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Abstract 

 
Over the years a number of two-factor interest rate models have been proposed that have 

formed the basis for the valuation of interest rate contingent claims.  This valuation 

equation often takes the form of a partial differential equation, that is solved using the 

finite difference approach.  In the case of two factor models this has resulted in solving 

two second order partial derivatives leading to boundary errors, as well as numerous first 

order derivatives.  In this paper we demonstrate that using Green’s theorem second order 

derivatives can be reduced to first order derivatives, that can be easily discretised; 

consequently two factor partial differential equations are easier to discretise than one 

factor partial differential equations.  We illustrate our approach by applying it to value 

contingent claims based on the two factor CIR model.  We provide numerical examples 

which illustrates that our approach shows excellent agreement with analytical prices and 

the popular Crank Nicolson method. 
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formed the basis for the valuation of interest rate contingent claims.  This valuation 

equation often takes the form of a partial differential equation, that is solved using the 

finite difference approach.  In the case of two factor models this has resulted in solving 

two second order partial derivatives leading to boundary errors, as well as numerous first 

order derivatives.  In this paper we demonstrate that using Green’s theorem second order 

derivatives can be reduced to first order derivatives, that can be easily discretised; 

consequently two factor partial differential equations are easier to discretise than one 

factor partial differential equations.  We illustrate our approach by applying it to value 

contingent claims based on the two factor CIR model.  We provide numerical examples 

which illustrates that our approach shows excellent agreement with analytical prices and 
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1. Introduction 

The fixed income market is one of the largest sectors of the financial markets where 

billions of dollars worth of assets are traded daily.  Over the years a variety of interest 

rate models, both single-factor and multi-factors have been proposed that have formed 

the basis for the valuation of fixed income instruments.  The most general of  the single- 

factor interest rate models is the model proposed by Chan et-al (1992) (henceforth 

CKLS).  The CKLS model encloses many of the earlier single-factor models such as that 

proposed by Vasicek (1977) and Cox et-al(1985b) (henceforth CIR).  The main 

advantage of one-factor models is their simplicity as the entire yield curve is a function of 

a single state variable.  However, there are several problems associated with single-factor 

models.  First, single factor models assume that changes in the yield curve, and hence 

bond returns, are perfectly correlated.  Secondly, the shape of the yield curve is severely 

restricted.  To overcome these limitations a number of two factor models have been 

proposed, including those by Brennan and Schwartz (1979), Cox et-al (1985b) amongst 

others. 

 

Complexity of the underlying stochastic processes used to model fixed income 

instruments means that except in few specific cases, numerical techniques are necessary.  

Widely used numerical techniques include the lattice approach of Cox et-al (1979), 

Monte Carlo Simulation of Boyle (1977) and the finite difference approach.    The finite 

difference approach is widely used both in the financial markets and in academia.  This 

approach involves transforming the valuation equation expressed as a partial differential 

equation into a set of finite difference equations.  This set is then solved either iteratively 
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or by elimination to obtain the value of the instruments.  Number of researchers including 

Brennan and Schwartz (1979), Courtadon (1982), Hull and White (1990) have applied the 

finite difference approach to value fixed income instruments.    Sorwar et-al (2007) 

introduced the Box method from the physical sciences and demonstrated by numerical 

experimentation that the Box method was superior to the finite difference approach for 

valuing fixed income instruments.  In this paper we further develop the approach of 

Sorwar et-al (2007) to value two factor fixed income instruments.  We demonstrate that 

by avoiding the traditional route of solving two factor valuation equation as suggested by 

Brennan and Schwartz (1979) and Hull and White (1990) and others, we in fact end up 

with a simpler valuation problem where only first order derivatives are present.  Our 

approach involves using Green’s theorem to convert a surface integral into a line integral, 

more specifically it allows us to convert a second order derivative into a first order 

derivative. 

 

In Section 2, we provide a description of the general problem.  We then state the 

valuation equation based on two-factor interest rate models.  We then prove using 

Green’s theorem how the valuation equation can be reduced to a form that involves first 

order derivatives only.   We further demonstrate our approach in depth by applying the 

proposed technique to the two-factor CIR model.  We develop the algorithm in depth and 

illustrate its accuracy by comparing calculated bond prices with analytical bond prices.  

In Section 3, we discuss the results.   In the final Section we offer conclusions and 

discuss avenues for future research. 
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2.  Two Factor General Diffusion  

2.1 Deriving simplified equation using Green’s theorem 

Assume two stochastic processes that dictate contingent claim prices 

        xxxx dztxdttxadx ,,,    (1) 

        yyyy dztydttyady ,,,    (2) 

where x  and y are model specific stochastic parameters;   txa xx ,, ,  tya yy ,,  are the 

drift terms and  txx , ,  tyy ,  are the diffusion terms and yx   and are a vector of 

model specific parameters. 

Using standard hedging arguments and taking instantaneous short rate as r(x,y), the above 

two stochastic processes lead to the following partial differential equation for contingent 

claim  ,, yxU  at time t , expiring at time T, and tT  ; subject to the usual  

boundary conditions. 

   
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         (3) 

The standard approach in finance literature is to discretise equation (3) using finite 

difference approximations both for the first order and second order derivatives as in 

Brennan and Schwartz (1979), Hull and White (1990) etc.  Instead of following this 

traditional route, we generalise the approach of Sorwar et-al (2007) to simplify equation 

(3): 
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PROPOSITION 2.1: Using Green’s theorem we can reduce equation (2.4) to the 

following  form: 
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 (5) 

Proof: As in Sorwar et-al (2007) we integrate equation (4) before descretising.  Unlike 

Sorwar et-all (2007) where only a single factor process is considered, consideration of 

two factors leads to an equation, which involves integrating over a surface ijr : 
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

 (6) 

From Green’s theorem, we know that for any two differentiable functions A(x,y) and 

B(x,y) defined in rij : 

     

















ijij cr

AdyBdxdxdy
y

B

x

A
  (7) 

where cij is the boundary of rij and the line integral is taken in the positive sense.  

Rewriting  equation (7) by letting: 

          
x

U
SA



      (8)    

    
y

U
WB




      (9) 
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Substituting the right hand side of equation (10) for the first two left hand side terms of  

equation (6) yields the required equation. 

 

2.2  Application to two factor CIR processes 

To illustrate our approach, we concentrate on two-factor model of the term structure, set 

within the CIR framework (1985a, 1985b).  Two dependent state variables x and y 

determine the nominal instantaneous interest rate r(x,y): 

       yxyxr ,    (11) 

We assume the risk-adjusted factors are generated by independent square root processes 

as below: 

      xdzxdtxxdx 11111    (12) 

      ydzydtyydy 22222   (13) 

The valuation equation for contingent claims  ,, yxU  assuming no intermediate cash 

flows is: 

  

       
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         (14) 
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Dividing equation (14) by xy gives: 

 

   
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         (15) 

Now consider x and y derivatives of equation (15) separately in terms of functions P(x) 

and Q(y) respectively: 

 
 

  

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







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(16) 

   
 
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
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         (17) 

Expanding equations (16) and (17) and integrating gives: 

       
















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1

2
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1

2

1
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2
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2
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(18) 

         
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

 

         (19) 

We now define a new function R(x,y) which is a product of P(x) and Q(y): 

      yxyxyxR 11exp, 00 
   (20) 
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2
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

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





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 

 

Further define: 

       yxR
y

yxS ,
2

,
2

1    (21) 

       yxR
x

yxW ,
2

,
2

2
    (22) 

Thus the original partial differential equation (14) becomes: 

  








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
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
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


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         (23) 

Taking the forward Euler-difference for the time derivative in equation (3.13) gives us: 

     
t

UUU








 0


   (24) 

Substituting the above approximation and re-arranging equation (23) yields: 

 
txy
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U

txyyx
R
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
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
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         (25) 

Using Proposition (2.1) allows us to transform equation (25) to the following form 

involving a line integral: 

dxdyU
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txyyx
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         (26) 
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For the line integral noting that dy is zero when moving along the x direction and dx is 

zero when moving along the y direction we have: 

 dy
x
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Sdx
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Sdx
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         (27) 

We let x, y and   take value on the interval      TYX yx ,0,,0,,0  .  To solve the 

above equation we need to fit the space  yx .  We let x , y  and t represent the 

grid spacing the x, y and  direction respectively, such that: 
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Discretising each of the line integrals and simplifying gives: 
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Discretising the remaining components gives 

 11
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Collecting all the terms and re-arranging gives the final matrix equation as: 
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To determine contingent claim prices we use the following SOR iteration subject to 

appropriate boundary conditions: 
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3. Discussion of Results 

In Table 1 and Table 2, we compare numerically evaluated bond prices with analytical 

bond prices.  The maturities of the bonds range from 1 year to 15 years.  The face value 

of the zero coupon bonds are $100.  Interest rates ranging from 5% to 9% are considered.  

For direct comparison with analytical bond prices the correlation coefficient is zero.  

Further we alter the annual number of time steps from 20 to 50.  This variation serves as 

a check on the stability of the numerical scheme. 

In Table 3 to Table 6 we compare American call and put prices calculated using the Box 

Method and the Crank-Nicolson method based on time step of 1/50 per year.  In Table 3 

to Table 4 we focus on short expiry options, whereas in Table 5 – Table 6 we focus on 

long dated options. 

 

Examining Table 1 and Table 2, we can conclude the following.  First, it is possible to 

obtain accurate bond prices using the Box Method and Crank Nicolson, with as little as 

20 annual time steps per year.  For example, for a five year bond, with x = 5%, y = 5% 

the analytical bond price is $59.6215 compared with the Box price of $59.5986 and 

Crank Nicolson price of $59.3703.  Secondly, increasing the annual number of time steps 
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leads to more accurate bond prices.  Again, considering the same five year bond at the 

same interest rates, we find the Box price with 50 annual time steps is $59.5396 and 

Crank Nicolson price is $59.3710.  Thirdly, we find that Crank Nicolson leads to more 

accurate bond prices for short term bonds, whereas the Box  Method leads to more 

accurate bond prices at longer maturities.  Finally, bond prices show expected trends. 

Thus, as the short-term interest rates and the term to maturity of the bonds increase, bond 

prices decline.  From Table 3 – Table 6 we find that Box  call options are always higher 

than Crank Nicoslon call prices and Box put are always lower than Crank Nicolson puts.  

This discrepancy is larger for longer maturity options.  Given the evidence in Table – 

Table 2, it is likely that the Crank-Nicolson method is marginally less accurate than the 

Box method for longer expiry options. 

 

4.  Conclusion 

This paper focuses on the valuation of two factor interest rate, contingent claims.  By 

expanding the earlier work of Sorwar et-al (2007), this paper proposes a more elegant 

technique based on Green’s theorem to solve the valuation equation. 

 

Further this paper illustrates how the proposed technique can be applied in the case of a 

specific two-factor model.  Concentrating on the two factor CIR model, this paper 

illustrates the steps necessary to develop the system of equations needed to value the 

contingent claims.  Numerical experimentation shows excellent agreement between 

analytical CIR bond prices and computed CIR bond prices. 
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Over the years a large number of two factor interest rate models have been proposed, 

many of which do not lead to analytical contingent claim prices.  The proposed Box 

method offers an easy and quick route to examine the pricing implications of these 

models.  These implications remain the avenue of future research. 
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 Table 1. Bond Prices calculated analytically (CIR), using the Box and the Crank Nicholson methods.  

1 = 0.5, 1 = 0.15, 1 = 0.06, 1 = 0 

2 = 0.005, 2 = 0.07, 2 = 0.03, 2 = 0 

                                                 = 0,  r = 0.5%, t = 1/20 years 

Maturity 

(years) 

Method x=5,y=5 x=5,y=7 x=5,y=9 x=7,y=5 x=7,y=7 x=7,y=9 x=9,y=5 x=9,y=7 x=9,y=9 

1 year Anal. 90.3114 88.5290 86.7817 88.9052 87.1506 85.4305 87.5209 85.7936 84.1003 

 Box 90.3401 88.5663 86.8295 88.9503 87.2048 85.4958 87.5837 85.8662 84.1844 

 CN 90.3115 88.5291 86.7818 88.9052 87.1505 85.4304 87.5208 85.7934 84.1001 

           

5 years Anal. 59.4534 53.9762 48.9872 57.3677 52.0739 47.2687 55.3551 50.2471 45.6105 

 Box 59.5986 54.1285 49.1643 57.5013 52.2256 47.4366 55.4824 50.3937 45.7734 

 CN 59.3703 53.8936 48.9214 57.3190 52.0316 47.2310 55.3232 50.2200 45.5865 

           

10 years Anal. 35.9733 30.0203 25.0524 34.6260 28.8960 24.1142 33.3292 27.8138 23.2110 

 Box 36.0449 30.1646 25.2158 34.6289 29.0271 24.2657 33.3754 27.9348 23.3533 

 CN 35.5625 29.6589 24.7454 34.3248 28.6302 23.8882 33.0924 27.6044 23.0330 

           

15years Anal. 22.6975 17.7325 13.8535 21.8439 17.0656 13.3325 21.0224 16.4238 12.8311 

 Box 22.4823 17.7154 13.9088 21.6825 17.0444 13.3826 20.8088 16.4000 12.8772 

 CN 22.0139 17.1259 13.3483 21.3032 16.5823 12.9285 20.5708 16.0177 12.4908 
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Table 2. Bond Prices calculated analytically (CIR), using the Box and the Crank Nicholson methods.  

1 = 0.5, 1 = 0.15, 1 = 0.06, 1 = 0 

2 = 0.005, 2 = 0.07, 2 = 0.03, 2 = 0 

                                                  = 0, r = 0.5%, t = 1/50 years 

Maturity 

(years) 

Method x=5,y=5 x=5,y=7 x=5,y=9 x=7,y=5 x=7,y=7 x=7,y=9 x=9,y=5 x=9,y=7 x=9,y=9 

1 year Anal. 90.3114 88.5290 86.7817 88.9052 87.1506 85.4305 87.5209 85.7936 84.1003 

 Box 90.3284 88.5485 86.8050 88.9272 87.1756 85.4595 87.5493 85.8254 84.1364 

 CN 90.3114 88.5290 86.7817 88.9052 87.1505 85.4305 87.5209 85.7936 84.1003 

           

5 years Anal. 59.4534 53.9762 48.9872 57.3677 52.0739 47.2687 55.3551 50.2471 45.6105 

 Box 59.5396 54.0588 49.0817 57.4402 52.1545 47.3534 55.4192 50.3212 45.6895 

 CN 59.3710 53.8926 48.9199 57.3201 52.0311 47.2301 55.3246 50.2198 45.5859 

           

10 years Anal. 35.9733 30.0203 25.0524 34.6260 28.8960 24.1142 33.3292 27.8138 23.2110 

 Box 35.9581 30.0844 25.1361 34.5994 28.9500 24.1891 33.2950 27.8606 23.2796 

 CN 35.5671 29.6598 24.7447 34.3294 28.6314 23.8878 33.0970 27.6057 23.0328 

           

15 years Anal. 22.6975 17.7325 13.8535 21.8439 17.0656 13.3325 21.0224 16.4238 12.8311 

 Box 22.3896 17.6430 13.8477 21.5396 16.9749 13.3240 20.7235 16.3333 12.8210 

 CN 22.0197 17.1284 13.3489 21.3090 16.5848 12.9293 20.5765 16.0203 12.4917 
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Table 3. Option prices calculated using the Box and the Crank Nicholson methods. 

1 = 0.5, 1 = 0.15, 1 = 0.06, 1 = 0 

2 = 0.005, 2 = 0.07, 2 = 0.03, 2 = 0 

 = 0, r = 0.5%, t = 1/50 years 

x=y=5% 

 1year maturity bond 5 year maturity bond 

 6 month expiry option 1 year expiry option 

Method K Call Put K Call Put 

Box 85 9.5109 0.0000 55 9.8923 0.0998 

CN  9.5004 0.0000  9.7339 0.0973 

Box 86 8.5601 0.0000 56 9.0093 0.1669 

CN  8.5497 0.0000  8.8520 0.1655 

Box 87 7.6093 0.0002 57 8.1367 0.2738 

CN  7.5990 0.0000  7.9810 0.2756 

Box 88 6.6585 0.0013 58 7.2786 0.4405 

CN  6.6483 0.0004  7.1253 0.4495 

Box 89 5.7077 0.0107 59 6.4404 0.6953 

CN  5.6796 0.0055  6.2904 0.7185 

Box 90 4.7569 0.0885 60 5.6284 1.0769 

CN  4.7469 0.0702  5.4828 1.1259 

Box 91 3.8065 0.6716 61 4.8500 1.6376 

CN  3.7964 0.6886  4.7100 1.7284 

Box 92 2.8582 1.6716 62 4.1133 2.4604 

CN  2.8482 1.6886  3.9802 2.6290 

Box 93 1.9236 2.6716 63 3.4266 3.4604 

CN  1.9142 2.6886  3.3019 3.6290 

Box 94 1.0537 3.8716 64 2.7980 4.4604 

CN  1.0478 3.6886  2.6826 4.6290 

Box 95 0.3868 4.6716 65 2.2342 5.4604 

CN  0.3863 4.6886  2.1291 5.6290 
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Table 4. Option prices calculated using the Box and the Crank Nicholson methods. 

1 = 0.5, 1 = 0.15, 1 = 0.06, 1 = 0 

2 = 0.005, 2 = 0.07, 2 = 0.03, 2 = 0 

 = 0, r = 0.5%, t = 1/50 years 

x=y=5% 

 10year maturity bond 15 year maturity bond 

 5 year expiry option 10 year expiry option 

Method K Call Put K Call Put 

Box 30 18.0992 0.1724 17 16.2769 0.2008 

CN  17.7206 0.1871  15.7250 0.2376 

Box 31 17.5051 0.2495 18 15.9174 0.2940 

CN  17.1276 0.2720  15.3603 0.3479 

Box 32 16.9114 0.3560 19 15.5580 0.4222 

CN  16.5351 0.3900  14.9968 0.4989 

Box 33 16.3184 0.5015 20 15.1986 0.5961 

CN  15.9434 0.5512  14.6345 0.7019 

Box 34 15.7261 0.6978 21 14.8393 0.8287 

CN  15.3525 0.7694  14.2733 0.9708 

Box 35 15.1348 0.9596 22 14.4800 1.1366 

CN  14.7626 1.0610  13.9131 1.3216 

Box 36 14.5447 1.3052 23 14.1209 1.5400 

CN  14.1741 1.4461  13.5538 1.7734 

Box 37 13.9561 1.7564 24 13.7619 2.0636 

CN  13.5872 1.9481  13.1954 2.3470 

Box 38 13.3694 2.3407 25 13.4031 2.7386 

CN  13.0023 2.5972  12.8379 3.0679 

Box 39 12.7849 3.0824 26 13.0446 3.6104 

CN  12.4198 3.4329  12.4811 3.9803 

Box 40 12.2031 4.0419 27 12.6863 4.6104 

CN  11.8402 4.4329  12.1250 4.9803 
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