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Chapter 1

Introduction

1.1 Motivation

Credit risk analysis has a prominent role in the banking and financial industry, where one
of the main businesses is granting credit to people and companies. The importance of credit
risk evaluation was recognized since the 1988 Basel Capital Accord, which, ignoring other
kind of risks, set a minimal capital requirement for banks, based on their credit exposure.
Assets of banks were classified and grouped in five categories according to credit risk, then
banks were required to hold capital equal to 8% of their risk-weighted assets, this is called
the standardized approach to credit risk evaluation.

In 1996 the Basel Committee introduced a variation to the original approach, taking into
account also the market risk, including the trading portfolio among the risky assets: shares,
bonds and derivatives. The novelty the commitee introduced, was the possibility to adopt
an internal method to measure the market risk, through value at risk methodologies. The
credit risk, instead, persisted to be treated using the standardized approach.

The new Basel Capital Accord of 2004, as well as recognizing the presence of operational
risk, introduced, concerning credit risk quantification, the possibility to create an internal
rating based system (IRB approach), allowing bank to choose between the foundation-IRB
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by which they are required to compute only the default probability of their counterparts and
the advanced-IRB where they need to compute also the exposure at default, the loss given
default and other parameters. The IRB approach requires therefore an internal rating system
that, after being validated, would give banks the advantage to lower the capital requirement
through a good credit policy.

In the last years even companies outside the banking industry started managing credit risk
by adopting frameworks similar to those required by the Basel Commitee, part of this thesis
regards an experience of this kind, highlighting its worthiness. This work focuses on esti-
mating the default probability for small and medium companies, which market data usually
doesn’t exist and therefore cannot be used as an indicator of perceived credit risk level,
while balance sheet data is available. These enterprises are the common interlocutor for
banking institutions and services providers. Dealing with large firms, banks stipulate ad hoc
agreements, after a deep credit risk analysis conducted directly by analysts, while for small
medium enterprises it is necessary to have tools that can automatically determine the level
of credit risk. This is relevant even for the high number of cases to be processed in a short
time period, however the results obtained should always be considered as a support to the
analyst assessment.

1.1.1 Scope and Contributions of the Research

The main purpose of the thesis is the forecast of default event for small and medium size
companies. By trying to achieve this aim, a series of issues arose, which were taken into
account and analyzed during this work. The main topics we dealt with are

• Variable selection,

• Rare events,

• Variance reduction in Markov chain Monte Carlo,

• Influential observations.
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The selection of variables is an issue as the number of balance sheet items is high, the rare
events problem arose while trying to compose a flexible statistical model, able to produce
sector specific parameters. This required to switch to the Bayesian paradigm, as estimates
are not biased in case of rare events as pointed out in King and Zeng (2001), moreover
the predictive distribution can be easily obtained. In fact, in order to deal completely with
default risk, credit risk frameworks should take into account also the uncertainty of the
estimated risk. The need to estimate complex bayesian models requires the use of methods
to integrate numerically over high dimensional spaces, to this aim, we used Markov chain
Monte Carlo techniques. These methods come with convergence issues and results embed an
error that should be reduced as much as possible. So, by using the delayed rejection strategy
developed in Tierney and Mira (1999), an improvement over the well known Metropolis-
Hastings algorithm, which is usually the first choice, we tried to overcome these problems.
A second way to reduce the variance in Markov chain Monte Carlo we investigated, is based
on the extension to statistical models of the zero variance principle introduced by Assaraf
and Caffarel (1999) in the physics literature. The last issue we faced is the role played by
influential observations on parameter estimates. This is a significant problem with default
data, response variables pose no problems as are naturally bounded, while explanatory data
may present aberrant observations and ruin results. Therefore we addressed this kind of
problem by working on the weighted likelihood score equations methodology as proposed in
Markatou et al. (1997).
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1.2 Thesis Organisation

Chapter 2: Credit Risk in the Energy Market

This chapter is aimed at creating a statistical model for predicting the default events for a
company providing energy services, exposed to credit toward a substantial number of small
and medium enterprises. For these companies balance sheets are available. Much of the
work in this part of the thesis is primarily aimed at data, because the anticipation of default
should be linked to variables not readily available. We derive a large number of balance sheet
ratios and select the best subset in term of prediction performance. The identified model,
once found the consensus of financial analysts, was subsequently implemented. After being
applied to new customers, once new data became available, its out of sample performance
was later investigated. The results confirmed forecast effectiveness and temporal stability,
we conclude that the model can be used as an effective internal rating system.

Chapter 3: Hierarchical Bayesian Modelling of Credit Risk

In this chapter we start using the Bayesian paradigm, analyzing default data provided by
a leading italian bank, regarding small-medium companies asking for a loan. In this data
set the default event is much rare, therefore maximum likelihood estimates are biased, while
Bayesian estimates are not, as shown in King and Zeng (2001). Financial analysts are con-
vinced about the difference of baseline default risk among sectors, so we chose to model
this heterogenity treating hierarchically a subset of parameters. This choice was reasonable,
allowing flexible sectorial estimates, while avoiding unstable results due to a further increase
of default rareness in each sector. Parameter estimates were obtained through the delayed
rejection algorithm developed in Tierney and Mira (1999), whose performace was compared
to the Metropolis-Hastings algorithm (Hastings (1970)) in term of autocorrelation of gener-
ated chains. This chapter has been published with some minor changes in Mira and Tenconi
(2004).
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Chapter 4: Zero Variance Markov Chain Monte Carlo

The Markov chain Monte Carlo efficiency issue, partially discussed in the previous chapter,
is the central theme here. The goal is the variance reduction through the zero variance
principle, introduced in the physics literature in Assaraf and Caffarel (1999). In this chapter
we focused on the adaptation of this principle to the statistical estimation problem. Starting
from simple cases where it was possible to obtain analytical solutions with the variance
reduced to zero, we moved gradually to more complex problems. In the end we tested the
zero variance principle on the estimate of the hierarchical model proposed in the previous
chapter, where we obtained a 78, 95% average variance reduction. Some considerations
regarding statistical models and their properties, allowed the developement of solutions that
make the methodology more agile, avoiding the calibration process.

Chapter 5: Weighted Likelihood Equations for Resistant Credit Risk

Modelling

Often internally handled balance sheet data, present aberrant observations. These some-
times are purely recording errors, more commonly observations are correct but still extreme.
It is necessary to handle this matter, otherwise estimates may be incorrect as stated in the
robustness literature. With such data the risk is increased by the practice, in default predic-
tion, to select all defaulted companies while subsetting the non defaulted ones in a random
way, this is done to reduce the huge amount of data to be treated. In this chapter we adopt
the approach of weighted likelihood equations (Markatou et al. (1997)), which represents a
way to deal with extreme data in addiction to the min-max (Huber (1981)) and infinitesimal
approach, see Hampel et al. (1986). The literature on weighted likelihood equations has not
yet reached maturity, it started dealing with discrete data models and later was extended to
some continuous models, see Basu and Lindsay (1994), Agostinelli (1997), Markatou et al.
(1998). The idea we propose in this chapter, is to extend the weighted likelihood equa-
tion methodology to the class of generalized linear models in unitary fashion. We derive a
modified version of iterative reweighted least squares algorithm, while regarding the logistic
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regression, widely used in this thesis, we derive analytically the Newton-Raphson equations.
Results, though at an early stage, appear to be encouraging, the weighting scheme adopted
underweights only leverage points that are not coherent with the theoretical model, while
coherent leverage points are not underweighted.
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Chapter 2

Credit Risk in the Energy Market

2.1 Introduction

The credit risk management has been growing in the past 20 years, mainly in the financial
and banking industry. This is natural, given their core activity, aimed at connecting economic
agents having a surplus of money with agents requiring some kind of lending.

In the past years, also institutions not belonging to the financial area, have been starting
adopting credit risk frameworks similar to the ones developed in the banking industry. As an
example among them, there are firms operating in the energy market, that became interested
in statistical methods as a tool to process an extensive amount of units requiring energy
services. The liberalization process in this market, started in Europe in the late Nineties,
played surely an important role.

Regarding the energy market, another important reason why credit risk modelling is critical,
is related to the nature of the provided services. In fact, if a default occurs, the content of
the contract between the provider and the user is lost. This is not the case, for example, for
companies operating in the automitive leasing area.

In this chapter, a model built for an energy market institution (EI hereafter), providing
energy services to small and medium firms, is outlined. The purpose of the analysis is
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twofold:

• Investigate the usefullness of balance sheet ratios analysis, identifying relevant causal
relationships with default;

• Predict the default event, providing an automatic rating system, intended as a primary
tool for credit analysts.

The model has been conceived after some brainstormings with internal financial analysts.

2.2 The Data

The typical agreement between energy providers and their customers, is to settle any credit
after a given period of energy supply, whose length is usually about three or four months. As
pointed out previously, this is the reason why energy suppliers front a credit risk problem,
especially because the supplied good cannot be rescued as it is destroyed during its use.

The data that will be used in the following analysis, is composed by 1564 companies to
whom the EI provided, in the past, energy services. For each of them the whole balance
sheet was available1, together with their behaviour regarding payments, expressed in term of
time lasted since the agreed settlement date. This set of data reduced to 1067 after removing
missing and illogical values.

2.2.1 Response Variable

Regarding the credit status of these firms, the rule adopted by EI financial analysts is to
assign the default status to companies which have a payment delay higher than a given
treshold, usually of 60 days. In Table 2.1 is reported the frequency of default occurrencies.

1Balance sheet data was obtained from Cerved, http://www.cerved.com
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Abs. Freq. Rel. Freq.
Default 150 9.59 %
Non-Default 1414 90.41 %

Table 2.1: Default status
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Figure 2.1: Payment delay

The choice of these threshold is not so arbitrary, as analysts’ experience shows that after a
given delaying period, firms almost surely will never pay their debt. In Figure 2.1 it is shown
clearly this concept, in fact after 60 days there is almost no reduction of the number of firms
paying their debt to the EI.

2.2.2 Explanatory variables

The analysis is developed by using some extra balance sheet data, such as the seniority
of the firm, expressed as years since its foundation, the geographical location and a set of
balance sheet ratios. The idea is that the default can be predicted (see Altman (1968)) and
that forecasts can be made for companies going to become EI customers. We build a large
set of balance sheet ratios, aimed at capturing the whole aspects of company management.
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Many of them have a similar meaning, so care is needed to avoid the selection of collinear
variables. We divide the generated ratios into five categories (income, equity, development,
liquidity and working capital, financial structure), although some of them could be placed in
more than one category. In our analysis, the average time lag between default and the issue
of balance sheet, is of one and half year, therefore we expect that ratios with low variability
over time are more relevant to predict the default status.

2.2.2.1 Income

The capability of the company to generate an income is a necessary, yet not sufficient,
condition to persist in the non default status. What we want to capture, first of all, is the
ability of the firm to sell its services, this is obtained by analyzing the turnover ratio. Then
we are interested on the return generated by the company in term of operational and non
operational activity. To this aim we consider the following indicators:

ROE = Free Tax Profit -Taxes
Equity

ROA =
Free Tax Profit -Financial Result-Extraordinary Result

Total Assets

ROI = EBIT
Net Capital Employed

Turnover = Net Sales
Total Assets

I2 =
Profit Before Extraordinary Item

Total Assets

I5 = EBIT
Interest and Similar Income \Interest and Similar Expenses

I7 = EBIT
Equity +Financial Long Term Debts

2.2.2.2 Equity

In this category we put ratios that measure the amount of firm activities covered by internal
resources. These ratios are inversely related to some financial structure ratios. The total
assets variable is inserted with the aim to capture any link between the dimension of firms
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and their default probability. We expect that companies with a low presence of debts have
a low default probability in the medium term, so these variables should be relevant with a
medium/long time lag as in our setting.

Equity Ratio 1 = ER1 =
Equity

Long Term Assets

Equity Ratio 2 = ER2 =
Equity

Tangible Assets

Leverage = Total Assets
Equity

Capitalization Ratio = CR =
Equity

Total Financial Debts

I3 =
Equity

Total Liabilities and Debts
I6=Total Assets

2.2.2.3 Development

In the attempt to capture the dynamics of the management we compute the variation, over
two years, of the firm’s net income, as a synthesis of its whole performance. We build the
following indicator

Development=Net Income t[0]-Net Income t[-2]

where t[0] is the income available from the last balance sheet, while t[−2] is the income
recorded two years before the last balance sheet available.

2.2.2.4 Liquidity and Working Capital

The analysis of short term firm’s balance sheet items, taken alone, is relevant if the time lag
between the analysis and the default status is very short. However, we have a time lag of one
and half year on average, so we expect these variables to be relevant only if analyzed jointly
with other long term structural variables (equity and financial structure). This is why we
also considered the following ratios:

Instant Liquidity =
Cash and Cash Equivalents
Short Term Total Debts
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Current Ratio = CR = Current Assets
Short Term Debts

Working Capital Coverage = Short Term Financial Debts
Working Capital

Current Assets Intensity = Current Assets
Net Sales

Quick Ratio 1 = QR1 =
Current Assets-Inventory
Equity+Long Term Debt

Quick Ratio 2 = QR2 =
Current Assets-Inventory

Total Assets

Cash Asset Ratio = CAR =
Liquid Assets

Short Term Debts

I1 =
Net Working Capital

Total Assets

Net Working Capital 1 = NWC1 = Current Assets
Equity+Long Term Debts

Net Working Capital 2 = NWC2 = Current Assets-Short Term Debts
Total Assets

Net Working Capital 3 = NWC3 = Current Assets
Total Assets

I4 =
Net Working Capital

Total Operating Revenue \Total Assets

Working Capital = WC =
Current Assets-Liquid Assets

Short Term Debts-Short Term Financial Debts

2.2.2.5 Financial Structure

The following variables measure the impact of debts, some of them are inversely related to
the equity ratios, while the remaining capture the impact of short term debts.

Short Term Debts Intensity = Short Term Debts
Net Sales

Short Term Debts Impact = Short Term Financial Debts
Total Financial Debts

Long Term Assets Coverage Ratio =
Equity+Long Term Financial Debts

Long Term Assets

I8 = Total Assets
Equity
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2.3 The Model

The main purpose behind the statistical modelling of credit risk data, is the selection of
financial ratios and extra balance sheet data, able to predict the default event. The fitting
capability of the statistical model is not the unique criterion taken into account, as a first
requirement there is the interpretability of results, discarding the so called black box models,
as it is not possibile to interpret the role played by the selected variables and their obedience
to the economic and financial rules. The second criterion choosen is to build a pasimonious
model, but covering, as widely as possibile, the balance sheet of the firm, that is to say the
following areas:

• Financial structure;

• Income capability;

• Equity equilibrium;

• Liquidity.

The last criterion is to discard variables that lead to results conflicting with the economic
rationality. Given that, the starting point is the unconditional default probability (Table
2.1).

A very naive method to assess default, is to associate to each firm the historical frequency of
default as the future probability to manifest a default status. This approach is reasonable if
there is no data describing the status of each debtor, which happens usually when the credit
exposure is very low and there is no convenience to collect explanatory data. In our case
this corresponds to the null model, i.e. a model with intercept only.

The statistical model should be able, for healthy firms, to associate a default prediction lower
than the historical average, while increasing the default prediction for the non healthy ones.
This corresponds to a reduction of deviance of the fitted model, relative to the null one, as
will be described later.
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As the default event is dichotomous, we model the response, yi, as a Bernoulli random
variable

yi ∼ Be (θi) , i = 1, . . . , n (2.1)

where the default probability, θi, is modelled as

θi =
exp

(
x
′
iβ
)

1 + exp
(
x
′
iβ
) , (2.2)

while xi is the data of the firm and β is the set of parameters to be estimated. What we
get is a logistic regression model. We chose this kind of model as results are interpretable,
moreover the estimation is quick, this is relevant as we are investigating a large amount of
explanatory variables. The loglikelihood for the model at hand is

` (β) =
n∑
i=1

{
yi ln

(
exp

(
x
′
iβ
)

1 + exp
(
x
′
iβ
))+ (1− yi) ln

(
1−

exp
(
x
′
iβ
)

1 + exp
(
x
′
iβ
))} . (2.3)

The selection of variables is guided by the reduction of the Akaike Information Criterion,
which, for a model with k explanatory variables, is given by AIC = 2k − 2 ln (` (β)) . As
an approximate test we use the reduction of deviance ((Azzalini, 2004)), we can rewrite the
loglikelihood in the exponential form, as the Bernoulli belongs to the exponential family

` (β) =
n∑
i=1

{
ωi
ψ

[yiηi − b (ηi)] + ci (yi, ψ)

}

for the case at hand we have ψ = 1, ωi = 1, ηi = ln θi

1−θi
= x

′
iβ, b (ηi) = ln (1 + eηi) and

ci (yi, ψ) = 0. Given that, E [Y ] = µ = b
′
(η) , the deviance can be expressed as

D (y, µ̂) = −2
n∑
i=1

{ωi [(yiη̂i − b (η̂i))− (yiη̃i − b (η̃i))]}
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where η̃i is obtained by estimating the full model (the one having as many parameters as the
number of observations), while η̂i is the estimated model. We call D

ψ
the normalized deviance

and for two nested models M2 ⊂ M1, we have that, approximately,
D(y,µ̂p2)−D(y,µ̂p1)

ψ

d→
χ2
p1−p2 , where p1 and p2 are the number of parameters.

During the model selection, care is devoted to avoid too much correlated explanatory vari-
ables, moreover the purpose is to build a model able to capture as much as possible all the
relevant aspects pertaining to the enterprise management, as expressed in the balance sheet
and related to the default event. In Table 2.2 it is summarized the identified model, obtained
through a stepwise procedure using the Akaike Information Criterion.

Estimate Std. Error z value Pr(> |z|)
Intercept -2.4693 0.1387 -17.80 0.0000
I3 -0.9183 0.4105 -2.24 0.0253
I7 -0.1587 0.0835 -1.90 0.0574
ROA -0.2672 0.1141 -2.34 0.0192
Turnover -0.4270 0.1411 -3.03 0.0025
Current Ratio -0.4719 0.2991 -1.58 0.1146
Seniority -0.1788 0.1136 -1.57 0.1155

Table 2.2: Identified model

At a first stage, analysts decided to keep included in the model the seniority variable, despite
the fact it is weakly significant from a statistical point of view. This decision was made, while
wating for additional data confirming this choice (later analysis rejected this decision, see
Table 2.8). We decided to mantain current ratio given its importance regarding the liquidity
aspect of the firm. Testing the selected model against the null model, we have that for the
null model the deviance is 708.6 and 659.6 for the model estimated. The p-value of the test
statistic, approximatively distributed as χ2

7−1, is nearly zero, therefore we have a significant
reduction of deviance. In the following table it is shown the correlation matrix of selected
regressors
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I3 I7 ROA Turnover Current Ratio Seniority
I3 1.00 −0.03 0.01 −0.16 0.45 0.02
I7 −0.03 1.00 −0.39 −0.00 −0.03 −0.02
ROA 0.01 −0.39 1.00 0.14 −0.00 0.05
Turnover −0.16 −0.00 0.14 1.00 −0.05 −0.08
Current Ratio 0.45 −0.03 −0.00 −0.05 1.00 0.13
Seniority 0.02 −0.02 0.05 −0.08 0.13 1.00

Table 2.3: Correlation matrix

Table 2.3 shows that there are no collinearity problems. The selected explanatory variables
cover widely the various firm activities, we can divide them into five categories, to get a
better understanding of results. The identified categories are:

1. Equity equilibrium

• I3: Represents company capitalization.

2. Income equilibrium

• ROA: Measures company’s profitability on the equity and the financial debts.

• I7: Measures how effectively the operating result (EBIT) of a company yields
profit to the equity and the financial debts.

3. Liquidity and working capital

• Current ratio: measures the short term liquidity.

4. Commercial equilibrium

• Turnover: represents the firm ability to transform its invested capital into income.

5. Extra balance sheet data

• Seniority: years lasted since company’s foundation.
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Figure 2.2: Distress chain

We have obtained reasonable results under an economical point of view: companies having
a good commercial efficiency, able to generate profits, with a good short term liquidity and
a sufficient degree of equity have less chance to get defaulted. The analysis conducted is
static, but we argue there are sequential steps, leading to the default status (Figure 2.2): at
a first stage, there is a commercial distress, here the company isn’t able to sell its services,
this causes an economic damage; after that, given it is unable to produce internal resources,
there is an increase of debts, the last stage is reached when the equity is compromised.

2.4 Model Evaluation

In graph 2.3 the histogram of default probabilities generated by the model is shown, the
dashed line represents the historical average default frequency. The dispersion over the
historical average is a first insight about the capability of the model to separate companies
in subgroups with distinct risk.

2.4.1 Discriminative Power

At a first stage, it is recommended to evaluate the discriminating power of the model, also if
it will be used only as a ranking instrument. In graph 2.4 two curves, representing correctly
classified defaults and non-defaults is shown, by varying the default probability treshold
beyond which customers are refused.

To get a better explanation of the discriminative power of the model, we use the ROC curve.
Defining

• sensibility the proportion of predicted positives with respect to all the true positives
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Figure 2.5: ROC curve

Predicted Default Predicted Regular
Actual Default 2.73% 7.63%
Actual Regular 11.96% 77.68%

Table 2.4: Confusion Matrix

• specificity the proportion of predicted negatives with respect to all the true negatives,

the ROC curve (Figure 2.5) is given by the points on a plane whose coordinates are (1 −
specificity, sensibility), obtained for the set of all possibile values of the treshold. A random
classification of companies would produce a bisector line, so the area between this line and
the curve generated by the model gives a visual insight of the predictive power of the model.

As an example, if we choose a 16% treshold we obtain two confusion matrices, the first one
(Table 2.4) shows that we have a 19.59% probability to predict a wrong status. It is also
worth investigating the conditional error, reported in Table 2.5, where it is shown that if
we condition the analysis to the creditworth firms, we have a 13.34% chance to get wrong
predictions, while this probability goes up to 73.64% for bad companies.

Using the treshold in the example, we may notice that, with respect to the naive forecast,
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Predicted Default Predicted Regular
Actual Default 26.36% 73.64%
Actual Regular 13.34% 86.66%

Table 2.5: Conditional confusion matrix

Predicted Default Predicted Regular
Actual Default 0 -(1-r)
Actual Regular -i i

Table 2.6: Loss function

having nearly the same probability to correctly detect a creditworth company, the model
probability to detect defaults is more than triple.

2.4.2 Choice of the Treshold

In case of a very large number of customers, where only a subset of them can be accepted,
there is a true need to find a good treshold. This is not the case when the commercial
policy leads to accept most of customers, however it is usually required a warranty whose
amount is related to the degree of estimated default risk. Here we elaborate an economical
criterion to drive the choice of the treshold. Depending on the commercial and risk policy
it is possibile to build a loss function, which can be minimized by choosing the optimal
classification treshold.

Such a loss function can be constructed in a way that the economic damage in case of
default is incorporated, together with the failure income in case of default prediction for
healthy companies. As an example if we define

• r : recovery rate;

• i : profit rate;

we can build Table 2.6, describing the loss function whose content is given by
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• i : net profit on a regular transaction;

• − (1− r) : the loss of capital invested, minus the expected recovery rate in case of a
non detected default;

• −i : the failure income given that a healthy company is rejected.

In Figure 2.6 , it is exposed the loss curve for i = 5%, r = 20%.

The optimal treshold is the one minimizing the loss function. In this case the minimum in
achieved in 0.13. This approach can be extended including other factors, such as the size of
the transaction.

2.4.3 Internal Rating

Beside the use of the statistical model as a discrimination tool, to accept or refuse companies,
there is a second way to use it. This second kind of use is aimed at creating internal rating
classes, so companies are usually accepted, but, given their rating, a warranty is required,
related to the estimated degree of risk.
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Figure 2.7: Rating classes, predicted and observed defaults

For this purpose we create four rating classes, say low/medium/high/very high risk and we
put in each firms depending on the predicted default probability, as generated by the model.
In Figure 2.7 these rating classes are shown together with their associated realized default
frequencies. In the first class there is a realized default frequency of 0.5%, in the second one
we have a 7.14% frequency, in the third class it jumps to 11.56%, while in the last class it
is about 19.80%. So we can conclude that, at least relative to the investigated sample, the
model is a reliable tool to create an internal rating system. We will see in the following, the
predictive behaviour of the model as discriminative and rating engine.

2.5 Out of Sample Prediction

The following data has been collected after the estimation of the statistical model previously
exposed. To the acquired new companies was associated a default probability, as obtained
from the statistical model, later, it was registred their behaviour in terms of delay of payment
(i.e. the default status).
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Figure 2.8: Rating classes, forecasted and observed defaults

2.5.1 Internal Rating

In Figure 2.8 it is shown the performance of the model as a rating tool. On the abscissa
there are four risk classes, while on the ordinate axis is represented the actual frequency of
default within each class. At a first sight, it is clear that the higher the estimated riskness,
the higher is the actual default frequency. In particular

• very low risk : here we put all firms with estimated default probability in the range
[0; 4%), for this class no defaults were registered;

• medium-low risk : here are stored companies with a [4%; 8%) estimated default proba-
bility, so against an expected 6% default probability a realized 5% default probability
has been registered;

• medium-high risk : given an expected 11.5% default probability, in the [8%; 15%) class,
a 10% in term of default frequency was observed;

• high risk : in this class were put all firms with a default rate equal or higher than 15%,

this is the only class with an expected default probability not close to the observed
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Figure 2.9: ROC curve

Predicted Default Predicted Regular
Actual Default 17.65% 82.35%
Actual Regular 14.72% 85.28%

Table 2.7: Confusion matrix: conditional distributions

default frequency. However it should be noticed that a few companies were put into
this rating class.

2.5.2 Discriminative Power

As in the previous section, to illustrate the discrimitative power of the model, we construct
the ROC curve. Graph 2.9 confirms the out of sample predictive power of the statistical
model, with respect to a random selection of default status. Choosing again a 16% treshold
we obtain the conditional distribution confusion matrix represented in Table 2.7.
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Estimate Std. Error z value Pr(>|z|)
(Intercept) −0.6687 0.3044 −2.20 0.0280

I3 −0.5789 0.2384 −2.43 0.0152
I7 −0.0511 0.0231 −2.21 0.0269

ROA −3.0401 1.0225 −2.97 0.0029
Turnover −0.5499 0.1805 −3.05 0.0023

Current Ratio −0.3774 0.2118 −1.78 0.0748
Seniority −0.0063 0.0067 −0.93 0.3530

Table 2.8: Updated model

2.6 Model Updating

After having acquired new companies, the set of data was enlarged and the statistical model
was estimated again (Figure 2.8), in order to get additional support of its validity. We
expect variables to remain significant from a statistical point of view, this is the case and, in
addition, the decision to keep in the model current ratio has been rewarded, in fact now there
is a almost fully significant power of the t-test statistic. On the other hand the behavioural
variable, seniority, has definitively lost its statistical meaning, so it has to be removed for
any subsequent default modelling.
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Chapter 3

Hierarchical Bayesian Modelling of
Credit Risk

3.1 Introduction

The aim of this chapter is to estimate the default probability (DP) of companies that apply to
banks for loan. The explanatory variables available to us are performance indicators derived
from the balance sheet of each company and the knowledge of the macro-sector to which the
company belongs. For privacy reasons we do not report how the 4 performance indicators
are obtained and the 7 sectors identified. The data set (Banca Intesa, BCI) consists of 7513
companies of which 1.615 %. A more detailed description of the dataset appears in Table
3.1 where the unbalanced design is apparent.

The main issues related to DP prediction are: the events of interest are rare (thus bias and
consistency problems arise); the different sectors might present similar behaviors relative to
risk of defaulting; expert analysts have, typically, strong prior opinions on DP. The model
we propose is a hierarchical Bayesian logistic regression, and introduces dependency among
different sectors thus addressing efficiently all the above mentioned issues.
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Table 3.1: Summary of the dataset.

Dimension % Default
Sector 1 63 0%
Sector 2 638 1.41%
Sector 3 1342 1.49%
Sector 4 1163 1.63%
Sector 5 1526 1.51%
Sector 6 315 9.52%
Sector 7 2466 0.93%

3.1.1 Rare Events

The logistic regression we are going to propose is based on the assumption that an observed
dichotomous variable Y is modeled as

Yi ∼ Bernoulli (Yi|πi)

with

πi =
1

1 + exp
(
−x

′
iβ
) ,

while β is an unknown set of parameters. An alternative way to look at this model is to
imagine the existence of an unobserved latent variable Y ∗ distributed as a logistic distribution

Y ∗ ∼ Logistic
(
Y ∗|µi = x

′

iβ
)

where the observed Y variable is related to the unobserved one Y ∗ through the fact that
Yi = 0 if Y ∗ ≤ 0, while Yi = 1 if Y ∗ > 0. The model is the same as

p (Yi = 1|β) = πi = p (Y ∗ > 0|β)

=

∫ ∞
0

Logistic (Y ∗|µi) dY ∗i =
1

1 + exp
(
−x

′
iβ
) .
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µµ == xiββ 0

p((Y == 1))p(Y=1|ββ̂)

Figure 3.1: Logistic latent variable

The use of maximum likelihood probability estimates

p
(
Yi = 1|β̂

)
=

1

1 + exp
(
−x

′
iβ̂
) , (3.1)

may create biased, lower estimated, results for rare events. The reason is that we are ignoring
parameter uncertainty, as pointed out in King and Zeng (2001). To avoid this we should
instead integrate over the estimated parameter distribution

P (Yi = 1) =

∫
P (Yi|β) p (β) dβ.

The effect caused by using maximum likelihood paramter β̂, instead of averaging over the
estimated parameter distribution can be observed in Figure 3.1.1.

To deal with this kind of matter we decided to adopt the bayesian paradigm, because pa-
rameters are treated as random variables, therefore it is possibile to integrate over their
distribution once a sample is obtained through Markov chain Monte Carlo simulation meth-
ods. Moreover any random effects structure for parameters can be introduced and inference
easly conducted. This is relevant given the different baseline risks present in each sector.
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3.2 The Model

We use a logistic regression, that is we model the logit of the default probability, as a linear
function of the explanatory variables. In the sequel we use the following notation, indicating
vectors with underlined letters:

• nj: number of companies belonging to sector j, j = 1, · · · , 7;

• yi,j : binary observation on company i (i = 1, · · · , nj), belonging to sector j. The value
one indicates a default event;

• xi,j: 4 × 1 vector of explanatory variables (performance indicators) for company i

belonging to sector j;

• α : 7× 1 vector of intercepts, one for each sector;

• β : 4× 1 vector of slopes, one for each performance indicator.

The parameters of interest are α and β . We will, informally, indicate by y and x all the
observations on the dependent and explanatory variables respectively.

Adopting a logistic regression model gives rise to the following likelihood:

L(α, β; y, x) =
∏
j

∏
i

θ
yi,j

i,j (1− θi,j)1−yi,j (3.2)

where

θi,j =
exp(αj + x′i,j β)

1 + exp(αj + x′i,j β)
. (3.3)

Following the Bayesian paradigm, prior distributions are assigned to the parameters of in-
terest, in particular we take the prior on β, p(β), to be a four dimensional normal centered
at zero (µ

β
= 0) and with the identity matrix times 64 as the covariance matrix (Σβ).
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The intercepts, αj, are assumed to have normal prior distributions, p(αj|µα, σ2
α), independent

only given the parameters µα and σ2
α. The mean µα, is unknown with normal hyper prior,

p(µα), centered at zero and with variance equal to 64. The prior on the variance is a
Gamma(a, b) distribution with mean equal to 5 and variance equal to 9.

The values of the known hyper parameters have been fixed so that the corresponding priors
are fairly vague. Prior information on DP, elicited by expert analysts (not available to us),
can be incorporated when assigning the values of these hyper parameters. Typically expert
analysts express opinions on the DP, θi,j, (rather than α and β) by assigning them a mean
value and a level of confidence or a variance. Given these measures of location and spread a
beta distribution is assumed on these probabilities and the values of α and β matching the
assigned prior distributions can be inferred using the inverse logit transformation.

The model implemented has been estimated both using informative and non-informative
priors centered in zero with a very high variance (results reported). The evidence gained
using fictitious informative priors suggests that, in our setting, the estimates are robust
relative to the choice of the prior parameters due to rather large amount of data that causes
the prevalence of the likelihood over prior influence in the posterior.

The distribution of interest, the posterior of the slopes, intercepts and hyper parameters, is
proportional to

π(α, β, µα, σα|y, x) ∝ L(α, β; y, x)
∏
j

p(αj|µα, σ2
α) p(µα) p(σα) p(β) (3.4)

A graphical representation of the proposed model appears in Figure 3.2
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Figure 3.2: Graphical representation of the model

3.3 The Algorithm

We use a MCMC algorithm (Tierney (1994)) to simulate observations from (3.4), the 13-
dimentional posterior distribution of interest. To improve the performance of the standard
Metropolis-Hastings algorithm (MH) we adopt the delaying rejection (DR) strategy (Tierney
and Mira (1999), Green and Mira (2001)) with a single delaying step. This means that, upon
rejection of a proposed candidate move, instead of advancing the simulation time and retain-
ing the same position (as in a standard MH sampler), a second stage candidate is proposed
and accepted with a probability computed to preserve detailed balance relative to the target
distribution (Tierney and Mira (1999)). If this second stage proposal is accepted the chain
moves there, otherwise the same position is retained. In either case, only at this point, time
is advanced. The advantage of the DR strategy is that the resulting algorithm dominates
the standard MH since it produces estimates with a smaller asymptotic variance, in other
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words the DR dominates the corresponding single stage MH sampler in the Peskun ordering
(Peskun (1973)) as proved by Tierney and Mira (1999). Also, the proposal distribution,
which is typically hard to tune in regular MH samplers, can be improved upon rejection that
is, the second stage proposal can be different from the first stage one and we are allowed
to “learn” from previously rejected candidates (without loosing the Markovian property).
This allows to locally tune the proposal with a partially (within sweep) adaptive strategy.
Different forms of adaptation can be adopted. As suggested in Green and Mira (2001) the
first stage proposal should permit “bold” moves (having high variance, for example), and
should be simple to obtain and to sample from. The design of higher stage proposals can
require more computational time (using for example more accurate approximations of the
target at the current position of the chain) and should propose more “timid” moves. Along
these lines, a possible strategy to update the proposal, expecially in a varying dimentional
setting, is to use the “zeroth order method” suggested by Brooks et al. (2003) to design the
first stage proposal, the “first order method” (more computationally intensive) at the second
stage and so on.

We tried different updating schemes: single variable updating and block updating of all the
variables of interest at once. The former strategy shows a much better performance than the
latter for both the MH and the DR due to the fact that the range of variability of α and β
is quite different. We will thus only report the simulation results of the random scan single
site updating scheme.

3.4 Simulation Results

The results reported were obtained by running a simulation of length 1024 (= 210) after a
burn-in of 150 steps. Both the DR and the MH were started in the same position, namely
all the variables are initialized at zero. Convergence to the core of the distribution happens
quite fast thus the choice of the relatively short burn-in and length of the simulation. The
proposal distributions are all normals centered at the current position of the chain thus
leading to a random walk Metropolis-Hastings algorithm. As suggested in Green and Mira
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(2001) the first stage proposal is over dispersed and σ1 (the spread of the first stage proposal),
for the various parameters, has been set, after having run 5 pilot simulations, equal to the
values reported in Table 3.2. The second stage proposal has a σ2 = σ1/2. The comparison in
terms of efficiency of the resulting estimates is made with a MH that uses the same Normal
proposals but with spread equal to (σ1 + σ2)/2.

Table 3.2: Values of σ1 used for the first stage proposal in the DR.

α1 1.2
α2, · · · , α7, µα 0.4

σα 3
β1 0.15
β2 0.4
β3 0.3
β4 0.15

The simulation results are presented in Table 3.3 where the mean along the sample path is
reported for both the MH and the DR chain. The numbers in Table 3.3 and 3.5 have been
obtained by averaging 5 independent runs of DR and MH to reduce the simulation bias. We
report in parenthesis the standard deviations obtained over these 5 runs: the DR estimates
appear to be more stable than the MH ones. The drawback of DR is that, in this particular
application, it takes a time almost twice as long to run, compared to the MH. At this regard
we point out that the code is written in GAUSS, an interpreted language, thus comparisons
between DR and MH, that take simulation time into account, are not very meaningful.

Credible (confidence) intervals at 95 % level are also derived from the MCMC simulation
(Table 3.3), by computing the 0.25 and the 0.975 quantiles of the simulated values.

For comparison purposes, in Table 3.3 we also report the MLE (maximum likelihood esti-
mates) of the logistic regression parameters, α and β , obtained using a standard Newton-
Raphson procedure. When computing the MLE we use 3.2 as the likelihood with a dummy
variable for the intercept of sector 6 since the data show a much higher percentage of defaults
here (in the sequel we will refer to this model as the “classical” model). As Table 3.3 shows,
this dummy variable is justified also by the Bayesian analysis, since the estimated value of
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Figure 3.3: Posterior density estimate of DP: company 30 in sector 6 (top); company 20 in
sector 2

the parameters in this sector are significantly different from the others. This dummy causes
the MLE and the confidence interval for the intercept of sector 6 to be different from the
others.

We preferred a generalized linear regression parametric model (versus, for example, a neural
network) since the signs of the estimated β parameters are amenable for a financial interpre-
tation: Variable 1 measures the overall economic performance of the firm and, as the estimate
suggests, there is a negative relationship with the default probability; Variable 2 is related
to the ability of the firm to pick-up external funds, the interpretation of this coefficient sign
can be ambiguous; Variable 3 is related to the ability of the firm to generate cash flow to
finance its short term activities, the negative sign of the parameter is expected; Variable
4 measures the inefficiency in administrating commercial activities, the obvious correlation
with default probability is highlighted by the estimated parameter.

For each company we also derive the estimated posterior distribution of the DP by using a
normal kernel density estimator on the values of θi,j computed at each point in time during
the simulation. In Figure 3.3 two such distributions (for company 30 in sector 6 and company
20 in sector 2) are plotted: notice the long right tail behavior in the bottom picture which
is quite common for companies with low risk.

Various estimates of the DP can be computed. Table 3.4 summaries the results obtained for
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Figure 3.4: Autocorrelation functions for α3: MH (left) and DR

the two companies mentioned above. In the first column we report the value obtained using
formula 3.3 and substituting for αj and β the estimates obtained with the DR algorithm by
averaging over the whole simulation. In the second column we average the 1024 values of θi,j
simulated at each step of the DR algorithm by substituting for αj and β in 3.3the values of
these parameters at that step in the simulation (these are the same values of θi,j used to get
the kernel density estimator). In the last column the estimates of the DP obtained by ML are
reported. As we can clearly see the MLE highly underestimates the probabilities of interests
while the Bayesian estimates, in particular the ones reported in the second column, obtained
by integrating over the posterior distribution of θi,j , do not suffer from this drawback.

Table 3.4: Estimates of DP for company 30 in sector 6 and company 20 in sector 2.

plug in posterior mean of α and β posterior mean of θi,j MLE
θ̂30,6 0.431 0.434 0.37169
θ̂20,2 0.032 0.034 0.02576

All the estimates so far reported have been obtained from the DR simulation, unless otherwise
specified. Similar values would be obtained from the MH sampler since both the algorithms
produce Markov chains with the proper stationary distribution and both have converged
according to the performed diagnostics. As pointed out before, the difference between the
MH and the DR is in the asymptotic variance of the resulting estimators.

39



To compare the performance of the two samplers, in Figure 3.4 we present the graphs of the
autocorrelation function (ACF) for one of the parameters of interest, α3. The picture shows
that the ACF for the DR is below the one obtained using the MH. This fact, true for all the
parameters, is a signal of better mixing of the DR chain which explores the state space in a
more efficient way.

For comparison purposes we also estimate the integrated auto correlation time, τ =∑∞
k=−∞ ρk, where ρk = covP{φ(X0), φ(Xk)}/σ2, φ is the function of interest (we have taken

φ(x) = x), and σ2 is the finite variance of φ under the posterior π. To estimate τ we used
Sokal’s adaptive truncated periodogram estimator Sokal. The results are presented in Tables
3.5 and 3.6 and show that, for all the parameters of interest, the DR outperforms the MH.

Table 3.5: Estimates of τ for α with MH and DR.

α1 α2 α3 α4 α5 α6 α7

MH 26.9 50.1 43.2 50.3 54.6 60.6 60.2
DR 17.0 18.4 28.1 28.4 30.1 32.3 35.1

Table 3.6: Estimates of τ for β and the hyper-parameters with MH and DR.

β1 β2 β3 β4 µα σ2
α

MH 10.0 64.5 23.4 5.6 15.9 20.2
DR 7.2 38.1 20.9 4.2 14.6 15.6

To compare the predictive performance of the Bayesian versus the classical logistic regression
model a cross-validation analysis has been performed. In Figures 3.6, 3.7,3.8,3.9,3.10,3.11
and 3.12 we represent, for each sector, the predicted default and not default detected by
the Bayesian and classical model estimated via MLE (there is no graph for not defaulted
companies for sector 1 since no defaults were observed). To estimate the two models we used
70% of the total observations while the remaining sample was used to validate the model.
The two samples (training and validation) are randomly selected but balanced in that they
have the same proportion of defaults for each sector as in the original sample. On the x-axis
the observation number is indicated, on the y-axis the default probability. For the graphs on
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the right hand side we would like these probabilities to be as high as possible and, comparing
the classical (solid line) with the Bayesian model (dashed line) we detect that the proposed
model outperforms the classical one for every sector except the last one (sector 7) which is
the sector with observed smallest default frequency (excluding sector 1, which is a residual
sector). As for the graphs on the left hand side, there are companies that, according to both
models, would not receive any credit line despite the fact that they showed no default, that
is, both models misclassify these companies and, the Bayesian model is more inclined toward
this.

To have an overall feeling of the comparative performance of the two models we computed,
on the test sample, the root mean squared error of classification:√√√√ 1

n

n∑
i=1

(yi − θ̂i)2

where yi is either zero or one and θ̂i is the estimated default probability (for simplicity we
slightly change the notation here). This performance indicator has been computed on the test
sample for both defaulted and not defaulted companies (thus having n = 30%×7513 = 2254)
and also for the subset of defaulted companies alone as well as for the subset of not defaulted
ones. The results are reported in Table 3.7 and show the overall better performance of the
Bayesian model.

Table 3.7: Estimated root mean squared error
MLE Bayesian

all 0.1282 0.1273
not defaulted 0.0280 0.0272
defaulted 0.9646 0.9591

Finally, in Figure 3.5, we show how the percentage of correct classification for defaulted
(right picture) and not defaulted (left picture) companies varies as the threshold defined to
classify them ranges between zero and one. Again the proposed Bayesian model outperforms
the classical one for practically all values of the threshold.
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3.5 Conclusions

The proposed model presents various advantages. First the fact that the output of the
Bayesian approach is the estimate of the posterior distribution of the DP of each company.
Having a distribution instead of a punctual value, we obtain a more complete and informative
picture of the quantity of interest, that’s to say the parameter uncertainty is also and easly
taken into account during default prediction.

The second advantage is that our procedure does not suffer from bias problems which are
typical for rare events (King and Zeng (2001)). Also, the hierarchical model allows parametric
flexibility among sectors to estimate DP, while allowing sectors with tiny data to receive
strength from the data available from other sectors, we get therefore more reliable results.

To compare the predictive performance of the Bayesian versus the classical model we per-
formed a cross-validation analysis. By computing the root mean squared error of classifica-
tion and the percentage of correct classification for a varying threshold, we show how the
Bayesian model overall outperforms the classical one.
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Figure 3.5: Percentage of correct classification for defaulted (left) and not defaulted com-
panied as the classification threshold varies.
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Figure 3.6: Sector 1.
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Figure 3.7: Sector 2.
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Figure 3.8: Sector 3.
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Figure 3.9: Sector 4.
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Figure 3.10: Sector 5.
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Figure 3.11: Sector 6.
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Figure 3.12: Sector 7.
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Chapter 4

Zero variance Markov chain Monte Carlo

We propose a general purpose variance reduction technique for Markov Chain Monte Carlo
(MCMC) estimators based on the zero-variance principle introduced in the physics literature
by Assaraf and Caffarel (1999, 2003). The potential of the new idea is illustrated with some
toy examples and a real application to Bayesian inference for credit risk estimation.

4.1 Main idea

We are interested in estimating the expected value of a function f with respect to a, possibly
unnormalized, probability distribution π:

µf =

∫
f(x)π(x)dx∫
π(x)dx

. (4.1)

Markov chain Monte Carlo methods (Metropolis et al. (1953), Hastings (1970), Tierney
(1994)), estimate integrals using a large but finite set of sample points, xi, i = 1, · · · , N ,
collected along the sample path of an ergodic Markov chain, P , having π (normalized) as its
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unique stationary and limiting distribution:

µ̂f =
1

N

N∑
i=1

f(xi). (4.2)

We have that
µf = µ̂f + ∆µf ,

where ∆µf is the statistical error associated with the fact that the length of the simulated
Markov chain path, N , is finite. For large enough N , standard statistical arguments lead to
the following expression of the error:

∆µf = Kf
σf√
N

where the constant Kf is proportional to the amount of correlation along the sampled chain
and σf is the standard deviation of f under π (assumed to be finite).

Recent literature (Peskun (1973), Liu (1996), Tierney (1998), Tierney and Mira (1999), Mira
and Geyer (2000), Green and Mira (2001)), aimed at reducing the statistical MCMC error,
∆µf , by reducing the correlation along the Markov chain, that is, by reducing Kf . See Mira
(2001) for a review.

In this chapter we suggest instead to reduce the error, decreasing its second component,
σf , by replacing f with a different function, f̃ , obtained by properly re-normalizing f . The
function f̃ is constructed so that its expectation, under π, equals µf , but its variance with
respect to π is smaller. This is a standard variance reduction technique used in Monte Carlo
simulation, see Gilks et al. (1996). The novelty of the zero-variance principle is that, to
define f̃ , an operator, H, and a trial function, φ, are introduced. We require that H is
Hermitian (symmetric for finite state spaces, and real in all practical applications) and∫

H(x, y)
√
π(y)dy = 0. (4.3)

The trial function φ(x) is a rather arbitrary function which is only required to be integrable.
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We define the renormalized function to be

f̃(x) = f(x) +

∫
H(x, y)φ(y)dy√

π(x)
= f(x) + ∆f(x). (4.4)

As a consequence of (4.1) and (4.3) we have that

µf = µf̃ , (4.5)

that is, both functions f and f̃ can be used to estimate the desired quantity via Monte Carlo
or MCMC simulation. However, the statistical error of the resulting estimator can be very
different. The optimal choice for (H,φ), i.e. the one that leads to zero-variance, can be
obtained by imposing that f̃ is constant and equal to its average, that is, by requiring

σf̃ = 0,

which is equivalent to require that
f̃ = µf .

The latter, together with (4.4), leads to the fundamental equation:∫
H(x, y)φ(y)dy = −

√
π(x)[f(x)− µf ]. (4.6)

In most practical applications equation (4.6) cannot be solved exactly, still, we propose
to find an approximate solution in the following way. First choose H verifying (4.3) (in
Section 4.2 we will suggest two general recipes to construct H). Second, parametrize φ
and optimally choose the parameters by minimizing σf̃ over a finite set of points generated
according to the Markov chain P . Finally, a much longer MCMC simulation is performed
using µ̂f̃ instead of µ̂f as the estimator. Note that the proposed approach can be used to
obtain variance reduction also in Monte Carlo simulation if we can get i.i.d. draws from the
target distribution π. This is what is done in Assaraf and Caffarel (1999, 2003).

51



4.2 Choice of H

In this section the rationale to choose the operatorH, both for discrete and continuos settings,
is illustrated.

4.2.1 Discrete case

Denote with P (x, y) a transition matrix reversible with respect to π (we identify a Markov
chain with the corresponding transition matrix of kernel):

π(x)P (x, y) = π(y)P (y, x), ∀x, y.

The following choice of H

H(x, y) =

√
π(x)

π(y)
[P (x, y)− δ(x− y)]

satisfies the requirements, where δ(x− y) is the Dirac delta function: δ(x− y) = 1 if x = y

and zero otherwise. With this choice of H, letting φ̃ = φ√
π
, equation (4.4) becomes:

f̃(x) = f(x)−
∫
P (x, y)[φ̃(x)− φ̃(y)]dy. (4.7)

The main difficulty with (4.7) is the evaluation of the integral.

4.2.2 Continuous case

If x ∈ <d we can consider the operator:

H = −1

2

d∑
i=1

∂2

∂x2
i

+ V (x) (4.8)
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where V (x) is constructed to fulfill equation (4.3):

V (x) =
1

2
√
π(x)

d∑
i=1

∂2
√
π(x)

∂x2
i

. (4.9)

In this setting we have that

f̃(x) = f(x) +
Hφ(x)√
π(x)

. (4.10)

This is the function we use in the examples considered in the sequel. To obtain the first and
second order derivatives we used the R function “hessian” from the library “numDeriv” which
evaluates an approximate Hessian of a scalar function using finite differences. Note that, for
calculating f̃ with the operator (4.8), the normalizing constant of π(x) is not needed.

4.3 Choice of φ

The optimal choice of φ is the exact solution of the fundamental equation (4.6). In real
applications, typically, only approximate solutions, obtained by numerically minimizing σf̃ ,
are available. In other words, we select a functional form for φ, typically a polynomial,
parametrized by some coefficients, and optimize those coefficientsby minimizing the fluctua-
tions of the resulting f̃ , obtained by Monte Carlo or Markov chain Monte Carlo simulations.
The particular form of φ is very dependent on the problem at hand, that is on π, and on f .
However an important point to notice is that, if we parametrize φ in terms of c =

∫
φ(x)dx

and then minimize σf̃ with respect to c, the optimal choice of c is

c = − [Eπ(f(x)∆f(x))]2

Eπ(∆f(x))2

and, for this value of the parameter, from (4.4) we obtain

σ2
f̃

= σ2
f −

[Eπ(f(x)∆f(x))]2

Eπ(∆f(x))2
. (4.11)
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Since the correction factor in (4.11), that leads from σ2
f to σ2

f̃
, is always negative, regardless

of the choice of φ, a variance reduction in the MCMC estimator is obtained by replacing f
with f̃ in (4.2).

4.4 Examples of variance reduction in Monte Carlo case

In this section we present a few toy examples to demonstrate the power of the proposed
zero-variance technique. In particular we consider as target:

1. Univariate and bivariate Gaussian distributions,

2. Univariate and bivariate Student-T distributions.

The functions of interest, f , are:

• f(x) = x and f(x) = x2 in the univariate case,

• f(x1, x2) = x1, f(x1, x2) = x2
1 and f(x1, x2) = x1x2 in the bivariate case.

These are the typical quantities of interest in a Bayesian setting, where π is the poste-
rior distribution and one is interested in evaluating the posterior mean, variance and co-
variance of the parameters. In the tables we report µ̂f as defined in (4.2) and σ̂2

f =
1

N−1

∑N
i=1 (f (xi)− µ̂f )

2
. The estimates µ̂f̃ and σ̂2

f̃
are similarly defined and also reported.

In the results presented we sample N = 150 iid values from π, unless otherwise stated.

4.4.1 Univariate Gaussian distribution

Consider as target a normal distribution, N(µ, σ2), with non-normalized density π(x) =

exp(−1
2

(x−µ)2

σ2 ). In this case the theoretical functions φ that solve (4.6) are respectively for

54



Table 4.1: N(µ = 1, σ2 = 2), f1(x) = x, f2(x) = x2.

f1 f̃1 f2 f̃2

µ̂f 0.912 1 2.824 3
σ̂2
f 2.013 2.28e-22 9.377 3.53e-21

Table 4.2: Univariate Student-T with g = 5, f1(x) = x, f2(x) = x2.

f1 f̃1 f2 f̃2

µ̂f -0.271 1.65e-12 1.834 1.666
σ̂2
f 1.778 5.19e-22 20.536 1.32e-23

Table 4.3: Bivariate Normal, (µ1, µ2) = (2, 1), (σ1, σ2) = (2, 1), ρ = 0.6, f1 = x1, f2 = x2
1,

f3 = x1x2.

f1 f̃1 f2 f̃2 f3 f̃3

µ̂f 1.703 2 6.518 8 2.582 3.2
σ̂2
f 3.654 3.48e-20 7.199 4.63e-18 13.053 5.76e-20

Table 4.4: Bivariate Student-T, g = 7, f1 = x1, f2 = x2
1, f3 = x1x2.

f1 f̃1 f2 f̃2 f3 f̃3

µ̂f -0.220 1.31e-11 1.398 1.4 0.231 -1.06e-12
σ̂2
f 1.363 8.85e-21 8.843 4.07e-19 1.724 2.03e-22
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f1(x) = x and f2(x) = x2:

φ1(x) = (−2σ2x)
√
π (x);

and

φ2(x) = (−σ2x2 − 2µσ2x)
√
π (x).

In Table 4.1 we show Monte Carlo simulation results for f1(x) = x, f2(x) = x2 and the asso-
ciated f̃1(x) and f̃2(x) for a N(µ = 1, σ2 = 2) target. Despite the small sample (N = 150),
a great reduction in variability of the estimator (estimated through the sample variance), is
achieved and the final variance is nearly zero.

4.4.2 Univariate Student-T distribution

In this section we proceed as in the previous one but taking the univariate Student-T distri-
bution with g > 2 degrees of freedom, as the target. In this case the non-normalized density

is π(x) =
(

1 + x2

g

)− g+1
2 and the theoretical functions φ that solve (4.6) are, respectively, for

f1(x) = x and f2(x) = x2:

φ1 (x) =

(
2

3

1

1− g
x3 + 2

g

1− g
x

)√
π (x)

and

φ2 (x) =

(
1

2

1

2− g
x4 +

g

2− g
x2

)√
π (x).

Also in this case the Monte Carlo simulation results, displayed in Table 4.2, for a Student-T
distribution with g = 5 degrees of freedom, show an estimated variance close to zero.
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4.4.3 Bivariate Gaussian

We consider here a two dimensional vector, x = (x1, x2), having a bivariate normal distri-
bution with mean vector µ = (µ1, µ2), standard deviations σ = (σ1, σ2), and correlation
coefficient ρ. The theoretical φ functions for f1(x) = x1, f2(x) = x2

1 and f3(x) = x1x2, are,
respectively:

φ1(x) =
(
−2σ2

1x1 − 2ρσ1σ2x2

)√
π(x);

φ2(x) =

{[
−ρ2 σ4

1

σ2
1 + σ2

2

− σ2
1

(
1− ρ2

)]
x2

1 +

[
−ρ2 σ2

1σ
2
2

σ2
1 + σ2

2

]
x2

2 +

[
−ρ σ3

1σ2

σ2
1 + σ2

2

]
x1x2

+

[
−2µ1σ

2
1 + 2ρ

σ3
1σ2

σ2
1 + σ2

2

µ2 − 2ρ2 σ2
1σ

2
2

σ2
1 + σ2

2

µ1

]
x1

+

[
−2σ1σ2µ1ρ− 2ρ

σ1σ
3
2

σ2
1 + σ2

2

µ1 + 2ρ2 σ2
1σ

2
2

σ2
1 + σ2

2

µ2

]
x2

}√
π(x);

φ3(x) =

{[
−ρ σ3

1σ2

σ2
1 + σ2

2

]
x2

1 +

[
−ρ σ1σ

3
2

σ2
1 + σ2

2

]
x2

2 +

[
−2

σ2
1σ

2
2

σ2
1 + σ2

2

]
x1x2

+

[
−2

σ4
1

σ2
1 + σ2

2

µ2 − 2ρ
σ1σ

3
2

σ2
1 + σ2

2

µ1

]
x1 +

[
−2

σ4
2

σ2
1 + σ2

2

µ1 − 2ρ
σ3

1σ2

σ2
1 + σ2

2

µ2

]
x2

}√
π(x).

We consider first a standard bivariate Gaussian target and then move on to the case where
µ = (2, 1), σ = (2, 1) and ρ = 0.6. In Table 4.3 we report the Monte Carlo simulation results
obtained, for the latter case, and we have again a near zero-variance.

4.4.4 Bivariate Student-T

We conclude the Monte Carlo simulation with theoretical knowledge of the exact φ’s func-
tions, with the simulation of a bivariate Student-T distribution. The theoretical φ functions

57



for f1(x) = x1, f2(x) = x2
1 and f3(x) = x1x2, are, respectively:

φ1(x) =

(
2

2− 3g
x3

1 +
2

2− 3g
x1x

2
2 +

6g

2− 3g
x1

)√
π(x);

φ2(x) =

{[
1

4

3− 2g

(2− g)(1− g)

]
x4

1 +

[
−1

4

1

(2− g)(1− g)

]
x4

2 +

[
1

2

1

2− g

]
x2

1x
2
2

+

[
1

2

g(3− 2g)

(2− g)(1− g)

]
x2

1 +

[
−1

2

g

(2− g)(1− g)

]
x2

2

}√
π(x);

φ3(x) =

(
1

2

1

1− g
x3

1x2 +
1

2

1

1− g
x1x

3
2 +

g

1− g
x1x2

)√
π(x).

The simulation results, for a Student-T with 7 degrees of freedom, are reported in Table 4.4
and confirm the reduction of variance toward zero.

4.4.5 A first discussion of the gained insight

As shown in the previous subsection, in the Monte Carlo framework this method works well
when the theoretical φ is available. However, in most practical applications, two problems
may arise:

1. The impossibility to get iid samples from the target distribution;

2. The unavailability of the theoretical φ.

To overcome the first problem one could use MCMC simulation techniques, however it would
be questionable if the zero-variance machinery introduced, works properly also in a MCMC
setting. The answer is affirmative, indeed it is straightforward to show that, when the exact
φ is available, i.e. φ satisfying equation (4.6), Cov(f̃(x0), f̃(xk)) is also zero for all k. Our
simulations confirm this fact, moreover, also when the φ function is not the exact one, the
variance is reduced dramatically.

The second problem is more delicate but, as pointed out in Section 4.3, any choice of φ reduces
the variance. A good choice of φ remains an open question that we want to address here. In
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the previous examples we observed that the theoretical φ’s take the form P (x)
√
π (x) where

P (x) is a polynomial. Furthermore, we noticed the influence of the following two factors on
the degree of the polynomial P (x):

a) The degree of the function f(x);

b) The structure of the target.

Regarding the first of the two factors, a simple suggestion would be to control it by imposing
P (x) to have the same degree of f(x). This is what we have observed for the optimal φ in the
Gaussian case (both univariate and bivariate), when f(x) = x or x2. This can be justified,
for other targets, by resorting to normal approximation arguments. The second factor varies
strongly among problems faced, so it is difficult to give a general suggestion, however our
experimental results are robust to misspecification of the φ function. As an example we tried
to impose a first order P (x) for an univarite Student-T target distribution, whose theoretical
φ requires a third degree polynomial, when one is interested in Eπ(x), i.e. f(x) = x. We
obtained a promising 93% variance reduction: a performance only a little worse with respect
to the exact φ. This robustness, to misspecification of the degree of the P (x) polinomial in
the φ function, is mantained also for MCMC samples.

4.5 Examples of Variance reduction in MCMC case

We revisit the examples studied in Section 4.4, by running a Markov chain using the exact
theoretical φ and we obtain results similar to the Monte Carlo case. In Tables 4.5, 4.6, 4.7,
4.8 we report the simulation results. These are obtained by simulating 1000 points with a
random walk Metropolis Hastings with an optimally scaled Normal proposal distribution (see
Roberts and Rosenthal, 2001) and then discarding the first 850 points so that the number
of MCMC actual points compares to the number of MC draws used in Section 4.4 (i.e.
N = 150). For the central limit theorem of ergodic averages

N1/2
(
µ̂

(N)
f − µf

)
→ N

(
0, ν2

f

)
.
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The following result gives an expressions for v2
f for Markov chains

ν2
f = σ2

f + 2
∞∑
i=2

Cov
(
f
(
x1
)
, f
(
xi
))
,

the ratio

effµ̂f
=
σ2
f

ν2
f

is a measure of efficiency of the Markov chain for estimating µf , see Roberts (1996b). A
similar expression for ν2

f̃
also holds

ν2
f̃

= σ2
f̃

+ 2
∞∑
i=2

Cov
(
f̃
(
x1
)
, f̃
(
xi
))
.

In the following tables σ̂2
f and σ̂2

f̃
are variances computed within each chain and we refer to

them simply as the first of the two components contributing to the efficiency of the Markov
chain for estimating µf and µf̃ . In subsection 4.5.2 however we compute ν̂2

f and ν̂2
f̃
estimating

variances of µ̂Nf and µ̂N
f̃

obtained over different chains.

4.5.1 Gaussian-Gaussian model

Consider the following Bayesian model for s iid observations yi:

l(yi|θ) ∼ N(θ, σ2
y) i = 1, · · · , s;

where σ2
y is the known variance and θ is the parameter of interest. We assume a conjugate

Normal prior:
h(θ) ∼ N(µθ, τ

2
θ )

where µθ and τ 2
θ are known hyperparameters. It is well known that posterior distribution of

the parameter of interest is
π(θ|y1, · · · , ys) = N(µπ, σ

2
π)
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Table 4.5: N(µ = 1, σ2 = 2), f1(x) = x, f2(x) = x2.

f1 f̃1 f2 f̃2

µ̂f 0.080 1 3,193 3
σ̂2
f 2.563 4.8e-20 13.209 1.31e-19

Table 4.6: Univariate Student-T with g = 5 , f1(x) = x, f2(x) = x2.

f1 f̃1 f2 f̃2

µ̂f 0.095 2.08e-12 1.55 1.666
σ̂2
f 1.551 1.08e-22 4.077 6.51e-24

Table 4.7: Bivariate Normal, (µ1, µ2) = (2, 1) , (σ1, σ2) = (4, 1) , ρ = 0.6, f1 = x1, f2 = x2
1,

f3 = x1x2.

f1 f̃1 f2 f̃2 f3 f̃3

µ̂f 1,683 2,549 5.366 8 2.136 3.2
σ̂2
f 2 2,01e-16 33.937 1.193e-14 7.14 7.11e-17

Table 4.8: Bivariate Student-T, g = 7, f1 = x1, f2 = x2
1, f3 = x1x2.

f1 f̃1 f2 f̃2 f3 f̃3

µ̂f -0.09 7.29e-10 1.049 1.4 -0.038 -4,31e-12
σ̂2
f 1.04 1.02e-17 5.44 1.92e-17 1.254 1.95e-21
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where

µπ =
µθσ

2
y + sτ 2

θ y

σ2
y + sτ 2

θ

and

σ2
π =

σ2
yτ

2
θ

σ2
y + sτ 2

θ

,

here y is the sample mean. In this setting we considered f(θ) = θ and:

φ(θ) = φ1(θ)

where φ1(θ) is the function defined in section 4.4.1. As a concrete example we used σy =

3, µθ = 0, τθ = 3 and generated the actual sample of size s = 10, from a Gaussian distribution
with mean equal to one and standard deviation equal to 3. The target posterior distribution
has µπ = 1.7487 and σ2

π = 0.904. The summary of f and f̃ , computed on N = 500 MCMC
sampled values (after a burn-in of 100) , are presented in Table 4.9. Again, the advantage
in terms of variance reduction, using f̃ in place of f, is clear.

Table 4.9: Bayesian Gaussian-Gaussian model, f(θ) = θ, N = 500.

f f̃

µ̂f 1.7736 1.7399
σ̂2
f 0.8838 0.0362 (96% reduction)

4.5.2 Poisson-Gamma model

As a second model we consider the well known Poisson-Gamma model where:

l(yi|θ) ∼ Po(θ), i = 1, · · · , s;

h(θ) ∼ Ga(α = 4, β = 4).
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We generate s = 30 values from a Po(θ = 4) distribution, we then

1. run a first MCMC simulation of length 1000 with a burn-in of 100;

2. minimize the variance of f̃ , obtained using φ1 in 4.4.1, on this first simulation and save
the numerically optimized parameters;

3. run 100 parallel MCMC chains, each of length 10000 (after a burn-in of 150 steps);

4. compute, on each chain, µf , µf̃ and the resulting between chain variances, ν̂2
f and ν̂2

f̃
.

We are interested in the first moment of the posterior distribution, in this case we have the
exact solution:

β +
∑s

i=1 yi
α + s

= 4.058824.

The inspection of parallel chains1, for example at 500 iterations, shows that ¯̂µf = 4.060625,
¯̂µf̃ = 4.058843 and ν̂2

f = var (µ̂f ) = 0.0150 while ν̂2
f̃

= var
(
µ̂f̃
)

= 0.001777. A variance
reduction of 87% is achieved.

Figure 4.1 depicts the results obtained considering the variance among means computed on
different chains, while in Figure 4.2 the convergence for one of these chains is shown.

4.5.3 Logistic regression

We now consider a logistic regression model, commonly used in statistical applications. We
simulate dependent binary data as follows:

l(yi|θ) ∼ Be(θi) , i = 1, ..., 100;

θi =
exp(β0 + β1xi)

1 + exp(β0 + β1xi)
, xi ∼ N(0, 1);

1With the symbol ¯̂µf we intend the empirical average of the mean of f computed on different chains, see
Roberts (1996b), similarly for ¯̂µf̃ . With the symbol ν̂2

f we mean the variance of µ̂f computed over different
chains, similarly for ν̂2

f̃
.
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Figure 4.1: Poisson-Gamma: parallel chains
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Figure 4.2: Poisson-Gamma: single chain
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setting β0 = 0.5 , β1 = 1.5. Then we estimate a Bayesian logistic regression, using an
uninformative prior on each parameter.

The posterior distribution does not have a closed form, however we resort to its normal
approximation and therefore choose a φ with the same structure of the optimal φ for the
normal case. In Tables 4.10 and 4.11, we report the resulting variance reductions, obtained
using 300 MCMC sampled values, after a burn-in of 1000.

Table 4.10: Logit model, f(β0, β1) = β0 , N = 300.

f f̃

µ̂f 0.5676 0.5629
σ̂2
f 0.0923 0.0018 (80% reduction)

Table 4.11: Logit model, f(β0, β1) = β1 , N = 300.

f f̃

µ̂f 2.0089 1.9758
σ̂2
f 0.1839 0.0122 (93% reduction)

4.6 A simplified credit risk model

We now consider a real application, estimating the parameters of a logistic regression for
creditworthiness. We analyze a sample of 124 firms that gave rise to problematic credit and
a sample of 200 healthy firms (so that s = 324). The models proposed is the following

π
(
β|y, x

)
∝

s∏
i=1

θyi

i (1− θi)1−yi p
(
β
)
, (4.12)

` (yi|θi) ∼ Be(θi) , θi =
exp

(
xTi β

)
1 + exp

(
xTi β

) , i = 1, · · · , s;
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where xi is a vector of four balance sheet indicators, including the intercept. We use a non
informative improper prior distribution on β = (β1, β2, β3, β4, β5). This real data set has
already been analyzed in Mira and Tenconi (2004), where a random effects model in the
intercept was assumed.

We run an initial Markov chain using a canonical Metropolis Hastings of length 300 (after
a burn in of 700) and over this initial sample we estimate the optimal parameters of the φ
function for each j dimension and for fj(β) = βj, j = 1, · · · , 5

φj
(
β
)

=
(
γj1β1 + γj2β2 + γj3β3 + γj4β4 + γj5β5

)√
π
(
β|y, x

)
, j = 1, . . . , 5.

The optimization gave the estimates reported in Table 4.12.

Table 4.12: Credit risk model, estimated φ parameters
j γ̂j1 γ̂j2 γ̂j3 γ̂j4 γ̂j5
1 -0.09457704 -0.01333198 -0.05751499 -0.04640937 0.01208364
2 -0.01507528 -0.15816491 0.05934955 0.01612018 0.05508849
3 -0.05629736 0.06052546 -0.19269449 0.01473065 -0.03554821
4 -0.046095866 0.019266392 0.014117965 -0.101136218 0.003513808
5 0.0105972810 0.0597459884 -0.0345264631 0.0001133164 -0.0624642257

The estimated mean and variance for each model parameter are reported in Table 4.13.

Table 4.13: Credit risk model, initial N = 300 sample estimation
j µ̂fj

µ̂f̃j
σ̂2
fj

σ̂2
f̃j

% variance reduction

1 -1.4761 -1.4339 0.0507 0.0015 97.04
2 -1.0337 -1.0138 0.0664 0.0018 97.28
3 -0.2858 -0.2830 0.0825 0.0043 94.78
4 -0.9687 -0.9746 0.0630 0.0007 98.88
5 0.8279 0.7756 0.0317 0.0012 96.21
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Table 4.14: Credit Risk Model, N = 6 000
j µ̂fj

µ̂f̃j
σ̂2
fj

σ̂2
f̃j

% variance reduction

1 -1.4045 -1.4431 0.0435 0.0032 92.64
2 -0.9831 -1.0122 0.0795 0.0028 96.47
3 -0.2810 -0.3078 0.1081 0.0097 91.02
4 -0.9466 -0.9716 0.0523 0.0007 98.66
5 0.7737 0.7762 0.0323 0.0019 94.11

After performing a longer MCMC simulation of length 6000 (with a burn in of 1000 points),
we obtain the results reported in Table 4.14, while after 600 000 MCMC iterations (with a
burn in of 100 000) we achieve the results reported in Table 4.15. So with 50 000 iterations
only, the zero-variance estimator (second column of Table 4.14) is close to the 500 000 stan-
dard MCMC estimator (first column of Table 4.15). This means that, to have results similar
to the variance reduction technique we have introduced, one should run a 100 times longer
Markov chain.

Table 4.15: Credit Risk Model, N=500 000

j µ̂fj
σ̂2
fj

1 -1.4354 0.0450
2 -1,0138 0.0820
3 -0.2941 0.0950
4 -0.9709 0.0510
5 0.7778 0.0310

4.7 Some tricks to speed up the simulation

When the operator defined in (4.8) is used, the function f̃ takes the form

f̃(x) = f(x) +
(Hφ)(x)√

π(x)
.
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Hφ(x) has to be computed on each point in the sample path, therefore when unavailable
analytically, we must compute numerically the second order derivative that appears in the
H operator. This is a time-consuming operation, however, by using the tricks we illustrate
in the sequel, we are able to speed up the necessary computations.

We have suggested to use functions having the form φ(x) = P (x)
√
π(x) where P (x) is a

polynomial. As the following theorem shows, this choice reduces the calculation of Hφ(x)

to a first order derivative.

Theorem 1. Assume
φ(x) = P (x)

√
π(x)

where P (x) is a polynomial. Then

(Hφ)(x) = −1

2

d∑
i=1

[√
π(x)

∂2

∂x2
i

P (x) + 2

(
∂

∂xi
P (x)

)(
∂

∂xi

√
π(x)

)]
. (4.13)

Before giving a proof of the proposition, some comments are required. Indeed, in (4.13)
a second order derivative still appears but it is applied to a polynomial function and can
thus be computed analytically. This theorem therefore reduces the computation to the first
order derivative of the square root of the target. Also recall that the target has been already
evaluated over all possible values x during the MCMC simulation: these values can thus be
stored and re-used in the evaluation of f̃ .

Proof. We must take the derivative of φ(x) twice with respect to a generic coordinate i:

∂2

∂x2
i

φ(x) = P (x)
∂2

∂x2
i

√
π(x) +

√
π(x)

∂2

∂x2
i

P (x) + 2

(
∂

∂xi
P (x)

)(
∂

∂xi

√
π(x)

)
.
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Then

(Hφ)(x) =

(
−1

2

d∑
i=1

∂2

∂x2
i

φ(x)

)
+ φ(x)V (x)

= −1

2

d∑
i=1

[
P (x)

∂2

∂x2
i

√
π(x) +

√
π(x)

∂2

∂x2
i

P (x) + 2

(
∂

∂xi
P (x)

)(
∂

∂xi

√
π(x)

)]

+
1

2

d∑
i=1

P (x)
∂2

∂x2
i

√
π(x)

= −1

2

d∑
i=1

[√
π(x)

∂2

∂x2
i

P (x) + 2

(
∂

∂xi
P (x)

)(
∂

∂xi

√
π(x)

)]

Corollary 2. Suppose that φ(x) = P (x)
√
π(x) and P (x) = P (x1, . . . , xd) is a first degree

polynomial in Rd, i.e.

P (x) =
d∑
i=1

aixi, ai ∈ R.

Then

(Hφ)(x) = −
d∑
i=1

[
ai

(
∂

∂xi

√
π(x)

)]
.

Proof. It follows from Theorem 1 by noting that

∂

∂xi
P (x) = ai ,

∂2

∂x2
i

P (x) = 0

Remark 3. With the previous theorem f̃ becomes

f̃(x) = f(x)− 1√
π(x)

d∑
i=1

[
ai

(
∂

∂xi

√
π(x)

)]
.
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A “logarithmic” version of the previous formula is also available:

f̃(x) = f(x)− 1

2

d∑
i=1

[
ai

(
∂

∂xi
lnπ(x)

)]
.

Corollary 4. In the Credit Risk model of section 4.6

(Hφj)(β) = −
5∑
i=1

[
γji

(
∂

∂βi

√
π
(
β|y, x

))]
.

Proof. It follows from Corollary 2.

We conclude this section with an intuition useful to avoid the numerical optimization, nec-
essary to find a φ close to the optimal one. In the credit risk model we noticed a great
similarity of the matrix Γ = {γji }i,j=1,...,5, reported in table 4.12, to the matrix −2Σ̂, where
Σ̂ is the estimated (from the MCMC output) covariance matrix of the target distribution.

This intuition is confirmed by the theoretical φ we obtained for the normal case when f(x) =

xi, described in section 4.4.1 and 4.4.3, as the coefficients of the polynomial are the elements
of the i-th row of the target covariance matrix, Σ̂π, multiplied by −2. In the next subsection
we will use the above mentioned tricks to reduce the variance in a complex credit risk model
that builds on the simplified one introduced in Section 4.6.

4.7.1 An extended credit risk model

It is commonly accepted that the amount of credit risk is different among sectors. In Mira
and Tenconi (2004), a hierarchical logistic regression model was proposed with the purpose
to capture the sector specific baseline risks and to obtain a best fit of the data. This model
is reproposed here to investigate the zero-variance principle on a highly parametrized model.
The data contains 7513 firms allocated among j = 7 sectors, firm specific balance sheet
indicators, xij, and default events, yij, i = 1, . . . , nj. The model presents a hierarchical
structure in the intercepts αj, allowing for greater variation among sectors, overcoming at
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the same time overfitting issues:

π
(
α, β, µa, σ

2
α|y, x

)
∝

7∏
j=1

nj∏
i=1

θ
yij

ij (1− θij)1−yij

7∏
j=1

p
(
αj|µα, σ2

α

)
p (µα) p

(
σ2
α

)
p
(
β
)

θij =
exp

(
αj + xTijβ

)
1 + exp

(
αj + xTijβ

)
with

β ∼MN
(
0, σ2 = 64I4

)
,

αj|µα, σ2
α ∼ N

(
µα, σ

2
α

)
,

µα ∼ N
(
0, σ2 = 64

)
,

σ2
α ∼ Ga(α =

9

5
, r =

25

9
).

We focus on the functionals fk
(
η
)

= ηk where η is the vector of all parameters, η =

(α, β, µα, σα). The φ functions are choosen as in Section 4.6 and the following steps are
taken:

1. A Markov chain of lenght 50 000 is run, discarding the first 10 000 steps as burn-in, to
obtain a sample from π

(
η|y, x

)
;

2. The target variance-covariance matrix of η, Σπ, is estimated along the chain simulated
at step 1. This estimate, Σ̂, is used to parametrize the φ functions to compute f̃ with
the “fast version” of our algorithm, i.e.

f̃k
(
η
)

= fk
(
η
)
− 2Σ̂× O ln

(
π
(
η|y, x

))
;

3. We evaluate f̃k
(
η
)
on a second MCMC sample of length 3 000.

The results, in terms of variance reduction, for all parameters of interest, are presented in
Table 4.16 which shows an average variance reduction of 78,95%. If we exclude the hyper
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parameters, η12 and η13, which are of little interest for credit risk estimation, the variance
reduction goes up to 85,49%.

Table 4.16: Variance reduction for complex credit risk model
k ηk µ̂fk

µ̂f̃k
σ̂2
fk

σ̂2
f̃k

% variance reduction

1 η1 = α1 -6.5122 -6.4548 1.8261 0.7731 57.67
2 η2 = α2 -5.3699 -6.5122 0.1546 0.0166 89.24
3 η3 = α3 -5.1055 -5.1296 0.0884 0.0113 87.21
4 η4 = α4 -4.8881 -4.9179 0.0876 0.0086 90.16
5 η5 = α5 -5.2247 -5.2446 0.0869 0.0112 87.14
6 η6 = α6 -3.9072 -3.9560 0.1057 0.0170 83.91
7 η7 = α7 -6.3274 -6.3539 0.1097 0.0131 88.06
8 η8 = β1 -0.0942 -0.0901 0.0032 0.0005 83.83
9 η9 = β2 -1.2452 -1.2649 0.0999 0.0078 92.23
10 η10 = β3 -1.4105 -1.4295 0.0415 0.0049 88.26
11 η11 = β4 0.0870 0.0868 0.0027 0.0002 92.73
12 η12 = µα -5.2806 -5.3548 0.3840 0.1114 70.98
13 η13 = σα 1.3738 1.4248 0.1883 0.1601 15.00

4.8 Rao-Blackwellization

Rao-Blackwellization (Casella and Robert (1996)), can be seen as a special case of the vari-
ance reduction technique proposed in this chapter. The Rao-Blackwellization idea is to
replace f(xi) in µ̂ by a conditional expectation, Eπ[f(xi)|h(xi)], for some function h or to
condition on the previous value of the chain thus using E[f(xi)|xi−1 = x] instead. Changing
an expectation with a conditional expectation naturally reduces the variance of the resulting
MCMC estimator. The functions Eπ[f(xi)|h(xi)] and E[f(xi)|xi−1 = x] can be considered
as special instances of f̃ which do not minimize σf̃ but certainly reduce it. This suggests
general guidelines that can be adopted to construct φ based on which we obtain f̃ . In real
applications, typically Eπ[f(xi)|h(xi)] or E[f(xi)|xi−1 = x] are not available in closed form,
still, the researcher may have some intuition on the parametric form of such functions (or
estimate them via pilot runs of the Markov chain). This intuition might aid the design of φ.
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4.9 Conclusions

We have presented the advantages, in a statistical setting, of a general purpose variance
reduction technique which has been originally suggested in the physics literature (Assaraf
and Caffarel (1999)). Not only the zero-variance physics principle has been adapted to the
statistical framework, but it has also been extended from Monte Carlo to Markov chain
Monte Carlo simulation. The extent by which the variance of Monte Carlo and MCMC
estimators can be reduced, is illustrated via some toy examples and a complex credit risk
Bayesian model, fitted to a real dataset. The overall performance of the proposed technique is
quite astonishing: in simple cases zero variance is indeed achieved, while in more complicated
models, when the exact solution to the fundamental equation cannot be obtained analytically,
a variance reduction between 80% and 95% is obtained. Moreover, useful tricks are proposed
to dramatically speed up the application of the method to statistical modelling. Connections
with the Rao-Blackwellization principle known in the MCMC literature are explored and
exploited to better apply the zero-variance technique in a Bayesian setting.
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4.10 Appendix

In this appendix we give some explanation how the φ function can be identified for simple
cases.

Univariate Case

The aim is to find a general form for the solution to the fundamental equation in (4.4). For
the univariate case, the continuous version of the the fundamental equation is the following

H(x)φ(x) = −π(x)1/2[f(x)− µf ] (4.14)

with µf =
R +∞
−∞ f(x)π(x)dxR +∞
−∞ π(x)dx

. The solution of the previous equation can be found in the form

φ = π(x)1/2 · P (x)

where P (x) is an integrable function, but not necessarily a polinomial. Substituting in
(4.14) the previous expression for φ and using the operator H(x), the fundamental equation
we obtain is

d2P (x)

dx2
+ π(x)−1 dπ(x)

dx

dP (x)

dx
= 2[f(x)− µf ]. (4.15)

By setting

• π(x)−1 dπ(x)
dx

= A(x)

• g(x) = 2[f(x)− µf ]

then (4.15) becomes
d2P (x)

dx2
+ A(x)

dP (x)

dx
= g(x) (4.16)
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which is a linear differential equation, not homogeneous with variable coefficients. To solve
it, we perform a variable transformation, by setting y = dP (x)

dx
, so that (4.16) becomes

dy

dx
+ A(x)y = g(x). (4.17)

The integral of y solution is the P solution we are looking for. The general solution for
(4.17), available from literature, is

ygen = c1e
−

R
A(x)dx︸ ︷︷ ︸

homogeneous sol.

+ e−
R
A(x)dx

∫
g(x)e+

R
A(x)dx︸ ︷︷ ︸

particular solution

, (4.18)

but ∫
A(x)dx =

∫
1

π(x)

dπ(x)

dx
dx = ln(π(x)),

then (4.18) becomes

ygen = c1
1

π(x)︸ ︷︷ ︸
homogeneous sol.

+
1

π(x)

∫
g(x)π(x)dx︸ ︷︷ ︸

particular sol.

. (4.19)

Substituting the definition of g(x) and integrating (4.19) we obtain the solution for P (x) :

P (x)gen =

∫
c1

1

π(x)︸ ︷︷ ︸
homogeneous sol.

+

∫
2

π(x)

∫
[f(x′)− µf ]π(x′)dx′dx︸ ︷︷ ︸
particular sol.

. (4.20)

We are interested to a solution φ(x) = π(x)1/2P (x) which can be normalized (that’s to
say

∫ +∞
−∞ |φ(x)|2dx < ∞) but not necessarily the most general. It is sufficient for φ to

verify (4.14), or that P (x) satisfies (4.16). It is sufficient, therefore, to consider a particular
solution P (x), or the second addendum of (4.20). Then the solution for (4.14) is given by
the following
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φ(x) = π(x)1/2

∫
2

π(x)

∫
[f(x′)− µf ]π(x′)dx′dx (4.21)

with ∫ +∞
−∞ f(x)π(x)dx∫ +∞
−∞ π(x)dx

.

Using distributions π(x) with known parameters and simple f(x) functions, such as polino-
mials, it is possibile to find an exact solution, such as the ones found in the previous sections
for the normal and t-student distribution.

As an example for (4.21), suppose to have

• π(x) = exp
[
− (x−µ)2

2σ2

]
= N(x)

• f(x) = x

• µf = µ

then, by substituting them into (4.21) we obtain

φ (x) = N(x)1/2

∫
2N(x)−1

∫
[x′ − µ] exp

[
−(x′ − µ)2

2σ2

]
︸ ︷︷ ︸

N(x′)

dx′dx

= N(x)1/2

∫
2N(x)−1

∫
(−σ2)

d

dx′
exp

[
−(x′ − µ)2

2σ2

]
dx′dx

= N(x)1/22(−σ2)

∫
N(x)−1N(x)dx

= −2σ2N(x)−1/2

∫
dx

= −2σ2xN(x)1/2.
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Multivariate Case

For the d-dimensional case the equation (4.15) becomes a partial differential equation (PDE)

d∑
i

∂2P (x)

∂x2
i

+ π(x)−1

d∑
i

∂π(x)

∂xi

∂P (x)

∂xi
= 2[f(x)− µf ]. (4.22)

Considering the particular case with π gaussian, we can disinguish two cases, depending on
the independence of variables. If they are independent, the functional form of the multi-
variate normal and the one of the homogeneous differential operator associated to (4.22)
allows this equation to be separable. Given that, the homogeneous PDE associated to
(4.22) transforms into a system of ordinary linear differential equations, of the same form,
for each variable. Once available the homogeneous solutions, the particular solutions for
each variable can be obtained as previously explained, for any form assuming the function
g(x) ≡ 2[f(x) − µf ]. On the contrary, for dependent variables, as for the bivariate normal
case in section 4.4.3, the PDE it is not easly separable and the solution requires a specific
treatment for each case.
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Chapter 5

Weighted Likelihood Equations for
Resistant Credit Risk Modelling

5.1 Introduction

The presence of some extreme observations may ruin statistical estimates, the body of statis-
tical robustness has investigated this matter widely. For example to overcome this problem,
Huber (1964) proposed the minimax approach, while Hampel (Hampel (1968, 1974)) the one
based on influence functions. In this chapter we consider the weighted likelihood equations
approach, described in Markatou et al. (1997). The idea is to downweight surprising obser-
vations, these are defined in terms of Pearson residuals, we propose a way to produce these
residuals for generalized linear models, in order to extend to this class of models the method-
ology. As a special case we deal with logistic regression, as it is widely used for default risk
prediction, our aim is to downweight aberrant observations on the design space only if they
produce predictions that contrast with the whole model, this property is verified through
artificially generated data. The method is finally applied to real data to produce resistant
credit risk estimates.
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5.2 The Methodology

5.2.1 Weighted Likelihood Equation Estimators

Given an observed set of data {X1, X2, ..., Xn}, assumed to be drawn from a sample dis-
tribution mβ(x), we define u(x, β) = ∇β ln(mβ(x)) the maximum likelihood score function,
being ∇β the gradient with respect to β . Then the maximum likelihood estimator for β is
the solution for

∑n
i=1 u(xi, β) = 0 . In the weighted likelihood equation approach, instead, an

estimator for β is obtained as a solution to the following equation

n∑
i=1

w
(
Xi,Mβ, F̂

)
∇β ln (mβ (Xi)) = 0 (5.1)

where w(Xi,Mβ, F̂ ) is a weight function taking values between 0 and 1 and describing the
inconsistency of the c.d.f. of the chosen theoretical model Mβ with respect to the empirical
distribution function F̂ of observed data. The concept of outlier used to describe the dis-
crepancy between Mβ and F̂ is the one of surprising observation (Lindsay (1994)), that is
a value that occurs in a small probability region under the model mβ. In Markatou et al.
(1997), as the observations are countable under the model, to define an outlier the concept
of Pearson residual is used

δ (x) =
d (x)

mβ (x)
− 1 (5.2)

where d(x) is the number of observations in a given cell, while mβ(x) is the number obtained
under the model. For a continuous model the previous definition is not appropriate, as d(x)

and mβ(x) are not comparable. Basu and Lindsay (1994) addressed this defining

δ (x) =
f ∗ (x)

m∗β (x)
− 1, (5.3)

where
f ∗ (x) =

∫
k (x, t, h) dF̂ (t) , (5.4)
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is the smoothed empirical distribution function, obtained using k as a smoothing kernel with
h as a bandwidth, while

m∗β (x) =

∫
k (x, t, h) dMβ (t) (5.5)

is the smoothed model density, obtained applying the same kernel used to obtain f ∗(x). By
smoothing both the data and the model, using the same kernel, if the model is correctly
specified, guarantees for a fixed x, that δ (x) converges in probability to zero (see Agostinelli
(1997)). The method of weighted likelihood attempts to downweight large Pearson residuals.
This is achieved through the following weighting formula

w
(
x,Mβ, F̂

)
=
A (δ (x)) + 1

δ (x) + 1
, (5.6)

where A is a function defined in [−1,+∞), having the properties that A (0) = 0, A
′
(0) =

1, A
′
(δ) > 0 and twice differentiable. In particular Lindsay (1994) chooses A to be a residual

adjustment function (RAF) wich guarantees a link with minimum distance methods. It has
been shown in Lindsay (1994) that the behaviour of the RAF in the tails guides the robustness
properties of the corresponding estimators. For example if A (δ) ∼

√
δ for δ → +∞ gives

a 50% breakdown point. It’s also possibile to truncate weights and introduce an extra
parameter, k, controlling for the degree of robustness

w
(
x,Mβ, F̂

)
=

{
min

{
max [A (δ) + 1; 0]

δ (x) + 1
; 1

}}k
, k ≥ 0 (5.7)

the estimates are still efficient, for a correct model, as A (δ) is still increasing. An alternative
way to build weights, adopted in Markatou et al. (1998), is

w
(
x,Mβ, F̂

)
=

{
1− δ (x)2

(δ (x) + 2)2

}k

, k ≥ 0 (5.8)

The presented methodology has been introduced for a logistic regression with observations
grouped in cells in Markatou et al. (1997) and then extended to normally distributed ober-
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vations in Markatou et al. (1998) and Agostinelli (1997). In the following subsection we will
introduce a convenient way to define Pearson residuals in order to extend the framework to
the class of generalized linear models.

5.2.2 Residuals for Generalized Linear Models

In the context of generalized linear models (GLMs) we assume mβ to belong to the expo-
nential class of distributions. Let {y1, . . . , yn} be response observations which are related
to their corresponding vectors of covariates {x1, . . . ,xn} . The probability density for yi is
assumed to be

f (yi, θi, ψ) = exp

{
ζi [yiθi − κ (θi)]

ψ
+ ci (yi, ψ)

}
(5.9)

where ci and κ are known functions, ζi is a known constant, while the following relations
hold µi = E(yi) = κ

′
(θi), V (µi) = κ

′′
(θi) and V (yi) = ψV (µi) . In the class of generalized

linear models g(µi) = x
′
iβ, where g is called the link function. The dispersion parameter ψ

is usually common across observed data and for our porposes it is assumed constant.

For GLMs the residuals commonly used are the Pearson residuals

rp,i =
yi − µ̂i√
V (µ̂i)

and the deviance residuals, where assuming t(y, µ) = yθ − κ(θ), are defined as

rd,i = 2{t(yi, yi)− t(yi, µ̂i)}1/2sign(yi − µ̂i).

Both residuals as argued in Pierce and Schafer (1986) tend to normality for ψ/µ→ 0 with rate
O(ψ1/2) for Pearson residuals and rate O(ψ) for deviance residuals and are exactly normal
for the normal linear model. Deviance residuals are exactly normal for inverse gaussian
responses too. In other cases, when ψ/µ is large, they are not guaranteed to converge to
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the normal distribution, moreover, deviance residuals do not have zero means and constant
variances.

Dunn and Smith (Dunn and Smyth (1996)) build randomized quantile residuals having the
property to be normally distributed, for exponential family distribution responses. Indicating
with F (y, µ, ψ) the cumulative distribution function for the model, for continuous responses
quantile residuals are defined as

rq,i = Φ−1
{
F
(
yi, µ̂i, ψ̂

)}
(5.10)

where Φ is the standard normal cumulative distribution function. If a consistent estimator
for β and φ is used, then rq,i converges to a standard normal. If responses are discretely
distributed, then quantile residuals are defined as

rq,i = Φ−1 (ui) , ui ∼ U(ai, bi) (5.11)

where ai = limy→y−i
F (yi, µ̂i, ψ̂) and bi = F (yi, µ̂i, ψ̂). In Dunn and Smyth (1996) these

residuals are used as a diagnostic tool and are applied to some generalized linear models, in
order to check graphically any inconsistency with data.

By using this kind of residuals it is possibile to mutuate the continuous version of Pearson
residuals as defined in (5.3), in this case we set m∗β(rq,i) ∼ N(0, 1), while computing f ∗ on
the empirical cumulative distribution function of generated quantile residuals. Using this
technique it is possibile to apply the weighted likelihood equations methodology to other
generalized linear models.

5.2.3 Weighting Scheme

Assuming a dependency model with a set of stochastic regressors

m (yi, xi) = mβ (yi|xi)m (xi)
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we may want to extend the weighting scheme to take into account aberrant observation on
the design space too. Given the errors zi as defined in (5.11), we assume that

m (yi, xi) = m (zi)m (xi) ,

we define joint weights as

δ (zi, xi) =
f ∗ (zi, xi)

m∗ (zi, xi; θ)
− 1

being θ the parametric space. The above expression downweights high leverage points,
whether they are related to big prediction errors or not. So, seeking Agostinelli (1997), we
define

w (δz, δx) = w (δz (zi, θz))wx (δz (zi, θz) , δx (xi, θx)) ,

while
wx (δz, δx) = w (δx (xi, θx)) + (1− w (δx (xi, θx)))ψ (δz (zi, θz)) ;

ψ is a function such that limδz→0 ψ (δ (z)) = 1, while limδz→∞ ψ (δ (z)) = 0. We set ψ (δz) =

w (δz) , in Agostinelli (1997) it was suggested a logistic type function. This way of weighting
observations allow to underweight leverage points whose residuals are not coherent with the
assumed model, while high leverage points associated to low residuals are not downweighted,
this (Agostinelli (1997)) avoids a decrease of estimator efficiency.

5.2.4 Robustness Properties

Given the wle estimator at hand

∫
w (x,Mβ, F )∇β (lnMβ (x)) dF (x) = 0 (5.12)

we can study its robustness properties through the influence function and its breakdown
properties. In the previous equation if F = Mβ, then the estimator is Fisher consistent as
the true value β is contained among the solutions of the equation (5.1). Suppose to have the
following contaminated distribution
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Fε (x) = (1− ε)F (x) + ε∆y (x) , ε ∈ (0, 1)

where ∆y is a distribution having all its mass concentrated in y. The influence function for
an estimator T (F ) is given by

IF (x, T, F ) = lim
ε→0+

{
[T ((1− ε)F + ε∆x)− T (F )]

ε

}
. (5.13)

For the wle estimator the influence function (Markatou et al. (1997)), is given by

∂

∂ε
βε|ε=0 = A (F )B (y, F ) (5.14)

where

A (F ) =

{∫
w
′
(δ (t))u (t, β0)u

T (t, β0) (δ (t) + 1) dF (t) +

∫
w (δ (t)) (−∇u (t, β0) dF (t))

}−1

B (y, F ) = w (δ (y))u (y, β0)+w
′
(δ (y))u (y, β0) (δ (y) + 1)−

∫
w
′
(δ (t)) f (t)

u (t, β0)

mβ0

dF (t) .

The influence function if M = Mβ0 is the same influence function of a maximum likelihood
estimator

∂

∂ε
βε|ε=0 =

{∫
−∇βu (t, β0) dMβ (t)

}−1

u (y, β0) (5.15)

it is unbounded, however (Lindsay (1994)) it can be misleading stopping a first order level
analysis. However the influence function is useful to derive the asymptotics properties of the
wle estimator. We have in fact that the asymptotic variance of

√
nT (F ) is given by

Σβ = A (F )E
{
B (Y, F )B (Y, F )T

}
AT (F ) , (5.16)
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this can be estimated with

Σ̂β = A
(
F̂
){ 1

n

∑[
B
(
XiF̂

)
B
(
Xi, F̂

)T]}
AT
(
F̂
)
. (5.17)

5.2.5 Iterative Reweighted Least Squares Algorithm

To solve (5.1) an iterative algorithm is required, one can use a modified version of the well
known iterative reweighted least squares, used to get an estimate for generalized linear models.
In our setting we deal with a weighted version of the score equations

∂ ˜̀

∂βj
= wi

∂`i
∂βj

= wi
∂`i
∂θi

∂θi
∂µi

∂µi
∂ηi

∂ηi
∂βj

where

∂`i
∂θi

=
yi − κ′ (θi)

ψ/ζi
=
yi − µi
ψ/ζi

∂µi
∂θi

= κ′′ (θi) =
ωiVar {Yi}

ψ
∂ηi
∂βj

= xij

so we have
∂ ˜̀

∂βj
= wi

yi − µi
ψ/ζi

ψ/ζi
Var {Yi}

∂µi
∂ηi

xij

and the weighted likelihood equations are

n∑
i=1

wi
(yi − µi)xij
Var {Yi}

∂µi
∂ηi

= 0 , j = 1, . . . , p.

These equations can be solved using a Newton-Raphson like method, by which

β(s+1) = β(s) +
[
I
(
β(s)
)]−1

u(s) (5.18)
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where u(s) are the likelihood equations at iteration s and I
(
β(s)
)
is the negative of the

expected Fisher information matrix

−E
{

∂2`i
∂βj∂βk

}
= E

{(
wi

(yi − µi)xij
Var {Yi}

∂µi
∂ηi

)(
wi

(yi − µi)xij
Var {Yi}

∂µi
∂ηi

)}
= w2

i

xijxik
Var {Yi}

(
∂µi
∂ηi

)2

,

this in matrix notation can be expressed as

I (β) = XT Λ̃X (5.19)

where

Λ̃ =


λ̃11 0 · · · 0

0 λ̃2 · · · 0
...

... . . . ...
0 0 · · · λ̃n



with elements

λ̃i = w2
i

1

Var {Yi}

(
∂µi
∂ηi

)2

Regarding (5.18) it is the same to write

I
(
β(s)
)
β(s+1) = I

(
β(s)
)
β(s) + u(s) (5.20)

where for the right member

I
(
β(s)
)
β(s) + u(s) = XT Λ̃(s)z(s)
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the right member of this equation is

∑
j

[∑
i

w2
i

xihxij
Var {Yi}

(
∂µi
∂ηi

)2
]
β

(s)
j +

∑
i

wi

(
yi − µ(s)

i

)
xih

Var {Yi}

(
∂µi
∂ηi

)
,

this is a z(s) vector whose i− th element is

z
(s)
i = η

(s)
i +

(
yi − µ(s)

i

)
/

(
∂µi
∂ηi

wi

)
.

Given that, we can write (5.20)(
XT Λ̃(s)X

)
β(s+1) = XT Λ̃(s)z(s),

then we solve for β(s+1) and we get

β(s+1) =
(
XT Λ̃(s)X

)−1

XT Λ̃(s)z(s).

The recursive evaluation of this formula is known as iterated reweighted least squares and
converges to the solution of equation (5.1). At each iteration wi weights are computed and
treated as constant values.

5.2.6 Newton-Raphson for Logistic Regression

The Newton-Raphson algorithm is a common tool used to maximize functions. It requires
the computation of the gradient vector and hessian matrix, if possibile they should be derived
analitically, otherwise numerical derivatives are used. As we are dealing with default events
and their statistical modelling, we derive the Newton-Rapshon steps for the weighted logistic
regression, giving the expressions for the gradient and hessian matrix. The weights wi are
obtained as previously .
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The logistic regression log-likelihood is given by

` (β) =
n∑
i=1

{
wi

[
yi ln

(
exp

(
x
′
iβ
)

1 + exp
(
x
′
iβ
))+ (1− yi) ln

(
1−

exp
(
x
′
iβ
)

1 + exp
(
x
′
iβ
))]} , (5.21)

indicating with

θ
(
x
′

iβ
)

=
exp

(
x
′
iβ
)

1 + exp
(
x
′
iβ
)

we rewrite (5.21) as

` (β) =
n∑
i=1

{
wi

[
yi ln θ

(
x
′

iβ
)

+ (1− yi) ln θ
(
−x

′

iβ
)]}

.

The Newton-Raphson algorithm is based on recursions

βt = βt−1 +

[
∂2`

∂β∂β ′

]−1

× ∂`

∂β
. (5.22)

For the case at hand we have that the gradient vector is

∂` (β)

β
=

n∑
i=1

{
wi

[
yixi −

exp
(
x
′
iβ
)
xi

1 + exp
(
x
′
iβ
)]}

=
n∑
i=1

{
wi

[
yixi − θ

(
x
′

iβ
)

xi

]}
=

n∑
i=1

{
wi

[
xi

(
yi − θ

(
x
′

iβ
))]}

(5.23)

=
n∑
i=1

{wixi (yi − ŷi)}

= X
′
diag (w) (y − ŷ)
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while the hessian matrix is

∂2` (β)

∂β∂β ′
=

∂

∂β

[
n∑
i=1

{wixi (yi − ŷi)}

]

= −
n∑
i=1

{
wixi

∂

∂β
θ
(
x
′

iβ
)}

;

given that

∂

∂β
θ
(
x
′

iβ
)

=
∂

∂β

[
exp

(
x
′
iβ
)

1 + exp
(
x
′
iβ
)]

=
xi exp

(
x
′
iβ
)[

1 + exp
(
x
′
iβ
)]2

=
exp

(
x
′
iβ
)

1 + exp
(
x
′
iβ
) 1

1 + exp
(
x
′
iβ
)x′i

=
exp

(
x
′
iβ
)

1 + exp
(
x
′
iβ
) (1−

exp
(
x
′
iβ
)

1 + exp
(
x
′
iβ
))x

′

i

ŷi (1− ŷi) x
′

i

we have that the following expression for the hessian

∂2` (β)

∂β∂β ′
= −

n∑
i=1

{
wixiŷi (1− ŷi) x

′

i

}
(5.24)

= X
′
[
diag

(
ŷ (1− ŷ)

′
)
diag (Inw)

]
X.

Therefore, the weighted logistic regression Newton-Raphson step is given by

βt = βt−1 +
{
X
′
[
diag

(
ŷ (1− ŷ)

′
)
diag (Inw)

]
X
}−1

X
′
diag (w) (y − ŷ) . (5.25)
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α = 0 α = 0, 1 α = 0, 2 α = 0, 3 α = 0, 4 α = 0, 5

Max. Lik. 1, 96 3, 13 4, 47 5, 99 7, 35 8, 72

wle 1, 96 1, 92 1, 95 2, 23 {1, 97; 8, 94; 14, 72} {2, 42; 6, 67; 13, 52}
wle-qr 1, 96 1, 98 1, 96 3, 39 {2, 27; 9, 53; 11, 90} {3, 46; 5, 68; 13, 63}

Table 5.1: Poisson roots

5.3 Applications

We test the method proposed in the previous sections, while also making a comparison with
other suggested robust procedures. We will refer to our method with wle-qr, i.e. weighted
likelihood equations through quantile residuals, while with wle we will refer to the method
proposed in Markatou et al. (1997). Logit is a short name we use to indicate a standard
logistic regression.

5.3.1 Poisson Data

As a first example in Table 5.1, we compare the results obtained in Markatou et al. (1997),
by simulating contaminated poisson data. We generate N = 100 data from a Po(λ = 2)

and subsequently contaminate it as following: (1 − α)Po(λ = 2) + αPo(λ = 15) with
α ∈ {0, 1; 0, 2; 0, 3; 0, 4; 0, 5}. We choose

A (δ) = 2
{√

δ + 1− 1
}
,

define weights as in (5.7) using k = 1 and, regarding the bandwidth, we set h = 0, 5. Results
we obtain are similar to those obtained by Markatou et al. (1997), we experience the arising
of multiple roots as the degree of contamination increases. The presence of multiple roots
requires therefore care during estimation, Markatou et al. (1998) propose a method called
bootstrap root search to deal with this kind of matter.
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Figure 5.1: Contrasting and non contrasting leverages

5.3.2 Logistic Regression

Similarly as in Agostinelli (1997), we generate a set of n = 100 data from a distribu-
tion X ∼ N (µ = 0, σ = 3) and generate Bernoulli distributed data yi ∼ Be (θi) , with
θi = exp (α + xiβ) / (1 + exp (α + xiβ)) , so that to have β = 2. Then we contaminate a
ε proportion of such data with X(c) ∼ N (µ = 8, σ = 1) , by replacing the last ε×n observa-
tions, for this data we produce a ν proportion of dependent data not coherent with the model
built (i.e. yi = 0 ), while the remaining part is coherent (yi = 1). The generated data and
the true relation can be observed in Figure 5.1, where circles are uncontaminated data, while
triangles contaminate the sample, however only reversed triangles are not coherent with the
true model, while remaining triangles are. The objective is to verify the behaviour of the
estimator and weights generated for each observation, to check that coherent observations
are not downweighted. We choose ν = 0, 8 and run a logistic regression on not contami-
nated part of data, while on contaminated data we run both the logistic regression and the
weighted version. Regarding the weighting scheme we choose a bandwidth equal to 0, 5 and
we set k = 1 both on design space and response space. The weight function is the the one
defined in (5.8), results are reported in Table 5.2. The slope of logistic regression , second
term in parentheses in the first column, is strongly influenced by leverage points, while the
wle-qr estimator, second column, is resistant. Regarding the downweighted observations,
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ε Logit wle-qr
0% (0.8589; 2.1751) (0.8712; 2.187)
5% (0.1934; 0.7007) (0.9708; 2.2339)
10% (−0.2560; 0.2356) (0.8847; 2.1922)
15% (−0.2756; 0.2091) (1.090; 2.360)
20% (−0.4527; 0.1369) (0.9826; 2.3081)
30% (−0.68879; 0.03718) (0.8639; 2.0356)

Figure 5.2: Contaminated logistic regression

we have for contaminated values whose observations contrast with the model, the following
summary measures (Table 5.2)

Min 1st Qu. Median Mean 3rd Qu. Max
6.90e-47 4.13e-34 2.23e-30 4.21e-19 6.17e-26 5.83e-18

Table 5.2: Contrasting leverage weights

while for observations coherent with the model we have (Table 5.3)

Min 1st Qu. Median Mean 3rd Qu. Max
0.849 0.854 0.871 0.883 0.899 0.939

Table 5.3: Coherent leverage weights

therefore, the methodology proposed is able to discard contrasting leverages only.

5.3.3 Credit risk model

To test on a larger dimentional space the weighted logistic regression, we compose a subset
of data described in section 3.1, using all defaulted events, while creating a subset of 200

undefaulted companies. In Table 5.4 it is shown that in presence of extreme observations,
using a standard logistic regression we may obtain unstable results (as for the β1 parameter,
where even the sign of the relation changed). We compare our results with the Conditionally
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Unbiased Bounded Influence Estimator (Kunsch et al. (1989)) and a Mallows type resistant
estimator (Carroll and Pederson (1993)).

We use as bandwidth h = 1, while we set k = 1 for both response and explanatory data
which we assume to be drawn from a multivariate normal distribution. In Table 5.4 are
reported parameters and in parenthesis the t-test statistic.

Logit wle-qr Mallows Cubif
β0 −1.3775

(−6.24)
−1.3500
(−6.403)

−1.6990
(5.743)

−1.6948
(−6.106)

β1 0.1470
(2.54)

−0.6583
(−2.583)

−0.5313
(−1.545)

−0.5539
(−1.886)

β2 −0.8773
(−2.60)

−0.3606
(−1.179)

−1.0416
(−1.938)

−0.9783
(−2.048)

β3 −1.0659
(−5.30)

−0.9182
(−4.343)

−0.9221
(−4.010)

−0.9477
(−4.141)

β4 0.6434
(3.53)

1.051
(4.481)

1.2390
(4.377)

1.2963
(4.596)

Table 5.4: Default risk, logistic regression

The results obtained by our weighted logistic regression are similar to the ones obtained
using other robust procedures. There is a disagreement on β2, we believe the reason is due
to the distribution of the covariate which is much far from normal, this will be taken into
account in future research, it has to be noticed however that the coefficient is not statistically
significant.
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