Teaching Networks How To Learn

Reinforcement Learning for Data Dissemination
in Wireless Sensor Networks

Doctoral Dissertation submitted to the
Faculty of Informatics of the University of Lugano
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by
Anna Forster

under the supervision of

Amy L. Murphy

May 2009






Dissertation Committee

Luca Maria Gambardella IDSIA/University of Lugano, Switzerland
Fernando Pedone University of Lugano, Switzerland
Jochen Schiller Freie Universitat Berlin, Germany

Dissertation accepted on 14 May 2009

Research Advisor PhD Program Director

Amy L. Murphy Fabio Crestani



I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been sub-
mitted previously, in whole or in part, to qualify for any other academic award;
and the content of the thesis is the result of work which has been carried out
since the official commencement date of the approved research program.

Anna Forster
Lugano, 14 May 2009



iii

To Alexander



iv



Abstract

Wireless sensor networks (WSNs) are a fast developing research area with many
new exciting applications arising, ranging from micro climate and environmental
monitoring through health and structural monitoring to interplanetary commu-
nications. At the same time researchers have invested a lot of time and effort into
developing high performance energy efficient and reliable communication pro-
tocols to meet the growing challenges of WSN applications and deployments.
However, some major problems still remain: for example programming, plan-
ning and deploying sensor networks, energy efficient communication, and de-
pendability under harsh environmental conditions.

Routing and clustering for wireless sensor networks play a significant role for
reliable and energy efficient data dissemination. Although these research areas
have attracted a lot of interest lately, there is still no general holistic approach
that is able to meet the requirements and challenges of many different applica-
tions and network scenarios, like various network sizes and topologies, multiple
mobile data sinks, or node failures. The current state-of-the-art is rich in special-
ized routing and clustering protocols, which concentrate on one or a few of the
above problems, but perform poorly under slightly different network conditions.

The main goal of this thesis is to demonstrate that machine learning is a prac-
tical approach to a range of complex distributed problems in WSNs. Showing
this will open up new paths for development at all levels of the communication
stack. To achieve our goal we contribute a robust, energy-efficient, and flexible
data dissemination framework consisting of a routing protocol called FRoms and
a clustering protocol called CrLiQuUE. Both protocols are based on Q-Learning, a
reinforcement learning technique, and exhibit vital properties such as robust-
ness against mobility, node and link failures, fast recovery after failures, very
low control overhead and a wide variety of supported network scenarios and
applications. Both protocols are fully distributed and have minimal communica-
tion overhead. Additionally, CLIQUE gives a distributed solution to the recently
emerged novel paradigm of non-uniform data dissemination, where the size of
the clusters in a network grows with increasing distance from the data sinks.

\%
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We evaluate the protocols analytically and experimentally under a realistic
simulation environment and on real hardware. Thus, we show not only that
machine learning is applicable to real-world wireless sensor networks, but that it
also achieves significantly better performance in terms of energy spent, network
lifetime, load spreading, and delivery rate under various network conditions,
when compared to other state-of-the-art routing and clustering approaches. This
thesis is one of the rare attempts to compare two routing protocols in terms of
communication overhead and delivery rate on real hardware.

We believe that this thesis successfully proves that machine learning is a
feasible approach for solving various hard problems in wireless sensor networks,
paving the way to further applications, protocols and optimizations, which will
inherently improve the performance of wireless sensor networks.
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Chapter 1

Introduction

The beginning of wireless sensor networks (WSNs) is commonly associated with
the SmartDust [[97] project from 1998, when the vision of large autonomous
sensor networks for monitoring various environmental and industrial fields was
born. Since then a lot of research has been conducted and many different sensor
network hardware platforms have emerged. The price of individual sensors has
been constantly decreasing, while their memory, processing and sensory abili-
ties have been growing. At the same time their application scenarios have been
also expanding. Researchers and practitioners from many scientific and indus-
trial areas have leveraged the achievements of the wireless sensor networks
community and have installed hundreds of sensor networks. These deploy-
ments range from scientific monitoring applications of active volcanos [[199]],
glaciers [[126]] and permafrost [[182]], through agricultural monitoring [[113]],
military and rescue applications[3} [36]] to the futuristic vision of the InterPlaN-
etary Internet 2} [122]], designed to connect highly heterogeneous devices like
satellites, Mars and Moon rovers, sensor networks, space shuttles, and common
handheld devices and laptops into one holistic network.

The growing number of applications for WSNs and especially their heteroge-
neous requirements and properties demand new communication protocols and
architectures. The WSN community has put a lot of effort in developing energy
efficient, reliable and fast communication services for various applications and
network scenarios. However, many topics like deployment and tuning of sensor
networks, programming and debugging, and energy-efficiency of data dissemi-
nation are still considered major challenges [[156]].

Especially the area of data dissemination — routing and clustering — for WSNs
has attracted a lot of research in the latest years, and developed many different
protocols, for various application scenarios, and data traffic schedules. However,
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lately this area is attracting a lot of criticism: application scenarios are too re-
stricted or not even carefully described, experimental setups are unrealistic, and
simulation environments are too abstract [[152]]. And despite the overwhelming
number of routing protocols and variations, there are still unsolved challenges,
the most important being energy efficiency in various application scenarios and
traffics, and tolerance against failures and mobility. Additionally, the problem
of sending data to multiple, possibly mobile sinks via optimal paths (multicast)
has not been solved efficiently yet. The same problems arise also in clustering
algorithms, where current state-of-the-art solutions need complex algorithms to
agree on cluster head roles, usually incurring significant communication over-
head, not related to the real data traffic.

There are also other challenging problems in WSNs such as distributed me-
dium access, localization, link management, optimal positioning and coverage
etc. We believe that these complex distributed problems, including routing and
clustering, can be efficiently and elegantly solved with machine learning tech-
niques. Machine learning and some related computational intelligence algo-
rithms exhibit vital problems like distributed autonomous behavior and adapt-
ability to changing environments, which make them highly applicable to WSNs.
However, WSN practitioners seem reluctant to use these algorithms in their
applications. The main reason for this is that machine learning techniques
have higher memory and processing requirements than traditional approaches
in WSNs. In addition, there have been no conclusive studies or applications of
machine learning to complex distributed problems in WSNs and the real dimen-
sions of their requirements remain unclear.

The main goal of this thesis is to demonstrate that machine learning is a prac-
tical approach to a range of complex distributed problems in WSNs. Showing
this will open up new paths for development at all levels of the communication
stack. To achieve our goal we contribute a robust, energy-efficient, and flexible
data dissemination framework consisting of a routing protocol called FRoms and
a clustering protocol called CLIQUE.

Both protocols are based on Q-Learning, a reinforcement learning technique,
and exhibit vital properties such as robustness against mobility, node and link
failures, fast recovery after failures, very low control overhead, and a wide va-
riety of supported network scenarios and applications. Both protocols are fully
distributed and have minimal communication overhead. Additionally, CLIQUE
gives a distributed solution to the recently emerged novel paradigm of non-
uniform data dissemination, where the size of the clusters in a network grows
with increasing distance from the data sinks. Unlike other routing, clustering, or
generally data dissemination protocols, the designed framework needs to cope
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innately with mobility and failures and to be able to efficiently manage multi-
ple sources and multiple destinations. It needs to provide WSN developers and
practitioners with a highly flexible, intuitively parametrizable tool. Additionally
and most importantly, the real world applicability of the framework needs to
be proven by implementing and evaluating the protocols on a state-of-the-art
sensor network hardware platform.

1.1 Contributions

As stated above, the main goal of this thesis is to show the real world applicabil-
ity of machine learning techniques and algorithms to complex distributed prob-
lems in wireless sensor networks. To reach our goal we approach the problem
of energy efficient, robust multicast data dissemination for large deployments of
wireless sensor networks. Our primary contributions are:

* A novel multicast routing protocol called Froms (Feedback ROuting to
Multiple Sinks), extensively evaluated in theory, simulation, and hard-
ware. Frowms is compared to three other state-of-the-art routing proto-
cols and shows superior performance compared to all of them in terms of
energy expenditure, delivery rate, network lifetime, and mobility and fail-
ure management. This thesis presents one of the few attempts to directly
compare two routing protocols in terms of communication overhead and
delivery rate on a real sensor network hardware platform under the same
network conditions.

* A novel role-free and overhead-free clustering approach called CLIQUE, ex-
tensively evaluated in theory and simulation. This protocol is particularly
interesting, because it presents the novel concept of self-organized role-
free clustering for WSNs. Instead of assigning the role of cluster heads to
some nodes, the nodes themselves decide on a per-packet basis whether
to act as such or to route the data further to better suited neighbors. The
protocol is based again on Q-Learning and compared to a traditional clus-
tering algorithm, is able to achieve approximately 25% longer network
lifetimes and to spread the energy expenditure among the nodes in the
network.

The obtained results from evaluating FrRoms and CLIQUE are highly promising
and clearly show that machine learning can be successfully applied to various
difficult distributed problems in WSNs, such as medium access, neighborhood
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management, localization, or fault recognition. The experiences gathered while
designing, implementing and evaluating both protocols pave the way to further
research and development in WSNs. This will inherently improve the perfor-
mance of WSNs, ease their development and deployment, and broaden their
application areas.

In addition to novel protocol design and implementation, this dissertation
offers further complementary contributions:

* A theoretical study of optimal cluster sizes for WSNs in terms of incurred
communication overhead. Beside the extensive research body on cluster-
ing in WSNs, there have been only few efforts on identifying the optimal
size of clusters or the optimal position of the cluster heads inside the clus-
ters. Here, we step back from any clustering protocols in particular and
conduct an experimental study on optimal clusters in terms of incurred
communication overhead.

* An extensive survey and evaluation of machine learning and computa-
tional intelligence techniques for various applications in wireless sensor
networks. For each application in WSNss, it identifies the best suited ML al-
gorithms, and for each surveyed ML technique it identifies its WSN-related
properties and requirements. This work is intended to be used also by
other researchers as a guide to optimizing their own protocols and algo-
rithms and to selecting the best suited ML techniques.

* A broad assessment of current evaluation practices and methodologies for
routing and clustering protocols in WSNs. This study includes 30 late-stage
or final versions of communication protocols. It surveys their evaluation
platforms, network models, and evaluation metrics and derives a general
credible state-of-the-art evaluation methodology. Again, this work can be
used by other researchers when designing and planning their protocols’
evaluations: in simulation, on real hardware or in theory.

1.2 Dissertation overview

We concentrate first on the targeted application scenario, its properties and re-
quirements in Chapter 2, thus giving the context for the rest of the work. Then
we present an extensive survey on related work in routing and clustering for
WSNs, and our guide and survey to machine learning and computational intelli-
gence techniques for various applications in WSNs in Chapter[3] Chapter[4]iden-
tifies the solution approach for the data dissemination protocols and presents the
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assessment of state-of-the-art evaluation methodologies for routing and cluster-
ing in WSNs. It also identifies our own evaluation methodology, required net-
work models, and protocols for comparative studies.

Chapter [5|describes the design, implementation and evaluation of Frowms, our
multicast routing protocol. Chapter [6] presents our clustering algorithm CLIQUE,
its implementation and evaluation details. Further, it presents our experimental
study on optimal cluster sizes and parameters. Chapter[7|summarizes the results
and contributions of this thesis and presents our vision of further research topics
and challenges for wireless sensor networks.
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Chapter 2

Target WSN Application Scenario

Real deployments of wireless sensor networks usually implement one of three
general applications: periodic reporting, event detection, and database-like stor-
age. Periodic reporting is by far the most used and simplest application sce-
nario: at regular intervals the sensors sample the environment, store the sensed
data, and send it further to the base station(s). Actuators are often directly
connected with those sensor networks, for example automatic irrigation sys-
tems or alarm systems. This scenario is used in most monitoring applications
for agriculture [[113} [129]], microclimate [21} 126, [182] and habitat surveil-
lance [[19, (135} [181]], military operations [3], and disaster relief [36]]. The main
property of periodic reporting applications is the predictability of the data traffic
and volume.

In contrast, in event detection applications [[199, 201]] nodes sense the envi-
ronment and evaluate the data immediately for its usefulness. If useful data (an
event) is detected, the data is transmitted to the base station(s). The data traffic
can hardly be predicted: events usually occur randomly and the resulting data
traffic is bursty. However, a small amount of data has to be propagated for route
management and liveness checks even in case no events are detected.

The third group of sensor networks applications, database-like storage sys-
tems [[121]], are very similar to event-based systems. All of the sensory data
(regular sampling or events) is stored locally on the nodes. Base stations search
for interesting data and retrieve it from the nodes directly. The main challenge
in these applications is to store the data in a smart way, so that searching and
retrieving can be fast.

In this work we consider periodic reporting scenarios, since they make up the
major part of current and future WSN deployments. More precisely, we consider
sample applications such as:



* Disaster relief and military operations [3], 36]. Sensors are deployed ran-
domly over large areas in a non-planned manner. They deliver vital data
about the environment or detect events such as military enemies or sur-
vivors in a disaster area. The nodes are usually static, while the data con-
sumers are for example rescue workers who move with handheld devices
around the disaster area. Maintenance of the network after deployment is
usually impossible.

* Environmental monitoring and surveillance [[19, 20, 21}, 113} [126) 129,
135] (181, (182}, [199]]. These deployments exhibit mainly the same prop-
erties as disaster relief and military applications. However, networks are
usually planned in advance and continuos monitoring of the environment
is performed. Often actuators are deployed together with the sensor net-
work, such as automatic irrigation systems.

* The InterPlaNetary Internet [[2, [122]]. These networks include highly het-
erogeneous devices such as satellites in orbit around Earth, Moon and
Mars, space stations, Moon and Mars habitats, handheld devices for astro-
nauts, autonomous robots, robotic swarms, and sensor networks. While
each of these components has its own main mission, their secondary goal
is to form a fully connected network and to guarantee reliable communica-
tion. Sensor networks are a significant part of this scenario, to be deployed
in multiple areas to deliver vital environmental data and to support com-
munications in regions with insufficient satellite coverage.

Although these scenarios are very different in their nature and goals, they
share a lot of properties. In the next paragraphs we derive the properties of the
application scenario for routing and clustering protocols to be considered in this
dissertation, called here for simplicity the data dissemination protocols.

1. Network size. During disaster monitoring and recovery it is usually im-
possible to plan the network and its topology in advance. Thus, the main
application requirement for the data dissemination protocols is to be able
to cope with randomly deployed networks with random links, varying den-
sity and unknown reliability and quality. The same requirement holds
for military applications and for the InterPlaNetary Internet, where the
requirement has been defined: “...multiple sensor networks consisting of
ten to one hundred nodes may be deployed in inaccessible locations on
Moon/Mars to obtain scientific data” [[122]]. The number of nodes in envi-
ronmental monitoring spans a wide range too. In different deployments of



SensorScope [20] the number of nodes reached from 20 to 100. Deploy-
ments for precision agriculture [[113,[129] use 100 to 150 nodes. Volcano
monitoring [[199]] or glacier monitoring [[126, [182] need to cope with ex-
tremely hostile environments and current deployments have been usually
in the range of 10 to 15 nodes. However, these numbers are expected to
rise in the next years and larger deployments are already planned [182].

Thus, we conclude that the number of nodes is unknown and can vary from
only several nodes to hundreds or even thousands randomly organized
into a multi-hop topology.

2. Energy restrictions. One of the main challenges of wireless sensor net-
works are the highly restricted power reserves of the sensor nodes. The
sensor nodes typically have on-board low capacity batteries, which are
used for sensing, processing and communication. However, the primary
power consumer is the radio [[6, 112]], which drains the node’s battery
quickly for active listening of the wireless medium and data transmission.
In addition, many WSN deployments need to run unattended over weeks
or even months and batteries cannot be replaced. This is the case, for ex-
ample, for disaster relief operations [3]] or for sensor networks as part of
the InterPlaNetary Internet [2, [122]]. On the other hand, failing of some
sensor nodes might disconnect the network and stop data delivery. This
event if often referred to as network death. Thus, one of the major design
goals and requirements for data dissemination protocols is the efficient
use of energy reserves and network life prolongation through on-board
optimization and node-wide balancing of communication overhead.

3. Node failures. Node failures are a direct consequence of the limited energy
availability on the nodes. With dwindling battery reserves, the node’s be-
havior becomes first very unreliable in terms of communication and then
the node fails completely. In unattended environments the node will never
recover. However, in agricultural monitoring [113], [129] exchange of bat-
teries is possible and the node will re-enter the network. Node failure or
restart can happen also for other reasons, for example because of loose
contacts, defect hardware or bad environmental conditions. A data dis-
semination framework needs to cope well with all these events and to
guarantee continuous data delivery during the full network lifetime. It
also needs to accommodate new nodes to make efficient use of all net-
work resources.

4. Sink mobility. Sensor nodes in all our sample applications are usually sim-
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ple, static entities. Current deployments often plan only one fixed base
station. However, this approach has various drawbacks: the base station
is a single point of failure and other data consumers in the sensor network
have to retrieve the data directly from the base station. The second argu-
ment is often considered an inconvenience rather than a real risk. How-
ever, imagine a disaster relief scenario as described in [36]], where a sensor
network has been deployed to observe the environment, estimate risks and
discover people. The rescue workers are equipped with wireless handheld
devices, which usually are able to communicate with the base station (the
emergency habitat). In the “normal” situation they can get sensory data
from it directly. However, what happens when they move around and their
handheld devices go out of range of the base station? Usually no function-
ing infrastructure is available to ensure communication. In such cases the
sensor network itself can take over the communication among the sensor
network, the base station and the rescue workers. The consequence for
data dissemination protocols is that multiple mobile sinks are present in
the network.

Nearly the same situation arises in other application scenarios. In the
InterPlaNetary Internet [[2], [122]] the requirements are mostly the same as
for disaster relief. There, communication between mobile entities (robots
or humans) and the rest of the network is crucial and needs to be reliable
under all conditions. Imagine a situation where human explorers of Mars
are working outside the habitat and lose communication to it. In such a
case, any other communication-enabled devices (sensor networks, robots,
satellites) need to take over and to re-connect the network.

For environmental monitoring the need of mobile sinks is not that urgent,
but it would be helpful to unobtrusively replace the base station in case of
failure or to receive the data directly from the sensor network in case the
used device has no access to the base station.

Thus, the data dissemination protocols need to support mobile sinks and
to be able to route data between heterogenous devices considering non-
uniform costs of the links.

5. Data generation, delivery and traffic. Usually there are many different data

types available in a sensor network, e.g. temperature, humidity, light, gas
concentration, acceleration. Sinks need to be able to choose between dif-
ferent data types, data sensing intervals, reporting intervals, compression
parameters, etc. The sensing and reporting can be continuos or temporary.



11

The achievable throughput of a network depends mostly on the Medium
ACcess (MAC) protocol in use. The contribution of the data dissemination
protocols to managing data traffic is to generate as few packets as possi-
ble. This lowers the overall latency, and increases the delivery rate and
reliability. At the same time, sinks’ requirements on data quality need to
be met (see next point).

We assume that a suitable MAC protocol is used and the volume of data
traffic can be anything between few readings from a single node to a single
sink to all nodes reporting to several sinks.

. Quality of service requirements. In addition to the data requirements above,

the sinks have also quality of service requirements. Different applications
have different requirements. For example, disaster relief operations [3]]
need reliable minimum delay delivery of sensory data for ensuring fast re-
sponse. On the other hand, they allow data compression and aggregation,
since the network is often deployed very densely to ensure full coverage
and data readings from neighboring nodes can be compressed or aggre-
gated. In contrast, agricultural monitoring [113] is a delay-tolerant ap-
plication where efficient energy use and long network lifetimes are more
important to keep maintenance effort and costs low. Data aggregation or
compression are possible too.

Micro-climate monitoring differs from the above by its high delay toler-
ance, but tight requirements on reliability of delivery of non-compressed
raw data readings. Monitoring of areas such as glaciers [[126] [182]] or
volcanos [[199] is very costly and requires high effort of planning and de-
ploying. The high cost of these applications makes it impossible to densely
deploy the network for redundancy of sensing. The sensor network usually
gathers data about previously non-observable phenomena, which helps re-
searchers understand the dynamics of these environments and needs to be
gathered on the base stations without any loss. On the other hand, as al-
ready stated, these applications are highly delay tolerant and compression
can be used to reduce communication overhead if data quality does not
suffer.

One of the main properties of the InterPlaNetary Internet [22, [122] is its
two-fold mission: gathering sensory information and serving as communi-
cation infrastructure in emergency cases. The first mission is in fact micro-
climate monitoring, with the same requirements as above. However, the
second mission changes the requirements significantly Communication
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services become first priority in case of emergencies and require minimal
delay and high reliability. Compression can be used in some cases, for
example for voice or video transmissions.

In summary, the data dissemination framework designed in this thesis
needs not only to support all of these quality of services requirements,
but to be able to switch between them quickly and efficiently. The most
important requirements are support of compression and aggregation of
data, minimum delay, minimum energy expenditure, and high reliability
(delivery rate).

. Non-uniform data requirement. In addition to the above typical wireless

sensor network quality of service and data requirements, we explore the
the relatively novel concept of non-uniform data dissemination. For ex-
ample, in a disaster recovery scenario sinks are rescue workers, moving
through the disaster area and receiving information about their environ-
ment like temperature or toxic gas concentration. They may require highly
accurate information close to their present location (i.e. raw sensor read-
ings), and only approximate information (i.e. computed mean sensor
readings) about distant locations. In other words, the allowed aggrega-
tion rate is proportional to the distance between the worker and the data
source. Other non-uniform quality requirements are also possible, like
incorporating movement direction to require accurate information in the
direction of movement and less accuracy in the movement wake, or ad-
justing accuracy depending on the density of workers in a particular area.
Other possible parameters are setting the point of highest data quality to
some other position than the worker’s or setting two points of interest.

Additionally, there are some other important design criteria concerning the

quality and the credibility of the conducted work. Unlike the requirements out-
lined above, which arise directly from the described deployments and applica-
tions, the design criteria and their fulfillment are important for practitioners in
the area and other researchers. They guarantee the real world applicability of
the implemented communication protocols.

» Simplicity. The protocols must be easy to understand and implement in

order to be feasible for real-world deployments.

* Memory and processing requirements. The implementation must fit com-

fortably onto a typical sensor node, leaving space for other protocols and
applications.
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* Flexibility. The protocol must be easily adaptable to different applications
and optimization goals.

* Scalability. The implemented protocols must be scalable in terms of net-
work size, number of sources, and number of sinks.

In order to design and implement the data dissemination protocols, we need
to make some assumptions about the rest of the communication stack:

1. Sink announcements (data requests). We assume that sinks announce them-
selves via a network-wide broadcast in which they state their optimiza-
tion goal, clustering and data requirements. A sink initiates this process
by sending out a sink announcement packet to all nodes in its range.
Each of the receiving nodes updates the information in this packet and
re-broadcasts it to its neighbors and so on. For example, hops to the in-
dividual sinks can be easily propagated this way. The sink initiates the
process by sending a packet with hop count O (hops to itself), its direct
neighbors update this information to 0+ 1, their neighbors to 0+1+1 etc.
Propagating sink announcements is a very common approach in WSNs.

2. Data aggregation and compression functions. The above outlined applica-
tion requirements implicitly allow for in-network data aggregation or com-
pression. Typically this is done by dividing the nodes in the network into
groups called clusters, and aggregating the data from each cluster before
sending it to the base stations. A single node is selected to be the clus-
ter head and to take care of aggregating the data of its cluster. There are
mainly two mechanisms for performing the data aggregation [[41]: tree-
based or centralized. The first method implies that data is aggregated on
the way to the cluster head. The second approach gathers the full sensory
data of the cluster on the cluster head and aggregates it there before send-
ing a single data packet to the base stations. In our work we assume either
of the methods can be used. Additionally compression can be used instead
of aggregation. However, the exact data aggregation or compression func-
tions are out of scope of this dissertation. We assume that they are simple
and do not have any additional processing or memory requirements. Thus,
any sensor nodes can serve as cluster heads.

3. MAC layer. Data dissemination protocols (routing and clustering) rely
heavily on the lower layer protocols’ performance. We consider a sim-
ple broadcast-enabled MAC protocol without re-transmissions and without
delivery guarantee, basically any sensor network MAC protocol.
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4. Neighborhood management. Often separate neighborhood or link manage-
ment protocols are used, which measure the link quality of a node’s neigh-
bors and prohibit the use of unreliable neighbors. We do not assume any
neighborhood management protocol - the neighbors’ reliability and qual-
ity need to be managed by the routing and clustering protocols directly, in
order to be able to manage failures and mobility in an efficient and holistic
way.

This chapter presented and analyzed the most important application require-
ments for this thesis. In summary, our data dissemination framework needs to
cope with different network sizes, multiple mobile sinks, failing nodes, restricted
energy reserves, various data and quality of service requirements, and the novel
concept of non-uniform data quality.

Our first intuition is that the data dissemination framework needs to be di-
vided into clustering and routing. Network clustering will take care of data ag-
gregation and compression, where applicable, and routing will conduct the data
delivery to the base stations. Additionally, a machine learning algorithm seems
a good choice for solving the above problems in an autonomous, self-organized,
and energy-efficient way. In the next Chapter [3|we will explore related efforts on
solving the routing and clustering problems. We discuss their properties, advan-
tages and disadvantages. We also offer an extensive survey of machine learning
and its related discipline computational intelligence for various applications in
wireless sensor networks.



Chapter 3

Related Research Efforts

The targeted scenario described in the previous chapter exhibits two main chal-
lenges: routing to multiple sinks with managing failures and mobility, and energy-
efficient, low-overhead, possibly non-uniform clustering. In the following we
will discuss each of them individually, explain why it is hard to solve them and
outline related efforts for meeting them. The goal of this survey is to identify
the approaches and algorithms used by researchers to solve different problems
of our application scenario and to discuss them in the context of our own re-
quirements (see Chapter |2)).

Additionally we present a survey on machine learning (ML) and computa-
tional intelligence (CI) applications in wireless sensor networks. Our first intu-
ition is that this class of algorithms is highly suitable to meet all of the challenges
of the presented application scenario. However, we need to understand how
each of these algorithms performs in the context of wireless sensor networks in
order to identify the best suited technique for this thesis.

3.1 Energy-efficient multicast routing in WSNs

While a large body of different routing protocols has emerged in the last years,
there is still no general and well-performing routing protocol for WSNs. Real
deployments often decide for a simple, already implemented routing protocol
based on hops like MintRoute [202] for TinyOS. However, they often also change
the protocol according to their needs [[19,[113], [199], for example by using a dif-
ferent neighborhood management protocol or a custom cost metric. Thus, the
resulting protocols are highly specialized and optimized solutions for the tar-
geted network rather than a standard protocol for a broad variety of scenarios.
In this chapter we give an overview of state-of-the-art routing protocols.

15
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First, we summarize traditional point-to-point routing algorithms before pro-
ceeding with multicast approaches for WSNs. Then we deepen our survey in
terms of sink mobility, failure management and various routing cost metrics.

3.1.1 Point-to-point routing in WSNs

There are many different routing protocols and techniques for WSNs and several
surveys have tried to classify and summarize them [3] 4, 9]. Many routing
protocols have emerged from routing protocols for Mobile Ad Hoc Networks
(MANETs). They build a full routing path table at all nodes and each node
keeps the full route to each possible destination. The main disadvantage of such
an approach is that route information needs to be propagated throughout the
network (from the source to the destination and back). Second, a complicated
route repair procedure needs to be started in case of topology changes or failures
to re-build the routes. Some protocols take an abstraction step of dividing the
route into segments, where only segments need to be repaired [[193]]. MANET-
based protocols have been implemented for WSNs with some changes (in this
case, multi-path routing), like AOMDV [I83]] based on AODV [[144]. However,
the main disadvantages remain.

A popular routing technique designed especially for energy-restricted unreli-
able wireless sensor networks is content-based networking [|35]]. It is a routing
framework where data is sent from the source to the destinations based on inter-
ests expressed by the destinations to receive a particular pattern of data. Such
an approach is relevant for sensor networks as it is data driven as opposed to
address driven. This has been demonstrated in [[77]] where the authors use a dis-
tance vector protocol to construct a tree from the source node to an interested
sink.

Another instantiation of content-based networking for sensor networks is Di-
rected Diffusion [88], [170]] where routes from the source to the destinations are
established on-demand based on interests that are flooded through the network.
This flooding establishes gradients for data to follow from multiple sources to
the sinks. As the source sends low-rate data samples, the routes where data first
arrives are reinforced by the sinks.

Directed Diffusion motivated many other routing protocols. Rumor rout-
ing [30] and its successor, Zonal rumor routing [[17] limit the initial interest
propagation phase by routing the interests to the specified zones in the network
only. For this, the nodes need to know who is producing what kind of data.
When a node produces data, it generates a long-lived agent, which traverses the
network and informs other nodes of the available information.
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GRE-DD [117] and LMMER [[13]] are also extensions of Directed Diffusion.
They consider the remaining battery level of neighbors when selecting the gra-
dient to the sink. However, they do not dynamically change the gradient, even
if a node exhausts its energy. Instead, they must wait until the subsequent sink
flooding to update the battery level and the route. A similar approach is de-
scribed in [[162], where each node knows the “heights” of its neighbors (number
of hops to the sink). If the battery level of some node drops below a threshold,
it increases its height and propagates this new information to its neighbors.

MintRoute [202] from TinyOSH is a similar hop-based routing approach,
which additionally incorporates a neighborhood management protocol. It se-
lects the next hops based on link quality and hops to the sink.

Location-based (or geographic) network routing is based on the location-
awareness of the nodes. All nodes of the network are able to obtain either
their exact coordinates by a GPS receiver or their relative locations by incoming
signal strengths from their neighboring nodes. For example, GEAR [215] is
an improvement over Directed Diffusion, where interests are routed to their
destinations via a location-based heuristic. Thus, flooding of the interests is
restricted and energy is saved.

A traditional geographic routing protocol is GPSR [[99], which selects next
hops based on their progress to the destination. In case the routing is stuck (a
node is reached with no progress to the sink), a special face routing procedure
is started to route the packet around the void region. The main disadvantage
of geographic routing protocols is the length of the selected routes, especially
in case of void regions. An effort to overcome this problem is presented in
[60], where a landmark-assisted geographic routing protocol is described. Here,
in a pre-processing phase the nodes exchange information about their location
and the full global topology is reconstructed at each of the nodes. However,
topology information is abstracted and the network is divided into tiles. Thus,
node failures and low mobility can be handled without full-network broadcasts
of the events. Special landmarks are used for routing the packets through the
tiles. Unfortunately the work is not evaluated in terms of overhead or spent
energy and no comparison to existing works is given.

Another problem with traditional geographic routing schemes is their pref-
erence of long unreliable hops. In case no separate link protocol is used, geo-
graphic routing selects next hops only based on their progress to the sink - thus,
mostly long lossy connections. An extensive study of this problem and a compar-
ison of various other location-based metrics on simulation and real hardware is

lwww.tinyos.org
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routing table : node S

| Neighbor A | sink P | 3 hops
source sink Q | 5 hops
| Neighbor B | sink P [ 4 hops
sink Q [ 4 hops
| Neighbor C | sink P |5 hops
sink Q [ 3 hops

Figure 3.1. A sample topology with 2 sinks, the main routes to them
from source S and its initial routing table.

presented in [219]. Traditional greedy strategies are compared with blacklisting
highly unreliable neighbors, selecting only the most reliable neighbors and using
the product of geographic progress and reception rate for identifying the next
hop. The study shows the last product-based metric results in highest end-to-end
delivery rate.

3.1.2 Multicast routing in WSNs

Let us consider the sample topology from Figure It shows a small network
with two sinks and one source. After the proposed sink announcement from
Chapter [2] all of the nodes in the network have some initial routing information,
e.g. hops to the individual sinks. For example, node S (the source) has three
neighbors and routes through each of them to both sinks. According to its infor-
mation, the best next hops to take include neighbor A for sink P and neighbor C
for sink Q. From the local perspective of the source it looks like the route costs
(3+ 3) hops or 5, if the first hop is shared via a broadcast message (the dotted
route in the figure).

However, looking globally at the network graph we immediately see that the
route through nodes B, F, H and then to the sinks (the middle route in the figure)
costs only 4 hops - even in this small network there is possible saving of 20%
compared to the locally best route. Additionally, the remaining energies on the
nodes can be considered. Finding the globally optimal route is what we call the
multicast challenge.

There are different approaches of how to solve the multicast challenge. Many
traditional multicast routing protocols come again from the MANET environ-
ment, for example MAODV [144]], LAM [[94], AMRIS [203]], ADMR [[93]], and
RBM [[43]]. They build on-demand a multicast tree in the network via exchang-
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ing control packets. However, this approach requires large overhead for building
and maintaining the tree, especially in case of mobility and failures. There are
some recent works using swarm intelligence [51, [167], but again the overhead
from sending ants is unbearable for wireless sensor networks (see the discus-
sion of swarm intelligence in Section[3.3.5)). Other researchers also report about
substantial problems and challenges when implementing MANET multicast rout-
ing protocols for sensor networks, like the implementation of ADMR on MicaZ
motes [37].

Mesh-based algorithms for MANETs maintain an overlay structure for for-
warding data to all receivers. They proved to be very efficient in high mobility
scenarios, but cause great communication overhead for constructing and main-
taining the mesh and thus cannot be successfully applied to WSNs. Such proto-
cols are for example ODMPR [[115]], CAMP [68]], PUMA [191]], AMRoute [207],
and PAST-DM [[74].

From the wireless sensor networks community there are two main groups
of research efforts in the area of multicast routing: geographic based and “fake
multicast”. GMR [[160]] and MSTEAM [|66]] are both geographic based multicast
routing protocols. These approaches do not need any control packet exchange to
build the multicast tree. In fact, they greedily take next hops to reach the sinks.
However, having geographic information in large, randomly deployed sensor
networks is unrealistic or too costly, and thus alternatives have to be found.
Another disadvantage of geographic protocols is the so called face routing, which
is used to route data around face (void) regions. This takes a much longer route
than necessary and is not able to learn from its previous experience, like previous
routing around the same void area.

Another approach for WSNs for multicasting is what we call “fake multicast”:
unicast protocols, which are slightly optimized for multicast routing. Such proto-
cols just build paths from a source to each of the sinks without really considering
sharing of paths or finding globally optimal ones - a simple example is Directed
Diffusion [[170], which can easily support multiple sinks. Another work [42]
concentrates on sharing of paths from multiple sources to multiple sinks by lo-
cally sharing next hops with the same costs. However, the main assumption of
[42] is that packets from different sources can be aggregated, which makes the
work a tree-based clustering approach rather than a traditional routing algo-
rithm. Additionally, the definition of the routing cost function leads to routing
oscillations in the beginning, causing a lot of additional communication over-
head.

Other researchers [216] formulate the problem of routing to multiple sinks
in a different manner: it finds the optimal data rates of all data sources and
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best sink node to route to. In particular, this means that each source routes
its data to the next sink only and all sinks cooperate to reconstruct the data
field. Similarly, [[45] (102, [139] present solutions to the optimal sink placement
problem in a WSN. A study on the multicast capacity of certain networks is
presented in [[164].

Again, there are some mesh or overlay routing protocols, which successfully
handle multiple mobile sinks. They are presented in the following section.

3.1.3 Sink mobility in WSNs

Some routing protocols assume that the mobility pattern of the sinks is known
a-priori at the sensor nodes. One such protocol is the spatiotemporal mobicast
routing algorithm in [82]]. This protocol is rather an overlay routing protocol,
which decides when to forward the data through a geographic routing protocol
to which neighbors. In this way it guarantees spatiotemporal delivery of needed
data to needed regions. The work was further developed in [[40], which is able
to better handle void areas. IDDA [205]] is following a similar idea, where the
mobile sink uses a directional antenna to wake up nodes in its next location.
Nodes in the predetermined area use gradients as in Directed Diffusion to send
data to the node next to the sink’s future location, thus preparing data for the
sink and waiting for the sink there.

TTDD [[120Q] is a layered routing protocol, developed especially for high mo-
bility scenarios. The authors concentrate on efficient delivery to multiple mobile
sinks through building a routing overlay. The network is clustered into cells and
mobile sinks flood their requests in the local cell only. Thus, the overlay is al-
ways aware of the current position of the sinks and routes the data to them.
This approach proved to be very effective in high mobility scenarios. However,
the nodes building the overlay (a cell structure) drain their power quickly and
the overlay has to be rebuilt with high communication overhead. That is why
the protocol is better suited for event-detecting sensor networks with only spo-
radic traffic rather than continuous monitoring. Other overlay-based routing
protocols are ODMPR [[115]], CAMP [68]], PUMA [[191]], AMRoute [207]] and
PAST-DM [[74].

SEAD [[103]] optimizes routing from single source to multiple mobile sinks.
Each sink selects an “access sensor node”, to which data from the source is
routed. A tree is built based on a geographic location heuristic between the
source and all access nodes. When the sink moves away, a path between its
current nearest neighbor and the access node is maintained, so that it is not
necessary to rebuild the tree. If the sink moves too far away, a new access node
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is selected and the tree is rebuilt, but only with high communication overhead.
The approach shows very good results compared to Directed Diffusion [[170] or
TTDD [120] in terms of dissipated energy for data packets. However, no exten-
sive evaluation of the control overhead under mobile sinks is presented, which
is expected to be high. A further refinement of SEAD is DEED [[104], which
introduces delay constrains on the multicast routes.

Multiple mobile sinks are the target scenario for DST [|86]]. A shared routing
tree is constructed by the first (master) sink and shared by next slave sinks.
Unlike SEAD [[120], the whole tree is dynamically updated when sinks move
away from their access sensor nodes. The approach shows slightly better results
than SEAD in high mobility single-sink scenarios and the same performance as
SEAD in multiple-sink settings.

An analytical evaluation of virtual infrastructure routing protocols (TTDD
[[120], SEAD [[103]] and others) is presented in [78].

3.1.4 Failure recovery for routing in WSNs

One of the main routing challenges is managing link and node failures. Failures
have been widely considered in routing for WSNs and different approaches have
been taken. The most important design criterion is to be able to register a failure
and to update the available next hops easily.

Failure recovery is closely related to and in fact part of link quality man-
agement. Here, two different techniques exist: pro-active beacons and passive
refreshment of routes. The first technique is used by nearly all management
protocols and by nearly all geographic routing protocols [66} (99, [160]. Here,
the nodes exchange small non-data related packets (beacons) to refresh their
information about their 1-hop neighbors. Usually, the RSSI (Received Signal
Strength Indication) level of the radio signal and data reception rate are used
to calculate the link quality. Failure recovery is incorporated automatically in
these algorithms by assigning very low quality to failed links (non responding
nodes), and thus signaling the problem to higher layers. The main disadvantage
of separate link management protocols is their unawareness of the requirements
of the higher layers. For example, many link management protocols supply the
higher layers with a list of ”good“ neighbors or a list of the n-best neighbors. In
the first case, the routing protocol is unable to choose the best neighbor because
of lack of knowledge, in the second case it might miss a good neighbor, which
has a good quality, but resides on place n + 1 of the quality-sorted list.

The second recovery technique, passive refreshment of routes, is applied of-
ten by hop-based routing protocols like Directed Diffusion [[I70], which do not
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make use of any separate link management. Here, the sinks (or any other lead-
ing nodes) refresh the routing information at regular intervals by a full-network
broadcast of a simple control packet, called the sink announcement or data in-
terest. Note that we use the same sink announcement in our scenario (see Chap-
ter [2)), since this is an energy-efficient and general approach to inform nodes
in the network about the sinks’ requirements. However, sending such an an-
nouncement too often, for example to keep routes up-to-date, is not efficient
and dramatically increases the data traffic in the network. A similar technique
is also used by all MANET-like routing protocols, where control packets are ex-
changed at regular intervals to refresh routes.

3.1.5 Routing cost metrics for WSNs

Location-based (geographic) routing is probably one of the largest families of
routing protocols. Here, progress to sink is used as routing cost metric and next
hops are selected accordingly [166, 99, [160]].

A metric coming from MANET routing protocols is end-to-end latency, as used
for example in the original two-phase pull version of Directed Diffusion [[170].
Here, the sources start delivering data at low rates over many possible routes.
Thus, the sink observes from where the data arrives first and reinforces this
route, which becomes the main route for data delivery at higher rates.

In homogenous WSNs the number of hops is highly related to latency and
has been used extensively as a routing metric [[162}[170]]. Hops are a simplified
version of latency and can often be used interchangeably with it. Both metrics
have several advantages over location awareness: they are cheaper to acquire
and they automatically build minimum hop/latency (shortest path) routes with-
out void areas. On one side this leads to shorter, very energy-efficient routes.
However, these routes are quickly depleted and the network could become dis-
connected.

Therefore, other research efforts additionally take the node’s residual en-
ergy into account. Such approaches work in one of two ways: considering
strictly localized information where only the neighbors’ remaining energy is
given [[13], 117, (175, [193] 215]], or full global information where all remain-
ing power levels for all nodes are known at the base station [92]]. Considering
the remaining energy on the 1-hop neighbors has the advantage of being fully
localized and thus very energy-efficient, but does not guarantee that the nodes
on the remaining path to the destinations have high energy reserves. On the
other hand, global information helps identifying truly optimal routes, but has a
large communication overhead.
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A widely used cost metric for estimating the quality of links and neigh-
bors is the RSSI level of received packets, assuming that high RSSI values come
from nearby, reliable neighbors and the other way around. However, some re-
searchers [[193]] use this metric also with the opposite assumption — low RSSI
indicates a far away neighbor — and use it to select neighbors which are possibly
further away and thus closer to the destination. However, such a metric suffers
from the same disadvantages as geographic routing - the connection link to the
farthest neighbor is usually very error-prone, which results in many retransmis-
sions or a high packet loss rate. Another use of RSSI is the computation of the
distance between the sender and the receiver and is often used by clustering
approaches (see Section [3.2)).

A current effort to improve connectivity in wireless sensor networks has led
to a new cost metric, the connectivity importance value [[141]]. A node is con-
sidered important if after failing it will disconnect part of the network. Thus,
routes are taken which avoid important nodes to avoid disintegration of the net-
work. Unfortunately, these values cannot be computed in a distributed manner,
since full topology information is needed on all of the nodes in the network.
The values also need to be re-calculated after node failures, reflecting the new
topology. This becomes a communication challenge especially towards the end
of the network lifetime when nodes start to fail quickly one after another.

3.1.6 Routing in WSNs: Summary

There is a huge research body on routing protocols for WSNs, based on vari-
ous assumptions, cost metrics and network scenarios. Simple techniques like
MintRoute [[202]] or Directed Diffusion [[170] are usually preferred. However,
in the context of our application requirements from Chapter [2| they do not effi-
ciently manage multiple sinks, node failures or mobility. Other efforts concen-
trate specifically on one of these challenges, but none of them gives a general,
flexible and robust solution to all of them simultaneously.

Thus, the goal of this dissertation is to design and implement a general solu-
tion to all of these problems. However, unlike the solutions presented here which
need a substantial increase in processing, memory or communication overhead
to handle each of the described challenges one by one, our solution needs to be
universal and self-consistent.
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3.2 Energy-efficient clustering for WSNs

Clustering in wireless sensor networks is the process of dividing the nodes of the
WSN into groups. Each group agrees on a central node, called the cluster head,
which is responsible for gathering the sensory data of all group members, aggre-
gating it and sending it to the base station(s). Clustering and data aggregation
have proved to be powerful techniques to minimize energy expenditure in wire-
less sensor networks, while at the same time keeping some minimal quality of
the delivered data.

While simple and straightforward, this approach hides important and hard to
solve issues. In particular, the selection of cluster heads is critical: randomly se-
lected heads do not cover the sensors well and cause non-balanced intra-cluster
communication overhead. Deterministic selection based on ID, remaining en-
ergy, or other metrics, requires either global information about the network
to compute the optimal clustering, or k-hops neighborhood information at all
nodes. The announcement of cluster heads causes non-data related communica-
tion overhead, and failures of cluster heads cause a whole cluster to fail or have
to repair.

This survey is not intended to be exhaustive or complete. We have, however,
identified six main families of protocols: random, 1-hop grid, k-hop, location-
based, infrastructure-supported and non-uniform clustering protocols. There is
also the additional family of centralized protocols, which we discuss shortly. The
main properties of all protocol families and our taxonomy are summarized in
Figure Note that some of the protocols are marked as exceptions, because
their properties differ in some small way from most of the other protocols of
the same family. We discuss these exceptions in detail together with the related
works next.

After presenting state-of-the-art clustering protocols, we continue with a
short summary of data aggregation techniques and conclude the survey with
related efforts on optimal clustering techniques and theoretical studies.

3.2.1 Random protocols

Many clustering protocols are improvements or modifications of LEACH [[149],
in which network nodes choose to be cluster heads based on an a a-priori proba-
bility. Self-elected cluster heads flood a cluster head role assignment message to
their neighbors, which in turn identify and select the nearest cluster head. In the
original LEACH protocol, the probability corresponds to the number of desired
cluster heads in the network. Additional metrics such as remaining node energy
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Figure 3.2. Classification of state-of-the-art clustering protocols and
their main properties.

can also be used to change the clustering properties [32, [70, 92, [209]).

Random-clustering algorithms perform well and have two important advan-
tages. First, they are very simple, and second, they avoid rounds of control mes-
sages to converge on a single cluster head in a cluster, since the cluster heads are
randomly selected. However, their greatest disadvantage is the unpredictability
of the sizes and shapes of the clusters. Cluster heads can be anywhere in the
network. Sometimes data from half of the network, while other times only a
few data readings will be aggregated. Another disadvantage is that these al-
gorithms assume one-hop communication (however, nodes are allowed to vary
their transmission power) and in a multi-hop network they perform poorly with
significant control overhead (see Figure |3.2)).
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TEEN [[123]] and APTEEN [124] are built over LEACH and further minimize
the number of transmitted packets by introducing thresholds on the gathered
sensory data: if the threshold is not exceeded, the node does not inject a new
data packet into the network. However, the clustering protocol is the same as
LEACH.

3.2.2 1-hop grid clustering

Assuming full network 1-hop connectivity as in LEACH is not reasonable in all
scenarios, therefore multi-hop topologies need to be addressed. Two different
families of protocols have evolved over time: 1-hop grid and k-hop fixed trans-
mission power clustering algorithms. Representatives of the 1-hop grid clus-
tering protocols are HEED [211]], BP [8]], Passive Clustering (PC) [[69], and
others [38, [214]]. These protocols require the cluster head in any cluster to be
able to communicate to its neighboring cluster heads in one hop, thus building
a virtual grid. Consequently, they assume very dense networks. The control
overhead for agreeing on cluster heads is significant. The shape of the resulting
clusters is semi-circular and the size is bounded by the communication radius of
the nodes. For these algorithms it is important to keep the number of clusters
as low as possible and often the optimal clustering is defined as the one which
minimizes the number of clusters while meeting the 1-hop grid communication
requirement.

Some 1-hop grid clustering approaches are location-based [[120]. Here the
size of the cells is selected such that communication from cluster heads to neigh-
boring cluster heads is guaranteed.

3.2.3 K-hop clustering

The second family of protocols, including FLOC [48]], EDC [[39] and others
[[11,[15,/80,138]], extend the size of the clusters to multiple hops between cluster
members and cluster heads, thus also eliminating the virtual grid of the 1-hop
grid clustering (see above). Again, they first randomly assign cluster head roles
to some nodes in the network and then “grow” clusters around them. In case a
node cannot find a cluster head at most k hops away, it becomes a “forced” clus-
ter head [[15]]. Others [[7,[138] use k-hop neighborhood information to optimize
clusters and cluster heads: for example selecting the lowest ID as the cluster
head. The protocol described in [11]] uses optimization techniques from opera-
tions research to find a well-balanced cluster head. As for 1-hop grid algorithms,



27 3.2 Energy-efficient clustering for WSNs

the number of clusters should be minimized, such that most of the clusters are
exactly k-hops wide.

In LNCA [206] nodes first exchange information about their data readings,
then, according to similarity of data, form k-hop clusters. As such, it is one of the
rare efforts to match the size and shape of clusters to the gathered sensory data:
nodes form clusters only if their data is similar and can be aggregated with no or
little data loss. From the cluster shapes perspective the algorithm is a traditional
k-hop clustering, but with random cluster sizes because of the similarity of data
requirement (see Figure |3.2]).

3.2.4 Location and tree based clustering

Geographic, or location-based clustering protocols have well defined cluster
sizes and shapes, which are usually parameters. GROUP [213]] builds a location-
based grid with quadrants of tunable size. This grid is laid over the network and
nodes next to the grid’s crossing points become cluster heads. However, cluster
head selection raises some issues: several broadcasts are needed for the nodes
to converge on one cluster head in each round and each round needs a network-
wide broadcast of the next clustering grid center.

Another geographic-based clustering approach is applied in [67] to multi-
resolution in-network storage of data for WSNs. In this case a hash function
is used to map the cluster head roles to network locations: the nearest nodes
to those locations become cluster heads and store aggregated data for further
reference. The organization of the network is rather a tree than cluster-based:
when searching for data, the request travels through the tree and aggregated
data stored at the vertices are used for routing the request down to the leaf with
the required non-aggregated data. Another tree-based approach is presented in
[[16], where first a spanning tree over the whole network is computed. Each
node stores how many children its own sub-tree contains. The protocol tra-
verses all of the nodes and selects some of the nodes as cluster heads for their
corresponding sub-trees.

3.2.5 Infrastructure supported clustering

Some clustering approaches assume a pre-existing backbone of powerful nodes
throughout the network. The challenge here is to assign sensor nodes to these
powerful nodes or cluster heads such that the load for the nodes and for the
cluster heads is balanced. Such an approach is taken for example in [[89], where
a special metric called “business” of parent nodes is introduced. Sensors select
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their cluster heads such that the processing and communication load of all clus-
ter heads is balanced.

A similar problem is discussed in [[196]], where the nodes need to be asso-
ciated with a powerful application node such that the overall network lifetime
is maximized. Unlike many other clustering approaches this work assumes that
once associated with a cluster head, nodes never change their membership.

3.2.6 Non-uniform clustering in WSNs

Last but not least is the research field of non-uniform data dissemination in
WSNs. The basic idea is that sinks need accurate information from sensors
nearby and less accurate information from nodes far away. Thus, aggregation
needs to be done depending on the distance to the sinks. The fisheye [[119]
technique from computer graphics has similar properties, using distance to de-
termine accuracy. This technique inspired the Fisheye state routing [143], a
MANET routing protocol in which nodes exchange routing tables with frequen-
cies dependent on the distances to the routing table entries. However, the non-
uniformity there is applied to routing information, not to the data itself.

Similar non-uniform data approaches have been introduced in distributed
systems [73] [208]]. However, neither of these approaches consider energy or
CPU processing and both require global knowledge of the static network, thus
making them inappropriate for the wireless sensor network domain.

The idea was first introduced for clustering and aggregation in sensor net-
works in [[188]], where a randomized algorithm produces clusters of different
sizes depending on the distance to the single base station. The idea was then
extended into two different directions: in [58]] we presented a pre-study for
this thesis, where we use a distributed hop-based approach to define the cluster
heads and clusters grow bigger with increasing distance from the base station.
However, the size and the shapes of the resulting clusters are again random
and communication highly imbalanced. In [[174], a centralized approach with
Voronoi tesselation or an approximation of it is used to define cluster heads a-
priori, so that the network lifetime is maximized. The cluster sizes grow with
increasing distance from the single base station and their shapes and sizes are
defined by location information. However, global topology knowledge is needed
to compute the clustering information.

The latest work on non-uniform or unequal clustering is [[38]]. It assumes that
clusters near to the single base station need to be smaller to preserve energy
for routing packets from more distant clusters. It uses a simple LEACH-like
selection scheme, where a random set of nodes compete to be cluster heads.
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Each competing node has its own competing radius, which is increasing with
increasing distance from the base station. After the competition phase, only one
cluster head remains in each competing radius and all nodes adjust their power
levels to reach the closest cluster head. Packets are routed only through cluster
heads, thus quickly draining their batteries. Like any other random clustering
protocol, the work in [38]] produces random clusters with larger clusters far
away from the base station. However, load is not balanced well and cluster
heads drain their batteries too fast.

A very similar clustering approach is presented in [[70]. However, instead of
having competing random cluster heads, nodes exchange their residual energies
with all neighbors in their cluster radius. The cluster radius grows with increas-
ing distance from the base station and the node with maximum residual energy
is selected to act as cluster head. Communication with the base station is direct
from any cluster head.

3.2.7 Centralized clustering

There are many clustering algorithms that require full network topology and/or
remaining energy information to centrally compute optimal clusters (e.g. [5}
127]]). At each round they disseminate the cluster information to all nodes.
These protocols can clearly build any clusters with any properties. However,
such approaches do not scale and do not consider fundamental network issues
such as failures and asymmetric links.

3.2.8 In-cluster data aggregation and clustering

One major goal of clustering is to allow in-network pre-processing (aggregation
or compression), assuming that cluster heads (and other intermediate nodes)
collect multiple data packets and relay only one aggregated/compressed packet.
The survey in [41]] identifies three different aggregation techniques: tree ag-
gregation, centralized pre-processing and gossiping. The first refers to the case
in which data is processed and aggregated at each hop. Thus, the task of ag-
gregation is not limited to the cluster head, but is spread over many nodes in
the cluster. This is a great advantage especially in multi-hop clusters. The sec-
ond refers to a LEACH-like clustering and aggregation scheme in which the data
of the whole cluster is gathered on one central node (cluster head) and pre-
processed there. If the cluster is multiple hops wide, however, this aggregation
scheme has a greater communication overhead compared to a tree-based one.
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On the other hand, data processing itself is more precise, since all raw data read-
ings are available. The third aggregation technique describes the case where no
clusters are maintained: instead, nodes exchange (gossip) some of their data
readings with other nodes, typically randomly.

3.2.9 Optimal clustering analysis

Figure illustrates the clusters built by some representative clustering pro-
tocols in a sample topology. Looking at them we can easily see advantages or
disadvantages in terms of size and shape of the clusters, number of nodes per
cluster etc. However, this is a subjective view and depends highly on the given
particular network. The question about what is the optimal clustering remains
unanswered: which is the cluster with a size and shape such that communication
overhead for routing data from nodes to base station(s) is minimal?

Some research works take a step back and analytically evaluate clustering
techniques in terms of their optimality. In a very recent effort [194]], the author
shows that the hop diameter of the optimal cluster grows with increasing size
of the network. In this work a simple network scenario is used with fixed node
density, one base station and unit disk graph communication model where a
node spends energy only when transmitting a packet, not when receiving it.
Another similar work [206]] comes to the conclusion that a 2-hop cluster radius
is optimal for all practical networks up to 3000 nodes. Here, the authors use
multi-hop routing through normal sensors to reach the base station instead of
cluster heads only.

3.2.10 Clustering in WSNs: Summary

In this section we presented part of the wide variety of clustering protocols for
WSNs together with some efforts on finding the optimal clustering scenario.
Clustering together with data aggregation has been shown to inherently de-
crease the communication overhead in WSNs, to save energy and to improve
delivery rate. However, there are some major challenges not yet efficiently met.
Given the application and design requirements from Chapter [2, the first chal-
lenge of clustering protocols is the process of cluster head selection. In case
the cluster heads are pre-known (powerful specialized nodes) their cost and de-
ployment planning are a big disadvantage and the network is hardly scalable.
In case the network is homogeneous and any node can serve as a cluster head
and aggregator, substantial overhead is needed for agreement on cluster heads.
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Figure 3.3. Sample clusters, as built by some state-of-the-art protocols.

Simple, low-overhead agreement schemes are nevertheless possible, but lead to
highly unbalanced clusters and communication load of the nodes.

Another major challenge is management of node failures and mobility. Spe-
cial failure detection and repair mechanisms are needed to handle these situa-
tions and result in high non-data related communication and processing over-
head, high packet loss and long delay. Last but not least an overwhelming part
of the clustering approaches rely on a single base station and cannot be extended
to serve more than one of them.

We use clustering in this thesis to meet the challenges of data dissemination
in large networks. Our goal when designing the clustering protocol is to solve
efficiently all of the above described problems. Our clustering protocol needs to
overcome the communication overhead of cluster head selection, to be robust
against node failures, to support multiple mobile sinks, and to use energy in an
efficient and balanced way. In addition, it needs to support non-uniform data
requirements.

3.3 Machine learning for WSNs

Our first intuition for solving the routing and clustering challenges in our appli-
cation scenario is to apply artificial intelligence techniques. In this section we
explore the various available machine learning (ML) and computational intelli-
gence (CI) approaches, which have been successfully applied to a wide variety
of problems in WSNs. Our goal is to better understand their properties and re-
quirements, their application areas, and to identify the best suited approach for
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our scenario.
The major applications already addressed by ML and CI in WSNs techniques
are:

* Sensor Fusion and Data Mining. Sensor fusion is the process of combining
data derived from multiple sources such that either the resulting informa-
tion is in some sense better than would be possible with individual sources,
or the communication overhead of sending individual sensor readings to
the base station is reduced. This includes computation of data models
(data mining), which help the sensors or the base station to differentiate
between expected and unexpected data or faulty and valid sensor read-
ings.

* Energy Aware Routing and Clustering. Economic usage of energy is impor-
tant in WSNs, because replacing or recharging the batteries on the nodes
may be impractical, expensive or dangerous. In many applications, net-
work life expectancy of a few months or years is desired. Here we in-
troduce routing and clustering protocols based on machine learning in
addition to those presented in Sections [3.1and

* Scheduling and Medium Access Protocols. Sensor nodes are very power-
restricted and are usually expected to perform unattended over months or
even years. Thus, it is very important to first identify the largest power con-
sumers and then to minimize their consumption. It is well known (6} [1T12]]
that the primary power consumer on any sensor node is the radio. Thus
the MAC protocol becomes the crucial instrument to minimize energy ex-
penditure in sensor networks. The MAC protocol sits on top of the phys-
ical layer and controls the radio. It schedules and manages its sleeping
and idle phases, trying to minimize or to avoid collisions, overhearing and
idle times. In the latest years, many efforts have been made to design
the ultimate MAC protocol, which minimizes the energy spent for message
transmission. A summary of state-of-the-art MAC protocols is presented
in [112].

* Design and Deployment. WSNs are used in vastly diversified applications
ranging from monitoring a biological system through tissue implanted sen-
sors to monitoring forest fire through air-dropped sensors. In some ap-
plications, they need to be placed accurately at predetermined locations,
whereas in others such positioning is unnecessary or impractical. Sen-
sor network design aims at determining the type, amount and location of
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Figure 3.4. Taxonomy of Machine Learning and Computational Intel-
ligence, compiled from [44, 59, [131].

measuring devices that need to be placed in an environment in order to get
complete knowledge of its condition. On the other hand, sensor network
deployment copes with hardware and software installation and primary
testing.

* Localization. Node localization refers to determining the locations of all
deployed sensors. Location information is used to detect and record events,
or to route packets using geographic-aware routing (see Section [3.1)). Be-
sides, location itself is often the data that needs to be sensed. An overview
of localization systems for WSNs is presented in [28].

Some recent surveys give an overview of applications of machine learning
and computational intelligence for wireless sensor networks [9, 49, 62, 91,108,
146, [171]]. A general taxonomy of the applied techniques and algorithms is given
in Figure We follow this taxonomy to present the individual algorithms and
their applications below. However, this study is not intended to be exhaustive or
complete. Instead, we summarize the most promising or relevant efforts for our
target scenario and explore their properties and requirements.

3.3.1 Neural Networks

Artificial neural networks (or just neural networks - NNs) are mathematical mod-
els of some function F : X — Y. Their initial inspiration comes from biological
networks of neurons. They consist of simple nodes or neurons, interconnected
with each other. Simple functions are usually associated with each node (like
addition) and weights are assigned to the connections between the nodes. Data
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Figure 3.5. A generic layered architecture of an artificial neural net-
work with input, hidden and output layers. Copyright [155].

is flowing from the input through the whole network, using the connections be-
tween the nodes and arriving at the output neurons. Figure[3.5|gives an example
of a simple neural network. The most important property of neural networks is
their ability to learn - the weights between the neurons are the real computa-
tional power and have to be adjusted such that the output is exactly the mapped
function. For learning or training of neural networks, a set of training data is
needed, where possible inputs are already mapped to the needed output. For ex-
ample, in the case of a classification problem of hand-written numbers, different
pictures (input) are classified as numbers (output).

More information about neural networks and how to train them can be found
in [14, [155].

Sensor Fusion and Data Mining. Neural networks are a feasible solution to
centralized problems like sensor fusion and data mining. The authors in [[150]]
concentrate on the problem of class-imbalanced data for sensor-based intrusion
detection. In their learning protocol, they first gather some real sensor data,
send the data to a base station, which learns a classification model and sends
the model back to the sensors. The goal is to minimize communication overhead
since the sensors report only positive (intrusion detected) samples to the base
station. The approach uses a neural network on the base station to learn the
classification model and is fully centralized.

A different data mining problem has been addressed by [25] 26]. In this
work, the authors present a neural network-based approach for checking sensor
data integrity or automatic sensor calibration. The main feature of the protocol
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is the used neural network, a competitive learning NN (CLNN). This NN is an
unsupervised learning agent, able to learn data online from a continuous, non-
labeled data stream (sensor readings). After the learning phase, the agent is
able to differentiate between N different clusters (N is fixed and known before
starting the learning process) and thus to recognize faulty sensor readings. The
authors combine the learning method with a clustering approach to minimize
the communication cost. Each sensor sends its readings first to a local cluster
head, where the CLNN is trained, the data is classified and filtered and eventu-
ally sent to the base station. The algorithm is semi-distributed, since in theory
each sensor node could have its own learning agent. However, the learning
phase will be very long (only own sensor readings available) and the input set
is restricted. The clustered approach taken by the authors is the best way to go,
such that a trade-off is found between communication overhead and optimality
of learning.

The main objective of [61] is to detect biological and mechanical faults in a
sensor-monitored greenhouse environment. The authors train two different neu-
ral networks to classify biological faults (stressed plants) and mechanical faults
(sensor or actuator faults). As input they use sensory data from the environ-
ment, both current and historical. The data has to be gathered on a centralized
sink for processing.

Energy Aware Routing and Clustering. Neural networks have been widely
applied in WSNs. SIR [[18]] is an energy-efficient routing protocol, which assigns
a neural network to each node in the network. The nodes use beacons to find
out the quality of links to their neighbors and the information is fed into the
NN to learn the quality of the links. Routing is performed based on a modified
Dijkstra shortest-path algorithm from a source to a single sink using the learnt
link quality. The protocol performs well compared to Directed Diffusion [[170],
but results in a high beacon overhead. Additionally, the implementation of a
neural network on each of the nodes has high memory requirements and might
be hard on memory-restricted sensor hardware.

Scheduling and Medium Access Protocols. A centralized neural network
has been applied to solve the optimal TDMA scheduling for a WSN in [[168]].
However, a centralized computation of schedules does not take into account
link asymmetry, link and node failures, mobility etc. Additionally, it incurs high
communication overhead to dissipate the schedules to the nodes.

Summary. It can be concluded that neural networks are a good solution for
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Figure 3.6. Separating hyperplane and margins for a SVM trained with
samples from two classes. Samples on the margin are called the sup-
port vectors. source:www.wikipedia.org

learning network-wide data models, which are not expected to change very fast.
Examples are models of faulty data, self-calibration etc. On the other side, both
the nature of NNs and the results achieved by the works presented in this section
show that they are impractical for distributed tasks like routing and scheduling.
Further feasible application areas for neural networks are optimal sensor and
sink placement, localization etc.

3.3.2 Support Vector Machines

Support vector machines (SVM) are a supervised learning method used for clas-
sification. The input data is viewed as a set of vectors in an N-dimensional space
and the output of the SVM is a separating hyperplane between both sets, which
maximizes the difference between the hyperplane and each of the sets (the mar-
gin between the sets). For computing this hyperplane two parallel hyperplanes
are constructed on each side of the separating one and “pushed against” the data
sets. Figure presents a simple example with two data sets (classes) in a 2-
dimensional space. The two parallel hyperplanes on each side of the separating
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hyperplane together with the data samples they include are called the support
vectors.

Localization. A solution to the localization problem with support vector
machines has been proposed in [[1]]. Given n 4+ m nodes in the network, where
the positions of n nodes are known and of m nodes unknown, and given the
RSSI signal strength between any pair of nodes, the positions of the un-localized
nodes have to be recovered. The authors first train a SVM for classifying nodes
depending on their distance to each other, then match the output of the SVM
to the positions of the nodes. The algorithm is fully centralized, which is a
consequence of using a support vector machine. Other researchers have also
used SVMs for localization in WSNs [98], [189]].

Summary. Similarly to other supervised learning approaches, support vector
machines are memory and processing intensive and need centralized gathering
of the input data. They are well suited for data mining problems like sensor
fusion. Additionally, they are suitable for localization, since it is usually done
only once right after deployment. Other centralized problems like optimal sensor
placement are further possible applications.

3.3.3 Decision trees and case-based reasoning

These two similar techniques are based on the idea of classifying items into ever
smaller clusters, like classifying an orange first as fruit, then as a citrus fruit, then
as an orange. These data mining algorithms are easy to understand, relatively
fast to train and very fast to execute. They require that the items to classify
are attribute-value pairs. For example, an orange can have attribute-value pairs
color = orange, shape = sphere. There are two main algorithms for creating
the decision tree: ID3 and the its successor C4.5 [[131]]. Basically, they need to
answer the question “which attribute to check at the root of the tree, which next?”
A formal description can be found in [131]].

Energy Aware Routing and Clustering. An application to link quality clas-
sification in WSNs is presented in [[197]. The authors use simple rules to classify
links into good and bad, based on the RSSI level of received packets, buffer sizes,
etc. The computation is done centrally on the base station and the data model
is disseminated to all nodes in the network.

Summary. Decision trees and case-base reasoning are feasible techniques for
small size localized problems on individual sensor nodes or larger data sets on
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Figure 3.7. General reinforcement learning model. The agent selects
one action according to its current internal state (current view of the
environment and previous knowledge), fulfills this action and observes
a reward.

a centralized base station. They are simple to implement and deploy, but do not
lead to optimal results.

3.3.4 Reinforcement learning

Reinforcement learning (RL) [[96,[179]] is biologically inspired, where the learn-
ing agent acquires its knowledge by actively exploring its environment. At each
step, it selects some possible action and receives a reward from the environment
for this specific action. Note that the best possible action at some state is never
known a-priori. Consequently, the agent has to try many different actions and
sequences of actions and learns from its experiences. A simple example is a
mouse or a robot learning to move in a maze environment (Figure [3.7). At each
step it can select one action from a pool of available actions according to its
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current view of the environment and previously acquired knowledge, it fulfills
this action and observes a reward from the environment. Usually the reward
is negative when the goal if not reached yet (e.g. the cheese is not found) or
positive when it is reached.

RL is well suited for distributed problems, like routing. It has medium re-
quirements for memory and rather low computation needs at the individual
nodes. This arises from the need of keeping many different possible actions and
their values. It needs some time to converge, but it is easy to implement, highly
flexible to topology changes and achieves optimal results. The most widely used
reinforcement learning algorithm is Q-Learning, which assigns a Q-Value to each
possible action representing their goodness or quality. After learning, the best
Q-Values mirror the optimal actions.

Energy Aware Routing and Clustering. One of the fundamental and ear-
liest works in packet routing using machine learning is Q-Routing [29]. The
authors describe a very simple, Q-Learning based algorithm, which learns the
best paths considering the least latency to the destinations. Possible actions are
next hops at the nodes, and a Q-Value is assigned to each pair (sink, neighbor)
representing the time which a packet needs through this neighbor to reach the
sink. Simulations proved the algorithm to be efficient under high network loads
and to perform also well under changing network topologies. Although the
approach was developed for wired, packet-switched networks, it inspired a lot
of works in the wireless ad hoc and WSN communities, because it is fully dis-
tributed. A recent implementation on Crossbow motes [47]] has demonstrated
its practicality.

Many other routing protocols have been inspired from Q-Routing [[10, 23} [79),
109, [141, 166}, 212, [222]]. The main difference between them is the used cost
metric for routing. Delivery time is used in [[109} [176]], maximum compression
paths are learnt in [23] (79, 212]], and geographic-based routing is implemented
in [[10, [166]. A novel cost metric is used by [141]], where the routing protocol
learns to avoid “important” nodes: nodes, which after failing might disconnect
the network. Neighboring nodes exchange information about their importance
(computed locally at the nodes based on full topology information) and the best
routes (with least important nodes on them) are learnt. A more general cost
function is defined in [222]], where any combination of number of hops, delay,
and remaining energy on the nodes can be applied.

Another difference between the above approaches is the used reinforcement
learning algorithm. The authors of [[109] use dual reinforcement learning,
which gives rewards not only for previous actions, but also to next ones. Thus,



40 3.3 Machine learning for WSNs

learning converges faster and the protocol shows better performance. Q-Learning
is used by [[10, 166, 212, 222]]

Team-partitioned, opaque-transition reinforcement learning (TPOT-RL) has
been developed for simulated robotic soccer [177] and applied to packet rout-
ing [[176]. It allows a team of independent learning agents to collaboratively
learn a shared task, like soccer playing. It differs from traditional RL in its value
function, which is partitioned among the agents and each agent learns only
the part of it directly relevant to its localized actions. Also, the environment is
opaque to the agents, which means that they have no information about the next
possible actions of their mates or their goodness.

A formal definition of RL in a distributed environment and a learning algo-
rithm is given in [56]]. It presents a reinforcement learning algorithm, designed
especially for solving the point-to-point routing problem in MANETs. Collabo-
rative RL (CRL) is greatly based on Q-Learning, but uses also a decay function
(similar to pheromone evaporation in ACO, see further Section to better
meet the properties of ad-hoc networks.

An additional contribution of [79] beside the Q-Learning routing protocol is
the automatic learning of the optimal values of the parameters of the algorithm
with a Bayesian exploration strategy. The paper presents an idea which can be
applied to all other RL-based algorithms, which need parameter pre-setting and
should be further explored and refined.

The setting of [[195]] is similar to those presented above: many source nodes
are sending data to a single base station. The algorithm takes into account
the aggregation ratio, the residual energy on the nodes, the hop cost to the
base station and the link reliability between the nodes. The algorithm runs
in learning episodes. The learning agents are again the nodes and Q-Values
are assigned to each possible next hop at each node. During each episode, the
current Q-Values are used to route a packet to the base station. At each hop, the
full hop information is appended to the packet (residual energy, rewards, etc.).
Rewards are generated at the base station. When the base station has enough
such packets (undefined how many), it calculates the Q-Values offline for the
nodes in the network and disseminates them via a network-wide broadcast.

Although all of the above studies show promising results from applying var-
ious reinforcement learning algorithms to routing in WSNs, none of them has
reached the state of a mature communication protocol with implementation and
evaluation in a realistic simulation and real hardware environment. Their evalu-
ations are rather preliminary and concentrate on a few of their properties, leav-
ing out important questions about overhead and efficient implementation.
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Scheduling and Medium Access Protocols. Actor Critic Algorithm [[157]]
is a early reinforcement learning algorithm, where the policy is detached from
the leant action values. In current RL algorithm like Q-Learning the policy is
fully dependent on the learnt Q-Values, which represent the current state of the
value function. This incurs search overhead when the best Q-Value needs to be
found. In actor critic algorithm a separate table (called the actor) can be defined
together with the value table (called the critic) to speed up action selection.
This algorithm has been applied for example to point to point communication
in sensor networks [[140]. The goal of the algorithm is to maximize throughput
per total consumed energy in a sensor network, based on node-to-node com-
munication. Given its current buffer size and last channel transmission gain,
the node decides the best modulation level and transmit power to maximize the
total throughput per consumed energy. For this, the authors use the standard
RL algorithm and test their algorithm on a two-node and multinode scenarios.
Unfortunately no comparison to other state-of-the-art protocols is presented in
order to evaluate the gain of the RL algorithm.

RL-MAC [118]] applies reinforcement learning to adjust the sleeping sched-
ule of a MAC protocol in a WSN setting. The MAC protocol is very similar in
its idea to the other WSN MAC protocols such as S-MAC or T-MAC. It divides
the time into frames and the frames into slots, where each node is allowed to
transmit messages only during its own reserved slot. However, unlike other pro-
tocols, it changes the duration of the frames and slots according to the current
traffic. At the beginning of its reserved slot, the node first transmits some control
information, including also a reward for the other nodes. The reward function
depends on the number of waiting messages on the nodes and on the number
of successfully transmitted messages during the reserved slot. The paper reports
higher data throughput and lower energy expenditure compared to S-MAC.

COORD, a distributed reinforcement learning based solution to achieve best
coverage in a WSN is presented in [[163]]. The goal of the algorithm is to co-
operatively find a combination of active and sleeping sensor nodes in a sensor
network, which is still able to perform full covered sensing of the desired phe-
nomena. For this the authors propose three similar approaches, all based on
Q-Learning. The possible actions are two: transitioning from sleeping to active
mode and back. The sensor network is divided into a rectangular grid and the
goal is to cover each grid vertex by some sensors, best by exactly one. A Q-Value
is assigned to each grid vertex, which represents the number of sensor nodes,
currently covering this vertex. In each run of the algorithm, each node evaluates
its current Q-Value table with all grid vertices it covers and takes an action. After
that, all nodes evaluate again their Q tables and so on.
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The other two solutions are very similar and the results they show are also
comparable. A comparison to some state-of-the-art approach is not provided and
thus the results cannot be properly evaluated. Also, a clear protocol implemen-
tation is missing, leaving open many questions about coordination and exchange
of Q-Values and the states of the grid vertices. However, the approach is fully
distributed and can be run online if needed. Also, it shows a nice modeling work
of converting a centralized problem into a distributed one and solving it with RL.

Design and Deployment. The study reported in [71] presents a reinforce-
ment learning based approach for service positioning in MANET. The system is
presented as a SMDP (Semi-Markov Decision Process) and the optimal behav-
ior is learned with Q-Learning. The learning agent is situated together with the
service provider on one of the hosts in the network and has the ability to move
to other hosts. Thus, only one learning agent is present in the system (with
more service providers more agents have to be deployed). The system state
is given through different query-related parameters, like queries’ average hop
count, number of neighboring clients, etc. The protocol is designed for MANETS,
but can be successfully applied to similar problems in WSNs.

Summary. Reinforcement learning is the most widely used ML technique
for distributed problems in MANETs and WSNs such as routing, scheduling,
medium access control, service positioning etc. Its most important strengths
are the model-free nature and online learning algorithm, but also its flexibility
and fast adaptability to changing environments. RL implementations for WSNs
incur only minimal communication overhead and achieve optimal results. Thus,
RL should be the first choice when solving distributed problems in WSNs.

3.3.5 Swarm Intelligence

The term Swarm Intelligence refers to a class of computational intelligence tech-
niques biologically inspired by the behavior of social insects like ants or bees.
The main idea is the distributed nature of the algorithms, where individual
agents have only very limited memory and computational resources. However,
the agents are able to communicate with each other through the shared envi-
ronment (like ants’ pheromone trails) and to cooperatively learn its properties.
A good introduction to swarm intelligence for wireless communications is pre-
sented in [100]. A more general overview of Swarm Intelligence can be found
in [[101]].

There are two main branches of swarm intelligence: particle swarm opti-
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Figure 3.8. Particle swarm intelligence (PSO) in action: particles are
initialized at random positions (top) and after learning cluster into
groups (bottom) [153]

mization (PSO) and ant colony optimization (ACO). The first technique was de-
veloped by Kennedy and Eberhart [[I01]] in 1995 and is inspired by bird flocking
or fish schooling. It is applicable to problems where the solution can be repre-
sented as a point in a search space. Agents are points in the solution space and
possess movement speed and direction. Usually a high number of agents is used
to represent many different solutions. During learning, agents move around in
the solution space and are evaluated at each step according to some fitness func-
tion. With time, individual agents accelerate towards other agents with higher
fitness in their direct neighborhood, thus forming schools or flocks. Figure
illustrates the main concept of PSO. The algorithm is extremely resilient to the
local minimum problem, because of the high number of agents.

The second technique, Ant Colony Optimization, was first introduced by
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Figure 3.9. The double bridge experiment for finding shortest paths
with Ant Colony Optimization. (a) In the beginning of the experiment
ants take explore all possible routes. (b) At the end of the experiment
most of the ants take the shortest path to the foraging area, while few
ants explore other non-optimal routes. Copyright [54].

Marco Dorigo in [53]]. A very compresehensive description of the theory and
applications of ACO is given in [[55]]. The algorithm finds near-optimal solutions
to various problems, which can be described as graph optimization problems.
Ants walk on the edges of the graph, leaving pheromones on their way, which
are used to optimize the paths of future ants (Figure [3.9).

Energy Aware Routing and Clustering. Four variants of PSO are proposed
for energy aware clustering in [[76]]. The difference between them are the PSO
parameters - initial speed, acceleration, etc. Although PSO is a distributed al-
gorithm, here the algorithm is centralized and run on the base station with full
topology information about the network. The algorithm is based on a simple
idea that for a group of nodes that lie in a neighborhood, the node closest to the
base station becomes the clusterhead. The approach has some drawbacks: Clus-
tering depends solely on the physical distribution of nodes and is centralized.
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Thus, in case of failures or any topology changes, the new information needs to
be gathered at the base station and clustering needs to be re-computed.

A novel clustering approach for WSNs called CRAWL is defined in [22] with
the use of soldier ants. Biological soldier ants that have the support of other sol-
dier ants are found to be more aggressive in nature. An ant is observed to exhibit
higher eagerness to fight when it is amidst strong ants. This fact inspires the col-
laborative clustering algorithm for wireless sensor network longevity (CRAWL)
that possesses good scalability and adaptability features. Here, each node has an
Eagerness value to serve as a clusterhead, which is computed based on its own
remaining battery and the remaining batteries of its neighbors. At regular inter-
vals, each node computes its Eagerness value and broadcasts it over the network.
The node that has the highest Eagerness value decides to act as a clusterhead,
and the other nodes accept it. The clusterhead floods the new clustering infor-
mation, which helps other nodes to readjust their power levels just enough for
them to transmit to the clusterhead.

The method assures that only the nodes that have sufficient energy in their
reservoir, and have strong neighbors, opt to become clusterheads. The algorithm
has a significant communication overhead due to the fact that each node has to
flood its Eagerness value at regular intervals. In addition, the traffic of packets
might flow away from a sink node just because a node in that direction has
higher Eagerness. Thus, the algorithm is sub-optimal in terms of minimizing
energy expenditure of individual nodes, but optimal in terms of making effective
use of the energy available to the whole network.

AntNet [50] is an ACO application in communication networks used to find
near-optimal routes in a communication graph without global information. The
agents are divided into forward and backward ants. Forward ants are initialized
at the data source and sent to all known destinations at regular intervals. They
travel through the network graph by randomly choosing the next hop and leave
pheromones on their way. The more ants have chosen the same path the higher
the pheromone level of that path. During their travel, forward ants gather rout-
ing information, indicating the arrival time at each node on their way. At desti-
nation arrival, the forward ants are transformed into backward ants and use the
cashed route they have traveled to traverse the same route again and to update
the pheromone tables according to the gathered routing information. Details of
this computation can be found in [50, 51]]. A decay function is implemented
as evaporation of the pheromone levels, indicating which routes are the most
freshly used ones. The version of AntNet for MANETS is called AntHocNet [|51]]
and is developed by the some of the authors of AntNet.

AntNet and AntHocNet use both reactive path setup and proactive path main-
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tenance for single source - single sink. However, the approach requires ants to be
traveling independent from data packets and even to trace each path twice (for-
ward and backward), which causes a great overhead and is not well suited for
energy-restricted WSNs. Nevertheless, the method is fully distributed and is the
one best explored and described in the literature for using swarm intelligence in
wireless networks.

MANSI [167] (Multicast for Ad Hoc Networks with Swarm Intelligence) is a
multicast routing protocol for MANETS, based on swarm intelligence. The pro-
tocol is similar to traditional multicast protocols, where a core node initiates the
building of the multicast tree through a forward Join Request Packet and a back-
ward Join Reply Packet. However, nodes different from the core send ants into
the network at regular intervals to explore the network for better routes to the
core, leaving routing information (pheromones) on their way. This information
is later used by following ants for opportunistically selecting their next hops.
The approach is similar to AntHocNet [51]], however, optimization is applied to
multicast instead of unicast routing.

In [[132]], the authors propose an AntHocNet [51]] based approach for routing
in a sensor network installed in a building. Its main disadvantage is that the
returning ants in the network create unnecessary overhead for a sensor network.

Ant-Based Control [[161]] is similar to AntNet in many aspects, but also has
some important differences. There is only one class of ants, started at regular
intervals at the data sources, traversing the network probabilistically and up-
dating the routing tables as they travel to the destinations. Once reaching their
destination, the ants are eliminated. The update of the routing tables is thus
not based on the trip times to the destination, but rather on the present lifetime
of the ant, calculated as the delay from its launching node to the present one.
Because of its relatively smaller communication overhead (only forward ants),
ABC is better suited for energy-restricted scenarios like WSN. However, it is still
costly to send ants at regular intervals and the advantages of using it should be
carefully evaluated.

UniformAnts [[178] presents a simple ant-optimization based technique for
finding and maintaining routes in a MANET. Similarly to the original ABC algo-
rithm, it uses only forward ants, updating the probability-based routing tables on
the nodes as the ant travels towards the sink. Two different ant types are used,
the difference is how the next hop is selected - greedy or uniformly between all
options. The method achieves fairly good results and shares the properties of
ABC.

Mobile agents are often mistaken for a machine learning or swarm intel-
ligence approach. However, they refer to the usage of simple, small entities
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(packets), which traverse the system (in our case the network) and deliver fresh
information to the system’s nodes. In the case of routing, for example, the agents
update routing information (paths or next hops) on the nodes [27, 33} [187]. Al-
though very efficient in some applications (like routing in less mobile scenarios),
they cannot be classified as a learning nor as a swarm intelligence algorithm.
They represent a good optimization to traditional routing approaches in mobile
scenarios. However, they also increase the communication cost for sending the
agents.

Design and Deployment. PSO has various applications to design and de-
ployment in WSNs. It has been successfully applied to optimal detection cov-
erage in maritime surveillance in [137], to finding optimal sink paths across a
sensor field [[130] and topological planning for traffic surveillance in [81]. All
of the applications use the original PSO algorithm, with different parameters for
the particles’ speed and acceleration.

Localization. A suitable application area of PSO is also localization in sensor
networks. In [[72], the base station runs a PSO-based algorithm with centralized
information to find the positions of the network nodes. However, PSO is a dis-
tributed technique and can be applied also here as such.

Summary. Swarm intelligence is well suited for distributed network sce-
narios, where mobility and topology changes are of greatest importance, but
energy is not limited, like MANETSs. Interestingly, PSO has been applied only in
a centralized manner, although it is a distributed technique and network nodes
could represent individual particles. ACO, on the other hand, has been applied
mostly to routing and has proved to be an efficient and flexible algorithm. In the
context of energy-restricted WSNs, PSO seems the better choice because of its
localized nature and small communication overhead. To the best of our knowl-
edge, there are no PSO applications to routing in WSNs. ACO is better suited
for non energy-restricted scenarios like MANETs. All WSNs applications of ACO
suffer from the great communication overhead of the traveling ants. However, a
different implementation of ACO is also possible, where ants carry data packets
and thus minimize exploration overhead.

3.3.6 Genetic algorithms

The paradigm of genetic algorithms (GA) is based on biological evolution. It
describes a system, consisting of individuals (chromosomes, genes), which evolve
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Figure 3.10. General model of genetic algorithms.

through cross-over (combination of two individuals) and mutation (spontaneous
change of the properties of one individual). The individuals are organized into
generations and represent possible solutions to the problem: with time, the prop-
erties of the generations change and evolve and the solutions become better in
terms of some predefined fitness function. The general model of genetic algo-
rithms is illustrated in Figure More information about genetic algorithms
can be found for example in [[159].

Genetic algorithms are easy to understand and the system easy and fast to
define. However, they require centralized computation and converge slowly.
Since they keep at least two full generations at any time to be able to compute
the next one, they have also high memory requirements. However, their biggest
disadvantage is their inflexibility in case of changes of the input: the whole
evolution process has to be rerun in order to find a new solution.

Sensor Fusion and Data Mining. The issue of data aggregation for a tar-
get detection application is addressed in [204] through mobile agent-based dis-
tributed sensor networks wherein a mobile agent selectively visits the sensors
and incrementally fuses the appropriate measurement data. GA is used to de-
termine the optimal route for the agent to traverse. Results are compared with
those of the popular heuristic algorithms “local closest first” (LCF) and “global
closest first” (GCF). The results show that the GA results in routes superior to
the ones determined by LCF and GCF in all case studies.
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An extension of the study in [204] is presented in [[217]]. In addition to data
acquisition and processing time, this study also includes agent transmission time
delay in a route R in the fitness function definition. The paper shows that the
quality of the routes determined by GAgent2 is superior to that determined by
LCE However, in both [[204]] and [[217], the cost of gathering the information on
a central unit to compute the optimal path is not considered. This cost does not
apply to the distributed algorithms GCF and LCE

Energy Aware Routing and Clustering. A GA based multi-hop routing tech-
nique named GA-Routing is proposed in [90] for maximizing network longevity
in terms of time to first node death. The proposed GA approach generates ag-
gregation trees, which span all the sensor nodes. Although the best aggregation
tree is the most efficient path in the network, continuous use of this path would
lead to failure of a few nodes earlier than others. The goal of the study in [|90]]
is to find an aggregation tree, and the number of times a particular tree is used
before the next tree comes in force. The spanning trees are modeled as indi-
viduals. Simulation results show that GA gives better lifetime than the single
best tree (SBT) algorithm, and the same lifetime as the cluster based maximum
lifetime data aggregation algorithm [[46]] for small network sizes. However, the
algorithm’s overhead if not evaluated.

Another application of GA in energy efficient clustering is described in [85]].
The proposed GA represents the sensor nodes as bits of chromosomes, cluster-
heads as 1 and ordinary nodes as 0. The number of bits in a chromosome is
equal to the number of nodes. The fitness of the chromosomes are computed
based on the distances between the nodes and the cluster heads, the distance
between the cluster heads and the sink and the energy spent to deliver pack-
ets to the sink. The results show that the GA approach possesses better energy
efficiency than do hierarchical cluster based routing (HCR) and LEACH [[149].
However, clustering overhead is not considered.

There are also some other similar ideas based on GAs, where a base station
computes the optimal routing, aggregation or clustering scheme for a network
based on the information about the topology, remaining energy on the nodes,
etc. [84][127,[183]]. Such algorithms are only feasible if the network is expected
to have a static topology, perfect communication, symmetric links and constant
energy. Under these restrictions, a centrally computed routing or aggregation
tree makes sense and is probably easier to implement. However, these properties
are in conflict with the nature of WSNs.

Scheduling and Medium Access Protocols. A model based on GA is pro-
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posed for sleep scheduling of nodes in a randomly deployed large scale WSN in
[169]. Such networks deploy a large number of redundant nodes for better cov-
erage, and how to manage the combination of nodes for a prolonged network
operation is a major problem. The scheme proposed in the article divides the
network life into rounds. In each round, a set of nodes is kept active and the rest
of the nodes are put in sleep mode. It is ensured that the set of active nodes has
adequate coverage and connectivity. When some of the active nodes die, blind
spots appear. At this time, all nodes are woken up for a decision on the next
set of nodes to remain active in the next round. This is clearly a multi-objective
optimization problem. The first objective is to minimize the overall energy con-
sumption of the active set, and the second objective is to minimize the number of
active nodes. Again, gathering the topology information on a single base station
is critical and not feasible in a realistic scenario.

A similar scheduling problem called the active interval scheduling problem in
hierarchical WSNs for long-term periodical monitoring is introduced in [95]]. In
this scenario, nodes are partitioned into clusters with local cluster heads, which
dictate active intervals to the nodes. Active intervals need to be coordinated
among clusters to avoid intra-cluster interference and minimized to minimize
energy expenditure. Again, the proposed algorithm is centralized and does not
take into account crucial WSN properties such as failures.

Design and Deployment. A decision support system (DSS) based on GAs is
proposed in [34]]. The DSS is meant for the use of a process engineer who inter-
acts with it to determine optimal sensor network design. Usually the engineer
first defines some measurable quality metrics, selects an initial sensor network
design and evaluates it. Depending on the achieved results, she changes the
design and re-evaluates it. The DSS presented in [[34] automates this process by
feeding random network designs into a GA and searching for the best solution
according to the defined quality metrics. On one side, this is a valuable tool for
WSN designers and speeds up their work. On the other side, their expertise is
still crucial, since they need to define the quality metrics and to define how the
optimal solution looks like.

Localization. A GA based node localization algorithm GA-Loc is presented
in [134]. Each of the N non-anchor nodes in the study is assumed to have
ability to measure its distance form all its one-hop neighbors. GA estimates
the location (x;,y;) of node i by minimizing the distance error to the anchor
nodes and among all nodes. The algorithm assumes the full distance information
is available on a centralized base station. A similar techniques with slightly
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local search space

Figure 3.11. Agent-centered search model. Copyright [105]

different fitness functions are used in [[125} [221]].

Summary. Genetic algorithms have high memory and processing require-
ments and are very inflexible in case of an environmental change. Nevertheless,
they can be used for some centralized problems, where the results need to be
disseminated only infrequently to the nodes. Examples are localization in mostly
static networks or sensor network design and optimal positioning.

3.3.7 Heuristic Search

Traditional heuristic search methods operate in two steps: planning and plan
execution. For example, working with a search tree, they will first calculate
the value function (the goodness) of all nodes and then take the best possible
path through the tree. This approach cannot be applied in real time scenarios,
where agents traverse the search space and have to take their decisions based
on locally available data only. Real time heuristic search methods, also called
agent-centered search [[105]], operate successfully in such environments. The
agent evaluates only its current state neighborhood - the states it can reach in
the next step only — and executes its next action according to these values. Fig-
ure illustrates the general model. A simple example is a robot, trying to
find its way in an environment full of obstacles and to reach some goal position.
It will evaluate its immediate action possibilities (movements) and choose the
best one. After this planning/execution step, the robot will re-evaluate its cur-
rent state and so on. Crucial for the algorithm is the evaluation of the current
options of the learning agent. They need to be initialized with a globally known
fitness function. Such an algorithm is for example LRTA* (Learning Real Time



52 3.3 Machine learning for WSNs

cold | warm hot
|
|

0.6

0.4 I
|

0 -

| temperature

Figure 3.12. Fuzzy logic example. The classification of some variable
(temperature) is not binary like cold OR warm, but fuzzy like a little
bit cold and little bit warm.

A¥), where the initial values of the states are calculated using a simple heuris-
tic (e.g. the Manhattan distance to the goal). If the used heuristic is admissible
(guaranteed to never overestimate the real costs to the goal), the algorithm finds
the optimal solution. More information can be found in [[105}[106]].

Energy Aware Routing and Clustering. Real time heuristic search methods
are very well suited for wireless ad-hoc scenarios - the nodes in the network can
be modeled as the agent states, the packets as the agents and the information
available at the nodes about their one-hop neighbors can be used for evaluat-
ing the search neighborhood. LRTA* is applied to routing in ad-hoc networks
in [[158, [165]] with good results. However, the need of a global heuristic limits
the applicability of the algorithm in distributed environments.

Summary. On the first glance, real time heuristic search might seem very
similar to reinforcement learning. However, the used heuristic requires global
knowledge about the environment and no exploration of non-optimal routes
is ever conducted. In the presence of such a heuristic, like available location
information for the neighbors and the sinks, the approach is feasible. On the
other hand, reinforcement learning is a better choice because of its ability to
learn from previous experience.

3.3.8 Fuzzy logic

Classical set theory allows elements to be either included in a set or not. This
is in contrast with human reasoning, which includes a measure of imprecision
or uncertainty, which is marked by the use of linguistic variables such as most,
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many, frequently, seldom. This approximate reasoning is modeled by fuzzy logic,
which is a multivalued logic that allows intermediate values to be defined be-
tween conventional threshold values. Fuzzy systems allow the use of fuzzy sets
to draw conclusions and to make decisions. Fuzzy sets differ from classical sets
in that they allow an object to be a partial member of a set. For example, a per-
son may be a member of the set tall to a degree of 0.8 [218]]. Or, as Figure [3.12]
shows, the current temperature of a room can be 0.6 cold and 0.4 warm at the
same time.

In fuzzy systems, the dynamic behavior of a system is characterized by a set
of linguistic fuzzy rules based on the knowledge of a human expert. Fuzzy rules
are of the general form: if antecedent(s) then consequent(s), or continuing our
example from Figure [3.12} IF temperature is cold THEN turn on the heating.
It is important to note that fuzzy rules contain only IF statements and no ELSE
statements. Each of the rules is evaluated individually and independently from
each other, since any of them (or all of them) can be true.

Antecedents and consequents of a fuzzy rule form the fuzzy input space and
fuzzy output space respectively. Non-fuzzy inputs (e.g. the current temperature)
are mapped to their fuzzy representation (e.g. cold, warm, hot) in the process
called fuzzification. Fuzzy logic has been applied successfully in control systems
(e.g., control of vehicle subsystem, power systems, home appliances, elevators
etc.), digital image processing and pattern recognition.

Energy Aware Routing and Clustering. A novel distributed approach based
on fuzzy numbers for energy efficient flooding-based aggregation is proposed in
[114]. In this study, each sensor node maintains an estimate of the aggregation
value represented as a fuzzy number. Aggregation is done at each node if either
a new measurement value is locally available to the node, or if a new value is
received from a neighboring node. Based on the estimate, a node decides if
a newly measured sensor reading has to be propagated in the network or not.
This reduces the number of messages transmitted, and thus reduces the energy
spent. The article presents the results of experiments on a network of 12 motes,
deployed in an apartment to monitor maximum temperature over 24 hours. The
article reports a reduced number of received and transmitted messages leading
to a network lifetime of 418 days. Although this network lifetime is impressive,
the authors do not give the network lifetime without fuzzification and thus no
comparison is possible.

Judicious clusterhead election can reduce the energy consumption and ex-
tend the lifetime of the network. A fuzzy logic approach based on remaining
energy and location information is proposed for clusterhead election in [[75]].
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The study uses a network model in which all sensor nodes transmit the infor-
mation about their location and available energy to the base station. The base
station takes into account the energy each node has, the number of nodes in the
vicinity, and a node’s distance from other nodes and determines which nodes
should serve as clusterheads. The base station fuzzifies the variables node en-
ergy and node concentration into three levels: low, medium and high, and the
variable node distance from base station into close, adequate and far. The fuzzy
outcome that represents the probability of node being chosen as a clusterhead,
is divided into seven levels: very small, small, rather small, medium, rather large,
large, and very large. The article observes substantial increase in network life-
time in comparison to a network that uses the low energy adaptive clustering
hierarchy (LEACH) approach. However, the approach is centralized and incurs
substantial overhead for collecting necessary information at the base station and
disseminating the cluster head roles.

Scheduling and Medium Access Protocols. A fuzzy logic approach towards
secure media access control (FSMAC) is presented in [[154] for enhanced immu-
nity to collision, unfairness and exhaustion attacks. In collision attacks, attackers
transmit packets regardless of status of the medium. These packets collide with
data or control packets from the legitimate sensors. In unfairness attacks, adver-
saries transmit as many packets as possible after sensing that the medium is free.
This prevents the legitimate sensors from transmitting their own packets. In ex-
haustion attacks, adversaries transmit abnormally large number of ready-to-send
(RTS) packets to normal sensor nodes, thereby exhausting their energy quickly.
A node can detect an attack by monitoring abnormally large variations in sensi-
tive parameters: collision rate R, (number of collisions observed by a node per
second), average waiting time T,, (waiting time of a packet in MAC buffer before
transmission), and arrival rate Rp;¢ (rate of RTS packets received by a node suc-
cessfully per second). These variables are represented as fuzzy and the output is
again a fuzzy variable representing the probability that an attack was detected.
The node stops sending/receiving packets when an attack is detected and goes
to sleep for some period of time. After that, the medium state is re-evaluated.
Performance of FSMAC is compared with that of CSMA/CA. The results show
that FSMAC offers a 25% increase in successful data packet transmission, and
5% less energy consumption per packet. In each type of attack, FSMAC extends
first node death time in the network by over 100% as compared to CSMA/CA.
The fuzzy model needs to be disseminated to all nodes in the network. However,
it is not expected to change often and the medium evaluation is performed in a
distributed manner. On the other side, the extension of the network lifetime is
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probably due to the enforced sleep mode during an attack.

Design and Deployment. Fuzzy logic has been proposed for deployment
in [224]. This techniques assumes that the area to be monitored by a sensor
network is divided into a square grid of subareas, each having its own terrain
profile and a level of required surveillance (therefore, its own path loss model
and required path loss threshold). The proposed technique uses fuzzy logic to
determine the number of sensors n(i) necessary to be scattered in a subarea i.
For a subarea i, path loss PL(i) and threshold path loss PL;, are normalized
on a scale 0 to 10, then divided into overlapping membership functions low,
medium and high.The output of the system is de-fuzzified again and gives the
number of nodes to be deployed in each area. The article shows that the fuzzy
deployment achieves significant improvement in terms of worst case coverage in
comparison to uniform deployment.

Summary. Fuzzy logic is well suited for defining and solving complex multi-
objective functions. Examples are congestion control, attack discovery, and op-
timal sensor deployment. The main challenge lies in defining the fuzzy vari-
ables and determining the fuzzy rules. Usually this needs to be done offline and
manually, and then the fuzzy model to be disseminated to the network nodes.
However, this is feasible for problems whose models are not expected to change
fast - like the above examples.

3.3.9 Summary of Machine Learning and Computational Intel-
ligence techniques

There are many applications of various machine learning and computational in-
telligence techniques to WSNs. The main goal of this survey and classification is
to compare the suitability and applicability of the different ML approaches to the
main topic of this dissertation: routing and clustering. Figure [3.13|summarizes
the presented works. The suitability of the different ML and CI approaches is
evaluated and the resulting protocols and algorithms for WSNs are cited.

Concerning routing and clustering in WSNs, it can be concluded that there
are four well-suited ML and CI techniques and one less suited approach. In
general, all of the suited techniques are distributed, simple to implement and
have little to medium processing and memory requirements. While Figure [3.13]
concentrates on the general applicability of the proposed algorithms, Table
goes one step further and compares the most suitable of them in terms of their
properties: memory and processing requirements, optimality, and flexibility in
case of failures.
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Figure 3.13. Summary of ML and CI applications to WSNs. The suit-
ability of the algorithms to each of the surveyed applications in WSNs
is shown, together with the surveyed works.

less suited

[46], [84], [85], [90],

[127], [183]

medium suited - well suited

Fuzzy logic (last approach in Table has higher computational require-

ments because of the offline fuzzification of the objective function. Additionally,
the fuzzy rules have to be stored at all nodes and their number grows exponen-
tially with the number of fuzzy values of each of the variables. The dissemina-
tion of the fuzzy rules is responsible for the incurred additional communication
overhead. The results achieved by fuzzy logic are near-optimal because of the
fuzzification process - the exact optimal solution is hard to find. Additionally, in
case of changes of the objective function, the fuzzy rules need to be recomputed.

Heuristic search is very similar in its properties to reinforcement learning,

see Section However, it requires a globally known heuristic function,
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ML/CI  Ap- | Comput. re- | Memory re- | Flexibility | Optimality | Add.

proach quirements | quirements overhead

Reinforcement| Low Medium High Optimal low

learning

Swarm intel- | Low Medium High Optimal high

ligence

Heuristic Low Medium Low Optimal medium

search

Fuzzy Logic Medium Medium Low Near opti- | medium
mal

Table 3.1. Properties of basic Computational Intelligence Paradigms

which increases the incurred communication overhead. Assuming the heuristic
is admissible, the achieved results are optimal.

Swarm intelligence is a widely used technique for routing in MANETSs, where
it performs very well under high mobility scenarios. Usually Ant Colony Opti-
mization is used. However, the traveling ants incur high communication over-
head throughout the network lifetime.

Reinforcement learning, on the other hand, seems to be the best performing
and suitable technique to apply to routing and clustering in WSNs. It achieves
optimal results at low processing and medium memory costs and is highly flexi-
ble in case of failures or topology changes. The incurred additional communica-
tion overhead is minimal.

3.4 Concluding remarks

This chapter presented an extensive survey of state-of-the-art work in routing
and clustering for wireless sensor networks and applications of machine learn-
ing to various problems in WSNs. A lot of research effort has been invested in
these topics, but most of the work presented here suffers from some restrictions.
Often the routing or clustering protocol is implemented for a very specific ap-
plication scenario and cannot be easily applied to other scenarios. Many of the
algorithms cannot cope efficiently with node and link failures or mobile sinks.
Especially clustering protocols incur a lot of communication overhead for agree-
ing on the network structure. Last but not least, machine learning based ap-
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proaches present a theoretically well designed solution, but do not implement a
real-world communication protocol nor do they evaluate or compare it to tradi-
tional existing ones.

Given the related works presented here with their advantages and disadvan-
tages and the identified suitable machine learning technique, we decide to apply
reinforcement learning to solve the routing and clustering problem as defined in
Chapter



Chapter 4

Methodology and Solution Path

The target scenario, as identified in Chapter |2} is challenging in many aspects:
the data dissemination protocol (including routing and clustering) needs to cope
with many different applications and requirements, including mobility of sinks
and node failures. Additionally, new research directions need to be taken to
enable a low-overhead non-uniform clustering. Chapter [3| summarized related
efforts in the field together with machine learning and computational intelli-
gence applications to WSNs. It showed that no efficient unified routing or clus-
tering protocol is available for the targeted scenario. However, three general
take-aways can be derived:

» Separating routing from clustering has several advantages in comparison
to unified protocols: the protocols are easier to parametrize and to plug
into various communication stacks, the application scenario is broader and
more application requirements can be met, and the definition of the prob-
lem and protocol implementation are more memory and processing effi-
cient. Cross-layer optimized communication stacks are well suited for a
specific restricted environment or application scenario. However, our goal
in this thesis is to design a broadly applicable data dissemination frame-
work and separating routing from clustering is more advantageous.

* Reinforcement learning (RL) is well-suited for solving complex distributed
problems like routing in a fully localized manner. We studied the proper-
ties and applications of RL to WSNs in Section and identified it as the
most appropriate algorithm to use in this thesis. Although there are only
a few protocols implemented with reinforcement learning and their ap-
plication scenarios are different than our target scenario, their results are
highly promising and the protocols exhibit exactly the desired properties:

59



60 4.1 Background on Q-Learning

localized exchange of information, flexibility in case of mobility and node
failures, optimal routing solutions, and memory and processing efficient
implementation.

* Evaluation methodologies for communication protocols in WSNs have ex-
perienced a lot of criticism lately. This is a critical issue when designing
new protocols: evaluation needs to be thoroughly planned, so that cross-
article comparison is possible and applicability to real hardware systems is
shown.

Consequently from above, we turn our attention to Q-Learning, a widely
used reinforcement learning technique. We divide our solution into two main
parts with the following properties and parameters:

* Routing to multiple mobile sinks. Optimal shared multicast routes are
desired, taking into account the mobility of the sinks and eventual link and
node failures.

* Non-uniform clustering. A low-overhead clustering approach is targeted,
with parameters defining the uniform or non-uniform cluster sizes based
on location information.

In the next section we give an introduction to Q-Learning and its properties
and challenges. Later in the chapter we turn our attention to evaluation and
analysis techniques usually applied to routing and clustering in WSNs and define
our own evaluation methodology.

4.1 Background on Q-Learning

Q-Learning [[198] is a widely used reinforcement learning algorithm, able to
learn an action-value function without an explicit model of the environment. It
manages a pool of possible actions and assigns Q-Values to them. At each step of
the algorithm, it selects an action, executes it and observes the achieved reward
from the environment. A simple update rule recomputes the new Q-Value based
on the old one and the current reward. Thus, after a finite number of steps,
the algorithm learns the value-cost function for all actions and is able to select
an optimal action in any state. Figure gives an example of a Q-Learning
application: a robot learning its way in an unknown environment to find the
way out of a building. The example is inspired by the online tutorial of Kardi
Teknomo [[185]].
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Figure 4.1. An example of Q-Learning application. The robot learns
how to move in the unknown environment to find the goal (state F).

Agent states. The learning agent has a finite set of possible states S and
s, represents the agent’s state at time step t. The agent can only be in one
of them and they describe its internal state or location in the environment. In
our example from Figure states are the different rooms in the environment,
marked A to F. As in finite state machines, there is a start state (room C in our
case) and a goal state (state F outside of the building).

Actions. Q-Learning associates a different set of actions Ay to each of the
states in S. In our robot environment, the actions are represented by the state
transitions, for example, from room D the robot can either move to room B or
to room E or to room C.

Immediate rewards. There is an associated immediate reward r(s,, a,) with
each of the state transitions. In our example, all of the state transitions which do
not lead to the goal state have immediate rewards of 0 and the ones leading to
the goal state have an immediate reward of 100 (see Figure . The rewards
are scalar and are either given a-priori or calculated online. The rewards can be
either seen by the agent before taking a specific action or not. However, in any
case, the agent can see only the actions with their associated rewards from its
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current state. It does not have any global knowledge about the environment, its
states and their rewards.

Value function. In contrast to the immediate rewards, which are associated
to each action in each state and are easily observable, the value function repre-
sents the expected total accumulated reward. The goal of the agent is to learn a
sequence of actions with a maximum value function, that is, the reward on the
taken path is maximized.

Q-Values. To represent the current expected total future reward at any state,
a Q-Value is associated to each action and state Q(s,,a,). The Q-Value repre-
sents the memory of the learning agent in terms of the quality of the action in
this particular state. In the beginning Q-Values are usually initialized with zeros,
representing the fact that the agent knows nothing. Through trial and experi-
ence the agent learns how good was some action, for example, was it a good
idea to go to room A from room E. The Q-Values of the actions change through
learning and finally represent the absolute value function. After convergence,
taking the actions with greatest Q-Values in each state guarantees taking the
optimal decision (path).

Action costs. Additionally to the rewards there is also a cost c(s,, a,) associ-
ated with each action in each state. It is again a scalar value, which represents
how costly is this action. In our example, it costs two units of energy to move
from room E to the final goal F because the path is much longer. All other actions
cost exactly 1 unit of energy. Costs are usually represented as negative numbers,
as they decrease the total accumulated reward. Very often the action costs are
modeled as part of the immediate reward. In our example from Figure we
can easily integrate the action costs into the immediate rewards of the actions
by subtracting the action costs from the rewards.

Updating a Q-Value. There is a simple rule of updating a Q-Value after each
step of the agent:

Q(st+1’ a,)=Q(s;,a,)+y(R(s;,a,) —Qls,,a,)) (4.1)

The new Q-Value of the pair {s,,;,a,} in state s, ; after taking action a, in
state s, is computed as the sum of the old Q-Value and a correction term. This
term consists of the received reward and the old Q-Value. y is the learning
constant - it prevents the Q-Values from changing too fast and thus oscillating.
The total received reward is computed as:
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R(st:at) = r(st:at)+c(st:at) (4.2)

Where r(s,,a,) is the immediate reward as defined above and c(s,, a,) is the
cost of taking the action a, in state s,. In our example, the cost of all actions but
one is 1. Only the transition from room E to the goal F is more costly: 2. In this
case, after learning the agent will identify the route C - D - B - F as the optimal
policy with maximum accumulated rewards on the way. The alternative path C
- D - E - F is more costly and thus not optimal. However, if we change all costs
to equal, both routes will be optimal and the agent will have two alternative
optimal routes.

Exploration strategy (action selection policy). Learning is performed in
episodes - the robot takes actions in its environment and updates the associated
Q-Values until reaching the goal state. Then the next episode is started and
so on, until the Q-Values do not change any more. The question is how the
robot selects the next action to take. Always taking the actions with maximum
Q-Value (greedy policy) will result in finding local minimal solutions. In our
example, if the robot takes by chance first the route through room E it will
continue following it and will never learn that there is another one through
room B.

On the other hand, being always random (random policy) will mean not
to use the already accumulated experience and to spend too much energy on
learning the complete environment. For example, if the robot learns once that
going to room A is useless (it needs to go back again), it should avoid taking this
action in the future.

These two extreme strategies are called exploitation and exploration of routes.
The problem of combining and weigthing both so that optimal results are achiev-
ed as fast as possible has been extensively studied in machine learning [[179].
The mostly used strategy is called e-greedy: with probability € the agent takes a
random action and with probability 1 — € it takes the best available action.

Properties and challenges of Q-Learning. Q-Learning has been shown to
converge towards the optimal policy, that is, the Q-Values do not change any
more regardless of the route taken, and represent the value function [[198]. This
is an important property for us, since it guarantees that the optimal route is
found and can be easily followed by selecting the maximum Q-Values.

In contrast, how fast Q-Learning converges depends on the problem itself:
on the complexity of the environment, on the reward function and on the ex-
ploration strategy used. The original work on Q-Learning [[198]] shows that it
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converges after each pair of {s,, a,} has been visited an infinite number of times.
For our purposes this is not appropriate and one of the major challenges of this
dissertation is to design a Q-Learning based communication protocol which is
able to converge after some finite number of steps.

Another challenge when using Q-Learning is modeling the environment. In
some cases, like the learning robot from Figure it is a relatively simple task.
However, in our distributed environment with failing and moving nodes, where
the topological knowledge is distributed, it will be a major challenge. Addition-
ally, the reward function (in our case the routing costs) cannot be computed
a-priori because no global topology information is available.

4.2 Evaluating wireless sensor networks

Next we concentrate on how the presented routing and clustering protocols from
Chapter [3| were evaluated rather than the results they achieve. The goal is to
design an evaluation methodology for our routing and clustering protocols ac-
cording to state-of-the-art techniques and practices. For this, we concentrate on
some of the works presented in Chapter (3} considering their length and the sta-
tus of the projects. Mostly journal, full conference papers and technical reports
have been considered. Additionally, we divide the works into routing and clus-
tering approaches since both classes of protocols exhibit different properties and
evaluation requirements.

The protocols we include in our survey are listed in Table together with
their publication years and venues. The information refers to the latest or the
most full known publication of the protocols. We gave names to protocols with-
out own names or acronyms and added a prefix r- or c- for clarity and better
differentiation between routing and clustering protocols. All of the surveyed
works are explicitly designed for wireless sensor networks.

Ilustrative summaries of the evaluations methodologies of the protocols bas-
ed on their comparative analyses, evaluation environments, and metrics are pre-
sented in Figure for clustering protocols and in Figure for routing pro-
tocols. Next we describe in detail each of the used evaluation environments,
simulation, real hardware and theory, with their models, parameters, and met-
rics and discuss their usage in the surveyed works.
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protocol name publication | publication venue
year

| ROUTING PROTOCOLS
r-GEAR [215]] 2001 Technical report
r-MintRoute [202]] 2003 Conference (SenSys)
r-DEED [[104]] 2005 Journal
r-Directed Diffusion [[170]] 2005 Book chapter
r-GLIDER [|60] 2005 Conference (GLOBECOM)
r-TTDD [[120] 2005 Journal
r-DV/DRP [77] 2006 Technical report
r-IDDA [205]] 2006 Conference (SenSys)
r-SARA [158]] 2006 Journal
r-GMREE [[160]] 2007 Journal
r-MSTEAM [65]] 2007 Technical report
r-MTM (Many-To-Many)* [42]] 2007 Conference (EWSN)
r-MTEKC [[141]] 2008 Journal
r-AOMDV [83]] 2008 Conference (ADHOC-NOW)
r-PRR [219] 2008 Journal
r-VCP [12]] 2008 Conference (MASS)

| CLUSTERING PROTOCOLS
c-Max-Min [7] 2000 Conference (INFOCOM)
c-GraphCluster* [[16]] 2001 Conference (INFOCOM)
c-CMLDA [46] 2003 Conference (WCMCQ)
c-K-CONID [[138]] 2003 Journal
¢-TRC [[15]] 2003 Conference (INFOCOM)
c-FLOC [4§]] 2004 Conference (BroadNets)
c-HEED [211]] 2004 Journal
c-CLD [32]] 2005 Journal
c-LBR [[89] 2006 Journal
c-EEPA [214] 2007 Journal
¢-EDC [[39] 2007 Conference (EWSN)
c-BP [8]] 2008 Conference (EWSN)
c-UUCP [[11]] 2008 Journal
c-UCR [38]] 2009 Journal

* Protocol names assigned for better reference

Table 4.1. Routing and clustering protocols included in our survey of
evaluation methodologies. The prefix r- or c- differentiates between
routing and clustering protocols.
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Figure 4.2. Comparison studies of state-of-the-art clustering protocols.
For each work, the arrows show to which other clustering protocols
the work was compared in the original paper, what was the testing

environment (over or right of the arrow), and what were the evaluation

metrics (below or left of the arrow).
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Figure 4.3. Comparison studies of state-of-the-art routing protocols.
For each work, the arrows show to which other routing protocols the
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metrics (below or left of the arrow).
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4.2.1 Evaluation through simulation

One of the most widely used evaluation environments is simulation. There are
several well-known network simulators with large user and developer commu-
nities, like ns-2/ns-3 [[173]], OMNeT++ [52]], QualNet [[148]], etc. Additionally,
MATLAB [128] is often used for coarse-grained (usually packet-level) simula-
tions. TOSSIM [[136} [116]] is especially designed to simulate TinyOS-based ap-
plications.

A comparison between many network simulators used for WSNs and their
implemented models is presented in [57]. However, comparison is hard, since
new models and extensions emerge continuously. r-TTDD, r-Directed Diffusion
and r-DEED use ns-2, r-MTM and c-BP use TOSSIM, and r-MintRoute, c-EEPA,
c-UUCP and c-FLOC use MATLAB. OMNeT++ with its extension Mobility Frame-
work has emerged lately as a user-friendly simulator with a growing number of
good network models. It has been used for example for simulating c-CLD, r-VCP
and r-AOMDV. Thus, it seems like researchers use a low-level simulation environ-
ment for routing protocols and a more abstract one for clustering approaches.

However, looking at Figures [4.3] and many researchers implement also
their own simulators (c-LBR, r-DV/DRP r-MSTEAM, r-GMREE, and r-GLIDER)
and the overwhelming number of works do not state at all the used simulator
or simulated network models (c-EDC, ¢-UCR, ¢c-HEED, ¢-K-CONID, c-Max-Min,
r-PRR, r-MTEKC, r-SARA, r-IDDA, and r-GEAR).

Recently there have been a lot of critiques about the credibility of simulated
evaluations of wireless sensor networks lately [[24, 57, 111} 142|152, 225]]. The
main points of the critiques are about the network models used, mostly the radio
propagation and energy models, the MAC layer models, the parameterization of
the experiments (usually missing details or unmotivated parameters), and the
comparative studies. In the next paragraphs we discuss in detail the network
models, parameters and evaluation metrics used in the surveyed papers for sim-
ulation, and outline our own methodology.

Radio Propagation. Radio propagation in a simulated environment models
how radio waves propagate through the wireless medium and how they interfere
with obstacles and other radio waves. The main properties of radio propagation
which need to be simulated are signal attenuation and fading, interfering sig-
nals, bit errors, and asymmetric links.

Many of the above surveyed works assume a perfect radio propagation model,
often called the unit disk graph model. It assumes that each node can reach any
of its neighbors, if the distance between them is less than some threshold value.
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This is a highly abstracted network model which is inapplicable for the evalu-
ation of MAC or routing protocols designed for real world sensor networks. In
fact, it is not applicable even to application-level protocols like aggregation and
clustering, since real world implementations of reliable MAC and routing layers
are very expensive and these costs need at least to be considered and evaluated.
The disadvantages of such perfect network models has been shown in many
experimental studies, e.g. [57, (107, 200, 225].

From the above network simulators, ns-3 and OMNeT++ implement sophis-
ticated probability or experimentally based radio propagation models. However,
their use is not mandatory, like the OMNeT++ probabilistic radio propagation
model [[110] or a similar implementation for ns-2 [225]]. Both models are de-
signed and implemented according to latest research in the area and have been
cross-validated with each other and with real hardware traces. These models
allow not only for the most realistic network simulations, but also for many dif-
ferent network topologies and scenarios by using different parameters. This is
also their main advantage against trace-based simulations, where data needs to
be first gathered with great effort from real deployments, and is restricted to
those topologies.

A simulator, which uses real traces to simulate radio links, is TOSSIM. The
model does not implement any radio propagation. Instead, each link is assigned
a bit error probability and bits of messages are flipped accordingly. On one side,
this can be a very powerful model, as it allows for both ideal conditions during
early evaluations, and for realistic network conditions taken, for example, from
real deployments. The second choice is used for evaluating r-MTM to create sim-
ulated networks from real network deployment data. However, as stated above,
this model does not allow for very many or different network topologies, since
data needs to be gathered with great effort from real deployments. Additionally,
it allows for “fake” networks, where bit error probabilities on links are invented
instead of taken from real networks and signal interference and collisions are
not captured.

MATLAB is usually used for simple, packet-level simulations, which is per-
fectly suitable for early feasibility studies or application-layer protocols like clus-
tering. There is also the Prowler simulator [[I72]] for MATLAB, which has a
slightly more realistic radio propagation model, which assumes signal strength
decays with distance from the sender. However, this model is still circular.
Similar models have been used also for c-HEED, c-EEPA, and r-DEED for self-
implemented simulators. The simulation of r-MintRoute also used MATLAB and
a similar radio propagation model, but their data is gathered from real deploy-
ments.
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The simulator of r-DV/DRP is especially designed for supporting realistic ra-
dio propagation models as described in [225]]. However, the simulator suffers
from the common problems of self-implementations: there is no community to
support it, models are very restricted and usually concentrated on the protocol
level of the programmers. Only very rarely do these simulators develop into
widely-used and community supported platforms. The other self-implemented
simulators, used for studying r-MSTEAM, r-GMREE, r-GLIDER, and c-LBR, are
neither published nor the motivation for developing them is stated.

However, as already mentioned above, an overwhelming number of the works
do not discuss the used simulation environment. Some of them declare to use
perfect radio propagation models (c-UCR, c-Max-Min, c-CMLDA, c-EDC, ¢-TRC,
¢-K-CONID, c-UUCB c-LBR, r-SARA, r-GEAR, r-IDDA, r-GLIDER, r-GMREE, r-
MSTEAM). The rest of the works do not give any details about the simulation
environment or the radio propagation models. This makes comparison among
different publications and research works very complicated.

Energy model. Many of the routing and clustering approaches have been
evaluated in terms of network lifetime or energy expenditure. However, they
use different energy expenditure models. Non-linear battery models, which ac-
curately measure the energy expenditure of the radio and all other on-board
components (CPU, sensors, LEDs, displays, etc.) are desirable, but hard to imple-
ment. Additionally, current research has already identified the radio (sending,
receiving, idle listening and sleeping modes) as the main energy consumer [6}
112]]. Thus, a well designed simple linear battery model is sufficient to evaluate
routing and clustering approaches.

From the above surveyed works, many do not use any energy model: c-
FLOC, c-GraphCluster, c-Max-Min, c-EDC, c-K-CONID, r-SARA, r-GLIDER, r-VCB
r-MTM, and r-MintRoute. They do they evaluate network lifetime or energy
expenditure.

A widely used oversimplified model is to count the number of transmissions
in the network, assuming that each node has a quota for sending packets. For
example, c-TRC uses such a model. On one hand, this model is oversimplified
and cannot be used for correctly estimating a node’s or network’s lifetime. On
the other hand, a low number of transmissions implies less traffic in the network,
less collisions, etc. Assuming that the right MAC and routing protocols are used,
this evaluation is fully sufficient for clustering protocols. A similar model is also
used for the evaluation of r-MSTEAM.

All of the other surveyed works use a more sophisticated battery model,
which calculates the energy expenditure in terms of mAh or mW. Fixed energy
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| radio | MSB430 Mica2 BTNode FireFly Imote
sleep | 099 mW |36mW |39.6mW |24 mW 27 mW
listen | 70.95mW | 66 mW | 82.5mW | 30 mW 62.1 mW
RX 70.95mW | 117 mW | 102.3 mW | 83.1 mW | 112.5 mW
TX 105.6 mW | 117 mW | 102.3 mW | 76.1 mW | 112.5 mW

Table 4.2. Power consumption for different WSN hardware platforms.
Data compiled from the Sensor Network Museum [133] and hardware
datasheets [87].

expenditure per time step is assigned to each of the radio modes (receiving,
sending, and sleeping) and the total energy expenditure is calculated. Usually
energy expenditure values are taken from data sheets for a given sensor network
platform. A summary of the most commonly used ones is presented in Table
Very often a higher energy is considered for sending messages than for receiving.
However, this is not true according to the data in Table 4.2} and either the same
amount of energy is dissipated, or even more (all platforms but Scatterweb’s
MSB430). Another often made mistake is assuming that “radio idle listening”
(also called “low power listen”) does not spend a lot of energy. While this might
be true in lab environments from which the data for the hardware’s data-sheet
is collected, in the real world there is no “silent” environment. The radio needs
to sample regularly the medium for incoming packets.

An incomplete battery model is used for r-GEAR, where a sophisticated en-
ergy model is used for data packets, but routing of control packets is ignored
all-together. Even if the control overhead is low, there is no reason for excluding
it from the energy expenditure.

MAC layer model. Sensor nodes are extremely power-restricted and are
usually expected to run unattended over months, or even years. Thus, it is very
important to first identify the largest power consumers and then to minimize
their consumption. As stated above, it is well known [|6, [112]] that the primary
power consumer on any sensor node is the radio, and thus the MAC protocol
becomes the crucial instrument to minimize energy expenditure in sensor net-
works. The MAC protocol sits on top of the physical layer and controls the ra-
dio. It schedules and manages its sleeping and idle phases, trying to minimize or
avoid collisions, overhearing, and idle times. Many efforts have been invested
recently to design the “ultimate” MAC protocol, which minimizes the energy
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spent for message transmission. A summary of state-of-the-art MAC protocols is
given in [[112].

Several well-known and extensively tested MAC protocols exist for WSNs.
SMAC [210]] is tuned to prevent the overhearing of unicast messages destined
to other nodes, but does not perform that well in a broadcast environment. It
has been used, for example, in the Great Duck Island habitat monitoring deploy-
ment [[180]. In comparison, BMAC [[145] assumes that higher layer protocols
can extensively profit from overhearing messages and does not prevent it. Nev-
ertheless it performs better in terms of network lifetime both in unicast and
broadcast traffic than SMAC. BMAC has been used, for example, in the VigilNet
surveillance application [[151]] and is the standard MAC protocol for the Mica2
sensor platform.

An alternative to BMAC is LMAC [[192]], which reserves a unique slot for
each node in a 2-hop neighborhood. This enables a collision-free transmission
of messages. Each node listens at the beginning of each slot to control messages
for synchronization and destination addressing. LMAC has been implemented
for the EYES sensor platform [223]].

Many of the works do not state the used MAC protocol: c-GraphCluster, c-
CMLDA, c-K-CONID, c-HEED, c-EEPA, r-GMREE, r-MTEKC, and r-DEED. Others
use an ideal MAC protocol, which delivers all messages reliably and without re-
transmissions to their receivers: c-UCR, c-Max-Min, c-EDC, ¢-TRC, c-LBR, r-PRR,
r-IDDA, r-SARA, r-GEAR, r-GLIDER, and r-MSTEAM . This is probably the only
useful choice, if the unit disk graph is used as radio model. However, it does not
represent a realistic network scenario.

From the rest of the works presented, r-rAOMDV uses WiseMAC; r-VCB r-
Directed Diffusion and r-TTDD use IEEE 802.11; and r-DV/DRE r-MTM, c-BP
and r-MintRoute use BMAC. The CSMA-based MAC protocol from MATLAB’s
Prowler is used for c-FLOC. ¢-CLD and c-UUCP use a cluster-based scheme for
medium access, where each of the nodes in each cluster is assigned its own
transmission slot.

Parameterization of experiments. The last critical point we discuss here
is the parameterization of experiments. Number of nodes, topologies, network
sizes, densities, etc, need to be defined before conducting the experiments as
they have a great influence on the final results. In general, a wide range of each
parameter needs to be used to sufficiently explore the behavior of the commu-
nication protocol. Here we survey only one example: the range of network sizes
and topologies for simulated experiments.

One of the main advantages of simulation is that any network size and topol-
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ogy can be easily created and evaluated, including very large networks, random
networks, etc. Still, some researchers use only one fixed network topology for
evaluation (c-FLOC, r-SARA, r-MintRoute and r-DEED) and evaluate the network
with one source and one sink. However, the evaluation of r-GLIDER includes
also only one network, but it is very large and many experiments with differ-
ent source-sink pairs have been conducted. This makes the parameter space
sufficiently large even with only one network.

A slightly improved evaluation is used for r-rAOMDV, c-UCR, c-GraphCluster,
c-Max-Min, c-UUCB c-EEPA and c-CLD, where several controlled topologies are
used. Indeed, some of these works carefully design the used networks to cover
most of the usual network topology challenges, e.g. void areas. However, an ex-
tensive evaluation of routing, and especially clustering algorithms, can be only
performed with a wide range of network topologies and sizes. Best, several con-
trolled topologies with designed challenges are first discussed (like void areas)
and then extensive evaluation of randomly created networks is conducted. Such
evaluations are presented for example for r-CVE r-PRR, r-IDDA, c-CMLDA, r-
GEAR, r-MTEKC, ¢-HEED, c-LBR, r-GMREE, r-MSTEAM, r-MTM, c-BP. r-Directed
Diffusion, r-TTDD, and r-DV/DRP.

Comparative analyses. A widely used technique to show the new features or
better performance of some new communication protocol is to compare it under
certain network conditions with existing protocols. There are many possible
comparison techniques: some researchers, for example, compare their protocol
to an ideal protocol (r-MTM and r-MSTEAM). This a good way to show the
ability of a routing protocol to find optimal (shortest) paths. However, it does not
allow for protocol overhead evaluation, since ideal protocols usually do not have
overhead at all. Additionally, excluding overhead from the evaluation falsifies
the final results in terms of network lifetime or energy expenditure.

Other researchers implement a trivial or basic algorithm to compare against
their protocols. This is often used when a new cost metric is introduced and
needs to be evaluated, for example in the case of c-K-CONID. Another possible
scenario is a novel protocol or technique, where no competing protocols ex-
ist, like for c-LBR. However, c-HEED, r-AOMDV, and r-MTEKC were compared
against trivial or old protocols, already shown to perform poorly (LEACH) un-
der certain network conditions. These comparisons were conducted even in the
presence of better suited protocols. For better chronological order and compari-
son studies, see Figures[4.2|and

However, there are also protocols, which have not been compared to existing
works, like r-DV/DRB r-GLIDER, c-GraphCluster, ¢-FLOC, and c-CLD. Even if
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| Evaluation metric || Routing | Clustering
ETX (number of sent || r-MintRoute, r-MTM, r-DV/DRE r- | c-EDC, ¢-FLOC

packets)

GEAR, r-SARA, r-GLIDER, r-VCP

delivery rate

r-MintRoute, r-DV/DRB r-TTDD, r-

¢-BBE c-UUCB c¢-CLD

MTEKC, r-GEAR, r-DEED, 1-IDDA, 1-
PRR, r-VCP

r-MSTEAM, r-TTDD, r-Directed Dif-
fusion, r-GMREE, r-DEED, r-IDDA, r-
PRR

total spent energy c-EEPA, ¢c-UUCB c¢-TRC

r-TTDD, r-MTEKC, r-Directed Diffu-
sion, r-VCB r-AOMDV

delay ¢-UUCB c¢-LBR

network lifetime r-MTEKC, r-rAOMDV ¢-HEED, ¢-UUCB c-CMLDA,

c-LBR, c-UCR, c¢-CLD

number of cluster heads ¢-BRB  ¢-HEED, c-K-CONID,

c-EDC, c-Max-Min, c-UCR,

¢c-FLOC

clustering overhead c-BP

nodes per cluster c-HEED, c-EDC, c-Max-
Min, c-LBR

remaining energy his- ¢-TRC

togram/std dev.

time to stabilize c-GraphCluster, c-FLOC

Table 4.3. Evaluation metrics under simulation for routing and cluster-
ing approaches.

theoretical analysis in terms of convergence or complexity has been conducted
(see Section 4.2.3)), the contribution of the work is not clear.

All of the other works present extensive comparative analysis against at least
one up-to-date competing protocol: c-UUCBE c-TRC, c-EEPA, c-UCR, c-VCB c-
Max-Min, c-CMLDA, c-BE c-EEPA, r-GMREE, r-MintRoute, r-MSTEAM, r-TTDD,
r-GEAR, r-Directed Diffusion, r-SARA, r-DEED, r-IDDA, and r-PRR. Thus, they
can clearly show the network conditions in which their protocols perform better,
and the reader gets a better understanding of the protocol’s behavior.

Evaluation metrics for routing algorithms. It is interesting to observe
which evaluation metrics researchers apply to their algorithms. Table sum-
marizes the evaluation metrics in the surveyed works, organized by routing and
clustering approaches.

One of the most widely used and meaningful evaluation metrics for routing
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protocols is number of incurred transmissions. The assumption here is that less
transmissions means shorter paths, thus less spent energy. It shows clearly the
ability of the evaluated routing protocol to find good routes. Delivery rate is
used to show the actual success of delivery. In case the routing protocol does
not rely on any neighborhood or link management beneath it, the delivery rate
is a very useful metric. On the other hand, in case a neighborhood management
protocol or a reliable MAC layer is used, this metric does not evaluate the routing
protocol any more, but the used MAC and link protocols. The same is also true
for measuring the delay.

Interestingly, many researchers measure the total spent energy, but only two
of them evaluate the network lifetime. This can be problematic, especially in the
case when routing is conducted between several nodes during long periods of
time. Here, nodes on the shortest path will drain their batteries quickly, leaving
others nearly unused. A histogram of the remaining energies on the nodes or
a network lifetime evaluation would be helpful, but is rarely given. Such a
histogram illustrates very well how energy was dissipated across the nodes in
the network, and shows whether the routing protocol was able to balance the
communication in the network so that no nodes die prematurely.

Evaluation metrics for clustering algorithms. Measuring energy expen-
diture or communication overhead is common, but not universal. This is un-
fortunate, because all clustering work is predicated on the fact that applying
clustering reduces network energy expenditure. When energy expenditure is
evaluated, sometimes it is considered after the clusters have been built while
others include the overhead to build the clusters. Still others use network life-
time, usually defined as the time of first node death. Many of the protocols
have been evaluated in terms of the number of clusters or cluster heads (CHs),
interpreting a low number of clusters as good performance. The underlying as-
sumption for this is that when the cluster size is bound to k-hop communication,
a lower number of clusters means optimal clustering. While this may be true if
the right k parameter is used, there is no investigation of how to find the right
k. Furthermore, if the protocol does not restrict the size of the clusters, a low
number of clusters may result in very high in-cluster communication overhead
due to the increase in single cluster size.

One good evaluation criteria is the standard deviation of the number of nodes
in a cluster. It is especially important for randomized algorithms, where the
number of nodes in a cluster can vary dramatically. It shows clearly the balance
of the cluster sizes, which ensures uniform data aggregation throughout the
network. Unfortunately, however, this standard deviation is not provided by all
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researchers.

Clustering overhead and time to stabilize are interesting metrics which eval-
uate the clustering protocol in terms of how fast or how costly is the process of
building clusters. However, they are already implicitly included in delay, net-
work lifetime, and total energy spent metrics.

4.2.2 Evaluation on real hardware

Although almost all of the here surveyed works are in a late phase and most
of them are described as final versions, only a few researchers actually imple-
ment their protocols on real hardware and test it in a real WSN environment.
Of course, such an evaluation is very costly, both in terms of finance expendi-
tures for hardware, and in terms of time and effort. However, shared remotely
programmable sensor network testbeds exist, like MoteLab at Harvard Univer-
sity [[186]. Furthermore, the most of the other university testbeds can be used
by visiting researchers.

The already mentioned MoteLab [[186]] has been used to evaluate the exist-
ing ad hoc multicast routing protocol ADMR [37]. The testbed consisted of 30
MicaZ [[184] motes at the time of the experiments. r-DV/DRP was implemented
for proof-of-concept on Mica2 [[184]] motes. Mica2 motes were used also to eval-
uate r-PRR [219]]. The first generation of Mica motes [[184]] was used to evaluate
r-Directed Diffusion [[I70]. r-MintRoute [202]] has been evaluated on Mica2dot
motes [[184].

While evaluation of routing protocols on real hardware is feasible, relatively
easy to implement, and needs reasonable number of nodes, evaluation of clus-
tering approaches meets the limits of real hardware testbeds. The only clustering
approach which has been evaluated on hardware is c-FLOC, which included 25
sensor nodes arranged in a grid.

Evaluation metrics in real hardware environments. Similarly to simula-
tion environments, routing protocols on real hardware have been evaluated for
delivery rate (r-MintRoute, r-Directed Diffusion, and r-PRR) or number of trans-
missions per delivered packet (ETX) (r-MintRoute, r-PRR). Network lifetime or
total spent energy are very hard to evaluate under real hardware, since they
depend on many environmental properties, on exact battery levels, etc.

r-DV/DRP has been developed for real hardware only as proof of applicabil-
ity; no evaluation or numerical results are reported. For clustering protocols, the
number of built clusters is given for c-FLOC.
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4.2.3 Theoretical analyses

Many researchers have also turned to theoretical analysis in terms of complexity,
convergence, and correctness. Some works prove the theoretical optimality of
their protocols (e.g. finding the shortest path), e.g. c-TRC, c-EDC, c-Max-Min, r-
MTM, r-MSTEAM, r-SARA, r-IDDA, and r-PRR . Others discuss their complexity
and memory and processing requirements (r-GMREE, c-BB r-TTDD, c-UCR, c-
FLOC, and r-DEED), and a few discuss both (c-HEED and c-GraphCluster). The
rest do not give any theoretical results or discussions.

Theoretical analysis can be very helpful in several situations. First, at a very
preliminary stage of evaluation, it can reveal weaknesses or strengths of the
proposed algorithms. Second, it gives the reader a more complete understanding
of the applied algorithm and its work. Third, it helps to explain better the results
gathered in simulation or real hardware. Last but not least, theoretical analyses
of WSN networks are invaluable for pointing out new directions in research and
for identifying the “desired idea” solution, building the basis of new research.

However, the theoretical discussions and analyses of communication proto-
cols, even the most thorough and complete ones, need to be used with care.
While giving vital information about the design, goals, and properties of the
protocols, these analyses most often need to assume ideal network and commu-
nication models. They do not show the real world behavior or cost of the proto-
cols. For example, if a routing protocol assumes reliable broadcast, it becomes
very costly in a real environment, where the nodes need to manage asymmetric
links, link failures, radio quality fluctuations, etc. A simpler, non-reliable proto-
col would be better suited. Experimental evaluation through simulation or on
real hardware is needed in any case to demonstrate a protocol’s behavior and
applicability.

4.2.4 Identified evaluation methodology

In the last paragraphs we have presented an extensive survey of current evalua-
tion practices and methodologies. Given the insights gathered from this survey
and our own application scenario and requirements as described in Chapter [2]
we identify our own evaluation methodology. We use theoretical analysis, evalu-
ation through simulation and on real hardware to show the most of the aspects
and properties of the routing and clustering approaches developed in this the-
sis. We use a wide range of evaluation metrics across many different network
scenarios and parameters. Of course, an exhaustive analysis under any possible
environmental conditions is not possible for time and space reasons.
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In the following paragraphs we identify the exact evaluation environments
for our work as to be used in Chapters [5| and [6] where we present the routing
and clustering protocols we have developed. Evaluation metrics and implemen-
tation details and parameters will be specified later in the appropriate evaluation
sections.

Theoretical analysis. For both the routing and the clustering protocols pre-
sented in this thesis we provide short illustrative and intuitive theoretical anal-
yses. We discuss the correctness, the complexity, and the convergence behavior
of the protocols. Since both protocols are based on Q-Learning, which has a
randomized behavior, the convergence of both protocols becomes critical. Ad-
ditionally, we discuss the memory and processing requirements, which we will
confirm then through real-hardware evaluations.

Simulation environment. Given the above discussion and survey of state-of-
the-art evaluations under simulation, we decided to use the OMNeT++ network
discrete event simulator, together with its extensions Mobility Framework and
probabilistic radio propagation models[[110]. This is the most complete and user
friendly environment from all presented simulators and it is easily extendable
with our own models. Additionally, the community is very active, and the simu-
lator is in constant development and improvement process. Unfortunately, there
are no energy expenditure models, nor realistic MAC protocols for the Mobility
Framework. Thus, we needed to implement the following additional simulation
models:

* Linear battery model. As discussed above, a linear battery model which
accounts for different energy expenditures for radio sleeping, receiving
and sending, is sufficient for the evaluation of routing and clustering pro-
tocols, as designed and implemented in this thesis. For completeness, we
use two different energy models taken from two different hardware plat-
forms: Mica2 and MSB430, see Table

* MAC protocols. In our experiments we use the already provided idle
non-persistent CSMA MAC protocol. This MAC protocol comes as a part
of the Mobility Framework and implements a simple carrier-sense multi-
ple access protocol, where the radio is always idle and packets are not
acknowledged nor resent. We use it together with the MSB430 energy
expenditure model. Any of the other energy expenditure models from Ta-
ble assumes the same amount of dissipated energy for sending and
receiving packets and thus an idle MAC protocol would result in constant



79 4.2 Evaluating wireless sensor networks

network lifetime, independent from the traffic.

In addition to the idle CSMA MAC protocol, we have implemented BMAC
and LMAC as representatives of low power listening MAC protocols and
TDMA based protocols. Both have been used for real WSN deployments
and are widely accepted by the WSN community. Frame and slot durations
were identified experimentally so that all evaluated data traffic models are
accommodated without MAC buffer overflow. In LMAC we reserved 5 node
IDs for mobile nodes to avoid continuous slot changing.

* Comparative routing protocols. For conducting a comparative analysis
of the designed routing protocol, we have implemented three well known
state-of-the-art routing protocols: the original unicast Directed Diffusion
(upbp) [[170] as a representative of a simple, but powerful and widely
tested WSN unicast routing protocol; our own variation of it multicast
Directed Diffusion (Mpp), which optimizes locally for sharing paths to
multiple sinks; and MsTeam [|65], a very new geographic based multi-
cast routing protocol. We decided to add the last protocol, MSTEAM, to our
analysis since it represents a very well performing class of protocols for
multicast applications. Indeed, most of the multicast protocols for WSNs
are location-based and we desire to have a direct comparison with one of
them. More details are given in the evaluation of our routing protocol in
Section [5.51

* Comparative clustering protocols. We also implemented a clustering
protocol for WSNs, which is an improved version of the traditional ran-
domized clustering algorithms and is based on the Trc clustering algo-
rithm in [15]. Basically, it divided the network first in clusters of fixed
size (builds a grid) and then runs the traditional randomized cluster head
selection algorithm. Probability of becoming a cluster head is based on
the number of nodes in the whole network and is parametrizable. More
details are given in the evaluation section of our clustering algorithm in
Section [6.3l

Evaluation on real hardware. We implement and test the developed rout-
ing protocol Frowms, as it will be presented next in Chapter |5, on a real hard-
ware testbed, consisting of MSB430 nodes from ScatterWeb [[87]. Their main
characteristics are summarized in Figure For implementation we use the
OS-like ScatterWeb2 library, which provides simple interfaces for sending/re-
ceiving messages, setting timers, reading sensory data etc. We use the provided
non-persistent idle CSMA MAC protocol without acknowledgments.
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| MSB430 |

Provider | ScatterWeb, Berlin, Germany
Processor | MSP430

Frequency| 8MHz

Memory | 5 KB RAM + 55 KB Flash

Radio ChipCon 1020

0S ScatterWeb2, TinyOS, Contiki, etc.
Other SD-card slot

Figure 4.4. Characteristics of the MSB430 sensor nodes

Unlike all here presented evaluations of routing protocols on real hardware,
we decided to conduct also a comparative study between Froms and our mul-
ticast extension of Directed Diffusion. We decided against the original Directed
Diffusion, because it is a unicast routing protocol and against MsTEAM, because
its implementation is very processing and memory intensive and did not fit on
the used hardware.

4.3 Concluding remarks

In this chapter we presented some preliminary work vital for the development
and evaluation of the targeted routing and clustering protocols. We identified
Q-Learning as the general solution framework and inspiration for solving the
main challenges of the application scenario and to achieve a highly flexible and
robust behavior for the data dissemination protocols.

The second critical point is the evaluation of the designed protocol, which
needs to be thoroughly planned in order to satisfactorily show the performance
of the protocols under many different network scenarios and conditions. For
this, we surveyed 30 state-of-the-art routing and clustering protocols for wire-
less sensor networks and identified the right evaluation environments, models,
evaluation metrics and parameters.

Using the insights gained here, in the next two chapters we present our so-
lutions to the main problems in our application scenario: Chapter [5| describes
and evaluates our multicast routing protocol for mobile sinks called Froms and
Chapter [f| presents and evaluates our non-uniform clustering protocol CLIQUE.



Chapter 5

FROMS: Routing to Multiple Mobile
Sinks in WSNs

In this chapter we present our solution to energy efficient routing to multiple
mobile sinks. The resulting protocol is called Feedback ROuting to Multiple
Sinks (Frowms). It successfully meets the challenges of our application scenario
from Chapter We follow the solution path and evaluation methodology as
identified in Chapter [4|and show that it achieves better results than other state-
of-the-art routing protocols in terms of various metrics, both in simulation and
on real hardware.

First, we give a high level overview and intuition for FRoms in Section [5.1
Then we define the Q-Learning based solution of multicast routing in Section[5.2]
and theoretically derive its optimality and convergence behavior in Section
Section [5.4| discusses the implementation details and challenges of Froms. The
evaluation is divided into a stand-alone evaluation of the parameters of FrRowms in
Section [5.5| and a comparative analysis in various network scenarios, including
sink mobility and node failures, in Section Finally, Section [5.7 summarizes
the chapter and its findings.

5.1 Protocol intuition

The goal of our protocol is to find the optimal possible path for data to follow
from its source to all interested sinks. Optimal can be defined as either mini-
mum delay, minimum hop count, minimum geographic distance or maximum
remaining energies. More complex cost metrics are also possible, such as combi-
nation of minimum hop and maximum remaining batteries. The cost function is
a parameter of our protocol and will be discussed in detail later in the chapter.

81



82 5.1 Protocol intuition

routing table : node S routing table : node A

[ Neighbor A [ sink P |3 hops | | Neighbor s | sink P | 4 hops
sink Q | 5 hops sink Q | 4 hops

| Neighbor B | sink P | 4 hops | Neighbor B | sink P | 4 hops
sink Q | 4 hops sink Q | 4 hops

[ Neighbor C | sink P |5 hops | | Neighbor E | sink P | 2 hops
sink Q | 3 hops sink Q | 4 hops

Figure 5.1. A sample topology with 2 sinks, the main routes to them
from source S and the initial routing tables for nodes S and A.

Here, we will use number of hops as an example.

Consider the sample network from Figure [5.1] with one source and two sinks.
One possible path from the source to the sinks is formed by the union of the
individual paths from the source to each sink (the dotted lines in the figure),
however a shorter path often exists. This shorter path takes the form of a tree, as
the one through nodes B, F and H. The challenge is to globally identify this tree
without full topology information and using only local information exchange.
The main task of our protocol is to update local information regarding “next-
hops” to reach sinks from each node such that the resulting tree is as small as
possible.

During an initial sink announcement phase, as proposed in Chapter 2] all
nodes gather some initial routing information and register known sinks in the
network. In our example from Figure node S gathers hop information for
each sink individually as shown in its routing table in the figure. When data
packets arrive at the node for routing, the node needs to select one or more next
hops towards the sinks. However, instead of simply choosing the best looking
one (in this example: node C for sink Q and node A for sink P), it also explores
non-optimal routes in the assumption that some of them might have lower costs
than in its own routing table. This is because its neighboring nodes may be able
to share next hops too. For example, the source node S can conclude from its
routing table that node A needs 7 hops to reach both sinks: it needs 5 hops to
reach sink P, 3 hops to reach sink Q and the first hop is shared, thus the minus
1 or a total of 7 hops. However, node S does not know whether node A will be
able also to share the next hop or will need to split the packet and send them
through two different neighbors. In our example, node A is in fact able to share
the next hop. It calculates that it can reach the sinks through node E (see the
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routing table of node A in the figure) in (2 +4) — 1 =5 hops. Thus, node S will
be able to reach both sinks in 1 hop to node A plus 5 hops from node A to all
sinks or a total of 6 hops, which is 1 hop less than the initial information on the
source node. Thus, node A needs to inform node S about its own estimation of
the costs to both sinks. It can do so while sending the data packet further to the
sink by making use of the broadcast environment and piggybacking its own cost
estimation.

Similarly, node E piggybacks its cost estimation and informs node A and so
on. There are four important observations to make: these piggybacked values,
which we also call feedbacks, propagate exactly one step back until they reach
the sinks, where the packet stops. Thus, the source needs to send several data
packets to node A before its own cost estimation for node A represents the real
hop cost of the route. In our example, the real costs through node A to reach
both sinks is 5 hops. The source’s cost estimation after the first data packet
through node A is updated to 6 (see the last paragraph). At the same time (the
same data packet), node A gets feedback from its next hop, etc. Thus, we need
to send several data packets through node A until the feedbacks from the sinks
propagate back to the source.

Second, the source needs to send data packets not only to node A, but to all
neighboring nodes a sufficient number of times, before all of its cost estimations
converge. The neighbors of the nodes need to also explore their neighbors and
so on. Third, feedback can be used not only by the previous hop, but by all
overhearing nodes of the transmitter and thus deliver additional information to
the nodes. And fourth, keeping all of the routes at all nodes and always giving
feedback to the neighbors with the current cost estimations, innately handles
recovery and mobility. For example, in case node E fails, node A will switch to
another route, for example through node B, will update its cost estimations and
will inform the source S via feedback on the next data packet about its current
costs. The information propagates together with the data packets, without in-
curring any additional communication overhead and update automatically the
routes and their costs on all involved nodes.

The above made observations form a reinforcement learning based routing
protocol. It first builds some initial cost estimations about routes through next
hops. It immediately starts sending data to the sinks by taking possibly non-
optimal routes, and simultaneously learns the real costs of the routes. After
some time, the cost estimates on all nodes in the network stabilize and optimal
routes are identified. The solution is elegant and efficient. However, we need
to define some details. For example, how do the nodes know that all of the
cost estimations have converged to the real costs and that optimal routes can be
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used from now on? How can we minimize communication overhead incurred by
the non-optimal routes, while at the same time making sure that cost estimate
converge and all route options are explored? In the next section we formalize the
ideas presented here and present the details of the Q-Learning model, including
the answers to the above questions.

5.2 Routing data to multiple sinks with Q-Learning

The main goal of this section is to model the multicast routing problem and
solve it with reinforcement learning, as already discussed in Section This
will not only build the basis of our protocol, but also give us the possibility to
make a theoretical analysis of the protocol in terms of complexity, correctness
and convergence.

5.2.1 Problem definition

We consider the network of sensors as a graph G = (V, E) where each sensor
node is a vertex v; and each edge e;; is a bidirectional wireless communication
channel between a pair of nodes v; and v;. Without a loss of generality, we
consider a single source node s € V and a set of destination nodes D C V.
Optimal routing to multiple destinations is defined as the minimum cost path
starting at the source vertex s, and reaching all destination vertices D. This path
is actually a spanning tree T = (V;, E;) whose vertexes include the source and
the destinations. The cost of a tree T is defined as a function over its nodes
and links C(T). For example, it can be the number of one-hop broadcasts re-
quired to reach all destinations or in other words the number of non-leaf nodes
in T. Further cost functions are presented in Section [5.4.8| and evaluated in

Section

5.2.2 Multicast Routing with Q-Learning

Finding the minimum cost tree T, also called the Steiner tree, is NP-hard, even
when the full topology is known [147]. Our goal, therefore, is to approxi-
mate the optimal solution using localized techniques. As already proposed in
the last Section we turn to reinforcement learning and especially to Q-
Learning [[198]].

In our multiple-sink scenario, each sensor node is an independent learning
agent, and actions are routing options using different neighbor(s) for the next
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hop(s) toward a subset of the sinks, D, < D, listed in the data packet. The
main challenge in our application is to model the actions of the nodes, since
they contain not a single next hop (route to some neighbor n), but a-priori un-
known number of next hops. The following provides additional detail for the
Q-Learning solution.

Agent states. For multiple sink routing, we define the state of an agent as
a tuple {Dp,routes’g }, where D, € D are the sinks the packet must reach and
p

routes) is the routing information about all neighboring nodes N with respect
p
to the individual sinks. Depending on this state, different actions are possible.

Actions. In our model, an action is one possible routing decision for a data
packet. However, the routing decision can include one or more different neigh-
bors as next hops. Consequently, we need to change the original Q-Learning
algorithm and define a possible action, a, as a set of sub-actions {a; ...a,}. Each
sub-action a; = (n;, D;) includes a single neighbor n; and a set of destinations
D; € D, indicating that neighbor n; is the intended next hop for routing to
destinations D;. A complete action is a set of sub-actions such that {D;...D;}
partitions D, (that is, each sink d € D, is covered by exactly one sub-action a;).

Continuing with our example from Figure consider a packet destined for
D, = {P,Q}. One possible complete action of the source S is the single sub-action
(B, {P,Q}), indicating neighbor B as the next hop to all destinations. Alternately,
node S may choose two sub-actions, (A, {P}) and (C, {Q}), indicating two dif-
ferent neighbors should take responsibility to forward the packet to different
subsets of sinks.

The distinction between complete actions and sub-actions is important, as
we assign rewards to sub-actions.

Q-Values. Q-Values represent the goodness of actions and the goal of the
agent is to learn the actual goodness of the available actions. Here we differ
from the original Q-Learning, which randomly initializes Q-Values, and where
Q-Values serve only for quantitative comparison.

In our case, we bound the Q-Values to represent the real cost of the routes,
for example, if the cost function is number of hops, the Q-Value of a route is
also the number of hops of this route. To initialize these values, we use a more
sophisticated approach than random assignment, which calculates an estimate
of the cost based on the individual information about the involved neighbor and
sinks. This non-random initialization significantly speeds up the learning process
and avoids oscillations of the Q-Values.
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For example, without loss of generality and continuing our example with
a hop-based cost function, it estimates the route cost by using the hop counts
available in a standard routing table, such as that in Figure We first calculate
the value of a sub-action, then of a complete action. Using the hop-based routing
information, the initial Q-Value for a sub-action a; = (n;, D;) is:

Qa) = (Z hopszf) ~2(/D; | -1) (5.1)

deD;

where hops);' are the number of hops to reach destination d € D; using neigh-
bor n; and | D; | is the number of sinks in D;. The first part of the formula cal-
culates the total number of hops to individually reach the sinks, and the second
part subtracts from this total based on the assumption that broadcast commu-
nication is used both (hence the 2) for transmission to n; as well as by n; to
reach the next hop. Note that this estimation is an upper bound of the actual
value, as it assumes that the packet will not share any links after the next hop.
Therefore, during learning, Q-Values will always decrease and the best actions
will be denoted with small Q-Values.

The Q-Value of a complete action a with sub-actions {a,,...,a;} is:

Q(a)z( >, Q(ai)) —(k—1) (5.2)

a;€a,i=1...k

where k is the number of sub-actions. Intuitively this Q-Value is the broadcast
hop count from the agent to all sinks.

The above is an example of calculating the Q-Values when using the specific
hop-based cost. We will explore further cost metrics in Section [5.4.8

Updating a Q-Value. To learn the real values of the actions, the agent must
receive the reward values from the environment. In our case, each neighbor to
which a data packet is forwarded sends the reward as feedback with its eval-
uation of the goodness of the sub-action. The new Q-Value of the sub-action
is:

Quew(a;) = Quala;) + y(R(a;) — Quqla;)) (5.3)

where R(q;) is the reward value and y is the learning rate of the algorithm.
We use y = 1 to speed up learning. Usually a lower learning rate needs to
be used with randomly initialized Q-Values, since otherwise they will oscillate
heavily in the beginning of the learning process. However, since our values are
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guaranteed to decrease and not to oscillate, we can avoid the learning rate and
the resulting delay in learning. Therefore, with y = 1, the formula becomes

Qnew(ai) = R(ai) (54)

directly updating the Q-Value with the reward. The Q-Values of complete
actions are updated automatically, since their calculation is based on sub-actions

(Equation [5.2).

Reward function. Intuitively the reward function is the downstream node’s
opportunity to inform the upstream neighbors of its actual cost for the requested
action. Thus, when calculating the reward, the node selects its lowest (best) Q-
Value for the destination set and adds the cost of the action itself:

R(a;) = ¢, + minQ(a) (5.5)

where ¢, is the action’s cost (always 1 in our hop count metric). This prop-
agation of Q-Values upstream eventually allows all nodes to learn the actual
Costs.

In contrast to the original Q-Learning algorithm, low reward values are good
and large values are bad. This is because we define the Q-Values to represent the
real hop costs of some route and thus the lowest Q-Values are the best. Further-
more, rewards from the environment are generated and sent out without real
knowledge of who receives them. Note that the reward values are completely
localized and simply indicate the Q-Value of the best possible action. It depends
only on the sub-set of destinations the node is asked for and thus implicitly on
the previous hop of the data packet and its routing decision. We will come back
to this when presenting our protocol implementation in Section [5.4]

Exploration strategy (action selection policy). One final, important learn-
ing parameter is the action selection policy. A trivial solution is to greedily select
the action with the best (lowest) Q-Value. However, this policy ignores some
actions which may, after learning, have lower Q-Values, resulting in a locally
optimal solution. Therefore, a tradeoff is required between exploitation of good
routes and exploration among available routes. This problem has been exten-
sively studied in machine learning [[179]. A simple, though efficient strategy
is e-greedy, which selects the best available action with probability 1 — ¢ and
a random one with probability e. There are also variants of e-greedy, where e
is decreased with time or where the range of random routes are restricted to
the most promising ones. Section gives more details about the exploration
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Parameter | Description

D number of destinations

M diameter of the network

Y network density (maximum num-
ber of 1-hop neighbors)

IN| number of nodes in the network

A Maximum number of possible ac-
tions at each node

S Maximum number of action steps
(sent packets) at the source before
convergence

Table 5.1. Summary of network scenario and complexity parameters,
as used in the discussion of FROMS.

strategies we use for FRoMms.

5.3 Theoretical analysis of FROMS

In this section we concentrate on the theoretical analysis of FRoms: on its con-
vergence, complexity, memory, and processing requirements. First we explore an
idealized model of the environment and later we introduce realistic properties
like asymmetric links and link failures.

5.3.1 Worst-case complexity and convergence

We show first the worst-case complexity of FrRoms (time to stabilize) and thus
also implicitly its convergence. In our scenario, convergence means that first,
the protocol is stable and the Q-Values do not change any more, and second
and more importantly, that the optimal route has been identified. The original
Q-Learning algorithm has been shown to converge after an infinite number of
steps, see Section Here we need to show that our Q-Learning based protocol
converges after a finite number of steps. For this, we start by calculating the
number of steps until convergence.

First, we assume a Q-Learning algorithm like the one we presented in the
previous Section [5.2|with y = 1, hop-based cost metric, and deterministic explo-
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ration strategy, which chooses the routes in a round-robin manner. We further
assume a network N with the following properties: D is the number of des-
tinations, M is the diameter of the network (the longest shortest path in the
network between any two nodes in N) and Y is the density of the network (the
maximum number of 1-hop neighbors at any node in N). The parameters are
summarized in Table We also assume static nodes and sinks and perfect
communication between the neighbors. Without loss of generality, we assume
a single source, since the routes are constructed depending on the destinations,
not on the sources. We will discuss multiple sources at the end of this section.

Further, the maximum number of possible actions A at any node is, according
to the definition of actions in Section the number of permutations of size
D over all neighbors Y with repetitions (because we are allowed to use the same
neighbor to reach multiple sinks) or:

A<YP (5.6)

In the worst case the source of the data or the initiator of the learning process
is at maximum distance M from all of the sinks. Our goal is to compute how
many action selection steps have to be taken on all nodes in N, so that the Q-
Values stabilize. With y = 1 the feedback of any 1-hop neighbor is used for direct
replacement of the old Q-Value. Thus, in order to learn the real costs of any route
of length M we need exactly M — 1 steps. However, the source has to first wait
for all other nodes to stabilize their Q-Values before it can be guaranteed that its
Q-Values are stable too. In the worst case it has to explore the full network and
all possible routes in it. Let us count the number of action selection steps S we
need for the whole system to converge.

Assuming the learning is always initiated by the source, we know that we
need to select each of the routes available M — 1 times. Using Equation we
have:

S<(M-1)-Y?

The 1-hop neighbors of the source need to do the same. Their distance to the
sinks is also at most M. Note this is the worst case and it actually cannot exist
in a real network: if all of the neighbors of some node are at the same distance
from the sinks as the node itself, the network is disconnected. Thus, all of the
nodes in the network have to select each of their routes at most M times. Thus,
we have for the complexity:

s5(M—1)-|N|-YD=O(M-|N|-YD) (5.7)
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This is the worst-case number of actions across all nodes (packet broadcasts)
for the protocol to converge. After convergence, exploration can be stopped
and the algorithm can proceed in a greedy mode, as the best route has been
identified and has the best Q-Value among all available. If there are more than
one best routes, they can be alternated to spread energy expenditure.

However, this is a very loose upper bound of the complexity - no real net-
works have the worst-case properties like "all neighbors are M hops away from
the destinations". However, it gives us an idea about the scalability of the ap-
proach and its expected performance. In the next paragraphs we discuss in detail
how the convergence behavior changes with various network parameters and
what are the consequences for the protocol. We use experimental evaluations to
show the real behavior of the protocol in Section

Parameter analysis. The number of destinations D and the density Y are not
directly dependent on the number of nodes |N| in a network or on the diameter
M. To understand better the expected performance, we explore these individual
cases for each of the parameters:

The number of sinks D is completely independent from any of the other net-
work properties, [N|, M, or Y, as it is a requirement of the application. The only
limitation is that D < |N|. With a growing number of sinks the complexity grows
exponentially, because D is in the power (see Equation ).

With growing number of nodes |N|, usually either the diameter M or the
density Y are growing, or both, but at a lower rate. In both cases, we expect the
complexity to have a polynomial growth (from Equation |5.7).

In a network with constant number of nodes [N|, M and Y depend on each
other. When the diameter is growing, the number of neighbors is decreasing;
and vice versa. In the extreme case we have M = |[N| =¢,Y = 2, where we have
a chain network with maximum number of neighbors 2. In this case we have:

5=O(|N|2-2D) (5.8)

The other extreme case is when the density or Y grows towards |[N| and M
decreases towards 2 - note that the case M = 1 does not make sense, because
then any source will be exactly one hop from any sink and routing would be
trivial. In the case of M — 2 we have:
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complexity complexity

7100

" 50 R 50
50

diameter M 0\\(0/ density Y ) \15 0  diameter M
density Y

Figure 5.2. Worst-case complexity for some M and Y values from dif-
ferent views. The number of sinks is fixed to D = 3,|N| = 100. The
thick line at the welding of the graph corresponds to maximum ex-
pected complexity and the single point near the origin to a real dense
network with M =10 and Y = 10.

s =0 (2IN["*) (5.9)

However, these equations do not consider the behavior inbetween. It is more
interesting to explore the complexity in a network with constant |[N| and differ-
ent M and Y values. Figure shows a case study for a network of 100 nodes,
3 sinks and different densities and diameters. The worst-case complexity is pre-
sented from two different points of view. Of course, as expected, with growing
M and Y, the complexity grows. However, the thick line shows exactly the de-
velopment when M is growing and Y decreasing - it shows that the function has
a maximum between the two extreme cases. As a rule of thumb for practical
networks it can be generalized, that having a lower density is always a good
idea, since Y is in the power of D (see again Equation[5.7), unless M is very low,
as the complexity decreases again. Note also that the extreme case of Figure
where both M and Y are growing towards |N| is impossible in practice [31].
Realistic values for a network with 100 nodes will be M = 10 and Y = 10, which
corresponds to the single point in Figure (5.2

Probabilistic exploration strategy. The above complexity is given for a
deterministic round-robin exploration strategy. However, both the original Q-
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Learning algorithm, as well as our protocol, use probabilistic exploration strate-
gies - for each route r there is a probability p, to be chosen at any step s,. If
the probabilities of all routes are p, > 0, convergence is guaranteed. However,
complexity is hard to compute because of the non-deterministic nature of the
algorithm. Instead, we will show experimental evaluations in the next sections.

Realistic communication environment. The above proof is built under the
assumption of perfect communication. However, the real world of WSNss is sel-
dom perfect. Packet losses are usual and have to be considered.

However, assuming some probability p,, for delivering a message between
two nodes is enough to maintain the convergence criterium of the algorithm.
The convergence will take longer, but the correctness is not violated if the prob-
ability p,, is non-zero. In the special case of p,, = 0 for some link(s), the network
model changes: these links are actually non-existing and under the new network
model the algorithm will converge.

A scenario with asymmetric links is slightly more complex. Here, two neigh-
boring nodes may have a one-way communication only. Thus, one of the nodes
may hear from the other, but not vice versa. Consequently data packets may
be forwarded through some node, but feedback will never be received by the
sender. If the node with the asymmetric link happens to be on the optimal
route, the sender of the packets will never learn its real costs and the protocol
will not converge to the optimal route. However, in practice such links are often
considered not-existing, because of their unreliable nature. If we assume this
and come back to the above discussion of packet loss, convergence is guaran-
teed again. It is the responsibility of the protocol’s implementation to recognize
asymmetric links and to delete them and we will discuss how we do this in the
next Section

Multiple sources. In the above paragraphs we assumed a single data source
learning the optimal routes to all sinks. However, what happens when more
sources are present in the network? In fact, this speeds up the convergence
process of all nodes in terms of data packets sent by one source. Imagine a
network with 2 sources, sending data at the same rate to 3 identical sinks. In this
case, nodes on the routes of both sources to the sinks receive double feedback
from sending data packets from both sources. This is because our feedback is
delivered to all neighboring nodes.
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5.3.2 Correctness of FROMS

The correctness of Frowms is easily deducible from the definition of the used Q-
Learning model in Section The goal is to show that after convergence, the
Q-Values of the full actions at any node will accurately reflect the hop-based
costs. We use simple induction to sketch the proof in sufficient detail for our
purposes. We begin by showing the correctness of FRoms for one sink, then
expand the proof to multiple sinks.

Assumptions. We assume perfect communication, static network, and the
Q-Value calculation and update equations from Section

Initial step. The induction starts with the sinks and we define the cost of the
sinks of routing to themselves to be always 0, since no forwarding is needed any
more. Thus, the reward of the sinks for routing to themselves is always r = 0+c,
with ¢, = 1 from Equation For y = 1, the neighbors update the Q-Value for
the corresponding sub-action to Q = r = 1, which we know is the correct cost of
this sub-action, since the sink is exactly one hop away.

Induction step. Assume that a node N (sink or any other node) has a cor-
rect estimation of the costs to the sink Q. Its reward is always computed as
r = min, Q(a) + ¢,, where min, Q(a) is necessarily the above Q, and ¢, = 1.
When node N sends its reward to its direct neighbors, they will update their
corresponding Q-Values for this node to Q, + 1, which is the correct estimation
of the cost through node N, since they are exactly one hop further away from
the sink than node N. Thus, for any node N with correct estimations of the cost,
its direct neighbors also have correct cost estimations.

We showed above that FrRoms converges to the correct hop-based costs for
one sink in the network. In fact we know that FrRowms is correct for one sink
also because of the sink announcement propagation. During this network-wide
broadcast, every node easily learns about the best routes in terms of hops to a
single sink. Thus, we have both a practical and a theoretical proof that FrRoms
converges to the correct costs for one sink. This is the beginning of the second
induction proof, which shows that FrRoms converges to the correct hop-based
costs also for more than one sink.

Assume a network with 2 sinks that the Q-Values for each sink individually
at all nodes have already converged (see the discussion above). For simplicity
we call the sinks A and B. The costs of B to reach itself is O and to reach sink
A is a constant v = min, Qz(a), which is the minimum Q-Value for A at node
B. Thus, the cost of reaching both A and B at B is 0 + v and the reward of B is
rg = (0+v)+c, = v+ 1. The direct neighbors of B will update their own Q-
Values to this reward value, which is the right cost: they need one hop to reach
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sink B and further v costs to reach sink A. This trivially extends to the next hops,
as shown already above. It also intuitively extends to more than 2 sinks.

Summarizing Sections [5.3.1| and 5.3.2] we have shown that FrRoMs converges
to the correct hop-based costs of the routes after finite number of steps.

5.3.3 Memory and processing requirements

Before explaining the implementation details of FRoms and showing its experi-
mental evaluation, we analyze the theoretical memory and processing require-
ments of the algorithm for each node in the network.

Each node has to store all locally available routes. According to Equation|5.6]
the expected storage requirement is O(Y?). The processing requirements in-
clude selecting a route and updating a Q-Value. The first function requires in
the worst case to loop through all available routes to compare them in terms of
their costs and is thus bounded by O(Y?). The update of a Q-Value is itself an
atomic action: given the old Q-Value and the reward, it calculates the new one.
Assuming a data structure, organized by neighbor, we need as worst case for
searching O(Y + D).

5.4 Protocol implementation details and parameters

The multicast energy-aware routing protocol Froms is built upon the formal
Q-Learning model, presented in Section[5.2] A pseudo-code of the resulting pro-
tocol is given in Figure Basically, the routing protocol consists of three main
processes: sink announcement and initialization of routes (lines 3-4), selection
of routes (lines 9-12) and learning and feedback (lines 8 and 14). Additionally,
there are some parameters of FrRowms like the exploration strategy (line 12), cost
functions (line 2) and the sink mobility management module (line 7). We will
step through all of these and give additional details in the following sections.

5.4.1 Sink announcement

Recall from our application scenario described in Chapter [2|that we assume each
of the sinks announces itself via a network-wide broadcast of a DATA REQ mes-
sage, during which initial routing information like hops to the sink is gathered
(line 3-4 in Figure [5.3). Additionally, position information, battery status of
neighbors, etc, can be delivered to the nodes.



95 5.4 Protocol implementation details and parameters

1: ipit:
2: init_cost_function();

3: on_receive(DATA_REQ req):
4: add_nexthop(req.sinkID, req.neilD, req.hops, req.battery);

5: on_receive(DATA d):

6: // snoop on all incoming packets

7: sinkControl.update(d.sinkStamps,d.neilD);
8: add_feedback(d. feedback, d.neilD);

9: // route packet to next hop(s)

10: if (d.nexthops.includes(self))

11: routes = get_possible_routes(d.my_sinks,cost_function);
12: route = strategy.select_route(routes);

13: d.routing = route;

14: d.feedback = best_route_cost;

15: broadcast(d);

16: end if

Figure 5.3. The main FROMS algorithm

5.4.2 Feedback implementation

A substantial part of FrRowms is the exchange of feedback. This is what enables
Frowms to learn the global cost of the routes and to use the globally optimal
paths. We piggyback the feedback, which is usually only a few bytes, on usual
DATA packets (line 14 in Figure [5.3). There are several advantages of this im-
plementation: feedback is sent only on-demand and only to local neighbors;
and overhead is kept minimal because no extra control packets need to be ex-
changed.

Note that feedback is accepted and route costs are updated even if the feed-
back is negative and the previously known costs were better. Thus, mobility
and recovery are handled automatically. The feedback is usually received by all
overhearing neighbors, which speeds up the learning process. However, feed-
back can also be delivered to the previous hop only, thus avoiding energy ex-
penditure for overhearing of packets. This implementation requires a multicast
MAC layer protocol, able to send the message only to a some subset of neigh-
bors. Unfortunately there is no such a protocol designed for low-energy WSNs to
the best of our knowledge and its implementation is not trivial, since it requires
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a well-designed scheduling together with variable-length preamble packets. We
consider designing such a protocol and testing it with various routing techniques
in the future.

5.4.3 Data management

One of the implementation challenges of FrRowms is to design an efficient multi-
destination routing data structure. This data structure is different from usual
routing tables like the one in Figure since it not only holds next hops for
individual sinks and their costs, but also combines shared paths to multiple sinks.
In other words, we need a data structure to hold the sub-actions as described in
Section For example, the possible sub-actions for node S from Figure |5.1
for each of the neighbors n; are: {n;,(P)}, {n;,(Q)} and {n;, (PQ)}.

Data structure API

As shown in the algorithm pseudocode from Figure the multi-destination
routing data structure used by FrRowms has to implement efficiently and reliably
the following API:

add_nexthop(sinkID, nexthop, hop_cost, battery)

This function is called when a DATA REQ arrives, or when a feedback for an
unknown sub-action arrives. The second case happens, when sink announce-
ments were lost and some next hops are unknown at the node. However,
the first time when the unknown neighbor broadcasts a data packet the node
will repair its routing table.

add_feedback(feedback, previous_hop)

This is called every time the node hears a data packet. The data structure has
to find the required sub-action and to update its cost. The cost is updated al-
ways and not only when it is better than before. The costs are expected to be
higher than previously known when a node fails or when a sink moves away.
All routes’ full cost, using this sub-action, have to be updated. Additionally, if
this sub-action cannot be found, it should be recovered (see add_nexthop).

get_possible_routes(sinks, cost_function)

This is called by the exploration strategy and should return all possible routes,
which fulfill some requirements, like maximum hop cost, maximum total cost
etc (for loop management, see below). The routing strategy will then select
one of them for usage.
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routing table : node S

Neigh [ sink | hops

A P 3
Q 5
| B [P ]| 4
Q 4
| c [P 5
PSTABLE for Node S Q 8
( subActions allRoutes
neighbor | sinks | Q-Value subﬁ:c);tion route ID | subaction IDs Q full
A P 3 1 1 1,5 (3+4)-1=6
Q 5 2 2 1,8 (3+3)-1=5
P.Q 6 3 3 48 (4+3)-1=6
| B P 4 4 4 2,4 (5+4)-1=8
4 5 5 2,7 (5+5)-1=9
PQ 6 6 6 5,7 (4+45)-1=8
| ¢ P 5 7 7 3 6-0=6
Q 3 8 8 6 6-0=6
PQ 6 9 9 € 6-0=6
L validSinks ={P,Q} costsChanged = false routesChanged = false

Figure 5.4. The PSTable for node S from Figure Grey-shaded
boxes are ignored sub-actions (not stored), which saves memory af-
ter applying route storage pruning heuristics C = 1,Nr = 3 (see Sec-

tion|5.4.4).

PSTable

Our FroMs implementation uses an instantiation of the above defined data
structure called PSTable, or Path Sharing Table. Let us continue with our ex-
ample of Figure Figure presents the resulting data structure for node S.
For easy reference we have copied also the network topology. The PSTable con-
sists of two simple tables, for the sub-actions and the routes (full actions), and
three management variables. Note that this sample PSTable contains the initial
Q-Values for all sub-actions and full actions and is based on hops for simplic-
ity. Note that cost calculation for sub-actions occurs only once: at initialization.
After that, feedbacks are used to update the Q-Values. Q-Values of full actions
(Table allRoutes), which we also call Q-full, are computed according to Equa-
tion[5.2|from the Q-Values of the included sub-actions. Further details are given
below:
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* subActions: This table holds all available sub-actions for each of the
neighbors. They are organized by neighbor ID for speeding up search in
case of feedback. For each of the sub-actions, the table holds the Q-Value
of that action and assigns an ID, which is used as a pointer to that sub-
action. The grey-shaded fields are pruned sub-actions to save memory and
will be explained later in Section[5.4.4

* allRoutes: This table holds basically all possible combinations of sub-
actions, such that in each route all sinks are covered exactly once. The
table holds the total Q-Value of the full action, computed from the Q-Value
of the included sub-actions according to Equation Two examples are
emphasized in the figure, route 2 and 8. Route 2 (marked bold in the
figure) consists of two sub-actions with IDs 1 and 8 and corresponds to
the dashed route in the network topology in the same figure. Its full route
costs (its full Q-Value) is 5, which is the cost in terms of hops for this route.
In contrast, route 8 consists of only 1 sub-action with ID 6 and its full cost
is also 6 hops.

Note that these two tables need to be separate: rewards are assigned and
delivered by sub-actions, but full routes are needed when routing incoming data
packets. Putting them together will increase significantly the search time for in-
coming rewards, because sub-actions will be presented several times in different
routes and the full table would need to be traversed to find them.

* validSinks: The sinks, for which the full Q-Value is computed and stored.
We apply lazy evaluation of routes to speed up the route selection. For
example, if a route to only one of the sinks is desired (e.g. for sink Q), the
Q-Values of the routes will be re-computed as to include only the desired
sinks. If this computation is impossible, for example as it is for route 8,
the Q-Value will be marked with -1. The computation is impossible, when
needed and unneeded sinks are combined into the same sub-action: in
our example, sub-action 6 of route 8 contains both sinks P and Q and thus
separated computation of the cost to sink Q only is impossible.

* routesChanged: This variable indicates that the allRoutes table has to
be rebuilt because new routes are available or old ones lost.

* costsChanged: This indicates that the costs of some routes have changed
and have to be recalculated or that the costs are not valid any more
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(validSinks has changed). This happens usually when new feedback ar-
rives, which in fact changes the routes Q-Values. Then all routes which use
the updated Q-Value become invalid. For example, if sub-action 1 from our
Figure gets updated, routes 1 and 2 become invalid. However, instead
of immediately searching for those routes and recalculating their costs, we
mark the whole table as invalid and wait until a data packet arrives for
routing. This saves processing effort when the node is overhearing a lot
of feedback from its neighbors, but does not route data packets. When a
new data packet arrives for routing, the table allRoutes is traversed and
all routes’ costs updated according to Equation

In the simulation environment (described in Section we use dynamic
memory allocation for subActions and allRoutes and memory pointers to the sub-
actions. In the real hardware environment (described in Section we do
not have dynamic memory allocation and use a static array of subActions items
and a static array of allRoutes items. The size of both of them are large enough
to accommodate all possible sink combinations and routes. Instead of memory
pointers we use IDs, like in the example in Figure [5.4]

5.4.4 Route storage reducing heuristics

As pointed out in Section [5.3] the storage requirements for all routes grow expo-
nentially with number of sinks and polynomially with number of neighbors. In
practice this means that for large number of sinks and neighbors we are not able
to store all routes. The consequence is that we cannot guarantee any more that
the algorithm is optimal. However, its near-optimality can be easily preserved
by wisely managing which routes to store and which not.

We have developed two route pruning heuristics: C - cost over best maximum
and Nr - maximum number of routes to sink. The first one simply checks what
is the currently best cost to the sink in question and if the newly arrived route
has cost more than this best one plus the threshold C, it ignores the route. The
second one is a limit over the number of routes per sink - when this number is
exceeded, the newly arrived route is ignored. In Figure |5.4|ignored entries after
applying C = 1, Nr = 3 are shown in grey.

Note that these heuristics not only limit the memory requirement at the
nodes, but also the convergence time, since less routes need to be explored.
In the following experimental setup we evaluate different pruning heuristics in
terms of the optimality of routes found, see Section |5.5.2
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SinkControl : node E

. last direct direct
sink . . .
timestamp | neighbor | timestamp
sink P -2 sec true -2 sec
sink Q -14 sec false -

Figure 5.5. SinkControl for node E (direct neighbor of sink P from

Figures[5.1]and [5.4).

5.4.5 Loop management

Froms explores non-optimal routes for finding the globally best route. This
means that it chooses a route with a non-limited length. Thus it can happen
that a packet travels in a loop, even forever. In order to manage this, we have
introduced the maximum allowed hop cost for a neighbor. Each node receives
the data packet together with the subset of sinks which it has to care of, and a
maximum hop cost for the selected route. We set this maximum allowed cost to
the currently known cost for this sub-action. Thus, if the cost estimate is right
and the node has no better routes, it will be forced to use the best one. The
reason for requiring this is that if the cost estimate is right the probability that
this estimate is also the real cost is very high.

5.4.6 Mobility management

The Q-Learning algorithm has the innate ability to manage changing network
conditions. They will be delivered as feedback and the Q-Values will be updated
accordingly in the usual learning process. However, practical challenges arise:
growing costs of some route could either mean mobile sinks moving away or a
disconnection from some sinks. The first case is normal and should be handled
as usual. The second one, however, will cause looping packets, traveling forever
and searching for non-existing routes.

An important special case for managing moving sinks is when a node is a
direct neighbor of a sink. In this case we exclude this sink from learning and
always send directly to it. However, this causes problems when the sink moves
away and the sink needs to be included in normal learning again. Thus, we need
a technique to recognize alive sinks moving out of range.

SinkControl is a simple data structure whose goal is to detect moving or
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disconnected sinks. It does not affect the Q-Learning algorithm, but manages the
available routes, erasing invalid ones. It stores information about each known
sink in the network. Figure presents it for the sample topology of Figure
The feedback delivers a last timestamp for each included sink; this is the last
time this neighbor has heard of the sink. If this timestamp is too old (a threshold
parameter), the sink is deleted. This is the case when either the sink itself has
failed or disappeared from the network or the network is disconnected between
the sink and the node. In both cases the application layer has to be notified
to delete the data delivery task for those sinks and routing to them has to be
stopped.

On the other hand, while the sink is “fresh” data delivery can continue even
if the routes’ costs to it are growing. In order to detect sinks in the direct neigh-
borhood, we also store the last time the node has heard from a sink directly. if
some threshold is exceeded, the flag for direct neighbor is deleted and Frowms is
notified.

This simple module enables detection of sink mobility and learning of new
routes with minimum communication overhead, the additional last timestamp
feedback. Despite using timestamps, FRoMs does not require a time synchroniza-
tion protocol or any other means of global time. It is enough to use timestamps
like in Figure [5.5} (now — n -sec). The goal is to detect sinks, which are not
responsive for a long time.

Obviously, this sink mobility detection can be implemented for any routing
protocol. However, it is not sufficient to handle sink mobility: it only checks
whether a route can exist or not. Finding the optimal route is still performed
by FrRoms and its learning and feedback mechanism. Most importantly, delivery
of data to the sinks continues while recovering the routes and learning the new
Ccosts.

5.4.7 Node failures

Node failures are managed the same way as sink mobility. Each node stores
the last time it heard from any 1-hop neighbor. Additionally, it stores the last
time it routed something to that neighbor. In case the difference between both
timestamps exceeds some threshold, the neighbor is deleted. Note that if this
happens by mistake, the next time the node hears again from this neighbor, the
route will be recovered.

Note that unlike many link management protocols, FRoMs does not use any
beacons or periodic full-network broadcasts. Only overhearing of data packets
is used to check the status of neighbors.



102 5.4 Protocol implementation details and parameters

5.4.8 Cost metrics

Here we present FRoMs innate ability to incorporate different cost functions to
reach different optimization goals. The cost function is used to calculate the
initial Q-Values in Froms. A simple hop-based metric was presented already in
Section[5.2| with Equations[5.1]and Its optimization goal is to find the short-
est shared path for multiple sinks in terms of hops. The hop-based cost function
can be easily exchanged with any other cost-per-link metric, like energy needed
to reach the farthest neighbor, geographic distance or geographic progress to the
sinks, etc. Various cost metrics and their properties are summarized in Table

Another example for a cost-per-link function is a latency-based cost metric.
Here we need to gather latency information during sink announcement to the
sensor nodes. The latency needs to represent the radio propagation latency
(where the differences will be negligible for usual sensor networks) and the la-
tency caused by the packet queues on the nodes. However, note that such a cost
metric is what we call here a dynamic cost metric: it is expected to change dur-
ing network lifetime and to change fast. For FRoms this means that it will never
globally converge, nor stay in a converged state. However, we show in the next
paragraphs other dynamic cost functions and how to handle their behavior. In
fact, we make use of this non-converging behavior and turn it into an advantage.

Beside these simple cost functions, which include only one metric, there exist
more complex, multiple objective combined cost metrics. Here we concentrate
on one of them, a combination of remaining battery on the nodes and minimum
hops. In this case we calculate the Q-Values as a combination of two metrics as
follows:

Qcomb(rOUte) = f(Ehops’ Ebattery) (510)

where E, is the estimated hop cost of the route exactly as we calculate it
in equations [5.1] and and Epy,,, is the estimated battery cost of this route,
which we define as the minimum remaining battery of all nodes along it:

Epquery(route) = min_ battery (5.11)

n;Eroute

The function f that combines the two estimates into a single Q-Value is based
on a simple and widely used function:

f(Ehops’ Ebattery) = hcm(Ebattery) : Ehops (5.12)

hcm is the hop-count-multiplier, a function that weights the hop count esti-
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Cost metric Calculation of ini- | Optimization goal Conver- | Dyna- | Best Q-

tial values gence mic Values
simple metrics
Hops > hops shortest shared path | guaran- | no lowest
(Steiner tree) teed

Latency > latency least latency path no yes lowest

Transmission || Y energies least energy path guaran- | no lowest

energy teed

Geographic > dist shortest shared path | guaran- | no lowest

distance teed

Aggr. rate > rates maximum aggr. path | slow no highest

combined metrics

Hops & rem. Zhops-hcm(bathops) shortest shared path | no yes lowest

battery of through nodes with

nodes high battery

Table 5.2. Different possible cost metrics for FROMS and their main
properties.

mate based on the remaining battery. For simplicity we drop the “estimation”
and denote the Q-Value components as hops and battery.

Figure shows four different hcm functions. If the battery level is com-
pletely irrelevant, then hcm(battery) is a constant and f (hops, battery) is reduced
to a hop-based function only. Instead, if the desired behavior is to linearly in-
crease f as the battery levels decrease, a linear hcm function should be con-
sidered. Figure shows two linear functions. The first (labeled linear), has
minimal effect on the routing behavior. For example, a greedy protocol which
always uses the best (lowest) Q-Values available, when faced with two routes
with f(1,10%) = 1.9 and f(2,100%) = 2, will select the shorter route even
though the battery is nearly exhausted. Even when faced with longer routes of
length 2 and 3 respectively, it will use the shorter route until its battery drops to
40%. Only when their values become f(2,40%) = 3.2 and f(3,100%) = 3, the
protocol will switch to the longer route. Thus, this trade-off of weighing the hop
count of routes (their length) versus the remaining batteries must be taken into
account when defining hcm.

The main drawback of linear hcm functions is that they do not differentiate
between battery levels in the low and high power domain. For example, a dif-
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Figure 5.6. Hop count multiplier (hcm) functions for different opti-
mization goals.

ference of 10% battery looks the same for 20 — 30% and for 80 — 90%. Thus,
to meet our goal of spreading the energy expenditure among the nodes, we re-
quire an exponential function that starts by slowly increasing the value of hcm
with decreasing battery, initially giving preference to shorter routes. However,
as batteries start to deplete, it should more quickly increase hcm in order to use
other available routes, even if they are much longer, thus maximizing the life-
time of individual nodes. Of course, such a function gives preference to longer
energy-rich routes, and will increase the per packet costs in the network.

The presented battery and hop based function is a dynamic function, which
means that it is expected to change during the network lifetime. Obviously, the
remaining batteries of the nodes will change and thus the Q-Values as well. The
major consequence of this is that FRoms does not stabilize, because the Q-Values
never stabilize. However, this is not necessarily a disadvantage: Froms will
just continue exploring routes throughout the network lifetime. Combining a
dynamic cost function with a mostly greedy exploration strategy will ensure that
Frowms is not spending too much energy on exploration of routes and is mostly
using the best available routes. On the other side, we need to ensure that Froms
is still able to find the best routes. For this, we use the advantage of a dynamic
cost function. The Q-Values change because of the dynamic nature of the cost
metric and force FrRoms to use different routes (because it mostly selects the best
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ones): thus, it implicitly forces FrRoms to explore new routes.

This property of dynamic cost functions we call the dynamic cost advantage
of implicit exploration, which is a very important property of FrRowms. It allows
Frowms to use a very simple greedy or e-greedy exploration strategy with very low
probability for exploration (see next section) and still ensures that the optimal
routes are found. This simplifies significantly the implementation of FRoms both
in terms of processing and memory requirements and make FRoms much more
intuitive.

Similarly, one can easily design and implement other cost metrics, both sim-
ple and combined. The used cost function depends on the application scenario
and needs to be revisited for each deployment. However, the power of FRoMs
is its innate ability to accommodate nearly any cost function.The changes to the
protocol are marginal and do not affect its basic functionality.

5.4.9 Exploration strategies

The exploration strategy controls how Frowms chooses between the available
routes. It also controls the exploration/exploitation ratio, which is responsi-
ble for both finding the optimal route and minimizing routing costs. Early in
this thesis, we have applied two different techniques for exploration: greedy
and probabilistic. The greedy strategy simply ignores exploration and always
chooses between the best available routes. Stochastic exploration strategies on
the other hand assign a probability to each of the routes, depending or not on
their current or initial Q-Values, and choose the routes accordingly. This type of
exploration strategies show good results, but are very complicated to implement
since they require updating the probabilities after each reward [63]].

Here, we will turn to a new set of exploration strategies for two main rea-
sons: to make them more intuitive and simple to implement and to complete the
evaluation of FrRoms with them. The behavior of the considered strategies are

shown in Figure

€ - greedy. This strategy is taken directly from the original Q-Learning algo-
rithm and is very simple to apply and implement: with probability e select any
of the available routes; with probability 1 — €, select one of the best routes. Note
that when € = 0 we have the old greedy strategy from [63]].

decreasing € - greedy. This strategy is the same as before, but additionally
decreases € with time. The reason for this is that usually at the beginning of the
algorithm the Q-Values change a lot, but with time these update become more
rare and eventually stop. After convergence it is more appropriate for FRoMs to



106 5.4 Protocol implementation details and parameters

best available routes best available routes

0. taken routes 10-

taken routes

exploration rate

10 20 30 40 50 60 1 k) éo 30 40 50 60

[secs] [secs]
FROMS epsilon greedy FROMS decreasing

epsilon greedy

_\_\ best available routes best available routes

temperature taken routes/
P taken routes 10r

exploration

n [

10 20 30 40 50 60 10 20 30 40 50 60

[secs] [secs]
FROMS epsilon greedy FROMS uniform stochastic

with temperature

Figure 5.7. The route selection behavior at the source with different
exploration strategies in a sample 50 node topology with 3 sinks and
1 source.

be greedy, since no changes are expected and the routing costs should be as low
as possible. € increases again in case of failures or mobility.

€ - greedy with temperature. This strategy is again a variation of e-greedy,
but instead of decreasing e itself, it limits the set of routes presented to the
strategy. At the beginning, with high temperature T, all routes are presented
to the strategy, independent from their current Q-Values. With decreasing T,
however, only routes with better Q-Values are presented and with T = 0 only the
best routes are presented. € remains constant and the temperature is increased
in case of failures or mobility.

uniform stochastic with stopping strategy. This strategy is taken from our
previous work [I63]] (it performed the best out of all compared stochastic strate-
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gies there) and is used for comparison reasons. It assigns the same probability
to each sub-action and updates it every time a reward arrives for it, decreasing
it with neutral rewards, increasing it with negative rewards, and leaving it the
same with positive rewards. It stops exploration completely after some number
of continuous neutral rewards to the node and starts it again with negative/pos-
itive rewards.

5.4.10 Summary

In this section we presented all parameters and implementation details of FRowms.
The main parameters which need to be specified before deploying Frowms are its
cost function and exploration strategies. Additionally, node failure management
is a necessary option in nearly any WSN. However, all other presented modules
implement special features, like sink mobility support or route pruning heuristics
for extremely memory-resticted hardware systems, and need to be deployed only
when necessary. In the next paragraphs, we present an extensive evaluation of
Frowms and all of its components and features both under simulation and on real
hardware.

5.5 Stand-alone evaluation of FROMS

In this section we present results from testing and evaluating FRoms under two
environments - in simulation and on real hardware. In particular we evaluate
and analyze its stand-alone performance in terms of memory and processing
requirements, and we offer a parameter analysis. We use the evaluation envi-
ronments and our own network models and routing protocols implementation
as identified and described in Section[4.2.4] First we give more details about the
evaluated network scenarios and parameters.

Real hardware testbed. @ We compare the performance of Froms with
e-greedy exploration strategy against the multicast version of Directed Diffu-
sion [[170]. We use two controlled network topologies as given in Figure
In these experiments, we allowed the nodes to process packets only from some
predefined set of nodes and to drop immediately all others. We were forced to
do this, because we were unable to create a natural multi-hop topology, which
is essential for the evaluation of the routing protocol.

Simulation environment. We already discussed the needed simulated net-
work models in Section A summary of them, as used for the experiments
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Figure 5.8. Topologies 1 (left) and 2 (right) for the real hardware
testbed, sinks are shaded, source is node 6.

of FrowMms in this section, is presented in Table We conducted experiments
with randomly created connected topologies and each of the results presented
is a mean of at least 5 different random runs on at least 50 different topologies.
Consequently, we present means over at least 250 experiments and a standard
deviation of the experimental results of 1-2%. We normalize all results on a
topology-per-topology manner to abstract from differences coming from differ-
ent network scenarios, like different network diameters.

We proceed first by evaluating FRoms’ memory and processing requirements
in Section the implemented route storage heuristics in Section and
the various exploration strategies of FRoMs in Section In Section [5.5.4
we concentrate on the evaluation of different cost functions for FRoms. Then
we compare FroMms performance with other routing protocols under simulation
(Section and on real hardware (Section [5.6.2]). Section deals with
the ability of the compared routing protocols to recover after node failures and
Section shows their performance for mobile sinks.

5.5.1 Memory and processing requirements (hardware testbed)

Here we present and discuss the memory and processing requirements as ob-
tained from the real hardware testbed. No simulated results are presented, since
they depend strongly on the simulation environment used and are not compara-
ble to real hardware requirements.

Memory usage. Figure (left) presents the memory footprints at compile-
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Layer Protocol / | Parameters Packet length
model
Application | regular data | data rate: DATA 17B| 20B
report every 10 secs h
data request rate: every pay
100 secs DATA_REQ
header
Routing FROMS cost functions, exploration | DATA: + | (6 + 8*s) B |
strategies, route storage ]
heuristics: see text DATA_REQ:+ |[4B
multicastDD | - DATA:+ |(2+5')B
DATA_REQ: +
unicastDD - DATA: + 7B
DATA_REQ: + 4B
MSTEAM cost per link: constant, DATA: +| (7 + 24*s) B
variable (see text
( ) DATA_REQ: +
MAC BMAC frame length reamble 120 B
100 ms P I—I
MAC header
LMAC frame length preamble 12B
2000 ms
# slots: 32 MAC header 6B
Energy linear SLEEP: 36 mW /
expenditure | battery RX, TX: 117 mW na
Radio .
propagation Nakagami shape factor m = 1 n/a

Table 5.3. Summary of simulation environment models and their pa-
rameters for our experiments with FROMS.

time for MpD and Frowms together with the application layer. It shows the mem-
ory reserved for the flash ROM and the RAM. The footprint of the ScatterWeb2
library alone is given for comparison. The vanilla implementation of MDD on top
of ScatterWeb e.g. consumes roughly 3KB of RAM at compile time, leaving 2KB
for stack allocation and application-level protocols.

Both implementations of FrRoMms and MDD use static data structures, because
there is no working dynamic memory management implementation for the mi-
croprocessor of the used hardware platform MSB430. No route storage heuris-
tics are used for FrRoms and thus all possible routes are kept at all times. Thus
the data structures are already included also in the memory footprints in Fig-
ure Although Frowms’s data structures are more complex and larger than the
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Figure 5.9. (left) Memory usage at compile time. The Scatterweb li-
brary alone is given for comparison. (right) Processing time to find a
route in milliseconds for MDD and FROMS and max-min intervals.

routing table of MDD, its memory requirements are not significantly higher. Mmpp
has a very tiny data structure, but despite this, its implementation size is not
negligible. In fact, the majority of its memory is used for the functionality of the
protocol, not for data structures.

Processing time. We measured the time needed to find a route for each
packet in the network at every node in milliseconds. Basically, we discovered
that it takes slightly longer to find a route to more sinks but the difference be-
tween the protocols is negligible. The results in Figure (right) are summa-
rized based on the number of sinks in the network. They are obtained from
experiments with topology 2 only. The reason why FrRoms needs more time to
both to find a route for a data packet is its routing data structure. We need to
search through all of the available routes to find the best available one. Conse-
quently, with 3 sinks the processing time increases further.

These results are an important proof of the applicability of FrRoms and in
general of reinforcement learning based communication protocols on real hard-
ware. They show that Frowms is easily implementable and that its memory and
processing requirements are negligibly higher than those of a very simple rout-

ing protocol like MmpD. The comparative evaluation of both protocols on the real
testbed is discussed later in Section
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heuristic number of sinks

Nr| c | 2 3 4 5 6
R 10| 3 | 25 | 115 | 737 | 2469 | 17326
58 | 5] 1| 20 | 77 | 369 | 1437 | 6590
z é’ 4| 1| 19 | 51 | 253 | 671 | 4682

2 | 1] 10| 36 | 192 215 | 1731
5 [w0]s |1 1 |1.03] 103 1.06
2E 51| 1 |107]108]109] 1.12
S2 | 4|1 [105|106|1.04| 106 | 1.12
© 2 1] 1 1 |1.02]103]| 115

Table 5.4. PSTable pruning heuristics, evaluated in terms of PSTable
size (in bytes) and achieved overhead per packet (normalized by opti-
mal Steiner).

5.5.2 Route storage heuristics (simulation)

As discussed in Section [5.4.4] different heuristics can be applied to the PSTable,
limiting its size and thus saving memory on the nodes and speeding up the
learning process. We consider two PST route pruning heuristics: limiting the
number of routes per sink to Nr, and limiting the maximum route cost to a
sink to bestCost + C. Both types of information refer to the routing table (see
Figure [5.4), before the sub-actions and actions are computed and initialized. As
the PST size decreases, fewer actions are available for selection. Because the
best route may be among those pruned, we expect the protocol performance to
decrease as the size of the PST decreases. This trend is shown for Frowms € -
greedy in Table for various values of Nr and C and for multiple numbers of
sinks. In this experiment we compare the routing overhead of FrRowms in terms of
number of transmissions (ETX) against an optimal Steiner tree.

Interestingly the largest table (with (Nr = 10,C = 3) does not always dis-
cover the best routes. This is due mainly to packet loss, especially when the
number of sinks in the network increases. This causes higher data traffic and
thus more data loss.

In the remainder of our experiments, however, we do NOT use any route
pruning heuristics in order to limit the number of used parameters and simplify
evaluation and understanding of the results. Furthermore, as we already showed
in the previous Section [5.5.1] we are able to implement FRoMs with no route
pruning heuristics on real hardware. In case the implementation needs to be
restricted because of a very large number of sinks or very high density of the
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Figure 5.10. Evaluation of exploration strategies, mean over 50 differ-
ent topologies, 5 runs each; the network consists of (top) 50 nodes, 1
source and 1-5 sinks; (middle) 50 nodes, 1-5 sources and 3 sinks; (bot-
tom) 50-200 nodes, 1 source and 2 sinks. All experiments performed
with BMAC.
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nodes, we suggest using a moderate size for the PSTable with (Nr = 4,C = 1)
that yields route costs close enough to optimal.

5.5.3 Exploration strategies (simulation)

In the next paragraphs we explore the behavior and performance of FRoms with
different exploration strategies. We consider the following four types of strate-
gies: € - greedy, € - greedy with temperature, decreasing € - greedy and uniform-
stochastic. Please refer to Section for a detailed explanation of all investi-
gated strategies and for a theoretical discussion of their behavior.

The experimental results are shown in Figure In the top graphs we fix
the number of nodes to 50, the number of sources to 1 and vary the number of
sinks from 1 to 5. All exploration strategies are normalized by FrRowms decreasing
e-greedy. The deviation of the first node death time (left graph) is only insignifi-
cant and does not exceed 1%. On the other hand, the differences in the routing
overhead (number of ETX per delivered packet in the network) reaches 10%.
This deviation of the results is a result of the MAC layer. Even an unicast MAC
protocol cannot avoid completely overhearing of packets and the used BMAC
protocol in fact uses only broadcast. This diminishes small differences in the
number of sent packets (ETX) from the routing layer, and shows how important
the MAC layer is for minimizing the energy spent and maximizing network life-
time. On the other hand, shorter routes usually result in higher source-to-sink
delivery rates, since less hops are taken. Additionally, less traffic is always an
advantage since it increases the delivery rate and thus the overall efficiency of
the network.

The rest of the graphs in Figure[5.10] present experiments with varying num-
ber of sources and nodes respectively. They support the above made observa-
tions. Given the results obtained in this step, we will consider two exploration
strategies in our comparative analysis experiments: decreasing e-greedy with
e = 0.5 and e-greedy with € =0.1.

5.5.4 Cost functions (simulation)

As we already showed in Section Froms can work with nearly any cost
function: hops, location information, remaining energy on the nodes, delay,
etc. An important property of the used cost function is its localized nature, as
Frowms allows direct exchange of information only among one-hop neighbors.
The cost function in FRowMs is used in three places - initialization of route costs,
computation of costs to reach some neighbor and comparison between routes.



114

5.5 Stand-alone evaluation of FROMS

First node death comparison, LMAC

Standard deviation of the mean energy at first node death, LMAC

1.015
—+—FROMS decr 0.5 —+—FROMS decr 0.5
- +-FROMS decr 0.5 battery 1.251| - + - FROMS decr 0.5 battery
FROMS greedy 0.1 1ol FROMS greedy 0.1
101t P FROMS greedy 0.1 battery | |- 8- FROMS greedy 0.1 battery|
= e Tet----- - + g 1.15¢
@ . N
N e < 1.1r
g * £
‘2—1.005* \%105*
Y Y-S 2ot —
£ z-"" B--eon o - o g R S |- B _—
© 0.95F TT-a
1k
0.9r Fo---- -+ +
0.85/ T Tt
. . 0.8 y
0 9950 1 3 5 6 0 1 2 3 4 5
number of sinks number of sinks
Routing communication overhead, LMAC Total energy spent for 2000 secs, LMAC
~ 1.08 T T T T T
B —+—FROMS decr 0.5 1.001-
% 1.07f| -+ - FROMS decr 0.5 battery .
€ FROMS greedy 0.1 —
& 1.06| - 8- FROMS greedy 0.1 battery § 1+
= N P —— a------ o
£ 1.08¢ PP g &
g JPhe “~§ 5 0.9991 *
- (= A
© 1.04F o < .
s .7 8 "
2 108 . 2 0.998 .
3 A s \
= L c N
g 1.02 & 0.997} e e
LRI —— FROMS decr 0.5 el
< 5‘_ _____ d—m——— T . 0.996| =+~ FROMS decr 0.5 battery T
3 1r H == FROMS greedy 0.1
-8-FROMS greedy 0.1 battery
0.99 . ) n n | . .
0 1 2 3 4 5 6 0 995O 1 2 3 4 5 6

number of sinks

number of sinks

Figure 5.11. Comparison for two different exploration strategies of
FROMS with hop-based cost and hop-battery based cost. All experi-

ments performed with LMAC.

All these functions are independent from the rest of Froms and can be easily
exchanged.

In this section we concentrate on two main cost functions: a hop-based one
and a combined hop and remaining energy based one, as already introduced
in Section Recall that the goal of the first one, hop function is to select
globally shortest routes to reach all sinks. Instead, the second one, hop-battery
function, favors shorter routes with higher remaining batteries of the involved
nodes, thus spreading the energy expenditure throughout all nodes of the net-
work. Everything else in the FRoMs implementation remains the same: data
structures, exploration strategies, feedback, etc.

Figure|5.11|presents different metrics for two exploration strategies of FRoms
with both cost functions. The hop-battery cost functions extend slightly the
network lifetime: however, only by at most 1% (top left graph). This is due to the
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nature of the cost function: on one side, it uses nodes more uniformly and this
can be observed in the standard deviations of remaining energies at the nodes
from the top right graph. In fact, the hop-battery cost functions decreases the
standard deviation of the remaining energies by 10-15%. However, at the same
time Frowms is forced to use longer routes and the routing overhead increases
(bottom left graph). These two effects combine into a slightly increased lifetime
and slightly decreased spent energy, but the difference to the hop-based cost
metric is only insignificant.

Our previous study in a less realistic simulation environment (MATLAB) in
[64] showed different results. In that study we achieved a significantly longer
network lifetime (by nearly 80%) because the nodes in the network were used
more uniformly for routing. However, in a more realistic wireless simulation
with a real implementation of a MAC protocol, overhearing of packets among
neighbors cannot be avoided and spends a lot of energy. Even when switching
to alternative routes with higher batteries, the hop-battery cost function selects
routes near to the last used ones, thus further draining the batteries of the nodes.
An extreme example are the direct neighbors of the source: whatever route is
taken to the sinks, the neighbors of the source always overhear the packets and
drain their batteries. In fact, we discovered that usually either the source itself,
neighbors of the source, or direct neighbors of the sinks are the first to die.

However, battery-hop cost functions are a good solution when the data de-
livery task to the sinks is short. In such cases, the cost function is able to spread
the usage of the nodes more uniformly, thus avoiding building low-battery bot-
tlenecks in the network.

The result presented here could change if a multicast MAC protocol for WSNs
is used. To the best of our knowledge, there is no such protocol for WSNs and it is
also appears non-trivial to develop. The expected gain of such a protocol would
be two-fold: compared to unicast MAC protocols, it would be able to send a
single packet for many simultaneous receivers; and compared to broadcast MAC
protocols it would save energy from overhearing of packets at non-receiving
nodes. However, a real world implementation of a multicast MAC protocol
could prove to be either impossible or not worth the gain, since some minimal
overhearing is always necessary and synchronization/agreement among nodes
is costly too.

In respect to the FRoMs cost functions presented here, such a multicast MAC
protocol might change the above presented results and prolong the lifetime of
the network significantly, for example comparable with our MATLAB perfect
communication simulations [[64]. However, such a protocol would also force
another change in the feedback mechanism of FrRowms. In this thesis we assume
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a broadcast MAC protocol, which delivers all packets to all neighbors. Thus,
delivering of feedback does not incur any communication overhead. Addition-
ally, feedback can be delivered to all neighbors, not only to the previous hop.
A multicast MAC protocol would force FrRowms to identify clearly the receiver of
the feedback, otherwise we will loose the advantage of using a multicast MAC
protocol.

However, since such a MAC protocol does not exist currently for WSNs and,
as discussed above, its implementation is rather questionable, we do not explore
this question further.

5.6 Comparative evaluation of FROMS

As already proposed in Section we compare the performance of FrRowms
against three other state-of-the-art routing protocols. We explore all of the rout-
ing protocols in terms of their routing overhead, network lifetime, standard de-
viation of the remaining energy on the nodes, and total spent energy in various
network scenarios, including mobile sinks and node failures. We use the simu-
lation and hardware environments as described in Section [4.2.4] and detailed in
Section The routing protocols used in our comparative study are:

1. MsteaM [66] is a recent state-of-the-art geographic multicast routing pro-
tocol. The comparison between MsTEaM and Frowms is especially interest-
ing and challenging, as they require different available information on the
nodes to achieve the same goal. Thus, also a general performance com-
parison between hop-based and geographic based protocols is presented.
We use the same application layer and sink announcement broadcasts for
both FrRoms and MsTeEaM. They have several advantages against the typical
pre-known set of sink coordinates, used by many geographic-based proto-
cols. First, it replaces the use of beacons for discovering and maintaining
neighbors and, second, it enables recovery and mobility, which are not
covered by the original version of the protocol. Two versions of MSTEAM
are evaluated: the original MSTEAM uses cost over progress to sinks metric
to evaluate possible next hops, where the cost is a function of the geo-
graphic distance between the nodes. We also implemented a simplified
version, called MsTEAM-cONsT, where the cost is always 1 and thus only
the progress to the sinks is considered.

2. UnicasT DIRecTED DirrusioN (upp) [[170] is a well known, simple, and
efficient routing paradigm, where each of the nodes builds gradients to-
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wards the sinks. We label this version of Directed Diffusion "unicast" (or
upD for short), since we consider the original one-phase pull version of
the protocol, as opposed to MULTICAST DIRECTED DIFFUSION (Or MDD), as
explained next.

3. MuLticasT DIRECTED DIFFUsION (MDD) is a multicast-optimized variation
of upbp of our own design [220]. It is searching locally on the nodes for
shared paths for multiple sinks. It can be considered a simplified version
of greedy-Frowms, which keeps only the best hops to individual sinks, does
not explore, and the cost function is based on hops only. However, it does
not incorporate the learning mechanism of FRowMs, nor it is able to find the
globally optimal path unless by chance.

5.6.1 Multi-source multi-sink routing (simulation)

In this section we make an extensive scalability analysis and comparison be-
tween FrRoMs, MsTEAM, MDD and UDD, as outlined in Section[4.2.4] Similar to the
stand-alone evaluation of Frowms in the previous Section [5.5| we fix all network
parameters except for one and give mean results over 50 different connected
random topologies with 5 random runs each. Figure presents the obtained
results for different number of sinks (top), number of sources (middle) and num-
ber of nodes (bottom) while using BMAC as MAC layer protocol. The achieved
results with LMAC were very similar and thus graphs are omitted. The first
point of FRoMms (e.g. one sink, one source or 50 nodes) is used as the point of
normalization. Unlike the experiments for the stand-alone evaluation of FRoMs
in Section here we are interested in the scalability analysis and comparison
of all routing protocols. Thus, we need to use only a single point for normal-
izing the results and not a full line. Thus, we obtain scalability analysis and
comparative analysis at the same time.

Coming back to Figure with increasing number of sinks, all proto-
cols have shorter network lifetimes (faster first node death). However, FROMS
achieves the best network lifetimes compared to the other protocols. This is due
to two reasons: its ability to find optimal multicast routes and the limited use of
broadcast sink announcements. The longer lifetimes of FRoms compared to MDD
are also due to these reasons. However, it is interesting to note that MSTEAM
(both variations) achieve network lifetimes well below mpp and Frowms. In fact,
MsTEAM-CONST (where the cost of sending a packet between two nodes is consid-
ered to be constant) performs much better than the original MsTEAM protocol.
This is due to the fixed transmission power of the simulated nodes (which is
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Figure 5.12. Evaluation of routing protocols in terms of first node death

and routing overhead, 50 different topologies, 5 runs each; the net-
work consists of (top) 50 nodes, 1 source and 1-5 sinks; (middle) 50

nodes, 1-5 sources and 3 sinks and (bottom) 50-200 nodes, 1 source

and 3 sinks. All experiments performed with BMAC.
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often also the case in real hardware). The original MSTEAM protocol uses a spe-
cial cost function, which increases the cost of sending a packet with increasing
distance between the nodes. This cost function is based on geographic distance
rather than taken from real experimental data and thus forces the protocol to
take more, shorter hops instead of less long hops.

Frowms clearly outperforms any of the protocols in this comparative analysis
in terms of network lifetime and achieved routing overhead per packet (see
again Figure top ), but especially the geographic-based protocol MSTEAM.
The reason for this is the so-called face routing in geographic protocols, which
handles void areas (nodes with no progress against the sinks). In these cases, the
packet is sent back and follows a predefined route over a "face" until reaching
again a node with some positive progress towards the sinks. However, this face
route is possibly very long. Second, and more importantly, the exact same route
will be taken for each packet, including the sending back of the packet. This
incurs excessive and unneeded routing overhead, where reinforcement learning
will avoid the repetitive sending to void nodes and back.

The same observations can also be made for varying number of sources in
Figure (middle). There, all protocols have shorter network lifetimes and
more routing overhead for increasing number of sources. The comparative anal-
ysis shows similar results as for varying number of sinks. In contrast, Figure[5.12]
(bottom) shows the good scalability of all protocols when varying the number
of nodes (the density of the network is constant). This is due to the localized
nature of all protocols, which are independent of the size of the network. The
comparative analysis, therefore, shows exactly the same trend as before.

Besides network lifetimes and routing overhead, we have also measured the
total energy spent for the first 2000 seconds of the network lifetime and the
standard deviation of the remaining batteries at all nodes at this time. The
results are presented in Figure Less energy expenditure is an indicator of
less routing overhead and little standard deviation of the remaining batteries
at the nodes indicates that nodes are used more uniformly instead of taking
always the same route and draining the batteries on the affected nodes faster.
In this experiment we again vary the number of sinks top), the number
of sources (middle) and the number of nodes (bottom). The results for energy
expenditure are analogous to the network lifetimes obtained in Figure [5.12]
The standard deviations of the remaining batteries show similar comparative
results: FrRowms achieves the least deviation through its explorative nature and
controlled switching between routes with the same costs, thus spreading the
energy expenditure throughout the nodes. Mmpp achieves similar results, since it
also makes use of the route switching in case of same route costs. In contrast,
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experiments performed with BMAC.
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Figure 5.14. Joint comparison of routing protocols with LMAC and
BMAC.

UDD uses always exactly one route. This is the reason why its standard deviation
is higher than for FrRoms and mpp. Additionally, it sends unicast packets to its
neighbors, which further drains the batteries on the routes. MSTEAM-CONST, on
the other hand, uses also exactly one route, but for shorter routes it drains the
batteries more uniformly than the original MsTEAM.

In summary, FRoMms achieves between 10 and 22% longer network lifetimes
in terms of first node death, around 2 times less routing overhead, between 5 and
15 % less spent energy and 2 to 3 times less standard deviation of the remaining
energies against the other compared routing protocols. The second best protocol
in terms of these metrics is MbD, which is a hop-based multicast improvement of
directed diffusion. Next comes the constant-cost variation MSTEAM-CONST, then
upD and then the original MsTEAM protocol.

Last, we present a comparison of all routing protocols over BMAC and LMAC,
see Figure This comparison is not intended as an evaluation of the MAC
protocols in use. Its goal is rather to show the importance of cross-layer design
between routing and MAC protocols. In fact, LMAC achieves longer network
lifetime (by 20-25%) and lower energy expenditure (by 20-25%) against BMAC
in the network scenarios which we explored. Thus, in our scenarios LMAC is the
better choice. However, this evaluation will probably change with different data
rates in the network and another choice of a MAC protocol might be necessary.
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Figure 5.15. Routing costs and delivery rates for FROMS and MDD in
various network scenarios.

5.6.2 Multi-source multi-sink routing (hardware testbed)

Next, we compare the performance of FRoms and MDD on real hardware (see Sec-
tion [4.2.4]) in terms of delivery rate and routing costs. Figure |5.15| summarizes
the results for several network configurations. As expected from our simulation
experiments and theoretical analysis, FRoms achieves lower routing costs. This
can be attributed to its learning algorithm which actively explores the network
for optimal routes. We also compare the performance against the theoretically
optimal cost of the Steiner tree.

In simulation we are unable to evaluate an accurate delivery rate since trans-
mission failures cannot be reliably simulated. Here, instead, we confirm our
theoretical expectation that FrRowms is able to achieve higher delivery rates in any
network scenario. Data is lost in MDD mainly due to the higher in-network com-
munication caused by the periodic sink announcements (see Section |4.2.4) and
the longer routes to the sinks. This increases the traffic and collision probability
leading to packet losses. Figure |5.15|supports these observations, showing that
the delivery rate of both protocols clearly drops in networks with larger numbers
of nodes and sinks.

Figure presents the results when using transmission backoff, clearly
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Figure 5.16. In-network performance when applying transmission
backoff, results from topology 1.

showing that the technique is highly effective at improving delivery rates. We
implemented a simple algorithm in which a parameter (in our case 0, 1 or 100
ms) is multiplied with the node’s ID and this delay is applied before forwarding
any packet. This backoff reduces packet collisions and thus increases successful
delivery.

Another common mechanism to increase the delivery rate is to force packet
acknowledgments. We use overhearing of DATA packets as implicit acknowledg-
ments, avoiding additional costs. The incurred overhead stems from re-sending
unacknowledged packets. Figure shows how routing costs skyrocket, while
the delivery rate also increase. Communication failures cause not only data loss,
but also loss of acknowledgments. This results in resending packets which were
actually received, but not acknowledged. Consequently, the communication traf-
fic explodes, leading to even higher loss rates.

5.6.3 Recovery after failure (simulation)

In this section we show the ability of the compared routing protocols (FrRowms,
MDD, UDD, and MSTEAM) to recover routes after node failures. We evaluate them
under simulation. An important feature of FRowms is its ability to recover quickly
after node failures. The protocol keeps track of which neighbors are responding
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results from topology 2.

and which are not, as explained in Section In case some neighbor is not
reachable any more, FrRoms switches directly to the next best route. The new
costs are propagated as feedback through the network and learned at all affected
nodes.

We have designed a recovery experiment where all but a small set of nodes
are given full battery levels. The small set of nodes is given only one third of the
usual battery level and are thus expected to die quickly one after another. We
consider this scenario more realistic compared to a controlled killing of nodes
at some predefined time, since in real deployments nodes do not die simultane-
ously. The results of the experiment in terms of delivery rate achieved and total
spent energy are given in Figure for a set size of failed nodes between 2
and 10 (approximately 4 —20% of all nodes). Each point represents a mean over
50 different topologies, with 30 different random sets of failed nodes. Note that
results are gathered only for connected topologies. In case failing of nodes actu-
ally disconnected the topology, the scenario was ignored. The achieved standard
deviation of the experiments is around 2.3 — 3%.

Frowms achieves the highest delivery rate and the least energy spent. This is
mainly due to the availability of alternative routes at each node and the feed-
back, which quickly propagates through the network, not only recovering routes
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Figure 5.18. Comparison of delivery rate and spent energy for different
routing protocols with varying number of failed nodes in the network.

but recovering the best ones. Similarly, MDD also monitors the neighborhood
through the FrRoMs node failure detection module, and has alternative routes at
the nodes. Its achieved delivery rate is 2-5% less than the one for Frowms, due
to the learning behavior of FRoms. On the other side, MsTEaAM (we tested here
only the better performing constant cost variation of MsTEAM) uses much longer
routes (see again Section [5.6), which incur more packet loss. Additionally, the
neighborhood failure detection does not work as efficiently as for FRoms and
MDD because MsTEAM uses exactly the same route over and over again. Thus,
in the case of failures of some nodes on a route, it will still be used until the
failure detection module deletes the neighbor. Only then will an alternative be
used, which might again have failed. In contrast, MDD and FRoMS use same-cost
alternative routes in a round-robin manner and thus spread the risk of taking a
failed route. For upp the scenario becomes even worse, since it relies on a single
route which needs to be updated by sink announcements.

In terms of energy expenditure, FRoms e-greedy performs the best, because
of its continuous exploration. Instead of exploring only on demand, e-greedy
keeps track of all possible routes and updates their costs proactively. Thus, when
a failure is detected, not only an alternative route is available, but its quality is
up-to-date and the best possible route can be taken. Additional exploration and
taking of non-optimal routes is avoided, delivery rate is increased because of
shorter routes (Figure right), and spent energy is minimized (Figure [5.18
left).

In summary, keeping alternative routes, using shortest possible routes, and
keeping track of the real length of all available routes (not only of the shortest
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Figure 5.19. Evaluation of all routing protocols with various number
of mobile sinks in the network.

ones), is a good strategy to be able to recover quickly after failures.

5.6.4 Sink mobility (simulation)

For testing the performance of the routing protocols under scenarios with sink
mobility, we designed two different experiments: one with different numbers
of mobile sinks, and a second with different velocities of the mobile sinks. The
experiments for both of them were conducted over 50 random topologies, with
10 random runs on each. We achieved a standard deviation of the results of
1.6 — 1.9%.

The results from the first experiment are presented in Figure Here, we
used a network size of 50 nodes, with 3 sinks and 1 source. We varied the num-
ber of mobile sinks from 1 to 3, leaving the rest of them static. The velocity of the
mobile sinks is constant and is set to 1m/s. We varied the sink announcement
periods for MDD, UDD, and MSTEAM-CONST. The assumption is that refreshing the
routes on the nodes more often would lead to better delivery rate and shorter
routes in case of mobile sinks. This can be seen for all protocols in Figure [5.19
(right). In fact, the delivery rate compared to longer sink announcement peri-
ods increases slightly. However, this happens only at the cost of increasing data
traffic and thus higher energy expenditure. Figure (left) shows that energy
expenditure increases non-proportionally to the achieved gain in delivery rate,
and is thus not worth it.

In terms of energy expenditure (Figure[5.19)left), all protocols scale well with
increasing number of mobile sinks. The reason for this is simple: the mobility of
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Figure 5.20. Evaluation of all routing protocols with various velocities
of the mobile sinks in the network.

the sinks does not invoke any additional mechanisms, such as re-transmissions,
which might influence the energy expenditure. However, it can be clearly seen
that for all protocols the delivery rate drops with multiple mobile sinks (Fig-
ure right). This is because the mobility affects the quality of the used links
and some links disappear.

Comparing the routing protocols, FRoMs has the least energy expenditure of
all of them and still achieves the best delivery rates. This is again due to several
factors: there are no regular retransmissions of sink announcements, data traffic
is routed along shorter paths, and the learning mechanism keeps the routes up to
date. As in our previous experiments, MDD and MSTEAM-CONST perform similarly
well, while upp spends the most energy and achieves the lowest delivery rate.

In our second experiment presented in Figure we vary the velocity of
the mobile sink. The network consists again of 50 random nodes, 1 source and 3
sinks. One sink is mobile and its velocity is 0.5m/s to 5m/s, which corresponds
to slow human walking (2km/h) through slow car driving (20km/h). We com-
pare the routing protocols using normal sink announcement interval (every 100
secs) because the results of the previous experiment showed that the gain is
negligible while the energy expenditure increases significantly with smaller in-
tervals.

In terms of energy expenditure (Figure [5.20), the behavior of the routing
protocols is the same as in the previous experiment. FrRoms has a significantly
lower energy expenditure than the others, followed by MbD, MSTEAM-CONST, and
finally upp. The reasons are the same as before.

The trend of the delivery rate in case of higher velocities is also as expected.
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It drops with higher velocities, less for FRoms and slightly more for the other
protocols. The difference comes from the learning mechanism of Froms, which
not only substitutes the sink announcement re-broadcasts, but enables faster
recovery of routes.

In summary, these experiments show clearly the innate ability of FRoms and
its learning algorithm to quickly recover routes in case of mobile sinks, even for
a moderate velocity of 20km/h. Compared to the all other routing protocols, it
spends significantly less energy, incurs less data traffic, and achieves consider-
ably higher delivery rates.

5.7 Concluding remarks

In this chapter we presented our solution to the first of the identified problems,
namely routing to multiple mobile sinks in a failure-prone wireless sensor net-
work. We modeled and solved this complex routing problem with Q-Learning,
and implemented a high performance reliable protocol called Froms (Feedback
ROuting to Multiple Sinks). We evaluated the protocol both analytically and
experimentally, and showed an extensive discussion of its properties and param-
eters.

Most importantly, we showed that the protocol converges in finite number of
steps, as opposed to the original Q-Learning algorithm which is guaranteed to
converge after infinite number of steps. We also discovered that we can minimize
exploration of non-optimal routes by applying a dynamic cost function, which
itself implicitly explores the network.

The experimental evaluation of FrRowms in simulation and on a real hardware
testbed showed its superior performance over three state-of-the-art routing pro-
tocols in terms of delivery rate, network lifetime, energy expenditure, and in-
curred communication overhead. Most importantly, we clearly showed its appli-
cability for real world scenarios and problems by implementing the protocol on
a highly memory-restricted sensor platform.

Considering our goals identified in Chapter [2] we have fully met the require-
ments of our target application scenario. FrRowms is able to handle failure-prone,
multicast routing to possibly mobile sinks, scales very well with the number of
sinks, sources, and growing size of the networks. The results achieved in this
chapter are highly satisfying and fully support our intuition and initial study for
using reinforcement learning for solving the challenges of our target application
scenario. Thus, in the next chapter we proceed with the solution of the second
problem, low overhead, non-uniform clustering for WSN.



Chapter 6

CLIQUE: Role-free Clustering for
WSNs

The solution path to the target scenario as identified in Chapter |4] divides the
problem into two main parts: first, organizing the nodes of the network into
clusters and gathering the information of each cluster to its corresponding clus-
ter head; and second routing the aggregated cluster data from the cluster heads
to all sinks in the network. While Chapter |5| provides a solution to the routing
problem, this chapter concentrates on the clustering problem: identifying the
clusters, the cluster members and the cluster heads and gathering the data on
the cluster heads.

While the general approach of clustering is seemingly simple and straightfor-
ward, efficiently achieving it involves solving five challenging problems. First,
the clusters themselves must be identified. Second, the cluster heads must be
identified. Third, routes from all nodes to their cluster head must be discovered.
Fourth, the cluster heads must aggregate the received data. And finally, the clus-
ter heads must efficiently route the aggregated data to the sink(s). This chapter
focuses on the first three problems, using existing works to cover the last two.

The first problem, identifying the clusters, is specific to the application do-
main. Some solutions generate random clusters [[149], others focus on seman-
tically formed clusters, such as grouping all sensors in a geographic area [213]]
or those with similar data independent of sensor location [[I90]. We use the
target scenario as described in Chapter [2]and define the clusters to be groups of
nodes in geographic proximity to each other. The clusters are rectangular areas
of variable size. An example of such a clustering scenario is a grid, overlaid on
the network with clusters as grid cells as shown in Figure [6.I)(a). However, any
other shape of the clusters are also possible, for example hexagons. The clusters
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can also be pre-defined, like rooms or floors in a building. Additionally, we allow
for non-uniform clustering as required by our target scenario, where the size of
the grid’s cells grow with increasing distance from some special points of interest
(Figure b).

Data aggregation, the fourth clustering challenge, is performed by the clus-
ter heads to pre-process the data before forwarding it to the base stations. It
is highly dependent on the type of the data and the application requirements.
The aggregation methods are out of scope of this thesis. However, we assume
that aggregation is possible and can be performed on any node of the network
with minimal processing requirements and no communication overhead. Addi-
tionally, we allow for both tree-aggregation and cluster head central aggregation
(see Section and [41]).

Regarding the last problem, routing data from the cluster heads to the sinks,
some approaches assume cluster heads communicate directly with the base sta-
tion, e.g., by boosting transmission power. Such an approach places high energy
demands on the cluster heads, and makes unrealistic assumptions about the
network size or the position of the sink. Instead, we assume multi-hop commu-
nication between the cluster heads and the sinks. Any routing approach can be
chosen and all nodes in the network are used for routing. Here, we employ our
own multicast protocol FrRoms, developed and evaluated in the previous chap-
ter. This choice allows us to take advantage of cross-layer optimization between
Frowms and the work presented here.

This chapter proceeds as follows: Section describes the algorithm for
organizing the nodes into clusters: both for uniform and non-uniform clustering.
Section|[6.2|presents the learning algorithm for finding the best cluster heads and
the intra-cluster routes. Section gives an extensive evaluation of CLIQUE in
different uniform and non-uniform scenarios. Finally, Section [6.5| discusses the
achieved results and properties of CLIQUE and its application areas.

6.1 Grid-based cluster membership computation

One of the main goals of our clustering approach is to allow for non-uniform
sizes of clusters. We assume that the size of the clusters is increasing with grow-
ing distance between the cluster and some special point of interest, which we
call eye. Around the eye the clusters have some minimum required size and
further away the size grows until reaching some maximum allowed size. The
eyes can be any points in the network: they could be a rescue worker’s current
coordinates (sink’s coordinates) in a disaster relief scenario, the worker’s future
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Figure 6.1. Uniform (a) and non-uniform (b-d) clustering scenarios.

target position etc. The combination of the given parameters (the eye’s coordi-
nates, the minimum and the maximum size of clusters, see Figure left) allow
for any non-uniform scenario based on distance. Examples of a non-uniformly
clustered network are given in Figure [6.I(b-d). The network is divided into
square-shaped clusters with maxCluster size of 500 meters and minCluster size
of 125 meters directly around the eye(s). For comparison, Figure (a) shows
a uniform scenario with a cluster size of 250 meters.

Identifying the cluster to which the node belongs simply means computing its
cluster ID. The goal of this computation is to be able to identify which neighbors
belong to the same cluster and which do not. The IDs of the clusters are defined
as follows. First, the grid is divided into the maximum sized clusters. If the
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Figure 6.2. Clustering parameters (left) and cluster IDs (right)

requirements of the sinks for the size of the maximum cluster are different, the
smallest is taken. Each of these top-level clusters receives a unique global ID.
For example, the clusters in Figure [6.1|(b) can be numbered 1 : 16. Note that
we take square networks as examples for simplicity, but the ID computation
approach can handle any sizes or shapes for the network and the clusters.

For achieving non-uniformity, we need to divide some of the top-level clusters
into smaller ones. We always divide a bigger cluster into 4 equally sized smaller
clusters. However, any other equal-division is also possible: into 9, 16, etc. The
smaller clusters are then assigned local IDs from 1 : 4 and the full ID of the
cluster becomes for example {17 — 3} for top-level cluster 17 inner cluster 3.
These scheme can be continued iteratively for any sub-division of clusters, for
example {17 —3 — 1}, {17 —3 — 1 — 2}, etc. Figure gives an example. Thus,
there is a unique ID for each cluster in the network and the size of the cluster
can be derived from the number of levels in the ID.

Clustering parameters include the coordinates of the eye(s), the minimum
and maximum cluster sizes and the growing step. They are summarized in Fig-
ure (left). Each sink defines its own clustering parameters and includes
them into its data request packet (sink announcement). Thus, each node in the
network receives the clustering parameters of each of the sinks. At each node,
the parameters of all sinks need to be combined to achieve the same clustering
in the whole network. We assume that sinks compute their parameters accord-
ing to their minimum data requirements and thus the finest clustering (smallest
clustering) is taken to meet all sinks’ requirements. The cluster ID computa-
tion algorithm works as follows: first, the grid is divided into clusters with the
maximum required size. Then, the cluster of the eye and the own cluster are
identified and the distance between them is computed in number of clusters. If
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the distance is O (the node and the eye are in the same top-level cluster), the
minCluster is applied. With each step further away from the eye, the minClus-
ter is multiplied by stepCluster to identify the size of the cluster. For example,
with stepCluster = 2, the resulting clustering is presented in Figure [6.1](b). With
smaller steps, the cluster sizes will grow slower.

In case of two eyes (sinks) as in Figure (c), the cluster ID according to
each of the eyes will be calculated separately and then the smaller sized-cluster
will be taken. Many other scenarios are possible. For example, in Figure [6.1)(d)
we can require a second eye per sink to be connected with the first one and the
minimum sized clusters to be applied to the region between the two eyes.

Note that the computation of the cluster ID is simple, takes only O(1) steps to
complete at each node and needs only to be recalculated with new data requests
arriving at the node - e.g. in case the sink has new clustering requirements or
has moved out of its top-level cluster (see Section on mobility). The com-
putation relies only on data available at the node directly (its own coordinates)
and on data in the data request.

Other clustering scenarios. The main property of the presented cluster
membership algorithm is its non-uniformity. However, it presents also a simple
way of computing uniform clusters in a distributed manner by setting minCluster
= maxCluster or stepCluster = 1. Next we present the cluster head learning algo-
rithm which depends on some already available cluster membership information
on the nodes: the presented non-uniform or uniform one or any other cluster-
ing which associates each node in the network with a cluster ID can be used.
An example for such an alternative is a-priori floor or room information on the
nodes.

6.2 Finding the cluster head with Q-Learning

Clustering and aggregation in WSNs is typically performed in two steps: first,
clusters are identified, and second, cluster head roles are assigned to usually a
single node in the cluster. Sometimes this scenario is reversed: the cluster head
roles are first assigned, then nodes join the nearest cluster head, thus forming
clusters. Nevertheless, in both scenarios the nodes need to agree on the cluster
heads and to find routes to them.

In contrast, here we propose a cluster head assignment algorithm, where the
nodes do not need to know the identities of the cluster heads. Given knowledge
about their cluster identifier and basic information about their one-hop neigh-
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bors, each node tries to route its data directly to all sinks in the network while
taking the simple decision of whether to act as a cluster head and aggregate data
or whether to route the incoming data to a neighbor better suited for this role.
The algorithm is fully distributed and localized.

While straightforward to explain, one major challenge remains: how do
nodes evaluate their neighbors to decide both the next hop and whether
or not to act as a cluster head? To address this, we observe that sinks flood the
network with DATA REQ packets, with the result that each node knows some
routing information regarding each individual sink in terms of parameters such
as hop count, geographic progress, or battery status. However, our challenge is
to route to multiple sinks, by first routing to the cluster heads most appropriate
for each cluster. Therefore, each node must combine the single-sink routing in-
formation to identify the cost to route to multiple sinks and to decide whether
or not to act as the cluster head. Unfortunately, the local information from the
DATA REQ packets provides only an approximate, upper-bound on the cost, and
does not take into account the real multicast cost to the sinks. Therefore, a node
can only approximate the total routing costs, and further can only make a best
estimate about whether or not to serve as a cluster head.

To improve the localized cost estimates, we employ Q-Learning, incremen-
tally learning the real globally valid costs to all sinks through the best cluster
head. Additional information is gathered by exchanging feedback among neigh-
bors while routing data packets. We calculate the routing cost using a combi-
nation of hop counts to reach the sinks (through the cluster heads) and battery
status of the nodes on the routes to the sinks. Note that the data is always routed
first to the cluster head where it is aggregated. Only after this point can it be du-
plicated to follow multiple paths to the sinks. Such splitting before aggregation
would result in multiple cluster heads, aggregating data for each of the sinks
and increasing significantly the communication overhead both for routing to the
cluster heads and to the sinks.

Q-Learning was already introduced in Chapter In our clusterhead rout-
ing scenario, each sensor node is an independent learning agent, and actions
are routing options using different neighbors for the next hop toward the clus-
terhead. The clusterhead is defined as the node in the cluster with the best (low-
est) routing cost to all sinks. The following provides additional detail for the
Q-Learning solution.

Agent states. The state of an agent is a tuple {D,costﬁﬂdf}, where D is the
set of all sinks in the network and costg“el is the routing cost to all sinks through

all neighboring nodes N, plus the routing costs to the sinks at the node itself.
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Depending on this value, different actions are possible.

Actions. An action identifies the next hop to the cluster head. This could be a
neighbor or the node itself if it is acting as cluster head and aggregating packets.
Specifically, we define a possible action as a,, = (n;, D) with i € {N,self}. In case
the next hop is the node itself, the packet is buffered for some predefined time,
all buffered packets are aggregated and sent to the sinks using the routing layer.

Q-Values. Q-Values represent the goodness of actions and the goal of the
agent is to learn the actual goodness of the available actions. In our case, Q-
Values represent an estimate of the cost of the neighbor, specifically the broad-
cast hop count to reach all sinks from the agent and the minimum battery level
of the nodes on the route to the sinks through this neighbor. The first part of
the cost function accounts for energy efficiency and minimizing communication
overhead. The second, the minimum battery of the nodes, is necessary to avoid
very low powered nodes. The two elements of the cost function are united
with a hop count multiplier (hcm) value, which grows exponentially for decreas-
ing battery levels, identical with the one designed for FrRoms in Section [5.4.8]
This means that when the batteries of the nodes are full, the routing cost of a
neighbor is exactly the number of hops to reach the sinks; while with decreas-
ing batteries this cost exponentially grows, giving preference to higher powered
nodes on possibly longer routes.

To initialize these values, we could use random values, as is common in many
learning approaches. However, we turn again to a more sophisticated approach
that calculates an estimate of the hop count cost based on the individual hop
counts available in a standard routing table, as described above, thus speeding
up the learning process.

The initial Q-Value for an action a, = (n;, D) is:

Q(ani) = Qhops(ani) ’ Qbatterjy(ani)
= Zhopszi ~hem(bat, ) (6.1)

deD

where ho psgi is the number of hops neighbor n; needs to reach sink d. The
initial value of the battery element is initialized with the battery status of neigh-
bor n;. Note that the hop-count estimation is an upper bound of the real costs,
because next hops are expected to be able to share routes to multiple sinks, de-
creasing the number of hops needed to reach the sinks. On the other hand, the
battery element is expected to decrease, because battery levels decrease. Thus,
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the Q-Values are expected first to drop, reflecting the learning of the real hop
costs to reach the sinks, and then to slowly and constantly increase because of
depleting energy on the nodes.

Updating a Q-Value. To learn the real values of the actions, the agent must
receive the reward values from the environment. In our case, each neighbor to
which a data packet is forwarded sends the reward piggybacked with the next
data packet with its own best Q-Value. The new Q-Value of the action is:

Qnew(ani) = Qold(ani) + Y(R(ani) - Qold(ani)) (6.2)

where R(a,, ) is the reward value and y is the learning rate of the algorithm.
We use y = 1 to speed up learning and because we initialize the Q-Values with
non-random values. Therefore, with y = 1, the formula becomes

Quew(ay,) =R(ay,) (6.3)

directly updating the Q-Value with the reward.

Reward function. Intuitively the reward function is the downstream node’s
opportunity to inform the upstream neighbors of its actual cost for the requested
action. Thus, when calculating the reward, the node selects its lowest Q-Value
for the destination set and adds the cost of the action itself:

R(a,)=c, + mell{ll Q(a,,) (6.4)

This propagation of Q-Values upstream is piggybacked on usual DATA packets
and eventually allows all nodes to learn the actual costs.

Exploration strategy (action selection policy). One final, important learn-
ing parameter is the action selection policy. A trivial solution is to greedily select
the action with the best (lowest) Q-Value. However, this policy ignores some
actions which may, after learning, have lower Q-Values, resulting in a locally
optimal solution. Therefore, a tradeoff is required between exploitation of good
routes and exploration among available routes. Here we choose the standard
e-greedy strategy (see Chapter [4.1)), which selects a random route with proba-
bility € and the best route otherwise. However, € can be very low, as our study
on dynamic cost functions for FrRoms in Section showed. This is because
the changing costs of the routes force the protocol to switch to other, less costly
routes, thus also learning their real costs and implicitly exploring routes.
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Figure 6.3. Learned cluster head in a connected scenario (a), and in a
disconnected scenario (b). Data gathering and aggregation is shown
only inside the cluster.

6.2.1 Discussion of key properties and convergence of CLIQUE

The most important property of CLIQUE is its role-free nature. In contrast to most
clustering algorithms, it does not try to find the optimal cluster head (in terms of
cost) and to inform cluster members about it, but incrementally learns the best
behavior without knowing where and who the real cluster heads are. As a result,
especially at the beginning of the protocol, multiple nodes in the cluster may act
as cluster heads. While this temporarily increases the overhead, this is a short-
term tradeoff in comparison to the regular communication overhead required
to agree on a single cluster head. Later in the protocol operation, after the real
costs have been learned, multiple cluster heads can be seen only in disconnected
clusters, where a single cluster head cannot serve all cluster members.

Even in case of a connected cluster in which two nodes have exactly the same
routing costs and are not neighbors, there will exist a node in this cluster who
needs to take the decision to which of the two possible cluster heads to route
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Figure 6.4. Recovery after node failure and new cluster heads.

the data. If both options have exactly the same routing costs, which means that
also the routes to them have the same costs, a simple ID-resolving process will
decide on one of the options. If the routes to both possible cluster heads have
different costs (e.g. there is a depleted node on the way to one of them), then the
data will be routed automatically to the cluster head with lower cost route. This
intuitively argues that CLIQUE converges to a single cluster head (if and only if
the cluster is connected). However, convergence cannot be defined for CLIQUE in
the usual way because of the used dynamic cost function. As we already showed
for FRoms in Section [5.4.8] a dynamic cost function as the residual energy based
one for CLIQUE, forces the protocol to switch to alternative routes while residual
energy on the nodes decreases. Thus, there is no real “stable” phase of CLIQUE,
where exactly the same optimal route is taken. Instead, routes are alternated
to spread the communication load. In this sense, convergence to a single route
or a single cluster head is not desired. What we are more interested in is the
total incurred communication overhead in the network, both from clustering
and routing. We will evaluate it experimentally in the next Section

Figure[6.3|shows some cluster head learning scenarios. Scenario (a) presents
a single cluster, where all nodes within the cluster are connected. The optimal
cluster head lies in the lower left corner of the cluster because all sinks lie in this
direction. A more problematic scenario is presented in Figure (b), where the
cluster is disconnected. Such a scenario is challenging for traditional clustering
approaches: they need a complicated recovery mechanism which requires large
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control overhead. On the contrary, CLIQUE automatically identifies two cluster
heads, as shown in the figure.

A recovery scenario is shown in Figure in which node 13 fails. Node 11
is no longer able to send its data to the cluster head and needs to find a recovery
solution. However, instead of searching for a new route to the cluster head it
simply becomes a cluster head itself. Again, because of its learning properties
and awareness of the network status, no control overhead is required for this.

It is also worth noting that CLIQUE is a reactive protocol: it only learns the
optimal cluster heads when data traffic is flowing. In case some part of the
network remains silent, it will not spend any energy on learning or clustering
there. Note also that after aggregation, the packet is routed to the sink via the
routing protocol, which is allowed to use any nodes in the network.

6.2.2 Sink mobility

Our CLIQUE clustering algorithm also handles sink mobility. In case the desti-
nations move, they need to re-broadcast their data requests to all nodes in the
network so that they can update their routing information. However, when we
combine CLIQUE with Frowms, the full-network broadcasts can be avoided. They
are compensated by the feedback (reward) mechanism, which updates the Q-
Values at all nodes while forwarding sensory data to the destinations. Thus,
the sinks need to broadcast their data request only one hop to their immediate
neighbors and update the routes there. The learning and reward mechanism
will update the routes on all interested nodes.

This requirement changes in case of non-uniform clustering. Here, if the
clustering eye moves away from its top-level cluster (refer back to Section
all nodes in the network need to be informed about the new clustering scenario.
However, the spreading of the new data requests can be further limited by the
nodes in the network: if the new data request in fact changes the cluster ID
on the node, then re-broadcast it; if not, there is no need of re-broadcasting it.
Thus, the data requests will be sent only to nodes which need to change their
cluster membership, all others will be uninformed about the new eye’s position.

In case of non-uniform clustering, it is important to stress the difference
between eyes and sinks: when the eyes move and the sinks do not, only the
clustering layer needs to be updated. On the contrary, if the sinks move and the
eyes do not, the routing layer needs to be updated. In case both are moving,
both layers need an update.
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Layer Protocol/ Parameters
model
data rate: every 2 sec
Application CLIQUE sink announcement: every 100 sec
TRC wait before aggregate: 200 msec
clusterhead round (Trc): 200 sec
Routing Frowms expl. strategy: € - greedy, e = 0.1
Medium access CSMA not persistent, no ACKs
Energy Linear SLEEP: 0.054 mW
expenditure battery RX: 66 mW
(MICA-2) TX: 117 mW
Radio propagation | 1-Nakagami -

Table 6.1. Summary of simulation environment models and their pa-
rameters for our experiments with CLIQUE.

6.3 Comparative evaluation of CLIQUE

In this section we perform extensive simulation experiments with CLIQUE to val-
idate our ideas and theoretical discussions from Section [6.2.1] We use a simula-
tion evaluation environment as identified in Section based on OMNeT++
and the Mobility Framework. All parameters and models, as used in this section
are summarized in Table The main difference of this experimental environ-
ment compared to the one used for FrRoms in Chapter [5| is the MAC protocol:
Frowms was evaluated using BMAC and LMAC and here we need to use a sim-
pler protocol like a non-persistent idle CSMA. There are two reasons for this:
the scalability of the simulation, and additional evaluation for FRoMs with a
third MAC protocol (see Sections[5.5|and[5.6). To evaluate extensively a cluster-
ing protocol we need bigger networks: here we use networks with 100 to 300
nodes. Additionally, all nodes in the network serve as data sources, exploding
the data traffic in the network. While the routing protocol is independent form
the amount of data traffic, the MAC protocol can handle only limited number
of packets. LMAC has a very low throughput in dense big networks, since it
needs to reserve a separate slot for each of the nodes in a 2-hop environment.
In dense networks it needs many slots in a single frame, which increases the
length of the frame. However, nodes are able to send only one data packet per
frame. Furthermore, the battery lifetime is limited because of the battery model
and the number of data packets, which nodes are able to send before the net-
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work dies, is too low. BMAC has a better throughput, but the large number of
preambles before sending out the real data packets breaks the simulation envi-
ronment in terms of memory. Thus, we decided to use a simpler MAC protocol, a
non-persistent idle CSMA. Additionally to being able to run bigger simulations,
these experiments also show that FRoms can run generally on top of any MAC
protocol, including an error-prone and unreliable CSMA.

To obtain meaningful results with the CSMA protocol we needed to change
slightly also the battery model and to take the energy expenditure of a MICA-2
sensor node, see Table and Table Recall that the previously used battery
model assumed equal consumption for idle, listening and sending radio modes.
Such a model will result in a constant network lifetime for any routing/clustering
protocol top of an idle CSMA MAC protocol.

In our experiments we measure performance for multiple network settings.
Unless otherwise stated, our experiments run with 30 different random con-
nected networks with 30 different random seeds (900 runs in total). The net-
work scenario spans from 100 to 300 nodes in a network of 2000x2000 meters,
from 1 to 5 sinks and with clustering sizes from 250m to 1000m. The achieved
standard deviation of the experimental results is 1.3 — 2%.

Comparative study. We implemented the Traditional Random Clustering
(Trc), based on the work in [[15]. The original algorithm uses a head selection
probability at each node in the network to decide whether or not to become a
cluster head. In case it becomes a cluster head, the node broadcasts a notifica-
tion. Non-cluster head nodes simply join the nearest cluster head. Our modi-
fication consists of first clustering the network exactly as in CLiQuE. Then, the
probability-based cluster head assignment from [[15]] is applied, and nodes join
the nearest in-cluster cluster head. In case no cluster head is announced after
some waiting time, the algorithm is simply re-run and data packets are buffered
on the nodes. The algorithm is performed periodically to spread the energy
expenditure among the nodes. The probability of becoming a cluster head is
derived from the expected number of nodes in one cluster and is different for
various network deployments:

N,

clusters
Pclusterhead = N (65)

nodes

In both clustering protocols, the cluster heads wait for some predefined
amount of time for packets to arrive (in our case 200 msec with a sensing period
of 2 secs), aggregate them and send them to the sinks using the routing protocol.

For this study, we use FrRoms from Chapter 5, We again emphasize on multi-
hop routing protocols, since our application scenario is not able to send messages
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from cluster heads to the sinks directly in one hop. The routing protocol takes
care of aggregated packets and forwards them to the sinks. It is allowed to use
any nodes in the network. The combination of CLIQUE with Frowms is efficient
since they both use the same cost metric and are designed for multiple mobile
sinks. We also consider FRoms as a good choice to combine with Trc for the
same reasons. However, any other multi-hop multicast routing protocol may be
taken for either clustering approaches.

6.3.1 Uniform clustering evaluation

We begin with evaluating CLIQUE in a uniform grid scenario, where all clusters
have the same size. Given that the main goal of our clustering approach is to
minimize energy expenditure in the network, we measured the following cost
metrics:

First node death is a good indicator for the expected lifetime of a given
network. It shows how the clustering and routing approaches are able to avoid
bottlenecks in the network and to spread the energy expenditure. The later
the first node dies the better. We have evaluated the network lifetime and the
scalability of CLIQUE in three dimensions: increasing number of sinks, increasing
cluster sizes (and thus more nodes per cluster and higher hop radius of the
cluster) and increasing density of nodes in the network.

Figure (a) presents the results of the network lifetime study. The plots
show that CLIQUE is able to prolong the network lifetime in terms of first node
death by 20-25% and scales well in all load tests. Interestingly, while the gain
is constant for different numbers of nodes or different cluster sizes, it increases
with increasing number of sinks. This is because of the multicast nature of
CLIQUE, which takes into consideration the routing costs to all sinks and is able
to save communication overhead while routing from cluster heads to the sinks.

Standard deviation of the remaining energy on the nodes is closely re-
lated to the efficient balancing of energy consumption and shows how balanced
or unbalanced the node usage was during the network lifetime (until first node
death). Low standard deviation implies good balancing. Figure (b) sum-
marizes the results over the same three dimensions as before (number of sinks,
node density and cluster sizes). It is worth noting that with an increasing num-
ber of sinks CLIQUE is not able to achieve much better energy spreading than
Trc. This is because the overall communication load in the network increases
so much that Trc also uses a lot of nodes, implicitly spreading the load among
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Figure 6.5. First node death (a) and standard deviation of remaining
energies at first node death (b) for different number of sinks, cluster
sizes and nodes in the network
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Figure 6.6. Delivery rate at the sinks for different number of sinks,
cluster sizes and node densities

them. However, note again that in the same scenario CLIQUE prolongs the net-
work lifetime by almost 25% (Figure (a) bottom).

The ability of CLIQUE to spread the energy expenditure is especially clear in
Figure (a) center. Here, with increasing node density, CLIQUE makes exten-
sive use of the many different options available for routing, thus spreading the
load among the nodes.

Delivery rate is closely related to the communication overhead in the net-
work: with more packets being transmitted the probability of collisions or over-
flowing MAC layer buffers increases. However, it should be noted that delivery
rate is not an absolute metric in a simulation environment and instead simply
provides an intuition of the real expected behavior. Figure summarizes the
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Figure 6.7. Communication overhead for clustering and in total in
number of generated packets of all types

results. The behavior of CLIQUE can be characterized as stable, as it shows al-
ways a delivery rate increase of between 20%-30%. These results are mostly
interesting to observe together with those in Figure where the total number
of generated packets is presented (see below).

Generated packets. Here we counted the number of packets created in the
whole network of all types - data requests, aggregated and non-aggregated data
packets and cluster head selection packets. Figure (a) shows that the overall
communication overhead was reduced with CLIQUE by 25%-30%, due mostly to
the reduced in-cluster communication, see Figure (b). We have shown these
results for increasing cluster sizes (increasing number of nodes in one cluster
with constant node density) since it shows clearly how CLIQUE saves even more
communication overhead with growing clusters.

Total energy spent measures the ability of the clustering approach to min-
imize communication in the network as a whole. While longer network life-
times can be due either to better balancing of resources or to less communica-
tion overhead, the total spent energy clearly shows the incurred communication
overhead. Low energy spent implies less overhead.

The results are presented in Figure Not only does CLIQUE reduce the
spent energy by 25% (a), it also increases the delivery rate by more than 2 times
(bottom plot). This is because the overall communication overhead is reduced
significantly, thus also reducing collisions. The total communication overhead
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delivery rate for networks with unlimited energy for 1000 seconds.

(top right plot) is nearly halved: however, this does not result in halving the
total spent energy because of packet overhearing.

6.3.2 Non-uniform clustering evaluation

The non-uniformity feature of CLIQUE needs to be used carefully and its eval-
uation is not trivial. It is a well-known fact that growing the size of clusters
infinitely does not minimize the communication overhead. When clusters grow
in size, the inner-cluster communication (non-aggregated packets) is increasing
too. At the same time, the intra-cluster communication (aggregated packets) is
decreasing non-proportionally. Thus, there is a balance somewhere between size
of the clusters, data quality and communication overhead, which has to be found
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Figure 6.9. Optimal cluster size and non-uniform clustering perfor-
mance. Experiments with CLIQUE and FROMS.

for each network, depending on the node density, link qualities and application
requirements. Figure (a) shows this balance for 30 different networks of 200
nodes with 2 sinks over a field of 2000x2000 meters. The spent energy in the
network is growing constantly with increasing the cluster sizes and it looks like
the minimum cluster sizes perform best. However, looking at the delivery rate of
packets it becomes clear that the low energy expenditure comes at the price of
loosing too many packets because of packet collisions. Thus, the ratio between
them gives us the optimal cluster size - in this case it is around 400 meters or
one-hop radius of the cluster (in our simulations the maximum communication
radius lies at around 400-450 meter).
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Given the optimal cluster size for a network it becomes clear when and how
non-uniformity can achieve lower energy expenditure. For example, if the ap-
plication scenario requires very small cluster sizes for some regions of interest,
CLIQUE can use the optimal cluster sizes in all other regions. Thus, it is not neces-
sary to divide the whole network into small-sized clusters and CLIQUE will reduce
the energy expenditure to the minimum possible. Figure [6.9((b) demonstrates
this by comparing again the delivery rate, the energy expenditure and their ra-
tio for different uniform and non-uniform scenarios. For example, clustering
the network non-uniformly with {minSize = 100, maxSize = 400} performs
around 20% worse in terms of the energy/delivery rate ratio than the uniform
clustering with optimal size = 400, but at the same time 20% better than the
uniform clustering with size = 100.

6.4 Optimal cluster sizes

In the previous section we introduced a novel Q-Learning based clustering proto-
col CLIQUE, able to avoid all-together the communication overhead for selecting
cluster heads. It is able to handle multi-hop clusters as well as one-hops clus-
ters and does not depend on node density, number of sinks, etc. However, this
freedom of selecting any cluster sizes poses a new question: which cluster size
is optimal? We define the optimal cluster as the one sized such that routing data
from the cluster members to cluster heads and subsequently to base stations in-
curs the minimal communication overhead. In this section, we step back from
our clustering protocol and we concentrate on this question. We explore the pa-
rameter space of a wide variety of clustering scenarios to give a general answer
independent of the used clustering protocol.

There have been previous efforts on answering this question and we already
described them in Chapter In [[194], the author addresses the question:
given a network with N uniformly spread sensors, how big is the optimal cluster
measured in the number of sensors? In this work the network model assumes
that the network can be divided into cells with each cell containing a single
sensor with a very high probability. Additionally, sensors can communicate to all
their adjacent sensors. The cluster heads are always in the center of the cluster
and have more powerful radios to be able to communicate to all adjacent cluster
heads. In this model, the question of the optimal size of a cluster is reduced
to the calculation of the number of transmissions required to reach the cluster
head and the single base station. The author’s answer to the above question is:



149 6.4 Optimal cluster sizes

Proposition 1. [[194] In a network with A x A cells, where each cluster is x X x
cells big, the optimal x is as close to v/2N as possible and divides A.

For example, for a very big network, e.g. 1156 nodes (34x34 cells) the
optimal cluster size is 12 (or 6 hop cluster radius). For a small network, e.g.
with 256 nodes (16x16 cells) the optimal cluster size is 4 (or 2 hop radius).

In contrast, the study in [206]] comes to the conclusion:

Proposition 2. [[206]] For any network with 300 to 2000 nodes, the optimal clus-
ter has a radius of 2 hops or any node in the cluster can reach the cluster heads in
maximum 2 hops.

However, a slightly different network model is used. The authors use multi-
hop routing through normal sensors to reach the base station instead of cluster
heads only.

These results are not only contradictory. The parameter space is rather lim-
ited, since it permits a very limited variety of network scenarios, for example
different network densities. On the other hand, the communication model (unit
disk graph symmetric and reliable communication) is appropriate, since the goal
of the study is to answer a general high level question about which clustering
scenario is in theory the best possible one.

In the next paragraphs, we define first optimal clusters in a formal way and
the used network parameters. Then, in Section [6.4.2] we step through the net-
work parameters and study their effect on the clustering scenario and commu-
nication overhead.

6.4.1 Defining the optimal cluster

Next we extend the network models used by [[194, 206]] to incorporate multiple
network and cluster parameters and to make an extensive analysis of the optimal
cluster sizes. We define the WSN to be a flat network with N nodes, uniformly
and randomly spread over a square area with size A. We assume that clusters are
also squares with some size C. Nodes can communicate to all their neighbors,
defined as those nodes whose distance is less than some communication radius
r. (unit disk graph communication model). Energy is spent when a node sends
or receives a packet. We do not use a specific energy model to calculate the
exact energy expenditure, but instead always show the number of sent/received
messages (ETX+ERX). As we assume a broadcast environment neighbors receive
messages even if they are not destined to them.
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PARAMETER DESCRIPTION
N number of nodes
A size of network (meters)
communication radius of nodes
r
c (meters)
C size of cluster (meters)
P position of cluster head [center,
CH random, station]
IN in-network processing [tree, center]
M number of base stations

Figure 6.10. Network and clustering parameters as used in this study.

In every cluster there is a single cluster head, reachable in k hops by all
cluster members. The position of the cluster head inside the cluster is an input
parameter, P, that can be set to: next to the center of the cluster, next to the
base stations (in case of multiple base stations the minimum distance sum to all
of them is used as metric), or random. Each node gathers sensory data and sends
it first to the cluster head, then the cluster head aggregates the received pack-
ets and sends a single packet to all base stations. Multi-hop routing through all
sensor nodes (cluster heads and cluster members) are used for both aggregated
and non-aggregated packets. There are M base stations in the network, ran-
domly selected among all nodes, therefore they have no special properties such
as increased battery or communication range. In-network processing is either
tree-based or centralized at the cluster head [41]] (parameter I, = {tree, CH}).
The network parameters we use are summarized in Figure A sample net-
work for our study is shown in Figure

We evaluate the performance of a clustering scheme with its parameters
N,A,r.,C,Pcy, M, Iy in terms of the number of received/sent packets for routing
the sensory data from the sensors through the cluster heads to the base stations.
We define:

Definition 1. The optimal clustering scenario is the 3-tuple {C, Py, Iy} which
incurs the minimum communication overhead for the network {A,N,r.,M}.

c

Definition 2. The communication overhead of a network {A,N,r,, M} with clus-
tering scenario {C, Pqy, Iy} is the sum of sent packets and received packets for all
nodes in the network for one round of data reporting. In one round of data re-
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Figure 6.11. A sample network from our MATLAB evaluation scenario
with 2000 nodes, 3 base stations, clusters and cluster heads.

porting each node sends exactly one packet to its cluster head and the cluster heads
send exactly one packet to all base stations M. Multi-hop routing is used for all
transmissions.

Note that the network model and clustering scenarios we define here are
more general and sophisticated than those previously proposed [[194, 206]. We
allow more parameters (node density, communication radius, multiple base sta-
tions) and different aggregation schemes (tree-based, centralized). Some of the
parameters are novel, like the position of the cluster head and have not been
evaluated before. We are particularly interested in this one, since our own clus-
tering protocol CLIQUE selects cluster heads next to the base stations, based on
the intuition that intra-cluster communication will be minimized.

The questions we address in the next section are:

1. Are there some general rules for optimal clusters? For example, do 2-hop
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clusters perform the best for all network sizes, independent of the number
of nodes, network area or node density? (see Propositions (1| and

2. If there are no rules for all parameters, what are the rules of thumb for se-
lecting the cluster parameters C, P, M for some given network N, A, r., M?

3. Are the above results different when a different in-network aggregation
scheme is used, e.g., tree-based vs. centralized?

4. How does the position of the cluster head inside the cluster P, influence
the optimal clustering, inter and intra-cluster communication overhead?

6.4.2 Finding the optimal cluster

Unlike previous efforts [[194, 206], we take an experimental approach for two
reasons. First, it is hard if not impossible to derive generally valid formu-
las for the network communication overhead that consider all parameters, es-
pecially random topologies. Such a theoretical approach has been previously
done [[194] [206]], however several required, simplifying assumptions make the
results difficult to apply in practice. Further, we extend the network models
of these works to accommodate different densities and fully random topologies,
which makes the parameter space even larger. Our second motivation is to make
our results immediately applicable: a WSN practitioner can select the most rel-
evant scenarios from our experiments and directly derive the optimal clustering
parameters.

We performed our simulations in MATLAB. Figure shows a sample net-
work. Nodes are spread randomly through the network field. The network area
is divided into equal-size clusters, and all results are presented for a variety of
cluster sizes that allow the area to be precisely divided into such equal-size clus-
ters. Shortest distance (in terms of ETX - expected number of transmissions) is
computed between each node and its corresponding cluster head and between
all cluster heads and the base stations. The energy expenditure is calculated
as the sum of ETX and ERX (expected number of receivers) for one round of
data gathering. Cluster formation overhead is ignored. Each of the reported
experiments is the mean of 100 independent random connected topologies.

Our analysis addresses the energy expenditure of different clustering schemes
by exploring the parameters A, C, M, P.y,Iy,N. Our goal is always to identify
the optimal cluster size for scenarios, first studying the optimal cluster size for
a scenario with no intra-cluster aggregation (I, = center), the cluster head near
the center of the cluster (P.;; = center), and constant node density (N/A?> =
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CONST = 500nodes/km?). We then vary the number of base stations, the posi-
tion of the cluster head, the use of in-network processing, and finally the node
density.

Cluster size C. We first consider a single setting whose key parameters are
described in Figure To understand the components of the communication
cost, Figure (top) separates the cost into intra and inter cluster communi-
cation. Intuitively, as cluster size grows communication inside the clusters also
grows, since data needs to be forwarded multi-hops to the cluster head. At the
same time communication from cluster heads to the base station drops signif-
icantly, since fewer cluster heads are present. The intersection of these lines
shows the optimal cluster to be approximately 250, or 1-hop clusters because in
our scenario r. = 150m.

Figure (bottom) confirms the optimality of 1-hop clustering for a wide
range of network sizes with 30-3000 nodes, but always constant density.

This result stands in contrast to those previously reported in the literature
and summarized as Propositions [1|and |2| Differences from Proposition (1| follow
from different network models. Notably, [[194] does not take into account rout-
ing from cluster heads to base stations and assumes a very regular topology with
a single node able to communicate to exactly four neighbors. Instead, our ran-
dom topologies allow different node densities in different parts of the network
plus we include routing overhead to reach the base stations. On the other hand,
we believe the difference from Proposition (1| [[206]] is due to the fundamental
difference between an analytical analysis and experimentation. They provide
general formulas with parameters for the network and cluster sizes. In their
analysis, they rely heavily on the same virtual grid topology as [194] and make
many assumptions and generalizations about the energy expenditure.

Number of base stations M. Another key parameter to evaluate is the clus-
tering behavior with different number of base stations collecting the results. We
keep the same parameters as in the previous section and Figure (bottom),
but extend the number of base stations to M = 2 in Figure (top) and M =3
in Figure (bottom). As the number of base stations increases, inter cluster
communication grows too. In terms of the independent overheads represented
in Figure (top), the intersection moves to the right, implying larger optimal
clusters. This trend is visible in Figure (top), where for large networks (e.g.,
the top line) the energy expenditure is nearly the same for 1 and 2 hop clusters.
However, with three base stations and large networks the optimal cluster size is
2 hops (cluster size ~ 375m with r, = 150m). We expect this trend to continue
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Figure 6.13. Varying numbers of base stations M. Energy expenditure
for r, = 150m, P.y; = center, Iy = center,N = const and (top) M = 2;
(bottom) M = 3.

for very large networks of tens of thousands of nodes and plan to verify this in
the future.

Position of the cluster head P.;. Next, we explore the effect of the clus-
ter head position inside the cluster. While the previous experiments shown in
Figures [6.12| and |6.13| placed the cluster head close to the center of the cluster,
here we allow it to be random (Figure (a—b)) or to be closest to the base
stations (Figure [6.14/(c-d)). The position of the cluster head is important for
two reasons. First, it affects the load balance, and therefore energy consump-
tion, inside the cluster for routing and data aggregation. Second, the routing
overhead inside the cluster changes with the head placement. Based on our
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Figure 6.14. Varying position of cluster head P.j. Energy expenditure
for r, = 150m, Iy = center,N = const and (@) Py = random,M =
1; (b) Py = random,M = 3; (c) Py = station,M = 1; (d) Poy =
station, M = 3.

analysis, we make two key observations: first, the optimal cluster size is not af-
fected by P.j. Second, the cluster head position does, however, affect the total
energy spent in the network. Specifically, when the cluster head is at the cluster
center (Figure [6.12)), it requires 15% less energy than a random placement due
to intra cluster routing costs. Notably, with head placement closest to the base
stations, the clustering scenario does not perform better than the other options
(Figure[6.14|(c-d)). Even though the routing overhead between the cluster heads
and the base stations is minimized, this is outweighed by the increased routing
inside the clusters.

On the other hand, this result cannot be taken literally: placing the cluster
head in the center of the cluster might minimize the communication of one
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Figure 6.15. Studying in-network processing I,. Energy expenditure
for r. = 150m,Iy = tree,N = const,M = 2 and (top) Py = center;
(bottom) Py = station.

round of data gathering. However, over time nodes around the cluster head and
the cluster head itself will drain their batteries too fast. Thus, some spreading
of the load is needed like randomly positioning the cluster head. In fact, in this
case also our CLIQUE protocol is a very good option despite the placement of the
cluster head next to the base stations. We already showed that it is performing
much better in terms of energy spreading, spent energy and network lifetime
compared to random clustering. Additionally, CLIQUE is able to accommodate
in-tree aggregation inside the clusters and thus further minimizing spent energy,
which we evaluate next.

In-network processing I,;,. Next we consider the possibility to process the
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Figure 6.16. Varying node density N/A%. Energy expenditure for A =
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data inside a cluster, as it is being forwarded to the cluster head. While this
ability typically depends on the application and cannot be changed simply to
reduce overhead, in applications where either option is feasible our analysis in
Figure shows that tree-based aggregation is preferable. Intuitively, the total
energy expenditure decreases with increasing cluster sizes because the data ag-
gregation rate grows and data traffic decreases. However, for very large clusters
the gainings are rather insignificant. Consequently, preference should be given
to 3-4 hop clusters since they have simultaneously low energy expenditure and
lower data aggregation rates.

Interestingly, the tree-based aggregation diminishes the importance of the
cluster head position, as seen by comparing Figures [6.15[(a) and (b). The en-
ergy expenditure is the same because the effect of in-cluster routing was also
eliminated.

Node density N /A2. In our final last experiment we vary the node density
with a fixed network size. Figure [6.16{ shows a clear trend that lower densities
(~250-375 nodes/km?) result in larger optimal clusters. For higher densities
(~400-500 nodes/km?) the optimal cluster size is again 1 hop. This is because
low node densities lower the total intra cluster communication overhead, giving
the inter cluster communication more weight.
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6.4.3 Optimal clustering summary and rules

Here we return to the questions raised in Section and summarize the re-
sults of the last paragraphs.

We are able to identify several rules: First, 1-hop clustering performs best
for a large spectrum of different network sizes, node densities and number of base
stations. For very large networks (more than 1000 nodes), multiple base sta-
tions (more than three) or very low densities (less than 400 nodes/km?) 2-hop
clustering performs better, although not significantly. Additionally, the optimal
cluster head position is the center of the cluster. In comparison to random lo-
cations or those closest to the base station, it spends approximately 15% less
energy. However, keeping the cluster head always in the center of the cluster
would drain the batteries of some nodes around it too fast. Thus, the other op-
tions (random, next to the base stations) are also feasible assuming that energy
spreading is taken explicitly into account.

For tree-based aggregation, 3- to 4-hop clustering performs best in terms of
energy expenditure and data aggregation rate. Here the position of the cluster
head inside the cluster is not important. Tree-based aggregation minimized sig-
nificantly the communication overhead inside the clusters and is thus always a
good decision. However, this also depends on the application scenario.

In some sense our results are in between the results achieved by other re-
searchers. They support partially Proposition |1|in the sense that optimal cluster
sizes grow with increasing size of the network. However, the optimal cluster
sizes grow at a much slower rate. This could be a consequence of our addi-
tional network density parameter, which changes significantly the communica-
tion overhead in the network.

Our results overlap in part also with Proposition |2, where the authors claim
that optimal clusters have a radius of 2 hops for all practical networks with
300 to 2000 nodes. We are able to confirm this conclusion only for very large
networks with more 1000 nodes.

The most important contribution of our analysis of optimal cluster sizes is the
insight that small clusters with a radius of only 1 hop are usually more energy
efficient than larger ones. Thus, research on clustering algorithms needs to con-
centrate on lowering the clustering overhead and balancing the communication
overhead in small 1-hop clusters.



160 6.5 Concluding remarks

6.5 Concluding remarks

In this chapter we introduced a novel clustering algorithm for wireless sensor
networks based on Q-Learning and able to avoid all-together the cluster head
agreement communication overhead. CLIQUE exhibits some very important prop-
erties, which might prove path-breaking in the area of WSN clustering. First and
most importantly it is able to decide on cluster head roles without explicitly as-
signing this role to any node in the network: instead, each node can evaluate
itself and its neighbors in terms of who seems to be currently better suited for this
job. In case some neighbor is the better choice, the node forwards the packet
without any knowledge or interest of what will happen to this packet further.
The emphasis of this technique is on properties like current or seemingly better
and very importantly on local neighbors and local knowledge.

Additionally to these novel properties, CLIQUE proved to perform very well
under realistic simulation scenarios too, e.g. by increasing the lifetime of the
network by approximately 25% compared to a traditional simple random clus-
tering protocol. Its implementation is rather simple and straight forward and is
thus realistic also for highly restricted hardware platforms.

Clearly, the same Q-Learning based technique can be applied also to vari-
ous other clustering applications. As we have seen on Section the optimal
clustering scenario for a network is identified by rather small clusters with cen-
tralized data aggregation or bigger clusters with in-tree aggregation. CLIQUE is
able to handle both of them and can be easily extended to optimize the network
performance for other metrics, such as maximum aggregation.

Last but not least, CLIQUE together with FrRowms build a complete unified data
dissemination architecture able to handle a wide variety of network scenarios
and applications. Both are based on Q-Learning and can be used separately or
together, paving the way towards autonomic, self-organizing scalable commu-
nications with minimum protocol overhead and naturally dealing with mobility
and failures.



Chapter 7

Conclusions

The main contribution of this thesis is the design, implementation and evalu-
ation of an energy-efficient, robust and flexible data dissemination framework,
able to cope with various network scenarios and applications. Some of the con-
sidered application requirements are novel, such as the non-uniform data re-
quirement or fast route recovery without data loss. Others are well-known and
have been addressed often in the research literature, like energy efficient routes
or multiple mobile sinks.

We conducted an extensive survey of the current state-of-the-art routing and
clustering approaches, their properties, assumptions and evaluation methodolo-
gies. Further, we have studied the requirements and network scenarios of vari-
ous existing and planned WSN deployments in order to better understand their
needs and in order to identify the important network parameters to be consid-
ered. We supported our initial intuition of using machine learning to solve this
hard problem efficiently and elegantly by studying various machine learning and
computational intelligence techniques and their applications to WSNs. During
this study, we identified Q-Learning as the most suitable technique and used it
to solve both the routing and clustering problems. The result is a holistic cross-
layer optimized data dissemination framework consisting of a routing protocol
called Froms and a clustering protocol called CLiQUE. Both exhibit vital prop-
erties such as robustness against mobility, node and link failures, fast recovery
after failures, very low control overhead and a wide variety of supported net-
work scenarios and applications.

In fact, FRoms achieves 5—25% longer network lifetime and 10—50% shorter
routes compared to other state-of-the-art routing protocols. In scenarios with
failing nodes or mobile sinks, FrRowms is able to deliver approximately 30 — 40%
more data packets to the sinks. On real hardware, Froms achieves 30 — 40%
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shorter routes and approximately 15% higher delivery rate than an implemen-
tation of Directed Diffusion.

At the same time, CLIQUE is able to lower the spent energy in the network by
approximately 25% compared to a traditional clustering approach. Additionally,
it gives a distributed solution to the requirement of non-uniform data dissemi-
nation.

We evaluated the protocols analytically, in a realistic simulation environment
and on real hardware. Thus, we show not only that machine learning is applica-
ble to real-world wireless sensor networks, but that it also achieves significantly
better performance in terms of energy savings, network lifetime, load spreading
and delivery rate under various network conditions compared to other state-of-
the-art routing and clustering approaches.

Given the highly satisfying results achieved in this thesis, we believe machine
learning proves to be a practical and efficient approach to solve many other
problems in WSNs. This thesis paves the way to further applications, protocols
and optimizations, which will inherently improve the performance of wireless
sensor networks, lower their design and deployment complexity, and expand
their application areas.
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Acronyms

ACO Ant Colony Optimization

ANN, NN Artificial Neural Networks, Neural Networks

BMAC Berkeley Medium ACcess protocol [[145]]

CH Cluster Head

CI Computational Intelligence

CSMA Carrier Sense Multiple Access

DD, uDD Directed Diffusion, as described in [[170]]

ETX Expected number of transmissions

FROMS Feedback Routing to Multiple Sinks

GA Genetic Algorithms

LEACH Low Energy Adaptive Clustering Hierarchy [[149]]

LMAC Lightweight Medium ACess protocol [[192]]

MAC Medium ACcess

MANET Mobile Ad Hoc Networks

mDD Multicast version of Directed Diffusion, as described in [|220]]
ML Machine Learning

MSTEAM Minimum spanning tree based energy aware multicast

protocol [[66]
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PSO

RL

RSSI

SVM

TDMA

TRC

uDD

WSN

Particle Swarm Optimization

Reinforcement Learning

Received Signal Strength Indication

Support Vector Machines

Time Division Multiple Access

Traditional Random Clustering, based on [[15]]

unicast Directed Diffusion, the original Directed Diffu-
sion, as described in [[170]]

Wireless Sensor Network
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