELIVERED← RDELIVERED∪ {m}

8: When receive(x , msgSet) from q {Task 3}
9: Msgs←Msgs∪ (x , q, msgSet)

10: Barrier←max(Barrier, x)

11: When ((RDELIVERED \ ADELIVERED) 6= ; ∨
K ≤ Barrier) ∧ propK ≤ K {Task 4}

12: Propose(K , RDELIVERED \ ADELIVERED) B consensus inside group
13: propK← K+ 1

14: When Decided(K , msgSet′)
15: send(K , msgSet′) to {q | q ∈ Π∧ group(q) 6= group(p)}
16: wait until ∀g ∈ (Γ \ group(p)) : ∃q ∈ g s. t. received (K , -) from q
17: Msgs←Msgs∪ (K , p, msgSet′)
18: msgsToADel← {m | (K ,-, msgSet) ∈Msgs ∧ m ∈msgSet}
19: A-Deliver messages in msgsToADel in some deterministic order
20: ADELIVERED← ADELIVERED∪msgsToADel
21: K ← K + 1
22: if msgsToADel 6= ; then B stop executing rounds?
23: Barrier←max(Barrier, K)

4.2.4 Deriving a Non-Genuine Multicast Algorithm

In this section, we derive a non-genuine multicast algorithm A dv
ng that can A-

Deliver global messages in one message delay. This protocol is similar to Al-
gorithm A dv

bcast . We explain the similarities and differences between these two
protocols.

Similarly to A dv
bcast , to atomic multicast a message m, a process p reliably

multicasts m to p’s group (line 4). In parallel, processes execute an unbounded
sequence of rounds, and agree on the set of messages A-Delivered in each round.
To do so, in each round r, members of each group g define g ’s message bun-
dle using consensus (lines 8-9), exchange their message bundle with the other
groups, and processes A-Deliver the messages contained in the bundles of r that
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are addressed to them (lines 17-18).

AlgorithmA dv
ng 5

Non-Genuine Atomic Multicast - Code of process p
1: Initialization
2: K← 1, Rdel← ;, Decided← ;

3: To A-MCast message m {Task 1}
4: R-MCast m to group(p)

5: When R-Deliver(m) {Task 2}
6: Rdel← Rdel∪ {m}

7: Loop {Task 3}
8: Propose(K , Rdel \Decided) B consensus inside group
9: wait until Decide(K , msgs)

10: Decided← Decided∪msgs
11: lMsgs← {m | m ∈msgs ∧ m.dst= {group(p)}}
12: A-Deliver messages in lMsgs in some deterministic order

13: foreach g ∈ (Γ \ group(p))
14: toSend← {m | m ∈msgs ∧ g ∈ m.dst}
15: send(K, group(p), toSend) to all q ∈ g
16: wait until ∀g ∈ (Γ \ group(p)) : received(K, g, msgs′)
17: gMsgs← {m | p ∈ m.dst ∧

((m ∈msgs ∧ |m.dst|> 1) ∨
(∃g ∈ Γ : received(K, g, msgs′) ∧ m ∈msgs′))}

18: A-Deliver messages in gMsgs in some deterministic order

19: K ← K + 1

In contrast to atomic broadcast, atomic multicast allows messages to be ad-
dressed to a single group. Hence, after being decided in consensus, these local
messages do not need to be propagated to the other groups. Furthermore, they
can be A-Delivered directly after consensus (line 12). This optimizations allows
local messages to be A-Delivered without bearing the cost of a single inter-group
delay.

As is, Algorithm A dv
ng sends messages forever even in runs when a finite

number of messages is multicast. This algorithm can however be made quiescent
using the same technique as in A dv

bcast . In case processes become quiescent too
early, the next global message multicast will have a latency of two inter-group
delays, similarly toA dv

bcast .
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4.3 Disaster-tolerant Atomic Multicast

Mission-critical distributed applications typically replicate data in different data
centers. These data centers, or groups of machines, are spread over a large ge-
ographical area to provide maximum data availability despite natural disasters.
Replicating data across data centers can be achieved by means of an atomic
multicast protocol that tolerates group crashes.

In this section, we devise multicast algorithms that are disaster-tolerant.
These protocols rely on failure detectors that possibly provide inaccurate infor-
mation about process failures. Ideally, we would like to find the weakest failure
detector Damcast for genuine atomic multicast.

We here consider realistic failure detectors only, i.e., those that cannot predict
the future [22]. Moreover, we do not assume any bound on the number of
processes that can crash. In this context, Delporte et al. showed in [22] that the
weakest failure detector Dcons for consensus is the perfect failure detector P .
Obviously, atomic multicast allows to solve consensus: every process atomically
multicasts its proposal; the decision of consensus is the first delivered message.
Hence, the weakest realistic failure detector to solve genuine atomic multicast
Damcast when the number of faulty processes is not bounded is at least as strong
as P , i.e., Damcast � P . We show that P is in fact the weakest realistic failure
detector for genuine atomic multicast when an arbitrary number of processes
may fail by presenting A d t

ge , an algorithm that solves the problem using perfect
failure detection.

As implementing P seems hard, if not impossible, in certain settings (e.g.,
wide area networks), we revisit the problem from a different angle: we consider
non-genuine atomic multicast algorithms. For this purpose, atomic broadcast
could be used: unreliable failure detection allows to solve atomic broadcast and
cope with group crashes as long as a majority of processes are correct. This
solution, however, is of little practical interest as delivering messages requires
all processes to communicate, even for local messages. The second algorithm
A d t

ng we present does not suffer from this problem: local messages may be de-
livered without inter-group communication. Moreover, Algorithm A d t

ng offers
some advantages when compared to Algorithm A d t

ge , based on P : wide area
communication links are used sparingly, messages addressed to multiple groups
can be delivered within two inter-group message delays, and perfect failure de-
tection is only required within groups and not across the system. Although this
assumption is more reasonable than implementing P in a wide area network,
it may still be too strong for some systems. Thus, we discuss a modification to
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the algorithm that tolerates unreliable failure detection, at the cost of a weaker
liveness guarantee. The price to pay for the valuable features of AlgorithmA d t

ng
is a lower process failure resiliency: group crashes are still tolerated provided
that enough processes in the whole system are correct.

4.3.1 Solving Atomic Multicast with Perfect Failure Detection

We present the first genuine atomic multicast algorithm that tolerates an arbi-
trary number of process failures, i.e., f ≤ n. We first define additional abstrac-
tions used in the algorithm, then explain the mechanisms to ensure agreement
on the delivery order, and finally, we present the algorithm itself.

Additional Definitions and Assumptions

Failure Detector P : We assume that processes have access to the perfect failure
detector P [15]. This failure detector outputs a list of trusted processes and
satisfies the following properties5:

• strong completeness: Eventually no faulty process is ever trusted by any
correct process.

• strong accuracy: No process stops being trusted before it crashes.

Global Data Computation: We also assume the existence of a global data compu-
tation abstraction [25]. The global data computation problem consists in pro-
viding each process with the same vector V , with one entry per process, such
that each entry is filled with a value provided by the corresponding process.
Global data computation is defined by the primitives propose(v) and decide(V )
and satisfies the following properties:

• uniform validity: If a process p decides V , then ∀q : V[q] ∈ {vq,⊥}, where
vq is q’s proposal.

• termination: If every correct process proposes a value, then every correct
process eventually decides one vector.

• uniform agreement: If a process p decides V , then all correct processes q
eventually decide V .

5Historically, P was defined to output a set of suspected processes. We here define its output
as a set of trusted processes, i.e., in our definition the output corresponds to the complement of
the output in the original definition.
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• uniform obligation: If a process p decides V , then V[p] = vp.

An algorithm that solves global data computation using the perfect failure detec-
tor P appears in [25]. This algorithm tolerates an arbitrary number of failures.

Agreeing on the Delivery Order

The algorithm associates every multicast message with a timestamp. To guaran-
tee agreement on the message delivery order, two properties are ensured: (1)
processes agree on the message timestamps and (2) after a process p A-Delivers
a message with timestamp ts, p does not A-Deliver a message with a smaller
timestamp than ts. These properties are implemented as described next.

For simplicity, we initially assume a multicast primitive that guarantees agree-
ment on the set of messages processes deliver, but not causal order; we then
show how this algorithm may run into problems, which can be solved using
causal multicast. To A-MCast a message m1, m1 is first multicast to the ad-
dressees of m1. Upon delivery of m1, every process p uses a local variable, de-
noted as TSp, to define its proposal for m1’s timestamp, m1.tsp. Process p then
proposes m1.tsp in m1’s global data computation (gdc) instance. The definitive
timestamp of m1, m1.tsde f , is the maximum value of the decided vector V . Fi-
nally, p sets TSp to a bigger value than m1.tsde f and A-Delivers m1 when all
pending messages have a bigger timestamp than m1.tsde f —a message m is pend-
ing if p delivered m but did not A-Deliver m yet.

Although this reasoning ensures that processes agree on the message delivery
order, the delivery sequence of faulty processes may contain holes. For instance,
p may A-Deliver m1 followed by m2, while some faulty process q only A-Delivers
m2. To see why, consider the following scenario. Process p delivers m1 and
m2, and proposes some timestamp tsp for these two messages. As q is faulty, it
may only deliver m2 and propose some timestamp tsq bigger than tsp as m2’s
timestamp—this is possible because q may have A-Delivered several messages
before m2 that were not addressed to p and q thus updated its TS variable.
Right after deciding in m2’s gdc instance, q A-Delivers m2 and crashes. Later, p
decides in m1 and m2’s gdc instances, and A-Delivers m1 followed by m2, as m1’s
definitive timestamp is smaller than m2’s.

To solve this problem, before A-Delivering a message m, every process p
addressed by m computes m’s potential predecessor set, denoted as m.pps. This
set contains all messages addressed to p that may potentially have a smaller
definitive timestamp than m’s (in the example above, m1 belongs to m2.pps).6

6Note that the idea of computing a message’s potential predecessor set appears in the atomic
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Message m is then A-Delivered when for all messages m′ in m.pps either (a)
m′.tsde f is known and it is bigger than m.tsde f or (b) m′ has been A-Delivered
already.

The potential predecessor set of m is computed using causal multicast: To
A-MCast m, m is first causally multicast. Second, after p decides in m’s instance
and updates its TS variable, p causally multicasts an ack message to the desti-
nation processes of m. As soon as p receives an ack message from all processes
addressed by m that are trusted by its perfect failure detector module, the po-
tential predecessor set of m is simply the set of pending messages.

Intuitively, m’s potential predecessor set is correctly constructed for the two
following facts: (1) any message m′, addressed to p and some process q, that q
causally delivers before multicasting m’s ack message will be in m.pps (the defini-
tive timestamp of m′ might be smaller than m’s), and (2) any message causally
delivered by some addressee q of m after multicasting m’s ack message will have
a bigger definitive timestamp than m’s. Fact (1) holds from causal order, i.e.,
if q C-Delivers m′ before multicasting m’s ack message, then p C-Delivers m′

before C-Delivering m’s ack. Fact (2) is a consequence of the following. As p’s
failure detector module is perfect, p stops waiting for ack messages as soon as
p received an ack from all alive addressees of m. Hence, since processes update
their TS variable after deciding in m’s global data computation instance but be-
fore multicasting the ack message of m, no addressee of m proposes a timestamp
smaller than m.tsde f after multicasting m’s ack message.

p1

px

...g1

q1

qy

...g2

r1

rz

...g3

C-MCast(m)

m.ts← TS

GDC

propose(m.id, m.ts)

decide(m.id, V )

m.ts←max(V )
TS←max(TS, m.ts+ 1)

C-MCast(ACK, m.id, -)
ADeliveryTest()

Figure 4.3. Algorithm A d t
ge in the failure-free case when a message m is A-MCast to

groups g1 and g2.

multicast algorithm of [52]. However, this algorithm assumes a majority of correct processes in
every group and thus computes this set differently.
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AlgorithmA d t
ge 6

Genuine Atomic Multicast using P - Code of process p
1: Initialization
2: TS← 1, Pending← ;

3: procedure ADeliveryTest()
4: while ∃m ∈ Pending : m.stage= s2

∀id ∈ m.pps : ∃m′ ∈ Pending : m′.id = id ⇒
m′.stage= s2 ∧ (m.ts, m.id)< (m′.ts, m′.id) do

5: A-Deliver(m)
6: Pending← Pending \ {m}

7: To A-MCast message m {Task 1}
8: C-MCast(m) to m.dst

9: When C-Deliver(m) atomically do {Task 2}
10: m.ts← TS
11: m.stage← s0

12: Pending← Pending∪ {m}

13: When ∃m ∈ Pending : m.stage= s0 {Task 3}
14: m.stage← s1

15: fork task ConsensusTask(m)

16: ConsensusTask(m) {Task x}
17: Propose(m.id, m.ts) B global data computation among processes in m.dst
18: wait until Decide(m.id, V )
19: m.ts←max(V )
20: TS←max(TS, m.ts+ 1)
21: C-MCast(ACK, m.id, p) to m.dst
22: wait until ∀q ∈ P ∩m.dst : C-Deliver(ACK, m.id, q)
23: m.pps← {m′.id | m′ ∈ Pending ∧ m′ 6= m}
24: m.stage← s2

25: atomic block
26: ADeliveryTest()

The Algorithm

AlgorithmA d t
ge is composed of four concurrent tasks. Each line of the algorithm,

task 2, and the procedure ADeliveryTest are executed atomically. Messages are
composed of application data plus four fields: dst, id, ts, and stage. For every
message m, m.dst indicates to which groups m is A-MCast, m.id is m’s unique
identifier, m.ts denotes m’s current timestamp, and m.stage defines in which
stage m is. We explain Algorithm A d t

ge by describing the actions a process p
takes when a message m is in one of the three possible stages: s0, s1, or s2. The
execution is illustrated in Figure 4.3.
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To A-MCast m, m is first C-MCast to its addressees (line 8). In stage s0, p
C-Delivers m, sets m’s timestamp proposal, and adds m to the set of pending
messages Pending (lines 10-12). In stage s1, p computes m.tsde f (lines 17-19)
and ensures that all messages in m.pps are in p’s pending set (lines 20-23), as
explained above. Finally, in stage s2, m is A-Delivered when for all messages m′

in m.pps that are still in p’s pending set (if m′ is not in p’s pending set anymore,
m′ was A-Delivered before), m′ is in stage s2 (and thus m′.ts is the definitive
timestamp of m′) and m′.ts is bigger than m.ts (lines 4-6). Notice that if m and
m′ have the same timestamp, we break ties using their message identifiers, as
described in Section 4.2.2.

4.3.2 Solving Atomic Multicast with Weaker Failure Detectors

The AlgorithmA d t
ng we present next is non-genuine but does not require system-

wide perfect failure detection and delivers messages in fewer communication
steps. We first define additional abstractions used by the algorithm and summa-
rize its assumptions. We then present the algorithm itself and conclude with a
discussion on how to further reduce its delivery latency and weaken its failure
detection requirements.

Additional Definitions and Assumptions

Failure Detector ♦P : We assume that processes have access to an eventually
perfect failure detector ♦P [15]. This failure detector ensures the strong com-
pleteness property of P as well as the following property:

• eventual strong accuracy: There is a time after which no process stops being
trusted before it crashes.

Generic Broadcast: Processes access a generic broadcast abstraction that ensures
the same properties as atomic broadcast except that not all messages are totally
ordered. More precisely, messages are taken from a set to which all messages be-
long. Generic broadcast depends on a user-defined symmetric and non-reflexive
conflict relation on messages, and only orders messages that conflict. Formally,
generic broadcast ensures the uniform integrity, validity, and uniform agreement
properties of atomic broadcast as well as:

• uniform generalized order: For any two conflicting messages m and m′ and
any two processes p and q, if p G-Delivers m and q G-Delivers m′, then
either p G-Delivers m′ before m or q G-Delivers m before m′.
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Assumptions: To solve generic broadcast, either a simple majority of correct pro-
cesses must be correct, i.e., f < n/2, and non-conflicting messages may be de-
livered in three message delays [5] or a two-third majority of processes must
be correct, i.e., f < n/3, and non-conflicting message may be delivered in two
message delays [48]. Both algorithms require a system-wide leader failure de-
tector Ω [14], and thus the eventual perfect failure detector ♦P we assume is
sufficient. Moreover, inside each group, we need consensus and reliable mul-
ticast abstractions that tolerate an arbitrary number of failures. For this pur-
pose, among realistic failure detectors, P is necessary and sufficient for con-
sensus [22] and sufficient for reliable multicast [4].7 Note that in practice,
implementing P within each group is more reasonable than across the system,
especially if groups are inside local area networks. Despite this fact, this as-
sumption may still be too strong for some systems. We thus discuss below how
to tolerate unreliable failure detection.

Algorithm Overview

Algorithm A d t
ng is inspired by the atomic multicast algorithm A dv

ng , which as-
sumes that there is at least one correct process in every group. We recall its
main ideas and then explain how we cope with group failures.

To A-MCast a message m, a process p R-MCasts m to p’s group. In parallel,
processes execute an unbounded sequence of rounds. At the end of each round,
processes A-Deliver a set of messages according to some deterministic order. To
ensure agreement on the messages A-Delivered in round r, processes proceed
in two steps. In the first step, inside each group g, processes use consensus
to define g ’s bundle of messages. In the second step, groups exchange their
message bundles. The set of message A-Delivered by some process p at the end
of round r is the union of all bundles, restricted to messages addressed to p.

In case of group crashes, however, this solution does not ensure liveness.
Indeed, if a group g crashes, then there will be some round r after which no
process receives the message bundles of g. To circumvent this problem we pro-
ceed in two steps: (a) we allow processes to stop waiting for g ’s message bundle,
and (b) we let processes agree on the set of message bundles to consider for each
round.

To implement (a), processes maintain a common view of the groups that are
trusted to be alive, i.e., groups that contain at least one alive process. Processes
then wait for the message bundles from the groups currently in the view. A group

7In [4], the authors present the weakest failure detector to solve reliable broadcast. Extend-
ing the algorithm of [4] to the multicast case using the same failure detector is straightforward.
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g may be erroneously removed from the view if it was mistakenly suspected of
having crashed. Therefore, to ensure that message m multicast by a correct pro-
cess is delivered by all correct addressees of m, we allow members of g to add
their group back to the view. To achieve (b), processes agree on the sequence of
views and the set of message bundles between each view change. For this pur-
pose, we use a generic broadcast abstraction to propagate message bundles and
view change messages, i.e., messages to add or remove groups. Since message
bundles can be delivered in different orders at different processes, provided that
they are delivered between the same two view change messages, we define the
message conflict relation as follows: view change messages conflict with all mes-
sages and message bundles only conflict with view change messages. As view
change messages are not expected to be broadcast often, such a conflict relation
definition allows for faster message bundle delivery.

Processes may also A-Deliver local messages to some group g without com-
municating with processes outside of g. As these messages are addressed to g
only, members of g may A-Deliver them directly after consensus, and thus before
receiving the groups’ message bundles.

We note that maintaining a common view of the alive groups in the system
resembles what is called in the literature group membership [18]. Intuitively, a
group membership service provides processes with a consistent view of alive pro-
cesses in the system, i.e., processes “see" the same sequence of views. Moreover,
processes agree on the set of messages delivered between each view change, a
property that is required for message bundles. In fact, our algorithm could have
been built on top of such an abstraction. However, doing so would have given
us less freedom to optimize the delivery latency of message bundles.

The Algorithm

Algorithm A d t
ng is composed of five concurrent tasks. Each line of the algorithm

is executed atomically. On every process p, six global variables are used: Rnd
denotes the current round number, Rdelivered and Adelivered are the set of R-
Delivered and A-Delivered messages respectively, Gdelivered is the sequence of
G-Delivered messages, MsgBundle stores the message bundles, and View is the
set of groups currently deemed to be alive.

In the algorithm, every G-BCast message m has the following format:
(rnd, g, type, msgs), where rnd denotes the round in which m was G-BCast, g
is the group m refers to, type denotes m’s type and is either msgBundle, add, or
remove, and msgs is a set of messages; this field is only used if m is a message
bundle.
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A-Deliver(m)
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Figure 4.4. Algorithm A d t
ng in the failure-free case when a message m is A-MCast to

groups g1 and g2.
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G-BCast(1, g3 , remove, -)

G-BCast(1, g1 , msgBundle, m)

G-BCast(1, g2 , msgBundle,;)

A-Deliver(m)

Round 1

Figure 4.5. Algorithm A d t
ng when group g3 crashes and a message m is A-MCast to

groups g1 and g2.

We explain how a message m is A-Delivered; Figures 4.4 and 4.5 respectively
illustrate a failure-free run of the algorithm and a run where group g3 crashes
entirely. To A-MCast m, a process p R-MCasts m to p’s group (line 5). In every
round r, the set of messages that have been R-Delivered but not A-Delivered yet
are proposed to the next consensus instance (line 9), p A-Delivers the set of local
messages decided in this instance (line 12), and global messages are G-BCast at
line 14 if group(p) belongs to the view. Otherwise, p G-BCasts a message to add
group(p) to the view.
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AlgorithmA d t
ng 7

Non-Genuine Atomic Multicast - Code of process p
1: Initialization
2: Rnd← 1, Rdelivered← ;, Adelivered← ;, Gdelivered← ε
3: View← Γ, MsgBundle[g]←⊥ for each group g ∈ Γ

4: To A-MCast message m {Task 1}
5: R-MCast(m) to group(p)

6: When R-Deliver(m) {Task 2}
7: Rdelivered← Rdelivered∪ {m}

8: Loop {Task 3}
9: Propose(Rnd, Rdelivered \ Adelivered) B consensus inside group

10: wait until Decide(Rnd, msgs)

11: localMsgs← {m | m ∈msgs ∧ m.dst= {group(p)}}
12: A-Deliver messages in localMsgs in some deterministic order
13: Adelivered← Adelivered∪ localMsgs

14: if group(p) ∈ View then G-BCast(Rnd, group(p), msgBundle, msgs \ localMsgs)
15: else G-BCast(-, group(p), add, -)
16: groupsToAdd← ;

17: while ∃g ∈ Γ : MsgBundle[g] ∈ {⊥,>}
18: if 6 ∃(rnd, g, type, msgs) ∈ Gdelivered : (rnd= Rnd ∨ type= add) then
19: wait until G-Deliver(rnd, g, type, msgs) ∧ (rnd= Rnd ∨ type= add)
20: (rnd, g ′, type, msgs)← remove first message in Gdelivered s.t. (rnd= Rnd ∨ type= add)

21: if MsgBundle[g ′] ∈ {⊥,>} then
22: if type= add then groupsToAdd← groupsToAdd∪ {g ′}
23: else if type= remove then MsgBundle[g ′]← ;
24: else MsgBundle[g ′]← msgs
25: globalMsgs← {m | ∃g ∈ Γ : MsgBundle[g] =msgs ∧ m ∈msgs}
26: A-Deliver messages in globalMsgs addressed to p in some deterministic order
27: Adelivered← Adelivered∪ globalMsgs

28: View← {g | MsgBundle[g] 6= ;} ∪ groupsToAdd
29: foreach g ∈ Γ : MsgBundle[g]← ⊥ (if g ∈ View) or ; (otherwise)
30: Rnd← Rnd+ 1

31: When ∃g ∈ View : MsgBundle[g] =⊥ ∧ ∀q ∈ g : q 6∈ ♦P {Task 4}
32: G-BCast(Rnd, g, remove, -)
33: MsgBundle[g]←>

34: When G-Deliver(type, m) {Task 5}
35: Gdelivered← Gdelivered⊕ (rnd, g, type, msgs)

Process p then gathers message bundles of the current round k using vari-
able MsgBundle: Process p executes the while loop of lines 17–24 until, for
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every group g, MsgBundle[g] is neither ⊥, i.e. p is not waiting to receive a
message bundle from g, nor >, a value whose significance is explained below.
The first message mk

g of round k related to g of type msgBundle or remove that
p G-Delivers “locks” MsgBundle[g], i.e., any subsequent G-Delivered message
of round k concerning g is discarded (line 21). If mk

g is of type msgBundle,
p stores g ’s message bundle in MsgBundle[g] (line 24). Otherwise, mk

g was
G-BCast by some process q that suspected g to have crashed entirely, i.e., fail-
ure detector ♦P at q did not trust any member of g (lines 31-33), and thus
p sets MsgBundle[g] to ; (line 23). Note that q sets MsgBundle[g] to > after
G-BCasting a message of the form (k, g, remove, -) to prevent q from G-BCasting
multiple “remove g” messages in the same round.

While p is gathering message bundles for round k, it may also handle some
message of type add concerning g, in which case p adds g to a local variable
groupsToAdd (line 22). Note that this type of message is not tagged with a round
number to ensure that messages A-MCast from correct groups are eventually A-
Delivered by their correct addressees. In fact, tagging add messages with the
round number could prevent a group from being added to the view as we now
explain. Consider a correct group g that is removed from the view in the first
round. In every round, members of g G-BCast a message to add g back to
the view. In every round, however, processes G-Deliver message bundles of
groups in the view before G-Delivering these “add g” messages, and they are
thus discarded.

After exiting from the while loop, p A-Delivers global messages (line 26),
the view is recomputed as the groups g such that MsgBundle[g] 6= ; or g ∈
groupsToAdd (line 28), and p sets MsgBundle[g] to either ⊥, if g belongs to the
new view, or ; otherwise, i.e., p will not wait for a message bundle from g in
the next round.

Further Improvements

To weaken the failure detector required inside each group, i.e., P in Algo-
rithm A d t

ng , we may remove a group g from the view as soon as a majority of
processes in g are suspected. This allows to use consensus and reliable multi-
cast algorithms that are safe under an arbitrary number of failures and live only
when a majority of processes are correct. Hence, the leader failure detector Ω
becomes sufficient. Care should be taken as when to add g to the view again:
this should only be done when a majority of processes in g are trusted to be
alive. This solution ensures a weaker liveness guarantee however: correct pro-
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cesses in some group g will successfully multicast and deliver messages only if g
is maj-correct, i.e., g contains a majority of correct processes. More precisely, the
liveness guaranteed by this modified algorithm is as follows (uniform integrity
and uniform prefix order remain unchanged):

• weak uniform agreement: if a process p A-Delivers a message m, then all
correct processes q ∈ m.dst in a maj-correct group eventually A-Deliver m.

• weak validity: if a correct process p in a maj-correct group A-MCasts a
message m, then all correct processes q ∈ m.dst in a maj-correct group
eventually A-Deliver m.

4.4 Discussion

In this chapter, we addressed the problem of solving atomic multicast in large
scale networks. In the case of correct groups, we demonstrated that no genuine
atomic multicast can deliver global messages within fewer than two inter-group
message delays. This bound is tight: the algorithm in [28] andA dv

ge achieve a la-
tency of two inter-group message delays. We then presented an atomic broadcast
and a non-genuine atomic multicast protocol that can deliver global messages
in a single message delay, thus showing that the genuineness of multicast is an
expensive property.

In the case of faulty groups, we presented two algorithms. The first algorithm
is genuine and tolerates an arbitrary number of process failures but it is costly
in terms of latency: global messages are delivered within a minimum of six
inter-group message delays. Furthermore, this algorithm requires the perfect
failure detector P . We showed that if we consider realistic failure detectors
only and we do not bound the number of failures, P is necessary to solve this
problem. The second algorithm we presented is not genuine but requires perfect
failure detection inside each group only and may deliver messages addressed to
multiple groups within two inter-group message delays. We showed how this
latter algorithm can be modified to cope with unreliable failure detection, at the
cost of a weaker liveness guarantee.
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4.5 Proofs of Correctness

4.5.1 The Proof of Algorithm A dv
ge

In the following proofs, for brevity, we often write: “process p decides on m
in instance k" instead of writing “process p decides on msgSet′ such that m ∈
msgSet′ in instance k". Let S1 and S2 be two sequences. We use the following
definition of is a prefix of : S1 is a prefix of S2 iff ∃α : S1⊕α= S2.

Definition 4.5.1 We denote as κt
p the sequence of values taken by variable K on

process p up to time t.

Lemma 4.5.1 For any two processes p, q such that group(p) = group(q) and any
time t, either κt

p is a prefix of κt
q or κt

q is a prefix of κt
p.

Proof: We proceed by induction on the length l of κt
p.

• Base step (l = 1) : K is initialized to 1, therefore κt
p = {1} and 1 is the first

element of κt
q. Therefore, κt

p is a prefix of κt
q.

• Induction step: Suppose that Lemma 4.5.1 holds for x = l − 1, we prove
that Lemma 4.5.1 holds for x = l. We do so by showing that ¬(κt

p is a
prefix of κt

q)⇒ κ
t
q is a prefix of κt

p. Suppose, by way of contradiction, that
(*) ¬(κt

p is a prefix of κt
q) ∧ ¬(κ

t
q is a prefix of κt

p). By the induction
hypothesis, either (a) ∃α : κt

pl−1
⊕ α = κt

q or (b) ∃β : κt
q ⊕ β = κ

t
pl−1

.8 We
now show that (a) and (b) lead to a contradiction.

– In case (a), κt
pl−1
= {k1, .., kl−1}, κt

p = {k1, .., kl}, and κt
q = {k1, .., kl−1}⊕

α′. There are two cases to consider, (a-i) α′ = ε or (a-ii) α′ 6= ε.

In case (a-i), α′ = ε and therefore κt
q is a prefix of κt

p, a contra-
diction to (*).

In case (a-ii), because ¬(κt
p is a prefix of κt

q), (**) the first integer
ka in α′ is different from kl . By the uniform agreement property
of consensus, p and q decide on the same set of messages in
instance kl−1. Therefore, p and q set their variable K to the same
value at line 31 when Kp = Kq = kl−1. Consequently, ka = kl , a
contradiction to (**).

– In case (b), ∃β : κt
q ⊕ β = κ

t
pl−1

and therefore ∃β ′ : κt
q ⊕ β

′ = κt
p, a

contradiction to (*). �

8κt
pl−1

denotes the prefix of κt
p of length l − 1.
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Lemma 4.5.2 For any correct process p, any t, and any process q such that
group(p) = group(q), there exists a t ′ such that κt ′

p = κ
t
q.

Proof: By Lemma 4.5.1, either (a) κt
p is a prefix of κt

q or (b) κt
q is a prefix of κt

p.

• In case (a), κt
p is a prefix of κt

q. Therefore, there exists α such that κt
p⊕α=

κt
q. Let k be the length of α and αx be the prefix of α of length x . We show

by induction on x that for 1 ≤ x ≤ k, there exists a time t ′ such that
κt ′

p = κ
t
p ⊕αx .

– Base step (x = 1): Let k1 and k2 be the last and only element of κt
p

and α1 respectively. Because there is a time at which Kq = k2, q de-
cided in instance k1. By the uniform agreement property of consensus
p eventually decides in instance k1 and p, q decide on the same set of
messages in that instance. Therefore, p eventually executes line 31
and sets Kp to k2.

– Induction step: Suppose that there exists a time t ′ such that κt ′
p =

κt
p ⊕αx−1, we show that this also holds for x (1 ≤ x ≤ k). The same

argument as in the base step is used, where k1 is the last element of
αx−1 and k2 is the last element of αx .

• In case (b), κt
q is a prefix of κt

p, therefore there exists a time t ′ such that

κt ′
p = κ

t
q. �

Lemma 4.5.3 For any message m and any process p, after p adds m to PENDINGp

at line 13 or line 30, m ∈ PENDINGp ∪ ADELIVEREDp forever.

Proof: Before m is removed from PENDINGp at line 7, m is added to ADELIVEREDp

at line 6. Therefore, after m is added to PENDINGp either at line 13 or line 30,
m ∈ PENDINGq ∪ ADELIVEREDq forever. �

Lemma 4.5.4 For any message m and any process p:

• (a) p executes at most once line 18 when m.stage = s0 with m ∈msgSet′

• (b) p executes at most once line 18 when m.stage = s2 with m ∈msgSet′

Proof:
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• (a) Suppose, by way of contradiction, that p executes line 18 such that
m ∈ msgSet′ ∧m.stage = s0 more than once. Let k and k′ (k < k′) be the
first and second consensus instances such that p decides on a msgSet′ with
m ∈ msgSet′ ∧m.stage = s0 at line 18. By the uniform integrity property
of consensus, there exists a process q ∈ group(p) such that q proposes m
to instance k′ with m.stage = s0. By Lemma 4.5.1, q decides in instance k
before proposing m in instance k′. By the uniform agreement property of
consensus, q decides on m in instance k. By Lemma 4.5.3, after q finishes
executing line 30 when Kq = k, m ∈ PENDINGq ∪ ADELIVEREDq forever.
Hence, after deciding in instance k, q cannot execute line 12 to set m’s
stage back to s0. Therefore, q does not propose m to consensus instance k′

such that m.stage = s0, a contradiction.

• (b) Notice that p can only execute line 18 such that m.stage = s2 with
m ∈ msgSet′ if |m.dst| > 1. Suppose, by way of contradiction, that p
executes line 18 such that m ∈msgSet′∧m.stage = s2 more than once. Let
k1 and k3 (k1 < k3) be the first and second consensus instances such that
p decides on m with m.stage = s2. By the uniform integrity property of
consensus, there exists a process q ∈ group(p) such that q proposes m to
instance k3 with m.stage = s2. By Lemma 4.5.1, q decides in instance k1

before proposing m in instance k3. By the uniform agreement property of
consensus, q decides on m in instance k1 such that m.stage = s2. Because
q sets m’s stage to s3 after deciding in instance k1 at line 26, after deciding
in instance k1 and before proposing m in instance k3, either (b-i) q sets
m’s stage back to s0 at line 12 or (b-ii) q sets m’s stage back to stage s1 at
line 22. We show that (b-i) and (b-ii) lead to a contradiction.

– In case (b-i), by Lemma 4.5.3, after q executes line 30 when Kq = k1,
m ∈ PENDINGq∪ADELIVEREDq forever. Therefore, q does not execute
line 12 after deciding in instance k1, a contradiction.

– In case (b-ii), there exists a consensus instance k2 (k1 < k2 < k3) such
that q decides on m with m.stage = s0 in instance k2. By the uniform
integrity property of consensus, there exists a process r ∈ group(q)
such that r proposes m in instance k2. By Lemma 4.5.1, r decides in
instance k1 before proposing m in instance k2. By the uniform agree-
ment property of consensus, r decides on m with m.stage = s2 in
instance k1. By Lemma 4.5.3, after r executes line 30 when Kr = k1,
m ∈ PENDINGr ∪ ADELIVEREDr forever. Therefore, r does not set m’s
stage back to s0 at line 12 after deciding in instance k1. Consequently,



70 4.5 Proofs of Correctness

r does not propose m in instance k2 such that m.stage = s0, a con-
tradiction. �

Lemma 4.5.5 For any message m and any process p, on p m transitions only once
to stage s3.

Proof: There are two cases to consider:

• (1) |m.dst|= 1: Follows directly from Lemma 4.5.4.

• (2) |m.dst| > 1: Message m transitions to stage s3 either (i) at line 26
or (ii) at line 36. In case (i), by Lemma 4.5.4, p decides on m such that
m.stage = s2 only once. Therefore, m transitions to stage s3 at line 26 only
once. In case (ii), by Lemma 4.5.4, p decides on m such that m.stage = s0

only once. Therefore, m transitions to stage s1 at line 23 only once and
consequently m transitions to stage s3 at line 36 only once. �

Definition 4.5.2 From Lemma 4.5.5 and because the timestamp of a message m
does not change after m transitions to stage s3, we can define m.tss3

p as the time-
stamp of m on a process p when m.stage = s3. If m never transitions to stage s3

on p, then m.tss3
p =⊥.

Proposition 4.5.1 (Uniform Integrity) For any process p and any message m,
(a) p A-Delivers m at most once, and (b) only if p ∈ m.dst and m was previously
A-MCast.

Proof:

• (a) By Lemma 4.5.5, on p, m transitions to stage s3 only once. Because m
is only A-Delivered if m.stage = s3 such that m ∈ PENDING and because m
is removed from PENDING just after it has been A-Delivered, p A-Delivers
m at most once.

• (b) Follows directly from the algorithm. �

Lemma 4.5.6 For any message m and any correct process p, if there exists a time
at which m ∈ PENDINGp such that m.stage = s0, then for all correct processes
q ∈ group(p) there exists a time at which m ∈ PENDINGq.
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Proof: Process p can only add m to PENDINGp such that m.stage = s0 at line 13.
Therefore, either m was R-Delivered or (TS, m) was received. In the first case,
because p and q are correct and by the agreement property of reliable multicast,
all correct processes q ∈ group(p) eventually R-Deliver m. In the second case,
because p and q are correct and links are quasi-reliable, all correct processes
q ∈ group(p) eventually receive (TS, m). Therefore q eventually adds m to
PENDINGq if m 6∈ PENDINGq ∪ ADELIVEREDq. Note that if m ∈ ADELIVEREDq,
there exists a time at which m ∈ PENDINGq. �

Lemma 4.5.7 For any message m and any correct process p:

• (a) if there exists a time t at which m ∈ PENDINGp such that m.stagep = s0,
then all correct processes q ∈ group(p) eventually execute line 18 such that
m ∈msgSet′ ∧m.stage = s0.

• (b) if there exists a time t at which m ∈ PENDINGp such that m.stagep = s1,
then for all correct processes q ∈ m.dst, m eventually reaches stage s1 on q.

• (c) if there exists a time t at which m ∈ PENDINGp such that m.stagep = s2,
then all correct processes q ∈ group(p) eventually execute line 18 such that
m ∈msgSet′ ∧m.stage = s2.

• (d) if there exists a time t at which m ∈ PENDINGp such that m.stagep = s1,
then for all correct processes q ∈ m.dst, m eventually reaches stage s3 on q.

Proof:

• (a) By Lemma 4.5.6, eventually m ∈ PENDINGq. Suppose, by way of con-
tradiction, that there exists a correct process r ∈ group(p) that never de-
cides on m at line 18 such that m.stage = s0. Therefore, by by Lemma 4.5.2,
and by the uniform agreement and termination properties of consensus,
there exists no correct process q ∈ group(p) that decides on m with m.stage =
s0. Consequently, m never reaches stage s1 on process q and no process q
A-Delivers m. Therefore for all q, m ∈ PENDINGq∧m.stage = s0 holds for-
ever. Let t be the time after which all faulty processes have crashed. There-
fore, after t, (*) processes q always propose a set of messages msgSet such
that m ∈msgSet∧m.stage = s0 at line 16. By the termination property of
consensus, processes q execute an infinite number of consensus instances.
Therefore by (*), and by the uniform integrity and uniform agreement
properties of consensus, processes q (including r) eventually decide on m
such that m.stage = s0, a contradiction.
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• (b) Because p sets m’s stage to s1 at line 23, p decided on m in an instance k
such that m.stage = s0. There are two cases to consider: (b-i) q ∈ group(p)
and (b-ii) q 6∈ group(p).

– In case (b-i), by the uniform agreement property of consensus and
by Lemma 4.5.2, q eventually decides on m in instance k such that
m.stage = s0. Consequently, q eventually sets m’s stage to s1 at
line 23.

– In case (b-ii), p sends a (TS, m) message to all q ∈ m.dst \ group(p).
Because p is correct and links are quasi-reliable, (*) q eventually re-
ceive that message.

We now prove that for all groups in m.dst \ group(p) there exists at
least one process r such that there exists a time at which r adds
m to PENDINGr with m.stage = s0 at line 13. By (a), this shows
that m eventually transitions to stage s1 on all correct processes q ∈
m.dst\group(g). Suppose, by way of contradiction, that there exists a
group g ∈ (m.dst\group(p)) in which no process adds m to PENDING
at line 13. Consequently, because consensus instances are executed
inside groups, in g, no process adds m to PENDING or ADELIVERED.
Therefore, by (*) all processes in g eventually execute line 13, a con-
tradiction.

• (c) We first prove that m eventually reaches stage s2 on q. If m.stage = s2

on p, then m reached stage s1 on p before. Therefore by (b), m eventually
reaches stage s1 on all correct processes r ∈ m.dst. Therefore, r sends a
(TS, m) message to all processes in m.dst \ group(r) and because there is
at least one correct process per group and links are quasi-reliable, all pro-
cesses q ∈ group(p) eventually receive (TS, m) messages from every group
different from group(p). As m reaches stage s2 on p, on every correct pro-
cess q ∈ group(p), line 35 evaluates to false, and m reaches stage s2 on all
q.
Now suppose, by way of contradiction, that there exists a correct process
s ∈ group(p) that never decides on m at line 18 such that m.stage = s2.
Consequently, by Lemma 4.5.2, and by the uniform agreement and termi-
nation properties of consensus, no process in group(p) decides on m such
that m.stage = s2 and none A-Delivers m. Therefore for all correct pro-
cesses q ∈ group(p), m ∈ PENDINGq ∧ m.stage = s2 holds forever. Let t
be the time after which all faulty processes have crashed. Therefore, af-
ter t, (*) processes q always propose a set of messages msgSet such that



73 4.5 Proofs of Correctness

m ∈msgSet∧m.stage = s2 at line 16. By Lemma 4.5.2 and the termination
property of consensus, processes q execute an infinite number of consen-
sus instances. Therefore, by (*), and the uniform integrity and uniform
agreement properties of consensus, processes q (including s) eventually
decide on m such that m.stage = s2, a contradiction.

• (d) If there exists a time at which, on p, m ∈ PENDINGp such that m.stage =
s1, then by (b), on all correct processes q ∈ m.dst, m reaches stage s1 and
q executes line 24. Because there is at least one correct process per group,
links are quasi-reliable, and processes p and q are correct, q eventually
executes line 33. There are two cases to consider: on q, either (i) line 35
evaluates to true or (ii) not.

– In case (i), Lemma 4.5.7-(d) trivially holds from the algorithm.

– In case (ii), m reaches stage s2 on q. By (c), q eventually decide on m
such that m.stage = s2. Therefore, m eventually reaches stage s3 at
line 26. �

Lemma 4.5.8 For any message m and any correct process p, if there exists a time
at which m ∈ PENDINGp, then m eventually reaches stage s3 on p.

Proof: There are two cases to consider, either (a) |m.dst|= 1, or (b) |m.dst|> 1:

• In case (a), p adds m to PENDINGp (a-i) at line 13 or (a-ii) at line 30.

– In case (a-i), by Lemma 4.5.7-(a), all correct processes q ∈ group(p)
(including p) eventually decide on a consensus instance such that
m ∈msgSet′ ∧m.stage = s0 and on p, m.stage is set to s3 at line 29.

– In case (a-ii), Lemma 4.5.8 trivially holds from the algorithm.

• In case (b), p adds m to PENDINGp (b-i) at line 13 or (b-ii) at line 30.

– In case (b-i), by Lemma 4.5.7-(a), all correct processes in q ∈ group(p)
eventually execute line 18 such that m ∈msgSet′ ∧m.stage = s0. Be-
cause there exists at least one correct process in each group, there is
at least one correct process r ∈ group(p) such that m reaches stage
s1 at line 23. Consequently, by Lemma 4.5.7-(d), m reaches stage s3

on all correct processes in m.dst (including p).

– In case (b-ii), when p adds m to PENDINGp, either (b-ii-1) m.stage =
s1 or (b-ii-2) m.stage = s3.
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In case (b-ii-1), by Lemma 4.5.7-(d), on all correct processes q ∈
m.dst (including p), m eventually reaches stage s3.

In case (b-ii-2), Lemma 4.5.8 holds. �

Lemma 4.5.9 For any correct process p and any message m such that there exists
a time at which m ∈ PENDINGp, after m reaches stage s3 on p, p eventually stops
adding messages m′ to PENDINGp such that m′.ts ≤ m.tss3

p .

Proof: Message m reaches stage s3 at line 26, at line 29, or at line 36. In the
three cases, from line 31, there exist a time t at which Kp > m.tss3

p . After t, p
can add a message m′ to PENDINGp either (a) at line 13 or (b) at line 30.

• In case (a), before adding m′ to PENDINGp, m’.ts is set to Kp.

• In case (b), there are three sub-cases to consider, (c-i) |m′.dst| > 1 ∧
m′.stage = s1, (c-ii) |m′.dst|> 1∧m′.stage = s3, or (c-iii) |m′.dst|= 1.

– In cases (c-i) and (c-iii), m′.ts is set to Kp.

– In case (c-ii), suppose, by way of contradiction, that p adds an infinite
number of messages m′ at line 30 such that |m′.dst| > 1, m′.stage =
s3, and m′.ts < m.tss3

p . Therefore, by the uniform integrity property of
consensus and because |Π| <∞, there exists a process r ∈ group(p)
that proposes messages m′ such that m′.stage = s2 and m′.ts < m.tss3

p
an infinite number of times. After such a message m′ is decided in
consensus, m′ transitions to stage s3. By Lemma 4.5.4, m′ can do so
at most once and consequently r adds an infinite number of different
messages m′′ to PENDINGr such that m′′.stage = s1 ∧ |m′′.dst| > 1 ∧
m′′.ts < m.tss3

p , a contradiction to (c-i). �

Proposition 4.5.2 (Uniform Agreement) For any message m, if a process p A-
Delivers m, then all correct processes q ∈ m.dst eventually A-Deliver m.

Proof: We first show that eventually m ∈ PENDINGq. There are two cases to
consider, either (a) |m.dst| = 1 or (b) |m.dst| > 1. In both cases, because p A-
Delivers m, there exists a consensus instance k such that p decides on m in k with
m.stage = s0. By Lemma 4.5.2 and by the uniform agreement of consensus, all
correct processes q ∈ group(p) eventually decide on m in k. Therefore, q adds
m to PENDINGq at line 30. This shows the claim for case (a). In case (b),
because there is at least one correct process per group, there exists at least one
process r ∈ group(p) that sends (TS, m) to all processes in (m.dst \ group(p))
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at line 24. Therefore, because links are quasi-reliable, all correct processes q ∈
(m.dst \ group(p)) eventually receive that message and add m to PENDINGq at
line 13 if m 6∈ PENDINGq ∪ ADELIVEREDq. Note that if m ∈ PENDINGq, then
obviously there is a time at which m ∈ PENDINGq.

By Lemma 4.5.8, m eventually reaches stage s3 on q. By Lemma 4.5.9, q
eventually stops adding messages m′ to PENDINGq such that m′.ts ≤ m.tss3

q . By
Lemma 4.5.8, all such messages m′ eventually reach stage s3 and are removed
from PENDINGq. Therefore, q eventually A-Delivers m. �

Proposition 4.5.3 (Validity) If a correct process p A-MCasts m, then all correct
processes q ∈ m.dst eventually A-Deliver m.

Proof: We first prove that q eventually adds m to PENDINGq. By the properties
of Reliable Multicast and because p is correct, all correct processes q ∈ m.dst R-
Deliver m and add m to PENDINGq at line 13 if m 6∈ PENDINGq ∪ ADELIVEREDq.
Notice that if m ∈ ADELIVEREDq, then obviously q A-Delivered m and Propo-
sition 4.5.3 holds. By Lemma 4.5.8, m eventually reaches stage s3 on q. By
Lemma 4.5.9, q eventually stops adding messages m′ to PENDINGq such that
m′.ts ≤ m.tss3

q . By Lemma 4.5.8, all such messages m′ eventually get to stage s3

and are removed from PENDINGq. Therefore, q eventually A-Delivers m. �

Lemma 4.5.10 For any message m and any two processes p and q such that p and
q A-Deliver m, m.tss3

p = m.tss3
q .

Proof: There are two cases to consider: either (a) |m.dst|= 1 or (b) |m.dst|> 1.

• In case (a), by the uniform agreement property of consensus and by Lemma
4.5.4, all processes in p’s group decide on m in the same consensus in-
stance k and only in k. Therefore, p and q set m.ts to the same value at
line 29.

• In case (b), by the uniform agreement of consensus and by Lemma 4.5.4
for all groups g ∈ m.dst, all processes q in group g decide on m such that
m.stage = s2 in the same and only consensus instance k and send the
same timestamp at line 24. Therefore, by line 35 and line 39, m.tss3

p and
m.tss3

q are set to the same value. �

Lemma 4.5.11 For any two messages m1, m2, and any two processes p and q
such that {p, q} ⊆ m1.dst ∩ m2.dst, if p A-Delivers m1, q A-Delivers m2, and
(m1.tss3

p , m1.id)< (m2.tss3
q , m2.id), then q A-Delivers m1 before m2.
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Proof: Because there is at least one correct process per group and by Proposi-
tion 4.5.2, there exists a correct process r ∈ group(q) that A-Delivers m1 and m2.
Let km1

and km2
respectively be the first consensus instance in which group(q)

decides on m1 and the last consensus instance in which group(q) decides on m2

(the decision of instance km2
is such that m2’s stage is either s0 or s2). We first

show that when q decides in instance km2
, m1 ∈ PENDINGq.

Suppose, by way of contradiction, that it is not the case. Hence, km1
> km2

(otherwise, m1 ∈ PENDINGq when q decides in km2
). From the algorithm,

m1.tss3
r ≥ km1

. From line 31, after r decides in instance km2
Kr > m2.tss3

r .
Since km1

> km2
, km1

> m2.tss3
r . Therefore, since m1.tss3

r ≥ km1
, m1.tss3

r >

m2.tss3
r . By Lemma 4.5.10, m1.tss3

p = m1.tss3
r and m2.tss3

q = m2.tss3
r . Con-

sequently, (m1.tss3
p , m1.id) > (m2.tss3

q , m2.id), a contradiction to the fact that
(m1.tss3

p , m1.id) < (m2.tss3
q , m2.id). Hence, (*) when q decides in instance km2

,
m1 ∈ PENDINGq.

Recall that by Lemma 4.5.10, m1.tss3
r = m1.tss3

p and m2.tss3
r = m2.tss3

q . Hence,
from the algorithm, m1’s timestamp on q can never be bigger than m2.tss3

q . In-
deed, otherwise at some time t, r would set m1.ts to a higher value than m2.tss3

q ,
a contradiction to the fact that, on r, m1.ts is monotonically increasing with time
and (m1.tss3

p , m1.id)< (m2.tss3
q , m2.id). Hence, from (*) and the condition under

which a message is A-Delivered (line 4), q A-Delivers m1 before m2. �

Proposition 4.5.4 (Uniform Prefix Order) For any two messages m and m′ and
any two processes p and q such that {p, q} ⊆ m.dst∩m′.dst, if p A-Delivers m and
q A-Delivers m′, then either p A-Delivers m′ before m or q A-Delivers m before m′

Proof: Since p A-Delivers m and q A-Delivers m′, m.tsde f
p and m′.tsde f

q are de-
fined. Either (m.tss3

p , m.id) < (m′.tss3
q , m′.id) or (m.tss3

p , m.id) > (m′.tss3
q , m′.id).

By Lemma 4.5.11, either q A-Delivers m before m′ or p A-Delivers m′ before m.
�

Lemma 4.5.12 For any two messages m1 and m2, m1 < m2 ⇒ (m1.tss3 , m1.id)<
(m2.tss3 , m2.id).

Proof: Notice that in the proof below, we use the fact that, by definition, for any
two messages m1 and m2, m1.tss3 < m2.tss3 ⇒ (m1.tss3 , m1.id)< (m2.tss3 , m2.id).
Let p be the process that A-Delivers m1 before m2. At the time m1 is A-Delivered,
either (a) m2 ∈ PENDINGp or (b) m2 6∈ PENDINGp.

• In case (a), (m1.tss3 , m1.id) < (m2.tss3 , m2.id) holds trivially by the con-
dition of line 4.
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• In case (b), because m2 is not in PENDINGp at the time m1 is A-Delivered,
a message is removed from this set only after it has been A-Delivered
(line 7), and m2 is A-Delivered after m1, (*) m2 has not yet been added
to PENDINGp either at line 13 or at line 30. Since K increases after each
consensus instance, if |m2.dest| = 1, m1.tss3 < m2.tss3 . If |m2.dest| >
1, before m2 reaches stage s3 on p, p executed line 18 such that m2 ∈
msgSet′ ∧m2.stage = s0 and m2 transitions to stage s1 at line 23. There-
fore, since K increases after each consensus instance and because of (*),
at the time m2 reaches stage s1, m1.tss3 < m2.ts. By line 35 or line 39
we have that m2.tss3 is equal to the maximum of all timestamps received,
therefore m1.tss3 < m2.tss3 . �

Proposition 4.5.5 (Uniform Acyclic Order) The relation < is acyclic.

Proof: Suppose, by way of contradiction, that the relation is cyclic. Therefore,
there exists two messages m1 and m2 such that m1 < ... < m2 < ... < m1. By
Lemma 4.5.12, we have (m1.tss3 , m1.id)< (m2.tss3 , m2.id) and (m2.tss3 , m2.id)<
(m1.tss3 , m1.id). There are two cases to consider, either (a) m1.tss3 = m2.tss3 or
(b) not.

• In case (a), m1.id < m2.id < m1.id, a contradiction.

• In case (b), m1.tss3 < m2.tss3 < m1.tss3 , a contradiction. �

4.5.2 The Proof of Algorithm A dv
bcast

Definition 4.5.3 We define msgsToADelkp as the value of set msgsToADelp after pro-
cess p executed line 18 when Kp = k. If process p does not execute line 18 when
Kp = k, msgsToADelkp =⊥.

Lemma 4.5.13 For any k, any two processes p and q such that group(p)= group(q)
and any two messages (k, msgSet′p) and (k, msgSet′q) respectively sent by p and q at
line 15, msgSet′p =msgSet′q.

Proof: Follows directly from the uniform agreement property of consensus. �

Lemma 4.5.14 For any two processes p and q and any k, if p and q execute line 18
when Kp = Kq = k, then msgsToADelkp =msgsToADelkq.
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Proof: From the condition of line 16, p and q received a message (k, -) from a
process in each group different from group(p) and group(q). By Lemma 4.5.13,
each two messages (k, msgSet′r) and (k, msgSet′s) coming from processes r and s
that are in the same group are such that msgSet′r =msgSet′s. There are two cases
to consider, either (a) group(p) = group(q) or (b) not.

• In case (a), by the uniform agreement property of consensus, p and q add
the same set of messages to Msgs at line 17. Therefore, msgsToADelkp =
msgsToADelkq.

• In case (b), let msgSet′p and msgSet′q be the set of messages that p and
q respectively add to Msgs at line 17. By the condition of line 16, p re-
ceived a message (k, msgSet1) from a process in group(q) and q received
a message (k, msgSet2) from a process in group(p). Because processes
send the same set of messages at line 15 that they add to Msgs at line 17,
by Lemma 4.5.13, msgSet′p = msgSet2 and msgSet′q = msgSet1. Therefore,
msgsToADelkp =msgsToADelkq. �

Proposition 4.5.6 (Uniform Integrity) For any process p and any message m,
(a) p A-Delivers m at most once and (b) only if m was previously A-BCast.

Proof:

• (a) Let k be the value of Kp the first time p A-Delivers m. Consequently,
m ∈ msgsToADelkp (notice that m can only appear once in msgsToADel be-
cause it is a set). By Lemma 4.5.14, all processes q that execute line 18
when Kq = k are such that m ∈msgsToADelkq. Consequently, since processes
add m to ADELIVERED at line 20 after A-Delivering m, no process proposes
m to a consensus instance k′ > k. Therefore, there exists no k′ > k such
that m ∈msgsToADelk

′

p and p never A-delivers m again.

• (b) Follows directly from the algorithm. �

Proposition 4.5.7 (Uniform Agreement) For any message m, if a process p A-
Delivers m, then all correct processes q eventually A-Deliver m.

Proof: If p A-Delivers m, then there exists a k such that m ∈msgsToADelkp. Thus,
p decided in consensus instance k. By Lemma 4.5.15, every correct process q
eventually decides in consensus instance k and executes line 18 when Kq = k.
By Lemma 4.5.14, m ∈msgsToADelkq and therefore q A-Delivers m. �



79 4.5 Proofs of Correctness

Lemma 4.5.15 For any process p and any k,

• (a) if p decides in consensus instance k, then all correct processes q eventually
decide in instance k.

• (b) p does not wait forever at line 16 when Kp = k.

Proof: We proceed by simultaneous induction on (a) and (b).

• Base step (k = 1):

– (a) There are two cases to consider: either (a-1) q ∈ group(p) or
(a-ii) not.

(a-1) Variable K is initialized to 1. Therefore by the uniform
agreement property of consensus, all correct processes q eventu-
ally decide in instance 1.

(a-2) By (a-1) and because there is at least one correct process
per group, there is at least one correct process r ∈ group(p)
that sends a message (1, -) to all processes q 6∈ group(p) at
line 15. Because r is correct and links are quasi-reliable, all cor-
rect processes q eventually receive that message. Thus, eventu-
ally, Barrierq ≥ 1. Consequently, q proposes a value in instance
1 (if q has not decided yet in instance 1) and by the termination
property of consensus, q eventually decides in instance 1.

– (b) Suppose, by way of contradiction, that p waits forever at line 16.
Consequently, p is correct. By (a), all correct processes q eventually
decide in instance 1. After deciding in instance 1, correct processes q
send a (1, -) message to all processes not in group(q). Because there
is at least one correct process per group, p is correct, and links are
quasi-reliable, p eventually receive this message from a process in
every group different from group(p) and stops waiting at line 16, a
contradiction.

• Induction step: Suppose that (a) and (b) hold for k−1 we prove that they
hold for k.

– (a) There are two cases to consider either (a-1) q ∈ group(p) or (a-ii)
not.

(a-1) From the induction hypotheses, q eventually decides in in-
stance k− 1. Thus, eventually, Kq = k. Therefore by the uniform
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agreement property of consensus, q eventually decide in instance
k.
(a-2) By (a-1) and because there is at least one correct process
per group, there is at least one correct process r ∈ group(p)
that sends a message (k, -) to all processes q 6∈ group(p) at
line 15. Because r is correct and links are quasi-reliable, all cor-
rect processes q eventually receive that message. Thus, eventu-
ally, Barrierq ≥ k. By the induction hypotheses, q decides in in-
stance k−1 and does not wait forever at line 16 when Kq = k−1.
Consequently, q proposes a value in instance k (if q has not de-
cided yet in instance k) and by the termination property of con-
sensus, q eventually decides in instance k.

– (b) The same argument as in the base step of (b) is used, where every
occurrence of “1" is replaced by “k”. �

Lemma 4.5.16 For any group g and any message m, if there is a time after which
all correct processes p in g are such that m ∈ RDELIVEREDp, then all correct pro-
cesses eventually A-Deliver m.

Proof: Suppose, by way of contradiction, that there exists a correct process
that never A-Delivers m. By Proposition 4.5.7, no correct process A-Delivers m.
Therefore, m ∈ RDELIVEREDp \ ADELIVEREDp eventually forever. Consequently,
by the termination property of consensus and Lemma 4.5.15, processes p exe-
cute an infinite number of consensus instances. Let t be the time at which all
faulty processes have crashed. After t, consensus proposals in g always con-
tain m, and thus, by the uniform integrity and uniform agreement properties of
consensus, processes p eventually decide on m in an instance k.

Consequently, (*) processes p send a (k, msgSet′p) message such that m ∈
msgSet′p. Because there is at least one correct process in each group and links
are quasi-reliable, all correct processes r ∈ Π eventually receive that message
and eventually Barrierr ≥ k. By the termination property of consensus and by
Lemma 4.5.15, there exists a time at which processes r have executed line 18
when Kr = k. Therefore, by the condition of line 16 and (*), m ∈ msgsToADelkr
and thus, all correct processes eventually A-Deliver m, a contradiction. �

Proposition 4.5.8 (Validity) If a correct process p A-BCasts m, then all correct
processes eventually A-Deliver m.

Proof: By the validity property of reliable multicast, all correct processes q in
group(p) eventually R-Deliver m and add m to RDELIVEREDq. Therefore, by
Lemma 4.5.16, all correct processes eventually A-Deliver m. �
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Definition 4.5.4 We define the round of a message m as the value k such that
there exists a process p with m ∈ msgsToADelkp. If m is never A-Delivered by any
process, round(m) =⊥.9

Proposition 4.5.9 (Uniform Prefix Order) For any two messages m and m′ and
any two processes p and q, if p A-Delivers m and q A-Delivers m′, then either p
A-Delivers m′ before m or q A-Delivers m before m′.

Proof: Either (a) round(m) < round(m′), (b) round(m) = round(m′), or (c)
round(m) > round(m′). We show that in each one of the three cases, either p
A-Delivers m′ before m or q A-Delivers m before m′.

• In case (a), m ∈ msgsToADelround(m)
p . Since Kq is monotonically increasing

with time and round(m) < round(m′), q executes line 19 when Kq =
round(m) before executing the same line when Kq = round(m′). By
Lemma 4.5.14, msgsToADelround(m)

p = msgsToADelround(m)
q . Therefore, q A-

Delivers m before m′.

• In case (b), let k be round(m) = round(m′). From the algorithm, m ∈
msgsToADelkp and m′ ∈ msgsToADelkq. By Lemma 4.5.14, msgsToADelkp =
msgsToADelkq. Since p and q A-Deliver the messages of round k in the
same deterministic order, either p A-Delivers m′ before m or q A-Delivers
m before m′.

• In case (c), a similar argument as in (a) can be used to show that p A-
Delivers m′ before m. �

Lemma 4.5.17 If there exists a time after which no message is A-BCast, then for
any correct process p, eventually (RDELIVEREDp \ ADELIVEREDp) = ; forever.

Proof: If there exists a time after which no message is A-BCast, then there exists
a time t after which no message is R-MCast. Therefore, by the uniform integrity
of reliable multicast, p only R-Delivers a finite number of messages and thus,
there exists a time after which no message is added to RDELIVEREDp. We now
prove that for any message m ∈ RDELIVEREDp, eventually m ∈ ADELIVEREDp.
Since m ∈ RDELIVEREDp, p R-Delivered m. By the agreement property of reliable
multicast and because p is correct, all correct processes q ∈ group(p) eventually
R-Deliver m. By Lemma 4.5.16, all correct processes eventually A-Deliver m and
therefore eventually m ∈ ADELIVEREDp. �

9Note that by Proposition 4.5.6 and Lemma 4.5.14, for any message m, round(m) is uniquely
defined.
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Lemma 4.5.18 If there exists a time after which no message is A-BCast, then there
exists a Barriermax such that for all correct processes p, Barrierp < Barriermax .

Proof: By Lemma 4.5.17, for all correct processes p, eventually (RDELIVEREDp

\ADELIVEREDp) = ; forever. Let tp be the earliest time at which p executes
line 20 such that after executing line 20, (RDELIVEREDp \ ADELIVEREDp) = ;
forever, and let kp be the value of Kp at time tp. We first prove that there exists
a k such that for all p, kp = k. Suppose, by way of contradiction, that there exist
correct processes q, r such that kq > kr . Let m be the last message q A-Delivers
in instance kq (such an m exists by the definition of kq). Before A-Delivering
m, q sends a message (kq, msgSet′q) such that m ∈ msgSet′q to all. Because q
and r are correct and links are quasi-reliable, r eventually receives this message
and thus eventually Barrierr ≥ kq. By the termination property of consensus and
Lemma 4.5.15, r eventually decides in consensus instance kq. Consequently, r
eventually executes line 18 when Kr = kq. By Proposition 4.5.6, r A-Delivers m
only once and therefore kr ≥ kq, a contradiction.
Now suppose, by way of contradiction, that there exists a process q such that
Barrierq keeps on increasing. Variable Barrierq is increased either (a) at line 23
or (b) line 10.

• From the definition of kp, for every k > kp such that msgsToADelkp 6= ⊥,

msgsToADelkp = ;. Therefore, q does not increase Barrierq at line 23 when
Kp > kp, a contradiction.

• From (a), there exists no process r such that Barrierr > kp + 1, and thus
q does not receive a (k, -) message at line 8 such that k > kp + 1, a
contradiction. �

Proposition 4.5.10 (Quiescence) If there exists a time after which no message is
A-BCast, then eventually all processes stop sending messages.

Proof: Messages are sent either (a) at line 5 (reliable multicast), (b) at line 12
(consensus), or (c) at line 15 (send). Obviously, only correct processes can
send messages forever. Consequently, proving that eventually all correct pro-
cesses stop executing these lines is enough to show that eventually processes
stop sending messages.10

10Notice that we here consider consensus and reliable multicast algorithms that are halting,
i.e., in all runs of the algorithms, there is a time after which all processes stop taking steps and
thus only a finite number of messages is sent. Halting algorithms for consensus and reliable
multicast can be found in [54] and [29] respectively.
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• (a) If there exists a time after which no message is A-BCast, eventually no
(correct) process executes line 5 anymore.

• (b) From Lemmata 4.5.17 and 4.5.18, for every process p, the condition
of line 11 eventually evaluates to false forever. Therefore, p only executes
a finite number of times line 12.

• (c) From (b) and the uniform integrity of consensus, p decides in only
a finite number of consensus instances and therefore p executes a finite
number of times line 15. �

4.5.3 The Proof of Algorithm A dv
ng

Definition 4.5.5 We define gMsgsk
p as the value of variable gMsgs on p after p

executes line 17 in round k. If p does not execute line 17 in round k, then gMsgsk
p

is undefined.

Lemma 4.5.19 For any message m, any two processes p and q such that {p, q} ⊆
m.dst, and any k, if gMsgsk

p and gMsgsk
q are both defined, then m ∈ gMsgsk

p⇔ m ∈
gMsgsk

q.

Proof: Let g be the group from which m was A-MCast.

• (⇒) From the algorithm, there exists a members r of g that decide on m
in consensus instance k and p receives m from r. From the uniform agree-
ment property of consensus, (*) all members of g that decide in consensus
instance k decide on m. Therefore, if q ∈ g, then m ∈ gMsgsk

q. Otherwise,
from (*), q receives m from some member of g, and thus, m ∈ gMsgsk

q.

• (⇐) A similar argument as in⇒ is used.

Proposition 4.5.11 (Uniform Integrity) For any process p and any message m,
(a) p A-Delivers m at most once, and (b) only if p ∈ m.dst and (c) m was previously
A-MCast.

Proof:

• (a) Process p A-Delivers m either (a-i) at line 12 or (a-ii) at line 18.
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– In case (a-i), m was A-MCast by a process in group(p) and m.dst =
{group(p)}. Let k be the round in which p A-Delivers m for the first
time. By the uniform agreement property of consensus, in round k, all
processes q in group(p) that decide on consensus, decide on the same
set of messages msgs. From the algorithm, m ∈ msgs. Consequently,
all q A-Deliver m in round k for the first time. Moreover, all q add m
to Decided at line 10 in round k. Therefore, no process in group(p)
proposes m to consensus in a round bigger than k, and p does not
A-Deliver m a second time.

– In case (a-ii), let g be the group from which m was A-MCast, and let k
be the first round in which a member of g decides on m in consensus.
From the uniform agreement property of consensus, all members q
of g that decide in consensus instance k decide on m. Hence, from
the algorithm, all q add m to variable Decided at line 10 in round
k and no process in g proposes m to consensus in a round k′ > k.
Therefore, there exists no k′ > k such that m ∈ gMsgsk′

p and p does
not A-Deliver m a second time.

• (b) follows directly from the algorithm.

• (c) follows directly from the algorithm. �

Proposition 4.5.12 (Uniform Prefix Order) For any two messages m and m′

and any two processes p and q such that {p, q} ⊆ m.dst∩m′.dst, if p A-Delivers m
and q A-Delivers m′, then either p A-Delivers m′ before m or q A-Delivers m before
m′.

Proof: Let k and k′ be the rounds in which p A-Delivers m and q A-Delivers m′

respectively. Either (a) k < k′, (b) k = k′, or (c) k > k′.

• In case (a), either p A-Delivers m (a-i) at line 12 or (a-ii) at line 18.

– In case (a-i), m.dst = {group(p)} and group(p) = group(q). Since
k < k′ and q A-Delivers m′ in round k′, q decides in instance k of
consensus. Because p A-Delivers m at line 12 in round k, in consensus
instance k, p decides on a set of messages msgs such that m ∈ msgs.
From the uniform agreement property of consensus, q decides on
msgs in consensus instance k. Therefore, q A-Delivers m before m′.

– In case (a-ii), m ∈ MsgBundlek
p. Since k < k′, gMsgsk

q is defined. By
Lemma 4.5.19, m ∈ gMsgsk

q. Therefore, q A-Delivers m before m′.



85 4.5 Proofs of Correctness

• In case (b), either (b-i) both m and m′ are A-Delivered at line 12, (b-ii)
both m and m′ are A-Delivered at line 18, or (b-iii) m and m′ are not
A-Delivered at the same line.

– In case (b-i), m.dst = m′.dst = {group(p)}. Moreover, in consensus
instance k, p and q decide on sets msgs and msgs′ respectively such
that m ∈ msgs and m′ ∈ msgs′. By the uniform agreement property
of consensus, msgs = msgs′. Therefore, since messages in msgs are
A-Delivered at line 12 in a deterministic order, either p A-Delivers m′

before m or q A-Delivers m before m′.

– In case (b-ii), m ∈ gMsgsk
p and m′ ∈ gMsgsk

q. By Lemma 4.5.19, m′ ∈
gMsgsk

p and m ∈ gMsgsk
q. Therefore, since messages are A-Delivered

in a deterministic order at line 18, either p A-Delivers m′ before m or
q A-Delivers m before m′.

– In case (b-iii), either p A-Delivers m (b-iii-*) at line 12 or (b-iii-**) at
line 18.

In case (b-iii-*), m.dst= {group(p)} and in consensus instance k,
p decides on a set of messages msgs such that m ∈ msgs. More-
over, since q A-Delivers m′ at line 18, q decides in consensus
instance k. From the uniform agreement property of consensus,
q decides on msgs. Therefore, q A-Delivers m before m′.

In case (b-iii-**), the same argument as in (b-iii-*) is used where
every occurrence of m, m′, p, and q are respectively replaced by
m′, m, q, and p.

• In case (c), a similar argument as in (a) is used where every occurrence of
p, q, m, m′, k, and k′ are respectively replaced by q, p, m′, m, k′, and k. �

Lemma 4.5.20 For any message m, and any two processes p and q, if p and q
A-Deliver m, then they do so in the same round.

Proof: Let k be the round in which p A-Delivers m. There are two cases to
consider, either (a) m is local or (b) m is global.

• In case (a), from Proposition 4.5.11, p A-Delivers m once, and thus, k
is uniquely defined. From the uniform agreement property of consensus
and since q A-Delivers m, q decides on m in instance k. From Proposi-
tion 4.5.11 q only A-Delivers m once, and thus k is also uniquely defined
on q.
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• In case (b), a similar argument as in (a) using Lemma 4.5.19 is used. �

Proposition 4.5.13 (Uniform Acyclic Order) The relation < is acyclic.

Proof: Suppose, by way of contradiction, that the relation is cyclic. Therefore,
there exist two messages m1 and m2 such that (*) m1 < ... < m2 < ... < m1.
Let ma and mb be two messages such that m1 < ma and mb < m1. Note that
ma = m2 = mb is possible. From the definition of <, there exist processes
p and q such that p A-Delivers m1 before ma and q A-Delivers mb before m1.
From Lemma 4.5.20, (**) p and q A-Deliver m1 in the same round k. From the
algorithm, it is obvious that for any two messages m and m′, if m< m′, then the
process r that A-Delivers m before m′ A-Delivers m in some round k and m′ in
some round k′ such that k ≤ k′. Consequently, from (*) and (**), the process
that A-Delivers m2 does so in round k. Either (a) m1 is local or (b) m1 is global.
We show that both cases lead to a contradiction.

• In case (a), if m2 is local, then m1 should appear twice in variable lMsgs,
a contradiction to the fact that it is a set. Otherwise, if m2 is global, then
from (*), m1 should be global as well, a contradiction.

• In case (b), m2 cannot be local as it would contradict (*). Otherwise, if m2

is global, then m1 should appear twice in variable gMsgs, a contradiction
to the fact that this variable is a set. �

Proposition 4.5.14 (Uniform Agreement) For any message m, if a process p
A-Delivers m, then all correct processes q ∈ m.dst eventually A-Deliver m.

Proof: Let k be the round in which p A-Delivers m and let g be the group from
which m is A-MCast. Either (a) m.dst= {g} or (b) m.dst 6= {g}.

• In case (a), in consensus instance k, p decides on a set of messages msgs
such that m ∈ msgs. Since groups are correct, q is correct, and links are
quasi-reliable, q never waits forever at line 16. Hence, from the termi-
nation property of consensus, q eventually decides in consensus instance
k. From the uniform agreement property of consensus, q decides on m in
instance k. Therefore, q eventually A-Delivers m.

• In case (b), from the algorithm, m ∈ gMsgsk
p. Since q is correct, groups

are correct, and links are quasi-reliable, q does not wait forever at line 16.
Hence, q eventually A-Delivers the global messages of round k at line 18
and thus gMsgsk

q is defined. By Lemma 4.5.19, m ∈ gMsgsk
q. Therefore, q

eventually A-Delivers m. �
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Proposition 4.5.15 (Validity) If a correct process p A-MCasts m, then all correct
processes q ∈ m.dst eventually A-Deliver m.

Proof: Suppose, by way of contradiction, that there exists a correct process r ∈
m.dst that never A-Delivers m. By Proposition 4.5.14, no correct process q ∈
m.dst A-Delivers m (otherwise r would A-Deliver m). If p A-MCasts m, then p
R-MCasts m to group(p). Since p is correct, by the validity property of reliable
multicast, all correct processes s ∈ group(p) eventually R-Deliver m and add m to
Rdels at line 6. Let t be the time at which all faulty processes in g have crashed.
Since no correct process q ∈ m.dst A-Delivers m, after t, m ∈ Rdels \ Decideds

forever. Hence, there exists a round k1 such that for all k′ ≥ k1, processes s
always propose m to consensus instance k′ and thus by the uniform integrity and
uniform agreement properties of consensus, (*) processes in group(p) decide on
a set of messages msgs such that m ∈ msgs in consensus instance k′. Either (a)
m.dst= {group(p)} or (b) m.dst 6= {group(p)}.

• In case (a), from (*), r A-Delivers m in round k1 at line 12, a contradiction.

• In case (b), from the algorithm, m ∈ gMsgsk′
r . Therefore, r A-Delivers m in

round k′ at line 18, a contradiction. �

4.5.4 The Proof of Algorithm A d t
ge

In the proofs below, we denote the value of a variable V on a process p at time
t as V t

p .

Definition 4.5.6 For any message m, we define m.tsde f
p as the definitive timestamp

of m on a process p, i.e., it is m’s timestamp after p executed line 19 in Algorithm
A d t

ge . If p never executes line 19 for m, then m.tsde f
p is undefined. From the uniform

agreement of global data computation, it is clear that for any two processes p and q
such that m.tsde f

p and m.tsde f
q are defined, m.tsde f

p = m.tsde f
q . We thus sometimes

write m.tsde f for short.

Proposition 4.5.16 (Uniform Integrity) For any process p and any message m,
(a) p A-Delivers m at most once, and (b) only if p ∈ m.dst and (c) m was previously
A-MCast.

Proof:

• (a) Follows directly from the uniform integrity property of causal multicast
and from the fact that a message is removed from Pendingp after it has been
A-Delivered.
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• (b) Follows directly from the algorithm.

• (c) Process p A-Delivers m only if p C-Delivered m. From the uniform
integrity property of causal multicast, m was C-MCast. Consequently, m
was A-MCast. �

Lemma 4.5.21 For any correct process p and any message m, if p C-Delivers m,
then m eventually reaches stage s2 on p.

Proof: By the uniform agreement property of causal multicast, all correct pro-
cesses q ∈ m.dst eventually C-Deliver m and fork the consensus task for m. By
the termination property of global data computation, q eventually decides and
C-MCasts (ACK, m.id, q). By the strong completeness property of P , eventually
no faulty process is ever trusted by any correct process. Therefore, by the va-
lidity property of causal multicast, q eventually C-Delivers(ACK, m.id,-) for all
processes in P ∩ m.dst. Therefore, m eventually reaches stage s2 on q, and in
particular on p. �

Lemma 4.5.22 For any correct process p and any message m, if p C-Delivers m,
then p eventually A-Delivers m.

Proof: By Lemma 4.5.21, m eventually reaches stage s2 on p. Consider the tran-
sitive relation on messages in-pps defined as follows: m1 in-pps m2 if and only
if m1 ∈ m2.pps. Let PPS(m) be the set of messages m′ such that m′ in-pps m.
By Lemma 4.5.21, all m′ ∈ PPS(m) eventually reach stage s2 on p. Because the
identifiers of messages are unique, the relation < on messages’ timestamps and
identifiers defines a total order. Hence, messages in PPS(m) are delivered ac-
cording to the order defined by < and thus, since |PPS(m)| is finite, p eventually
A-Delivers m. �

Proposition 4.5.17 (Uniform Agreement) If a process p A-Delivers a message
m, then all correct processes q ∈ m.dst eventually A-Deliver m.

Proof: If p A-Delivers m, p C-Delivered m. By the uniform agreement property
of causal multicast, all correct processes q ∈ m.dst eventually C-Deliver m. By
Lemma 4.5.22, q eventually A-Delivers m. �

Proposition 4.5.18 (Validity) If a correct process p A-MCasts a message m, then
eventually all correct processes q ∈ m.dst A-Deliver m.
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Proof: If p A-MCasts m, then p C-MCasts m. By the validity property of causal
multicast, all correct processes q ∈ m.dst eventually C-Deliver m. By Lemma
4.5.22, q eventually A-Delivers m. �

Lemma 4.5.23 For any two messages m1, m2, and any two processes p and q
such that {p, q} ⊆ m1.dst ∩ m2.dst, if p A-Delivers m1, q A-Delivers m2, and
(m1.tsde f

p , m1.id)< (m2.tsde f
q , m2.id), then q A-Delivers m1 before m2.

Proof: Let t1 and t2 be the times at which p gathered ACK messages for m1 and
q gathered ACK messages for m2 respectively. Either (a) t1 ≤ t2 or (b) t1 > t2.

• In case (a), by the strong accuracy property of P , p C-Delivers (ACK,
m1.id, q). Hence, q C-Delivers m1 before t1 (and t2). Consequently, q
adds m1 to Pendingq before A-Delivering m2. At the time q computes m2’s
potential predecessor set (line 23), either (a-i) m1 ∈ Pendingq or (a-ii) not.

– In case (a-ii), because a message is removed from Pending only after
being A-Delivered (line 6), q A-Delivers m1 before m2.

– In case (a-ii), from line 23, m1 ∈ m2.pps. From line 4, q does not
A-Deliver m2 before m1 reaches stage s2. Since q A-Delivers m2,
m1 reaches stage s2 on q. By the uniform agreement property of
global data computation, when m1 reaches stage s2 on q, m1.tsde f

q =
m1.tsde f

p . Since (m1.tsde f
p , m1.id) < (m2.tsde f

q , m2.id),
(m1.tsde f

q , m1.id) < (m2.tsde f
q , m2.id). Consequently, from the con-

dition of line 4, q A-delivers m1 before m2.

• In case (b), by the strong accuracy property of P , q C-Delivers (ACK,
m2.id, p).

We now show that p C-Delivers m1 before C-MCasting (ACK, m2.id, p).
Suppose, by way of contradiction, that (*) p does not C-Deliver m1 be-
fore C-MCasting (ACK, m2.id, p). Since p A-Delivers m1, p C-Delivers
m1. From (*), p does so after p executes line 20 in the consensus task
of m2. Since p C-MCasts (ACK, m2.id, p), p decides in m2’s global data
computation instance. By the uniform agreement property of global data
computation, (**) m2.tsde f

p = m2.tsde f
q (line 19). Since p A-Delivers m1,

p decides in m1’s global data computation instance. By the uniform obli-
gation property of global data computation, p decides on vector V such
that V[p] = vp. Because p sets TSp to max(m2.tsde f

p + 1, TSp) at line 20,



90 4.5 Proofs of Correctness

from (*) and (**), m2.tsde f
q < vp ≤ m1.tsde f

p , a contradiction to the fact
that (m1.tsde f

p , m1.id)< (m2.tsde f
q , m2.id).

Consequently, p C-Delivers m1 before C-MCasting (ACK, m2.id, p). Hence,
C-Mcast(m1) → C-Deliver(m1)p → C-MCast(ACK, m2.id, p)p →
C-Deliver(ACK, m2.id, p)q. Therefore, from the causal order property of
causal multicast, q C-delivers m1 and adds m1 to Pendingq, before
A-Delivering m2. A similar argument as in (a) is then used to conclude
the proof. �

Proposition 4.5.19 (Uniform Prefix Order) For any two messages m and m′

and any two processes p and q such that {p, q} ⊆ m.dst∩m′.dst, if p A-Delivers m
and q A-Delivers m′, then either p A-Delivers m′ before m or q A-Delivers m before
m′.

Proof: Since p A-Delivers m and q A-Delivers m′, m.tsde f
p and m′.tsde f

q are
both defined. Either (m.tsde f

p , m.id) < (m′.tsde f
q , m′.id) or (m.tsde f

p , m.id) >
(m′.tsde f

q , m′.id). By Lemma 4.5.23, either q A-Delivers m before m′ or p A-
Delivers m′ before m. �

Lemma 4.5.24 For any two messages m1 and m2, m1 < m2⇒ (m1.tsde f , m1.id)<
(m2.tsde f , m2.id).

Proof: In the proof below, we use the fact that, by definition, for any two mes-
sages m1 and m2, m1.tsde f < m2.tsde f ⇒ (m1.tsde f , m1.id) < (m2.tsde f , m2.id).
Let p be the process that A-Delivers m1 before m2. At the time m1 is A-Delivered,
either (a) m2 ∈ Pendingp or (b) m2 6∈ Pendingp.

• In case (a), (m1.tsde f , m1.id) < (m2.tsde f , m2.id) holds trivially by the
condition of line 4.

• In case (b), because m2 is not in Pendingp at the time m1 is A-Delivered,
a message is removed from this set only after it has been A-Delivered
(line 6), and m2 is A-Delivered after m1, (*) m2 has not yet been added to
Pendingp at the time p A-Delivers m1. Since TSp is set to a greater value
than m1.tsde f after deciding in the global data computation instance of m1,
from (*), p proposes a bigger timestamp than m1.tsde f for m2. Since p A-
Delivers m2, p decides in the global data computation instance of m2. From
the uniform obligation property of global data computation, p decides on
a vector V that contains its proposal. Therefore, since the definitive time-
stamp of m2 is the biggest value contained in V , m1.tsde f < m2.tsde f . �
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Proposition 4.5.20 (Uniform Acyclic Order) The relation < is acyclic.

Proof: Suppose, by way of contradiction, that the relation is cyclic. Therefore,
there exists two messages m1 and m2 such that m1 < ... < m2 < ... < m1. By
Lemma 4.5.24, we have (m1.tsde f , m1.id) < (m2.tsde f , m2.id) and
(m2.tsde f , m2.id) < (m1.tsde f , m1.id). There are two cases to consider, either
(a) m1.tsde f = m2.tsde f or (b) not.

• In case (a), m1.id < m2.id < m1.id, a contradiction.

• In case (b), m1.tsde f < m2.tsde f < m1.tsde f , a contradiction. �

4.5.5 The Proof of Algorithm A d t
ng

In the proof below, a message of round k concerning a group g is any G-BCast
message of the form (k, g, -, -).

Definition 4.5.7

• We define MsgBundlek
p as the value of variable MsgBundle on p before p ex-

ecutes line 25 in round k. If p does not execute line 25 in round k, then
globalMsgsk

p is undefined.

• We define Viewk
p as the value of variable View on p after p executes line 28 in

round k. If p does not execute line 28 in round k, then Viewk
p is undefined.

• We define LM k
p as the last message process p removes from the sequence

Gdelivered at line 20 before p computes the set of global messages of round k
at line 25. If p never executes line 25 in round k, then LM k

p is undefined.

Lemma 4.5.25 For any two processes p and q and any k:

1. if MsgBundlek
p and MsgBundlek

q are both defined, then
MsgBundlek

p =MsgBundlek
q.

2. if Viewk
p and Viewk

q are both defined, then Viewk
p = Viewk

q.

Proof: In the proof below, we denote as groupsToAddk
p the value of variable

groupsToAdd on process p before p executes line 25 in round k. We proceed by
simultaneous induction on 1 and 2.

• Base step (k = 1):
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1. We show that for any group g, MsgBundle1
p[g] = MsgBundle1

q[g].
Suppose, by way of contradiction, that (*) MsgBundle1

p[g] 6=
MsgBundle1

q[g]. From the condition of line 17, either

(a) MsgBundle1
p[g] = ; or (b) MsgBundle1

p[g] 6= ;.

– In case (a), since MsgBundlep[g] is initialized to ⊥, the first mes-
sage concerning g that p removes from the Gdelivered sequence
is a message of the form (1, g, remove, -). Let mp be this mes-
sage. Since MsgBundleq[g] is initialized to ⊥, the first message
concerning g that q removes from the Gdelivered sequence is a
message of the form (1, g, msgBundle, -). Let mq be this mes-
sage. From the uniform generalized order property of generic
broadcast, either (a-i) p G-Delivers mq before mp or (a-ii) q G-
Delivers mp before mq. We show that both (a-i) and (a-ii) lead to
a contradiction.

In case (a-i), from the algorithm, MsgBundle1
p 6= ;, a contra-

diction to hypothesis (a).

In case (a-ii), from the algorithm, MsgBundle1
q = ;, a contra-

diction to (*).

– In case (b), a similar argument as in (a) is used where every
occurrence of remove, msgBundle, 6=, and = are respectively re-
placed by msgBundle, remove, =, and 6=.

2. From 1, MsgBundle1
p =MsgBundle1

q. Therefore, it is sufficient to show

that groupsToAdd1
p = groupsToAdd1

q. We prove that, for any group g,

g ∈ groupsToAdd1
p⇔ groupsToAdd1

q.

– (⇒) Process p G-Delivers a message of the form (-, g, add, -).
Let madd−g

p be this message. Suppose, by way of contradiction,

that (*) there exists a group g in groupsToAdd1
p that is not in

groupsToAdd1
q. From the algorithm, LM1

p cannot be of the form
(-, -,add, -). Therefore, (**) p G-Delivers madd−g

p before LM1
p and

LM1
p is either (a) of the form (1, g ′, remove, -) or (b) of the form

(1, g ′, msgBundle, -) for some group g ′.

In case (a), from 1, MsgBundle1
p = MsgBundle1

q, therefore
the first message q G-Delivers concerning g ′ is a message
of the form (1, g ′, remove, -). Let mremove−g ′

q be this message.
From the uniform generalized order of generic broadcast, ei-
ther (a-i) p G-Delivers mremove−g ′

q before madd−g
p or (a-ii) q
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G-Delivers madd−g
p before mremove−g ′

q .

· In case (a-i), p G-Delivers a message concerning g ′ be-
fore LM1

p . Therefore, from (**), LM1
p cannot concern g ′

(MsgBundle1
p[g

′] is locked before p removes LM1
p from the

Gdelivered sequence), a contradiction.

· In case (a-ii), g ∈ groupsToAdd1
q, a contradiction to (*).

In case (b), a similar argument as in (a) is used where every
occurrence of remove is replaced by msgBundle.

– (⇐) A similar argument as in (⇒) is used where every occur-
rence of p and q are respectively replaced by q and p.

• Induction step: Suppose that Lemma 4.5.25 holds for k− 1, we show that
Lemma 4.5.25 also holds for k.

1. We show that for any group g, MsgBundlek
p[g] = MsgBundlek

q[g].
From the induction hypothesis, Viewk−1

p = Viewk−1
q , therefore when

p and q execute line 29 in round k − 1, p and q respectively set
MsgBundlep[g] and MsgBundleq[g] either (a) to ⊥ or (b) to ;.

– In case (a), a similar argument as in the base step of 1 is used
where every occurrence of 1 is replaced by k.

– In case (b), from the algorithm,
MsgBundlek

p[g] =MsgBundlek
q[g] = ;.

2. A similar argument as in the base step of 2 is used where every oc-
currence of 1 is replaced by k. �

Proposition 4.5.21 (Uniform Integrity) For any process p and any message m,
(a) p A-Delivers m at most once, and (b) only if p ∈ m.dst and (c) m was previously
A-MCast.

Proof:

• (a) Process p A-Delivers m either (a-i) at line 12 or (a-ii) at line 26.

– In case (a-i), m was A-MCast by a process in group(p) and m.dst =
{group(p)}. Let k be the round in which p A-Delivers m for the first
time. By the uniform agreement property of consensus, in round k, all
processes q in group(p) that decide on consensus, decide on the same
set of messages msgs. From the algorithm, m ∈ msgs. Consequently,
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all q A-Deliver m in round k for the first time. Moreover, all q add m
to Adelivered at line 13 in round k. Therefore, no process in group(p)
proposes m to consensus in a round bigger than k, and p does not
A-Deliver m a second time.

– In case (a-ii), let g be the group from which m was A-MCast. More-
over, let k be the first round in which p A-Delivers m. From the
algorithm, (*) MsgBundlek

p[g] = msgs for some set of messages msgs
such that m ∈ msgs. By Lemma 4.5.25, for all processes q such that
MsgBundlek

q is defined MsgBundlek
q[g] = msgs. Consequently, all q

that start round k+ 1 add m to Adelivered at line 27 in round k and
no process in g proposes m to consensus in a round k′ > k. There-
fore, there exists no k′ > k such that m ∈ MsgBundlek′

p [g] and p
does not A-Deliver m a second time.

• (b) follows directly from the algorithm.

• (c) follows directly from the algorithm. �

Proposition 4.5.22 (Uniform Prefix Order) For any two messages m and m′

and any two processes p and q such that {p, q} ⊆ m.dst∩m′.dst, if p A-Delivers m
and q A-Delivers m′, then either p A-Delivers m′ before m or q A-Delivers m before
m′.

Proof: Let k and k′ be the rounds in which p A-Delivers m and q A-Delivers m′

respectively. Either (a) k < k′, (b) k = k′, or (c) k > k′.

• In case (a), either p A-Delivers m (a-i) at line 12 or (a-ii) at line 26.

– In case (a-i), m.dst = {group(p)} and group(p) = group(q). Since
k < k′ and q A-Delivers m′ in round k′, q decides in instance k of
consensus. Because p A-Delivers m at line 12 in round k, in consensus
instance k, p decides on a set of messages msgs such that m ∈ msgs.
From the uniform agreement property of consensus, q decides on
msgs in consensus instance k. Therefore, q A-Delivers m before m′.

– In case (a-ii), there exists a group g and a set of messages msgs such
that m ∈ msgs and MsgBundlek

p[g] = msgs. Since k < k′, MsgBundlek
q

is defined. By Lemma 4.5.25, MsgBundlek
p[g] =MsgBundlek

q[g]. There-
fore, q A-Delivers m before m′.
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• In case (b), either (b-i) both m and m′ are A-Delivered at line 12, (b-ii)
both m and m′ are A-Delivered at line 26, or (b-iii) m and m′ are not
A-Delivered at the same line.

– In case (b-i), m.dst = m′.dst = {group(p)}. Moreover, in consensus
instance k, p and q decide on sets msgs and msgs′ respectively such
that m ∈ msgs and m′ ∈ msgs′. By the uniform agreement property
of consensus, msgs = msgs′. Therefore, since messages in msgs are
A-Delivered at line 12 in a deterministic order, either p A-Delivers m′

before m or q A-Delivers m before m′.

– In case (b-ii), there exist groups g and g ′ as well as sets of messages
msgs and msgs′ such that m ∈ msgs, m′ ∈ msgs′, MsgBundlek

p[g] =
msgs, and MsgBundlek

q[g
′] = msgs′. By Lemma 4.5.25, MsgBundlek

p =
MsgBundlek

q. Therefore, since messages are A-Delivered in a deter-
ministic order at line 26, either p A-Delivers m′ before m or q A-
Delivers m before m′.

– In case (b-iii), either p A-Delivers m (b-iii-*) at line 12 or (b-iii-**) at
line 26.

In case (b-iii-*), m.dst= {group(p)} and in consensus instance k,
p decides on a set of messages msgs such that m ∈ msgs. More-
over, since q A-Delivers m′ at line 26, q decides in consensus
instance k. From the uniform agreement property of consensus,
q decides on msgs. Therefore, q A-Delivers m before m′.

In case (b-iii-**), the same argument as in (b-iii-*) is used where
every occurrence of m, m′, p, and q are respectively replaced by
m′, m, q, and p.

• In case (c), a similar argument as in (a) is used where every occurrence of
p, q, m, m′, k, and k′ are respectively replaced by q, p, m′, m, k′, and k. �

Lemma 4.5.26 For any message m, and any two processes p and q, if p and q
A-Deliver m, then they do so in the same round.

Proof: Let k be the round in which p A-Delivers m. There are two cases to
consider, either (a) m is local or (b) m is global.

• In case (a), from Proposition 4.5.21, p A-Delivers m once, and thus, k
is uniquely defined. From the uniform agreement property of consensus
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and since q A-Delivers m, q decides on m in instance k. From Proposi-
tion 4.5.21 q only A-Delivers m once, and thus k is also uniquely defined
on q.

• In case (b), a similar argument as in (a) using Lemma 4.5.25 is used. �

Proposition 4.5.23 (Uniform Acyclic Order) The relation < is acyclic.

Proof: Suppose, by way of contradiction, that the relation is cyclic. Therefore,
there exist two messages m1 and m2 such that (*) m1 < ... < m2 < ... < m1.
Let ma and mb be two messages such that m1 < ma and mb < m1. Note that
ma = m2 = mb is possible. From the definition of <, there exist processes
p and q such that p A-Delivers m1 before ma and q A-Delivers mb before m1.
From Lemma 4.5.26, (**) p and q A-Deliver m1 in the same round k. From the
algorithm, it is obvious that for any two messages m and m′, if m< m′, then the
process r that A-Delivers m before m′ A-Delivers m in some round k and m′ in
some round k′ such that k ≤ k′. Consequently, from (*) and (**), the process
that A-Delivers m2 does so in round k. Either (a) m1 is local or (b) m1 is global.
We show that both cases lead to a contradiction.

• In case (a), if m2 is local, then m1 should appear twice in variable localMsgs,
a contradiction to the fact that it is a set. Otherwise, if m2 is global, then
from (*), m1 should be global as well, a contradiction.

• In case (b), m2 cannot be local as it would contradict (*). Otherwise, if m2

is global, then m1 should appear twice in variable globalMsgs, a contradic-
tion to the fact that this variable is a set. �

Lemma 4.5.27 For any correct process p and any k, p eventually A-Delivers the
global messages of round k at line 26.

Proof: We proceed by induction on k.

• Base step (k = 1): Suppose, by way of contradiction, that p never exe-
cutes line 26 in round 1. Therefore, (*) there exists a group g such that
MsgBundlep[g] ∈ {⊥,>} forever in round 1. From the termination prop-
erty of consensus, p eventually decides in consensus instance 1 and exe-
cutes the while loop of lines 17-24. Hence, from (**), p never G-Delivers
a message of the form (1, g, type, -) where type is equal to remove or
msgBundle at line 35. Either (a) g is correct or (b) g is faulty.
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– In case (a), since View is initialized to Γ, there exists a correct process
q in g that G-BCasts a message of the form (1, g, msgBundle, -) at
line 14. From the validity property of generic broadcast p eventually
G-Delivers this message, a contradiction to (**).

– In case (b), from the strong completeness property of ♦P , p eventu-
ally stops trusting processes in g and G-BCasts a message of the form
(1, g, remove, -) at line 32. From the validity property of generic
broadcast, p eventually G-Delivers this message, a contradiction to
(**).

• Induction step: Suppose that Lemma 4.5.27 holds for k − 1, we show
that Lemma 4.5.27 also holds for k. From the induction hypothesis, p
eventually starts consensus instance k. By the termination property of
consensus, p eventually decides and executes the while loop of lines 17-
24 in round k. Suppose, by way of contradiction, that (*) there exists a
group g such that MsgBundlep[g] ∈ {⊥,>} forever in round k. Hence,
(**) p never G-Delivers a message of the form (k, g, type, -) where type
is equal to remove or msgBundle at line 35. Either (a) g ∈ Viewk−1

p or (b)

g 6∈ Viewk−1
p .

– In case (a), either (a-i) g is correct or (a-ii) g is faulty.

In case (a-i), there exists a correct process q ∈ g. From hypoth-
esis (a), g ∈ Viewk−1

p . By Lemma 4.5.25, Viewk−1
p = Viewk−1

q

and thus g ∈ Viewk−1
q . Therefore, q G-BCasts a message of the

form (k, g, msgBundle, -) at line 14. From the validity property
of generic broadcast p eventually G-Delivers this message, a con-
tradiction to (**).

In case (a-ii), from the strong completeness property of ♦P , p
eventually stops trusting processes in g and G-BCasts a message
of the form (k, g, remove, -) at line 32. From the validity prop-
erty of generic broadcast, p eventually G-Delivers this message,
a contradiction to (**).

– In case (b), p sets MsgBundlep[g] to ; at line 29 in round k − 1.
Therefore, there is a time at which MsgBundlep[g] 6∈ {⊥,>} in round
k, a contradiction to (*). �

Proposition 4.5.24 (Uniform Agreement) For any message m, if a process p
A-Delivers m, then all correct processes q ∈ m.dst eventually A-Deliver m.
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Proof: Let k be the round in which p A-Delivers m and let g be the group from
which m is A-MCast. Either (a) m.dst= {g} or (b) m.dst 6= {g}.

• In case (a), in consensus instance k, p decides on a set of messages msgs
such that m ∈ msgs. Since q is correct, by Lemma 4.5.27, q eventually
A-Delivers the global messages of round k− 1 at line 26. Consequently, q
starts consensus instance k, and by the termination property of consensus,
q decides in that instance. By the uniform agreement property of consen-
sus, q decides on msgs in consensus instance k. Therefore, q eventually
A-Delivers m.

• In case (b), from the algorithm, MsgBundlek
p[g] = msgs for some set of

messages msgs such that m ∈msgs. Since q is correct, by Lemma 4.5.27, q
eventually A-Delivers the global messages of round k at line 26 and thus
MsgBundlek

q is defined. By Lemma 4.5.25, MsgBundlek
p[g] =MsgBundlek

q[g].
Therefore, q eventually A-Delivers m. �

Lemma 4.5.28 For any correct processes p and q, there exists a round k such that
for all k′ ≥ k, group(p) ∈ Viewk′

q .

Proof: By the eventual strong accuracy of ♦P , there is a time after which no
process stops being trusted before it crashes. Since p is correct, there exists
a time after which processes always trust p. Therefore, (*) there exists round
kno−rmv such that for all k′ ≥ kno−rmv no process G-BCasts a message of the
form (k′, group(p), remove, -). Since process p and processes q are correct, by
Lemma 4.5.27, processes p and q execute an infinite number of rounds. From
the algorithm, for any round k′ such that group(p) 6∈ Viewk′−1

p , p G-BCasts a
message of the form (-, group(p), add, -). Since p is correct, by the validity
property of generic broadcast all such messages are eventually G-Delivered by
all correct processes. Hence, from (*), there exists a round k ≥ kno−rmv such
that group(p) is in Viewk

p and group(p) is never removed from Viewp anymore,

i.e., for all k′ ≥ k, group(p) ∈ Viewk
p. Thus, by Lemma 4.5.25, for any k′ ≥ k,

group(p) ∈ Viewk′

q . �

Proposition 4.5.25 (Validity) If a correct process p A-MCasts m, then all correct
processes q ∈ m.dst eventually A-Deliver m.

Proof: Suppose, by way of contradiction, that there exists a correct process r ∈
m.dst that never A-Delivers m. By Proposition 4.5.24, no correct process q ∈
m.dst A-Delivers m (otherwise r would A-Deliver m). If p A-MCasts m, then p
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R-MCasts m to group(p). Since p is correct, by the validity property of reliable
multicast, all correct processes s ∈ group(p) eventually R-Deliver m and add
m to Rdelivereds at line 7. Let t be the time at which all faulty processes in g
have crashed. Since no correct process q ∈ m.dst A-Delivers m, after t, m ∈
Rdelivereds \ Adelivereds forever. Hence, there exists a round k1 such that for all
k′ ≥ k1, processes s always propose m to consensus instance k′ and thus by the
uniform integrity and uniform agreement properties of consensus, (*) processes
in group(p) decide on a set of messages msgs such that m ∈ msgs in consensus
instance k′. Either (a) m.dst= {group(p)} or (b) m.dst 6= {group(p)}.

• In case (a), from (*), r A-Delivers m in round k1 at line 12, a contradiction.

• In case (b), by Lemma 4.5.28, there exists a round k2 such that for any
k′ ≥ k2, group(p) ∈ Viewk′

q . Hence, from (*), there exists a round k′ =

max(k2, k1) such that: (1) group(p) ∈ Viewk′

q and (2) processes in group(p)
G-BCast a message at line 14 of the form (k′, group(p), msgBundle, msgs)
such that m ∈ msgs. Therefore, r A-Delivers m in round k′ at line 26, a
contradiction. �
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Chapter 5

Atomic Multicast in Large Networks:
Performance Evaluation

Then the Warrior realizes that these repeated experiences have but
one aim: to teach him what he does not want to learn.

Paulo Coelho

Although most multicast algorithms proposed in the literature are genuine
(e.g., [28; 21; 52]), we showed in Section 4.2 that genuineness is an expensive
property: no genuine atomic multicast algorithm can deliver global messages in
one inter-group message delay,1 a limitation that is not imposed on non-genuine
multicast algorithms. Therefore, when choosing a multicast algorithm, it seems
natural to question the circumstances under which a genuine algorithm is more
efficient than a non-genuine algorithm.

To answer this question, we experimentally evaluate the performance of ex-
isting latency-optimal multicast algorithms. More specifically, we select the gen-
uine and non-genuine protocolsA dv

ge andA dv
ng . As part of the empirical study, we

assess the scalability of the protocols by varying the number of groups, the pro-
portion of global messages, and the load, i.e., the frequency at which messages
are multicast. The results suggest that the genuineness of multicast is interesting
only in large and highly loaded systems; in all the other considered scenarios the
non-genuine protocolA dv

ng outperforms the optimal genuine algorithm.

1This lower bound is tight since A dv
ge and the algorithm in [28] can deliver messages in two

inter-group delays.

101
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To complete our study, we measure the overhead of the disaster-tolerant and
latency-optimal multicast protocol A d t

ng and observe that although in general it
is more costly than the two other implemented protocols, it matches the perfor-
mance of the genuine algorithm when there are few groups.

We start our study by identifying a convoy effect in multicast algorithms that
may delay the delivery of local messages by as much as the latency of global
messages. All multicast algorithms we are aware of suffer from this effect. We
propose techniques to reduce this effect in Algorithms A dv

ge , A d t
ng and A dv

ng . Al-
though simple, these techniques decrease the delivery latency of local messages
by as much as two orders of magnitude.

5.1 The Convoy Effect

The convoy effect refers to the phenomenon by which the delivery of a local
message ml is delayed by a global message mg . This effect may happen for dif-
ferent reasons. In timestamp-based protocols, it may occur if mg has a smaller
timestamp than ml ’s and mg hasn’t been A-Delivered yet; in round-based proto-
cols, the phenomenon may happen if ml cannot be proposed to consensus as the
message bundles of the current round are being exchanged.

We observed that all protocols surveyed in Section 4.1 suffer from this unde-
sired behavior more or less severely but can be modified to reduce its effects, at
least partially. Below, we illustrate how the convoy effect happens in the latency-
optimal algorithmsA dv

ge ,A dv
ng , andA d t

ng , and propose techniques to reduce it.

The timestamp-based algorithm A dv
ge . Consider the following scenario in

which a global message mg delays the delivery of a local message ml . Mes-
sages mg and ml are addressed to groups {g1, g2} and g1, respectively. Processes
in g1 R-Deliver mg and define their proposal timestamp for mg with consensus
instance k1. Shortly after, members of g1 R-Deliver ml and decide on ml in con-
sensus instance k2, such that k2 > k1. Message ml cannot be delivered at this
point since mg has a smaller timestamp than ml and mg has not been deliv-
ered yet. To deliver the local message ml , members of g1 must wait to receive
g2’s timestamp proposal for mg , which may take up to two inter-group message
delays, if mg was A-MCast from within g1.

To deliver local messages faster, global and local messages are handled dif-
ferently. We refer to this optimized version ofA dv

ge asA dv∗
ge . Local messages are

not assigned timestamps anymore and are A-Delivered directly after consensus.
More precisely, when some process wishes to A-MCast a local message ml to a
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group g, ml is reliably multicast to g. In each group of the system, we run con-
sensus instances to ensure agreement on the delivery order of local messages, as
well as to assign timestamps to global messages as explained in Section 4.2.2.
As soon as a consensus instance in g decides on ml , members of g A-Deliver ml .

To agree on the delivery order of global and local messages, global messages
must be A-Delivered after the same consensus instance on members of the same
group. To ensure this property, all global messages mg must go through the
four stages defined in Section 4.2.2, even in the group that proposed the high-
est timestamp for mg . To understand why this is necessary, consider a global
message mg and a local message ml that are respectively addressed to groups
{g1, g2} and g1. Group g1 is the group that assigned the highest timestamp to
mg . If we allow mg to skip stage s2 in g1, two members p and q of g1 may A-
Deliver mg and ml in different orders. For example, assume p and q define mg ’s
proposal timestamp in a consensus instance k1. Then, p receives g2’s timestamp
for mg , A-Delivers mg , decides on ml in a consensus instance k2, and A-Delivers
ml . However, q first decides in consensus instance k2, delivers ml , receives g2’s
timestamp proposal for mg , and delivers mg .

The round-based algorithms A dv
ng and A d t

ng . In A dv
ng and A d t

ng , local messages
may be delayed by global messages as much as one inter-group delay if they are
multicast while group bundles are being exchanged. We can make this scenario
unlikely to happen by executing multiple consensus instances per round. The
number of consensus instances per round is denoted by parameter κ.

Although this optimization decreases the average delivery latency of local
messages, the delivery latency of global messages can now be increased by as
many as κ - 1 consensus instances—this is because each group’s bundle of mes-
sages is sent every κ consensus instances. Hence, to reduce the delivery latency
of global messages, we allow rounds to overlap. That is, we start the next round
before receiving the groups’ bundles of messages of the current round. In other
words, we execute consensus instances while the bundles are being exchanged.
In our implementation, message bundles are exchanged after every η consensus
instances.

To ensure agreement on the relative delivery order of local and global mes-
sages, it is necessary that processes inside the same group agree on when global
messages of a given round are delivered, i.e., after which consensus instance. To
summarize, processes send the message bundle of some round r after consensus
instance r · η and A-Deliver messages of round r after instance r · η+ κ. Fig-
ure 5.1 illustrates a failure-free run of the algorithm. We explore the influence
of parameters η and κ in Section 5.3.2.
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Figure 5.1. Algorithm A dv
ng when messages m and m′ are A-MCast from p1 and are

respectively addressed to g1 and {g2, g3}.

5.2 Implementation Issues

We have implemented the three latency-optimal algorithms in Java, using a
Paxos library as the consensus protocol [12]; all communication is based on
TCP.

Inter-group communication represents a major source of overhead and should
be used sparingly. In our implementation, these communications are handled by
a dedicated layer. As we explain below, this layer optimizes the communication,
reducing the number of inter-group messages.

Message Batching. Inside each group g, a special process is elected as
leader [58]. Members of a group use their leader to batch and forward mes-
sages to the remote groups’ leaders. When a leader receives a message m, it
dispatches m to the members of its group.

Message Filtering. In each one of the presented algorithms, inter-group com-
munication originating from processes of the same group g presents some re-
dundancy. In the non-genuine Algorithms A dv

ng and A d t
ng , at the end of a round

r, members of g send the same message bundle. Moreover, in the genuine Algo-
rithm A dv

ge , members of g send the same timestamp proposal for some message
m. To avoid this redundancy, only the group leaders propagate these messages.
More precisely, message bundles of Algorithms A dv

ng and A d t
ng , and the time-

stamp proposals of AlgorithmA dv
ge are only sent by the group leaders. Messages

sent by non-leader processes are discarded by the inter-group communication
layer.
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In the case of a leader failure, these optimizations may lead to the loss of
some messages, which will be resent by the new leader.

5.3 Experimental evaluation

In this section, we evaluate experimentally the performance of the latency-
optimal multicast protocols A dv

ge , A dv
ng , and A d t

ng . We start by describing the
system parameters and the benchmark used to assess the protocols. We then
evaluate the influence of the convoy effect on the algorithms; compare the gen-
uine and non-genuine protocols by varying the load imposed on the system,
the number of groups, and the proportion of global messages; and measure the
overhead of tolerating disasters.

5.3.1 Experimental Settings

The system. The experiments were conducted in a cluster of 24 nodes connected
with a gigabit switch. Each node is equipped with two dual-core AMD Opteron
2 Ghz, 4GB of RAM, and runs Linux 2.6.20. In all experiments, each group
consists of 3 nodes; the number of groups varies from 4 to 8. The bandwidth
and message delay of our local network, measured using netperf and ping, are
about 940 Mbps and 0.05 ms respectively. To emulate inter-group delays with
higher latency and lower bandwidth, we used the Linux traffic shaping tools.

We emulated two network setups. In setup 1, the message delay between
any two groups follows a normal distribution with a mean of 100 ms and a stan-
dard deviation of 5 ms, and each group is connected to the other groups via
a 125 KBps (1 Mbps) full-duplex link. In setup 2, the message delay between
any two groups follows a normal distribution with a mean of 20 ms and a stan-
dard deviation of 1 ms, and each group is connected to the other groups via a
1.25MBps (10 Mbps) full-duplex link. We report the results using setup 1 and
briefly comment on the behavior of the algorithms in setup 2.

The benchmark. The communication pattern of our benchmark was modeled
after TPC-C, an industry standard benchmark for on-line transaction process-
ing (OLTP) [1]. TPC-C represents a generic wholesale supplier workload and
is composed of five predefined transaction types. Two out of these five types
may access multiple warehouses; the other three types access one warehouse
only. We assume that each group hosts one warehouse. Hence, the warehouses
involved in the execution of a transaction define to which groups the transaction
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is multicast. Each multicast message also contains the transaction’s parameters
and on average, a message contains 80 bytes of payload.

In TPC-C, about 10% of transactions involve multiple warehouses. Thus,
roughly 10% of messages are global. To assess the scalability of our protocols,
we parameterize the benchmark to control the proportion p of global messages.
In the experiments, we report measurements for p = 0.1 (i.e., original TPC-C)
and p = 0.5. The vast majority of global messages involve two groups. Note
that in our benchmark, transactions are not executed; TPC-C is only used to
determine the communication pattern.

Each node of the system contains an equal number of clients executing the
benchmark in a closed loop: each client multicasts a message and waits for
its delivery before multicasting another message. Hence, all messages always
address the sender’s group; global messages also address other groups. The
number of clients per node varies between 1 and 160 and in each experiment,
at least one hundred thousand messages are multicast.

For all the experiments, we report either the average message delivery la-
tency (in milliseconds) or the average inter-group bandwidth (in kilo bytes
per second) as a function of the throughput, i.e., the number of messages A-
Delivered per minute. We computed 95% confidence intervals for the A-delivery
latency but we do not report them here as they were always smaller than 2% of
the average latency. The throughput was increased by adding an equal number
of clients to each node of the system.

5.3.2 Assessing the Convoy Effect

The round-based Algorithms A dv
ng and A d t

ng . We explore the influence of param-
eters κ, the number of consensus instances per round, and η, the number of
consensus instances between two consecutive message bundle exchanges, on
the convoy effect. In principle, the higher the value of κ, the less likely the
convoy effect is to happen. Indeed, the more consensus instances are run per
round, the less probable it is that a local message waits for the message bundles
to be exchanged. However, increasing κ also increases the average latency of
global messages. The optimal value of κ should be set to allow groups to exe-
cute as many local consensus instances as they can while message bundles are
being exchanged, to minimize the convoy effect, without affecting the latency
of global messages. If we let ∆max and δcons respectively denote the maximum
inter-group delay and the consensus latency, κ should be set to b∆max/δconsc.
Setting parameter η is less trivial: setting it low potentially decreases the aver-
age global message latency but may also saturate the inter-group network.
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In failure-free runs, A dv
ng and A d t

ng only differ on how the message bundles
are exchanged, we thus explore the influence of these parameters on A dv

ng only.
Figures 5.2(a) and 5.2(b) illustrate the impact of κ on A dv

ng in a system with
four groups when rounds do not overlap (i.e., η = κ). We report the average
percentage of the local message latency that is due to the convoy effect. To make
the figures easily readable, we do so only for certain loads.
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Figure 5.2. The influence of κ and η on A dv
ng with four groups (percentages show

convoy effect).
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As explained above, using very low or high values of κ respectively increases
the chances of the convoy effect to happen or the latency of global messages.
Hence, we use values of κ close to the theoretical optimum of b∆max/δconsc.

We first consider local messages, and note that setting κ too low (i.e., κ= 20
in our experiments) or too high (κ = 120) respectively increases the chances of
the convoy effect to happen (see percentages in Figure 5.2(a)), which impacts
the latency, or harms the scalability of the protocol: as the number of global mes-
sages sent at the end of each round increased, the inter-group communication
became the bottleneck since the traffic was too bursty. In our settings, κ = 60
gave the best results for local messages (see Figure 5.2(a)).

For global messages, setting κ to 60 gives worse performance than setting it
to 20 (see Figure 5.2(b)). We address this problem by tuning parameter η, as
illustrated in Figures 5.2(c) and 5.2(d). While setting η too low (η= 4) worsens
the latency and the scalability of the protocol, and increases the convoy effect,
setting it too high (η = 60) harms its scalability. When η = 30, the local mes-
sage latency is similar to the one when κ= η= 60 (Figure 5.2(a)), while almost
matching the global message latency of κ = η = 20 (Figure 5.2(b)). More-
over, with respect to Figures 5.2(a) and 5.2(b), the scalability of the protocol is
improved for both local and global messages.

To further reduce the global message latency, we tried other values for η.
However, we did not find a value that gave better performance than η = 30
nor did we reach the theoretical optimum latency of one inter-group message
delay, i.e., 100 ms. We observed that this was mainly because groups do not
start rounds exactly at the same time; consequently, some groups had to wait
more than 100 milliseconds to receive all message bundles. Therefore, in all
experiments that follow we use κ= 60 and η= 30.

The timestamp-based Algorithm A dv
ge . Figures 5.3(a) and 5.3(b) evaluate the

influence of the convoy effect onA dv
ge in a system with four groups. Similarly as

above, we report the average percentage of the local message latency that is due
to the convoy effect. AlgorithmA dv∗

ge delivers local messages much faster than its
non-optimized counterpart prone to the convoy effect A dv

ge (see Figure 5.3(a)):
as the load increases the convoy effect happens more frequently and increases
the local message latency until it reaches the latency of global messages, i.e.,
around 200 ms. In fact, with A dv

ge , at least 97% of the local message latency is
due to the convoy effect. With A dv∗

ge , as the percentages in Figure 5.3(a) show,
local messages also experience a minor convoy effect: after being R-Delivered,
some local messages cannot be proposed to consensus directly as the current
consensus instance is still running and handling global messages.
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In Figure 5.3(b), we observe that A dv∗
ge slows down the delivery of global

messages. This phenomenon has two causes. First, all global messages now go
through the four stages, thus, an increased number of consensus instances must
be run for the same throughput. Second, as an effect of the first cause, global
messages have a higher chance to be delayed by other global messages. This is
similar to the convoy effect, but for global messages.

These observations underline the importance of allowing global messages to
skip stage s2, an optimization that is present in A dv

ge , but not allowed in A dv∗
ge

(c.f. Section 5.1), and render A dv∗
ge interesting only when the decrease in local

message latency matters more than the increase in global message latency. As
we expect the proportion of local messages to be higher than the proportion of
global messages, an assumption that is verified by TPC-C, we only considerA dv∗

ge
hereafter.
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Figure 5.3. The convoy effect in A dv
ge with four groups (percentages show convoy

effect).

5.3.3 Genuine vs. Non-Genuine Multicast

We compare A dv
ng to A dv∗

ge when the number of groups increases using two
mixes of global and local messages. We first set the proportion of global mes-
sages to 10% and run the algorithms in a system with four and eight groups.
Figures 5.4(a) and 5.4(b) respectively report the average outgoing inter-group
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traffic per group and the average A-Delivery latency, both as a function of the
throughput.
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Figure 5.4. Genuine versus Non-Genuine Multicast.
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For brevity we report the overall average delivery latency, without differenti-
ating between local and global messages.

Although A dv
ng exhibits a better latency than A dv∗

ge with 4 groups, A dv
ng does

not scale as well as A dv∗
ge with eight groups (Figure 5.4(b)). This is a conse-

quence ofA dv
ng ’s higher demand on throughput: with eight groups the algorithm

requires as much as 111 KBps of average inter-group bandwidth, a value close
to the maximum available capacity of 125 KBps (Figure 5.4(a)).

In Figures 5.4(c) and 5.4(d), we observe that when half of the messages are
global, the two algorithms compare similarly as above but do not scale as well.

As a final remark, we note that in contrast to A dv
ng , A dv∗

ge delivers messages
faster and supports more load with eight groups than with four (Figures 5.4(b)
and 5.4(d)). Indeed, increasing the number of groups decreases the load that
each group must handle as, in our benchmark, the vast majority of global mes-
sages are addressed to two groups. This effect can be seen in Figures 5.4(a) and
5.4(c), where each group needs less inter-group bandwidth with eight groups.

Summary. Figure 5.5 provides a qualitative comparison between the gen-
uine and non-genuine algorithms. We consider four scenarios generated by all
combinations of the two following parameters: the load (high or low) and the
number of groups (many or few); the proportion of global messages is not taken
into account as it has no influence on the comparison. We note that A dv

ng is the
winner except when the load is high and there are many groups.

We also carried out the same comparison in network setup 2, i.e., a network
where the message delay between any two groups follows a normal distribution
with a mean of 20 ms and a standard deviation of 1 ms, and each group is
connected to the other groups via a 1.25MBps (10 Mbps) full-duplex link. We
briefly comment on the obtained results. With 4 groups,A dv∗

ge andA dv
ng compare

similarly as in setup 1. Because of the lower inter-group latency the performance
ofA dv∗

ge becomes closer to the one ofA dv
ng however. With eight groups, the non-

genuine protocol scales almost as well as the genuine algorithm thanks to the
extra available inter-group bandwidth.

5.3.4 The Cost of Tolerating Disasters

To evaluate the overhead of tolerating disasters, we compareA d t
ng to the overall

best-performing disaster-vulnerable algorithm A dv
ng . With A d t

ng we set κ and η
to 120 and 60 respectively; with A dv

ng , the default values are used, κ = 60 and
η= 30.

In Figures 5.6(b) and 5.7(b), we observe that with four groups,A d t
ng roughly
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A dv∗
ge wins

A dv
ng wins

Number of groups
Sy
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em
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load

fewgroups
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groups

Figure 5.5. Comparing A dv∗
ge to A dv

ng .

needs twice as much time as A dv
ng to deliver messages. This is expected: local

messages take about the same time to be delivered with the two algorithms;
global messages roughly need and additional 100 milliseconds to be delivered
withA d t

ng . Interestingly,A d t
ng matches the performance ofA dv∗

ge in a system with
four groups (Figures 5.4(b), 5.6(b), 5.4(d), and 5.7(b)).
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Figure 5.6. The cost of tolerating disasters with 10% of global messages.

With eight groups, A d t
ng utilizes the entire inter-group bandwidth under al-

most every considered load (Figures 5.6(a) and 5.7(a)). The latency and scala-
bility of the disaster-tolerant algorithm thus become much worse thanA dv

ng ’s.
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Figure 5.7. The cost of tolerating disasters with 50% of global messages.

5.4 Discussion

Chapter 4 showed that no genuine multicast can deliver global messages in
fewer than two inter-group message delays, a restriction that is not imposed
on non-genuine multicast protocols. To discover in which circumstances gen-
uine multicast provides better performance than its non-genuine counterpart,
we experimentally evaluated the behavior of the latency-optimal genuine and
non-genuine protocols A dv

ge and A dv
ng respectively. We assessed the scalability

of the algorithms by varying the number of groups, the proportion of global
messages, and the load, i.e., the frequency at which messages are multicast.

The results suggest that the genuineness of multicast is interesting only in
large and highly loaded systems; in all the other considered scenarios the non-
genuine protocol A dv

ng outperforms the genuine algorithm A dv
ge . According to

our observations, Algorithm A dv
ge outperforms A dv

ng when communication links
get saturated. Since extra-bandwidth can be purchased, we believe that A dv

ng is
the protocol that should be favored.

We also identified a convoy effect that delays the delivery of local messages
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and proposed techniques to reduce this effect. To complete our study, we showed
that the disaster-tolerant and latency-optimal protocol A d t

ng does not offer the
same level of performance as A dv

ng but matches the performance of A dv
ge when

there are few groups.



Chapter 6

Partial Replication Protocols

The whole is more than the sum of its parts.

Aristotle

Database replication protocols based on group communication have received
a lot of attention for more than ten years [2; 62; 34; 47; 45; 39; 46]. This comes
from the fact that group communication primitives offer adequate properties,
namely agreement on the messages delivered and on their order, to implement
synchronous database replication. Most of the complexity involved in synchro-
nizing database replicas is handled by the group communication layer.

Previous work on database replication based on group communication has
focused mainly on full replication. However, full replication might not always
be adequate. First, sites might not have enough disk or memory resources to
replicate the database fully. Second, when access locality is observed, full repli-
cation is pointless. Third, full replication provides limited scalability since every
update transaction must be executed by each replica. In this chapter, we ex-
tend the Database State Machine (DBSM) [47], a database replication technique
based on group communication, to partial replication.

The DBSM is based on the deferred update replication model [9]. Transac-
tions execute locally on one database site and their execution does not cause any
interaction with other sites. Read-only transactions commit locally only; update
transactions are atomically broadcast to all database sites at commit time for
certification. The certification test ensures one-copy serializability: the execution
of concurrent transactions on different replicas is equivalent to a serial execution
on a single replica [9]. In order to execute the certification test, every database
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site keeps the writesets of committed transactions. The certification of a transac-
tion T consists in checking that T’s readset does not contain any outdated value,
i.e., no committed transaction T′ wrote a data item x after T read x.

6.1 Extending the DBSM to Partial Replication

A straightforward way of extending the DBSM to partial replication consists in
executing the same certification test as before but having database sites only pro-
cess update operations for data items they replicate. But as the certification test
requires storing the writesets of all committed transactions, this strategy defeats
the whole purpose of partial replication since replicas may store information re-
lated to data items they do not replicate. We thus capture the legitimacy of a
partial replication protocol in the following property:

• Genuine Partial Replication: For every submitted transaction T , database
sites that do not replicate data items read or written by T do not store any
information about T.

Such a strict property, however, forces the use of a genuine atomic multicast
protocol as the group communication primitive to propagate transactions. Since
genuine multicast protocols exhibit a higher latency than broadcast ones in large
networks (c.f. Chapter 4) and in flat networks [21], this property may restrict
the performance of the replication protocol if latency is more important than
storage space and message complexity.

To allow broadcast-based implementations of the partially replicated DBSM,
we define a weaker version of Genuine Partial Replication. To do so, we let
sites receive and momentarily store transactions unrelated to the data items
they replicate as long as this information is erased after a short time. Moreover,
we want to make sure each transaction is handled by a site at most once. If sites
are allowed to forget about past transactions completely, this constraint cannot
obviously be satisfied. We capture these two requirements with the following
property:

• Quasi-Genuine Partial Replication: For every submitted transaction T, cor-
rect database sites that do not replicate data items read or written by T
permanently store not more than the identifier of T.1

1Notice that even though transaction identifiers could theoretically be arbitrarily large, in
practice, 8-byte identifiers are enough to uniquely represent 264 transactions.
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Consider now the following modification to the DBSM, allowing it to ensure
Quasi-Genuine Partial Replication. Besides atomically broadcasting transactions
for certification, database sites periodically broadcast “garbage collection” mes-
sages. When a garbage collection message is delivered, a site deletes all the
writesets of previously committed transactions. When a transaction is delivered
for certification, if the site does not contain the writesets needed for its certi-
fication, the transaction is conservatively aborted. Since all sites deliver both
transactions and garbage collection messages in the same order, they will all
reach the same outcome after executing the certification test. This mechanism,
however, may abort transactions that would be committed in the original DBSM.
In order to rule out such solutions, we introduce the following property:

• Non-Trivial Certification: If there is a time after which no two conflicting
transactions are submitted, then eventually transactions are not aborted
by certification.

In Section 6.3, we present a generalization of the database state machine
approach. The protocol in [47] is an instance of our generalization in the fully
replicated context. We then present two termination protocols that satisfy Quasi-
Genuine Partial Replication and one that satisfies Genuine Partial Replication in
Section 6.4. All three of these protocols satisfy Non-Trivial Certification as well
as the following liveness property: if a correct site submits a transaction T, then
either Site(T) aborts T or eventually all correct sites in Replicas(T) commit T.

Both Quasi-Genuine algorithms are optimized for local area networks: they
make optimistic assumptions to ensure better performance. The first algorithm
is simpler and assumes spontaneous total order: with high probability messages
sent to all servers in the cluster reach all destinations in the same order, a prop-
erty usually verified in local area networks. As a drawback, it processes a single
transaction at a time. Our second algorithm is able to certify multiple transac-
tions at a time and, as explained in Section 6.4.1, assumes a weaker assumption
than spontaneous total order.

The Genuine Partial Replication protocol is not optimized for a particular
type of network and does not rely on total order to ensure one-copy serializabil-
ity. Instead, it relies on a genuine atomic multicast primitive that only orders
transactions operating on common data items. In the case of large or hierarchi-
cal networks, the disaster-vulnerable and disaster-tolerant genuine algorithms
of Chapter 4 can thus be used.2 In the context of small or flat networks, multi-

2When combined with a non-genuine multicast algorithm, the partial replication protocol still
ensures one-copy serializability and Non-Trivial Certification, only Genuine Partial Replication is
violated.
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cast protocols requiring a small total number of message delays, counting both
inter-group and intra-group delays, should be favored over the algorithms of
Chapter 4.

6.2 Related Work

The majority of database replication protocols consider full replication [47; 45;
46; 62]. These algorithms may offer limited scalability under intensive up-
date workloads as every update must be applied to all replicas. To improve
scalability, the research community recently started investigating partial repli-
cation. Two consistency criteria have been considered: one-copy serializabil-
ity [34; 60; 13; 19] and a generalized form of snapshot isolation [59; 7]. With
the latter criterion, transactions read data from a possibly old committed snap-
shot of the database and execute without interfering with each other. A trans-
action T can only successfully commit if no other transaction T ′ updated the
same data items and committed after T started (first-committer-wins rule). This
consistency criterion never blocks nor aborts read-only transactions and update
transactions are never blocked nor aborted because of read-only transactions.
However, the following write skew anomaly may occur:

ri[x], ri[y], ..., r j[x], r j[y], w j[x], c j, ..., wi[y], ci

We here review partial replication database protocols that ensure one-copy
serializability and satisfy Quasi-Genuine or Genuine Partial Replication. We start
with quasi-genuine algorithms.

In [60] the authors extend the DBSM to partial replication. They use an
optimistic atomic broadcast primitive and a variation of atomic commit, called
resilient atomic commit. In contrast to atomic commit, resilient atomic commit
may decide to commit a transaction even though some participants crash. When
a transaction T is optimistically delivered, replicas certify T and execute a re-
silient atomic commit protocol using the result of the certification test as their
vote. If the optimistic order of T corresponds to the final order, the protocol
ends; otherwise when the final order is known, T is certified again and a second
resilient atomic commit protocol is executed. Since [60] assumes that for each
data item x , there exists a correct replica of x , resilient atomic commit is im-
plemented in one message delay, in which all participants exchange their votes.
The protocol ensures Quasi-Genuine Partial Replication, since only sites replicat-
ing data item written by T keep T in their committed transaction sequence.
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In this chapter, we present two quasi-genuine protocols tailored for local
area networks that exhibit the same latency as the algorithm in [60]. The first
algorithm certifies one transaction at a time and relies on spontaneous total
order: with high probability messages are received in the same order at all re-
cipients. The second algorithm can certify multiple transactions at a time and,
as explained in Section 6.4.1, assumes a weaker assumption than spontaneous
total order. Moreover, in contrast to [60], which requires a separate instance
of atomic commit to decide on the outcome of each transaction, with Algorithm
A qg∗

pdsm, a single voting phase suffices to decide on the outcome of several trans-
actions.

A genuine partial replication protocol called C-JDBC is presented in [13]. In
C-JDBC, replication is synchronous: read and write operations on a data item
x are respectively sent to one and all available replicas of x; databases rely on
lock-based concurrency control to execute these operations. To allow database
sites to recover after a failure, C-JDBC provides checkpoints and a recovery log.

A protocol optimized for local area networks is presented in [19]. In this
algorithm, each transaction T is first routed to the least loaded site s that stores
all data items touched by T . Each replica maintains a timestamp variable TS that
is incremented every time a new transaction is submitted. When a transaction T
is submitted at some site s, s assigns T its current value of TS and FIFO multicasts
the transaction to all sites replicating data items touched by T . Upon delivery,
T is optimistically executed. To ensure one-copy serializability, transactions are
committed in their timestamp order. Hence, if the timestamp order does not
follow the delivery order, all transactions with a smaller timestamp than T are
aborted and resubmitted. This mechanism may thus abort many transactions
under high loads. Moreover, to function properly, the algorithm requires that
the message delay be bounded by a known constant.

In [34] the authors propose a database replication protocol based on atomic
multicast. Every read operation on data item x is multicast to the group repli-
cating x; writes are multicast along with the commit request. The delivered op-
erations are executed on the replicas using strict two-phase locking and results
are sent back to the client. A final atomic commit protocol ensures transaction
atomicity. In the atomic commit protocol, every group replicating a data item
read or written by a transaction T sends its vote to a coordinator group, which
collects the votes and sends the result back to all participating groups.

A genuine algorithm based on atomic multicast is presented in this chapter.
It requires a single multicast per transaction, and, in contrast to [19], may be
deployed in both local and wide area networks.
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(a) The protocols in a LAN

Algorithm Quasi-Genuine latency messages remarks
or Genuine? with/without

opt. assumption
[60] quasi-genuine 3δ/4δ O(n2 + d2) -
A qg

pdsm quasi-genuine 3δ/4δ O(n2 + d2) -

A qg∗

pdsm -

[13] genuine (r +w)× 2δ O((r +w)× d2) -
[34] genuine r × 7δ+ 7δ O(r × d2) -
[19] genuine 2δ O(d2) requires a

synch. system
A ge

pdbsm genuine 6δ O(d2) -

(b) The protocols in a WAN

Algorithm Quasi-Genuine inter-group inter-group
or Genuine? latency msgs.

[13] genuine (r +w)× 2∆ O((r +w)× d2)
[34] genuine r × 3∆+ 3∆ O(r × d2)
A ge

pdbsm genuine 3∆ O(d2)

Table 6.1. Comparison of the database replication protocols (d is the number of sites
that replicate data items touched by transaction T , r and w are respectively the number
of reads and writes performed by T , and ∆ and δ are the message delays in a WAN
and in a LAN respectively).

Table 6.1 compares the cost of the reviewed protocols with the three algo-
rithms presented in this chapter. We compare the latency of the algorithms and
the number of messages exchanged during the execution of a transaction T, in a
local and a wide area network. In local area networks, we assume that messages
have a delay of δ, and consider two cases, one where the algorithms’ respective
optimistic assumptions hold and one where they do not (c.f. Section 6.4); in
wide area networks, groups are correct, inter-group messages have a delay of
∆, and intra-group message delays are assumed to be negligible.

We consider the best achievable latency and the minimum number of mes-
sages exchanged, when neither failures nor failure suspicions occur, the most
frequent case in practical settings. For algorithms whose cost does not depend
on any optimistic assumption, we report a single value. To compute the cost
of the execution of T, we consider that T consists of r read and w write opera-
tion. For all the protocols, we consider that d database sites replicate data items
touched by T and that n is the total number of database sites in the system.
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Note that for wide area networks, we do not give the cost of Algorithms A qg
pdsm,

A qg∗

pdsm, and [60; 19] as these protocols are optimized for local area networks. As
a reference, we present in Table 6.2 the cost of known algorithms used by the
protocols compared in this section.

Problem LAN WAN
latency msgs. inter-group inter-group

latency msgs.
Non-Uniform Reliable Broadcast [15] δ O(k2) ∆ O(k2)

Uniform FIFO MulticastAfifo 2δ O(k2) 2∆ O(k2)
Uniform Consensus [54] 2δ O(k2) 2∆ O(k2)

Non-Blocking Atomic Commit [30] 3 2δ O(k2) 2∆ O(k2)
Uniform Atomic Broadcast [15] 3δ O(k2) 3∆ O(k2)
Uniform Atomic Multicast [52] 6δ O(k2) 6∆ O(k2)
Uniform Atomic MulticastA dv

ge 7δ O(k2) 2∆ O(k2)

Table 6.2. Cost of different agreement problems (∆ and δ are the message delays in
a WAN and in a LAN respectively, and k denotes the number of participants in the
protocol).

In Table 6.1, we consider the execution of a single transaction. The cost
of the protocols might however change if we considered multiple transactions.
In this scenario, the following observations can be made. First, even though
Algorithms A qg

pdsm and A qg∗

pdsm have equal costs, the overhead might be higher for
AlgorithmA qg

pdsm when multiple transactions are submitted. This stems from the

fact that in AlgorithmA qg∗

pdsm, the cost of running consensus is shared among a set
of transactions, therefore reducing the number of generated messages. Second,
in [34; 60], each transaction requires a separate instance of atomic commit to
decide on its outcome. In Algorithm A qg∗

pdsm, however, at most two voting phases
are needed to decide on the outcome of the sequence of transactions decided in
the same consensus instance. Therefore, the longer this sequence, the cheaper
AlgorithmA qg∗

pdsm will be compared to [34; 60].

3This cost corresponds to the case where all participants spontaneously start the protocol.
This assumption makes sense here because in [34] participants deliver a transaction’s commit
request before starting the atomic commit protocol.
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6.3 The Database State Machine Approach

We now present a generalization of the Database State Machine approach
(DBSM). The protocol in [47] is an instance of our generalization in the fully
replicated context. For the sake of simplicity, we consider a replication model
where a transaction T can only be executed on a site si if Items(T)⊆ Items(si). In
Section 6.4.3 we revisit this assumption. To simplify the presentation, we con-
sider a client c that sends requests on behalf of a transaction T to Site(T). In the
following, we comment on the states in which a transaction can be in the DBSM.

• Executing: Read and write operations are executed locally at Site(T) ac-
cording to the strict two-phase locking rule (strict 2PL). When c requests to
commit T, it is immediately committed and passes to the Committed state
if it is a read-only transaction, an event that we denote Committed(T )Site(T );
if T is an update transaction, it is submitted for certification and passes to
the Submitted state at Site(T). We represent this event as Submitted(T )Site(T ).
In the fully replicated case, to submit T, sites use an atomic broadcast
primitive; in a partial replication context, the algorithms of Section 6.4
are used.

• Submitted: When T enters the Submitted state, its read locks are released
at Site(T) and T is eventually certified. With full replication, the certifica-
tion happens when T is delivered; Section 6.4 explains when certification
happens in a partially replicated scenario. Certification ensures that if a
committed transaction T ′ executed concurrently with T , and T read a data
item written by T ′ then T is aborted. T ′ is concurrent with T if it commit-
ted at Site(T ) after T entered the Submitted state at Site(T ). Therefore, T
passes the certification test on site si if for every T ′ already committed at
si the following condition holds:

Committed(T ′)Site(T )→ Submitted(T )Site(T )

∨
T ′.ws ∩ T.rs = ;,

(6.1)

where→ is Lamport’s happened before relation on events [37].

In the fully replicated DBSM, transactions are certified locally by each site
upon delivery. In the partially replicated DBSM, to ensure Quasi-Genuine
Partial Replication, sites only store the writesets of committed transac-
tions that wrote data items they replicate. Therefore, sites might not have
enough information to decide on the outcome of all transactions. Hence,
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to satisfy Non-trivial Certification, we introduce a voting phase where each
site sends the result of its certification test to the other sites. Site si can
safely decide to commit or abort T when it has received votes from a voting
quorum for T. Intuitively, a voting quorum VQ for T is a set of databases
such that for each data item read by T, there is at least one database in VQ
replicating this item. More formally, a quorum of sites is a voting quorum
for T if it belongs to VQS(T), defined as follows:

VQS(T ) = {VQ|VQ ⊆ Π∧ T.rs ⊆
⋃

s∈VQ

Items(s)} (6.2)

For T to commit, every site in a voting quorum for T has to vote yes. If a site
in the quorum votes no, it means that T read an old value and should be
aborted; committing T would make the execution non-serializable. Notice
that Site(T) is a voting quorum for T by itself, since for every transaction T,
Items(T)⊆ Items(Site(T)). If T passes the certification test at si, it requests
the write locks for the data items it has updated. If there exists a trans-
action T′ on si that holds conflicting locks with T’s write locks, the action
taken depends on T′’s state on si and on T ′’s type, read-only or update:

1. Executing: If T ′ is in execution on si then one of two things will hap-
pen: if T ′ is a read-only transaction, T waits for T ′ to terminate; if T ′

is an update transaction, it is aborted.

2. Submitted: This happens if T ′ executed on si, already requested com-
mit but was not committed yet. In this case, T ’s updates should be
applied to the database before T ′’s. How this is ensured is implemen-
tation specific.4

Once the locks are granted, T applies its updates to the database and
passes to the Committed state. If T fails the certification test, it passes
to the Aborted state.

• Committed/Aborted: These are final states.

4For example, a very simple solution would be for si to abort T ′; if T ′ later passes certification,
its writes would be re-executed. The price paid for simplicity here is the double execution of T ′’s
write operations.
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6.4 Partially-replicated DBSM

In this section, we present three algorithms for the termination protocol of the
DBSM in a partial replication context. These protocols ensure both one-copy
serializability [9] and the following liveness property: if a correct site submits
a transaction T, then either Site(T) aborts T or eventually all correct sites in
Replicas(T) commit T. The algorithms also satisfy either Quasi-Genuine or Gen-
uine Partial Replication as well as Non-Trivial Certification.

6.4.1 Quasi-Genuine Algorithms

The “One-at-a-time” Algorithm

Algorithm Overview. Sites execute a sequence of steps. In each step, sites
decide on the outcome of one transaction. A step is composed of two phases, a
consensus phase and a voting phase. Consensus is used to guarantee that sites
agree on the commit order of transactions. In the voting phase, sites exchange
the result of their certification test to ensure that the commit of a transaction T
in step K induces a serializable execution.

The naive way to implement the termination protocol is to first use consensus
to determine the next transaction T in the serial order and then execute the
voting phase for T. We take a different approach: Based on the observation that
with a high probability messages broadcast in a local-area network are received
in total order [49], we overlap the consensus phase with the voting phase to
save one communication step. If sites receive the transaction to be certified in
the same order, they vote for the transaction before proposing it to consensus.
With luck, by the time consensus decides on a transaction T, every site will
already have received the votes for T and will be able to decide on the outcome
of T.

The Algorithm in Detail. Algorithm A qg
pdsm is composed of three concurrent

tasks. Each line of the algorithm is executed atomically. The state transitions of
transactions are specified in the right margin of lines 10, 28, and 30. Notice that
the state transition happens after the corresponding line has been executed. Ev-
ery transaction T is a tuple (id, site, rs, ws, up, past, order). We added three fields
to the definition of a transaction (c.f. Chapter 2), namely site, past, and order:
site is the database site on which T is executed; past is the order of T’s submis-
sion; and order is T’s commit order. The algorithm also uses five global variables:
K stores the step number; UNDECIDED and DECIDED are (ordered) sequences
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of, respectively, pending transactions and transactions for which the outcome is
known; COMMITTED is the set of committed transactions; and the set VOTES
stores the votes received, i.e., the results of the certification test. We use the op-
erators ⊕ and 	 for the concatenation and decomposition of sequences. Let seq1

and seq2 be two sequences of transactions. Then, seq1⊕ seq2 is the sequence of
transactions in seq1 followed by all the transactions in seq2, and seq1	 seq2 is the
sequence of transactions in seq1 that are not in seq2. Transactions are matched
using their identifiers.

To take advantage of spontaneous total order, database sites use the WOR-
Broadcast primitive to submit transactions (line 10). When no consensus in-
stance is running and UNDECIDED is not empty, sites first execute the Vote pro-
cedure for T at the head of UNDECIDED (line 17) and then propose T (line 18).
In the Vote procedure, T is certified and the result of the certification is sent in a
message of type VOTE.

Notice that even though Site(T) is a voting quorum for T by itself, i.e,
Items(T )⊆ Items(Site(T )), in the algorithm, all sites replicating a data item read
by T vote. This is done to tolerate the crash of Site(T). If only Site(T) voted, the
following undesirable scenario could happen: Site(T) submits T and crashes just
after executing line 10. Databases WOR-Deliver T, propose T and decide on T.
In this execution, sites would wait forever at line 24, as Site(T) crashed before
voting for T.

Two further remarks concern the Vote procedure. First, to be able to certify
transactions, we need to implement the precedence relation→ between events.
For two transactions T and T′, this is done by comparing the value of their past
and order fields. If T.order< T′.past, we are sure that T committed before T′

was submitted, because K is incremented after transactions commit. Second,
notice that VOTE messages contain the step number K in which T was certified.
This information is necessary because a transaction can be certified in different
steps and the result of the certification test in steps K and K ′ might be different.
This is precisely why sites wait for VOTE messages coming from step number K
at line 24. Moreover, even if sites receive votes from different voting quorums,
they will agree on the outcome of the transaction. Intuitively, this holds because
we only take into account voting quorums that voted in step K, therefore they
consider the same sequence of committed transactions. Finally, by verifying that
transactions T and T′ are the same at line 20, sites check if the spontaneous total
order holds. If it is not the case, sites need to vote for the transaction decided by
consensus.
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AlgorithmA qg
pdsm 8

The “One-at-a-time” algorithm - Code of database site s
1: Initialization
2: K← 1, UNDECIDED← ε, DECIDED← ε,COMMITTED← ;, VOTES← ;

3: function Certify(T)
4: return ∀(id, order, ws) ∈ COMMITTED : order < T.past ∨ ws ∩ T.rs = ;

5: procedure Vote(T)
6: if T.rs ∩ I tems(s) 6= ; then
7: send(VOTE, T.id, K , Cer t i f y(T )) to all q in Replicas(T)

8: To submit transaction T {Task 1}
9: T.past ← K

10: WOR-Broadcast(VOTE_REQ, T) {Executing→ Submitted}

11: When receive(VOTE, T.id, K ′, vote) from q {Task 2}
12: VOTES← VOTES∪ (T.id, q, K ′, vote)

13: When WOR-Deliver(VOTE_REQ, T) ∧ T.id 6∈ DEC I DED {Task 3}
14: UNDECIDED← UNDECIDED⊕ T

15: When UNDECIDED 6= ε
16: T ← head(UNDECIDED)
17: Vote(T)
18: Propose(K , T)
19: wait until Decide(K , T ′)
20: if T ′.id 6= T.id then Vote(T ′)
21: UNDECIDED← UNDECIDED	 T ′

22: DECIDED← DECIDED⊕ T ′.id
23: if T ′.ws ∩ I tems(s) 6= ; then
24: wait until ∃VQ ∈ VQS(T ′) : ∀q ∈ VQ : (T ′.id, q, K ,−) ∈ VOTES
25: if ∀q ∈ VQ : (T ′.id, q, K , yes) ∈ VOTES then
26: T ′.order← K
27: COMMITTED← COMMITTED∪ (T ′.id, T ′.order, T ′.ws ∩ I tems(s))
28: commit T ′ {Submitted→ Committed}
29: else
30: if s = T ′.si te then abort T ′ {Submitted→ Aborted}
31: K ← K + 1
32: VOTES← {(tid, q, K ′, v) ∈ VOTES | K ′ ≥ K}

The “Many-at-a-time” Algorithm

The previous algorithm certifies transactions sequentially. Thus, if many transac-
tions are submitted, an ever-growing chain of uncommitted transactions can be
formed. Algorithm A qg∗

pdsm solves that problem by allowing a sequence of trans-
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actions to be proposed in consensus instances and by changing the certification
test accordingly.

Algorithm Overview. Algorithm A qg∗

pdsm is similar to algorithm A qg
pdsm, its main

difference lies in the way transactions are certified. Since a sequence of transac-
tions can be proposed to consensus, sites now optimistically certify a sequence
S of transactions before each consensus instance.

A naive implementation would certify transactions in the order they ap-
pear in S, that is, transactions would be certified against previously commit-
ted transactions and transactions that appear before them in S. To guarantee
quasi-genuine partial replication, sites only permanently store a subset of the
committed transactions. Hence, the certification would require that, for each
transaction T in S, sites vote for T considering each possible outcome of the
transactions appearing before T in S. Indeed, a site si may vote to abort a trans-
action T1 because si voted to commit the transaction T2 directly preceding T1.
However, another site s j may have voted to abort T1, in which case T1 would
abort and T2 could thus potentially commit.

We opt for a different approach that is simple and only requires sites to cast
a single vote per transaction in S. Transactions are certified in two phases. In
the first phase, each transaction in S is certified against previously committed
transactions only. In the second phase, once sites have decided on the transac-
tion sequence S′, transactions are handled in the order they appear in S′. More
precisely, for each transaction T in S′, sites check whether T can commit by
looking at the votes cast by T ’s voting quorum. If it is the case, T is certified
against committed transactions that precede T in S′.

Algorithm in Detail. Algorithm A qg∗

pdsm follows the same structure and uses the
same global variables as Algorithm A qg

pdsm. The difference lies in Task 3 and the
auxiliary procedures used. In the general case, when sites notice that there is
a sequence of pending transactions that have not been committed or aborted
(“UNDECIDED 6= ε” at line 25), this sequence is voted for and proposed in con-
sensus instance K (lines 26–27). In the Vote procedure, every pending transac-
tion is certified considering only the previously committed transactions (lines 3–
9). The results are gathered in a set and later sent to all sites that have data
items updated by some transaction in the pending sequence (lines 10–12). The
“VOTES 6= ;” condition at line 25 is used for garbage collection: it forces the pro-
posal of empty sequences in case there are votes for undelivered vote requests
(a possible situation due to failures that would violate Quasi-Genuine Partial
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Replication).
After the K-th instance of consensus has decided on a sequence SEQ of trans-

actions (line 28), sites verify whether they have voted for all transactions in SEQ;
if it is not the case, they vote for the sequence SEQ (lines 29–30). Then, sites
replicating data items updated by one of the transactions in SEQ sequentially
certify all transactions in SEQ following their order (lines 35–45). The certifica-
tion of transaction T is divided into two parts. First, T is certified considering
the transactions committed in steps lower than K by taking into account the
votes of a voting quorum (line 37). Second, sites certify T considering commit-
ted transactions that have been decided in the same consensus instance (line
38). This is done by gathering committed transactions in a set called LCOMMIT
and by verifying that there does not exist a transaction T ′ in this set that writes
a data item read by T . If T passes both certifications and updates a data item
in Items(s), it is treated in exactly the same way as certified transactions in Al-
gorithm A qg

pdsm (lines 41–43). To reduce the number of aborts, transactions in
the decided sequence SEQ could be reordered using the deterministic reorder-
ing technique introduced in [47]. We omit this optimization from the code for
simplicity.

Unlike Algorithm A qg
pdsm, Algorithm A qg∗

pdsm does not rely on spontaneous to-
tal order. This is because sequences of transactions are used when voting and
proposing values to a consensus instance, and the order of transactions in this
sequence does not matter when it comes to voting. Recall that the vote phase in
step K consists in independently certifying undecided transactions against trans-
actions committed in previous steps (line 11 and function Certify at lines 3–9).
This phase does not take into consideration conflicts within the sequence itself
since they are solved after the consensus instance is decided. Nevertheless, the
voting mechanism is still optimistic in Algorithm A qg∗

pdsm as they are sent before
the consensus instance has decided on its outcome.

The optimistic assumption that allows a transaction T to be certified as soon
as consensus instance K decides on a sequence containing T is that every mem-
ber of at least one correct voting quorum VQ for T has voted for any sequence
containing T before consensus instance K (line 26). Notice that the sequences
considered by different members of VQ do not have to be the same, the only
requirement is that they all contain T .

We could further relax the optimistic assumptions required at the price of a
higher number of VOTE messages. In the way both algorithms are described, sites
vote for a transaction only before it is proposed to the next consensus instance
(line 17 of Algorithm A qg

pdsm, line 26 of Algorithm A qg∗

pdsm). Consider a scenario
where the vote request for a transaction T is delivered by a site s right after s
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AlgorithmA qg∗

pdsm 9
The “Many-at-a-time” algorithm - Code of database site s

1: Initialization
2: K ← 1, UNDECIDED← ε, DECIDED← ε, COMMITTED← ;, VOTES← ;

3: function Certify(SEQ)
4: V ← ;
5: for all T ∈ SEQ do
6: if ∀(id, order, ws) ∈ COMMITTED : order < T.past ∨ ws ∩ T.rs = ; then
7: V ← V ∪ (T.id, yes)
8: else V ← V ∪ (T.id, no)
9: return V

10: procedure Vote(SEQ)
11: if ∃T ∈ SEQ : T.rs ∩ Items(s) 6= ; then
12: send (VOTE, Strip(SEQ), K ,Certify(SEQ)) to {q | ∃T ∈ SEQ : q ∈ Replicas(T )}

13: function Strip(SEQ)
14: RESULT← ε
15: for all T ∈ SEQ in order do
16: RESULT← RESULT⊕ T.id
17: return RESULT

18: To submit transaction T {Task 1}
19: T.past ← K
20: R-bcast (VOTE_REQ, T ) {Executing→ Submitted}

21: When receive (VOTE, IDSEQ, K ′, V) from q {Task 2}
22: VOTES← VOTES∪ (IDSEQ, q, K ′, V)

23: When R-deliver (VOTE_REQ, T ) ∧ T.id 6∈ DECIDED {Task 3}
24: UNDECIDED← UNDECIDED ⊕ T

25: When UNDECIDED 6= ε∨ VOTES 6= ;
26: Vote(UNDECIDED)
27: Propose(K ,UNDECIDED)
28: wait until Decide(K ,SEQ)
29: if ∃T : T ∈ SEQ ∧ T 6∈ UNDECIDED then
30: Vote(SEQ)
31: DECIDED← DECIDED ⊕ Strip(SEQ)
32: UNDECIDED← UNDECIDED 	 SEQ
33: if ∃T ∈ SEQ : T.ws ∩ Items(s) 6= ; then
34: LCOMMIT← ;
35: for all T ∈ SEQ in order do
36: wait until

∃VQ ∈ VQS(T ) : ∀q ∈ VQ : ∃(SEQq, q, K , Vq) ∈ VOTES : T ∈ SEQq

37: if (∀q ∈ VQ : ∃(SEQq, q, K , Vq) ∈ VOTES : T ∈ SEQq ∧ (T.id, yes) ∈ Vq)
38: ∧ (6 ∃T ′ ∈ LCOMMIT : T ′.ws ∩ T.rs 6= ;) then
39: LCOMMIT← LCOMMIT ∪ {T}
40: if T.ws ∩ Items(s) 6= ; then
41: T.order← K
42: COMMITTED← COMMITTED∪ (T.id, T.order, T.ws ∩ Items(s))
43: commit T {Submitted→ Committed}
44: else
45: if s = T.si te then abort T {Submitted→ Aborted}
46: K ← K + 1
47: VOTES← {(tid, q, K ′, v) ∈ VOTES | K ′ ≥ K}
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has proposed transaction(s) to consensus. Site s will therefore have to wait until
the instance finishes to send its vote concerning T . However, T ’s vote request
might have been delivered earlier by some other site and might even have been
proposed to the current instance of consensus. If that is the case, and T is
part of the consensus decision, the optimistic assumptions will not hold and the
protocols might need an extra message step to certify T . This problem can be
avoided if sites are allowed to vote while solving a consensus instance. In our
example scenario, site s would vote for T even though it has already voted for
its consensus proposal. Both votes would then be received by other sites and
they would be used to decide on the outcome of T . This optimization relieves
the need for spontaneous total order in Algorithm A qg

pdsm and relaxes even more

the optimistic assumption of Algorithm A qg∗

pdsm. As a secondary effect, it reduces
the average latency of transaction certification since votes are sent right after
the vote request is received.

6.4.2 A Genuine Algorithm

Unlike the previous quasi-genuine protocols that rely on consensus, the genuine
algorithm A ge

pdbsm we present next relies on atomic multicast. It assumes that
each group replicates the same set of data items. To ensure genuine partial
replication, AlgorithmA dv

ge orA d t
ge can be used as the atomic multicast protocol.

We first present an overview of the algorithm and then presentA ge
pdbsm in detail.

Algorithm Overview. When a transaction T is submitted for certification, Al-
gorithm A ge

pdbsm multicasts T to all groups that replicate data items touched by
T . Upon A-Delivering T , sites certify T . Since transactions are now only par-
tially ordered, the certification test must be implemented differently from the
quasi-genuine algorithms. Recall that to certify a transaction T , we must check
that each data item read by T is still up-to-date. To do so, each site maintains a
version number TS[x] for each data item x replicated locally. Upon submitting
a transaction T , for each data item x read by T , T.past[x] is set to the current
version number of x . We then certify T by checking that for all data items x
read by T , T.past[x] = TS[x] holds.

If the number of data items is large, then this mechanism may need too
much storage space. A simple way to circumvent this problem is to use a coarser
granularity for data items: instead of using row granularity, table granularity
could for example be used. However, this technique unnecessarily aborts some
of the transactions. Indeed, with table granularity, two transactions T and T ′
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conflict as soon as they access the same table x and one of the transactions
updates x . Hence, if T and T ′ are executed concurrently, one transaction will be
aborted, even if T and T ′ access different rows of x . We discuss an alternative
mechanism that does not have this drawback after the in-detail explanation of
the algorithm.

Algorithm in Detail. Algorithm A ge
pdbsm is composed of three concurrent tasks.

Each line of the algorithm is executed atomically. The algorithm uses two global
variables: VOTES store the same information as in the previous quasi-genuine
protocols, and for each data item x replicated locally, TS[x] denotes the current
version number of x .

When a transaction T is submitted, for each data item x read by T , T.past[x]
is set to the current version number of x , and T is multicast to all sites concerned
by T (lines 6-7). Upon A-Delivering T , sites that store data items read by T cer-
tify T (lines 11-12). Any replica s of data items updated by T then proceed as
follows: s waits to receive votes from a voting quorum for T (lines 13-14); incre-
ments the version number of all data items written by T , if T commits (lines 15-
16); and garbage collects the votes of T (line 21). If T fails the certification test,
Site(T ) aborts T .

A certification alternative. The technique we describe next uses a single time-
stamp variable to certify transactions, and, unlike the technique using a coarser
granularity for data items, it does not unnecessarily abort transactions. This
mechanism proceeds as follows. Each site maintains a single timestamp vari-
able denoted as TS. This variable is incremented every time a transaction is A-
Delivered and is piggybacked on the vote message of each transaction T . Upon
submitting T , T.past is set to TS. If T commits, then TS is set to the maxi-
mum timestamp received in T ’s vote messages plus one. Sites then assign the
current value of TS to T.order and execute the same certification test as in the
quasi-genuine protocols.

In order to function properly, this mechanism requires each group g to either
not replicate any data item in common with any other group, or if g replicates
a data item that another group g ′ replicates, then g and g ′ must replicate the
exact same set of data items. If this condition were not met, then sites belong-
ing to different groups would set T.order to different values, thus leading to
disagreement on the certification of future transactions conflicting with T .
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AlgorithmA ge
pdbsm 10

Genuine Partial Replication - Code of database site s
1: Initialization
2: VOTES← ;, TS[x]← 1, for each x ∈ Items(s)

3: function Certify(T)
4: return ∀x ∈ T.rs ∩ Items(s) : T.past[x] = TS[x]

5: To submit transaction T {Task 1}
6: foreach x ∈ T.rs do T.past[x]← TS[x]
7: A-MCast(VOTE_REQ, T) to all q s.t.

Items(q) ∩ Items(T) 6= ; {Executing→ Submitted}

8: When receive(VOTE, T.id, vote) from q {Task 2}
9: VOTES← VOTES∪ (T.id, q, vote)

10: When A-Deliver(VOTE_REQ, T) {Task 3}
11: if T.rs ∩ Items(s) 6= ; then
12: send(VOTE, T.id, Certify(T )) to all q in Replicas(T)
13: if T.ws ∩ Items(s) 6= ; then
14: wait until ∃VQ ∈ VQS(T ) : ∀q ∈ VQ : (T.id, q, -) ∈ VOTES
15: if ∀q ∈ VQ : (T.id, q, yes) ∈ VOTES then
16: commit T {Submitted→ Committed}
17: foreach x ∈ T.ws ∩ Items(s) do
18: TS[x]← TS[x] + 1
19: else
20: if s = T.si te then abort T {Submitted→ Aborted}
21: VOTES← {(tid, q, v) ∈ VOTES | t id 6= T.id}

6.4.3 Handling Distributed Transactions

In the protocols above, we assume that each transaction T is executed on a site
s that stores all data items read and updated by T . We discuss below how to
remove this assumption.

Items updated. In the DBSM, s does not apply T ’s updates to the database
during T ’s execution. However, T holds its write locks on s until T ’s certification.
This is only done to reduce the transaction abort rate and not for correctness.
Indeed, holding these locks serializes transactions that update the same data
items as T on s. Hence, to allow T to execute on a site that does not replicate all
data items T updates, the DBSM requires no modification. The transaction abort
rate may however increase since T will not hold locks on remote data items T
updated.
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Items read. To allow T to read some data item x remotely, T may simply ask
x from a site s that replicates x . Along with the value of x , s should send the
version number of x . Sites can then certify T by checking that all data items T
read have a version number equal to their current version number, similarly as
in the genuine protocolA ge

pdbsm. This mechanism can also be implemented in the
quasi-genuine protocols, provided that they use the same certification procedure
as inA ge

pdbsm.

We here briefly argue why this modification still ensures one-copy serializ-
ability. The DBSM’s correctness relies on two properties: (i) transactions do not
read stale data and (ii) updates of any data item x are applied in the same order
at all replicas of x . It is easy to see that these two properties guarantee one-
copy serializability: the global transaction history H is equivalent to a one-copy
sequential history 1H in which the transaction order follows the data items’ up-
date order; if two transactions do not update any data item in common they can
appear in any order in 1H.

With the modification proposed above, property (ii) trivially remains true as
updates of x are still totally ordered across replicas of x . Property (i) also holds
because of the certification test: a transaction T commits only if the version
number of each data item x read by T is equal to x ’s current version number,
guaranteeing that data items read are still up-to-date.

6.5 Discussion

Partial replication is a promising alternative to full replication since it potentially
offers more scalability: update transactions must only be executed by a subset
of the system’s replicas.

In this chapter, we extended the database state machine approach to partial
replication and presented three transaction termination protocols. The first two
algorithms are quasi-genuine, i.e., sites permanently store the identifiers of all
submitted transactions in addition to the data items they replicate; the third
protocol is genuine, i.e., sites do not store information about transactions that
do not touch any data item they replicate.

The quasi-genuine property is interesting for latency reasons: it allows the
use of atomic broadcast, a primitive that is inherently more latency-efficient than
multicast (c.f. Chapter 4). When storage space or bandwidth is in short supply
however, the genuine algorithm is preferred.
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6.6 Proofs of Correctness

We here only give the proofs of AlgorithmsA qg∗

pdsm andA ge
pdbsm, as AlgorithmA qg

pdsm

is a special case of AlgorithmA qg∗

pdsm.

6.6.1 The Proof of Algorithm A qg∗

pdsm

Lemma 6.6.1 No two consensus instances k, k′ (k 6= k′) decide on the same trans-
action T.

Proof: Suppose, by way of contradiction, that two instances k and k′ decide on
the same transaction T. Without loss of generality, suppose that k′ > k. Con-
sequently, by the validity property of consensus, there exists a database site si

that proposes T for instance k′. If si proposes T in instance k′ > k, si decided
in instance k. By the uniform agreement of consensus, si decided on T in in-
stance k. Therefore, T.id is added to DECIDEDi at line 31 and T is removed
from UNDECIDEDi at line 32 when Ki = k. Since no transaction is removed from
DECIDEDi, T cannot be inserted in UNDECIDEDi afterwards at line 24. There-
fore, T cannot be in UNDECIDEDi at line 27 when Ki > k and therefore si does
not propose T in consensus instance k′, a contradiction. �

Lemma 6.6.2 For any submitted transaction T, any database site si, and any Ki,
between two invocations of Certify(-), namely Certify(-)1 and Certify(-)2, such that
Ki is the same at the time Certify(-)1 and Certify(-)2 are called, Certify(-)1 reads
the same COMMITTED set as Certify(-)2.

Proof: The function Certify is called indirectly either (a) from line 26 or (b)
from line 30. The set COMMITTED is modified at line 42. Therefore, Certify(-)2

reads the same COMMITTED set as Certify(-)1 when Ki is the same at the time
Certify(-)1 and Certify(-)2 are called. �

Lemma 6.6.3 For any submitted transaction T and any database site si, in every
step Ki, any two invocations of Certify(-), namely Certify(SEQ1) and Certify(SEQ2),
return the same value for all transactions T such that T ∈ SEQ1 ∩ SEQ2.

Proof: By Lemma 6.6.2, the values of COMMITTED read in Certify(SEQ1) and
Certify(SEQ2) are the same. By the fact that T.past and T.rs are constant, the
returned values of function Certify(SEQ1) and Certify(SEQ2) are the same for
all T ∈ SEQ1 ∩ SEQ2. �
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Definition 6.6.1 From Lemma 6.6.2, we can define COMMITTEDk
i as the value

of variable COMMITTED read at line 6 on si when Ki = k. From Lemma 6.6.3,
we can define Certify(T, k)i as the returned value of the function Certify(SEQ) for
T (T ∈ SEQ), called on si when Ki = k. If there exists no invocation of function
Certify(SEQ) on si when Ki = k such that T ∈ SEQ, we say that Certify(T, k)i is
undefined, and we write Certify(T, k)i =⊥.

Definition 6.6.2 We define vote(VQ, T, k), voting quorum VQ’s vote for transaction
T (VQ ∈ VQS(T)), considering the VOTE messages of all q ∈ VQ cast when Kq = k
as follows:

• vote(VQ, T, k) = yes iff ∀si ∈ VQ : Certify(T, k)i = yes

• vote(VQ, T, k) = no iff ∀si ∈ VQ : Certify(T, k)i 6=⊥ ∧
∃s j ∈ VQ : Certify(T, k) j = no

• vote(VQ, T, k) =⊥ iff ∃si ∈ VQ : Certify(T, k)i =⊥

Lemma 6.6.4 For all k and every transaction T, there does not exist VQ1, VQ2 ∈
VQS(T) such that vote(VQ1, T, k) = yes and vote(VQ2, T, k) = no.

Proof: The proof is by induction on k.

• Base step (k = 1): When the algorithm initializes, the set COMMITTED
is empty. Therefore, for all si such that Certify(T, 1)i 6= ⊥, we have that
Certify(T, 1)i = yes. Therefore, for all VQ ∈ VQS(T) such that
vote(VQ, T, 1) 6=⊥, vote(VQ, T, 1) = yes.

• Induction step: Suppose Lemma 6.6.4 holds for all m such that 1≤m< k,
we show that Lemma 6.6.4 holds for k. Suppose, by way of contra-
diction, that there exist a transaction T and two voting quorums VQ1,
VQ2 ∈ VQS(T), such that vote(VQ1, T, k) = yes and vote(VQ2, T, k) = no.
Therefore, for every database si in VQ1, Certify(T, k)i = yes and there
exists a database site sj in VQ2 such that Certify(T, k) j = no. Therefore,
there exists a transaction T′ ∈ COMMITTEDk

j such that T′.ws ∩ T.rs 6= ;
and T′.order≥ T.past. Let k′ be the consensus instance in which T′ was
decided (k′ < k). By the uniform agreement property of consensus, all
databases decide on T′ in instance k′. Since VQ1 is a voting quorum for
T and because T′.ws ∩ T.rs 6= ;, there exists a database site sl in VQ1

such that Items(sl)∩ T′.ws 6= ;. By the induction hypothesis, for all VQ
∈ VQS(T′) : vote(VQ, T′, k′) = yes, therefore T′ ∈ COMMITTEDk′+1

l . Thus,
Certify(T, k) j = Certify(T, k)l = no, a contradiction. �
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We now show that AlgorithmA qg∗

pdsm ensures 1-SR. A replicated data history H is
1-SR if it is equivalent to a one-copy serial history 1H [9]. Notice that in these
histories we only consider operations of committed transactions. Our proof is
composed of two steps. We first show that every history Hi of database si is seri-
alizable. Second we show how to construct a serial one-copy history 1H that is
equivalent to the replicated data history H.

Lemma 6.6.5 Every history Hi of database site si is serializable.

Proof: In the following, we use the multi-version serialization graph formalism
introduced in [9]. A multi-version serialization graph of a history Hi MVSG(Hi,�)
is a directed graph, in which the nodes represent committed transactions and�
defines the version order on data items. An edge Ta→ Tb ∈MVSG(Hi, �) can
be of three types:

1. Read-from: Tb reads data item x from Ta.

2. Version-order type I: Ta and Tb write x such that xa� xb.

3. Version-order type II: Ta reads xc from Tc and Tb writes xb such that xc� xb.

To show that history Hi is serializable, we prove that MVSG(Hi,�) is acyclic. To
prove that MVSG(Hi,�) is acyclic, we show that for every node Ta, Tb:
Ta→ Tb ∈ MVSG(Hi, �) ⇒ C(Ta)≺i C(Tb).5

1) Read-from edge: Let s j be Site(Tb). Because databases use the strict 2PL lock-
ing policy, Tb cannot read uncommitted data and therefore C(Ta)≺j C(Tb). Now
there are two cases to consider, either (i) Tb is a read-only or (ii) not.

• In case (i), since Tb is read-only, Tb touches a single site, and thus si = s j.
Therefore, C(Ta)≺i C(Tb).

• In case (ii), since C(Ta)≺j C(Tb), s j decides on Ta in consensus instance
k and on Tb in instance k′ such that k ≤ k′. Note that by Lemma 6.6.1,
k and k′ are uniquely defined on s j. By the uniform agreement property
of consensus si also decides on Ta in instance k and on Tb in instance
k′. If k = k′, since C(Ta)≺j C(Tb), Ta appears before Tb in the consensus
decision, and thus, C(Ta)≺i C(Tb). Otherwise, if k < k′, it follows directly
that C(Ta)≺i C(Tb).

5≺i defines the commit order at site si
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2) Version-order edge type I: Since the commit order induces the version order,
we have that C(Ta)≺i C(Tb).

3) Version-order edge type II: Suppose, by way of contradiction, that C(Tb)≺i C(Ta).
Let Site(Ta) be s j. When Tb requests the write locks to apply its updates at sj,
Ta can either be in the Executing state or in the Submitted state. We show that
both cases lead to a contradiction:

• Executing state: There are two cases to consider, either (i) Ta is read-only
or (ii) not.

– In case (i), Ta touches a single site, and thus, si = s j. According
to rule 1 on how locks for Tb are granted, on si, Tb waits for Ta to
commit, contradicting the fact that C(Tb)≺i C(Ta).

– In case (ii), according to rule 1 on how locks for Tb are granted, Ta

is aborted at s j. Hence, Ta is never submitted, a contradiction to the
fact that Ta commits in Hi.

• Submitted state: Since C(Tb)≺i C(Ta), si decides on Tb in consensus in-
stance k and on Ta in instance k′ such that k ≤ k′. By Lemma 6.6.1, k
and k′ are uniquely defined on si. From the uniform agreement property
of consensus, all sites that decide in instances k and k′ decide on Tb in
instance k and on Ta in instance k′. Now either (a) k = k′ or (b) k < k′.

– In case (a), because C(Tb)≺i C(Ta), Tb appears before Ta in the deci-
sion of consensus instance k, and thus Tb is in variable LCOMMIT i at
line 38 when si tries to commit Ta. Because Tb writes x and Ta reads x,
Tb.ws∩ Ta.rs 6= ; and therefore si does not commit Ta, a contradiction.

– In case (b), since on s j, Ta is in the Submitted state at the time Tb

commits, (*) Ta.past ≤ Tb.order j = k. Since Ta commits, there exists
a voting quorum VQ1 for Ta such that vote(VQ1, Ta, Ta.order) = yes. By
Lemma 6.6.4, for all voting quorums VQ ∈ VQS(Ta) such that
vote(VQ, Ta, Ta.order) 6=⊥, vote(VQ, Ta, Ta.order) = yes. We now prove
that there exists a voting quorum VQ2 ∈ VQS(Ta) such that
vote(VQ2, Ta, Ta.order) = no, contradicting Lemma 6.6.4.

Because for all transactions T, there exists a correct voting quorum for
T, there exists a correct voting quorum VQ2 for Ta. By the definition
of a correct voting quorum, there exists a correct site sr ∈ VQ2 such
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that x ∈ Items(sr). Since si commits Tb, by Lemma 6.6.4, sr commits
Tb. Because s j and sr decide on Tb in instance k, Tb ∈ COMMITTEDk+1

r
and Tb.order j = Tb.orderr . Hence, from (*), Ta.past≤ Tb.orderr . Con-
sequently, certify(Ta, Ta.order)r = no and vote(VQ2, Ta, Ta.order) = no.
�

Proposition 6.6.1 (Safety) There exists a serial one-copy history 1H that is equiv-
alent to H.

Proof: From Lemma 6.6.5 and because databases use strict two-phase locking,
for each si, there is a serial execution 1Hi equivalent to Hi, where no operation
of different transactions are interleaved and operations of transactions follow
the order of the commits. By the uniform agreement property of consensus,
databases agree on the sequence of update transactions. By the uniform in-
tegrity of Reliable Broadcast, for any transaction T and any site si, T can only
be R-Delivered once on si and thus T can only be added once to UNDECIDEDi.
Therefore, no database site proposes a sequence SEQ to consensus such that a
transaction T appears more than once in SEQ. Hence, by Lemma 1, for all trans-
actions T, T can only be committed once on si. We thus construct 1H in the
following way:

1. A read operation ri[x] of transaction Ti in H is mapped to the same op-
eration ri[x] of Ti in 1H. Write operations wi[xA], wi[xB], ..., wi[xN] of
transaction Ti in H is mapped to a single write operation wi[x] of transac-
tion Ti in 1H.

2. The commit order of the updates in 1H follow the order defined by the
consensus instances.

3. A read-only transaction Tq that commits just after the commit of an update
transactions Tu on Site(Tq) in H, appears after Tu and before any update
transaction Tu′ in 1H.

4. In 1H, for any two transactions Ti and Tj, their respective operations do
not interleave.

We now show that 1H is view equivalent to H. For 1H to be view equivalent to
H, two conditions have to be fulfilled [9]:

1. H and 1H have the same read-x-from relationships on data items: ∀Ti, Tj :
Tj read-x-from Ti in H ⇐⇒ Tj read-x-from Ti in 1H.
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2. For each final write wi[x] in 1H, wi[xA] is also a final write in H for some
copy xA of x.

H is view equivalent to 1H:

1. (⇒) Let Ti, Tj be two transactions such that Tj read-x-from Ti in H. We
prove that Tj read-x-from Ti in 1H. There are two cases to consider, either
(a) Tj is an update transaction or (b) Tj is a read-only transaction. In case
(a), either (a-i) Ti and Tj are decided in the same consensus instance k or
(a-ii) Ti and Tj are decided in consensus instance k and k′.
(a-i) By the fact that databases use the strict 2PL locking policy, Tj cannot
read uncommitted data, and therefore Site(Tj) cannot submit Tj before Ti

commits. Hence Ti and Tj cannot be decided in the same consensus in-
stance k.
(a-ii) In H, by Lemma 6.6.5 and the fact that databases use strict two-
phase locking, there exists no transaction Ta that updates data item x that
commits between instance k and k′, otherwise Tj would not read-x-from Ti

in H. Therefore, by construction step 2 of 1H, there exists no such trans-
action Ta in 1H and therefore by step 4 of 1H, Tj read-x-from Ti in 1H. In
case (b), by using construction step 3 and 4 of 1H, we conclude that Tj

read-x-from Ti in 1H.

(⇐) Let Ti, Tj be two transactions such that Tj read-x-from Ti in 1H. We
prove that Tj read-x-from Ti in H. If Tj read-x-from Ti in 1H, by construction
step 4, (*) there exists no transaction Ta that commits between Ti and Tj

and updates data item x in 1H. There are two cases to consider, either (a)
Tj is an update transaction or (b) Tj is a read-only transaction. In case (a),
either (a-i) Ti and Tj are decided in the same consensus instance k or (a-ii)
Ti and Tj are decided in consensus instance k and k′.
(a-i) For the same reason as in (⇒), this case is impossible.
(a-ii) By (*) and construction step 2 of 1H, there exists no consensus in-
stance k′′, k< k′′ < k′, such that Ta is decided in consensus instance k′.
Therefore, by Lemma 6.6.5 and by the fact that databases use strict two-
phase locking, Tj read-x-from Ti in H. In case (b), by using construction
step 3, by Lemma 6.6.5 and by the fact that databases use strict two-phase
locking, we conclude that Tj read-x-from Ti in H.

2. Clear from the fact that both histories contain the same update transac-
tions and the fact that update transactions in 1H follow the order of up-
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date transactions in H. �

Lemma 6.6.6 For any correct database site si, si does not wait forever at line 36.

Proof: If si waits at line 36, si executed Propose(K, -). By the termination prop-
erty of consensus, all correct sites decide in instance K. Let SEQ be the decision
of consensus instance K. Because there exists a correct voting quorum VQ for
every transaction T and because channels are quasi-reliable, after all sites in VQ
executed line 29, all correct sites eventually receive enough VOTE message for
all T′ ∈ SEQ to constitute a voting quorum. Therefore, si eventually stop waiting
at line 36. �

Lemma 6.6.7 For any submitted transaction T, if a correct database site si

R-Delivers(VOTE_REQ, T), then there exists a k such that consensus instance k
decides on T.

Proof: Suppose, by way of contradiction, that there exists a transaction T such
that a correct database site si R-Delivers(VOTE_REQ, T) and no consensus in-
stance decides on T. If si R-Delivers(VOTE_REQ, T), by the agreement property
of Reliable Broadcast and because si is correct, every correct database sj even-
tually R-Delivers(VOTE_REQ, T). Since no consensus instance k decides on T,
it is always true that T.id 6∈ DECIDEDj and therefore sj adds T to UNDECIDEDj

at line 24. By the termination property of consensus, by Lemma 6.6.6, and be-
cause for all sj, T is in UNDECIDEDj forever, all sj start infinitely many consensus
instances at line 27. Let t1 be the time after which all the faulty databases have
crashed and let t2 be the time at which the last correct site adds T to UNDECIDED.
After t1 and t2, all values proposed to the consensus instances contain T, there-
fore by the validity and termination property of consensus, there exists a con-
sensus instance k that decides on SEQ such that T ∈ SEQ, a contradiction. �

Proposition 6.6.2 (Liveness) For any submitted transaction T and any correct
database site si, if si submit(T) then eventually either all correct database sites
sj ∈ Replicas(T) commit T or si aborts T.

Proof: Since si is correct, si R-Broadcasts(VOTE_REQ, T) and by the validity
property of Reliable Broadcast, si eventually R-Delivers(VOTE_REQ, T). By
Lemma 6.6.7, there exists a k such that consensus instance k decides on T. By
Lemma 6.6.6, no correct database sites sj ∈ Replicas(T) waits forever at line 36.
Therefore, by Lemma 6.6.4, either all sites s j commit T or si aborts T. �
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Proposition 6.6.3 (Quasi-Genuine Partial Replication) For every submitted trans-
action T, correct database sites that do not replicate data items read or written by
T permanently store not more than the identifier of T.

Proof: From the algorithm, information other than the identifier of T is stored
(a) in the UNDECIDED sequence, (b) in the COMMITTED set, (c) in the consen-
sus instances, and (d) in the VOTES set. Notice that in [15], the implementation
of Reliable Broadcast only keeps the identifiers of messages.
(a) First, notice that because task 3 executes the last two when blocks, these when
blocks are executed atomically. A correct site si can only add a transaction T to
UNDECIDEDi at line 24 if si R-Delivers(VOTE_REQ, T). By the integrity property
of Reliable Broadcast, si can only R-Deliver(VOTE_REQ, T) once. If si adds T to
UNDECIDEDi at line 24, T.id 6∈ DECIDEDi. If T.id 6∈ DECIDEDi, si has not executed
line 31 yet. By Lemma 6.6.7, eventually all correct database sites decide on T
and si removes T from UNDECIDEDi at line 32.

(b) A correct site si adds T to COMMITTEDi only if T′.ws∩ Items(si) 6= ;.

(c) We here only give an example of a consensus algorithm that satisfies this
property. Consider the consensus algorithm given in [54]. It can be used in our
termination protocol because it assumes the same system model, namely sites
are crash-stop and channels are quasi-reliable. In this algorithm, after a correct
site delivers and processes the decide message (by the termination property of
consensus, this eventually happens), it stops taking part in the algorithm, and
therefore all the variables of that consensus instance can be safely garbage col-
lected.

(d) If for some correct site si VOTESi 6= ;, by the condition of line 25, si proposes
a sequence of transactions to consensus. By the termination property of consen-
sus, si eventually decides. By Lemma 6.6.6, si does not wait forever at line 36
and si eventually deletes all votes from the VOTES set that concern the current
and previous consensus instances. �

Proposition 6.6.4 (Non-Trivial Certification) If there is a time after which no
two conflicting transactions are submitted, then eventually transactions are not
aborted by certification.

Proof: Let t1 be the time after which no two conflicting transactions are submit-
ted. Let t2 > t1 be the time after which the last transaction T submitted before t1



142 6.6 Proofs of Correctness

commits. Let t3 > t2 be the time after which all transactions T′ submitted after t1

are such that T.order< T′.past. Because after t1, no two conflicting transactions
are submitted, after t3 we have that:

1. All call of function Certify return yes and the condition at line 37-38 always
evaluates to true,

2. No transaction is aborted by rules 1 and 2 of Section 6.3 on how locks are
granted.

Thus, after t3, no transaction is aborted by certification. �

6.6.2 The Proof of Algorithm A ge
pdbsm

Definition 6.6.3 We define the binary relation  on transactions as follows:
T1  T2 iff ∃si ∈ Π : si A-Delivers T1 before T2 and T1.ws ∩ Items(T2) 6= ;.
Moreover, let G (T ) = (V, E) be a finite DAG constructed as follows:

1. add vertex T to V

2. while ∃T1 ∈ V : ∃T2 6∈ V : T2  T1 do:
add T2 to V and add directed edge T2→ T1 to E

For any transaction T ′ in G (T ), we say that T ′ is at distance k of T iff the longest
path from T ′ to T is of length k. We let Tk be the subset of transactions in G (T )
that are at distance k of T .

Lemma 6.6.8 For any submitted transaction T, G (T ) is acyclic.

Proof: Follows directly from the uniform acyclic order property of atomic multi-
cast.

Definition 6.6.4 We define Certify(T )i as the returned value of the function
Certify(T) called on si. If there exists no invocation of function Certify(T) on si

we say that Certify(T) is undefined, and we write Certify(T)i =⊥.

Definition 6.6.5 We define vote(VQ, T), voting quorum VQ’s vote for transaction
T (VQ ∈ VQS(T)), considering the VOTE messages cast of all q ∈ VQ as follows:

• vote(VQ, T ) = yes iff ∀si ∈ VQ : Certify(T)i = yes

• vote(VQ, T ) = no iff ∀si ∈ VQ : Certify(T)i 6=⊥ ∧
∃s j ∈ VQ : Certify(T)j = no
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• vote(VQ, T ) =⊥ iff ∃si ∈ VQ : Certify(T)i =⊥

Definition 6.6.6 We define TST
i as the value of TS on site si after si executed line 4

for transaction T. If si never executes line 4 for transaction T, then TST
i =⊥.

Lemma 6.6.9 For any submitted transaction T:

1. There does not exist VQ1, VQ2 ∈ VQS(T) such that vote(VQ1, T) = yes and
vote(VQ2, T) = no.

2. For any data item x ∈ T.ws, for any two sites si, s j such that x ∈ Items(si)
and x ∈ Items(sj), if TST

i 6=⊥ and TST
j 6=⊥, then TST

i [x] = TST
j [x].

Proof: Let Tk be the subset of the transactions in G (T ) that are at distance k of
T . We show that for any k and any T ′ ∈ Tk, 1. and 2. hold. Since T ∈ T0, this
shows the two claims. Let kmax be the largest k such that Tk 6= ;. We proceed by
simultaneous induction on 1. and 2, starting from kmax .

• Base step (k = kmax):

1. From the definition of Tkmax
, there exists no transaction T ′ ∈ Tkmax

such that a site si A-Delivers a transaction T ′′ before T ′ and
T ′′.ws ∩ Items(T′). Hence, on all sites si such that Items(si) ∩ T ′.rs 6= ;
and that certify T ′, T ′ passes the certification test. Hence, for all
VQ ∈ VQS(T′), vote(VQ, T′) = yes.

2. From the definition of Tkmax
and the algorithm, for any transaction

T ′ ∈ Tkmax
and any data item x ∈ T ′.ws, on all sites si such that

x ∈ Items(si) and TST ′
i is defined, TST ′

i [x] = 1.

• Induction step: Suppose that the two claims hold for any k such that 0 <
k ≤ kmax , we show that they also hold for k− 1. Let T ′ be any transaction
in Tk−1.

1. Suppose, by way of contradiction, that vote(VQ1, T′) = yes and
vote(VQ2, T′) = no. Hence, there exists a site si ∈ VQ2 such that
Certify(T ′)i = no. Consequently, there exists a data item x read by
T ′ such that T ′.past[x] 6= TST ′

i [x]. From the algorithm, TS[x] is
monotonically increasing with time, and thus, T ′.past[x]< TST ′

i [x].
Hence, there exists a transaction T1 such that si A-Delivers T1 just
before T ′, T1 commits and updates x , and TST1

i [x] = T ′.past[x]



144 6.6 Proofs of Correctness

(just after T1 commits, TSi[x] is incremented and becomes greater
than T ′.past[x]). From the definition of a voting quorum, there ex-
ists a site s j ∈ VQ1 such that x ∈ Items(s j), and thus, T1 is also
multicast to s j. From the uniform prefix order property of atomic
multicast, either (i) si A-Delivers T ′ before T1 or (ii) s j A-Delivers T1

before T ′. Case (i) is impossible as si would A-Deliver T ′ twice, a
contradiction to the uniform integrity property of atomic multicast.
Therefore, s j A-Delivers T1 before T ′. From the induction hypothesis
of 1, all voting quorums for T1 vote similarly, and thus, since si com-
mits T1, s j commits T1 as well. From the induction hypothesis of 2,
TST1

i [x] = TST1
j [x]. Hence, since s j A-Delivers T1 before T ′, s j incre-

ments TS[x] to a greater value than T ′.past[x] before A-Delivering
T ′, and Certify(T ′) j = no, a contradiction to the fact that s j ∈ VQ1

and vote(VQ1, T′) = yes. �

2. Let T1 be the last transaction that commits on si before T ′ such that
T1 updates x . Using a similar argument as in the induction step of
1, we can show that s j A-Delivers T1 before T ′. From the induction
hypothesis of 1, T1 commits on s j.

We now show that (*), on s j, T1 is also the last transaction that up-
dates x and commits before T ′. Suppose, by way of contradiction,
that there exists a transaction T2 that commits after T1 and before T ′

on s j such that x ∈ T2.ws. From the uniform prefix order of atomic
multicast, either (i) si A-Delivers T2 before T ′ or (ii) s j A-Delivers T ′

before T2. Case (ii) is impossible as s j would A-Deliver T ′ twice, a
contradiction to the uniform integrity property of atomic multicast.
Hence, si A-Delivers T2 before T ′. Now, either (iii) si A-Delivers T1

before T2 or (iv) s j A-Delivers T2 before T1. Case (iv) is impossible
for the same reason as case (ii). Therefore, si A-Delivers, in order, T1,
T2, and T ′. From the induction hypothesis of 1, si also commits T2.
Consequently, the last transaction that commits before T ′ on si and
updates x is T2, a contradiction to the definition of T1.

By the induction hypothesis of 2, TST1
i [x] = TST1

j [x]. Therefore,

from (*) and the algorithm, TST ′
i [x] = TST ′

j [x]. �

Lemma 6.6.10 Every history Hi of database site si is serializable.

Proof: The proof is similar to Lemma 6.6.5. We use the multi-version serializa-
tion graph formalism introduced in [9] to show that Hi is serializable. In order
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to do that, we prove that MVSG(Hi,�) is acyclic. To show that MVSG(Hi,�)
is acyclic, we show that for every node Ta, Tb: Ta → Tb ∈ MVSG(Hi, �) ⇒
C(Ta)≺i C(Tb).6

1) Read-from edge: Let s j be Site(Tb). Because databases use the strict 2PL lock-
ing policy, Tb cannot read uncommitted data and therefore C(Ta)≺j C(Tb). Now
there are two cases to consider, either (i) Tb is a read-only or (ii) not.

• In case (i), since Tb is read-only, Tb touches a single site, and thus si = s j.
Therefore, C(Ta)≺i C(Tb).

• In case (ii), since C(Ta)≺j C(Tb), s j A-Delivers Ta before Tb. Hence, from
the uniform prefix order property of atomic multicast, either (i) si A-
Delivers Ta before Tb or (ii) s j A-Delivers Tb before Ta. Case (ii) is im-
possible as s j would A-Deliver Tb twice, a contradiction to the uniform
integrity property of atomic multicast. Therefore, si A-Delivers Ta before
Tb, and thus, C(Ta)≺i C(Tb).

2) Version-order edge type I: Since the commit order induces the version order,
we have that C(Ta)≺i C(Tb).

3) Version-order edge type II: Suppose, by way of contradiction, that C(Tb)≺i C(Ta).
Let Site(Ta) be s j. When Tb requests the write locks to apply its updates at sj,
Ta can either be in the Executing state or in the Submitted state. We show that
both cases lead to a contradiction:

• Executing state: There are two cases to consider, either (i) Ta is read-only
or (ii) not.

– In case (i), Ta touches a single site, and thus, si = s j. According
to rule 1 on how locks for Tb are granted, on si, Tb waits for Ta to
commit, contradicting the fact that C(Tb)≺i C(Ta).

– In case (ii), according to rule 1 on how locks for Tb are granted, Ta

is aborted at s j. Hence, Ta is never submitted, a contradiction to the
fact that Ta commits in Hi.

• Submitted state: Since at the time Tb commits, Ta is in the Submitted state,
(*) Ta.past[x] < TSTa

j [x]. Since Ta commits in Hi, there exists a voting quo-
rum VQ1 for Ta such that vote(VQ1, Ta, Ta.order) = yes. By Lemma 6.6.9, for

6≺i defines the commit order at site si
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all voting quorums VQ ∈ VQS(Ta) such that vote(VQ, Ta) 6=⊥,
vote(VQ, Ta) = yes. We now prove that there exists a voting quorum
VQ2 ∈ VQS(Ta) such that vote(VQ2, Ta) = no, contradicting Lemma 6.6.9.

Because for all transactions T, there exists a correct voting quorum for
T, we let VQ2 be a correct voting quorum for Ta. By the definition of
a correct voting quorum, there exists a correct site sr ∈ VQ2 such that
x ∈ Items(sr). Hence, since sr is correct, from the uniform agreement prop-
erty of atomic multicast, sr A-Delivers Ta. From Lemma 6.6.9, TSTa

j [x] =
TSTa

r [x]. Therefore, from (*), Ta.past[x] < TSTa
r [x], and Certify(Ta)r =

no. Thus, vote(VQ2, Ta) = no. �

Proposition 6.6.5 (Safety) There exists a serial one-copy history 1H that is equiv-
alent to H.

Proof: From Lemma 6.6.10 and because databases use strict two-phase locking,
for each si, there is a serial execution 1Hi equivalent to Hi, where no operation of
different transactions are interleaved and operations of transactions follow the
order of the commits. We thus construct 1H in the following way:

1. A read operation ri[x] of transaction Ti in H is mapped to the same op-
eration ri[x] of Ti in 1H. Write operations wi[xA], wi[xB], ..., wi[xN] of
transaction Ti in H is mapped to a single write operation wi[x] of transac-
tion Ti in 1H.

2. The commit order of update transactions in 1H is defined using the partial
order relation < on the set of transactions A-Delivered. Recall that this
relation is defined as follows: for any two transactions T1 and T2, T1 < T2

iff there exists a site that A-Delivers T1 before T2. If relation < does not
order T1 and T2, then these transactions can appear in any order in 1H.
From the properties of atomic multicast, transactions updating the same
data item x will thus be totally ordered.

3. A read-only transaction Tq that commits just after the commit of an update
transactions Tu on Site(Tq) in H, appears after Tu and before any update
transaction Tu′ in 1H.

4. In 1H, for any two transactions Ti and Tj, their respective operations do
not interleave.

We now show that 1H is view equivalent to H. For 1H to be view equivalent to
H, two conditions have to be fulfilled [9]:
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1. H and 1H have the same read-x-from relationships on data items: ∀Ti, Tj :
Tj read-x-from Ti in H ⇐⇒ Tj read-x-from Ti in 1H.

2. For each final write wi[x] in 1H, wi[xA] is also a final write in H for some
copy xA of x.

H is view equivalent to 1H:

1. (⇒) Let Ti, Tj be two transactions such that Tj read-x-from Ti in H. We
prove that Tj read-x-from Ti in 1H. There are two cases to consider, ei-
ther (a) Tj is an update transaction or (b) Tj is a read-only transaction. In
case (a), by Lemma 6.6.10 and the fact that databases use strict two-phase
locking, in H, there exists no transaction Ta that updates data item x that
commits between the commit of Ti and T j, otherwise Tj would not read-x-
from Ti in H. Therefore, by construction step 2 of 1H, there exists no such
transaction Ta in 1H and hence, by step 4 of 1H, Tj read-x-from Ti in 1H.
In case (b), by using construction step 3 and 4 of 1H, we conclude that Tj

read-x-from Ti in 1H.

(⇐) Let Ti, Tj be two transactions such that Tj read-x-from Ti in 1H. We
prove that Tj read-x-from Ti in H. If Tj read-x-from Ti in 1H, by construction
step 4, (*) there exists no transaction Ta that commits between Ti and Tj

and updates data item x in 1H. There are two cases to consider, either
(a) Tj is an update transaction or (b) Tj is a read-only transaction. In case
(a), by (*) and construction step 2 of 1H, there exists no transaction Ta

that updates data item x such that there exist sites si and s j (si = s j is
possible) and si A-Delivers Ti before Ta and s j A- Delivers Ta before T j.
Therefore, by Lemma 6.6.10 and by the fact that databases use strict two-
phase locking, Tj read-x-from Ti in H. In case (b), by using construction
step 3, by Lemma 6.6.10 and by the fact that databases use strict two-
phase locking, we conclude that Tj read-x-from Ti in H.

2. Clear from the fact that both histories contain the same update transac-
tions and the fact that update transactions in 1H follow the order of up-
date transactions in H (construction step 2). �

Lemma 6.6.11 For any correct database site si, si does not wait forever at line 14.

Proof: If si waits at line 14, then (*) si A-Delivered some transaction T . Since
there is a correct voting quorum for all transactions, there is a correct voting
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quorum VQ ∈ VSQ(T). From (*) and the uniform agreement property of atomic
multicast, all sites s j ∈ VQ eventually A-Deliver T . Since links are quasi-reliable,
si eventually receives the votes from all processes in VQ and stops waiting at
line 14. �

Proposition 6.6.6 (Liveness) For any submitted transaction T and any correct
database site si, if si submit(T) then eventually either all correct database sites
sj ∈ Replicas(T) commit T or si aborts T.

Proof: Since si is correct, si A-MCasts(VOTE_REQ, T) and by the validity prop-
erty of atomic multicast, all correct sites s j eventually wait for a voting quo-
rum for T . By Lemma 6.6.11, sites s j eventually stop waiting and therefore, by
Lemma 6.6.9, either all sites sj ∈ Replicas(T) commit T or si aborts T. �

Proposition 6.6.7 (Genuine Partial Replication) Using the atomic multicast al-
gorithmA dv

ge orA d t
ge , for every submitted transaction T, database sites that do not

replicate data items read or written by T do not store any information about T.

Proof: If a site si does not replicate any data item read or written by T , then T is
not executed on si, T ’s vote request message is not multicast to si, and T ’s votes
are not sent to si. When using the genuine atomic multicast algorithm A dv

ge or
A d t

ge , since to A-Deliver T , only sites addressed by T store information about T ,
si does not store any information about T . �

Proposition 6.6.8 (Non-Trivial Certification) If there is a time after which no
two conflicting transactions are submitted, then eventually transactions are not
aborted by certification.

Proof: Let t1 be the time after which no two conflicting transactions are submit-
ted. Let t2 > t1 be the time after which the last transaction T submitted before t1

commits. We claim that no transaction submitted after t2 is aborted by certifica-
tion. Indeed, for any transaction T submitted after t2, we have that:

1. The call of function Certify return yes and the condition at line 15 always
evaluates to true. This is because on any site si that certifies T , and for any
data item x read by T and replicated by si, T.past[x] = TST

i [x].

2. No transaction is aborted by rules 1 and 2 of Section 6.3 on how locks are
granted.



Chapter 7

Conclusion

Do not seek the truth. Only cease to cherish opinions.

Seng-ts’an

Recent years have seen the rapid proliferation of web-based applications such
as e-banking, social networks, and e-commerce platforms. As a consequence, our
lives depend on these systems more and more each day. In this context, these
applications must provide high availability, to provide interrupted service, and
scalability, to handle the ever increasing client demand.

Previous proposals suggested to provide high-availability by fully replicat-
ing the application’s data. Many of these solutions were built on top of group
communication primitives that provide precise and easy-to-understand guaran-
tees. Replication protocols then relied on high-level synchronization constructs
offered by this communication layer to ensure global data consistency. Despite
this clear separation of concerns, these solutions suffered from an inherent scal-
ability bottleneck as every update must be applied to all replicas.

Partial replication is a promising alternative to improve scalability: inde-
pendent requests may be handled by different parts of the system in parallel.
Additionally, partial replication requires less storage resources since data only
needs to be replicated close to the clients accessing it.

This thesis investigates the minimal latency cost and failure detection re-
quirements of multicast, a primitive at the core of partial replication, and presents
several multicast algorithms for the case of correct and faulty groups. Partial
replication protocols built on top of these primitives are also proposed.

149
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7.1 Research Assessment

This thesis presents four contributions: (i) FIFO and causal multicast protocols,
(ii) atomic multicast algorithms, (iii) the experimental performance evaluation
of some of these algorithms, and (iv) partial replication protocols that are built
on top of the above multicast primitives. These contributions can be classified
into two domains: the first three belong to the distributed systems domain and
the last one to the database domain.

Fifo and Causal Multicast. Fifo and causal multicast are powerful communi-
cation primitives that ease the programming of distributed applications. In this
thesis, the latter primitive was used in the atomic multicast algorithm A d t

ge to
ensure a hole-free message delivery sequence.

Although these communication abstractions have been studied extensively,
previously proposed solutions either did not tolerate quasi-reliable networks, in
which a message sent can be lost because of the crash of its sender, or disal-
lowed messages to be sent to groups the sender does not belong to. To address
these limitations, we proposed algorithms that tolerate quasi-reliable networks,
allow messages to be multicast to any subset of groups, and tolerate an arbitrary
number of process failures. We showed that these protocols are latency-optimal.

Atomic Multicast. We devised atomic multicast algorithms in large scale net-
works that minimize the number of inter-group message delays between the
multicast of a message and its delivery. Two different settings have been con-
sidered: correct groups, in which at least one member of each group is correct,
and groups that may crash entirely. In the first setting, we showed that genuine
atomic multicast is more expensive than its non-genuine counterpart: multi-
cast requires a minimum of two inter-group message delays and we presented a
non-genuine multicast protocol that needs a single inter-group delay. The multi-
cast lower bound is tight, the algorithmA dv

ge of Section 4.2.2 and the algorithm
in [28] achieve a latency of two inter-group message delays (as opposed to [28],
A dv

ge reduces the number of intra-group messages sent).
In the second setting, we provided a genuine algorithm that tolerates an arbi-

trary number of process failures but does not tolerate erroneous process failure
suspicions. As a corollary of [22], this failure detection accuracy is necessary
if we disallow process crashes to be predicted. Since it seems hard, if not im-
possible, to ensure that no spurious failure suspicions occur in large networks,
we presented a non-genuine protocol that weakens the failure detection require-
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ments and allows to deliver messages in two inter-group delays. As a corollary
of the hyperfast learning Lemma in [38], this is optimal. Altogether, these re-
sults revealed that the genuineness of multicast is an expensive property, both in
terms of latency and failure detection accuracy.

Evaluation of Multicast Protocols. In the context of correct groups, we showed
that genuine multicast is more expensive than its non-genuine counterpart: the
former variant requires an extra inter-group communication step compared to
the latter variant. To determine under which circumstances a genuine algorithm
is more efficient than a non-genuine algorithm, we experimentally evaluated the
performance of the latency-optimal and disaster-vulnerable genuine and non-
genuine algorithms proposed in this thesis.

The results revealed that genuine multicast is interesting only in large and
highly loaded systems; in all the other considered scenarios the non-genuine
protocol A dv

ng outperformed the optimal genuine algorithm. To complete our
study, we measured the overhead of the disaster-tolerant and latency-optimal
multicast protocol A d t

ng and observed that although it is in general more costly
than the two other disaster-vulnerable protocols, it matched the performance of
the genuine algorithm when there are few groups. We also identified a convoy
effect in multicast algorithms that delay the delivery of messages and proposed
techniques to reduce this effect.

Partial Replication. Partial replication was proposed as an alternative to full
replication to provide better scalability: database sites store a subset of the ap-
plication data and, consequently, sites only need to apply updates related to the
data items they replicate. We extended the database state machine (DBSM) [47]
to partial replication. In the DBSM, transactions are executed locally on database
sites and a certification protocol is triggered at the end of each transaction to en-
sure global consistency.

We proposed two properties that characterize the legitimacy of partial repli-
cation protocols. The first property, quasi-genuine partial replication, allows for
broadcast-based implementations and ensures that sites unrelated to a transac-
tion T only permanently store the identifier of T . The second property, genuine
partial replication, guarantees that sites unrelated to a transaction T do not
store any information about T . We presented two termination protocols tai-
lored for local area networks that ensure quasi-genuine partial replication. We
also demonstrated how atomic multicast can be used to build a genuine partial
replication protocol. This protocol is more generic than the first two: it is not
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optimized for any particular type of network.

7.2 Future Directions

The research conducted during this thesis has raised several problems that de-
serve further investigation. In the following, we describe future directions and
open questions related to this research.

Genuine Atomic Multicast. The ability to tolerate disasters comes at a high
price for the genuine atomic multicast algorithm A d t

ge . This protocol requires
six inter-group message delays to deliver global messages. Is this cost minimal?
Based on the fact that the non-genuine variant A d t

ng only needs two inter-group
delays, we believe that there is room for improvement. Orthogonally, we have
observed that multicast protocols are subject to an undesired behavior we de-
noted as convoy effect. This behavior can lead to delay the delivery of local and
global messages by as much as the latency of global messages. Although we
proposed techniques to reduce this effect for local and global messages in the
non-genuine algorithms A dv

ng and A d t
ng , we only tackled this problem for local

messages in the genuine protocol A dv
ge . In fact, it is not known whether the

convoy effect of global messages in genuine atomic multicast can be avoided.

Generic Multicast. Generic broadcast permits applications to specify the de-
sired message ordering semantics. Originally, this abstraction was introduced
to reduce the latency of commutable messages by removing consensus from the
critical path. In the context of large scale networks, generic multicast algorithms
should reduce the number of inter-group delays for messages that do not need
to be ordered. It can easily be shown that, in the case of correct groups, genuine
generic multicast has the same minimal cost as genuine atomic multicast, even
when all messages are commutable. Intuitively, this holds for the following rea-
son: before delivering some messages m, any protocol must check that no other
process has delivered a message m′ that does not commute with m. Hence, one
inter-group delay is needed to propagate m, and another is required to perform
this check, leading to two inter-group message delays. Nevertheless, relaxed or-
dering semantics could be exploited in the case of data center disasters to offer
faster message delivery.

The Efficiency of Partial Replication Protocols. We conducted experiments in
various scenarios to determine how genuine and non-genuine atomic multicast
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compare. The results indicated that the genuineness of multicast in interesting
only in large and highly loaded systems. A similar study must be carried out to
understand how the genuine and quasi-genuine partial replication protocols per-
form, and whether they compare similarly as the atomic multicast algorithms.
Other issues such as allowing transactions to be distributed without overly im-
pacting the transaction abort rate is also a topic to be investigated.

Partial Replication with Snapshot Isolation. Recently, partial replication pro-
tocols that offer a generalized form of snapshot isolation have been proposed [59;
7]. This consistency criterion never blocks nor aborts read-only transactions and
update transactions are never blocked nor aborted due to read-only transactions.
To ensure that transactions read valid snapshots, protocols either take a dummy
snapshot after every commit [59] or atomically broadcast a snapshot message to
all replicas before the transaction starts [7]. Constructing consistent snapshots
more efficiently is an open problem.

Byzantine Partial Replication. Researchers recently focused on improving the
performance of full replication protocols in environments where processes may
behave maliciously [35; 41; 43; 63]. We have seen that atomic multicast is a
primitive of choice to build partial replication protocols. A natural question is
whether the atomic multicast protocols presented in this thesis can be adapted
to untrusted environments. Interestingly, the notion of genuine atomic multicast
may cause problems in this context: consider some application p hosted on a
machine Mp that wishes to multicast a message m to groups g1 and g2. If Mp is
malicious, Mp may behave as if m was addressed to g1 only. In particular, Mp

may omit sending m to g2. In this scenario, the uniform agreement property of
atomic multicast is violated since only members of g1 can deliver m. A solution
to this problem is to let the application p sign m. However, this adds overhead
to the protocol. Devising efficient genuine atomic multicast algorithms is thus
an open problem.
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