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1. Introduction

Agents holding assets over a finite horizon earn the intermediate yields and the resale price. Viable

asset prices should then depend on both these variables via a pricing map. On the other hand, the

economy as a whole, may be compared to an agent that will hold the assets forever: in this perspective

prices should be set to reflect the “fundamental value” of the assets, a function of dividends only. The

discrepancy that may arise between these two pricing criteria is a “bubble”. Bubbles arise whenever

the contribution of the future resale price to the current value of the asset does not vanish no matter

how far the date or remote the event of reselling the asset. As such bubbles may be viewed as a form

of discontinuity of prices.

Also, viable prices do not permit arbitrage opportunities. The Fundamental Theorem of Asset

Pricing establishes that the absence of arbitrage profits, conveniently defined, is equivalent to the

existence of an equivalent probability measure that transforms discounted prices into martingales.

When this version of the theorem is assumed, i.e. when the corresponding notion of arbitrage is

adopted, bounded asset prices are just the expected, discounted value of the yields matured at all

future dates. In these models pricing bubbles, which are an important issue in macroeconomics,

forcefully remain outside of the picture.

In the present paper we investigate the properties of a model of financial prices in continuous time

which is free of arbitrage opportunities but still does not admit equivalent martingale measures. As

remarked in [9] (the first paper to adopt this setting) continuous time improves our comprehension

with respect to the discrete time case. The main point is that bubbles may arise over a finite horizon,

so that asset prices need not grow unboundedly.

The building block of our model is the notion of martingale density, which is considerably weaker

than that of an equivalent martingale measure. Prices are turned into local martingales by virtue

of a state price process which is the product of the discount factor with a positive local martingale.

We shall give a few characterizations of martingale densities and describe some of their properties

(in section 3). Technically speaking, unlike the case of equivalent martingale measures, the density

process lacks here uniform integrability (henceforth UI). In section 2 we provide a simple example of

a model with three financial assets and an American option written on two of them. We show that

if the state price is a martingale density, then a mispricing arises as the price of the option remains

strictly positive as its payoff converges to 0: this discontinuity is in fact a bubble. The mispricing of

exactly this option is shown to be necessary and sufficient for the existence of pricing bubbles.

This result can be put into a much more general setting. To do so we establish, in section 4, a

fundamental relationship, of interest per se, between positive local martingales and finitely additive

measures. One of the main attractiveness of models admitting equivalent martingale measures is that

asset prices can be viewed as expected values. In our setting this conclusion still holds true although

the intervening measure is not countably additive. This fact is particularly interesting and from it we

derive a clear-cut decomposition of the price of an asset into its fundamental value and the bubble. We

establish that pricing bubbles may have two different sources: either unbounded asset prices or lack

of UI of the density process, and both components are identified explicitly. Furthermore, thanks to
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our construction, we can treat rather general price processes, thus considerably expanding our insight

of this phenomenon. In our context bubbles can, for example, be either negative or positive.

A crucial step is proving that bubbles may arise in reasonable models of financial markets. This

is achieved in section 5 where we show that martingale densities exclude arbitrage opportunities of

a particular class. We also show a more interesting result: whenever bubbles exist, the fundamental

value of an asset considerably underestimates its market value. In other words, there do exist positive

contingent claims for which the fundamental value, being 0, is not a fair price. This conclusion may

be interpreted by saying that in our model bubbles do matter since they are an essential part of the

fair pricing principle.

On this subject some recent work has been done by Loewenstein and Willard, mainly in [10] (but

see also [9]). In these papers, in which the main focus is the notion of viability of financial prices,

not addressed here, a different definition of arbitrage is proposed, based on a discussion of the role

of credit constraints. Our approach differs from theirs exactly on this point, and most closely refers

to [2]. Furthermore we consider general semimartingales as our model for prices rather than diffusion

processes.

2. An Example.

This section is constructed upon an example in [8] (see p. 2371). The purpose is threefold: (i)

to build explicitly a model in which there do not exist equivalent martingale measures; (ii) to show

that the local martingale nature of the density process translates in a clear pricing anomaly; (iii) to

illustrate the strict relationship between asset bubbles and the definition of an arbitrage opportunity,

an issue on which we will comment extensively later on.

Consider the filtered probability space
(

Ω,F , P ;
(
FBt
)
t∈[0,1]

)
, where

(
FBt
)
t∈[0,1] is the natural

filtration of the Brownian motion B, define the stopping time

τ = inf
{
t ∈ [0, 1] : B2

t = (1− t)
}

and the process θs = −2 (1− s)−2Bs. The stochastic differential equation

dZt = θtZtdBt

admits as its unique solution the positive local martingale

Zt = exp

(
−
∫ t

0

2Bs

(1− s)2
dBs −

∫ t

0

2B2
s

(1− s)4
ds

)
Since E (Z1) ≤ E (Zτ ) < 1, Z is not a UI martingale. Let 〈υn〉 be a sequence that localizes Z,

σn = inf {t : Zt ≤ 2−n} and τn = υn ∧ σn ∧ 1.

Financial markets consist of three assets: two securities and the riskless asset, the price of which

has been normalized to 1. The (discounted, not necessarily positive) prices of the two securities are

given respectively by

Rt = 2

∫ t

0

Bs1{τ≥s}ds+

∫ t

0

1{τ≥s} (1− s) dBs

1The reader should consult this reference for proofs of some of the properties that we take for given.
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and

St =
E
(
Z1| FBt

)
Zt

By Ito’s lemma, ZR is a local martingale and ZS is a positive martingale: Z is therefore a martingale

density.

Consider an option of American style that entitles the holder to receive the riskless asset at the

price of γ units of the second security and that may be exercised at will at any random time τn: let p∗γ
denote its price. Remark that, for a European option with maturity τn, the price would necessarily

be

pγ,n = E
(

(1− γSτn)
+
Zτn

)
= E

(
(Zτn − γE (Z1| Fτn))

+
)

Clearly, p∗γ ≥ pγ,n. It is clear that p∗γ is a decreasing function of γ; furthermore, p∗∞ (0) = 0 since the

corresponding option pays nothing with probability 1. As γ increases, the option progressively looses

the whole of its intrinsic (fundamental) value: its price may remain positive only due to the existence

of a bubble, i.e. if part of its price is assigned to the event that the option will be in the money no

matter the strike price. More generally:

Proposition 1. The local martingale Z is a UI martingale if and only if p∗γ ↓ 0 as γ ↑ 1.

Proof. If Z is UI, Zt = E (Z1| Ft) (see [6], theorem I.1.42, p. 11) and Sτn = 1: therefore p∗γ = 1− γ.

For b ∈ L∞ (Ω,F , P )+ and γ < 1

E (Zτnb) = E
(

(Zτn − γE (Z1| Fτn))
+
b
)

+ E ((Zτn ∧ E (γZ1| Fτn)) b)

≤ ‖b‖ pγ,n (0) + E ((Zτn ∧ E (Z1| Fτn)) b)

≤ ‖b‖ p∗γ (0) + E (E (Z1| Fτn) b)

Also limnE (E (Z1| Fτn) b) = E (Z1b). If limγ↑1 p
∗
γ = 0, then, by Fatou’s lemma,

E (Z1b) ≤ lim inf
n
E (Zτnb)

≤ lim sup
n
E (Zτnb)

≤ E (Z1b)

i.e. the sequence 〈Zτn〉n∈N converges weakly. This is equivalent to 〈Zτn〉n∈N being UI (see [3],

Theorem IV.8.9, p. 292) and the claim follows by virtue of lemma 1 below. �

This proposition shows first that the lack of UI of the density process is equivalent to the mispricing

of the American option, clearly a discontinuity of the pricing rule. Remark that in an economy with

complete financial markets, although the option itself may not exist, it can be replicated exactly by

a corresponding portfolio: this example is, so, entirely general (at least with complete markets). The

proposition suggests that a test of the UI property of Z could in principle be obtained by looking at

the price of options out of the money and investigate whether it may be conjectured to converge to 0

with moneyness.

Second, this example is also interesting as far as arbitrage opportunities are concerned. Consider

the following trading strategy: at time t = 0 buy a > 0 units of the second asset and sell the amount
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aE (Z1) of the riskless asset, holding this portfolio up to t = 1. For any 0 ≤ t ≤ 1 the value Wt of

the portfolio is a (St − E (Z1)). The initial cost incurred is then 0 while Wt > −a a.s.: this is then a

feasible strategy for any reasonable definition of feasibility. At maturity, W1 =
(
1{Z1>0} − E (Z1)

)
a so

that P (W1 > 0) = P (Z1 > 0), i.e. W1 is a.s. strictly positive, unless P (Z1 > 0) < 1. In this example,

then, a strictly positive martingale density actually implies the existence of arbitrage opportunities.

This illustrates how deeply the strict positivity of the density process relates to the absence of arbitrage

opportunities, the subject of the following Proposition 2.

3. The Model

We start with some notation. (Ω,F , P ; {Ft : t ∈ R+}) is a filtered probability space and all pro-

cesses M = (Mt : t ∈ R+) are adapted to the filtration. Put M∗ , suptMt and M∞ = limtMt when-

ever such limit exists a.s.. A UI martingale is a martingale M such that the family {Mt : t ∈ R+} of

random variables is UI. A local martingale is a process M that admits a localizing sequence - i.e. a

sequence 〈τk〉k∈N of stopping times which increases to∞ a.s. such that for each k the stopped process

Mk = (Mt∧τk : t ∈ R+) is a UI martingale. An important result that will be repeatedly used in the

sequel is Doob convergence theorem: if M is a positive supermartingale then M∞ is well defined and

a.s. finite and, consequently, M∗ <∞ a.s..

A great part of this paper hinges on the difference between local and UI martingales. A general

result in the theory of stochastic processes establishes that a local martingale M is a UI martingale if

and only it is of class D, i.e. the family of random variables {Mτ : τ a finite stopping time} is UI (see

[6], proposition I.1.47, p. 11). Sufficient conditions for local martingales to be UI martingales can be

found in textbooks. In our context the following, new characterization will be more useful.

Lemma 1. A local martingale M is of class D if and only if there exists a localizing sequence 〈τn〉n∈N
such that the collection {Mτn : n ∈ N} is UI.

Proof. The direct implication is obvious. For the reverse one, let {Mτn : n ∈ N} be UI for a given

localizing sequence 〈τn〉 and let υ be a finite stopping time. Observe that (i) for any F ∈ Fυ,

(F ∩ {τn > υ}) ∈ Fυ ∩ Fτn = Fυ∧τn and that (ii) for Y ∈ L1
+ (Ω,F , P )

E
[
1FE

(
Y 1{τn>υ}

∣∣Fυ∧τn)] = E
[
E (Y | Fυ∧τn) 1F∩{τn>υ}

]
= E

[
E
(
Y 1F∩{τn>υ}

∣∣Fυ∧τn)]
= E

(
Y 1F∩{τn>υ}

)
Since E

(
Y 1{τn>υ}

∣∣Fυ∧τn) is Fυ measurable, E
(
Y 1{τn>υ}

∣∣Fυ∧τn) = E
(
Y 1{τn>υ}

∣∣Fυ) i.e.

(3.1) E (Y | Fυ∧τn) 1{τn>υ} = E (Y | Fυ) 1{τn>υ}
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But then

Zυ1{τn>υ} = E (Zτn | Fυ∧τn) 1{τn>υ}

= E (E (Z∞| Fτn)| Fυ∧τn) 1{τn>υ}(3.2)

= E (Z∞| Fυ∧τn) 1{τn>υ}

= E (Z∞| Fυ) 1{τn>υ}

(3.4)

and, given that υ is finite a.s., Zυ = E (Z∞| Fυ) follows after passing to the limit. �

UI martingales are in one to one correspondence with measures, a well known fact. If Q is a

probability measure on the space (Ω,F) equivalent to P , then the Radon-Nikodým derivative

Zt =
dQFt

dPFt

- where PFt and QFt denote the restrictions of P and Q respectively to the σ algebra Ft - is a strictly

positive UI martingale and Z0 = 12. If, further to these properties, ZS is itself a (local) martingale,

then Q is said to be an equivalent (local) martingale measure for S. Whenever Z and ZS are just local

martingales, with Z non negative and Z0 = 1, then Z is said to be a martingale density (see [11]).

Observe that martingale densities are not associated to measures. In section 4 we shall establish that

such a correspondence with measures holds for local martingales as well.

The “cum dividend”, discounted price process S will be modeled as a vector semimartingale. No

other condition is needed right now save the following

Assumption: The price process S admits a martingale density Z.

The economic meaning of this assumption will emerge from the rest of the paper, but one issue

needs clarification. In fact, it has been conjectured (in [1]) that the existence of a martingale density

implies that the price process is a special semimartingales. This turns out to be incorrect.

Lemma 2. Let S = M + V , be a vector semimartingale, with V a process of finite variation and

M a local martingale and let Z be a positive local martingale, Z0 = 1. Let Ṽ =
∫

1{Zt−>0}dVt,

L (Z) =
∫

1{Z>0}Z
−1dZ and denote by Ap the predictable compensator of a process of integrable

variation. Then the following conditions are equivalent to Z being a martingale density for S.

(1)
(
Ṽ + [L (Z) , S]

)p
= 0;

(2)

{
Ṽ c + 〈L (Z) ,M c〉 = 0(
Ṽ d +

[
L (Z) , Sd

])p
= 0

Proof. As a consequence of the integration by parts formula we have

Ṽ + [L (Z) , S] =

∫
1{Zt−>0}

Z−
d (SZ)−

∫
1{Zt−>0}dM −

∫
S−dL (Z)

2If Z is only positive, then Q will be absolutely continuous with respect to P .
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The left hand part is of finite variation; the right hand side is a local martingale if and only if

Z is a martingale density. Therefore the latter will be the case if and only if Ṽ + [L (Z) , S] is a

local martingale of (finite and hence of) integrable variation, a condition equivalent to (1). (1)→(2)

Ṽ + [L (Z) ,M ] being a local martingale of finite variation, its continuous part, Ṽ c + 〈L (Z)
c
,M c〉,

must vanish so 0 =
(
Ṽ d +

[
L (Z) ,Md

])p
, i.e. (2) follows. (2)→(1) Obvious. �

Θ is the set of admissible trading strategies so that
∫
θdS is well defined if θ ∈ Θ then. The process

W = (Wt : t ∈ R+) indicates the agent’s wealth across time: therefore Wt = θt · St for some θ ∈ Θ.

As customary, the wealth of agents must satisfy W0 ≥ 0 and the budget constraint

(3.5) Wt ≤Wr +

∫ t

r

θudSu

A negative value of W represents the investor’s need for funding and is subject to some restrictions

in order to rule out pathological situations, like “doubling strategies”, that arise when investors have

unbounded access to credit. Credit constraints take the general form
∫ t
0
θdS ≥ −a ∀t a.s. and we

define

(3.6) Θa =

{
θ ∈ Θ :

∫ t

0

θdS ≥ −a
}

The choice of how to model the bound a turns out to be crucial (see [5] for a short description of

alternatives). The main issue is whether the bound is fixed or it is just constrained to belong to some

space X. In the first case borrowing constraints are exogenous and each agent has a fixed maximum

amount of credit with which he is born. The only trading strategies then that can be implemented

on an unbounded scale - and therefore discard the existence of equilibrium if arbitrage opportunities

are available - are those in Θa with a = 0.

In this paper we take the view that credit constraints should in principle be considered endogenous

(even if we do not treat equilibrium here) and as such an increasing function of the agents ability to

repay their creditors, to which potential gains from trade contribute3. If a true arbitrage opportunity

exists on the market for investors with an arbitrary but limited endowment of wealth, then fund

raising should become potentially unrestricted. Although most of the conclusions of the following

sections hold true for different specifications of credit constraints, whenever necessary we will require

a ∈ L∞, as in [2]. It is well known that credit constraints are a source of price bubbles in equilibrium

models (see [7]): being rather general on this side makes therefore our results more robust.

Preliminary intuition on martingale densities as a model of asset bubbles can be obtained (along

the lines developed by [9]) assuming, for the sake of the argument, that St ≥ 0 a.s.4 and St : Ω→ R.

In this case the positive local martingale SZ is actually a supermartingale, (by Fatou’s lemma) so

3In [9] (see the discussion on p. 23 and following), credit constraints are made to depend on future endowments,

but not on portfolio future payoffs. This seems to impose too severe a restriction for financial intermediaries that would

then be constrained in raising funds regardless of their expected performance.
4Recapitalization of firms under risk of default can be taken as an example of assets with not necessarily positive

price.
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that

(3.7) ZtSt ≥ E (Z∞S∞| Ft)

i.e.5

(3.8) St = φt (S) + βt (S)

where φt (S) = Z−1t E (Z∞S∞| Ft) represents the fundamental value of the asset, while βt (S) repre-

sents the non-negative bubble arising whenever the inequality in (3.7) is strict. Remark that if Z is

a martingale density for the price process then by (3.5) it also transforms the wealth process W into

a supermartingale, and, as long as it is constrained to be non negative, we obtain the decomposition

(3.8) for wealth as well. Furthermore, if Z∞ > 0 a.s. the inequality (3.7) applied to portfolios also

implies that no admissible trading strategy whose wealth process remains non negative throughout

may be such that P (W∞ > 0) > 0 - a situation that would clearly represent an arbitrage opportunity.

One of the main points of this paper is to investigate the structure of β and to this end we will

need some machinery. Furthermore, we want to extend the analysis of bubbles outside of the far too

restrictive case of a non negative price or wealth processes: the supermartingale inequality will no

longer apply.

4. The Structure of Asset Bubbles

In this section we shall show that, as well as positive UI martingales, positive local martingales too

generate probability measures but only of finitely additive type. This measure theoretic characteriza-

tion is entirely new and shall prove quite useful, shedding light on the structure of the pricing rule in

the absence of UI. Let a localizing sequence 〈τn〉n∈N for Z be fixed throughout the rest of the paper.

As long as Fτn measurable assets (events) are concerned, a local martingale is clearly as good

a pricing and mathematical model as a UI one. In fact λ (A) = E (Zτn1A) is a well defined (and

countably additive) measure on (Ω,Fτn) which easily extends to A =
⋃
n Fτn , an algebra of subsets

of Ω: the problem is rather how to extend λ from A to F . Let us remark that, for given A ∈ F ,

when Z is UI, it is equivalent to define the measure Q either as (i) Q (A) = E (Z∞1A) or (ii)

Q (A) = limtE (Zt1A). In the case of Z a local martingale, both definitions are unsatisfactory: the

former is not an extension of E (Zτn1A); the second is simply not defined6.

Let then Λ be the linear functional on L∞ (Ω,A, P ) defined by Λ (b) = λ (b) and let δ be the

functional on L∞ (Ω,F , P ) defined by δ (b) = lim supnE (Zτnb). It is easy to see that δ ≥ Λ on

L∞ (Ω,A, P ) and that δ is sub additive. We can then find an extension7 of Λ to L∞ (Ω,F , P ) (still

denoted by Λ) such that Λ (b) ≤ δ (b). This implies8

lim sup
n
E (Zτnb) ≥ Λ (b) ≥ lim inf

n
E (Zτnb)

5S∞ always exists on {Z∞ > 0}.
6Since E (Zτn1A) does not converge for some A ∈ F
7By the Hahn Banach theorem.
8In fact Λ (b) = −Λ (−b) ≥ − lim supn E (−Zτnb) = lim infn E (Zτnb)
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so that Λ is positive and bounded. By duality, Λ is associated to a positive, finitely additive measure

on (Ω,F , P ) which, by construction, extends λ. We shall still refer to such extension by λ. We have

thus proved the existence claim in the following theorem

Theorem 1. Let Z be a positive local martingale. Then Z is associated to a positive, finitely additive

set function λ of bounded variation defined on (Ω,F) that vanishes on P null sets and satisfies

(4.1) lim sup
n
E (Zτn1A) ≥ λ (A) ≥ lim inf

n
E (Zτn1A)

for all A ∈ F . Furthermore:

(1) λ is countably additive if and only if Z is a UI martingale.

(2) There exists a unique decomposition

(4.2) λ = λc + λ⊥

with λc and λ⊥ positive, bounded measure on (Ω,F) such that for any ε > 0 and any probability

measure m on (Ω,F), there exists a set A ∈ F satisfying λ⊥ (A) = 0 and m (Ac) < ε.

Furthermore, λc (A) = E (Z∞1A).

Proof. (claim 1). If Z is UI then limnE (Zn1A) exists - and coincide with λ (A) by (4.1) - for any

A ∈ F (see [3], Theorem IV.8.9, p. 292). Countable additivity then follows from Vitali-Hahn-Saks

theorem (see [3], corollary III.7.3, p. 159). If λ is countably additive, it is absolutely continuous with

respect to P , with Radon-Nikodym derivative U . Since, by (4.1), E (U1A) = λ (A) = E (Zτn1A) for

any A ∈ Fτn , then Zτn = E (U | Fτn) and Z is then UI by lemma 1.

(claim 2). Let λc (A) = E (Z∞1A) and λ⊥ (A) = limk λ (A ∩ {∞ > Z∗ > k}). Since, Z∗ < ∞ a.s.

and limnE
(
Zτn1A∩{Z∗<k}

)
= E

(
Z∞1A∩{Z∗<k}

)
for each A ∈ F (by bounded convergence), (4.1)

implies λ (A ∩ {Z∗ < k}) = λc (A ∩ {Z∗ < k}). Then

0 ≤ λ (A)− λc (A)

= lim
k
λ (A ∩ {∞ > Z∗ > k})

= λ⊥ (A)

If m is any probability measure, λ⊥ ({∞ > Z∗ > k}c) = 0 while m (∞ > Z∗ > k) can be made arbi-

trary small by choosing k sufficiently large. The decomposition λ = λc + λ⊥ satisfies the claim and,

by the theorem of Yosida and Hewitt, it is unique (see [3], theorem III.7.8, p. 163). �

We now move to the characterization of bubbles. Let 〈σn〉n∈N be a localizing sequence for SZ and

υn = σn ∧ τn ∧ n. By optional stopping and for m > k > n, S0 = E (ZτmSυk). Then:

(4.3) S0 = lim
k

lim
m
E (ZτmSυk) = lim

k
λ (Sυk)

Equation (4.3) gives then a well defined pricing rule, that replaces ordinary expected values, available

when equivalent martingale measures exist. Observe that the price of an asset depends on its entire

path up to maturity so that pricing derivatives by their payoff at expiry is no longer possible. One is

tempted to interpret equation (4.3) in terms of bounded rationality: in order to price assets investors



A NOTE ON ASSET BUBBLES IN CONTINUOUS-TIME 9

focus attention on that part of the price dynamics over which they have complete knowledge and full

pricing ability, i.e. the sequence 〈Sυk〉k∈N ; from this restricted information set they extrapolate the

asset price by extension.

Combining (4.3) and (4.2) gives the decomposition

S0 = lim
n

lim
k
λ (Sυk)

= lim
b↑∞

lim
n

lim
k

{
λc ( Sυk ∧ b) + λc

(
(Sυk − b)

+
)

+ λ⊥ (Sυk)
}

(4.4)

= λc (S∞) + lim
b↑∞

lim
n

lim
k
λc
(

(Sυk − b)
+
)

+ lim
n

lim
k
λ⊥ (Sυk)

i.e.

S0 = φ (S) + βu (S) + β⊥ (S)

Equation (4.4) makes clear what the sources of price bubbles are. In our model bubbles may arise

because prices are unbounded - this is a necessary condition for βu (S) 6= 0, a finding common to

most papers on this subject. If prices are bounded, though, then βu (S) = 0 but there could still exist

price bubbles provided β⊥ (S) 6= 0: this is the case when λ is not countably additive, i.e. Z not UI

Observe that indeed decomposition (4.4) applies to more general contexts than non negative prices.

For prices bounded from below, for example, we still have βu (S) ≥ 0 although β⊥ (S) may take either

sign. We therefore conclude that if λ⊥ = 0 lower bounded prices admit only positive bubbles while

the reverse could be true if λ⊥ 6= 0.

Some further insight on the role of bubbles can be obtained from (4.4). Contrary to [9], in which

this condition is necessary, we have no reason to assume that Z∞ is strictly positive a.s. (a condi-

tion that will be important in the next section): the example in section 2 actually shows that this

assumption may generate arbitrage opportunities. In all cases in which P (Z∞ = 0) > 0, there are

though contingent claims that have no fundamental value and, more generally, the fundamental value

operator φ underestimates the value of assets in a way that may be significant. In this case, and

contrary to common intuition, bubbles not only do not distort financial prices but contribute to a

correct evaluation of assets. But in the next section we will show that P (Z∞ = 0) > 0 is the only

case in which bubbles may exist in the absence of arbitrage opportunities.

5. “Do bubbles matter?”.

Absence of arbitrage opportunities is a key concept and we want to investigate its implications in

our model. However, the definition of arbitrage is not obvious. It is well known that the most natural

and economically meaningful definition (see (5.2) below) - an admissible trading strategy bearing no

cost but positive profits - need not be sufficient to recover “well behaved” price functionals. The

notion of free lunch is exactly the necessary mathematical reinforcement. In continuous time models,

the most significant and important notion is that of No Free Lunch with Vanishing Risk (NFLVR,

introduced in [2]) that we now briefly describe. Let X+ = X ∨ 0 and X− = (−X)
+

.

Recalling (3.6), let Fa =
{(∫ t

0
θdS : t ∈ R+

)
: θ ∈ Θa

}
. Clearly, if ZS is a local martingale and

f ∈ Fa, then Zf is a local martingale as well. For f ∈ Fa define Sf to be the set of localizing sequences



10 GIANLUCA CASSESE

〈υr〉r∈N for fZ and Z. Define then

Ka ,
{
F ∈ λ0 (Ω,F , P ) : F = f∞, f ∈ Fa

}
Let also K ,

⋃
a>0 Ka, Ca ,

(
Ka − λ0+

)
∩ L∞, C ,

⋃
a>0 Ca and let C be the closure of C in

L∞ (Ω,F , P ).

(NFLVR) is defined by the condition :

(5.1) C ∩ L∞+ = {0}

The economic meaning is more clear than the formal definition. (5.1) is violated if there exists

a sequence of trading strategies such that the maximum amount of losses implied by such startegies

converges to 0 uniformly, while the profits remain positive throughout9. Essentially, an agent exploiting

a free lunch may pursue a positive profit while making losses small at will. This quite artificial concept

is fully justified by its important consequences

Lemma 3 (Delbaen and Schachermayer 94). Let S be a (locally) bounded semimartingale. NFLVR

is equivalent to the existence of an equivalent (local) martingale measure Q.

Absence of arbitrage opportunities (NA) is defined as:

(5.2) Ka ∩ L0
+ = {0}

In words, an arbitrage opportunity exists if there is a trading strategy θ ∈ Θa which eventually bears

strictly positive net returns. Contrary to what might seem at a first glance, the definition of NA does

not depend on the choice of the real number a, provided a > 010. In [10] and [9] (NA) is restricted to

the case a = 0: Z∞ > 0 a.s. is then sufficient to exclude arbitrage opportunities.

Define also

Kλa ,
{
F ∈ Ka : F = f∞ and lim

r
λ
(∣∣f−υr − F−∣∣) = 0, 〈υr〉r∈N ∈ Sf , f ∈ Fa

}
and the following condition (NAL):

(5.3) Kλa ∩ L0
+ = {0}

Kλa ⊂ Ka implies (NFLVR)→(NA)→(NAL).

Kλa differs from Ka inasmuch the negative part of f is also required to converge to F− in L1 (Ω,F , λ)

rather than a.s. only. In case λ where countably additive - e.g. under (NFLVR) - this difference would

be immaterial11 and, as a consequence, Ka = Kλa i.e. (NA)←→(NAL). However, if (NFLVR) is not

assumed, the two convergence criteria may differ substantially. Since λ is the pricing measure and

〈υk〉k∈N ∈ Sf , λ
(
f−υk
)

is to be interpreted as the market price for hedging the risk implicit in f - e.g.

a margin that some market authority may find reasonable to impose on the trader. (5.3) defines then

arbitrage as a situation in which the market price of intermediate losses vanishes. The circumstance

9This interpretation is not trivial and requires to show that under (NFLVR),
∥∥∥f−t ∥∥∥ ≤ ∥∥∥f−∞∥∥∥ for f ∈ Fa. This proof

is obtained in the proof of the following proposition.
10In fact, for k > 0, Kka = kKa.
11In this case, convergence in L1 (Ω,F , λ) of (bounded) losses is implied by a.s. convergence.
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that this measure may be persistently positive even when limk f
−
υk

= 0 well captures the stylized fact

for which the probability distribution implicit in financial prices displays a degree of kurtosis far above

the empirical distribution. This phenomenon may be interpreted as an attitude of caution on the side

of the market when assessing the costs of an arbitrage strategy.

It is difficult to establish a clear priority among definitions (5.2) and (5.3). The latter, being

based on a “market” mesaure of risk, should perhaps be the relevant one for operators such as rating

agencies. Nevertheless, such criterion is likely to be strongly influenced by market dynamics, such

as the introduction of new securities or the diffuse bearishness of markets over a given period. The

former definition, risk is measured independently and, possibly, differently from the market so that

this could be the criterion adopted by outside institutions, like regulators.

Surprisingly, the relationship between martingale densities and arbitrage has not been clarified yet.

We can prove the following.

Proposition 2. Let Z be a martingale density and λ the finitely additive measure associated to it. P

vanishing on λ null sets is equivalent to P (Z∞ > 0) = 1 and has the following implications:

(1) . ( NAL) holds.

(2) . ( NA) is equivalent to ( NFLVR).

Proof. If P (Z∞ > 0) = 1, then P vanishes on λc null sets and, a fortiori, on λ null sets. By (4.1) and

reverse Fatou’s lemma

λ (Z∞ = 0, Z∗ < k) ≤ lim sup
n
E
(
Zτn1{Z∞=0, Z∗<k}

)
≤ E

(
Z∞1{Z∞=0, Z∗<k}

)
= 0

Then P (Z∞ = 0) = limk P (Z∞ = 0, Z∗ < k) = 0. Letting H , c exp (−Z∗) with c > 0, we have

H > 0 a.s.. If F ∈ Ka then F ∧H ∈ Ca and there are f ∈ Fa and 〈υk〉 ∈ Sf such that limk fυk = F .

Define, for brevity, fk , fυk and Fk , F − fk. Then

λ (F ∧H) ≤ λ (Fk ∧H) + λ
(
f+k
)

F∧H ≤ (Fk ∧H) + f+k

(5.4)

≤ λ (Fk ∧H) + λ
(
f−k
)

L(fk) ≤ 0 (5.5)

≤ lim supnE (Zτn (Fk ∧H)) + λ
(
f−k
)
by(4.1)(5.6)

≤ E (Z∞ (Fk ∧H)) + λ
(
f−k
)
reverseFatou(5.7)Since lim supk E (Z∞ (Fk ∧H)) = 0 and F+ ∧ H =

(F ∧H) + F−, we deduce

(5.8) λ
(
F+ ∧H

)
≤ lim sup

k
λ
(
f−k
)

+ λ
(
F−
)

(claim 1). By assumption, lim supk λ
(
f−k
)

= λ (F−) so that λ (F+ ∧H) ≤ 2λ (F−): F− = 0 a.s.

implies then λ ((F+ ∧H) > 2−n) = 0 = P ((F+ ∧H) > 2−n) so that P (F > 0) = 0. (NAL) holds.

(claim 2). Let Ak = {fk ≤ −‖f−∞‖}. Then f̂t , 1Ak

∫ t
υk
df = 1Ak

(ft − fk) so that f̂t ≥ −a,

f̂∞ ≥ 0 and P
(
f̂∞ > 0

)
≥ P (Ak) contradicting (5.2): therefore supk

∥∥f−k ∥∥ ≤ ‖F−‖. This, together

with (5.8) and λ⊥ ≥ 0, implies λc (F+ ∧H) ≤ 2 ‖F−‖ .Since H is defined up to a positive constant,

λc (F+) ≤ 2 ‖F−‖ and, a fortiori, λc (G+) ≤ 2 ‖G−‖ if G ∈ C with G ≤ F . But then no sequence
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in C may converge uniformly to a strictly positive random variable, i.e. (NFLVR) holds. Obviously

(NFLVR) implies (NA). �

Combininng proposition 2.2 and lemma 3, we obtain the conclusion that when Z is strictly positive,

it is actually (or may be taken to be) UI. This contrasts with the existence of price bubbles - at least

for bounded asset prices. This conclusion is important because it sheds light on the role of bubbles in

asset pricing. In our model, if bubbles exist then they matter since the fundamental value criterion

would provide a biased pricing rule and some contingent claims could not be priced fairly but by

bubbles.
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