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Abstract

The goal of change prediction is to help developers by recommending program entities that will have
to be changed alongside the entities currently being changed. To evaluate their accuracy, current change
prediction approaches use data from versioning systems such as CVS or Subversion. However, as these
data sources are not very accurate, they do not provide a valid basis for an objective evaluation of
change prediction approaches.

We propose a benchmark for an objective evaluation of change prediction approaches based on fine-
grained change data recorded from IDE usage. Moreover, the change prediction approaches themselves
can use the more accurate data to fine-tune their prediction. We present an evaluation procedure and use
it to evaluate several change prediction approaches, both our own and from the literature, and report
on the results. Our results show that using fine-grained change data significantly improves the overall
accuracy of change prediction approaches.



1 Introduction

Integrated Development Environments (IDEs) such as Eclipse or VisualStudio have had a major im-
pact on how developers see and modify code. There is a slow paradigm shift taking place, with people
slowly departing from the notion that source code is equivalent to text writing [25]. Despite the many
vi and emacs fundamentalists, developers are going towards a more “agile” view where systems are
composed and continuously restructured and refactored. This is done using a plethora of tools provided
by the IDE themselves, but also by third-party plugins. In the context of modern IDEs, recommender
systems are gaining importance and gradually fulfilling Zeller’s wish for increased “assistance” to pro-
grammers [28]]. In his vision of future IDEs, developers in the future will be supported by many small
visible and invisible IDE assistants, also known as recommenders.

Among the many recommenders that have already been built, change predictors play a prominent
role. They assist developers and maintainers by recommending entities that may need to be modified
alongside the entities currently being changed. Depending on the development phase, change prediction
has different usages.

For software maintenance, change predictors recommend changes to entities that may not be obvious
[29] 27]]. In a software system, there often exist implicit or indirect relationships between entities [3]]. If
one of the entities in the relationship is changed, but not the other, subtle bugs may appear that are hard
to track down.

For forward engineering, change predictors serve as productivity enhancing tools by easing the nav-
igation to the entities that are going to be changed next. In this scenario, a change predictor maintains
and proposes a set of entities of interest to help developers focus the programming tasks.

At the current stage, it is difficult to assess whether a predictor performs better than another one,
i.e., there is a need for a benchmark with which approaches can be compared. So far, maintenance-
mode change prediction has been validated using the history archives of software systems as an oracle.
For each transaction, the predictor proposes entities to change based on parts of the transaction. The
suggestions are then compared with the remainder of the transaction. This can be considered an ad hoc
benchmark to measure improvements, as it can be reproduced and is cheap to run, as opposed to user
studies. However, during forward engineering, when the system changes at a quick pace, this approach
is not satisfactory. Intuitively, it is hard to split the changes in a commit in two when there is a large
number of them: A finer grained level of detail is needed. As a consequence, no satisfactory approach has
been proposed, and tools adapted to the forward engineering use case are assessed through comparative
studies involving developers [9, 23], a labor-intensive, error-prone and imprecise process.

Having a benchmark for the second case would however be a significant help to design change recom-
menders. Sim et al. documented the effect benchmarks have on scientific communities [22]. Since they
allow communities to easily compare their results, they tend to accelerate the research. Their advice for
the software engineering community was to adopt benchmark as a practice whenever it was possible.

We present a unifying benchmark for both kinds of change prediction. The benchmark consists of
a number of fine-grained development histories, where we recorded each change that happened to the
systems while they were developed. Our detailed histories are thus unaffected by the change size prob-
lem. In a nutshell, our benchmark allows us to reproduceably replay entire development histories, thus
providing (close to) real life benchmark data without needing to perform comparative studies. More-
over, we introduce a procedure with which change prediction approaches can be evaluated using our
benchmark data, and provide a comparative evaluation of several change prediction approaches.



Structure of the paper. Section [2| describes various change prediction approaches existing in the lit-
erature in the two change prediction styles. Section [3]justifies and presents our benchmark for change
prediction approaches. Section [4] details the approaches we evaluated with our benchmark and presents
the benchmark results, which we discuss in Section E], before concluding in Section @

2 Related Work

Several change prediction heuristics have been proposed. We find 3 major trends: Historical ap-
proaches, IDE-based approaches, and approaches relying on Impact Analysis.

Historical Approaches use the history of an SCM system to predict changes, primarily in a maintenance
setting.

Zimmerman et al. [29] mined the CVS history of several open-source systems to predict software
changes using the heuristic that entities that changed together in the past are going to change together
in the future. They reported that on some systems, there is a 64% probability that among the three
suggestions given by the tool when an entity is changed, one is a location that indeed needs to be
changed. Their approach works best with stable systems, where few new features are added. It is indeed
impossible to predict new features from the history. Changes were predicted at the class level, but also
at the function (or method) level, with better results at the class level.

Ying et al. employed a similar approach and mined the history of several open source projects [27].
They classified their recommendations by interestingness: A recommendation is obvious if two entities
referencing each other are recommended, or surprising if there was no relationships between the changed
entity and the recommended one. The analysis was performed at the class level. Sayyad-Shirabad et al.
also mined the change history of a software system in the same fashion [20], but stayed at the file level.

Girba also detected co-change patterns [4]. Thanks to his precise evolution model, he also qualified

them, with qualifiers such as Shotgun Surgery, Parallel Inheritance or Parallel Semantics. He also pro-
posed the Yesterday’s Weather approach, which postulates that future changes will take place where the
system just changed [J5].
IDE-based approaches. The goal of short-term, IDE-based prediction approaches is to ease the naviga-
tion to entities which are thought to be used next by the programmer. These approaches are based on IDE
monitoring and predict changes from development session information rather than from transactions in
an SCM system. They can thus better predict changes while new features are being built.

Mylyn [9]] maintains a task context consisting of entities recently modified or viewed for each task the
programmer defined. It limits the number of entities the IDE displays to the most relevant, easing the
navigation and modification of these entities. Mylyn uses a Degree Of Interest (DOI) model, and has
been validated by assessing the impact of its usage on the edit ratio of developers, i.e., the proportion
of edit events with respect to navigation events in the IDE. It was shown that using Mylyn, developers
spent more time editing code, and less time looking for places to edit.

Navtracks [23] and Teamtracks [2] both record navigation events to ease navigation of future users,
and are geared towards maintainance activities. Teamtracks also features a DOI model. Navtrack’s
recommendations are at the file level. Teamtracks was validated with user studies, while Navtracks was
validated both with a user study and also by recording the navigation of users and evaluating how often
Navtracks would correctly predict their navigation paths (around 35% of the recommendations were
correct).

SCM-validated Impact Analysis Approaches. Impact analysis has been performed using a variety



of techniques; we only comment on a few. Briand et al. [1] evaluated the effectiveness of coupling
measurements to predict ripple effect changes on a 90 classes system. The results were verified by using
the change data in the SCM system over 3 years. One limitation is that the coupling measures were
computed only on the first version of the system, as the authors took the assumption that it would not
change enough to warrant recomputing the coupling measures for each version. The system was in
maintenance mode.

Wilkie and Kitchenham [26] performed a similar study on another system, validating change predic-
tions over 130 SCM transactions concerning a system of 114 classes. 44 transactions featured ripple
changes. Both analyses considered coupling among classes. Also Kagdi proposed a hybrid approach
merging impact analysis techniques with historical techniques [7]], but no results have been published
yet.

Hassan and Holt have proposed an approach based on replaying the development history of projects
based on their versioning system archives[6]. They compared several change prediction approaches
over the history of several large open-source projects, and found that historical approaches have a higher
precision and recall than other approaches. Similar to Zimmermann et al., they observed that the GCC
project has different results and hypothesize this is due to the project being in maintainance mode.

Tsantalis et al. change prediction approach was validated on two systems. One has 58 classes and 13
versions, while the other has 169 classes and 9 versions [24].

Project Duration | Classes  Methods | Sessions Changes Predictions  Predictions Predictions Predictions

(days) Classes Methods  Classes (Init) ~ Methods (Init)
Spyware 1095 697 11797 496 23227 6966 12937 4937 6246
Software Animator 62 605 2633 133 15723 3229 8867 1784 2249
Project X 98 673 3908 125 5513 2100 3981 1424 1743
Project A 7 17 228 17 903 259 670 126 236
Project B 7 35 340 19 1595 524 1174 210 298
Project C 8 20 260 19 757 215 538 151 251
Project D 12 15 142 17 511 137 296 122 156
Project E 7 10 159 22 597 175 376 148 238
Project F 7 50 454 22 1326 425 946 258 369
Total - - - 50152 14030 29785 9160 11786

Table 1. Development histories in the benchmark.

3 A Benchmark for Change Prediction

In Section [2| we have listed a number of change prediction approaches that have been evaluated with
data obtained either by mining the repositories of software configuration management (SCM) systems,
such as CVS or SubVersion, or by tracking what happens within the IDE as a developer is programming.
We argue that such evaluations suffer from two major problems:

1. SCM data is inaccurate. The data obtained by mining SCM repositories is potentially inaccurate:
Some SCM transactions represent patch applications rather than developments and cannot be used
by change predictions. Other transactions are simply too large to extract useful information. Also,
in an SCM system transaction, there is no way to know which entity was changed first, i.e., the
chronological order the changes is lost.



2. IDE data is shallow. Approaches such as Mylyn, Navtracks and Teamtracks do not have a fully
reified model of changes, i.e., these tools know where in the system something has changed, and
what a developer is currently looking at, but they do not model how a piece of the system is being
modified. They thus only have shallow data at their disposition, and rely on human-controlled
experiments to assess their performance. While these experiments can be used to validate the
overall effectiveness of a tool, they are very expensive to perform, are not suited for incremental
improvements of the tools, and most of all the experiments are not repeatable.

By contrast, we propose an approach which takes the best of the two worlds: we record the exact
sequence of changes that happened in a project; we even record the time stamps and the exact contents
of the changes, as we dispose of a fully reified model of changes. Put simply, we do not lose anything
about the changes that concern a system.

Our approach, named change-based software evolution (CBSE)[18]] has previosuly been used to sup-
port program comprehension[14], and forward engineering [[15) [16]. We implemented our approach as
the Spyware tool platform [[17]], an IDE plugin that records and reifies all changes as they happen, and
stores them in a change-based software repository. Of note, our recording is non-instrusive, Spyware
silently records the data without disturbing the user.

3.1 Data Corpus
We selected the following development histories as benchmark data:

e SpyWare, our prototype, monitored over a period of three years, constitutes the largest data set.
The system has currently around 25,000 lines of code in ca. 700 classes. We recorded close to
25,000 changes so far.

e A Java project developed over 3 months, the Software Animator. In this case, we used our Java
implementation of Spyware, an Eclipse plugin called EclipseEye[21], which however does not
support the recording of usage histories.

e Nine one-week small student projects with sizes ranging from 15 to 40 classes, with which we
tested the accuracy of approaches on limited data. These development histories test wether an
approach can adapt quickly at the beginning of a fast-evolving project.

e A professional Smalltalk project tracked ca. 4 months.

The characteristics of each project are detailed in Table (I, namely the duration and size of each
project (in term of classes, methods, number of changes and sessions), as well as the number of times
the predictor was tested for each project, in four categories: overall class prediction, overall method
prediction, and class and method prediction at the start of sessions only (this last point is explained in

Section 3.3).

3.2 Benchmarking Procedure

During each run, we test the accuracy of a change prediction algorithm over a program’s history, by
processing each change one by one. We first ask the algorithm for its guess of what will change next,



evaluate that guess compared to the actual change, and then pass that change to update its representation
of the program’s state and its evolution.

Some changes are directly submitted to the prediction engine without asking it to guess the changes
first. They are still processed, since the engine must have an accurate representation of the program.
These are (1) changes that create new entities, since one cannot predict anything for them, (2) repeated
changes, i.e., if a change affects the same entity than the previous one, it is skipped, and (3) refactorings
or other automated code transformations.

Input: History: Change history used
Predictor: Change predictor to test
Output: Results: benchmark results

Results = makeResultSet();

foreach Session S in ChangeHistory do
storeSessionInfo(S, result);

testableChanges = filterTestableChanges(.5); foreach Change ch in S do
if includes(testableC'hanges,ch) then
predictions = predict(Predictor);,
nbPred = size(predictions);,
oracle = nextElements(testableC'hanges, nbPred);
storeResult(results, predictions, oracle);
end
processChange(Predictor, ch);
end

return Results
end

Algorithm 1: Benchmark result collection

The pseudo-code of our algorithm is shown in Algorithm [I] It runs on two levels at once, asking the
predictor to predict the next changing class and the next changing method. When a method changes,
the predictor is first asked to guess the class the method belongs to. Then it is asked to guess the
actual method. When a class definition changes, the predictor is only tested at the class level. This
algorithm does not evaluate the results, but merely stores them along with the actual next changing
entities, allowing them to be evaluated later on in a variety of ways. To allow a finer characterization
of the results, we also store several session metrics, namely the number of (a) changes in the session,
(b) methods additions, (c¢) methods modifications (changes to an already existing method), (d) class
additions, and (e) class modifications.

3.3 Evaluating Prediction Performance

With these results stored, we can evaluate them in a variety of ways. All of them share the same
performance measurement, but applied to a different set of predictions. Given a set of predictions, we
use Algorithm 2] to return an accuracy score.

Given a list of n predictions, the algorithm compares them to the next n entities that changed, and
sets the accuracy of the algorithm as the fraction of correct predictions over the number of predictions.



Input: Results: Benchmark results
Depth: Number of predictions to evaluate
Output: Score: Accuracy Score

accuracy = 0;
attempts = size(results);
foreach Artempt att in attemps do
predictions = getPredictions(att, Depth);
oracles = getOracles(oracles, Depth);
predicted = predictions N oracles;
accuracy = accuracy + (size(predicted) / size(predictions));
end
Score = accuracy | attempts;
return Score

Algorithm 2: Benchmark result evaluation

In the case where less than n entities changed afterwards (m), only the m first predictions are taken into
account.

Accuracy vs. Prediction and Recall. Change prediction approaches that use SCM data are often
evaluated using precision and recall. We found however that our data does not fit naturally with such
measurements, because while recorded changes are sequential, some development actions can be per-
formed in any order to a certain extent: If a developer has to change three methods A, B, and C, he can
do so in any order he wants. To account for this parallelism, we do not just test for the prediction of
the next change, but for the immediate sequence changes with length n. Defining precision and recall
for the prediction set and the set of the actual changes would make both measures have the same value.
This does not fit the normal precision and recall measures which vary in inverse proportion to each other.
Intuitively, approaches with a high recall make a greater number of predictions, while approaches with a
higher precision make less predictions, which are more accurate. Since we fix the number of predictions
to a certain size n, we use one single accuracy measure.
We measure the following types of accuracy:

e Coarse-grained accuracy (C) measures the ability to predict the classes where changes will occur.
e Fine-grained accuracy (M) measures the ability to predict the methods where changes will occur.

e Initial accuracy (I) measures how well a predictor adapts itself to a changing context both for
classes and methods. To evaluate how fast a change predictor reacts to a changing context, we
measure its accuracy of each predictor on only the first changes of each session. These feature the
highest probability that a new feature is started or continued. We thus measure the accuracy of the
20 first changes of each session.

How the read the results. In the next section we measure the accuracy of a number of approaches using
the previously presented benchmark. We present the results in tables following the format of the sample
Table 2l



ProjectC5 C7 C9 | M5 M7 M9 | CI7 MI7
SW |20 42 32 |23 32 98 |67 45
A-F |30 42 32|23 32 98 |67 45
SA |40 42 32 |23 32 98 |67 45
X 50 42 32|23 32 98 |67 45
AVG| 37 42 32 |23 32 98 |67 45

Table 2. Sample results for an algorithm

For each of the projects (occupying the rows) we compute the coarse-grained (C5, C7, C9), the fine-
grained (M5, M7, M9) and the initial accuracy for classes (CI7) and for methods (MI7). The digits
(5,7,9) indicate the length of the prediction and validation set, e.g., M7 means that we measure the
accuracy of change prediction for a sequence of method changes of length 7.

How are the numbers to be understood? For example, in the C5 column we measure the coarse-
grained accuracy of one of the approaches. The *20’ in the Spyware (SW) row means that when it comes
to predicting the next 5 classes that will be changed, the fictive predictor evaluated in Table[2]is guessing
correctly in 20% of the cases. In the case of the small student projects (row A-F) the values indicate how
the predictors perform on very small sets of data. The Software Animator (SA) row indicates how the
predictors perform on Java systems, while the second last row (X) indicates how the predictors perform
on a system built around a large web framework. The bottom row contains the weighted average value
accuracy for each type of prediction. The average is weighted with the number of changes of each of
the benchmark systems. This means that the longest history, the one of Spyware, plays a major role, and
that one should not expect arithmetic averages in the last row.

4 Results

In this section we detail the evaluation of a number of change prediction approaches using our bench-
mark. We reproduced approaches presented in the literature and also implemented now approaches our-
selves. In the case of reproduced approaches, we mention the eventual limitations of our reproduction
and the assumptions we make. This is followed by the results of each approach and a brief discussion.

We start with a few general remarks. First, the larger the number of matches considered, the higher
the accuracy. This is not surprising. One must however limit the number of entities proposed, since
proposing too many entities is useless. One can always have 100% accuracy by proposing all the entities
in the project. This is why we limited ourselves to 7+2 entities, thus keeping a shortlist of entities, these
having still a reasonable probability of being the next ones. This number is estimated to be the number
of items that humans can keep in short-term memory [12].

Also, all the algorithms follow roughly the same trends accross projects. The smaller projects (A-F)
have a higher accuracy, which is to be expected since there are less entities to choose from, hence a
higher probability to pick the correct ones. The software animator (SA) project has a higher accuracy
than SpyWare (SW), since it is also smaller. The project with the least accuracy overall is project X. Its
development is constituted of a variety of smaller tasks and features frequent switching between these
tasks. These parts are loosely related, hence the history of the project is only partially useful.



4.1 Association Rules Mining

Description. This is the approach employed by Zimmermann et al. [29], and by Ying et al. [27].
Like Zimmermann’s approach, our version supports incremental updating of the dataset to better fit
incremental development. The alternative would be to analyse all the history at once, using two-thirds
of the data as a training set to predict the other third. This does however not fit a real-life setting. As the
approach uses SCM transactions, we make the assumption that one session corresponds to one commit
in the versioning system.

When processing each change in the session, it is added to the transaction that is being built. When
looking for association rules, we use the context of the 5 preceding changes. We mine for rules with 1
to 5 antecedent entities, and return the ones with the highest support in the previous transactions in the
history. Like in Zimmermann’s approach, we only look for single-consequent rules.

Project | C5 C7 C9 | M5 M7 M9 | CI7 MI7
SW 13.0 155 17527 29 31172 41
A-F 273 32.0 37.1 |33 37 4.0 |347 55
SA 16.1 193 219 45 54 62217 64
X 60 74 8421 22 22| 79 3.7
AVG 144 172 19.6 | 3.1 35 39185 4.6

Table 3. Results for Association Rules Mining

Results. Association rule mining serves as our baseline. As Table 3| shows, the results are relatively
accurate for class-level predictions, but much lower for method-level predictions. The results are in the
range of those reported by Zimmermann et al. [29]. They cite that for the GCC case study which was
under active development, the precision of their method was only around 4%. Our results for method-
level accuracy are in the low single-digit range as well.

The main drawback of the approach is that it does not take into account changes in the current session.
If entities are created during it, as is the case during active development, prediction based on previous
transactions is impossible. To address this, we incrementally build a transaction containing the changes
in the current session and mine it as well as the previous transactions.

Project C5 C7 C9| M5 M7 M9 | CI7 MI7
SW | 30.0 36.1 40.8 |13.7 16.2 18.4 |40.0 23.1
A-F [ 397 456 522|124 149 16.6|50.6 234
SA | 28.0 34.1 395|142 17.7 209|394 240
X 244 29.6 337|143 173 20.2 | 315 31.1
AVG| 299 358 40.8 | 13.7 16.6 19.0 | 39.7 24.5

Table 4. Results for Enhanced Association Rules Mining

The results of this simple addition are shown in Table ] The prediction accuracy at the class-level
and the method-level is higher, but the method-level acccuracy is much higher. Incrementally building
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the current session, and mining it allows us to quickly incorporate new entities which have been created
in the current session, something that the default approach of Zimmermann does not support. Of note,
the algorithm is more precise at the beginning of the session than at the end, because the current session
has less entities to propose at the beginning of the session. Towards the end of the session, there are
more possible proposals, hence the approach loses its accuracy. In the following, we compare other
approaches with enhanced association rule mining, as it is a fairer comparison since it takes into account
entities created during the session.

4.2 Degree of Interest

Description. Mylyn maintains a degree-of-interest model [8] for entities which have been recently
changed and edited. We implemented the same algorithm, with the following limitations:

e The original algorithm takes into account navigation data in addition to change data. Since we
have recorded navigation data only on a fraction of the history, we do not consider it. We make the
assumption that navigation data is not essential in predicting future change. Of course, one will
probably navigate to the entity he wants to change before changing it, but this is hardly a useful
recommendation.

e Another limitation is that more recent versions of the algorithm [9] maintain several degrees of
interests based on manually delimited tasks. The tasks are then recalled by the developer. We
do not consider separate tasks. The closest approximation of that for us is to assume that a task
corresponds to a session, maintain a degree-of-interest model for each session, and reuse the one
most related to the entity at hand.

Project C5 C7 C9| M5 M7 M9 | CI7 MI7
SW | 16.1 21.0 257|102 128 14.8|20.1 125
A-F | 520 60.2 67.0 | 166 20.7 233 |57.8 20.2
SA | 224 298 355|212 269 31.0|29.7 252
X 155 195 220 6.1 74 82171 65
AVG| 219 27.6 325|132 16.6 19.1 | 257 149

Table 5. Results for Degreee of Interest

Results. We expected the degree of interest to perform quite well and found the results to be below our
expectations. At the class level, it is less precise than association-rule mining. At the method level, it has
roughly the same accuracy. The accuracy drops sharply with project X, whose development involved
continuous task switching. Since the degree-of-interest needs time to adapt to changing conditions, such
sharp changes lowers its performance. Indeed, the best accuracy is attained when the algorithm has more
time to adapt. One indicator of this is that the algorithm’s accuracy at the beginning of the session is
lower than the average accuracy. The algorithm also performs well to predict classes in projects A-F,
since their size is limited. It nevertheless shows limitations on the same project to predict methods given
the very short-term nature of the projects (only a week).
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4.3 Coupling-based

Description. Briand ef al. found that several coupling measures were good predictors of changes [1]].
We chose to run our measure with the PIM coupling metric, one of the best predictors found by Briand
et al.. PIM is a count of the number of methods invocations of an entity A to an entity B. In the case of
classes, this measure is aggregated between all the methods in the corresponding two classes.
To work well, the coupling-based approach needs to have access to all the code base of the system
and the call relationships in it. With respect to this requirement, our benchmark suffers from a number
of limitations:

e We could not run this test on project SA, since our Java parser is currently not fine-grained enough
to parse method calls.

e We also do not include the results of Project X. Unfortunately, project X was already under devel-
opment when we started recording its evolution, which would make the comparison unfair.

e One last limitation is that the Smalltalk systems do not have any type information, due to the
dynamically typed nature of Smalltalk. While we can make use of a type inference engine to infer
a certain portion of the types, it does make our PIM measure slightly less accurate.

Project C5 C7 C9| M5 M7 M9 | CI7 MI7
SW | 21.0 262 306 | 97 11.8 133|253 11.2
A-F | 213 280 340|108 14.1 16.6 | 299 157
SA - - - - - - - -
X - - - - - - - -
AVGF21.0 266 313 | 99 123 140 26.1 12.1

Table 6. Results for Coupling with PIM

Results. As we see in Table [6] comparing with the other approaches is difficult since part of the data
is missing. On the available data, we see that the coupling approach performs worse at the method
level than Association Rules Mining and Degree of Interest. At the class level, results are less clear:
The approach performs worse than association rules, while the degree of interest performs significantly
better on projects A-F, but is outperformed at the class level.

Overall, we share the conclusions of Hassan and Holt [6]: Coupling approaches have a lower accu-
racy than history-based ones such as association rule mining. The comparison with degree of interest
somewhat confirms this, although it was outperformed in one instance.

4.4 Association Rules with Time Coupling
Description. In previous work [19] we observed that a fine-grained measure of logical coupling was

able to predict logical coupling with less data. We therefore used this coupling measurement instead of
the classical one to see if it was able to better predict changes with association-rule mining. When mining

11



for rules, instead of simply couting the occurrences of each rule in the history, we factor a measure of
time coupling. Time coupling measures how closely in a session two entities changed. Entities changing
very closely together will have a higher time coupling value than two entities changing at the beginning
and at the end of a development session.

Project C5 C7 cCO| M5 M7 M9 | CI7T MI7
SW | 30.1 360 406 | 132 160 183 | 38.0 214
A-F | 370 436 508 | 146 173 193 | 457 233
SA 25.6 31.0 357|172 207 237|330 231
X 23.8 29.0 332|108 146 176|299 259
AVG | 290 347 397 | 140 172 19.7 | 36.6 22.6

Table 7. Results for Association Rules with Time Coupling

Results. As we see in Table [/, our results are mixed. The prediction accuracy is slightly lower that
Enhanced Association Rules Mining for class-level predictions, and slightly better for method-level
predictions, each time by around one percentage point. It is encouraging that the method prediction is
increased, since it is arguably the most useful measure: Precise indications are better than coarser ones.
We hope to improve this alternative coupling measure in the future.

4.5 HITS

Description. The HITS algorithm [10] is similar to Google’s PageRank [[11]. It gives a hub and an
authority (or sink) value to all nodes in a directed graph. Good hub nodes (or web pages) point to
many good authority nodes, and good authorities are referred to by many good hubs. While PageRank
works on hyperlinked web pages, we build a graph from classes and methods, linking them according
to containment and message sends. The predictor has two variants, respectively recommending the best
hubs or the best sinks, in the graph generated from the most recent changes. We maintain this graph for
the entities and the calls defined in the 50 latest changes.

Project C5 C7 C9| M5 M7 M9 | CI7 MI7
SW | 40.8 488 558|159 17.1 179|483 17.2
A-F | 4477 557 65.1 209 235 252 |57.6 226
SA | 554 715 857|313 356 389 |73.6 33.0
X 304 337 367 | 77 84 88]|324 86
AVG| 43.1 526 61.0]19.2 214 228 |51.8 19.6

Table 8. Results for Hits, best hubs

Results. The HITS algorithm proved to be the highest performer overall since it has a significantly
higher method-level accuracy overall. We tested two variants, the first one returning the best hubs in
the HITS graph, and the second returning the best sinks. As with the degree-of-interest, HITS tends to
be more precise towards the end of a session. We need to investigate ways to make the algorithm adapt
faster to new contexts.
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Project C5 C7 C9| M5 M7 M9 | CI7 MI7
SW | 50.0 559 61.1 167 179 18.6 | 558 17.7
A-F | 576 660 746|223 249 26.7|658 24.0
SA | 60.6 74.6 87.5|32.1 362 39.0|76.2 335
X 340 381 408 | 80 86 9.0|373 85
AVG| 51.0 58.8 65.8 |20.1 22.1 234 |58.0 20.1

Table 9. Results for Hits, best sinks

4.6 Merging Approaches

Description. Kagdi ef al. advocated merging history based approaches and impact analysis based
approaches [7]], arguing that combining the strong points of several approaches can yield even more
benefits. This strategy was successfully used by Poshyvanyk et al. for feature location [[13]]. We tried
the following merging strategies:

Top: Returning the top picks of the combined approaches. This approaches assumes that the first
choices of an approach are the most probable ones. Given two predictors A and B, it returns A’s first
pick, then B’s first pick, then A’s second pick, etc..

Common: Returning entities nominated by several approaches, followed by the remaining picks from
the first approach. This approach assumes that the first predictor is the most accurate, and that the other
predictors are supporting it. The approach returns all the predictions in common between at least two
predictors, followed by the remaining predictions of the first predictor.

Rank addition: This approache favors low ranks and entities nominated several times. An interest
value is computed for each prediction. Each time the prediction is encountered, its interest is increased
by a value propartional to its rank in the prediction list it is in. If it is encountered several times, its
interest value will thus be higher. The predictions are then sorted by their interest value.

Predictor 1 Predictor 2 Strategy | Score Increase
Hits-Sinks Coupling Common | 40.6 +0.1
Hits-Hubs Interest Common | 37.8 +0.8
Hits-Hubs Coupling Common | 37.3 +0.3
Rule Mining Interest Common | 27.4 +1.2
Rule Mining Time Coupling Top 27.3 +1.1
Rule Mining Coupling Rank 26.3 +0.1
Time Coupling Coupling Rank 26.1 +0.2
Interest Coupling Rank 22.6 +0.5

Table 10. Results when merging two prediction approaches

Results. We tried these merging approaches on each possible combination of two and three predictors.
In the following table we report on the successful ones, where the accuracy of the merging was greater
than the best of the merged approaches. If several merging strategies were succesful with the same pair

13



of predictors, we only report the best performing one. We only report one accuracy figure, which is the
average of C7 and M7.

We see that merging is successful in some cases, although the effect is limited. The predictions
based on the HITS algorithm see some improvement only with the “Common” strategy, which favors
the first predictor. This is to be expected, since these algorithms are significantly more accurate than
the other ones. Systematically merging their top candidates with the ones of a less accurate approach
automatically decrease their efficiency.

With other predictors, the other merging strategies become more viable, although the Top strategy
appears only once. This strategy is the only one not rewarding the presence of common recommenda-
tions in the two predictors. In that case, merging the two strategies with the Rank strategy yielded an
improvement of 0.9% instead of 1.1%. Overall, merging strategies favoring common predictions work
best.

Perhaps the most important fact is that Coupling appears in five of the eight successful merging. This
supports the idea that coupling based on the structure of the system proposes different predictions than
history-based ones. Our result provide initial support to Kagdi’s proposition of merging impact-analysis
approaches (some of them using coupling measurements) with history-based approaches.

Surprisingly, merging three predictors instead of two yielded few benefits. Only in one instance was
it better than merging two. Merging Association Rule Mining, Degree of Interest and Coupling had a
score of 27.9, a 0.5% increase over merging only Association Rule Mining and Degree of Interest. Of
note, only Rank and Common were successful in merging three predictors. The higher the number of
predictors, the more important it is to favor common predictions.

Predictor C5 c7 CO| M5 M7 M9 | CI7 MI7 07 MO7
Association Rules Mining 144 172 19.6 | 3.1 35 39| 185 4.6 || 1035 8.06
Enhanced Association Rules Mining 299 358 408 | 1377 166 19.0 | 39.7 245 || 26.20 23.00
Degree of Interest 219 276 325|132 166 19.1 | 2577 149 || 22.10 20.26
Coupling-based* 21.0 266 313 | 99 123 140 | 26.1 121 || 1945 17.06
Association Rules Mining & Time Coupling | 29.0 347 39.7 | 140 17.2 19.7 | 36.6 22.6 || 2595 23.03
Hits, best Hubs 43.1 526 610|192 214 228 | 51.8 19.6 || 37.00 31.80
Hits, best Sinks 51.0 588 658 | 20.1 221 234 | 58.0 20.1 | 4045 3433

Table 11. Comprehensive results for each predictor

4.7 Discussion of the results

The results of all the predictors are summed up in Table Note that the coupling results were not
run on all the projects, and should as such be taken with a grain of salt. The last two columns represent
an overview value for each predictor: O7 is the average of C7 and M7, while MO?7 is another average of
C7 and M7, favorizing method accuracy (C7 counts for a third and M7 for the two remaining thirds).
(Enhanced) Association Rules Mining. Taking into account recent changes to predict the very next
changes in the system is important, as shown by the difference between association rules mining and
enhanced association rules mining. The only addition to enhanced association rules mining is to also
mine for rules in the current session, and the results are drastic, since its accuracy more than doubles.
We tried to alter the importance of the rule based on the changes in the sessions. We found that taking
into account the timing of the changes when they occured in a session decreased the accuracy at the
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class level, but increases it at the method level. This may be because classes are interacted with on
long portions of a development session, while method interactions are much more localized in time, and
usually worked at only for brief periods of time. Hence the measure is much more useful for predicting
method changes.

Degree of Interest. Considering only recent changes is sometimes not enough. We expected the degree
of interest to perform better than association rules mining. Although their accuracy is comparable,
association rules mining is a more accurate prediction approach. This is due both to the adaptation
factor of the degree of interest when switching tasks (its initial accuracy is lower), and the fact that
the association rules look in the entire past and can thus find old patterns that are still relevant. The
Mylyn tool which uses a degree of interest has a built-in notion of tasks [9], that alleviate these two
problems: A degree of interest is maintained for each task, and is manually recalled by the developer.
Task switching recalls another degree of interest model, which may also contain information from the
further past. Therefore, we need to evaluate the accuracy of several degrees of interest combined, and
selecting the one best adapted to the task at hand.

Coupling. Coupling based on the system structure is overall less accurate than other approaches. This
is to be expected this is does not take into account recent or past changes at all. However, it proved to be
efficient when prediction approaches were combined. Using it as a second opinion significantly raised
the accuracy of some approaches.

HITS. Overall, as Figure |1 illustrates, the overall best performing approach we found is the HITS al-
gorithm, using a graph featuring the structure of the system among the recent changes (the last 50
changes). The HITS algorithm can be applied to any graph, so alternative definitions of the graph based
on the same data may yield even better results. Since the graph definition we use considers both recent
changes and the structure of the system, we think it is a good representative of the potential of HITS-
based approaches. Nevertheless, a possible improvement would be to incorporate change data from the
further past. Since HITS is, as the Degree of Interest approach, sensible to task switching, in the future
we need to evaluate the accuracy of several HITS graphs combined.

5 Discussion

Despite the good results we obtained, there are a number of issues we want to discuss:

Not all approaches were reproduced. We did not reproduce the Navtracks approach as it relies only on
navigation data, which we do not have. Ying and Shirabad’s approaches are very close to Zimmermann’s
association rule mining. DeLine ef al.’s Teamtrack is based on a DOI and is as such close to the Mylyn
DOI. Kagdi’s approach was not fully described at this time of writing. Finally, we chose only one
coupling measure to reproduce, while many exist. The one we chose was the one best adapted to our
systems as PIM takes polymorphism into account. In Briand et al.’s study, PIM was one the metrics with
the best correlation with actual changes.

Size of the dataset. Our dataset is fairly small, if not tiny compared to the ones available with versioning
system data. With time, we will incorporate more data in our benchmark in order to be more compre-
hensive. On the other hand, our benchmark is already larger than the ones used in previous studies by
Briand, Wilkie or Tsantalis. Their evaluations were done on one or two systems, on a small number of
transactions.

Generalizability. We do not claim that our results are generalizable. However, some of the results we
found were in line with results found by other researchers. Hassan and Holt found that coupling-based
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Figure 1. Prediction Results

approaches are less precise than history based approaches, and so do we. Similarly, Zimmermann et
al. find a precision of 4% for methods during active development. Reproducing the approach with
our data yields comparable results. We also found evidence supporting Kagdi’s proposal of merging
association rule mining and coupling-based impact analysis. We found an increase of accuracy with a
simple merging strategy. A more developed merging strategy may yield better results.

Absent Data. Our data does not include navigation data, which is used in approaches such as NavTracks.
Mylyn’s Degree of Interest also includes navigation data. We started recording navigation data after
recording changes. As such, we only have navigation data for a portion of SpyWare’s history. The lack of
navigation data needs to be investigated, in order to see if it impacts the accuracy of our implementation
of Degree of Interest.

Evolving the benchmark. Our benchmark still needs to evolve. As said earlier, the dataset should be
larger for the results to be more generalizable. Another possible enhancement to the benchmark would
be to evaluate if a tool is able to predict a change’s content and not only its location. Some possibilities
would be to evaluate the size of the change, i.e., whether a small or a large change is expected, or the
actual content. The latter could be possible and useful to evaluate code clone management.
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6 Conclusion

In this paper we presented a benchmark to repeatedly evaluate the accuracy of change-prediction
approaches. It is unique since it is based on recording the history of programs in a realistic setting
by monitoring the programmers as they build their systems. Our benchmark takes into account the
two scenarios in which change prediction tools are used: As maintenance assistance tools to infer the
locations likely to change when a location has to change, and as productivity enhancement tools when
actively developing new code.

If the first case was partly covered by replaying changes from a repository, the second case was not
covered at all, so far. By replaying the change history at the level of individual changes in a development
session, we feed more accurate data to the change prediction algorithms. This allows evaluation of these
change prediction approaches to proceed without necessarily involving a controlled experiment which
is more expensive to perform, and harder, if not impossible to reproduce.

As noted by Sim et al., benchmarks also need to evolve [22]]. This our case as well. Our benchmark is
still relatively small, so we need to integrate the histories of other programs. Additional data in the form
of navigation and typing information data is also needed to accomodate a greater variety of approaches.
Since our data includes also the actual changes performed, and not only the entities, predicting the actual
changes would be an interesting variation.

Using our benchmark, we compared several existing approaches that we replicated (association rules
mining, degree of interest, and coupling-based impact analysis), with other approaches we developed
(variations of association rules mining, approaches using the HITS algorithm, and merging strategies).
We found that the HITS approach, when used on a graph comprising recent changed entities in the
system and linked according to their structure, provided the most accurate predictions, with significant
improvements over the state of the art.
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