Universita Faculty

della of Economics
Svizzera

italiana

Hakim Dall'O

Essays on the Valuation and Hedging of Derivative Securities

Submitted for the degree of Ph.D. in Finance at
Faculty of Economics
University of Lugano

Thesis Committee:

Prof. G. Barone-Adesi, advisor, University of Lugano and Swiss Finance Institute

Prof. A. Berardi, University of Verona
Prof. N. Carcano, University of Lugano and MVC & Partners
Prof. A. Plazzi, University of Lugano and Swiss Finance Institute

24" June 2011

swiss:finance:1institute






To my family






ACKNOWLEDGEMENTS

| would like to thank my supervisor, Professor Giovanni Barone-Adesi for the opportunity he
offered me and for all the advice he gave me in the last 4 years. Another special thanks to
Professor Nicola Carcano for all the precious time he dedicated to me. Then, a general but
really deep thank you to all the professors of the department, because “their doors were
never closed...”. But, among all the professors a special thanks is for Professor Francesco
Franzoni because he was not only a professor, but also, a great friend in this journey.

A deep thanks to my family to whom this work is dedicate because of their constant support
and encouragement.. “all can be parents...but few are really father and mother...”. Special
thanks to my brother and my sister for their love and their belief in me.

A special thanks to my lifelong friends: Ragno, Simone, Raffa, Melissa and to the new friends
who made these 6 years in Lugano full of joy and full of fun: Fuxio, Graziano, Davide, llaria,
Sofy, Fudo, Cota, Dima, Dimitr, Roberta, Maria, Masha, Mihaela, Natalie, Fleur, Alex,
Gianpaolo, Jacopo, Stefano P., Tamara, Diego, and Jost.






Contents

Presentation of the work

First chapter: The “Pricing Kernel Puzzle”
Is the Price Kernel Monotone?

1 Introduction

2 Review of the Literature

2.1 Price Kernel and investor preference

2.2 Nonparametric and parametric estimation
3 Empirical kernel price

3.1 Risk-neutral density

3.2 Risk-neutral estimation

3.3 Historical density

3.4 Kernel price

4 Averaging price kernel over time

5 Price Kernel around a crisis

5.1 Estimate pricing kernels in different periods
6 Kernel Price as a function of volatility

7 Conclusion

Second chapter: “Hedging Treasury Bond Portfolios”
Alternative models for hedging yield curve risk: An empirical comparison

1 Introduction

2. The hedging methodology

2.1 The sensitivity of bond and future prices
2.2 The development of the hedging equations
3 The dataset and the testing approach

4 The results

5 Conclusions

Third chapeter: “Hedging Corporate Bond Portfolios”

Managing Corporate bond Risk: New Evidence in the Light of the Sub-prime Crisis

1 Data

2 Methodology
3. Results

4. Conclusions

w -

36
39
39
45
51
56
66

75
77

84
90
104
123






Presentation of the work

The following work is submitted for the degree of Ph.D. in Finance at the Faculty of
Economics, University of Lugano. During my Ph.D. | wrote three articles dealing with two
main subjects: the first one is the so called “Kernel Puzzle” while the second one is the
problem of immunization of portfolio of treasury and corporate bonds.

For the first topic, | wrote an article with professor Giovanni Barone Adesi: “Is the
Pricing Kernel Monotone?”. In this article we provide a new method to derive the state price
density per unit probability based on option prices and GARCH model. We derive the risk
neutral distribution using the result in Breeden and Litzenberger (1978) and the historical
density adapting the GARCH model of Barone-Adesi, Engle, and Mancini (2008). We take
the ratio of these two probabilities in order to describe the shape of the state price density
and to evaluate its consistency with economic theory. We find that using a large dataset and
introducing non-Gaussian innovations, the pricing kernel puzzle that arises in Jackwerth
(2000) disappears both in a single day and over an average of different days with options
expiring at the same maturity. We also evaluate the price kernel at the onset of the recent
crisis.

For the second topic | wrote two articles. The first one is a joint work with professor
Nicola Carcano which deals with the immunization of a portfolio of treasury bonds against
interest rate risk. This article has been concluded in 2011 and it is forthcoming on the
“Journal of Banking and Finance”. In particular in this article we test alternative models of
yield curve risk by hedging US Treasury bond portfolios through note/bond futures. We show
that traditional implementations of models based on principal component analysis, duration
vectors and key rate duration lead to high exposure to model errors and to sizable
transaction costs, thus lowering the hedging quality. Also, this quality randomly varies from
one model and hedging problem to the other. We show that accounting for the variance of
modeling errors substantially reduces both hedging errors and transaction costs for all
considered models. Additionally, it leads to much more stable weights in the hedging
portfolios and as a result to more homogeneous hedging quality. On this basis, error-
adjusted principal component analysis is found to systematically and significantly outperform
alternative models.

The last article is a joint work with professors Giovanni Barone-Adesi and Nicola
Carcano and deals with the problem of immunization of a portfolio of corporate bonds. In this
article, we test alternative strategies for hedging a portfolio composed from BBB-rated
corporate bonds. Our results highlight a change of regime. From 2000 to 2007, a hedging
strategy based only on T-bond futures would have reduced the variance of the portfolio by
circa 83.5%. This compares well to the maximum variance reduction of 50% reported by
previous studies hedging corporate bonds through T-bond and S&P500 futures. We attribute
this improvement to the use of four futures contracts with different maturity and to the
consideration of modeling errors. On the contrary, in 2008 and 2009 T-bond futures would
have been insufficient to successfully hedge our bond portfolio. The use of the 5-year CDX
contract would have only marginally improved the quality of hedging. We attribute the
disappointing hedging performance of CDX to counterparty risk and show that credit
derivatives free of default risk could have led to a variance reduction over 64% even during
2008 and 2009.
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Abstract

We provide a new method to derive the state price density per unit
probability based on option prices and GARCH model. We derive
the risk neutral distribution using the result in Breeden and Litzen-
berger (1978) and the historical density adapting the GARCH model
of Barone-Adesi et al. (2008). We take the ratio of these two proba-
bilities in order to describe the shape of the state price density and
to evaluate its consistency with economic theory. We find that using
a large dataset and introducing non-Gaussian innovations, the pric-
ing kernel puzzle that arises in Jackwerth (2000) disappears both in a
single day and over an average of different days with options expiring
at the same maturity. We also evaluate the price kernel before and
during the recent crisis and we look at the change in the shape in
order to evaluate the difference.

Keywords: Pricing kernel, State price density per unit probability,
Risk neutral, Historical distribution.

JEL Classification: G12, G13, G14.



1 Introduction

According to economic theory, the shape of the kernel price or the state price
density (SPD) per unit probability (also known as the asset pricing kernel
(Rosenberg and Engle (2002)) or stochastic discount factor (SDF) (Campbell
et al. (1997))) is a decreasing function in wealth.

In their paper, Jackwerth (2000) find a kernel price before the crash of
1987 in agreement with economic theory, but a discordant result for the
post-crash period. After their work, a number of papers have been written
on this topic explaining the reason for this puzzle. Rosenberg and Engle
(2002), Detlefsen et al. (2007) and Jackwerth (2004) are among the most
interesting papers on this topic. Unfortunately, none of them found an answer
to this puzzle. In all of their papers they found problems in the methodology
previous papers presented and tried to improve them, but the result was the
same: the puzzle remained.

An answer to this puzzle has been given in Chabi-Yo et al. (2005) where
they argue that the main problem in this puzzle is the regime shifts in funda-
mentals: when volatility changes, the kernel price is no longer monotonically
decrease. In each regime they prove that the kernel price is consistent with
economic theory, but when there is a shift in regime the kernel price changes
in its shape and it is no longer consistent with economic theory.

In a recent paper, Barone-Adesi et al. (2008) compute again the kernel
price in a parametric method and they find kernel prices consistent with eco-
nomic theory. In particular they find kernel price consistency for fixed matu-
rities. They do not use different maturities as Ait-Sahalia and Lo (1998) and
therefore they avoid the problem that arises when the maturity is different,
but they do not consider the change in fundamental as a relevant aspect of
the computation. This result can be explained if we consider that the sample
they use is very short in time (3 years) and in that period (2002 - 2004) the
volatility does not make big change.

In this paper we use real data to describe the shape of the kernel price as
presented in the market. We compute the kernel price both in a single day
and as an average of kernel prices in a period of time (considering a fixed
maturity). We want to understand the implication of the changing regime
using two measures of moneyness: in the first case we consider the kernel
price as a function of only two parameter (we do not take into consideration
the changing regime) and then as a function of underlying, interest rate and
volatility. In order to evaluate the kernel price we need to take a broad index



which attempts to cover the entire economy. We decide to use options index
on the S&P500 with a time series of 12 years (from the 2nd of January 1996
to the 31st December 2007).

Evaluating the kernel price in a period of time without taking into consid-
eration the change in volatility should lead to a kernel not anymore consisted
with economic theory. Surprising, when we compute the kernel price consid-
ering only two parameters (the underlying and the interest rate), the average
of kernel price is consistent with economic theory (with the exceptions of
some points). The main reason for this result is the methodology we use to
compute the two probabilities.

In order to estimate the risk neutral distribution, we use the well known
result in Breeden and Litzenberger (1978). The difference with previous
works is in the options we use. Instead of creating option prices through
nonparametric or parametric models (all the previous research use artificial
price of options and this could introduce a bias in the methodology), we use
only the options available on the market. We then construct the histori-
cal density using the GJR GARCH model with Filter Historical Simulation
already presented in Barone-Adesi et al. (2008).

As discussed in Barone-Adesi et al. (2008), among the several GARCH
models, the GJR GARCH with FHS has the flexibility to capture the leverage
effect and has the ability to fit daily S&P500 index returns better. Then, the
set of estimated scaled innovations gives an empirical density function that
incorporates excess skewness, kurtosis, and other extreme return behavior
that is not captured in a normal density function. These features avoid
several problems in the estimation of the kernel price. For example, using
a simple GARCH model where the innovations are standard normal (0, 1)
leads to a mispecification of the return of the underlying.

Once we have the two probabilities, we take the ratio between the two
densities, discounted by the risk-free rate, in a particular day, and we get the
kernel price for a fixed maturity. We repeat the same procedure for all the
days in the time series which have options with this maturity and then we
take the average of the kernel price through the sample.

We also evaluate how the shape of the price kernel changes before and
during a crisis (the 2008 crisis). We notice that the three periods before the
crisis (2005, 2006 and 2007) exhibit fairly monotonically decreasing paths,
while during the crisis, the kernel price remains monotonically decrease but
has higher values. (consistency with the idea that during a crisis an investor
increase the risk aversion).



In order to evaluate the impact of the shifting regime, we repeat the
computation of the differen kernel prices considering the volatility as a pa-
rameter of the kernel function. Surprising, the results have an improvement,
but thanks to the methodology we used in the case of kernel price without
volatility, the results are quite similar, supporting our first intuition that
the changing regime is an important aspect, but also the methodology has a
strong impact on the final result.

The remainder of this paper is organized as follows. In section 2, we
present a review of the literature and we define the “pricing kernel puzzle”. In
section 3, we define our method to estimate the kernel price. We explain the
application of the result of Breeden and Litzenberger (1978) for a discrete case
and we derive the risk neutral distribution. We then estimate the historical
density using a GJR GARCH method with FHS and we take the kernel
price from a particular day as well as the kernel price over the time series
of our sample. In section 4, we provide other evidence of our results. First
we plot kernel price with different maturities to prove the robustness of our
methodology, then we take the average of these different kernel prices and we
show that the average of SPD per unit probabilities with closing maturities
have a monotonically decreasing path. In section 5, we present the change
in the kernel price shape before and during the recent crisis. In section 6,
we extend our model, using a kernel price with 3 parameters (underlying,
volatility and risk-free), and in section 7 we offer some conclusions.

2 Review of the Literature

In this section we derive the price kernel as in microeconomic theory and also
as in probability theory. We then present some methods, parametric and non
parametric to derive the kernel price.

2.1 Price kernel and investor preference

The ratio between the risk neutral density and the historical density is known
as the price kernel or state price density per unit probability. In order to ex-
plain the relationship between the risk-neutral distribution and the historical
distribution we need to introduce some basic concepts from macroeconomic
theory. In particular, we use a representative agent with a utility function
U(-). According to economic theory (the classical von Neumann and Mor-



genstern economic theory), we have three types of investors: risk averse, risk
neutral and risk lover. The utility function U(+) of these investors is a twice-
differentiable function of consumption ¢: U(c). The common property for the
three investors is the non-satiation property: the utility increase with wealth
e.g. more wealth is preferred to less wealth, and the investor is never satis-
fied - he never has so much wealth that getting more would not be at least
a little bit desirable. This condition means that the first derivative of the
utility function is always positive. On the other hand, the second derivative
changes according to the attitude the investor has towards the risk.

If the investor is risk averse, his utility function is an increasing concave
utility function which displays a strictly negative second derivative. The risk
neutral investor has a second derivative equal to zero while the risk seeker has
a second derivative strictly positive, which means a convex utility function.

Defining u(-) as the single period utility function and S as the subjective
discount factor, we can write the intertemporal two-period utility function
as

Ulcts cer1) = uler) + Bulcrsa.)

We introduce £ as the amount of an asset the agent chooses to buy at time
t, e as the original endowment of the agent, P, as the price of the asset at
time ¢t and x;y; as the future payoff of the asset. The optimization problem
is:

max u(cr) + By [Bepya]

subject to
¢y = er — P&,

Cip1 = €y1 + Tyy§.

The first constraint is the budget constraint at time 1, while the second
constraint is the Walrasian property e.g. the agent will consume all of his
endowment and asset’s payoff at the last period. Substituting the constrains
into the objective and setting the derivative with respect to £ equal to zero
we get:

u'(cry1)

P, = F; {/B u’(ct) $t+1] .

We define

BE, {M} = Mtr41 = MRS,
u'(c)



as the Marginal rate of Substitution at time t. The MRS is also known as
the Stochastic Discount Factor (SDF) or Price Kernel. Therefore the price
of any asset can be expressed as

P, =E, [mt,t+1$t+1] . (1)

In a continuous case, the price of any asset can be written as
PP = [ mua(Sr)er(Sripa(Sr)dsr. 2)
0

where p;r(S7) is the probability of state Sy (for the rest of the paper we
refer to this probability as the historical probability).

To define the price of an asset at time t, under the risk neutral measure,
we can write equation 2 as:

po = et / er(Sp)qur(Sr)dSy, (3)
0

where ¢, 7(S7) is the state price density (for the rest of the paper we refer
to this probability as the risk neutral probability). At this point, combining
equation 2 and 3 we can derive the SDF as:

o . Q:(ST)
mt,T(ST) =e m (4)

In this case we consider a two period model where the price kernel is a
function only of the underlying and of the risk-free rate. In the following
part we will see how to have a kernel price with more parameters.

In their papers Arrow (1964) and Pratt (1964) find a connection between
the kernel price and the measure of risk aversion of a representative agent.
We can define the agent’s coefficient of relative risk aversion (RRA) as:

_ STU”<ST)

pt(ST) = U/(ST) : (5>

A decreasing relative risk aversion indicates that the percentage of wealth
one is willing to expose to risk increase with wealth. Constant relative risk
aversion implies that the percentage of wealth one is willing to expose to risk
remains unchanged as wealth increases or decreases. Increasing relative risk



aversion means that the percentage of wealth one is willing to expose to risk
falls as wealth increases.

The absolute risk aversion is the absolute amount of wealth an individual
is willing to expose to risk as a function of changes in wealth. The absolute
risk aversion can be decreasing, constant or increasing in wealth. Decreasing
absolute risk aversion means that the amount of wealth someone is willing to
expose to risk increases as wealth increase. Constant absolute risk aversion
means that the amount of wealth one is willing to expose to risk remains
unchanged as wealth increase or decrease. Increasing absolute risk aversion
means that one’s tolerance for absolute risk exposure falls as wealth increases.

The pricing kernel can be written as function of the marginal utility as:

u' (S
mer(St) = 5ﬁ, (6)
and the first derivative is:
, u’ (S
myp(Sr) =B uE SS), (7)

Using the first and the second derivatives of the utility function from equation
6 and equation 7 we can write the RRA as:

(Sy) =  SpPmip(ST)u'(S))  Srmy o(Sr)
po) = 5mt,T(ST>ul(St) B muT(S{r) )

Using the definition of MRS, we can write the RRA as:

s0)]’
St [ﬁgi(si)}

(8)

p(Sp) = —— Ol (9)
[paten]
[%’s(ST)Pt(STQ)(;%)(ST)PQ(ST)]
I PNV I () R 10)
p(Sr) QQ(ST)}
51 {msT) w50 (1)

2.2 Nonparametric and parametric estimation

There are several methods to derive the kernel price. There are both para-
metric models and nonparametric models. In this section we give a review



of the most well-known method used in literature. We focus particularly on
the nonparametric model because they do not assume any particular form
for the risk neutral and historical density and also for the kernel price.

One of the first papers to recover the price kernel in a nonparametric way
is Alt-Sahalia and Lo (1998). In their work they derive the option price func-
tion by nonparametric kernel regression and then, throughout the result in
Breeden and Litzenberger (1978), they compute the risk neutral distribution.
Their result is not consistent with economic theory, but, because they look
at the time continuity of m, r across time, we may understand their results
as estimates of the average kernel price over the sample period, rather than
as conditional estimates.

Additional problems in their article are discussed in Rosenberg and Engle
(2002). In particular they suggest that the non specification of the investors
beliefs about future return probabilities could be a problem in the evaluation
of the kernel price. Also their use of a very short period of time, 4 years, to
estimate the state probabilities may be problematic. Moreover, they depart
from the literature on stochastic volatility, which suggests that future state
probabilities depend more on the recent events than past events. In fact, past
events remain useful for prediction of future state probabilities. In order to
avoid this problem we use a dataset of 12 years of option prices.

A work close in spirit to Ait-Sahalia and Lo (1998) is Jackwerth (2000).
His article is one of the most interesting pertaining to this literature. Beyond
the estimation technique he used, his paper also opened up the well-known
”pricing-kernel puzzle”. In his nonparametric estimation of the kernel price,
Jackwerth finds that the shape of this function is in accordance with economic
theory before the crash of 1987, but not for the period after the crash. He
concludes that the reason is the mispricing of options after the crash.

Both articles could incur some problems that cause the kernel price and
the relative risk aversion function (RRA) to be not consistent with economic
theory. In Ait-Sahalia and Lo (1998), we see that, if the bandwidth changes,
the RRA changes as well and this means that the methodology used influ-
ences the shape of the RRA; on the other hand, in Jackwerth (2000), the use
of option prices after the crisis period could influence the shape of the kernel
price if volatility is misspecified.

Another nonparametric estimation model for the kernel price is given
by Barone-Adesi et al. (2008), where they relax the normality assumption
in Rosenberg and Engle (2002) and provide a nonparametric estimation of
the ratio ¢, r/pyr- While in the papers by Ait-Sahalia and Lo (2000) and

10



Jackwerth (2000) results are in contrast with the economic theory, Barone-
Adesi et al. (2008) find a kernel price which exhibits a fairly monotonically
decreasing shape.

Parametric methods to estimate the kernel price are often used in litera-
ture. Jackwerth (2004) provides a general review on this topic, but for the
purpose of our work we do not go into detail on parametric estimation. As
pointed out by Birke and Pilz (2009) there are no generally accepted para-
metric forms for asset price dynamics, for volatility surfaces or for call and
put functions and therefore the use of parametric methods may introduce
systematic errors.

Our goal is to test whether a different nonparametric method, starting
with option pricing observed in the market, respects the conditions of no-
arbitrage present in Birke and Pilz (2009). In particular, we test if the first
derivative of the call price function is decreasing in the strike and the second
derivative is a positive function. These conditions should guarantee a kernel
price monotonically decreasing in wealth.

It is important to underlying that our kernel price is a function of three
variables: the underlying price, the risk-free rate and the volatility. In the
first part, we use only the first two of them: the underlying asset and the risk-
free rate. At the end of the article we extend our methodology introducing
the volatility.

3 Empirical kernel price

In this section we compute the kernel price as the ratio of the risk-neutral
density and the historical one, discounted by the risk-free interest rate. In
the first part we describe how we compute the risk-neutral density. In the
second part, we explain our computation of the historical density. In each
part we describe the dataset we use and our filter for cleaning it.

For the risk-free we use the Unsmoothed Fama-Bliss zero-coupon rate.

The methodology followed for the estimation of these rates has been described
in Bliss (1997).

3.1 Risk-neutral density

Breeden and Litzenberger (1978) shows how to derive the risk-neutral density
from a set of call options with fixed maturity. They start from a portfolio

11



with two short call options with strike K and long two call with strikes K
- € and K + € and they consider 2% shares of this portfolio. The result is
a butterfly spread which pays nothing outside the interval [K - € ; K + €.
Letting € tend to zero, the payoff function of the butterfly tends to a Dirac
delta function with mass at K, i.e. this is simply an Arrow-Debreu security
paying $1 if S = K and nothing otherwise (see Arrow (1964)). In this case,
define K as the strike price, S; the value of the underlying today, r as the

interest rate, and 7 as the maturity time, the butterfly price is given by

[QO(St7 K7 T’ T) - O(St7 K — €, T7 T) - C(Stu K+ €, T: T)]

(12)
for ¢ — 0 and substituting equation 8 in equation 3 we get that the price of
the butterfly is:

1
Pyutteriy(ST) = 5

€

k+e
ll_rg(l) Pbutterfly = {_1:1_{% 6_TT /k+6 $butterfly(ST)Qt(ST)dST~ (13)
If we solve this equation, we get that
ll_l;% Pbutterfly = e_TTQt(ST)' (14)

Rearranging equations 9 and 10 we can have that

—rT 620<St7 K, T)

(15)
OK? g _x

lim P = e Tq(Sr) =
61_1)% butter fly € Qt< T) €

This result suggests that the second derivative of a call price (we will see
that it is also true for a put price) with respect to the strike price gives the
risk neutral distribution. In the next part of this section we see how to apply
this result in the discrete case.

In the following, we consider three call options with strikes K;, K; 1, K; 1,
where K;,1 > K; > K,;_1. We have seen that the price of a call option can
be written as:

o0

C(St, K, T) = / €_rT<ST — K)f(ST)dST (16)

K

We define F(x) as the cumulative distribution function, f(x) as the probabil-
ity density, C'(S;, K, T) as the price of a European call option, P(S;, K,T) as

12



the price of a European put option, and K as the strike price of the reference
option. According to the result in Breeden and Litzenberger (1978) taking
the first derivative with respect to the strike price, we get:

oC (S, K, T) 0 {

oK 0K /EG”W&r—Kﬁ@ﬁm&w:

K

o0

— TI—(K - K)f(K) + / F(Sr)dSy] =

K

= €_TT /OO —f(ST)dST = —€_TT[1 — F(K)]

K

F(K) ::erT§%§K€%i§§LZD-+-1 (17)

Which gives us the value for F(K) which is the cumulative distribution func-
tion. In order to find F(x) in the discrete case, we can use the following
approximation:

Civ1(S, K, T) — Ci—1 (S, K T)}
F Kz ~ erT i+1 ) ) ) ) ) + 1 18
(%) Kit1— Ki (18)
Now, take the second derivative in a continuous case, we have:
02C(S;, K, T)
K)=el—"— 19
F) =TS0 (19

that is the result in equation 15. We can approximate this result in the

discrete case as:

Cit1(Sy, K, T) = 2Ci(Sy, K, T) + C;_1(Si, K, T)
(Kiy1 — K;)?

f(K;) ~ e’

(20)

Sr=K

The same is also true for the put options. In that case the two approximate
distributions (cumulative and density) are given as:

H(&Kﬂ—ﬂﬂﬁKTW
F Kz ~ erT +1 ) IY , 1\, ’ 91
) Kit1— Ki (21)
and
FK;) ~ o7 P1(S, K, T) —2P,(S;, K,T) + P,_1(S;, K, T) (22)
Z (K1 — K)? -
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A recent paper by Figlewski (2008) is very close in spirit to our work. In
his paper he derives the risk neutral distribution using the same result in
Breeden and Litzenberger (1978). We differ from him in some aspects. First,
we use the bid and ask prices that are given on the market to construct
butterfly spreads. e.g. for the long position the ask price is used and for
the short position the bid price. This way we avoid negative values in the
risk-neutral distribution and we respect the no-arbitrage condition described
in Birke and Pilz (2009). Second, we do not need to convert the bid, ask,
or mid-prices into implied volatility to smooth the transition from call to
put because we take the average of butterfly prices from several days with
equal maturities and this improves the precision of our result (see Figure 2).
Other similar works are discuss in Bahra (1997), Pirkner et al. (1999) and
Jackwerth (2004).

In Bahra (1997), the author proposes several techniques to estimate the
risk neutral density. For every method he explains the pros and the cons. He
then assumes that the risk neutral density can be derived either in a para-
metric method, by solving a least squares problem, or in a nonparametric
method, using kernel regression. In our work, using a time series of options
over a sample of 12 years and taking the average of them, we avoid the para-
metric or nonparametric pricing step and therefore we rely only on market
prices.

In Pirkner et al. (1999), they use a combination approach to derive the
risk neutral distribution. They combine the implied binomial tree and the
mixture distributions to get the approach called “Mixture Binomial Tree”.
The main difference with this work is in the use of the options types. In their
work, they use American options and therefore they could have the problem
of early exercise. In our sample, we consider only European options to be
sure to have the risk neutral density for the appropriate expiration time.

Jackwerth (2004) may be considered as a general review of different meth-
ods and problems. He concentrates in particular on nonparametric estima-
tion, but he gives a general overview also on parametric works, dividing every
parametric work in a particular class and explaining the positive and negative
aspects.

In the next section we explain the estimation method we use for the risk
neutral distribution.
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3.2 Risk-neutral estimation

We use European options on the S&P 500 index (symbol: SPX) to implement
our model. We consider the closing prices of the out-of-the-money (OTM)
put and call SPX options from 2"¢ January 1996 to 29'* December 2007.
It is known that OTM options are more actively traded than in-the-money
options and by using only OTM options one can mitigate the potential issues
associated with liquidity problems.

Option data and all the other necessary data are downloaded from Op-
tionMetrics. We compute the risk-neutral density at two different maturities:
37 days and 72 days. Our choice of maturities is random and the same proce-
dure can be applied for other maturities. We download all the options from
our dataset with the same maturities (e.g. 37 days and 72 days) and we
discard the options with an implied volatility larger than 70%, an average
price lower than 0.05 or a volume equal to 0. In table 1 we summarized the
number of options that we have for each maturity.

Now, we construct butterfly spreads using the bid-ask prices of the op-
tions. The butterfly spread is formed by two short call options with strike K;
and long two call with strikes K;,; and K;_;. We divide the dataset and we
construct a butterfly spread for everyday (clearly the butterfly spread must
be symmetric around K; and the issue time and the maturity time must be
the same for all options). By dividing the dataset for each day we obtain
that the issue and maturity times are the same, we only have to ensure that
there is symmetry around the middle strike. We try to use the smallest
distance possible in the strikes to construct the butterfly spread. Following
the quotation for the SPX we use a difference of 5 points. However, for the
deep-out-of-the-money options we need to take into consideration a larger
distance because there are less options traded. In that case, we arrive to
have spreads of 10 to 50 points. Having a spread of 5 to 50 points does not
impact our probability computation because we adjust it by the spread.

Our methodology to construct butterflies is very simple. We download
the option prices, order by strike, from smallest to largest, we check if the
first three options are symmetric around the second one. If so, we construct
the butterfly, then we take into consideration the second to fourth values and
we check again if they are symmetric around the third, repeating this process
for every value. In this way, we have butterfly spreads which overlap some
options. We repeat the construction of the butterfly spread with the same
maturity for each day available in our dataset.
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At the end of this procedure we get a number of butterfly prices summa-
rized in table 1. In figure 1, we take a day at random from our sample and
we apply equations (21) and (22) to compute the risk-neutral distribution,
the historical distribution and their ratio as the SPD per unit probability.
We take as an example the 11 August 2005, and we look at options with a
maturity equal to 37 days. We see that for one day, the kernel price shows
a monotonically decreasing path in Sy with some jumps, because we do not
smooth the results.

[Figure 1 about here]

At this point, we take into consideration the moneyness of each butterfly.
As reference moneyness of the butterfly spread, we use the moneyness of the
middle strike. We round all the butterfly moneyness to the second digit after
the decimal point and we take the average of all the butterfly prices with
equal moneyness.! In table 1 we summarize the results after this procedure.
At this point we are ready to plot the risk-neutral distribution as an average
of the butterfly prices for a fixed maturity over a twelve year period.

3.3 Historical density

In order to construct the historical density we use a GARCH approach.
Specifically, we use the asymmetric GJR. GARCH model. As discussed in
Barone-Adesi et al. (2008), among the several GARCH models, the GJR
GARCH has the flexibility to capture the leverage effect and has the abil-
ity to fit daily S&P500 index returns. Under the historical measure, the
asymmetric GJR GARCH model is

S
L=+, (23)

lo =
ca

of =w+ fo; o + L€, (24)

where ¢, = oy2;, and z; ~ f(0,1), and I;_; = 1 when ¢,_; < 0, and [, 1 =0
otherwise. The scaled return innovation, z;, is drawn from the empirical
density function f(-), which is obtained by dividing each estimated return

'In order to find an equal moneyness it is necessary to round the moneyness values, to
the second decimal digit. At this point we are left with a lower number of prices that we
average.
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innovation, €, by its estimated conditional volatility &,. This set of esti-
mated scaled innovations gives an empirical density function that incorpo-
rates excess skewness, kurtosis, and other extreme return behavior that is
not captured in a normal density function.

The methodology we use to estimate the historical density is as follows.
We have butterfly prices for each day in the time series of twelve years,
with equal maturity. For each day, we estimate the parameters of the GJR
GARCH using a time series of 3500 returns from the S&P500. Once we get
the parameters for each day, we simulate 35000 paths and we look at the
probability that at maturity we exercise the butterfly. e.g. we count the
number of paths that at maturity are in the range [K; - K; 1, K; + K 1] =
1 (the length of the interval)?. To compute the probability density under the
historical measure, we apply the following relation:

#of paths in the interval
total number of paths
= fpaths (25)

[
Once we have computed the probability for each day, we can apply the same
methodology we use for the risk-neutral distribution. We round the butterfly
moneyness to the second digit after the decimal point and we take the average
over the sample period.

[Figure 2 about here]

We use the mid-strike for the butterfly and we round the moneyness to
two decimal places. We take the average throughout the time series and we
plot the distribution in respect to the moneyness.

3.4 Kernel price

We apply the definition given in equation 4 in order to get the kernel price.
From previous calculations we obtain the average risk-neutral distribution for
the fixed maturity and also the average historical density. We then discount
this ratio by the risk-free rate. To estimate the average kernel price we take
the kernel price of each day and then we compute the average from all the

2In our sample we use intervals with different lengths: most of them are intervals with
a length of 10 points, but we also have some intervals with 25 or 50 points, and these
intervals are in some cases overlapping
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days in our time series. We compute the average across time because of the
low number of data at each time.

We must keep in mind, throughout the process, that the risk-neutral
distribution and the historical distribution we plotted in figure 2, are not the
same ones we used to derive the kernel price. The kernel price is the average
of the kernel price of each day. The distributions are the average of each day
and therefore have a different kernel price.

[Figure 3 about here]

For all different maturities we get a monotonically decreasing path for
the kernel price and all of these are in accordance with economic theory?®.

4 Averaging price kernel over time

In this section we show the robustness of our methodology and we try to
find a smoothness criteria for smoothing our price kernels. First of all, we
show different price kernels with maturity close to the one we showed before.
According to economic theory, closing maturity price kernels should have
similar shape and therefore, averaging closing maturity, could be a good
criteria for smoothing.

The robustness of the methodology comes from the fact the the different
price kernels should be similar. In order to verify this, we create to samples:
the first one has maturities equal to 36, 37, 38 and 39 days. The second one,
71, 72, 73 and 74 days.

We use the approach explained in previous section to derive the price
kernel for a fixed maturity. By this method we derive the price kernels for
the maturities in the two samples and in the following figures we plot the
results of the two samples.

[Figure 4 about here]

The kernel prices show a clearly monotonically decreasing path except in
some points likely to be due to the discretization of the data. In order to
verify that the price kernels are monotonous over time, we plot the kernel

3The presence of some jumps is due to the empirical analysis we compute. In fact, we
do not introduce any smoothing criteria.
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price as the average of different days. In particular, referring to the two
samples (the first one is for maturities equal to 36, 37, 38 and 39 days and
the second sample for maturities equal to 71, 72, 73 and 74 days), we take
the average over the 4 different maturities. We expect to find a kernel price
that is monotonically decreasing in wealth, because of the close maturities
in our sample.

[Figure 5 about here]

As we see in figure 4, the kernel prices close in maturity, have similar
path. This result supports the robustness of our methodology.

In figure 5, we plot the average for the two samples and we get decreasing
kernel prices. In this way we were able to have a sort of smoothing criteria
without using methods which bias our dataset.

5 Price Kernel around a crisis

In this section we evaluate the change of kernel price during a crisis. In
particular, we look at kernel prices before and during a crisis. We divide
our sample in 4 periods. Every period is from 9 to 12 months and we take
periods which show a similar range in volatility according to the VIX index.

5.1 Estimate pricing kernels in different periods

In this subsection we explain how we choose different samples for the period

before and during a crisis. In particular we look at the VIX index, given by
the CBOE.

[Figure 6 about here]

From the VIX index, we can identify four different periods between Au-
gust 2004 and August 2008. The first period is from the 12" of August 2004
to the 15" of September 2005. In this period we can see that the volatility
is between 10 and 20 points. The second period is between 10" of November
2005 to 10" of October 2006. In this second period the volatility is again in a
limited range between 10 to 20 points. The third period, which is before the
crisis period, is between 14" of June 2006 to 14" of June 2007. Even here
the volatility is in a range of 10 to 20 points. The last period, the period
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of the beginning of the crisis is between 11" of October 2007 and 14" of
August 2008. In this period the volatility is much higher and it is in a range
between 10 to 30 points.

[Figure 7 about here]

For each period, we compute the price kernel by the methodology pre-
sented in sections 3 and 4. We fix a maturity (in this case we look at maturity
of 37 days) and we plot the kernel price of each period.

As expected, for the three periods before the crisis we get price kernels
monotonically decreasing and very similar in shape to each other.

[Figure 8 about here]

For the kernel price of the crisis period, we have higher values. This is
exactly what we expected to obtain. The probability of negative outcomes is
more higher and therefore we give more weight to negative outcomes. This
result is quite interesting. It proves how, using a robust method, the problem
arising in Jackwerth (2000) disappear and we still have results consistent with
economic theory.

6 Kernel price as a function of volatility

In this section we would like to extend our model and consider the kernel
price as a function of more variables. In fact, as explained in Chabi-Yo et al.
(2005), one way to overcome the problem of non monotonicity of the price
kernel is consider another factor: the volatility.

In a previous section we compute the price kernel as a function of two
variables: the underlying and the risk-free rate. We know from Pliska (1986),
Karatzas et al. (1987), and Cox and Huang (1989) that the kernel price is
characterized by at least two factors: the risk-free rate and the market price of
risk. In our analysis we would like to consider the kernel price as a function
of three different factors: the risk-free rate, the underlying price and the
volatility. We have already introduce the underlying price and the risk free-
rate. Now we want to introduce also the volatility: m,r(Sr,rs, o). Because
we look at a price kernel in a two-period model, we are not interested in
looking at the dividends, but an extension with multi-period kernel price
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could be interesting. In that case we should consider another factor: the
dividends.

We have already introduced the underlying price in our kernel price when
we use, as strike price, the moneyness. The moneyness is nothing else then
the k/S;. In order to introduce the volatility we take as a reference the idea
by Carr and Wu (2003). They use a moneyness defines as:

log(K/F)
ovVT

where F is the futures price, T is the maturity time and o is the average
volatility of the index.
For our propose, we can change this formula in:

K

St*0'7

moneyness =

moneyness =

Time to maturity is constant over the sample we consider because we fix
the maturity at the beginning. Therefore, we do not include the square of the
time in the analysis. Furthermore, the volatility is not anymore the average
volatility, but the implied volatility of each option.

The procedure for derive the kernel price is again the same we have seen
in the previous sections 4 and therefore our result for maturities equal 36,
37, 38 and 39 as well as 71, 72, 73 and 74 are:

[Figure 9 about here]

Also in this case the result are consistent with economic theory. In par-
ticular we can see how the kernel prices for close maturities are very similar
in agreement with what we expected.

7 Conclusion

This paper proposed a method to evaluate the kernel price in a specific day
for a fixed maturity as well as the average of different kernel prices in a time
series of 12 years for a fixed maturity. Using option prices on the S&P 500, we

4There is only a small difference when we round the new moneyness in order to average
different periods. We do not take the second digit after the point, but only the first one.
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derive the risk-neutral distribution through the well-known result in Breeden
and Litzenberger (1978). We compute the risk neutral distribution in each
day where we have options with a fixed maturity.

Then, we compute the historical density, for the same maturity, each day,
using a GARCH method, based on the filter historical simulation technique.
We then compute the ratio between the two probabilities discounted by the
the risk-free rate, in order to derive the kernel price for that given day. We
show that in a fixed day (chosen at random in our sample) the risk-neutral
distribution taken from the option prices respects the no-arbitrage condition
proven in Birke and Pilz (2009).

Therefore, we show that the ratio between the two probabilities, in that
particular day, is monotonically decreasing, in agreement with economic the-
ory (see figure 1). We also show how the average of the different kernel prices
across 12 years display the same monotonically decreasing path (see figure
3).

We also prove that average price kernels over time, if we take closing ma-
turities, exhibit a monotonically decreasing path in agreement with economic
theory.

In the extension of our model, considering the volatility in the kernel
price, the average across several years results more smooth and still coherent
with economic theory.

In the last part, we show the changing in shape of different price kernels
before and during the recent crisis. We see that before the crisis the price ker-
nels are monotonically decreasing with a similar value while during the crisis
the pricing kernel reaches higher values. This is exactly what we expected
to obtain. The probability of negative outcomes is higher and therefore the
market gives more weight of negative outcomes.
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Figure 1: Left: Risk-neutral distribution (black line) and the historical distri-
bution (gray line). We take one day at random from our sample (11 August
2005) with maturity equal to 37 days. Right: SPD per unit probability for
this particular day (11 August 2005).
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Figure 2: Risk neutral and historical distribution as the average of 12 years
risk neutral and historical distribution for a fixed maturity. Left: maturity
equal to 37 days, right maturity equal to 72 days.
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Figure 3: SPD per unit probability as the average of the SPD per unit
probability throughout the time series of 12 years and with equal maturity.
Left: 37 days, right 72 days. It is important to bear in mind that this SPD
per unit probability is not derived from the two distributions given in figure
2.
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Figure 4: SPD per unit probability for different maturities. Left: from top
to bottom, SPD per unit probability for maturity equal to 36, 37, 38 and 39.
Right: from top to bottom, SPD per unit probability for maturity equal to

71, 72, 73 and 74.



10

)
T

SPD per unit probability
SPD per unit probability
-

(5]

‘ ‘
‘ ‘ ‘ ‘ ‘
0.7 058 0.9 1 11 1.2 13 07 08 09 1 11

SIS, SIS,

Figure 5: SPD per unit probability over time. Left: SPD per unit probability
for the first sample (from 36 to 39 days). Right: SPD per unit probability
for the second sample (from 71 to 74 days).
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Figure 7: The VIX samples we use to compute the different SPD per unit
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the pre-crash kernel prices, while the dash line is the kernel price in the crisis
period.
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Figure 9: SPD per unit probability for different maturities. Left: from top
to bottom, SPD per unit probability for maturity equal to 36, 37, 38 and 39.
Right: from top to bottom, SPD per unit probability for maturity equal to
71, 72, 73 and 74.
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Chapter 2
Hedging Treasury Bond Portfolios






ALTERNATIVE MODELS FOR HEDGING YIELD CURVE RISK: AN EMPIRICAL
COMPARISON

This version: 21d of January, 2011

ABSTRACT

We test alternative models of yield curve risk by hedging US Treasury bond
portfolios through note/bond futures. We show that traditional implementations of
models based on principal component analysis, duration vectors and key rate
duration lead to high exposure to model errors and to sizable transaction costs, thus
lowering the hedging quality. Also, this quality randomly varies from one model and
hedging problem to the other. We show that accounting for the variance of modeling
errors substantially reduces both hedging errors and transaction costs for all
considered models. Additionally, it leads to much more stable weights in the
hedging portfolios and - as a result - to more homogeneous hedging quality. On this
basis, error-adjusted principal component analysis is found to systematically and

significantly outperform alternative models.

Keywords: Yield curve risk, interest rate risk, immunization, hedging.

JEL codes: G11; E43
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Introduction

We define yield curve risk as the risk that the value of a financial asset might change
due to shifts in one or more points of the relevant yield curve. As such, it represents
one of the most widely spread financial risks: each institution having to match
future streams of assets and liabilities is exposed - up to a certain extent - to it.

A simple, but effective way to cope with yield curve risk is to match positive
with negative cash-flows. Unfortunately, the dates and the amounts of future cash-
flows are often subject to constraints, so that implementing an accurate matching
might either not be possible or be very expensive. In these cases, immunization
techniques are employed to manage yield curve risk. These techniques make the
sensitivity of the assets and the liabilities to yield curve changes similar to each
other, so that the overall balance sheet will not be largely affected by these changes.

Initially, academicians and practitioners focused on the concept of duration -
introduced by Macaulay (1938) - for implementing immunization techniques.
Duration represents the first derivative of the price-yield relationship of a bond and
was shown to lead to adequate immunization for parallel yield curve shifts.

The assumption of parallel yield curve shifts could be released thanks to the
concept of convexity which was initially related to the second derivative of the price-
yield relationship (Klotz (1985)). However, the impact of interest rate changes over
a few weeks is normally well-approximated by duration. Bierwag et al. (1987) and
Hodges and Parekh (2006) showed that the usefulness of convexity is generally not

related to better approximating the price-yield relationship, but rather to the fact
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that hedging strategies relying on duration- and convexity-matching are consistent
with plausible two-factor processes describing non-parallel yield curve shifts.

Extensions of these strategies were based on M-square and M-vector models
introduced by Fong and Fabozzi (1985), Chambers et al. (1988), and Nawalka and
Chambers (1997). Similarly as for convexity, most of these models relied on the
observation that further-order approximations of the price-yield relationship lead
to immunization strategies which are consistent with multi-factor processes
accurately describing actual yield curve shifts. Nawalka et al. (2003) reviewed these
duration vector (DV) models and developed a generalized duration vector (GDV).

A second class of immunization models relied on a statistical technique
known as principal component analysis (PCA) which identifies orthogonal factors
explaining the largest possible proportion of the variance of interest rate changes.
Litterman and Scheinkman (1988) showed that a 3-factor PCA allows to capture the
most important characteristics displayed by yield curve shapes: level, slope, and
curvature. Accordingly, models matching the sensitivity of assets and liabilities to
these three components should lead to high-quality hedging.

A third approach relied on the concept of key rate duration (KRD) introduced
by Ho (1992). According to this approach, changes in all rates along the yield curve
can be represented as linear interpolations of the changes in a limited number of
rates, the key rates. A significant extension of this approach in the presence of
restricting constraints was developed by Reitano (1996).

In practice, yield curve hedging techniques mostly rely on one of these three

classes of models. However, we are not aware of a conclusive evidence on their
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relative performance2. On the contrary, studies conducting empirical tests of these
models reported puzzling results: models capable to better capture the dynamics of
the yield curve were not always shown to lead to better hedging. This was the case
of the volatility- and covariance-adjusted models tested by Carcano and Foresi
(1997) and of the 2-factor PCA tested by Falkenstein and Hanweck (1997) which
was found to lead to better immunization than the corresponding 3-factor PCA.

Carcano (2009) tested a model of PCA-hedging which controls the exposure
to model errors. He found that - by introducing this adjustment - 3-component PCA
does lead to better hedging than 2-component PCA, as theory would suggest. On this
basis, he claimed that random changes in the exposure to model errors might have
led previous empirical tests of alternative hedging models to inconclusive results.

The goal of this paper is to identify the model capable of minimizing yield
curve risk based on a sound empirical evidence. We expected the exposure to model
errors to play a crucial role in determining the performance of alternative models.
Once appropriate consideration is given to this exposure, the success of the tested
models should mainly depend on how well the underlying stochastic process
catches the actual dynamics of the yield curve. Accordingly, we extended all three
mainstream immunization approaches in order to account for model errors and
compared them among themselves and with their traditional implementations.

We relied on previous evidence that three factors are sufficient to explain the
vast majority of the yield curve dynamics and tested only three-factor models.
Accordingly, we expected the quality of the resulting error-adjusted hedging

strategies to be comparable. The PCA model is constructed in a way to explain the
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largest possible part of the variance of yield curve shifts based on three orthogonal
factors. Accordingly, we suspected that - once we account for model error exposure
- this model would slightly outperform the alternative models.

We tested the three models by hedging portfolios of US T-bonds and T-notes
through T-bonds and T-notes futures. The results confirmed our expectations: even
though we could not clearly rank the models based on their traditional version,
hedging based on PCA is consistently the best choice when the error-adjustment is
introduced. This adjustment is also shown to improve the performance of all three
models and to lead to substantially more stable hedging equations.

The remainder of the paper is organized as follows: section 1 presents the
hedging models we are going to test and their theoretical justification. Section 2
describes our dataset and testing approach. Section 3 reports our results, both on
the full sample as well as on three sub-samples, while Section 4 concludes and

indicates some possible directions for future research.

1. The Hedging Methodology

1.1. The sensitivity of bond and future prices

We consider the problem of immunizing a risk-free bond portfolio which at time t
has a value V; by identifying the optimal underlying value ¢, to be invested in each
of the four US T-note/T-bond futures (the 2-year, the 5-year, the 10-year, and the

30-year contracts). We group the cash flows of the bond portfolio and of the
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cheapest-to-deliver (CTD) bonds underlying the futures in n time buckets. Following
the most common approach to this immunization problem as in Martellini and

Priaulet (2001), we impose the so-called self-financing constraint:
4
Z¢y,t =H, =V, (1)
y=1

In our context, the latter constraint implies that the market value of the portfolio to
be hedged must be equal to the market value of the underlying CTD bonds of the
hedging portfolio. In practice, the amounts to be invested in the hedging portfolio
are often constrained, even though the form of these constraints can differ from the
last equation. Accordingly, we felt that including a constraint would make our
empirical tests more realistic.

We decided to analyze the quality of alternative hedging models on a
relatively short hedging horizon, which was set equal to one month. This choice was
motivated by the fact that many institutional investors and portfolio managers do
have a time horizon of 1 to 3 months, when they set up their hedging strategies.
After this period, they mostly reconsider the whole hedging problem and determine
a new strategy.

The market risk for the portfolio to be hedged comes from unexpected shifts
in the corresponding continuously compounded zero-coupon risk-free rates R(t,Dx),
where Dy indicates the duration and maturity of the corresponding time bucket. We
assume, for simplicity, that all rates are martingales: that is, E[dR(t,D«)]=0 for every

k and t. Accordingly, we computed the unexpected return of a bond as the return in
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excess of what would have been obtained if the promised yield had remained
constant throughout the hedging period3.

Approximating the dynamics of the term structure through a limited number
of factors results in a difference between the modeled and actual dynamics of
interest rates, the model error. For a generic 3-factor model of the term structure of
interest rates, we can describe the dynamics of the zero-coupon risk-free rate

R(t,Dy) of maturity Dy as:
3
dR(t,D,)=> ¢, F' +&(t,D,) (2)
1=1

where Fl; represents the change in the I-th factor between time t and t+1, ci
represents the sensitivity of the zero-coupon rate of maturity Dy to this change, and
¢ represents the model error.

As reported in several papers, like Hodges and Parekh (2006), the impact of
monthly rate changes on the price of a zero-coupon bond can be well-approximated
by its duration. Accordingly, we will follow this simplifying approach.

Estimating the sensitivity of future prices to changes in zero rates is more
complex. In the past, researchers implementing hedging strategies through note and
bond futures attempted to simplify the problem. One approach has been to calculate
the sensitivity of futures through standard regression analysis (an example of this
approach can be found in Kuberek and Norman (1983)). Such an approach implicitly
assumes that the sensitivity of the future price is constant over time, whereas

practitioners know well that this sensitivity varies significantly with the underlying
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CTD bond. Since we intended to test realistic hedging strategies, we decided not to
follow this approach.

The approach we decided to follow in the estimation of bond future
sensitivity can be better described by splitting the market price of these futures in
two components: the theoretical price excluding the value of the embedded options
and the basis.

The theoretical price of a bond future excluding the value of the embedded
options FP can be represented by the following expression:

1 \ CfCTD k . R(t,D,)D,
FR, = L gRILDID: A
t CFerp |:k=zs+1 eRtP 0 cTos (3.

where CF indicates the Conversion Factor, cfcrp indicates the cash-flow paid by the
cheapest-to-deliver bond at time k, and Alcrps represents the accrued interests of
the cheapest-to-deliver bond on the expiration date s of the future contract. The only
cash-flows of this bond which are relevant for the valuation of the future contract
are the ones maturing after the expiration date s.

Approximating the effect of rate changes on the price of a zero bond by its
duration, the percentage sensitivity of the future price to these changes can be
expressed as:

oFP
FR___ D ™™ clep,
R(t,D,) FR CFR,, eXtd)P

=D, @erpy (4)

for all rates maturing after the future contract (i.e.: k > s) and
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oFP

I:Pt D eR(tvDs)Ds n CfCTDk n
~ S i = DS , = _Dsa) S 5'
8R(t, DS) FP CF.p kle eR(tDA)D, k—zsﬂ CTDK.t CTD.s t (5.)

for the zero rate with maturity equal to the expiration of the future contract, where

ocrpk represents the percentage of the CTD future price related to the CTD cash-

flow with maturity k and is defined based on the last two equations. The sensitivity
of the future price to changes in zero rates maturing before the future contract is
zero, which implies: ocrpie= 0 for all k <.

The second component of the market price of a future is represented by the
basis. Within the basis, we can identify three further components:

1. The carry, which we estimated as the difference between the yield of the CTD
bond and the 1-month risk-free rate applied from the starting date of the
hedging period to the expiration of the future contract. The basis net of carry -
the so-called net basis - is the sum of the two following components 2 and 3.

2. A possible mispricing between the cash and the future market and/or data
quality issues, like the difference in the time at which spot and future prices are
observed (5 pm for bonds, 2 pm for futures) and in their meaning (mid price for
bonds, closing price for futures).

3. The value of the embedded options. As illustrated by Fleming and Whaley
(1994), future contracts embed 4 types of options. The first option is a quality
option that permits the short position to deliver the CTD bond to the long

position. The other three options are defined time options*.
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For all components of the basis, we need to distinguish expected from
unexpected changes. If the latter changes display a dependency on yield curve shifts,
this would represent a further source of future price sensitivity to such shifts and
would influence the optimal hedging strategy.

For the carry, given our focus on the next expiring future, actual changes
during the hedging period are dominated by its time-decay. Accordingly, we
estimated this time-decay as a component of futures expected return and neglected
unexpected changes due to modifications in the yield curve shape.

For the net basis, we followed Grieves et al. (2010) in the assumption that
this value should be expected to be linearly amortized in order to get to zero by the
contract expiration. An analysis we performed on the average absolute value of the
net basis confirmed that the hypothesis of a linear amortization is fully consistent
with empirical evidence. Accordingly, we estimated the unexpected change as the
difference between the actual value of the net basis at the end of the hedging period
and its expected value. In the expiring months of future contracts (therefore, in one-
third of our test sample), we imposed this difference to be zero because of the non-
arbitrage condition. We then performed a regression of unexpected changes in the
net basis on changes in the 1-year risk-free rate for each of the future contracts
without finding any evidence of a statistically significant dependency®. This result
allows us to estimate the sensitivity of bond futures to unexpected changes in the
yield curve simply based on equations (4.) and (5.).

In order to assess if our results are robust to a possible underestimation of

the sensitivity of embedded options, we will perform a sub-sample analysis. In fact,



Rendleman (2004) and Grieves et al. (2010) highlighted that the value of the
delivery option has a low impact on hedging strategies based on the next-expiring
future contract, when yields are not too close to the notional coupon of the future
contract. Accordingly, we will assess if and how our results are sensitive to the

difference between market yields and the notional coupon.

1.2. The development of the hedging equations

Given the approach to estimate the sensitivity of bond and future prices to zero rate
changes described in the previous sub-section, we approximate the total unexpected

return y provided by the combination of the two portfolios Vand H as follows:

4 n n

Yy =— ¢y,tZdR(t’ D, )Dka)y,k,t +ZdR(t’ D, )DkAk,t (6)
y=1 k=1 k=1

where 4; indicates the present value of the bond portfolio cash-flows included in the

i-th time bucket. As in Carcano (2009), we assume that the error terms ¢ of two zero

rates of different maturity are independent from each other. Additionally, we

assume that the error term of the zero rate of maturity Dx is independent from the

3
fitted values ) c,.F' of all considered zero rates, including the zero rate of maturity
1=1

Dr®. On this basis and relying on the definition of dR(¢t,Dx) given in (2.), the expected

squared value of the unexpected return can be approximated by:
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If we construct the Lagrangian function as:

L((pt’/ut): E( tz)_lut('\§1¢y,t_Ht] (8.)

and we set its first derivatives equal to zero, we obtain the self-financing constraint

(1.) and the following 4 equations for each future j included in the hedging portfolio:

Z@Z oM VDKE{ZC"(F ZChVFh}rG t.D) Dkw,kt}{z b Dyt~ 'D:M 9.

The proof of the second order condition of the minimization can be obtained
analogously as in Carcano (2009). For each error-adjusted hedging strategy, the
optimal weights ¢, to be invested in each future have been calculated based on the
last set of equations.

The key advantage of the error-adjustment can be identified by analyzing the
two terms of equation (7.). Traditional hedging methods are nested within this
equation since they simply ignore its second term. In fact, it can be easily seen that if
we set the model error volatility o, equal to zero, the whole equation (7.) reduces to

zero when the following equation is true for each risk factor I:

Z(A( CIkD z¢yt yktCIk j 0 (10)

k=1
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The last equation summarizes the common idea behind all traditional
hedging equations, which is that the sensitivity of the portfolio to be hedged to the
three risk factors must be exactly replicated by the sensitivity of the hedging
portfolio. However, this idea has the disadvantage of ignoring the second term of
equation (7.) and particularly the exposure to the model error for each zero rate of

maturity k, which is represented by the following expression:

[Dk A(,t _Z¢y,t Dka)y,k,tJ (11-)
y=1

The unconstrained set of equations (10.) can lead to high values for
expression (11.). This weakness of traditional hedging approaches can be
substantially reduced by the error-adjustment, which leads to a hedging portfolio
minimizing the whole equation (7.) and not only its first term. In the following
paragraphs, we explain how we estimated the PCA, DV, and KRD models and recall
the specific form of equations (10.) for their traditional implementation.

In the case of the PCA model, the factors included in equation (2.) are the
three principal components. The factors, factor sensitivities, and error terms have
been directly obtained by the application of the PCA methodology. The weights ¢, to
be invested in each future according to the traditional implementation of PCA must
satisfy the self-financing constraint and equations (10.), which in this case take the

following form:
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For the DV model, we refer to Chambers et al. (1988). The process underlying
this model can be considered as a special case of the generic process (2.), where the
three sensitivity parameters ci have been set equal to - respectively - 1, Dk, and D)2
In addition to the self-financing constraint, the traditional version of the DV model

leads to the following system of hedging equations:

] M3
M»

=~

N
T

N

¢y,ta)y,k,t D :anAk,t D,

=}

) Mb

LN

¢y,t0)y,k,t[f :anAk,t D<2

k=1 y:

(13)

|M4>

L

¢y,t%,k,tD§ = & Ak,t Df

k=1 y:

The linear 3-factor process of zero rate changes which is consistent with this model

and minimizes the model error is represented by:

dR(t,D, )= F!+F’D, + F’D} +&(t,Dy) (14.)
where the factors and the error terms have been estimated applying the ordinary
least square technique to the changes in all considered zero rates between time ¢t
and t+1. Itis visible that if we multiply each term of the last equation by Dk in order

to estimate the sensitivity of the bond price to the zero rate change, we obtain the

overall sensitivity to the factor changes on which the equations in (13.) are based.
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A review of the DV methodology is given in Nawalkha et al. (2003) who
propose and test a generalization of it. They found out that - for short immunization
horizons like the one we are going to assume - a GDV model leading to lower
exponents for Di than in (14.) leads to better immunization. They suggest that the
reason for this result might be that lower exponents are consistent with mean
reverting processes leading to higher volatility for short-term rates than for long-
term rates (a characteristic consistently displayed by yield curve shifts).

Particularly, they suggest a model which results in setting the three
sensitivity parameters of expression (2.) equal to - respectively - Dx'%75, Di05,and D

0.25, This leads to the following system of hedging equations:

n 4 n
2 2 0 D0 =2 A
k=1

k=1 y=1
: 4 0.5 X 0.5
Z¢y,ta)y,k,tDk. :ZAgtDk.
k=1 y=1 k=1
n_ 4 n (15)
0.75 0.75
Z¢y,ta’y,k,t D~ = ZAu D,
k=1 y=1 k=1

Following the same reasoning described above, the linear 3-factor process of
zero rate changes which is consistent with the last set of equations and minimizes

the model error is represented by:

F! F’ F°

dR(t’ Dk) DIE).YS + DSS + DS.ZS

+¢(t,D,) (16.)

where the factors and the error terms have been estimated like in the DV model.
It should be highlighted that Nawalkha et al. (2003) tested a version of DV

and GDV models including a minimization of the squared values of the weights g,.

49



This was motivated by the fact that the number of the hedging instruments
exceeded the hedging constraints. This does not apply to our case, since we have
four hedging constraints (e.g.: for the GDV model, the three constraints reported
under (15.) and the self-financing constraint) and four hedging instruments (the
four bond/note future contracts included in our dataset).

For the KRD model, we refer to Ho (1992). The resulting process of zero rate

changes can be described as:

dR(t,D, )= icltRD F' +&(t,D,) (17.)

1=1
where in this case the factor F' represents the I-th key zero rate change and ci
represents the sensitivity of the zero-coupon rate of maturity Dy to this change
which has been defined following Nawalkha et al. (2005).
In addition to the self-financing constraint, the resulting system of hedging

equations for the tradition KRD model is:

n 4 n
Z Z¢y,t wy,k,thEDDk = Z'Ak,thkRDDk
k=

k=1 y=1

o KRD . KRD

Zz¢y,twy,k,tcz,k Dy :Z'Ak,tcz,k D,

k=1 y=1 k=1

n y4 . (18.)
KRD KRD

Z ¢y,ta)y,k,tc3,k D, :ZA<,IC3,k D,

k=1 y=1 k=1

Also in this case, the error terms have been estimated applying the ordinary least
square technique to the changes in all considered zero rates between time t and t+1,
where the 2-year, 12-year, and 22-year zero rates have been used as key rates and

have been assumed to be also exposed to model errors.
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2. The dataset and the testing approach

We tested the alternative hedging strategies on 144 monthly periods from
December 1996 to December 2008. The portfolio to be hedged is formed by 8 US
Treasury bonds and notes. We defined 8 time buckets with maturity equal to -
respectively - 2, 4, 6, 8, 10, 16, 20, and 26 years. In order to select the securities
included in the portfolio to be hedged, we impose three conditions: the bonds or
notes must have a publicly held face value outstanding of at least 5 billion US$, the
first coupon must already have been paid and the maturity date must be as close as
possible to the one of the corresponding time bucket’.

The hedging portfolio was formed by the four US T-bond and T-note future
contracts with denomination of - respectively - 2, 5, 10, and 30 years. We always
referred to the next expiring future contract.

For each contract and each month, we identified the cheapest-to-deliver
bond following the net basis method. As pointed out by Choundhry (2006), there is
no consensus about the best way to identify the CTD. The two most common
methods rely either on the net basis or on the implied repo rate (IRR). In academia,
the second method is the most widely used, while practitioners often argue that the
net basis approach should be used since - as pointed out by Chance (1989) - it
measures the actual profit and loss for a cash-and-carry trade. The cheapest-to-
deliver bonds have been identified relying on the monthly baskets of deliverable
bonds and conversion factors (CF) kindly provided to us by the Chicago Mercantile

Exchange (CME).
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We extracted all information related to US Treasury bonds and notes (both
for the securities included in the portfolio to be hedged as well as for the cheapest-
to-deliver bonds of the future contracts) from the CRSP database. This included both
mid prices and reference data. The closing price of the future contracts has been
provided by Datastream. From both databases, we only downloaded end-of-month
data.

In order to estimate the sensitivity of each financial instrument to the three
selected factors, we calculated the present value of each individual cash-flow. For
the future contracts, this calculation was based on the cheapest-to-deliver bonds.
The discount rate we used for this calculation relied on the Unsmoothed Fama-Bliss
zero-coupon rates. The methodology followed for the estimation of these rates has
been described in Bliss (1997). We used the same set of zero rates between May
1975 and December 1996 to estimate the parameters of all tested hedging models.

We test our hedging strategies by varying the weights invested in the 8
bonds of the portfolio to be hedged. The first 3 portfolios are identified as bullet
portfolios, because the vast majority of the bond positions matures in the same
period. For the short bullet, this period is within 5 years; for the medium bullet, it is
between 8 and 16 years, and for the long bullet it is over 20 years. The other three
portfolios replicate typical bond portfolio structures: ladders (evenly distributed
bond maturity), barbells (most bonds mature either in the short term or in the long
term), and butterflies (long positions in bonds maturing either in the short term or
in the long term and short positions in bonds maturing in the medium term). The set

of equations (9.) is solved at the end of each month for each hedging strategy and
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each of the 6 bond portfolios; the hedging portfolio for the following month is based
on the resulting weights ¢, for each future contract.

In order to assess the quality of a certain immunization strategy, we analyze
the Standard Error of Immunization (SEI), that is, the average absolute value of the
hedging error. The hedging error is the difference between the unexpected return of
the bond portfolio to be hedged and the unexpected return of the futures portfolio.
Lower SEI indicates higher quality of the immunization strategy. The unexpected
return of the bond portfolio is based on the excess return provided by the CRSP
database for the individual bonds. For the future contracts, the actual return has
been calculated in two different ways depending if the contract expired during the
hedging period or not. In the case of no-expiration, the actual return has been
simply calculated as the percentage change in the quoted future price. In the case of
a contract expiration, the actual return has been calculated assuming an opening of
the future position at the end of the previous month and a delivery of the cheapest-
to-deliver bond at the end of the expiration month. The cheapest-to-deliver bond
has been identified as the bond with the highest delivery volume based on the actual
delivery statistics provided by the CME. The unexpected return of each future
contract has been calculated as the difference between the actual return and the
expected return for the long position which - as explained in 1.1 - was set equal to
the sum of the time-decay expected for the carry and the linear amortization of the
net basis.

Given the dependency of different hedging strategies on the same case and

time, we estimate statistical significance following an approach of matched pairs
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experiment. In other words, we calculated the difference between the absolute value
of the hedging errors generated by two strategies on the same case and holding
period. Our inference refers to the mean value of this difference. As a benchmark
model, we use the error-adjusted PCA, which was expected to be the best performer.

For each hedging problem, we also estimate the square root of the average
sum of the squared weights ¢, expressed as percentages of the bond portfolio value.
This estimate is a useful proxy of the level of transaction costs implied by each
hedging strategy. In fact, these costs are normally proportional to the sum of the
absolute value of all long and short future positions.

Finally, we analyzed our dataset in order to assess when market yields
should be considered too close to the notional coupon of the future contracts. As
explained in section 1.1, we intend to base our sub-sample analysis on this
assessment. This will allow us to isolate the observations for which the impact of the
delivery option is likely to be tangible from the rest of the sample.

We followed Grieves et al. (2010) in defining too close as an absolute distance
not greater than 0.5%. Figure 1 highlights the period during which market yields
were within this distance from the notional coupon. It was the period starting from
March 2000 (when the notional coupon was lowered from 8% to 6%) and ending in
June 2004 (when the market yield of the 30-year bond briefly touched the lower
limit of our range). Accordingly, we will use these two dates to limit our sub-

samples.



Fig. 1. Assessing the distance between the yields of the 2-year, 5-year, 10-year
and 30-year Treasury bonds and the future notional coupon (Source:

Datastream)
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Note: the chart represents the continuous time series of the par yields of the US Treasury bonds with
maturity equal - respectively - to 2, 5, 10, and 30 years. The marked area represents a distance of +/-
0.5% from the notional coupon of the future contracts. When bond yields are within this area, the
value of the embedded options is expected to be particularly relevant also for the next-expiring

future contracts.
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3. The results

After estimating the parameters of the tested models between May 1975 and
December 1996, we analyzed the size of the model errors on the same sample. As
expected, all models explain a high proportion of the variance of interest rate
changes, but this proportion is slightly higher for the PCA model (circa 95%) than
for the DV model (circa 93%) and the KRD model (circa 92%). The main reason for
the worse performance of the latter models is their inability to correctly account for
the term structure of volatility (i.e.: the higher volatility of short-term rates). The
GDV model shares this strength of the PCA model and leads to similar model errors.

The results of the strategies based on the PCA, DV, and KRD models are
reported in Exhibits 1 to 3. For the sake of brevity, we have not reported the results
provided by the GDV model which led to significantly worse hedging than the
simpler DV model. This outcome is not consistent with the abovementioned findings
of Nawalkha et al. (2003). We believe that the reason for this inconsistency is the
relatively high sensitivity of the futures to changes in the zero rate of maturity s (the
expiration date of the contract), which affects the full cost-of-carry8. This leads to a
high exposure to model errors which overwhelms the relatively good quality of the
underlying process of interest rate changes.

Exhibit 1 shows a comparison of the results of the three methods in their
traditional forms. As expected, these results are puzzling. Even though we know the
interest rate processes underlying these models to be of a comparable quality, their

hedging performance is quite different: for the PCA model, the average hedging
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error represents less than 10% of the unexpected return volatility we intended to
hedge, whereas this ratio is substantially higher for the KRD and the DV models.
Following Carcano (2009), we believe this outcome to be due to a widely different
exposure to model errors; the substantially lower Squared Weights statistic of the
PCA relatively to the other two models suggests that this might indeed be the case.
However, this observation raises a further question: why is the Squared Weights
statistic of similar models estimated on the same data set so different? We will come

back to this question at the end of this section.

Exhibit 1

Testing the most common hedging techniques in their traditional form. (December 1996 - December

2008, 144 monthly observations)

Portfolio to be hedged Traditional PCA Traditional KRD Traditional DV
Case Description | Standard deviation SEI SEI SEI
of unexpected return over over over
(ov) Gy Squared Gy Squared Gy Squared
W @ weightsm w @ weights W @ weights
Short Bullet 1.44% 9.12% | ** 111 10.85% | *** | 118  |12.09% | ***| 138
Medium Bullet 1.84% 7.85% | ** 1.10 9.84% | *** 1.48 11.04% | *** 1.68
Long Bullet 2.18% 8.47% | *** 1.26 18.69% | *** 461 | 20.26% | *** 4.85
Ladder 1.82% 8.59% | *** 1.14 15.36% | *** 2.92 16.88% | *** 3.16
Barbell 1.81% 9.66% | *** 1.24 21.04% | *** 4.41 22.69% | *** 4.58
Butterfly 1.81% 11.58% | *** 1.47 29.27% | *** 6.57  |30.94% | *** 6.62
Average 1.81% 9.18% 1.22 17.75% 3.53 19.24% 3.71

Note: (1) SEI (Standard Error of Immunization) represents the average absolute value of the
hedging error; the hedging error is the difference between the unexpected return of the bond
portfolio to be hedged and the unexpected return of the future portfolio. (2) Statistical
significance is related to the average difference between the absolute value of the hedging errors
for the tested strategy and the error-adjusted PCA: “*” indicates 10% significance, “**” indicates

5% significance, and “***” indicates 1% significance. (3) It indicates the square root of the
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average sum of the squared weights ¢ expressed as percentages of the value of the bond

portfolio.

Our second step is to analyze the performance of the three methods in their
corresponding error-adjusted versions. In Exhibit 2, we compare these results. They
support our initial hypothesis that controlling the exposure to the model errors
significantly improves the hedging quality. In particular, the error adjustment leads
to an average reduction in the SEI of 17% for the PCA model, whereas this reduction
equals 39% for the KRD and 53% for the DV models. This reduction is statistically
significant for each model and each of the 6 tested bond portfolios. The reduction in
the squared weights statistics obtained for the error-adjusted models is also very
substantial, thus highlighting a second important advantage of this adjustment: the
cut in transaction costs. If the costs of setting up the hedging strategy are indeed
proportional to our squared weights statistics, then the reduction in these costs
would be around 50% for the PCA and 80% for the other two models.

Also, the differences among the hedging performances of the three models
are significantly lower in Exhibit 2 than in Exhibit 1. Since the quality of the
underlying interest rate processes is comparable, this makes sense and confirms
that the results reported in Exhibit 1 were influenced by widely different model
error exposures. However, the slightly superior quality of the process of interest
rate changes underlying the PCA model systematically leads to better hedging: on
each of the 6 tested bond portfolios, the PCA model outperforms both alternative

models and this outperformance is always statistically significant.
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Exhibit 2

Testing the most common hedging techniques in their error-adjusted form. (December 1996 -

December 2008, 144 monthly observations)

Error-Adjusted PCA Error-Adjusted KRD Error-Adjusted DV
Ca.se. SEl over SEl over SEl over

Description oy Squared oy Squared oy Squared
) @ weights® ) @ weights & @ weights

short Bullet |  8:00% 0.53 9.01% *rs 0.54 8.96% *x 0.54

MBeud”':tm 7.14% 0.62 7.99% xx 0.62 7.83% * 0.59

Long Bullet 6.99% 0.75 10.44% whx 0.91 7.73% *rx 0.73

Ladder 7.25% 0.60 9.69% *er 0.67 7.62% * 0.59

Barbell 7.74% 0.64 12.08% *rs 0.78 8.67% *r 0.60

Butterfly 8.92% 0.80 15.97% *a 0.98 13.48% | ** 0.62

Average 7.64% 0.66 10.90% 0.75 9.00% 0.61

Note: (1) SEI (Standard Error of Immunization) represents the average absolute value of the hedging
error. The hedging error is the difference between the unexpected return of the bond portfolio to be
hedged and the unexpected return of the future portfolio. (2) Statistical significance is related to the
average difference between the absolute value of the hedging errors for the tested strategy and the
error-adjusted PCA: “*” indicates 10% significance, “**” indicates 5% significance, and “***” indicates
1% significance. (3) It indicates the square root of the average sum of the squared weights ¢,

expressed as percentages of the value of the bond portfolio.

In Exhibit 3, we report the hedging quality statistics we would have obtained
if the performance of the hedging portfolio would have been calculated on the initial
cheapest-to-deliver bonds, instead of on the future contracts. The purpose of this
exhibit is to provide us with an attribution of the hedging error. In fact, the
difference between the SEI reported in Exhibit 1 (Exhibit 2) and the one reported in

Exhibit 3 for the traditional (error-adjusted) form of the tested models is an
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estimate of the impact on the hedging errors of elements which are specific to the

future contracts and do not influence the prices of the cheapest-to-deliver bonds.

Exhibit 3

Calculating the performance of hedging models based on the initial cheapest-to-deliver bonds

(December 1996 - December 2008, 144 monthly observations).

Case Description PCA KRD v
Traditional® Error—Adjusted(l' Traditional®” Error—Adjusted'l) Traditional” Error—Adjusted(l'
Short Bullet 7.55% 4.50% 7.44% 5.40% 9.61% 5.59%
Medium Bullet 6.29% 4.57% 7.05% 5.64% 8.58% 5.25%
Long Bullet 6.73% 4.74% 16.69% 7.67% 18.95% 4.89%
Ladder 6.85% 4.47% 13.06% 6.54% 15.36% 4.35%
Barbell 7.79% 5.01% 19.16% 8.67% 21.65% 5.53%
Butterfly 9.50% 6.64% 27.71% 12.67% 30.58% 8.61%
Average 7.42% 5.00% 15.47% 7.83% 17.75% 5.68%

Note: (1) SEI (Standard Error of Immunization) as a percentage of the standard deviation of the
unexpected return from the bond portfolio to be hedged. SEI represents the average absolute value of
the hedging error. The hedging error is the difference between the unexpected return of the bond
portfolio to be hedged and the unexpected return of the future portfolio. The latter unexpected
return has been calculated based on the cheapest-to-deliver bonds identified at the beginning of the

hedging month and not - like in the previous exhibits - on the quoted future prices.

This comparison highlights that the future-specific hedging error varies for
all tested strategies between 1.5% and 3.3% of the total risk we intended to hedge.
For most practitioners, such numbers are likely to give support to the standard

practice of hedging yield curve risk through these future contracts.
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However, if a very high accuracy of the hedging strategy is required, these
future-specific discrepancies deserve further attention. In fact, when we calculate
the ratios between the hedging errors reported in Exhibit 2 and in Exhibit 3, we see
that the use of futures leads to an increase in hedging errors of 40-60% relatively to
error-adjusted strategies based on bonds.

Accordingly, it makes sense to analyze the possible sources of these future-
specific hedging errors more in detail. A first possible source is represented by the
abovementioned data quality issues, which are specific to our testing dataset and
would not affect a real-life hedging problem. Accordingly, this source of hedging
errors makes our strategies based on bond futures looking worse than they really
are. Unfortunately, it is impossible to estimate how much of the future-specific
hedging error is due to data quality issues.

Further sources of future-specific hedging errors are represented by a
temporary mispricing between the spot and future bond markets and by actual
changes in the cheapest-to-deliver bonds and/or in the value of the embedded
options. The latter changes explain why "...the future price not only does not behave
like any one bond or note, but behaves instead like a complex hybrid of the bonds and
notes in the deliverable set.." (Burghardt et al. (2005))

Our sub-sample analysis can help us to get a feeling for the relative
importance of these sources of future-specific hedging errors. Its results are

summarized within Exhibit 4.
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Exhibit 4

Alternative hedging models based on bond futures: sub-sample analysis.

L PCA KRD DV
Case Description

Traditional” Error—Adjusted(l' Traditional® Error—Adjustedm Traditional®” Error—Adjustedm
Sub-Sample 1 | Dec. 1996 to Feb. 2000 (Average Net Basis: -3.73%)

Short Bullet 14.49% 12.95% 16.66% 15.11% 19.33% 13.28%
Medium Bullet | 11.93% 10.85% 15.45% 13.77% 18.26% 11.59%
Long Bullet 12.66% 11.14% 33.76% 18.04% 40.21% 12.42%
Ladder 13.20% 11.70% 26.50% 16.95% 31.61% 12.26%
Barbell 14.50% 12.97% 37.45% 19.89% 44.15% 14.22%
Butterfly 16.24% 14.70% 51.71% 24.30% 61.15% 17.21%
Average 13.76% 12.31% 30.62% 18.05% 36.24% 13.44%
Sub-Sample 2 | March 2000 to May 2004 (Average Net Basis: 3.23%)
Short Bullet 7.07% 6.70% 8.42% 6.50% 9.13% 7.30%
Medium Bullet 6.49% 6.09% 8.00% 5.82% 8.35% 6.41%
Long Bullet 6.63% 5.56% 7.68% 6.30% 9.26% 6.86%
Ladder 6.64% 5.90% 7.88% 6.14% 9.06% 6.53%
Barbell 7.12% 6.05% 8.50% 7.55% 10.51% 7.53%
Butterfly 8.40% 6.52% 10.18% 10.01% 12.81% 15.33%
Average 7.03% 6.10% 8.41% 7.02% 9.83% 8.26%
Sub-Sample 3 | June 2004 to Dec. 2008 (Average Net Basis: 2.23%)
Short Bullet 8.03% 6.35% 9.90% 7.98% 10.84% 8.11%
Medium Bullet 6.80% 5.99% 8.38% 6.77% 9.50% 7.07%
Long Bullet 7.91% 6.05% 21.06% 10.22% 19.81% 5.91%
Ladder 7.88% 6.00% 16.49% 9.07% 16.23% 6.01%
Barbell 9.41% 6.44% 24.17% 12.12% 22.54% 6.64%
Butterfly 12.04% 8.04% 35.07% 17.07% 31.55% 9.70%
Average 8.71% 6.48% 19.75% 10.68% 18.88% 7.17%

Note: (1) SEI (Standard Error of Immunization) as a percentage of the standard deviation of the
unexpected return from the bond portfolio to be hedged. SEI represents the average absolute value of
the hedging error. The hedging error is the difference between the unexpected return of the bond

portfolio to be hedged and the unexpected return of the future portfolio.

For each sub-sample, we reported in Exhibit 4 the average value of the net

basis across all future contracts and test cases. It is visible that the quality of the
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hedging strategies relatively to the level of risk we intended to hedge was
significantly poorer in the first sub-sample. The negative average net basis suggests
that a combination of data quality issues and/or mispricing might be responsible for
this observation. On the contrary, we notice that the relative quality of the hedging
strategies in the second sub-sample is very good: the highest average level of net
basis supports our expectation of a higher value of the delivery options for this sub-
sample. We also observed that changes in the cheapest-to-deliver bonds during the
hedging month have been almost 5 times more frequent in this sub-sample than in
the other sub-samples. Nevertheless, this does not seem to have negatively affected
the hedging quality. As a result, we suspect that data quality issues and/or
mispricing are responsible for the largest part of future-specific hedging errors.

Moreover, our sub-sample analysis highlights the robustness of the error
adjustment and the superiority of the error-adjusted PCA model: only in one case
(the DV hedging of the butterfly portfolio in the second sub-sample) the traditional
model performs better than the corresponding error-adjusted one, whereas the
error-adjusted PCA consistently outperforms the alternative models on average and
on the vast majority of the portfolios.

Finally, Exhibit 4 highlights a problem related to the traditional
implementation of the three hedging strategies we already remarked on Exhibit 1:
their quality appears to be extremely volatile across different models and time
periods. We suspected this to be due to an instability of the solutions to their
hedging equations. Exhibit 5 provides clear support to this hypothesis for the PCA

model.
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Exhibit 5

Sensitivity of PCA hedging models to small changes in the coefficients.

Mean Weights Sensitivity

C1

Cy

C3

Case Error- Error- Error-
Description Traditional Adjusted Traditional Adjusted Traditional Adjusted
Short Bullet 2.0 0.2 1.7 0.1 1.4 0.1
Medium Bullet 1.8 0.3 1.5 0.2 1.2 0.1
Long Bullet 2.2 0.8 1.9 0.3 1.5 0.2
Ladder 2.1 0.4 1.8 0.2 1.4 0.2
Barbell 2.4 0.5 2.0 0.3 1.6 0.4
Butterfly 2.8 0.6 2.4 0.3 2.3 0.3
Average 2.2 0.5 1.9 0.2 1.6 0.2
Volatility Weights Sensitivity

C1 C; C3
Case Error- Error- Error-
Description Traditional Adjusted Traditional Adjusted Traditional Adjusted
Short Bullet 4.8 0.1 4.9 0.1 4.9 0.0
Medium Bullet 4.3 0.1 4.5 0.1 4.5 0.1
Long Bullet 4.6 1.1 4.7 0.2 4.8 0.1
Ladder 4.6 0.1 4.7 0.1 4.8 0.1
Barbell 5.0 0.2 5.1 0.1 5.2 0.8
Butterfly 5.7 0.2 5.9 0.2 6.2 0.1
Average 4.8 0.3 5.0 0.1 5.1 0.2

Note: Mean Weights Sensitivity indicates how much the weighting of the four future contracts

changes on average for a unit change in each of the three PCA coefficients - c;, ¢z, and c3. Volatility

Weights Sensitivity indicates the standard deviation of these average changes in the weighting of the

four future contracts across our test sample.

definition of these variables.

Please, refer to the main text for a more formal

In order to estimate the stability of the optimal hedging weights for the PCA

model, we shifted the full term structure of the PCA coefficients c in a parallel way

and recalculated the optimal weights for each of the four future contracts. On this




basis, we estimated the absolute value of the change in the weights for each contract
- 0¢y - and the average of these values for the four contracts. We defined the mean

value of this average across our data set as “Mean Weights Sensitivity”:

1 T 7Z‘a¢yt‘
Mean Weigh ts Sensitivity = —
’ T ; acCy

whereas the standard deviation of this average across our data set was defined as

“Volatility Weights Sensitivity”:

18
1 ZZ‘a%vr 1 T 7z‘a¢yt‘
Volatility Weights Sensitivity = ?Z % - ?Z P
r=1 Ik t=1 Ik

The stability statistics reported in Exhibit 5 have been estimated by shifting the
term structure of the PCA coefficients up and down by 0.02 and taking the average
value of the two resulting statistics.

The results reported in Exhibit 5 provide us with an overwhelming evidence
of the higher stability of the error-adjusted model with respect to the traditional
model. The mean sensitivity across the six bond portfolios for the traditional
strategy is between 4.8 (for c1) and 8.2 (for c;) times larger than for the error-
adjusted strategy. The volatility of the sensitivity across the six bond portfolios for
the traditional strategy is even between 15 (for c1) and 39 (for c2) times larger than
for the error-adjusted strategy, thus highlighting that in some test cases the changes

in the optimal weightings of the traditional strategy have been extremely large.
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Stability could very well be the greatest advantage of the error-adjusted
hedging strategies. In fact, unstable values of the optimal weights imply higher
transaction costs for resetting a traditional strategy and inconsistent quality across
different models and time periods, the evidence of which emerges very clearly from

the sub-sample analysis reported in Exhibit 4.

4. Conclusions

Our results highlight that traditional implementations of the most common models
used for hedging yield curve risk often lead to high exposure to model errors and to
sizable transaction costs, thus lowering the hedging efficiency. The exposure to
model errors generated by these implementations varies quite randomly across
hedging problems, so that the resulting hedging quality is rather heterogeneous.

As a consequence, including some mechanisms to control the exposure to
model errors is of paramount importance for a sound implementation of these
models. We presented the results of explicitly accounting for the variance of the
model errors displayed by each zero rate. We found out that the reduction in both
the hedging errors and the transaction costs is substantial: the errors are reduced
on average by 17% for the PCA model, by 39% for the KRD model and by 53% for
the DV model. If the costs of setting up the hedging strategy are proportional to our
squared weights statistics, then the reduction in these costs would be around 50%

for the PCA and 80% for the other two models.
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What is perhaps more important is that the error adjustment makes the
optimal weights of the hedging strategies far more stable: on average, traditional
hedging models are between 5 and 8 times more sensitive to changes in the
coefficients than error-adjusted models. This leads the latter models to deliver a
much more homogeneous hedging quality across different time periods and bond
portfolios.

Nevertheless, we do find that the error-adjusted PCA model systematically
outperforms all alternative models. To the best of our knowledge, this result is new.
We attribute it to the better quality of the interest rate process underlying the PCA
model, which explains the largest possible part of the variance of yield curve shifts
based on three orthogonal factors.

Finally, our study shows that bond futures can effectively be used to hedge
the yield curve risk of a bond portfolio. When error-adjusted models are applied,
only 7.5%-10% of the risk to be hedged is left as a hedging error (gross of the effect
of the 3-hour difference between spot and future end-of-day prices). This is still
circa 3% more than what we would obtain by using bonds to hedge other bonds.
However, futures present other advantages, such as strongly reduced need of cash,
higher liquidity, and lower transaction costs.

All abovementioned results have been found to be robust to sub-sample
analysis and to 6 different structures of bond portfolios. Our sub-sample analysis
seems to suggest that future-specific errors are more due to data quality issues
and/or mispricing than to issues related to the value of the embedded options

and/or changes in the CTD bond.
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Endnotes

! The original formulation of duration relied on flat yield curves, but this restriction was overcome thanks to the
formulation proposed by Fisher and Weil (1971). For an extensive review of how the concept of duration was

developed during the last century, see Bierwag (1987).

2 Nawalkha et al. (2005) affirm that the DV model must be considered more robust and suitable for hedging
purposes when time series of interest rate changes are non-stationary, since in this case the estimates of PCA
models are highly instable. They also highlight that the KRD model leads to an arbitrary selection of the number

and maturity of the key rates and to implausible shapes for the yield curve shifts.

3 Given the short time horizon of our hedging strategies, the impact of time decay (which would lead to move

down the yield curve in order to identify the expected yield at the end of the hedging period) can be neglected.

4 The first time option consists in the possibility for the short position to deliver at any time during the
expiration month (generally speaking, early delivery is preferable if the cost of financing exceeds the CTD
coupon and vice versa). The second time option - the so-called end-of-the-month option - consists in the
possibility for the short position to deliver during the final business days of the deliverable month after the
invoice price has been locked in. The third time option is the so-called wild-card option. It consists in the
possibility for the short position to lock in the invoice price at 3 pm during the delivery month and make the

delivery if the spot price falls below the established invoice price between 3 pm and 5 pm.

5 In theory, the sensitivity of the value of the embedded options to interest rate changes could be calculated
analytically or by simulations relying on a pricing model for these options. However, such a calculation is
challenging. Past attempts to simplify it have been found to be unreliable: for example, Grieves and Marcus
(2005) assumed that the embedded quality option can be represented as a switching option between only two
bonds. Latest research has shown that this simplification is too crude to accurately describe future price
sensitivity (see, for example, Henrard (2006) and Grieves et al. (2010)). As a result, numerical procedures based
on arbitrage-free term structure models are recommended when an accurate evaluation of the quality option is
needed. For 3-factor models like the ones we are testing, these procedures are not trivial and would probably

lead our results to be highly dependent on the specific modeling assumptions.
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6 For the PCA model, this assumption is fulfilled by construction. Considering the way how we estimated the
error terms g(t, Dk) for the other models, this assumption is also fulfilled by construction as far as the
independency between the error term and the fitted value of the same zero rate is concerned. For models other
than PCA, the independency between the error term &t Dk) and the fitted value of zero rates with maturity

other than Dk is a simplifying assumption.

7The first condition ensures a good level of liquidity for the considered securities, while the second one allows
us to avoid the complexity linked to the potential irregularity of the first coupon payment and the third one

leads to spread the securities as evenly as possible within the selected range of maturities.

8 Given our testing approach, the maturity s is very short (ranging from one to three months). Now, the GDV

method leads to much higher values of the sensitivity parameters cifor very short-term rates than for any other
rate. Since the portfolio to be hedged displays a much lower sensitivity to changes in very short-term rates than
the future contracts, the GDV minimization procedure leads to wide long-short future positions having the goal

of offsetting the high sensitivity of the zero rate of maturity s to the three risk factors.
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ABSTRACT

We test alternative strategies for hedging a portfolio composed from BBB-rated corporate
bonds. Our results highlight a change of regime. From 2000 to 2007, a hedging strategy
based only on T-bond futures would have reduced the variance of the portfolio by circa
83.5%. This compares well to the maximum variance reduction of 50% reported by
previous studies hedging corporate bonds through T-bond and S&P500 futures. We
attribute this improvement to the use of four futures contracts with different maturity and
to the consideration of modeling errors. On the contrary, in 2008 and 2009 T-bond futures
would have been insufficient to successfully hedge our bond portfolio. The use of the 5-year
CDX contract would have only marginally improved the quality of hedging. We attribute the
disappointing hedging performance of CDX to counterparty risk and show that credit
derivatives free of default risk could have led to a variance reduction over 64% even during

2008 and 2009.
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Most institutional and private investors have to face the issue of managing portfolios of
corporate bonds and their risks. Empirical tests of the techniques available for managing
these risks have not been numerous so far; relatively more work has been done on
government bonds than on corporate bonds. The sub-prime crisis of 2008 offered us at the
same time a strong motivation to improve these risk management techniques and a new set
of data on which these techniques can be tested. These data are particularly interesting
because they relate to exceptional market conditions and represent a realistic stress-
scenario. Starting from this outset, our research had the goal of extending to investment-
grade corporate bonds the most promising risk management techniques developed for
government bonds and to test their application in the years preceding and following the
sub-prime crisis based on a range of different financial instruments. Since real-life bond
portfolios normally display a high level of issuer diversification, we will focus our analysis
on systematic, rather than on idiosyncratic risk.

Hedging corporate bond portfolios implies hedging two main sources of risk:
interest rate risk and credit risk!. The first source of risk is related to the dynamics of the
risk-free term structure of interest rates, whereas the second source is related to the

dynamics of the credit spreads implicit in the individual bond prices and to the risk of a

! Depending on their characteristics, corporate bonds can be exposed to a number of other risks, of which liquidity is
often the most serious one. However, given our focus on large-size issues of plain-vanilla investment-grade bonds,
we assumed the role of these additional risk factors to be subordinated to interest rate and credit risk. Our results
confirmed this assumption.
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possible default. In the next paragraphs, we will summarize some key findings of previous
research work performed around these two sources of risk.

Different techniques to hedge the risk-free term structure of interest rates have
been developed over the past forty years. The techniques most commonly used in practice
rely on one of the following approaches: principal component analysis (PCA), duration
vector (DV), or key rate duration (KRD). Ample literature exists on each of these
approaches. Selected reference papers presenting and motivating these techniques are the
ones by Litterman and Scheinkman (1988) for PCA, Nawalka et al. (2003) for DV, and Ho
(1992) for KRD. Nawalka et al. (2005) provide an up-to-date and accurate review of all
three approaches. Carcano (2009) as well as Carcano and Dall'O (2011) tested a
generalized version of these three approaches taking into account modeling errors; they
show that this generalization leads to important advantages both in terms of hedging
quality and of transaction costs, while allowing a clear ranking of the three approaches: the
3-factor PCA model consistently outperforms the other two approaches. Accordingly, we
based our analysis on PCA relying on at least three principal components.

The focus of this paper is on short-term immunization strategies for investment-
grade bonds. Since the risk of a default in the next few weeks is negligible for an
investment-grade bond, we can focus our discussion of the second main source of risk on
the dynamics of credit spreads. For hedging purposes, the key questions related to this risk

are: how large is its systematic — as opposed to the idiosyncratic - component and how
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many factors are important to explain the dynamics of this component? These questions
have motivated extensive efforts both of academicians and practitioners, but no consensus
has been reached on their answers.

With respect to the first question, a group of scholars - including Elton et al. (2001)
as well as Collin-Dufresne et al. (2001) - supported the view that a wide proportion of the
credit spread can be explained by systematic factors. However, Longstaff et al. (2005)
found out that the component of spreads which is not due to expected default losses is
strongly related to measures of bond-specific illiquidity such as the bid-ask spread and the
outstanding principal amount. Also, a more recent analysis conducted by Ahn et al. (2009)
relying on canonical correlations concludes that the spread is driven for circa 50% by
elements related to the individual corporate bonds. Opinions are even more diversified
with respect to the second question, that is, the systematic factors underlying the dynamics
of credit spreads. Some of the earlier studies - like Bodie et al. (1993) and Cumby and
Evans (1995) - concluded that this spread has been mainly driven by two factors: expected
default loss and tax premium. Later on, Elton et al. (2001) estimated that expected default
loss and tax premium can explain 53.9% of total credit spread. They found out that using
traditional Fama-French factors, 85% of the spread that is not accounted for by taxes and
expected default can be explained as a reward for bearing systematic risk. Since expected
default loss and tax premium are relatively static, this risk premium is responsible for most

of the dynamics of credit spreads. At the same time, Collin-Dufresne et al. (2001) found out
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that credit spread is explained for 25% by expected default and recovery rate, while the
remaining 75% is explained by a single factor of their PCA. This factor did not seem to be
clearly related to variables traditionally used as proxies for systematic risk (spot rate, slope
of the yield curve, leverage, volatility, probability or magnitude of a downward jump in firm
value, and business climate). Collin-Dufresne et al. (2001) concluded that this factor could
be somehow linked to liquidity and that the non-default component of spreads is weakly
related to the tax component. More recently, Longstaff et al. (2005) found out that expected
default loss represents the majority of corporate spread and that the non-default
component is time-varying, mean-reverting and does not seem to be due to taxes. Even
though performing a formalized test of these opposing theses is beyond the scope of this
paper, we will comment on the evidence with respect to these questions which seems to
emerge from our results.

Most empirical tests of strategies to hedge corporate bond portfolios relied either
only on T-bond futures or on T-bond futures and S&P500 futures. Grieves (1986) explained
the rational for hedging a portfolio of corporate bonds using T-bond futures and S&P500
futures on a data sample of industrial bonds2. He shows that the variance of a portfolio of
industrials corporate bonds rated as Baa by Moody’s can be reduced by circa 38% using
only T-bond futures, whereas this reduction increases to 51% if we also use the S&P500

futures. Marcus and Ors (1996) found out that returns of lower-rated bonds are more

2 Grieves (1986) decided not to focus on bonds issued by utility companies because return on equity,
revenues and risk of default of these companies are strongly influenced by regulators. A similar approach has
been more recently suggested by Eom et al. (2004) and has been followed for our own empirical tests.
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related to the equity market than those of higher-rated bonds and that this relationship is
much stronger during periods of low consumer confidence. Accordingly, the calculation of a
constant hedge ratio across the full business cycle leads to almost no variance reduction.
The inconsistency with the findings of Grieves (1986) is due to the significant difference in
the analyzed time periods: 1982 - 1994 for Marcus and Ors (1996), 1982 - 1985 for
Grieves (1986). However, if a Consumer Confidence Index below its historic mean is used
to identify periods of pessimism and if the strategy including the S&P500 futures is
calibrated and used only during these periods, the variance reduction for portfolios of Baa-
rated bonds increases to 49%. These results highlight that the S&P500 futures can - in
combination with T-bond futures - lead to a significant variance reduction. However,
loannides and Skinner (1999) showed that the S&P500 futures alone cannot lead to
variance reductions higher than 23% for BBB-rated bonds, whereas T-bond futures alone
can lead to reductions up to 38.6% for long-term BBB-rated bonds.

Over the last years, credit derivatives - and in particular Credit Default Swaps (CDS)
contracts - have been increasingly used to hedge credit spread risk. Accordingly, we
considered necessary for our research to include CDS in the framework of the considered
hedging strategies. To the best of our knowledge, this is the first paper to attempt an
empirical test of hedging strategies combining T-bond futures and CDS contracts. Given
that CDS total return indices are mostly still in development, the use of CDS for hedging

purposes implies facing the complexity of converting CDS spreads into CDS returns. An

82



additional complexity linked to the use of CDS for hedging a portfolio of corporate bonds
has to do with the pricing of these contracts. As highlighted by Longstaff et al. (2005) and
Blanco et al. (2005), in normal conditions CDS and bond spreads should converge to each
other. Unfortunately, the recent crisis showed that this convergence is not guaranteed
during exceptional market conditions: the basis, that is the difference between CDS spreads
and bond spreads with equal maturity and underlying entity, is close to zero during regular
market conditions, but became strongly negative during the sub-prime crisis. Fontana
(2010) presents empirical evidence suggesting that counterparty risk and overall
shrinkages in capital market liquidity appear to have been the key drivers of this
phenomenon, whereas specific illiquidity in the corporate bond market - identified as an
important driver of the basis by Acharya and Pedersen (2005) and by Brunnermeier
(2009) - seems to have played a limited role in this occasion. The specific dynamics of the
CDS basis are likely to negatively influence the quality of hedging strategies including these
contracts. Accordingly, every analysis of such strategies must cope with this complexity.
The rest of this article is organized as follows: Section I presents the dataset and our
methodology for calculating unexpected returns, Section II formally derives the algorithms
for the tested hedging strategies, Section III presents the results obtained for each strategy

and our explanations of them, whereas Section IV summarizes our conclusions.
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I. Data

A. Corporate Bonds and Corporate Yield Curves

For corporate bonds, we relied on the database which was kindly made available to
us by Wilshire Associates. Time series of market prices were available for a sufficient
number of bonds starting from September 2000. Accordingly, we decided to work on 15-
day hedging periods. While still a realistic representation of the frequency of rebalancing
adopted by many practitioners, this length allowed us to rely on a number of observations
- 219 - which is sufficient for adequate sub-sample analyses. In fact, we tested the
alternative hedging strategies on three different sub-samples: the first sub-sample goes
from September 2000 to December 2004, the second sub-sample goes from January 2005
to December 2007, whereas the last sub-sample goes from January 2008 to December
20009.

Carcano (2009) as well as Carcano and Dall’O (2011) recently analyzed the
performance of alternative strategies for hedging government bonds. In order to provide
empirical evidence of general relevance for investment-grade corporate bonds, we decided
to analyze alternative strategies for hedging bonds rated as BBB by S&P. Given the
relatively high correlation of credit spread changes among investment-grade bonds,
successfully hedging portfolios of government bonds and BBB-rated bonds implies with

very high probability successfully hedging any portfolio of investment-grade bonds.



In order to limit the relevance of idiosyncratic risk and to extend our tests over the
full term structure of interest rates, we built corporate bond portfolios composed from
eight BBB-rated bonds issued in US$ by different companies. Following Eom et al. (2004),
we did not consider issuers belonging to the financial, utility and energy sectors. We
defined eight time buckets with maturity equal to - respectively - 2, 4, 6, 8, 10, 16, 20, and
26 years. At the beginning of each year, we selected the bonds to be included in the
portfolio based on three conditions: a publicly held face value outstanding of at least 100
million US$, an already-paid first coupon and a maturity as close as possible to the one of
the corresponding time bucket3. Furthermore, we selected only fixed-rate coupon bonds
which did not include any embedded options and paid a regular coupon every 6 months.
Finally, we selected bonds which - during the year - were not subject to any rating upgrade
or downgrade, so that their market benchmark could still be represented by one yield
curve: the term structure of BBB-rated bonds. The results reported by Carcano (2009) as
well as by Carcano and Dall’'O (2011) highlight that hedging quality measured on ladder
(i.e.: equally-weighted) bond portfolios is representative of average hedging quality
measured on a number of different bond portfolio structures. Also, these results highlight
that ranking of error-adjusted hedging strategies does not depend on individual bond
weightings. Accordingly, we focused on equally-weighted portfolios of the eight bonds

selected at the beginning of each year.

3 The first condition ensures a good level of liquidity for the considered securities, while the second one
allows us to avoid the complexity linked to the potential irregularity of the first coupon payment and the third
one leads to spread the securities as evenly as possible within the selected range of maturities.
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For all financial instruments included in our tests, we need to estimate the
unexpected returns. In general, these estimates rely on the assumption that all considered
interest rates are martingales. Past studies have reported that the overall effect on hedging
errors of this simplifying assumption is very small (see, for example, Carcano and Foresi
(1997)). Accordingly, we compute the unexpected return of a corporate bond as the return
in excess of what would have been obtained if the yield-to-maturity had remained constant
throughout the hedging period*.

Finally, we need to estimate the sensitivity of each bond to the considered principal
components. This estimate cannot simply be based on historical prices since the sensitivity
of each bond varies over time with its time to maturity. In order to overcome this difficulty,
we calculated for each bond the present value of its cash-flows at the beginning of a certain
hedging period. This was done by selecting the zero-coupon rate matching the cash-flow
maturity from the appropriate yield curve (i.e.: the risk-free curve for Treasury bonds and
the BBB curve for corporate bonds). This present value represents the portion of a bond
price whose systematic risk is related to the dynamics of the selected zero-coupon rate. For
calculating the bond sensitivity to the principal components, we still need to estimate the
sensitivity of the zero-coupon rates to these components, which is performed via the PCA.

Zero-coupon as well as par yield curves for BBB-rated bonds issued by industrial

companies have been provided by Bloomberg. The 3-month, 1-year, 5-year, 10-year, 20-

4 Given the short time horizon of our hedging strategies, the impact of time decay (which would lead to move
down the yield curve in order to identify the expected yield at the end of the hedging period) can be
neglected.
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year, and 30-year zero rates have been used to estimate the PCA parameters; linear
interpolations of these rates have been used to discount the bond cash-flows to their
present value. The 5-year par yield has been used to estimate the theoretical credit spread

forwards.

B. T-Bond Futures and US Treasury Yield Curves

The first type of hedging instruments we tested is represented by the four US T-
bond and T-note futures contracts with denomination of - respectively - 2, 5, 10, and 30
years. We always referred to the next expiring futures contract. For each contract and each
month, we identified the cheapest-to-deliver bond following the net basis method> and
relying on the monthly baskets of deliverable bonds and conversion factors (CF) kindly
provided to us by the Chicago Mercantile Exchange (CME). The closing price of the futures
contracts has been provided by Datastream.

For these futures contracts, we calculate the actual return in two different ways
depending if the contract expires during the hedging period or not. In the case of no-
expiration, we calculate the actual return simply as the percentage change in the quoted
futures price. In the case of a contract expiration, we calculate the actual return assuming
an opening of the futures position at the end of the previous month and a delivery of the

cheapest-to-deliver bond at the end of the expiration month. We identify the cheapest-to-

® As pointed out by Choundhry (2006), there is no consensus about the best way to identify the CTD. The two
most common methods rely either on the net basis or on the implied repo rate (IRR). In academia, the second
method is the most widely used, while practitioners often argue that the net basis approach should be used
since - as pointed out by Chance (1989) - it measures the actual profit and loss for a cash-and-carry trade.
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deliver bond as the bond with the highest delivery volume based on the actual delivery
statistics provided by the CME. Following Carcano and Dall’O (2011), we calculate the
unexpected return of each futures contract as the difference between the actual return and
the expected return for the long position, which was set equal to the sum of the time-decay
expected for the carry and the linear amortization of the net basis.

As we will explain more formally in the next section, the estimation of the sensitivity
of each T-bond futures to the considered risk factors relies on the underlying cheapest-to-
deliver bonds. We extracted all information related to US Treasury bonds and notes from
the CRSP database. This included both mid prices and reference data. On this basis, we
calculated the present value of each individual cash-flow using the US Treasury zero-
coupon rates estimated through the Unsmoothed Fama-Bliss methodology described in
Bliss (1997). The 3-month, 1-year, 3-year, 5-year, 7-year, 10-year, 15-year, 20-year, and 30-
year zero rates have been used to estimate the PCA parameters; linear interpolations of
these rates have been used to discount the bond cash-flows to their present value. The 5-
year US Treasury par yield provided by Bloomberg has been used to estimate the

theoretical credit spread forwards.

C. S&P500 Futures
Prices for the continuous series of the S&P500 futures have been downloaded from
Bloomberg. We calculate the actual return simply as the percentage change in the quoted

futures price. The unexpected return is computed by subtracting the expected return from
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the actual return. The expected return is computed as the annualized equity risk premium
multiplied by the year fraction corresponding to each hedging period. We assumed the
equity risk premium to be constant and estimated it over a long time horizon (from July
1982 to April 2010) as the difference between the annualized average monthly return

provided by the S&P500 Index and the average 1-month US Treasury rate.

D. North-American Investment Grade CDX Contracts

The 5-year CDX.NA.IG series from the 20th September 2004 to the 20th March 2010
(series number 3 to number 13) have been downloaded from Bloomberg. In order to be
able to use the CDX index to hedge our corporate bond portfolio, we needed to convert the
CDX spread (which is how the CDX is traded in the market) into a return. For this
conversion, we relied on the ISDA CDX standard model, whose theoretical derivation is
described in O’Kane and Turnbull (2003). According to this model, the Cash Settlement
Amount (CSA) is the amount paid by the protection buyer to the protection seller on an
assumed cash settlement date of trade-date plus 3 business days. In the CSA calculation, the
premium that has accrued from accrual initial date to trade-date (where both dates are
inclusive) enters as a nonnegative number with a negative sign. This leads to the fact that
the carry for the protection buyer is negative, which is consistent with the insurance-like
nature of a CDS. The parameter which represents the market value of the CDX position net
of the effect of the premium accrual is defined as upfront and is calculated as the sum of the

CSA and the accrued premium divided by the notional.
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Since the premium for each series is reset to reflect current market conditions, we
consider its accrual as a proxy for the expected return of the CDX contract. Accordingly, we
estimated the unexpected return provided by the CDX contract to the protection buyer
during a certain period as the change in the upfront. Therefore, the time series of
unexpected returns for the 5-year CDX contract has been constructed as the change in the
upfront calculated on the on-the-run series®. Within our data sample, no credit events took
place on the on-the-run series for the 5-year CDX.NA.IG. Accordingly, we did not have to
consider the additional complexity linked to the existence of multiple versions of the same
series’. For the same reason, we did not have to include in the performance calculation any
protection leg, that is, any payment by the protection seller as a compensation to the

protection buyer for the loss related to the credit event.

IL Methodology

A. General Framework
We intend to immunize a portfolio composed from eight BBB-rated bonds

denominated in USD against market risk. We define market risk as the risk of an

® Obviously, when the on-the-run series changes, one must pay attention to calculate the change in the
upfront on the same series. Accordingly, the first hedging period considering the new on-the-run series must
be the one starting on - or immediately after - the issue date of the new series.

" In fact, if there is a default in one of the basket components, the series is updated to a new version. For
example, series number 4, version 1 was issued on the 20t of March 2005. The basket for this series
consisted of 125 entities. If, during the period this series was on the run (from the 20t of March 2005 to the
20th of September 2005, when series number 5 was issued) one of the entity in the index had defaulted, the
series would have become series number 4, version 2 and its basket would have consisted only of 124
components.
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unexpected shift of the term structure of interest rates for BBB-rated bonds. As explained
above, we assume that all interest rates are martingales; accordingly, all changes in the
term structure are considered to be unexpected. Moreover, as reported among others by
Hodges and Parekh (2006), the impact of monthly rate changes on the price of a zero-
coupon bond can be well-approximated by its duration. Since our hedging periods normally
extend over 15 days, we will follow this simplifying approach.

In order to estimate the sensitivity of a certain bond to yield curve changes, we

decompose the present value of the bond into the present value of its cash-flows calculated

based on the appropriate zero-coupon yields: the symbol wi(t,Dr) indicates the present

value of bond i cash-flow with maturity Dx as a percentage of its total present value at time
t. Within this context, we approximate the unexpected return provided by a certain

corporate bond i from time ¢ to time t+At as:

P

) P :
';At - E{ ';At :| ~ _ZdRBBB(t’ Dk)Dka)i (t’ Dk)+‘9i (t)
it k=1

it

(1)

where P indicates the bond dirty price, Rgpa(t,Dr) indicates the zero-coupon market yield
for BBB-rated bonds with duration Dy at time ¢, and &(t) indicates the idiosyncratic return
provided by bond i from time t to time t+At. The summation goes from 1 to n because we

assume to observe changes in n points of the term structure. Next, we define the stochastic
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process driving the zero-coupon yield curve for BBB-rated bonds based on the dynamics of

the L risk factors F as:

L
dRggg (t' Dk’)E ZCI,BBB,k Ftl +€ppp (t’ Dk)
@

where cigggk indicates the sensitivity of the zero-coupon yield for BBB-rated bonds with
duration Dy to the I-th risk factor and &gpp(t,Dx) indicates the residual modeling error (that
is, the part of the dynamics of the yield curve which cannot be explained by the considered
risk factors).

In order to define the unexpected return provided by the y-th T-bond futures
contract we relied on the approach presented by Carcano and Dall’O (2011), who claim that
unexpected changes in the futures basis can - for practical purposes - be considered
independent from yield curve changes. Accordingly, the unexpected return can be simply
represented based on the theoretical price of a bond futures FP excluding the value of the

embedded options, like for corporate bonds:

FPy,t+At _ Et[ FPy,t+At

— — B2 1% > dR (t, D, D, @
FPy’t FPy’t J ; RF k k" CTD (y),k,t

(3)
with Rrr(t,Dx) indicating the zero-coupon yield for risk-free bonds with duration Dy at time
t and CTD(y) the cheapest-to-deliver bond of the futures contract y. In this case, we do not
need to take into account any idiosyncratic return because the methodology we adopted

for calculating the risk-free zero-coupon rates ensures that T-bond market prices are
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perfectly explained by the dynamics of these rates. For T-bond futures expiring on date s,

the term awcrpy) is defined as follows:

oFP
FR___ D "™ chp,
R(t,D,) FR CFR,, eXtd)P

=D, @erpy (4)

for all rates maturing after the futures contract (i.e.: k > s) and

oFR

FR D, eXtoP [ cfo !
- — =D, ) o =-D.o,
GR(t,DS) FP CF.p Z R(t.D,)Dy skz CTDK t s@cTpsit (5)

k=s+1 e

for the zero rate with maturity equal to the expiration of the futures contract (i.e.: the zero
rate affecting the cost-of-carry). In the last two equations, CF indicates the Conversion
Factor and cfcrpk indicates the cash-flow paid by the cheapest-to-deliver bond at time k.
Because of the definition of T-bond futures contracts, the sensitivity of the futures price to
changes in zero rates maturing before the futures contract is zero, which implies: wctpxt =
0 forall k<s.

Similarly to corporate bond yields, the stochastic process driving risk-free zero-

coupon yields can be represented as follows:
L
dRge (t, Dk’)EZCI,RF,kFtI +ere (t’ Dk) (6)
1=1

where the symbols have the same meaning as in equation (2), but now refer to risk-free

zero-coupon yields.
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Finally, we need to define stochastic process driving the unexpected returns
provided by the S&P500 futures based on the same L risk factors used for the BBB and risk-

free yields:

L
= ZCI,S&P F! +&5ep (t) (7)

1=1

S&PFut,, _|S&PFut,,
S & PFut, ‘| S &PFut,

where the symbols have the same meaning as in equation (2), but now refer to the S&P500
futures contract. In the next sub-sections, we will show how we calculated the optimal
weights for each strategy starting from this set of sensitivity equations and stochastic

processes.

B. Hedging through T-Bond Futures

In the case of this hedging strategy, the hedging portfolio is exclusively composed
from T-bond futures. Accordingly, we set the number of the considered risk factors L also
equal to four (the need for this setting will become clear as soon as we will present the
resulting system of equations). Also, we assume that the dynamics of these risk factors are
independent from each other; since we are going to identify these dynamics through PCA,
this assumption is true by construction. Relying on equations (1) to (6), the total

unexpected return  provided by the combination of the bond and the hedging portfolio is:
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where A; represents the amount invested in bond i and ¢ represents the optimal weight to
be invested in the y-th futures contract. The latter weights shall be interpreted as the
market value of the underlying CTD bonds. Now, if we assume that the modeling errors &gps
and &rr as well as the idiosyncratic bond returns & are independent from each other and
from the risk factors F, the partial derivatives of the variance of the unexpected return with

respect to the optimal weight ¢, can be approximated by the following expression:

OE[w, |
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The optimal hedging strategy is obtained when the last equation is simultaneously set
equal to zero for each of the four considered T-bond futures. For simplicity, we will assume
that not only the sensitivity coefficients ¢, but also the variances of the risk factors and of
the modeling errors are constant over time. In order to solve this system of equations more

efficiently, we express the last equation using matrices and vectors:

OE|w,’
Lt] 20, Q CopAg ' +20,'¢'Qreco, ¢0,'+20,'Q.0¢,'=0
09, (10)
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where we have defined the involved vectors and matrices in the following way:
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On this basis, the system of equations (10) can immediately be solved obtaining®:

Q' =- [‘”tl(cIQFc"' Q, )(Dt]_lmt'c'QFCBBBABBB,tI
(11)

In order to implement this hedging strategy, we estimated the sensitivity
coefficients ¢, the variances of the risk factors and of the modeling errors through a PCA
performed jointly on the BBB zero rates listed in I.A and on the risk-free zero rates listed in
.B. Firstly, we estimate these parameters on data from 1995 to 2000 and we apply them
between 2000 and 2005. Secondly, we re-estimate these parameters on data from 1995 to
2005 and we apply them between 2006 and 2009. At the beginning of each hedging period,
we solve the system of equations (11) based on current values of the risk-free and BBB
zero-coupon yield curves. The resulting optimal weights are applied for the hedging period
and then re-calculated in the same way at the beginning of the following period. This
approach ensures a rigid out-of-sample testing framework. For each period, we then

calculate the hedging error as the sum of the unexpected return provided by the bond

8 The proof of the second order condition of the minimization can be obtained analogously as in Carcano
(2009).
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portfolio and the unexpected return provided by the hedging portfolio. The hedging error,
which can also be conceived as the unexpected return of the hedged portfolio, is the key
indicator on which we will base the analysis of our results in the next section.

For each period, we also estimated the optimal weights of the traditional PCA
hedging strategy simply by setting the matrix Q¢ equal to a matrix of zeros. In fact, Carcano
(2009) highlighted that traditional PCA hedging is a special case of error-adjusted PCA

hedging when the modeling errors are zero.

C. Hedging through T-Bond Futures and S&P500 Futures
This hedging strategy implies that the hedging portfolio includes the four T-bond
futures as well as the S&P500 futures. Accordingly, the equation of the overall unexpected

return now becomes:

8 n L
W= _Z Ai{z Do, (t1 D, ){Z Ci BB k Ftl +€ggp (t’ D, )} + & (t)} -
=) k-1 =

4 n L L
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k=L 1 -1

y-1 = =
We followed step-by-step the same approach described for the previous hedging strategy.
Obviously, in this case the number of considered principal components increases to five.
Also, the time series of the unexpected returns provided by the S&P500 futures must be
added to the data set underlying the PCA described for the previous hedging strategy. Some

of the matrices we defined above need to be adjusted to reflect this new framework. In

particular, we now have:
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Moreover, the matrix Qr now becomes a (5x5) matrix in order to include the variance of
the fifth principal component and the matrix Cggg becomes a (5xn) matrix in order to
include the sensitivity coefficients to the fifth component. On this basis, the optimal

hedging weights are still represented by equation (11).
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Relying on previous research cited in the introduction as well as on our own
findings, we decided to apply this hedging strategy only when the level of consumer
confidence is below its historic mean. Accordingly, we estimated the coefficients for the
years 2000-2005 (2005-2009) on all periods from 1995 to 2000 as well from 2005 to 2009
(2000-2005) at the beginning of which the consumer confidence was below its historic
mean. We applied these coefficients to the hedging periods from 2000 to 2005 (2005 to
2009) at the beginning of which the consumer confidence was below its historic mean. For
all other hedging periods, we applied the previous hedging strategy relying only on T-bond
futures. The remaining steps in testing the strategy including the S&P500 futures have

been performed analogously to the strategy relying only on T-bond futures.

D. Hedging through T-Bond Futures and Credit Default Swaps

In theory, there are two possible approaches to include Credit Default Swaps (CDS)
within the hedging strategy described under sub-section I1.B. The first approach relies on a
one-stage optimization: the CDS should be included in alternative to the S&P500 within
equation (12), its coefficients should be estimated in a joint PCA with all other coefficients
and used in the identical way described in sub-section IL.C. for the S&P500 futures. In
practice, available historical data are still insufficient to implement this approach. There
are two reasons for that. Firstly, daily CDX data are only available starting from 2005.
Secondly, we will highlight in section III that the inclusion of CDS seems to improve the

quality of hedging only under very special market conditions. After 2005, these conditions
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materialized only during 2008 and 2009. This makes a robust estimate of the PCA
coefficients virtually impossible.

The second approach relies on a two-stage optimization: in the first stage, the
optimal weights for the T-bond futures are calculated as in II.B. Thereafter, the hedging
errors are linearly regressed on the return of the CDX. Formally, we have:

€yt =&+ PRepx ¢ +€cox (13)
where eryr represents the hedging error produced by the strategy including only the T-
bond futures, Rcpx represents the return to the protection buyer of the CDX contract, and
ecpx represents the hedging error remaining after the inclusion of the CDX in the hedging
portfolio.

Since the hedging errors are expressed as percentage of the market value of the
bond portfolio, the optimal notional of the CDX contracts resulting from the last regression
is equal to -/ times the market value of the bond portfolio. Since we always obtained
negative estimates for £, this implies that we always buy protection in order to hedge the
corporate bond portfolio, which is consistent with economic intuition.

A linear regression is parsimonious in terms of parameter estimation. Basically, only
two parameters (« and f) need to be estimated, whereas sixteen parameters need to be
estimated for our PCA model. This makes the regression-based approach better suited to

our reality of a small sample of CDX data which can be used for parameter estimation.
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Finally, in order to adhere to our principle of out-of-sample testing, we created ten
different data samples by starting from all the observations available for 2008 and 2009
and taking one-tenth of these observations out of each sample®. We estimated £ on each
data sample and applied this estimate to the periods which were excluded from the same

data sample.

E. Hedging through T-Bond Futures and Credit Spread Forwards

The last hedging strategy we intend to test is based on T-Bond futures and on credit
spread forwards. The rational for the test of this strategy is to have a benchmark for the
performance of the previous strategy based on the CDX contract. Since we know from
previous academic research and empirical evidence that the dynamics of CDS do not always
coincide with the dynamics of bond spreads, we intend to verify the impact of these
discrepancies on the hedging quality. Credit spread forwards are derivative contracts
whose underlying is the bond credit spread itself. Accordingly, they represent the ideal
benchmark for our analysis.

A drawback of using credit spread forwards for empirical analyses is that these
instruments are rather illiquid and reliable time series of their prices are not available.
However, if we assume adequate collateralization of these contracts so that counterparty

risk is not an issue, their prices can be calculated based on available market data and non-

® We excluded one every ten subsequent observations. For example, in the first sub-sample, we excluded the first
observation, the eleventh observation, the twenty-first observation and so on. In the second sub-sample, we excluded
the second observation, the twelfth observation, the twenty-second observation and so on.
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arbitrage conditions. Under these conditions, if we identify with Ygps(t,Dx) the yearly-
compounded par market yield for BBB-rated bonds with duration Dy at time t and with Yrr
(t.Dy) the same yield for US Treasury bonds, the credit spread forward expiring on date s

between these two rates - CSFgpa(t,t+s,Di) — can be estimated as follows:

_ [L+ Ygee (t, DO ﬁ B [1+Yqe (t,D, )] ﬁ 14
CSFBBB(t,t'l‘S,Dk)_l:[l_'_YBBB(t, Ds)]DS [1+YR|: (t1 Ds)]DS (14)

which is simply the difference between the two forward rates. Of course, in the analysis of
the results, we need to consider that these represent theoretical - rather than actually
traded - forward spreads. However, we believe that this is a reasonable approximation for
benchmarking the strategy involving CDX contracts.

Accordingly, we estimated 5-year credit spread forwards for contracts expiring at
the end of our 2-week hedging period as described in the last equation. Even though
historical data to perform a one-stage optimization of this strategy are available, this would
represent a substantial modeling difference compared with our implementation of the
strategy involving CDX contracts. Since we intend to compare the results of these two
strategies, we decided to implement both of them based on a similar two-stage

optimization. As a result, we estimated the following linear regression:

Crury =@+ IBCSDBBB(t’t +At, D, )[CSFBBB(t’t +At, D, )_YBBB<t +ALD, )+YRF (t +ALD, )] +ecsr (15)

where CSDggg represents the Credit Spread Duration of the considered spread and the other

variables have been defined similarly as in regression (13).
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The last regression is based on the standard cash settlement of credit spread
forwards, which - for one unit of notional - is given by the multiplication of the Credit
Spread Duration!? and the difference between the traded forward spread and the spot
spread observed on the forward expiration date. The estimation of #and the calculation of
the optimal notional to be invested in the credit spread forwards have been performed

analogously to the hedging strategy involving CDX contracts.

III. Results
Before discussing the results provided by the alternative hedging strategies, we analyze
some relevant statistics related to the bonds composing the portfolio to be hedged as well
as the market yield curve of BBB-rated bonds. In particular, we consider the level of
correlation among the individual bonds composing the portfolio to be hedged and between
this portfolio and the corporate bond market. All our hedging strategies have been
calibrated on the dynamics of the corporate bond market and three of the tested strategies
include a financial instrument linked to an average credit spread representing this market.
Accordingly, this correlation analysis can be instructive in order to interpret the results

obtained by the tested strategies.

19 The exact definition of the Credit Spread Duration may vary from one contract to the other, but normally refers to
the expiration date of the forward contract. For our purposes, we calculated this parameter as the mean value of the
durations of the two 5-year bonds constructed on the corresponding BBB and risk-free par rates at the beginning of
the hedging period minus the length of the hedging period.
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Figure 1 depicts the average level of correlation among the eight bonds composing
the portfolio to be hedged for each considered calendar year. It leaves us with the clear
impression that these bonds largely moved together between 2001 and 2007, whereas this
was far less the case in 2008 and 2009: the average correlation was 66% in the first seven
years and only 30% in the last two years. In the introduction, we summarized some key
contributions to the debate about the number of factors driving the dynamics of the credit
spread. Performing a formalized test of the alternative hypotheses animating this debate
goes beyond the scope of the present paper. However, since the focus of this paper is on
hedging market - in opposition to idiosyncratic - risk, an estimation of the relevance of
these types of risk is of paramount importance for our purposes. Some of the figures
reported in Table I turn out to be helpful with this respect. First of all, we notice that the
different points along the term structure of market yields for BBB-rated bonds moved more
together in 2008 and 2009 than in the previous years. This was mainly the result of a very
high correlation among credit spreads: from the beginning of 2008 to March 2009, credit
spreads of every maturity strongly widened, whereas during the rest of 2009 all these
spreads drastically tightened. Accordingly, the lower correlation in 2008 and 2009 cannot

be explained by the dynamics of the market yield curve.
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Figure 1. Average correlation of returns among the bonds composing the portfolio to be hedged. The
chart represents the average level of correlation among the eight bonds composing the portfolio to be hedged.
The correlation has been calculated based on the returns provided by each bond on every time period. Since
the time periods are by-weekly, there are 24 observations for each of the reported years. The average
correlation has been calculated as a simple arithmetic average of the correlations between each of the 28

possible pairs composed from the eight bonds.

A confirmation that the lower correlation in 2008 and 2009 is mostly due to
idiosyncratic risk comes from the results of regressing the unexpected returns of the bond
portfolio on the market yield curve of BBB-rated bonds. The R2 statistic of these regressions
is also reported in Table I and shows that 75% of the unexpected return variance is still
explained by market risk. Even though this is circa 8% less than between 2000 and 2007,
such a proportion highlights that it is sufficient to combine a few bonds in a portfolio to

rapidly diversify away the dynamics of individual bonds, thus indicating that most risk
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during this period was indeed idiosyncratic. Since our hedging strategies assume that
idiosyncratic bond returns are independent from market returns, they should not be
expected to hedge the residual idiosyncratic return provided by the bond portfolio.
Accordingly, the abovementioned R? statistics can provide us with a rough estimate of the

maximum variance reduction which can be expected from the tested strategies.

Table I
Summary Statistics

The first column of this table describes the periods the statistics refer to. The second column reports the
average of the correlation coefficient among the changes in the BBB zero-rates with maturity 1-year, 5-year,
10-year, and 20-year. The third column reports the average of the correlation coefficient among the changes
in the BBB zero-coupon credit spread with maturity 1-year, 5-year, 10-year, and 20-year. The fourth column
reports the R? statistic of linearly regressing the unexpected returns of the bond portfolio on the changes in
the BBB zero-rates with maturity 5-year, 10-year, and 20-year. The fifth column reports the R? statistic of
linearly regressing the average change in all considered BBB zero-rates on the changes in the risk-free zero-
rates with maturity 5-year, 10-year, and 20-year. The sixth column reports the average ratio between the
variance of the changes in the zero-coupon spreads and the variance of the changes in the BBB zero-rates
with maturity 1-year, 5-year, 10-year, and 20-year. The three sub-periods include - respectively - 119, 191,

and 48 by-weekly observations.
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BBB Average Ratio
Average Average  Bond Portfolio:  Systematic Risk: Spread
Correlation Correlation  Explanatory Explanatory Variance /
BBB BBB Power of BBB Power of Total

Period Rates Spreads  Systematic Risk  Risk-Free Rates Variance
1995-Sep. 2000 75.5% 30.2% 87.8% 27.2%
Oct. 2000 - 2007 65.0% 37.0% 83.8% 83.5% 26.8%
2008-2009 76.0% 94.9% 75.5% 43.4% 57.6%

Table II reports the results obtained by the alternative hedging strategies in term of
variance reduction, whereas Table III reports the first-order autocorrelation of the hedging
error for the same hedging strategies. Although the variance of the returns provided by the
hedged portfolio is the key statistic we use to rank the alternative hedging strategies, we
believe that the first-order autocorrelation of the hedging errors should also be regarded as
a relevant quality statistic. If this autocorrelation is negative, hedging errors tend to offset
each other during subsequent periods. On the contrary, if this autocorrelation is positive,
hedging errors tend to add up to each other during subsequent periods, thus amplifying a
loss or a profit over several time periods. In most business environments, the latter
situation is undesirable. Accordingly, hedging strategies leading to errors displaying a

lower level of autocorrelation should - ceteris paribus - be preferred.

Table II
Variance Reduction Obtained by Alternative Hedging Strategies

This table reports the results obtained by the error-adjusted version of four alternative hedging strategies

including different financial instruments. Variance reduction is calculated as the ratio of the variance of the
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unexpected returns provided by the hedged portfolio over the variance of the unexpected returns provided
by the bond portfolio to be hedged less one. For the hedged portfolio relying only on T-bond futures, we also
report the R? obtained by linearly regressing the hedging errors on the changes in the spread between the 10-
year zero rate of the BBB USD yield curve and the corresponding zero rate of the US Treasury yield curve. **
indicates 2.5% statistical significance, whereas *** indicates 1% statistical significance. The statistical
significance related to the variance reduction has been estimated following a matched pair experiment
approach: the inference refers to the average difference between the absolute value of the hedging error for
the strategy relying only on T-bond futures and the absolute value of the hedging error for the alternative

strategy. The three sub-periods include - respectively — 100, 72, and 47 by-weekly observations.

T-bond T-bond
Futures T-bond  Futures and
Hedging and S&P500 Futures Credit Spread
Instruments T-Bond Futures Futures and CDX Forward
Bond
Portfolio Variance R?ofHedging Error = Variance Variance Variance
Period Variance Reduction on Spread Changes Reduction Reduction Reduction
2000-2004  0.015% 82.3% 0.6% 76.8%
2005-2007  0.008% 84.7% 0.0% 84.0%
2008-2009  0.035% 23.5% 49.8% (***) 26.1% 30.2% 64.3%(**)

We implemented both the traditional version and the version including the error-
adjustment for each of the four tested strategies. Consistently with Carcano and Dall’'O
(2011), the results we obtained for the traditional version of the strategies were
systematically worse than the ones obtained for the version including the error-
adjustment. However, we observed that traditional strategies often led to implausible long-
short positions in the hedging instruments and - as a consequence- to far worse results

than the ones reported by Carcano and Dall’'O (2011). We suspect that the greater
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complexity of our hedging problem and the larger size of the involved hedging errors might
be responsible for this outcome. Accordingly, for the sake of brevity, we report only the
results provided by the error-adjusted strategies here. In the next sub-sections, we will

analyze these results for each of the four tested hedging strategies.

A. Hedging through T-Bond Futures

The results reported in Table II highlight a clear change of regime before and during
the sub-prime crises. Before the crisis, the error-adjusted version of this hedging strategy
led to an average variance reduction of 83.5%. This figure almost precisely matches with
the proportion of systematic risk in the bond portfolio reported in Table I (83.8%), which
we considered to be a rough estimate of the maximum attainable variance reduction. This
level of variance reduction is substantially higher than the one reported by previous
studies on this subject and is largely consistent between the two analyzed sub-periods.
Also, Table IlI reports a negative autocorrelation of order one for the hedging errors of this
strategy before the crisis, which strengthens the evidence about the usefulness of this
immunization approach.

We can explain the above result by looking at some of the figures reported in Table I.
Particularly, 83.5% of the dynamics of the yield curve of BBB-rated bonds from 2000 to
2007 were explained by risk-free rates. Since we have just remarked that 83.8% of the
bond portfolio variance during the same period was explained by the yield curve of BBB-

rated bonds, this implies that the vast majority of the bond portfolio variance from 2000 to

110



2007 was explained by risk-free rates. Carcano and Dall’O (2011) reported that error-
adjusted PCA strategies relying on four T-bond futures contracts can almost perfectly
hedge the risk related to the risk-free yield curve, so that the very good performance of this
hedging strategy between 2000 and 2007 should not be surprising. We would expect the
vast majority of the residual variance of the hedged portfolio returns (16.5% of the total
variance to be hedged) to be due to idiosyncratic returns of the individual bonds. This
hypothesis is confirmed by the observation reported in Table II that the hedging errors
produced by this strategy before the sub-prime crisis were basically uncorrelated with the
dynamics of the average credit spread paid by the market on BBB-rated bonds.

The observation that - in the years preceding the sub-prime crisis - hedging errors
are mainly due to idiosyncratic returns of the individual bonds has two important
implications. Firstly, corporate bond portfolios which display a higher level of
diversification than our equally weighted 8-bond portfolio can plausibly be hedged even
more effectively. Secondly, strategies attempting to hedge against changes in the corporate
bond spread are unlikely to obtain any improvements over a simpler strategy relying only
on T-bond futures during the considered period, also because Table I highlighted that
credit spreads of different maturity moved up to a large extent independently from each
other. We will show below that this was indeed the case for all alternative strategies we

tested.

Table II1
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Autocorrelation of the Hedging Errors Produced by Alternative Hedging Strategies

The column “Bond Portfolio” reports the coefficient of first-order autocorrelation of the unexpected return
provided by the bond portfolio. The other four columns report the coefficient of first-order autocorrelation of
the hedging error provided by the hedging portfolio indicated in the title row. The hedging error is computed
as the sum of the unexpected return provided by the bond portfolio and the unexpected return provided by

the hedging portfolio. The three sub-periods include - respectively - 100, 72, and 47 by-weekly observations.

T-bond Futures T-bond T-bond Futures
Bond and Futures and Credit
Period Portfolio T-Bond Futures  S&P500 Futures and CDX Spread Forward
2000-2004 1.3% -10.3% -13.2%
2005-2007 1.3% -20.0% -20.5%
2008-2009 27.7% 70.4% 66.0% 57.8% 21.3%

When we consider the results obtained by the same strategy in 2008 and 2009, we
face a completely different picture. Not only does the variance reduction drop to 23.5%, but
also the autocorrelation of the hedging error stops being negative. A positive
autocorrelation of 70.4% implies that hedging errors tend to cumulate over time, so that
losses tend to be followed by other losses. Considering that the unexpected returns of the
unhedged bond portfolio display a substantially lower level of autocorrelation than the
hedging errors and the small variance reduction, it is not at all clear that the hedged
portfolio is preferable to the unhedged portfolio during this period.

Two questions arise from the observation we just made: why does hedging
corporate bonds through T-bond futures stop making sense in this period and under which

conditions is this likely to happen again in the future? The answer to the first question
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seems to be simpler: the dynamics of the credit spread which are not hedged by this
strategy played a crucial role in 2008 and 2009. Clear evidence of this is provided by the R2
statistic reported in Table II which highlights a highly statistically significant relationship
between the hedging error and the credit spread during this period. The origin of this
relationship can be identified in Table I: in 2008 and 2009, risk-free rates are no longer
able to explain most of the dynamics of BBB yields and the main reason for this is that the
variance of credit spreads as a proportion of total yield variance more than doubled. This
relationship explains also the high level of autocorrelation of the hedging error. In fact, if
we observe the development of the credit spread in 2008 and 2009 reported by Figure 2,
we notice that positive (negative) changes have been mostly followed by other positive
(negative) changes. Since these changes heavily influenced the hedging errors, a strongly

positive autocorrelation of the latter errors should be expected.
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Figure 2. Level of corporate bond spread and CDX spread from 2004 to 2009. The chart represents the
values of four lines from the 15t of October 2004 to the 31st of December 2009. The first line - the Bond
Spread - has been calculated as the difference between the 5-year par rate reported by Bloomberg for BBB-
rated bonds issued by industrial companies and for US Treasury bonds. The second line - the CDX Spread - has
been obtained by Bloomberg for the 5-year Investment Grade CDX contract. The third line - the CDX Basis -
has been calculated as the difference between the CDX Spread and the bond-to-swap spread; the latter spread
is defined as the difference between the yield of the CDX basket and the 5-year swap rate. The fourth line - the

Difference - has been calculated as the difference between the CDX Spread and the Bond Spread.

Answering the second question above is more difficult. If we analyze BBB credit
spreads in the United States from 1995 to 2010, we come to the conclusion that the
“normal” range for these spreads lies somewhere between 0.75% and 2%. When spreads

exceed the level of 2%, an abnormal tension on the credit market seems to be in force. The
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latter tension can plausibly be expected to lead to sudden and remarkable shifts in the
credit spreads. Accordingly, strategies hedging corporate bond risk should attempt to also
hedge systematic credit spread risk during such periods. However, we realize that this
answer has rather the character of anecdotic evidence than of a rigorous proof. More
comprehensive empirical analyses of other countries and time periods could perhaps
provide us with a sounder evidence on the conditions under which it is important to hedge
systematic credit spread risk. For our purposes, we will assume that this was the case only
in 2008 and 2009 and test the performance of alternative hedging strategies focusing on
systematic credit spread risk during this period. Their results will be analyzed in the

following paragraphs.

B. Hedging through T-Bond Futures and S&P500 Futures

The results reported in Table II and Table III highlight that the differences in
variance reduction and autocorrelation of hedging errors obtained by introducing a
position in the S&P500 futures within the hedging portfolio are small. Before the sub-prime
crisis, our results do not support the usage of the S&P500 futures as a hedging instrument
for corporate bonds; this is not surprising since in the previous sub-section we highlighted
the lack of correlation between hedging errors and the credit spread paid by the market
during this period. In 2008 and 2009, the S&P500 futures would have helped both in terms
of variance reduction and of autocorrelation. However, the size of this improvement is so

small that we should ask ourselves if the benefit is worth the effort.
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There are two reasons why the impact of the S&P500 futures on the hedging quality
is so small. The first reason goes back to our decision to use these futures only when the
level of consumer confidence is below its historic mean, since past evidence showed that
only during these phases the credit spread and the S&P500 seem to be significantly
correlated to each other. This implies that in circa 40% of our test cases before the sub-
prime crisis the S&P500 is not used. However, this does not apply for 2008 and 2009, a
period during which the consumer confidence index was systematically below its historic
mean. A second reason is responsible for the low impact of the S&P500 futures also during
this period. Even if we consider only the periods with a low level of consumer confidence,
the unexpected dynamics of the S&P500 explain only 8.7% of the variance of the changes in
the credit spread of the 10-year zero-coupon rate for BBB-rated bonds. This proportion
falls to 0.1% if we regress the full changes in the 10-year zero-coupon rate for BBB-rated
bonds on the unexpected return provided by the S&P500 futures. Consistently with such a
loose relationship, our PCA-based methodology leads to sell the S&P500 futures (which is
consistent with our intuition), but only for an average amount of circa 2.5% of the bond
portfolio value. With such a low weighting, it should not come as a surprise that the use of
the S&P500 does not add significant value to the simpler hedging portfolio including solely
T-bond futures.

We conclude that the relationship between the equity market and the corporate

bond spread seems to be too loose to allow a meaningful use of equity-related financial
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instruments in hedging corporate bond risk. In the next sub-section, we will analyze if a
derivative explicitly constructed on the credit risk of BBB-rated corporate bonds is of

greater use for this purpose, as we would expect.

C. Hedging through T-Bond Futures and Credit Default Swaps

Considering the evidence reported above on the lack of relationship between
hedging errors and credit spread changes before the sub-prime crisis, we decided to
include the 5-year Investment Grade CDX contract in the hedging portfolio only during
2008 and 2009. We decided to include only one hedging instrument for the credit spread
because - as reported in Table I - when the dynamics of this spread really need to be
hedged, all points along the term structure of credit spread are very strongly correlated
with each other. Accordingly, hedging this term structure with only one instrument should
be sufficient. We decided to use the 5-year CDX contract, which is by far the most liquid
one.

The results reported in Table II and in Table III suggest that this Credit Default Swap
does indeed improve the quality of hedging compared to the strategy including the S&P500
futures, both in term of variance reduction and of autocorrelation dampening. However,
the improvement is much smaller than one would plausibly expect. If we consider the
abovementioned benchmark of 75.5% for the maximum variance reduction, we have to
admit that a value of 30.2% cannot be considered too favorably. Not surprisingly, the

improvement compared to the hedging portfolio including only T-bond futures is not
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statistically significant. Also, the problem of a significantly higher positive autocorrelation
than the unhedged bond portfolio persists, so that we are still not in the position to say that
this way of hedging makes more sense than just keeping the bond portfolio unhedged.

Why does a derivative explicitly designed to track the dynamics of credit risk not
perform better in hedging the credit spread risk embedded in corporate bond portfolios?
Figure 2 can help us to answer this question. In this figure, the line titled Difference
represents the difference between the CDX spread and the bond spread, that is, the spread
between BBB-rated corporate bond rates and risk-free rates. Since changes in the CDX
spread determine the CDX performance and this performance should hedge against
changes in the bond spread, if the CDX spread and the bond spread move apart from each
other the hedging quality cannot be very high. The line titled Difference in Figure 2
highlights that during 2008 and the first part of 2009, the CDX premium reacted less than
proportionally to the increase in the corporate bond spread. During the second part of
2009, the CDX premium reacted less than proportionally to the decrease in the corporate
bond spread. As a result, the CDX premium tended to undershoot the actual dynamics of
the corporate bond spread. Now, if this undershooting took place at a consistent rate over
time, it would not represent a problem for hedging, since changes in bond spreads and CDX
premiums would still be highly correlated with each other. Unfortunately, the rate of this

undershooting changes over time, thus drastically reducing the level of this correlation.
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Accordingly, the question shifts to the dynamics of the difference between the CDX
spread and the bond spread: what can explain these dynamics ? A first explanation is that
the CDX spread in reality refers to the difference between the yield of the underlying bond
basket and - as suggested by Blanco et al. (2005) - the corresponding swap rate. The
underlying bond basket of the Investment Grade CDX does not only consist of BBB-rated
bonds issued by industrial companies: it includes also A-rated bonds and non-industrial
companies. The difference between the CDX spread and the appropriate bond-to-swap
spread (considering the composition of the underlying CDX basket) is the so-called CDX
basis and represents the remaining dynamics of the line titled Difference in Figure 2.

In order to assess the relevance of these two explanatory factors, we estimate the
CDX basis and report it in Figure 211, We notice that this basis follows very similar
dynamics as the line titled Difference, even though at a consistently lower absolute value: a
linear regression analysis shows that 77.5% of the variance of changes in the difference is
explained by changes in the CDX basis. Accordingly, this basis explains the vast majority of
the residual hedging errors.

The natural question which arises based on these results is: were the dynamics of
the CDX basis in 2008 and 2009 systematic or idiosyncratic? Were they economically

justified, so that we should expect to see similar dynamics in the future? Or were they

1 For estimating the CDX basis, we needed an estimate of the yield of the CDX bond basket. We calculated this
yield as a weighted average of the 5-year BBB and A par rates, where the weights corresponded to the rating
allocation displayed by each CDX series. The bond-to-swap spread was obtained by subtracting the 5-year swap rate
from the yield of the CDX bond basket.
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related to exceptional market inefficiencies which are unlikely to happen again? In the
former case, the weakness of CDX as a hedging vehicle would be chronic, whereas in the
second case there would be some more room for hope.

Since the negative CDX basis persisted for one full year, it is hard to believe that it
was related to a mispricing or to a lead-and-lag relationship between the CDX and the bond
markets. Consistently with the findings of Elton et al. (2001) and Collin-Dufresne et al.
(2001), during the sub-prime crisis the corporate bond spread increased much more than
it would have been justified simply by the expected default losses. In a frictionless market
with no counterparty risk, non-arbitrage conditions would have led the CDS spread and the
bond spread to move together. In fact, an arbitrageur could take advantage of a negative
CDS basis by financing the acquisition of the bond at the risk-free rate and buying
protection through a CDS: if the cost of the protection is lower than the bond spread, the
arbitrageur would obtain a positive and riskless return. However, two problems made this
kind of arbitrage cumbersome during the crisis. Firstly, finding cheap money to finance the
acquisition of the bonds was not easy. This issue was more serious for single-name CDS
than for our CDX contract, tough: even during the crisis, the collateral value of a well-
diversified basket of investment-grade bonds was relatively high. Secondly, the dramatic
increase in counterparty risk led the risk for the protection buyer to increase much more
than for the protection seller: during a generalized credit crunch, the default correlation of

the protection seller (normally, a bank) with the bond issuers drastically increases, thus
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making more likely that the protection seller will not honor her duties on the CDS. As a
result of the increased counterparty risk, the negative-basis trade is far from being riskless
for the arbitrageur: the negative basis simply represents a compensation for this risk.
Accordinlgy, we agree with Fontana (2010) that this phenomenon was not signaling any
market inefficiency. In the case of our CDX contract, we are convinced that the increase in
counterparty risk was the most important reason which led the negative basis to develop
and persist during the crisis and finally caused the hedging strategy under analysis to

underperform.

D. Hedging through T-Bond Futures and Credit Spread Forwards

If the hypothesis described in the last sub-section is correct, we should see a very
significant improvement in hedging quality by using credit derivatives which are not
subject to counterparty risk. In order to test if this is indeed the case, we assumed the
existence of fully collateralized credit spread forwards on the 5-year BBB par rates. The
credit spreads forwards have been calculated using the 5-year par Treasury rate as a
benchmark and the pricing framework described in Section II.

The results provided by this hedging strategy are reported in the last column of
Table II and Table IIl. They show indeed a substantial improvement compared with the
strategy involving the CDX contract: the variance reduction now amounts to 64.3%, thus
realizing the vast majority of the potential reduction of 75.5% we estimated as a

benchmark for the years 2008 and 2009. It should not be surprising that this benchmark
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cannot be fully matched: even though Table I highlighted that the correlation between
changes in spreads of different maturity is on average very high in 2008 and 2009 (94.9%),
still it is far from being perfect. Accordingly, the use of only one instrument for hedging the
full term structure of credit spreads should not be expected to generate a perfect hedging
of the dynamics of this term structure. Also, Carcano and Dall’'O (2011) showed that
hedging based on four T-bond futures is normally very effective in removing the US
Treasury term structure risk. However, they reported above-average hedging errors in
2008 which are likely to be due to the exceptional market conditions experienced
immediately before and after the bankruptcy of Lehman Brothers. We believe that the
imperfect hedging of the full dynamics of the two involved term structures - the one of
risk-free rates and the one of credit spreads - is the main reason why even the hedging
strategy we analyze here cannot fully realize the potential variance reduction of 75.5%.

The improvement in variance reduction relatively to the hedging strategy based
only on the T-bond futures is statistically significant at the 2.5% level. Also, the hedging
errors display a first-order autocorrelation which is lower than the autocorrelation of the
unhedged bond portfolio returns. Accordingly, we have a consistent evidence on the
usefulness of this strategy for hedging corporate bond market risk.

As a consequence, we conclude that the tested hedging methodology is capable of
reducing the variance of the hedged portfolio by almost two-thirds also in a very

challenging period, like the one including the years 2008 and 2009. The difference in terms
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of variance reduction between the two last tested strategies - circa 34.1% of the bond
portfolio variance to be hedged - represents an estimate of the hedging error due to the use

of the CDX contract.

IV.  Conclusions

We test alternative strategies for hedging a portfolio composed from eight BBB-
rated corporate bonds of different maturity. We focus on market risk, rather than on
idiosyncratic risk. Accordingly, we do not consider in our analysis hedging instruments
linked to a single credit risk, like single-name CDS contracts.

All our hedging strategies result in closed-formula solutions based on a multi-factor
PCA methodology. In general, we find that the traditional implementation of these hedging
strategies, which ignores the modeling errors, does not lead to satisfactory results. On the
contrary, an implementation considering the modeling errors can lead to satisfactory
results, even though the analysis of these results leads to clearly identify two different
regimes within our data sample.

In the section of our data sample preceding the sub-prime crisis (i.e.: from 2000 to
2007), a hedging strategy based only on T-bond futures would have reduced the variance
of the bond portfolio by circa 83.5%. This reduction is significantly higher than the one
reported by previous studies attempting to hedge corporate bonds through T-bond futures.

We attribute this improvement to the use of four futures contracts with different maturity
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and to the consideration of modeling errors. The hedging errors tend to be negatively
autocorrelated, thus reducing the cumulative error over multiple periods, and to be
independent from the dynamics of the average credit spread paid on BBB-rated bonds. This
suggests that the hedging errors are mainly due to the idiosyncratic returns provided by
the bond portfolio to be hedged. Accordingly, it is plausible to think that increasing the
number of bonds in the portfolio might lead to even higher degrees of variance reduction.
The picture we obtain for the years 2008 and 2009 is radically different: during this
period, properly hedging the dynamics of the credit spreads was of paramount importance.
A simple strategy relying solely on T-bond futures would have been insufficient for this
purpose, so that it is not clear that such a strategy would have provided a significant added
value to the bond portfolio. On the contrary, we found out that the tested hedging
methodology considering modeling errors and including fully-collateralized synthetic
credit derivatives could have reduced the variance by 64.3% even during these very
turbulent times. Also for this sub-sample, the vast majority of the residual hedging errors is
due to the idiosyncratic returns provided by the bond portfolio, so that increasing the
number of bonds in this portfolio might lead to higher degrees of variance reduction.
Unfortunately, the financial instrument which is more commonly used in practice
for this sort of hedging - the CDX contract - would have led only to marginal improvements
with respect to the simple strategy relying solely on T-bond futures. We believe this

unsatisfactory result to be due to the counterparty risk involved by this contract which led
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the CDX spread to undershoot the dynamics of bond spreads. Even the S&P 500 futures
contract would have not helped much during this period, since its relationship with the
credit spreads is too loose to lead to a significant weighting within our hedging strategies.

Also with respect to the dispute on the dynamics of credit spreads summarized in
the introduction we find a strong evidence of a change in regime starting from the end of
2007. This and - possibly - other past changes in regime might contribute to explain the
contradictory results obtained by scholars who analyzed this subject. Between the years
2000 and 2007, the volatility of credit spreads relatively to risk-free rates was quite low,
the correlation among different points along the term structure of credit spreads was also
low (suggesting the existence of more than one important systematic risk factor), and the
role of idiosyncratic risk was limited. On the contrary, in 2008 and 2009 the volatility of
credit spreads relatively to risk-free rates was high, the correlation among different points
along the term structure of credit spreads was very high (suggesting the existence of only
one important systematic risk factor), and the role of idiosyncratic risk was significant
(even though it would have been sufficient to combine eight bonds issued by different
companies to largely diversify this risk away).

The interpretation we give to our results is that during times of financial stability
and ordinary levels of credit risk, hedging investment-grade corporate bond portfolios
though T-bond futures or other instruments linked to risk-free rates can lead to very

effective immunization. However, during times of generalized financial distress this is no

125



longer the case and the use of financial instruments directly linked to credit spreads
becomes essential for an accurate hedging. Derivative contracts can be very helpful for this
purpose as long as they do not involve significant levels of counterparty risk which can lead
to substantial divergences between their market value and their underlying value. This
interpretation raises the question of how we could identify times of generalized financial
distress. Barone-Adesi et al. (2011) show that the lease rate, that is the difference between
the gold forward and the LIBOR rate with equal maturity, is an effective indicator of this
distress. As a complement to the lease rate, we found out that credit spreads for BBB-rated
bonds higher than 2% also seem to signal exceptional distress in the credit market.

Next efforts extending the work presented in this paper should in our opinion focus
on collecting further empirical evidence and on the design of credit derivatives. Additional
empirical evidence should analyze how far our conclusions are applicable also to other
fixed-income markets and to high-yield bonds. On the other hand, our results clearly
suggest that a full collateralization of contracts like CDS would substantially improve the
hedging effectiveness of these contracts. We believe these findings to be reconcilable with
economic intuition: since the counterparty risk involved in current CDS contracts is
normally positively correlated with the underlying credit risk, market values for these
contracts tend to widely deviate from their underlying values exactly when the protection
buyer would wish these deviations to be as small as possible. To make this concept clearer

through a non-financial analogy, we would not store fire-extinguishers within inflammable
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cases, since we want to be able to access the extinguishers, when we really need them.
Similarly, we should design CDS and other credit derivatives in such a way that they fully
represent their underlying value, when we really need them to do so. Accordingly, we
would recommend to perform empirical analysis verifying that actual market prices of
fully-collateralized credit derivatives track the dynamics of credit spreads better than
traditional CDS contracts, as we would expect. A viable alternative to a full collateralization
would be represented by the development of exchange-traded CDS contracts, the
settlement of which would be guaranteed by the stock exchange, like for futures and

exchange-traded options.
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