Optimal Atomic Broadcast and Multicast Algorithms
for Wide Area Networks

Nicolas Schiper' Fernando Pedone!

TFaculty of Informatics
University of Lugano
6900 Lugano, Switzerland

University of Lugano
Faculty of Informatics
Technical Report No. 2007/004 Revision 1
August 2007

Abstract

In this paper, we study the atomic broadcast and multicast problems, two fundamental abstractions
for building fault-tolerant systems. As opposed to atomic broadcast, atomic multicast allows messages
to be addressed to a subset of the processes in the system, each message possibly being multicast to a
different subset. We require atomic multicast algorithms to be genuine, i.e., only processes addressed
by the multicast message are involved in the protocol. Our study focuses on wide area networks where
groups of processes, i.e., processes physically close to each other, are inter-connected through high
latency communication links. In this context, we capture the cost of algorithms, denoted latency degree,
as the number of inter-group message delays between the broadcasting (multicasting) of a message and
its delivery.

We present an atomic multicast algorithm with a latency degree of two and show that it is optimal.
We then present the first fault-tolerant atomic broadcast algorithm with a latency degree of one. To
achieve such a low latency, the algorithm is proactive, i.e., it may take actions even though no messages
are broadcast. Nevertheless, it is quiescent: provided that the number of broadcast messages is finite,
the algorithm eventually ceases its operation. As a consequence, in runs where the algorithm becomes
quiescent too early, its latency degree is two. We show that this is unavoidable, and establish a lower
bound on the quiescence of atomic broadcast algorithms. These two lower bound results stem from a
common cause, namely the reactiveness of the processes at the time when the message is cast (broadcast
or multicast). This reveals an interesting link between the quiescence of total order algorithms and the
genuineness of atomic multicast, two problems which seemed to be unrelated at first sight.

1 Introduction

Distributed applications spanning multiple geographical locations have become common in recent years.
Typically, each geographical site, or group, hosts an arbitrarily large number of processes connected through
high-end local links; a few groups exist, interconnected through high-latency communication links. As a
consequence, communication among processes in the same group is cheap and fast; communication among
processes in different groups is expensive and orders of magnitude slower than local communication. Ap-
plication data is replicated both locally, for high availability, and globally, usually for locality of access. In
this paper we investigate the atomic broadcast and multicast problems, two communication primitives that
offer adequate properties, namely agreement on the set of messages delivered and on their delivery order, to
implement data replication [9].

Ideally, we would like to devise algorithms that use inter-group links as sparingly as possible, saving on
both latency and bandwidth (i.e., number of messages). As we explain next, however, atomic broadcast and
multicast establish an inherent tradeoff in this context. As opposed to atomic broadcast, atomic multicast
allows messages to be sent to a subset of processes in the system. More precisely, messages can be addressed
to any subset of the system’s groups, each message possibly being multicast to a different subset. From a
problem solvability point of view, atomic multicast can be easily reduced to atomic broadcast: every message
is broadcast to all the groups in the system and only delivered by those processes the message is originally
addressed to. Obviously, this solution is inefficient as it implies communication among processes that are not
concerned by the multicast messages. To rule out trivial implementations of no practical interest, we require
multicast algorithms to be genuine [7], i.e., only processes addressed by the message should be involved
in the protocol. A genuine atomic multicast can thus be seen as an adequate communication primitive for
distributed applications spanning multiple geographical locations in which processes store a subset of the
application’s data (i.e., partial replication).

To measure the latency cost of broadcast (multicast) algorithms, we use their latency degree.
Informally—a precise definition is presented in Section 2—the latency degree is the minimum number of
inter-group message delays between the cast of a message m and the last delivery of m among the processes
that deliver m.

We show that for messages multicast to at least two groups, no genuine atomic multicast algorithm can
hope to achieve a latency degree lower than two. This result is proven under strong system assumptions,
namely processes do not crash and links are reliable. Moreover, this lower bound is tight, i.e., the fault-
tolerant algorithm .41 of Section 4 and the algorithm in [5] achieve this latency degree (A1 is an optimized
version of [5], see Section 4 for more details). A corollary of this result is that Skeen’s algorithm, initially
described in [2] and designed for failure-free systems, is also optimal—a result that has apparently been left
unnoticed by the scientific community for more than 20 years.

We demonstrate that atomic multicast is inherently more expensive than atomic broadcast by presenting
the first fault-tolerant broadcast algorithm with a latency degree of one. To achieve such a low latency, the
algorithm is proactive, i.e., it may take actions even though no messages are broadcast. Nevertheless, we
show how it can be made quiescent: provided that a finite number of messages is broadcast, processes even-
tually cease to communicate. In runs where the algorithm becomes quiescent too early, that is, a message
m is broadcast after processes have decided to stop communicating, m will not be delivered in a single
inter-group message delay, but in two. We show that this extra cost is unavoidable, i.e., no quiescent atomic
broadcast algorithm can hope to always achieve a latency degree of one.'

These two lower bound results stem from a common cause, namely the reactiveness of the processes
at the time when the message is cast. Roughly speaking, a process p is said to be reactive when the next

!This result also holds for quiescent (genuine or non-genuine) atomic multicast algorithms. The genuine case is already covered
by the first lower bound result and is therefore irrelevant here.

message m that p sends is either multicast or sent in response to the reception of a message. In Section 3, we
first show that no atomic broadcast or multicast algorithm can hope to deliver the last cast message m with
a latency degree of one if m is cast at a time when processes are reactive. To obtain the lower bounds, we
then show that (i) in runs of any genuine atomic multicast algorithm where one message is multicast at time
t, processes are reactive at ¢ and (ii) in runs of any quiescent atomic broadcast or atomic multicast algorithm
where a finite number of messages are cast, processes are eventually reactive forever.

These results help better understand the difference between atomic broadcast and multicast. In partic-
ular, they point out a tradeoff between the latency degree and message complexity of these two problems.
Consider a partial replication scenario where each group replicates a set of objects. If latency is the main
concern, then every operation should be broadcast to all groups, and only groups concerned by the operation
handle it. This solution, however, has a high message complexity: every operation leads to sending at least
one message to all processes in the system. Obviously, this is inefficient if the operation only fouches a
subset of the system’s groups. To reduce the message complexity, genuine multicast can be used. However,
any genuine multicast algorithm will have a latency degree of at least two.

The rest of the paper is structured as follows. In Section 2, we present our system model and definitions.
Section 3 shows the genuine atomic multicast latency degree lower bound and investigates the cost of qui-
escence in a unified way. In Sections 4 and 5, we present the optimal multicast and broadcast algorithms.
Finally, Section 6 discusses the related work and concludes the paper. The proofs of correctness of the
algorithms can be found in the appendix.

2 System Model and Definitions

2.1 Processes and Links

We consider a system II = {p1, ..., p, } of processes which communicate through message passing and do
not have access to a shared memory or a global clock. We assume the benign crash-stop failure model,
i.e., processes may fail by crashing, but do not behave maliciously. A process that never crashes is correct;
otherwise it is faulty. The system is asynchronous, i.e., messages may experience arbitrarily large (but
finite) delays and there is no bound on relative process speeds. Furthermore, the communication links do
not corrupt or duplicate messages, and are quasi-reliable: if a correct process p sends a message m to a
correct process ¢, then ¢ eventually receives m. We define I' = {g1, ..., g } as the set of process groups
in the system. Groups are disjoint, non-empty and satisfy | J yer 9 = 1L For each process p € II, group(p)
identifies the group p belongs to. Hereafter, we assume that in each group: (1) there exists at least one
correct process and (2) consensus is solvable (the consensus problem is defined below).

2.2 Specifications of Agreement Problems

We define the four agreement problems considered in this paper, namely consensus, reliable multicast,
atomic multicast, and atomic broadcast. Let .4 be an algorithm solving an agreement problem. We define
R(.A) as the set of all admissible runs of A.

Consensus Throughout the paper, we assume the existence of a uniform consensus abstraction. In the
consensus problem, processes propose values and must reach agreement on the value decided. Uniform
consensus is defined by the primitives propose(v) and decide(v) and satisfies the following properties [8]: (i)
uniform integrity: if a process decides v, then v was previously proposed by some process, (ii) termination:
every correct process eventually decides exactly one value, (iii) uniform agreement: if a process decides v,
then all correct processes eventually decide v.

Reliable Multicast Our algorithms also use a non-uniform reliable multicast primitive. As opposed to
reliable broadcast [8], messages may be reliably multicast to a subset of the processes in II. For each
message m, m.dest denotes the processes to which the message is reliably multicast. Non-uniform reliable
multicast is defined by primitives R-MCast(m) and R-Deliver(m), and satisfies the following properties :
(1) uniform integrity: for any process p and any message m, p R-Delivers m at most once, and only if
p € m.dest and m was previously R-MCast, (ii) validity: if a correct process p R-MCasts a message
m, then eventually all correct processes ¢ € m.dest R-Deliver m, (iii) agreement: if a correct process p
R-Delivers a message m, then eventually all correct processes ¢ € m.dest R-Deliver m.

Atomic Multicast Atomic multicast is defined by the primitives A-MCast and A-Deliver. Atomic multi-
cast allows messages to be A-MCast to a subset of groups in I'. For each message m, m.dest denotes the
groups to which m is A-MCast. Let p be a process. By abuse of notation, we write p € m.dest instead
of 3g € T' : g € m.dest A p € g. Hereafter, we denote the sequence of messages A-Delivered by p at
time ¢ as Sf), and the sequence of messages A-Delivered by p at time ¢ projected on processes p and g as
P,q(SL).ie., P, 4(S)) is the sequence of messages S}, restricted to the messages m such that p, ¢ € m.dest.
Atomic multicast satisfies the uniform integrity and validity properties of reliable multicast as well as the
two following properties: (i) uniform agreement: if a process p A-Delivers m, then all correct processes
q € m.dest eventually A-Deliver m, (ii) uniform prefix order: for any two processes p and ¢ and any time

t, either Py 4(S}) is a prefix of P, 4(S%) or Py 4(S}) is a prefix of P, 4(S}).

We also require atomic multicast algorithms to be genuine [7]:

e Genuineness: An algorithm A solving atomic multicast is said to be genuine iff for any run
R € R(A) and for any process p, in R, if p sends or receives a message then some message m
is A-MCast and either p is the process that A-MCasts m or p € m.dest.

Atomic Broadcast Atomic broadcast is a special case of atomic multicast. It is defined by the primitives
A-BCast and A-Deliver and satisfies the same properties as atomic multicast where all A-BCast messages
m are such that m.dest = I, i.e., messages are always A-BCast to all groups in the system.

2.3 Latency Degree

Let A be a broadcast or multicast algorithm and R be a run of A (R € R(A)). Moreover, in run R, let
m be a message A-XCast (A-BCast or A-MCast) and II'(m) C II be the set of processes that A-Deliver
m. Intuitively, the latency degree of R is the minimal length of the causal path between the A-XCast of
m and the last A-delivery of m among the processes in IT'(m), when counting inter-group messages only.
To define this latency degree we assign timestamps to process events using a slightly modified version of
Lamport’s logical clocks [9]. Initially, for all processes p € 11, p’s logical clock, LC,, is initialized to 0. On
process p, an event e is assigned its timestamp as follows:

1. If e is alocal event, ts(e) = LC),

2. If e is the send event of a message m to a process ¢,

ts(e) = § LGt 1S group(p) # group(q)
LCy, otherwise

3. If e is the receive event of a message m, ts(e) = max(LCp, ts(send(m)))

The latency degree of a message m A-XCast in run R is defined as follows:
A(m, R) = maxgcry (m) (ts(A-Deliver(m),) — ts(A-XCast(m),))

4

where A-Deliver(m), and A-XCast(m), respectively denote the A-Deliver(m) event on process ¢ and
the A-XCast(m) event on process p. We refer to the latency degree of an algorithm A as the minimum value
of A(m, R) among all admissible runs R of A and messages m A-XCast in R.?

3 The Inherent Cost of Reactiveness

We establish the inherent cost of the genuine atomic multicast problem for messages that are multicast to
multiple groups and we show that quiescence has a cost, i.e., in runs where a message m is cast at a time
when the algorithm is quiescent, there exists no algorithm that delivers m with a latency degree of one. As
explained in Section 1, we proceed in two steps. We first show that, if processes are reactive when the last
message m is cast, then m cannot be delivered with a latency degree of one. We then prove that (i) in runs
of any genuine atomic multicast algorithm where one message is multicast at time ¢, processes are reactive
at t and (ii) in runs of any quiescent atomic broadcast or atomic multicast algorithm where a finite number
of messages are cast, processes are eventually reactive forever.

The proofs are done in a model identical to the model of Section 2, except that processes do not crash
and links are reliable, i.e., they do not corrupt, duplicate, or loose messages.

Definition 3.1 In a run R of an atomic broadcast or multicast algorithm, we say that a process p is reactive
at time t iff p sends a message m at time t' > t only if p A-XCasts m or if p received a message sent in the
interval [t,t'].

Proposition 3.1 In a system with at least two groups, for any atomic broadcast or any atomic multicast
algorithm A, there does not exist runs Ry, Ry of A in which processes are reactive at the time the last
messages m1, mo are A-XCast to at least two groups, such that A(my, R1) = A(mg, Re) = 1.

Proof: Suppose, by way of contradiction, that there exist an algorithm .4 and runs R; of A (i € {1,2}) such
that A(m;, R;) = 1. Consider two groups, g; and go. In run R;, process p; € g; A-XCasts message m; at
time ¢ to g1 and go. We first show that (*) in R;, at or after time ¢, processes can only send messages m
such that for a sequence of events e; = A-XCast(m;), €2, ..., e, = send(m), A-XCast(m;) — ez — ... —
send(m).> Suppose, by way of contradiction, that there exists a process p in R; that sends a message m at
a time t; > t such that the event send(m) is not causally linked to the event A-XCast(m;). We construct a
run R) identical to run R; except that message m; is not A-MCast (note that processes are also reactive at
time ¢ in R;). Since in R;, there is no causal chain linking the event A-XCast(m;) with the event send(m),
runs R} and R; are indistinguishable to process p up to and including time ¢;. Therefore, p also sends m
in R]. Hence, since processes are reactive at time ¢ and no message is A-XCast at or after ¢, p must have
received a messag m’ sent at or after ¢ by some process q. Applying the same reasoning multiple times,
we argue that there must exist a process r that sends a message m” at time ¢ such that for some events
e1 = send(m”), ea, ..., e,—1 = send(m’), e, = send(m), we have send(m”) — ... — send(m’) — send(mn).
However, r cannot send m” because no message is A-XCast at or after ¢, a contradiction.

By the validity property of A and because there is no failure, all processes eventually A-Deliver m;.
Since A(my, R;) = 1, by (*), processes in g; A-Deliver m; before receiving any message from processes in
g3—; sent at or after time ¢. Let ¢7 > t be the time at which all processes in g; have A-Delivered message

Note that we also use the latency degree to capture the cost of reliable multicast and consensus. For these two agreement
problems, the definition is identical, except that the event A-XCast is respectively replaced by R-MCast and propose, and the event
A-Deliver is respectively replaced by R-Deliver and decide (in the case of consensus, m refers to the consensus instance number).

*Events ey, ..., e, can be of four kinds, either send(m), receive(m), A-XCast(m), or A-Deliver(m) for some message m.
Moreover, the relation — is Lamport’s transitive happened before relation on events [9]. It is defined as follows: e1 — e2 < e1, ez
are two events on the same process and e; happens before ez or e; = send(m) and ex = receive(m) for some message m.

m;. We now build run Rj3 as follows. As in run R;, p; A-XCasts m;. Runs R; and Rj3 are indistinguishable
for processes in group g; up to time ¢, that is, all messages causally linked to the event A-XCast(m3—;)
(including A-XCast(ms_;) itself) sent from processes in group gs—; to processes in group g; are delayed
until after ¢7. Consequently, processes in group g; have all A-Delivered m; by time ¢;. By the uniform
agreement of A, processes in g; eventually A-Deliver mqy and processes in go eventually A-Deliver my,
violating the uniform prefix order property of A. U

Proposition 3.2 For any run R of any genuine atomic multicast algorithm A where one message is A-MCast
at time t, processes are reactive at time t.

Proof: In run R, by the genuineness property of A, for any message m’ sent, there exist events e; = A-
MCast(m), ez, ..., e, = send(m’) such that A-MCast(m) — ez — ... — send(m’) (otherwise, using a
similar argument as in Proposition 3.1, we could build a run R’ identical to run R, except that no message
is A-MCast in R’, such that a process sends a message anyway, contradicting the fact that in R’ no message
is A-MCast and A is genuine).

Consequently, for any process p, if p sends a message m’ at t’ > ¢, then p A-MCasts m’ or p received a
message in the interval [¢, ¢]. O

Proposition 3.3 For any run R of any quiescent atomic broadcast or atomic multicast algorithm A in which
a finite number of messages are A-XCast, there exists a time t such that for all t' > t, processes are reactive
att'.

Proof: In R, a finite number of messages are A-XCast. Because A is quiescent, there exists a time ¢ at or
after which no messages are sent. It follows directly that for all ¢’ > ¢ processes are reactive at t'. (]

Although our result shows that if the last message m is cast when processes are reactive, then m cannot
be delivered in one inter-group message delay, in practice, multiple messages may bear this overhead. In
fact, this might even be the case in runs where an infinite number of messages are cast. Indeed, to ensure
quiescence, processes must, in some way or another, predict whether any message will be cast in the future.
Hence, if the prediction is negative, processes must then eventually stop communicating, and this may be
prematurate.

4 Atomic Multicast for WANs

In this section, we present a latency degree-optimal atomic multicast algorithm which is inspired by the one
from Fritzke et al. [5], an adaptation of Skeen’s algorithm for failure-prone systems. We first explain the
basic principle of our algorithm and how it differs from [5]. We then explain our algorithm in detail.

4.1 Algorithm Overview

The algorithm associates every multicast message with a timestamp. To ensure agreement on the message
delivery order, two properties are ensured: (1) processes agree on the message timestamps and (2) after a
process p A-Delivers a message with timestamp ts, p does not A-Deliver a message with a smaller timestamp
than ¢s. To satisfy these two properties, inside each group g, processes implement a logical clock that is used
to generate timestamps, this is ¢g’s clock. To guarantee ¢’s clock consistency, processes use consensus to
maintain it. Moreover, every message m goes trough the following four stages:

e Stage so: In every group g € m.dest, processes define a timestamp for m using ¢’s clock. This is ¢’s
proposal for m’s final timestamp.

e Stage s1: Groups in m.dest exchange their proposals for m’s timestamp and set m’s final timestamp
to the maximum timestamp among all proposals.

e Stage so: Every group in m.dest sets its clock to a value greater than the final timestamp of m.

e Stage s3: Message m is A-Delivered when its timestamp is the smallest among all messages that are
in one of the four stages and not yet A-Delivered.

As mentioned above, our algorithm differentiates itself from [5] in several aspects. First, when a message
is multicast, instead of using a uniform reliable multicast primitive, we use a non-uniform version of this
primitive while still ensuring properties as strong as in [5]. Second, in contrast to [5], not all messages go
trough all four stages. For messages that are multicast to only one group, our algorithm allows them to jump
from stage sg to stage sz directly. Also, even for messages that are multicast to more than one group, on
processes belonging to a group that has proposed a timestamp equal to the final timestamp of m (the biggest
proposal of all), m skips stage so.

4.2 The Algorithm in Detail

Algorithm A1 is composed of two concurrent tasks. Each line of the algorithm is executed atomically. Apart
from application data, messages are composed of four fields: dest, id, ts, and stage. For every message m,
m.dest, indicates to which group m is A-MCast, m.id is m’s unique identifier, m.ts denotes m’s current
timestamp, and m.stage defines in which stage m is. On every process p, four global variables are used: K
is p’s copy of group(p)’s clock and also denotes the current consensus instance in execution or the next to
be executed, propK forbids p to propose more than one value per consensus instance, PENDING is the set
of messages that have not yet been A-Delivered, and ADELIVERED is the set of A-Delivered messages.
We explain Algorithm 41 by describing the actions a process p takes when a message m is in one of the
four possible stages.

Stage sg: For p to A-MCast m, p R-MCasts m to processes in m.dest. When p R-Delivers m, if m
has not been added to PENDING at line 30 or A-Delivered before, p sets m.stage to sg and adds m to
the PENDING set. Note that p also sets m’s timestamp to the current value of K to guarantee that every
message in PENDING is associated with a timestamp. In order for processes in each group of m.dest to
agree on their timestamp proposal, a consensus instance inside each group is executed. Hence, p checks
that propK < K (line 14) to verify that no consensus instance is currently running and, if it is the case, p
proposes m to the next consensus instance. Process p actually proposes all messages in PENDING that
are either in stage sg or so to share the cost of consensus instances among the set of messages proposed
and to allow messages in different stages to make progress in parallel. As soon as a consensus instance
k decides on m (m € msgSet’ at line 18), p takes the following actions. First, if m is A-MCast to more
than one group, then m transitions to stage s and group(p)’s proposal for m’s timestamp is & (lines 22-23).
Otherwise, if m is A-MCast to one group only, m’s final timestamp is k£ and m transitions to stage ss directly
(lines 28-29). Indeed, at this point in time, processes in m.dest already agree on m’s timestamp because p’s
group is the only group in m.dest. Moreover, p’s copy of group(p)’s clock, K, will be greater than m.ts
after p executes line 31.

Stage s1: Process p sends its group’s proposal to all the groups in m.dest different from p’s group
(line 24).* Once p receives all the required timestamps’ proposals (line 33), p gathers them in a set called
TSset and computes the maximum value, max, of that set. If the proposal of p’s group is bigger or equal

*Note that this message also serves the purpose of propagating m. Indeed, consider a scenario where the process that A-MCasts
m is faulty and m is A-MCast to multiple groups. Because the reliable multicast primitive we use is non-uniform, it is possible
that only faulty processes in a group g R-Deliver m. After processes in g decide on m in consensus and send the (TS, m) message
at line 24, as there is at least one correct process per group, we guarantee that correct processes in m.dest receive m. Hence, each
group in m.dest eventually defines its timestamp proposal and m reaches stage s3 on all correct processes in m.dest, thus ensuring
liveness of the algorithm.

to mazx, then m can skip stage so. Indeed, at this point in time, p’s copy of group(p)’s clock, K, is already
bigger than m.ts, because p previously executed line 31. On the other hand, if the proposal of p’s group is
smaller than max, p sets m’s timestamp to max and m transitions to stage sz (line 39-40).

Stage so: Process p then keeps on proposing m to consensus instances until an instance k& decides on m.
When instance k£ terminates, m transitions to stage ss at line 26 and p sets K to a value greater than m’s
final timestamp at line 31.

Stage s3: After m reaches stage s3 (at lines 26, 29, or 36), p checks whether m can be A-Delivered by
executing the procedure ADeliveryTest. This procedure A-Delivers m only if m has the smallest timestamp
among all messages in PENDING (line 4). If two messages m1 and mo have the same timestamp, we
break ties using their message identifier. More precisely, (m;.ts, m.id) < (ma.ts, mg.id) is true either if
mi.ts < mo.tsorif my.ts = mag.ts and my.1d < mo.id.

4.3 Latency Degree Analysis

Consider a message m that is multicast by a process p. If m is multicast to one group, it is easy to see from
Algorithm A1 that the latency degree is zero if p € g, and one otherwise. This is obviously optimal. In the
case where m is multicast to multiple groups, we show in the appendix that the latency degree is two, which
matches the lower bound of Section 3.

Theorem 4.1 There exists a run R of algorithm Al in which a message m is A-MCast to two groups such
that A(m, R) = 2.

5 Atomic Broadcast for WANs

In this section, we present the first fault-tolerant atomic broadcast algorithm that achieves a latency degree of
one. Together with the lower bound of Section 3, this shows that atomic multicast is more costly than atomic
broadcast. We present the main idea of this algorithm, explain it in detail, and conclude with a discussion
on its latency degree.

5.1 Algorithm Overview

To atomically broadcast a message m, a process p reliably multicasts m to the processes in p’s group.
In parallel, processes execute an unbounded sequence of rounds. At the end of each round, processes
deliver a set of messages according to some deterministic order. To ensure agreement on the messages
delivered in round r, processes proceed in two steps. In the first step, inside each group g, processes use
consensus to define ¢g’s bundle of messages. In the second step, groups exchange their message bundles.
The set of message delivered at the end of round r is the union of all bundles. Note that we also wish to
ensure quiescence, i.e., if there is a time after which no message is broadcast, then processes eventually stop
sending messages. To do so, processes try to predict when no further messages will be broadcast. When
the algorithm predicts that messages will no longer be broadcast, processes stop executing rounds. Our
algorithm is indulgent with regards to prediction mistakes, i.e., if processes become quiescent too early, they
can restart so that liveness is still ensured. We explain in the section below how this is done.

5.2 The Algorithm in Detail

Algorithm A2 is composed of four concurrent tasks. Each line of the algorithm is executed atomically. On
every process p, six global variables are used: K denotes the current round number, propK forbids p to
propose more than one value per consensus instance, RDELIVERED and ADELIVERED are the set of

Algorithm A1 Genuine Atomic Multicast - Code of process p

1

10:

11:
12:
13:

14:

15:
16:
17:

18:
19:
20:

22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:

33

34:
35:
36:
37:
38:
39:
40:

. Initialization
2:

K < 1, propK < 1, PENDING « (), ADELIVERED « ()

: procedure ADeliveryTest()

while 3m € PENDING : m.stage = sz A
Vm' € PENDING : m’ # m = (m.ts,m.id) < (m’.ts,m’.id) do
A-Deliver(m)
ADELIVERED «— ADELIVERED U {m}
PENDING «— PENDING \ {m}

: To A-MCast message m

R-MCast(m) to {q | ¢ € m.dest}

When (R-Deliver(m) V receive(TS, m)) A
m & PENDING U ADELIVERED
m.ts — K
m.stage < So
PENDING «— PENDING U {m}

When (3m € PENDING : m.stage = sg V m.stage = s2) A
propK < K
msgSet = {m | m € PENDING A (m.stage = so V m.stage = s2)}
Propose(K, msgSet)
propK — K +1

When Decided(K, msgSet’)
foreach m’ € msgSet’ do
if |m/.dest| > 1 then
if m’.stage = so then
m.ts — K
m/.stage + s1
send(TS, m') to {q | ¢ € m.dest A group(q) # group(p)}
else
m/.stage «— s3
else
m'.ts — K
m/'.stage « s3
PENDING « PENDING U {msgSet'}
K — max(maxX,,/emsgser' (m’.ts), K) + 1
ADeliveryTest()

: When 3m € PENDING : m.stage = s1 A
Vg € (m.dest \ group(p)) Iq € g : received(TS, m) from g

TSset = {m.ts | 3¢ € m.dest : received (TS, m) from g}
if m.ts > max¢sersset(ts) then

m.stage < S3

ADeliveryTest()
else

m.ts < maxisergset(ts)

m.stage «— Sz

{Task 1}

{Task 2}

D> consensus inside group

> second consensus not needed
> add message or update its fields

> second consensus not needed

R-Delivered and A-Delivered messages respectively, Msgs is used to store the groups’ message bundles,

and Barrier denotes the last round p currently thinks it will execute.

To A-BCast a message m, a process p R-MCasts m to p’s group (line 5). When p R-Delivers m, p adds
itto RDELIVERED. At the beginning of every round r, p proposes, in the next consensus instance, the

set of messages that have been R-Delivered but not A-Delivered yet (line 12). Note that this proposal may
be the empty set. When this instance decides on a set of messages msgSet’ (line 14), p’s group message
bundle in round r, p sends msgSet’ to all the groups different from group(p). Process p then waits to receive
the message bundles of round r from all the other groups and A-Delivers the union of all bundles in some
deterministic order (lines 16-20).

In order to ensure quiescence, processes try to predict when no message will be broadcast anymore.
Our prediction strategy is simple. If no message was A-Delivered in the current round (line 22), p leaves
Barrier untouched, in which case p will not execute the next round. This follows from the fact that K
is incremented by one at the end of each round (line 21), and if no message is A-BCast anymore and all
R-Delivered messages were A-Delivered, line 11 never evaluates to true anymore and p does not execute
further rounds.

To tolerate prediction mistakes, the algorithm proceeds as follows. Consider a process p that broadcasts
a message m after all processes have become quiescent. Let r be the last round processes executed. After
processes in p’s group R-Deliver m, line 11 evaluates to true and they start executing round r» + 1. To
allow processes in other groups to restart executing rounds as well, after receiving p’s group message bundle
(line 8), these processes set Barrier to r 4+ 1. Hence, line 11 evaluates to true and they start round r + 1.

Algorithm A2 Atomic Broadcast - Code of process p
1: Initialization
2. K« 1,propK <« 1, RDELIVERED « (), ADELIVERED « ()
3: Msgs < 0, Barrier < 0

4: To A-BCast message m {Task 1}
5: R-MCastmto {q | group(q) = group(p)}

6: When R-Deliver(m) {Task 2}
7. RDELIVERED «— RDELIVERED U {m}

8: When receive(x, msgSet) from ¢ {Task 3}
9: Msgs «— Msgs U (x, q, msgSet)
10: Barrier < max(Barrier, x)

11: When ((RDELIVERED \ ADELIVERED) # 0 Vv

K < Barrier) N propK < K {Task 4}
12: Propose(K, RDELIVERED \ ADELIVERED) D> consensus inside group
13: propK «— K +1

14: When Decided(K, msgSet’)

15: send(K, msgSet’) to {q | ¢ € II A group(q) # group(p)}

16: wait until Vg € (I" \ group(p)) : 3q € g s. t. received (K, -) from ¢

17: Msgs <« Msgs U (K, p, msgSet")

18: msgsToADel — {m | (K,-, msgSet) € Msgs N\ m € msgSet}

19: A-Deliver messages in msgsToA Del in some deterministic order

20. ADELIVERED «— ADELIVERED U msgsToADel

21: K—K+1

22: if msgsToADel # () then > stop executing rounds?
23: Barrier — max(Barrier, K)

5.3 Latency Degree Analysis

In the appendix, we analyze the latency degree of algorithm .A2. We first show that its best latency degree
(among all its admissible runs) is one, which is optimal. We then consider runs where processes become

10

quiescent too early, i.e., processes stop executing rounds before a message is broadcast. In these runs, the
latency degree of the algorithm is two.

Theorem 5.1 There exists a run R of algorithm A2 in which a message m is A-BCast such that
A(m,R) = 1.

Theorem 5.2 There exists a run R of algorithm A2 in which the last message m is A-BCast when processes
are reactive such that A(m, R) = 2.

It is worth noting that the presented broadcast algorithm never becomes reactive if the time between
two consecutive broadcasts is smaller than the time to execute a round. Moreover, in this case, all rounds
are useful, i.e., they all deliver at least one message, a scenario which can be considered as optimal. In a
large-scale system where the inter-group latency is 100 milliseconds, a broadcast frequency of 10 messages
per second is sufficient for the algorithm to reach this optimality. In case the broadcast frequency is too low
or not constant, to prevent processes from stopping prematurely, more elaborate prediction strategies based
on application behavior could be used.

6 Related Work and Final Remarks

The literature on atomic broadcast and multicast algorithms is abundant [3]. We here review the most
relevant papers to our protocols.

Atomic Multicast 1In [7], the authors show the impossibility of solving genuine atomic multicast with un-
reliable failure detectors if groups are allowed to intersect. Hence, the algorithms cited below circumvent
this impossibility result by considering non-intersecting groups that contain a sufficient number of correct
processes to solve consensus. They can be viewed as variations of Skeen’s algorithm [2], a multicast algo-
rithm designed for failure-free systems, where messages are associated with timestamps and the message
delivery follows the timestamp order. In [10], the addresses of a message m, i.e., the processes to which m is
multicast, associate m with a timestamp. Processes then exchange their timestamps, and, once they receive
this timestamp from a majority of processes of each group, they propose the maximum value received to
consensus. Because consensus is run among the addresses of a message and can thus span multiple groups,
this algorithm is not well-suited for wide area networks. In [4], consensus is run inside groups exclusively.
Consider a message m that is multicast to groups g, ..., gx. The first destination group of m, g;, runs
consensus to define the final timestamp of m and hands over this message to group gs. Every subsequent
group proceeds similarly up to g. To avoid cycles in the message delivery order, before handling other mes-
sages, every group waits for a final acknowledgment from group gi. The latency degree of this algorithm
is therefore proportional to the number of destination groups. In [5], as explained in Section 4, to ensure
that processes agree on the timestamps associated to every message and to deliver messages according to
the timestamp order, every message goes through four stages. In contrast to [5], the algorithm presented in
this paper allows messages to skip stages, therefore sparing the execution of consensus instances. This has
no impact on the latency degree or on the number of inter-group message sent as consensus instances are
run inside groups. However, our algorithm sends fewer intra-group messages.

Atomic Broadcast In [1], the authors consider the atomic broadcast and multicast problems in a publish-
subscribe system where links are reliable, publishers do not crash, and cast infinitely many messages. Agree-
ment on the message ordering is ensured by using the same deterministic merge function at every subscriber
process. Given the cast rate of publishers, the authors give optimal algorithms with regards to the merge
delay, i.e., the time elapsed between the reception of a message by a subscriber and its delivery. Both

11

algorithms achieve a latency degree of one.> In [12], a time-based protocol is introduced to increase the
probability of spontaneous total order in wide area networks by artificially delaying messages. Although the
latency degree of the optimistic delivery of a message is one, the latency degree of its final delivery is two.
Moreover, their protocol is non-uniform, i.e., the agreement property of Section 2 is only ensured for correct
processes. In [13], a uniform protocol based on multiple sequencers is proposed. Every process p is assigned
a sequencer that associates sequence numbers to the messages p broadcasts. Processes optimistically deliver
a message m when they receive m’s sequence number. The final delivery of m occurs when the sequence
number of m has been validated by a majority of processes. The latency degree of this algorithm is identical
to [12].

In Figure 1, we compare the latency degree and the number of inter-group exchanged messages of the
aforementioned algorithms. In this comparison, we consider the best-case scenario, in particular there is
no failure nor failure suspicion. We denote n as the total number of processes in the system, d as the
number of processes in each group, and k as the number of groups to which a message is cast (k > 2). To
compute the latency degree and number of inter-group message sent, we consider the oracle-based uniform
reliable broadcast and uniform consensus algorithms of [6] and [11] respectively (note that [6] can easily be
modified to implement reliable multicast). The latency degrees of [6] and [11] are respectively one and two.
Furthermore, considering that a process p multicasts a message to k groups (we consider that p belongs to
one of these k groups) or that k& groups execute consensus, the algorithms respectively send d(k — 1) and
2kd(kd — 1) inter-group messages.

Algorithm latency degree 1nter—gr0up2msgs. Algorithm latency degree | inter-group msgs.

[4] k+1 O(kd®) 7

772 [12] 2 O(n)

[10] 4 O(k*d*) P

T2 [13] 2 o(n”)

5] 2 Ok d) Algorithm A2 1 0(n%)
Algorithm Al 2 O(K*d%) AL

[1 O(kd) L1 L On)

b) Atomic Broadcast

a) Atomic Multicast

Figure 1: Comparison of the algorithms (d : nb. of processes per group, k : nb. of destination groups)

From Figure 1, we conclude that, among uniform fault-tolerant broadcast protocols, Algorithm .42
achieves the best latency degree and message complexity. In the case of the atomic multicast problem,
although Algorithm A1 and [5] achieve the best latency degree among fault-tolerant protocols, [4] has a
lower message complexity. Deciding which algorithm is best is not straightforward as it depends on factors
such as the network topology as well as the latencies and bandwidths of links.

References

[1] M. K. Aguilera and R. E. Strom. Efficient atomic broadcast using deterministic merge. In PODC ’00: Proceedings of the
nineteenth annual ACM symposium on Principles of distributed computing, pages 209-218, New York, NY, USA, 2000. ACM
Press.

[2] K. P. Birman and T. A. Joseph. Reliable communication in the presence of failures. ACM Trans. Comput. Syst., 5(1):47-76,
1987.

[3] X. Défago, A. Schiper, and P. Urban. Total order broadcast and multicast algorithms: Taxonomy and survey. ACM Comput.
Surv., 36(4):372-421, 2004.

[4] C. Delporte-Gallet and H. Fauconnier. Fault-tolerant genuine atomic multicast to multiple groups. In OPODIS, pages 107—
122, 2000.

Note that this does not contradict the latency degree lower bound of genuine atomic multicast. Indeed, their assumptions are
different than ours, i.e., to ensure liveness of their multicast algorithm, they require that each publisher multicast infinitely many
messages to each subscriber.

SThis paper considers a strong model where links are reliable, multicaster processes do not crash, and multicast infinitely many
messages to every process.

This algorithm is non-uniform, i.e., it guarantees the agreement property of Section 2 only for correct processes.

12

(3]
(6]
(7]
(8]
(9]
(10]
(1]
(12]

(13]

U. Fritzke, Ph. Ingels, A. Mostéfaoui, and M. Raynal. Fault-tolerant total order multicast to asynchronous groups. In
Proceedings of the 17th IEEE Symposium on Reliable Distributed Systems, pages 578-585, October 1998.

S. Frolund and F. Pedone. Ruminations on domain-based reliable broadcast. In DISC ’02: Proceedings of the 16th Interna-
tional Conference on Distributed Computing, pages 148-162, London, UK, 2002. Springer-Verlag.

R. Guerraoui and A. Schiper. Genuine atomic multicast in asynchronous distributed systems. Theor. Comput. Sci., 254(1-
2):297-316, 2001.

V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and related problems. In Sape J. Mullender, editor, Distributed Systems,
chapter 5, pages 97-145. Addison-Wesley, 1993.

L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communications of the ACM, 21(7):558-565,
July 1978.

L. Rodrigues, R. Guerraoui, and A. Schiper. Scalable atomic multicast. In Proceedings of the 7th IEEE International
Conference on Computer Communications and Networks (IC3N’98), pages 840-847, Lafayette, Louisiana, USA, 1998.

A. Schiper. Early consensus in an asynchronous system with a weak failure detector. Distributed Computing, 10(3):149-157,
1997.

A. Sousa, J. Pereira, F. Moura, and R. Oliveira. Optimistic total order in wide area networks. In Proc. 21st IEEE Symposium
on Reliable Distributed Systems, pages 190-199. IEEE CS, October 2002.

P. Vicente and L. Rodrigues. An indulgent uniform total order algorithm with optimistic delivery. In SRDS ’02: Proceedings of
the 21st IEEE Symposium on Reliable Distributed Systems (SRDS’02), page 92, Washington, DC, USA, 2002. IEEE Computer
Society.

13

A Appendix

A.1 Latency Degree Analysis - Atomic Multicast

Theorem 4.1 There exists a run R of algorithm Al in which a message m is A-MCast to two groups such
that A(m, R) = 2.

Proof: We illustrate such a run R. Consider that there are two groups in the system: g; and go. At time
t1, process p1 € g1 A-MCasts message m to g; and g2. By time 2 and ¢3 respectively, processes in g;
(7 € {1, 2}) have R-Delivered m and have decided on m in consensus instance 1. Note that for all processes
p, because the latency degree of non-uniform reliable multicast is one, the decide events dec,, is such that
ts(decy) = 1. At time t4, processes in g; send(TS, m) to g3_;. At time ¢5, processes in g; receive (TS, m).
On all processes, line 35 evaluates to true and they A-Deliver m such that ts(A-Deliver(m)) = 2.]

A.2 Latency Degree Analysis - Atomic Broadcast

Theorem 5.1 There exists a run R of algorithm A2 in which a message m is A-BCast such that
A(m,R) = 1.

Proof: We illustrate such a run . Consider that there are two groups in the system: g; and go. Let r be a
round where some message was A-Delivered. Hence, all processes start round r 4+ 1. At time ¢;, process
p1 € g1 A-BCasts message mi. By time t5 processes in g; have R-Delivered m. By time ¢3 all processes
have decided in consensus instance r + 1. At time ¢4, processes in g; send a message (r + 1, {m}) to pro-
cesses in go; processes in go send a message (r + 1, () to processes in g;. At time ¢5, processes in g receive
the message (r + 1, -) from g2 and vice-versa. Hence, processes A-Deliver m such that ts(A-Deliver(m)) =
1. O

Theorem 5.2 There exists a run R of algorithm A2 in which the last message m is A-BCast when processes
are reactive such that A(m, R) = 2.

Proof: We illustrate such a run 2. Consider that there are two groups in the system: g; and go. At time 71,
process p € g1 A-BCasts message m. By time ¢y and t3 respectively, processes in g; have R-Delivered m
and have decided on m in consensus instance r. At time ¢4 and ¢5 respectively, processes in g; send(r, {m})
to g2 and processes in gy receive this message. At time tg, t7, and tg, processes in go respectively decide in
consensus instance 7, send(r, () to processes in g1, and A-Deliver m. At time tg, processes in g; A-Deliver
m such that ts(A-Deliver(m)) = 2.]

A.3 The Algorithms’ Proofs

Note that in the following proofs, for brevity, we often write: “process p decides on m in instance k” instead
of writing “process p decides on msgSet’ such that m € msgSet’ in instance k”. We use the following
definition of is a prefix of: Sy is a prefix of S5 < Ja : S1 B a = Ss.

A.3.1 The Proof of Algorithm .41

Definition A.1 We denote as K,Z the sequence of values taken by variable K on process p up to time t.

14

Lemma A.1 For any two processes p, q such that group(p) = group(q) and any time t, either K,; is a prefix
of KZ or RZ is a prefix of /izt,.

Proof: We proceed by induction on the length [of nﬁ,.

e Base step (I = 1) : K is initialized to 1, therefore mé = {1} and 1 is the first element of Ez. Therefore,
iy, is a prefix of x.

e Induction step: Suppose that Lemma A.1 holds for x = [— 1, we prove that Lemma A.1 holds for
x = . We do so by showing that —(k, is a prefix of x},) = &, is a prefix of «},. Suppose, by way of
contradiction, that (*) —(«}, is a prefix of k) A = (k! is a prefix of £}). By the induction hypothesis,

either (a) 3o : k!, G =k, or(b) I3 : K, & B =kl B Wenow show that (a) and (b) lead to a

T Pi—1 Pi—1°
contradiction.

- Incase (a), k), | = {k1,...,ki_1}, 6l = {k1, .., ki}, and &}, = {k1, .., ki1 } ® o/. There are two
cases to consider, (a-i) o/ = € or (a-ii) o/ # e.

t
q

+ In case (a-ii), because —(k}, is a prefix of /), (**) the first integer k, in o is different
from k;. By the uniform agreement property of consensus, p and g decide on the same set
of messages in instance k;_1. Therefore, p and ¢ set their variable K to the same value at
line 31 when K, = K, = k;_;. Consequently, k, = k;, a contradiction to (**).

- Incase (b), 38 : kl, @ = k!, and therefore 33’ :), @ 3’ = kl, a contradiction to (*¥).

* In case (a-i), o/ = € and therefore «! is a prefix of /iltg, a contradiction to (*).

Lemma A.2 For any correct process p, any t, and any process q such that group(p) = group(q), there

. /
exists a t' such that fé:; = /ig.

: : ¢ ¢ ¢ ¢
Proof: By Lemma A.1, either (a) £, is a prefix of kg or (b) x, is a prefix of x),.

e Incase (a), k) is a prefix of £, Therefore, there exists o such that k!, @ o = k. Let k be the length of
« and o, be the prefix of « of length . We show by induction on « that for 1 < x < k, there exists a
time ¢’ such that Hg = Kp) @ .

— Base step (x = 1): Let k; and k3 be the last and only element of /ﬁ; and o respectively. Because
there is a time at which K, = k9, ¢ decided in instance k1. By the uniform agreement property
of consensus p eventually decides in instance k1 and p, q decide on the same set of messages in
that instance. Therefore, p eventually executes line 31 and sets K, to k.

— Induction step: Suppose that there exists a time ¢’ such that /ig = /i; @ ap—1, we show that this
also holds for x (1 < x < k). The same argument as in the base step is used, where k; is the last
element of a,,_1 and ks is the last element of a,.

e In case (b), ! is a prefix of «},, therefore there exists a time ' such that /ff,’ =K O

t
q

Lemma A.3 For any message m and any process p, after p adds m to PENDING,, at line 13 or line 30,
m € PENDING, U ADELIVERED,, forever.

Proof: Before m is removed from PENDING, at line 7, m is added to ADELIVERED,, at line 6. There-
fore, after m is added to PENDING), either at line 13 or line 30, » € PENDING, U ADELIVERED,
forever.]

8 .t

kp,_, denotes the prefix of mf, of length [— 1.

15

Lemma A.4 For any message m and any process p:

Proof:

(a) p executes at most once line 18 when m.stage = sg with m € msgSet’

(b) p executes at most once line 18 when m.stage = so with m € msgSet’

(a) Suppose, by way of contradiction, that p executes line 18 such that m € msgSet’ A m.stage = sg
more than once. Let k and k' (k < k') be the first and second consensus instances such that p
decides on a msgSet’ with m € msgSet’ A m.stage = sq at line 18. By the uniform integrity
property of consensus, there exists a process ¢ € group(p) such that ¢ proposes m to instance &’
with m.stage = sg. By Lemma A.1, ¢ decides in instance k before proposing m in instance k’. By
the uniform agreement property of consensus, ¢ decides on m in instance k. By Lemma A.3, after ¢
finishes executing line 30 when K, = k, m € PENDING, U ADELIVERED, forever. Hence, after
deciding in instance k, ¢ cannot execute line 12 to set m’s stage back to sg. Therefore, ¢ does not
propose m to consensus instance &’ such that m.stage = sg, a contradiction.

(b) Notice that p can only execute line 18 such that m.stage = s, with m € msgSet’ if |m.dest| > 1.
Suppose, by way of contradiction, that p executes line 18 such that m € msgSet’ A m.stage = so
more than once. Let k1 and k3 (k1 < k3) be the first and second consensus instances such that p
decides on m with m.stage = s3. By the uniform integrity property of consensus, there exists a
process ¢ € group(p) such that ¢ proposes m to instance k3 with m.stage = so. By Lemma A.1,
q decides in instance k; before proposing m in instance k3. By the uniform agreement property of
consensus, ¢ decides on m in instance k; such that m.stage = so. Because q sets m’s stage to s3 after
deciding in instance k; at line 26, after deciding in instance k; and before proposing m in instance ks,
either (b-1) ¢ sets m’s stage back to sg at line 12 or (b-ii) g sets m’s stage back to stage s; at line 22.
We show that (b-1) and (b-ii) lead to a contradiction.

— In case (b-i), by Lemma A.3, after ¢ executes line 30 when K, = ki, m € PENDING, U
ADELIVERED, forever. Therefore, ¢ does not execute line 12 after deciding in instance k1, a
contradiction.

— In case (b-ii), there exists a consensus instance k9 (k1 < ko < k3) such that ¢ decides on m
with m.stage = sg in instance ko. By the uniform integrity property of consensus, there exists
a process € group(q) such that r proposes m in instance ko. By Lemma A.1, r decides in
instance k; before proposing m in instance k3. By the uniform agreement property of consensus,
r decides on m with m.stage = so in instance k1. By Lemma A.3, after r executes line 30 when
K, = ki, m € PENDING, U ADELIVERED,. forever. Therefore, r does not set m’s stage
back to sg at line 12 after deciding in instance k1. Consequently, r does not propose m in
instance ko such that m.stage = sg, a contradiction.]

Lemma A.5 For any message m and any process p, on p m transitions only once to stage ss.

Proof:

There are two cases to consider:
(1) |[m.dest| = 1: Follows directly from Lemma A.4.

(2) |m.dest| > 1: Message m transitions to stage s3 either (i) at line 26 or (ii) at line 36. In case
(i), by Lemma A.4, p decides on m such that m.stage = s only once. Therefore, m transitions to
stage s3 at line 26 only once. In case (ii), by Lemma A.4, p decides on m such that m.stage = sg
only once. Therefore, m transitions to stage s; at line 23 only once and consequently m transitions to
stage s3 at line 36 only once. U

16

Definition A.2 From Lemma A.5 and because the timestamp of a message m does not change after m
transitions to stage s, we can define m.ts,? as the timestamp of m on a process p when m.stage = s3.

Proposition A.1 (Uniform Integrity) For any process p and any message m, (a) p A-Delivers m at most
once, and (b) only if p € m.dest and m was previously A-MCast.

Proof:

e (a) By Lemma A.5, on p, m transitions to stage s3 only once. Because m is only A-Delivered if
m.stage = ss such that m € PENDING and because m is removed from PENDING just after it
has been A-Delivered, p A-Delivers m at most once.

e (b) Follows directly from the algorithm. g

Lemma A.6 For any message m and any correct process p, if there exists a time at whichm € PENDING,,
such that m.stage = sq, then for all correct processes q € group(p) there exists a time at which m €

PENDING,.

Proof: Process p can only add m to PENDING, such that m.stage = s at line 13. Therefore, either m
was R-Delivered or (TS, m) was received. In the first case, because p and q are correct and by the agreement
property of reliable multicast, all correct processes ¢ € group(p) eventually R-Deliver m. In the second
case, because p and q are correct and links are quasi-reliable, all correct processes g € group(p) eventually
receive (TS, m). Therefore ¢ eventually adds m to PENDING,, if m ¢ PENDING, U ADELIVERED,.
Note that if m € ADELIVERED,, there exists a time at which m € PENDING,.]

Lemma A.7 For any message m and any correct process p:

e (a) if there exists a time t at which m € PENDING, such that m.stage, = so, then all correct
processes q € group(p) eventually execute line 18 such that m € msgSet’ A\ m.stage = so.

o (b) if there exists a time t at which m € PENDING),, such that m.stage, = s1, then for all correct
processes q € m.dest, m eventually reaches stage s1 on q.

e (c) if there exists a time t at which m € PENDING, such that m.stage, = s, then all correct
processes q € group(p) eventually execute line 18 such that m € msgSet’ A\ m.stage = ss.

e (d) if there exists a time t at which m € PENDING),, such that m.stage,, = s1, then for all correct
processes q € m.dest, m eventually reaches stage s3 on q.

Proof:

e (a) By Lemma A.6, eventually m € PENDING,. Suppose, by way of contradiction, that there
exists a correct process r € group(p) that never decides on m at line 18 such that m.stage = sp.
Therefore, by by Lemma A.2, and by the uniform agreement and termination properties of consensus,
there exists no correct process g € group(p) that decides on m with m.stage = sg. Consequently,
m never reaches stage s; on process ¢ and no process g A-Delivers m. Therefore for all ¢, m €
PENDING,; N m.stage = sq holds forever. Let ¢ be the time after which all faulty processes have
crashed. Therefore, after ¢, (*) processes g always propose a set of messages msgSet such that
m € msgSet N\ m.stage = sg at line 16. By the termination property of consensus, processes ¢
execute an infinite number of consensus instances. Therefore by (*), and by the uniform integrity and
uniform agreement properties of consensus, processes ¢ (including r) eventually decide on m such
that m.stage = sg, a contradiction.

17

e (b) Because p sets m’s stage to s; at line 23, p decided on m in an instance k such that m.stage = sg.
There are two cases to consider: (b-1) ¢ € group(p) and (b-ii) ¢ & group(p).

— In case (b-i), by the uniform agreement property of consensus and by Lemma A.2, g eventually
decides on m in instance k such that m.stage = sg. Consequently, ¢ eventually sets m’s stage
to s1 at line 23.

— In case (b-ii), p sends a (TS, m) message to all ¢ € m.dest \ group(p). Because p is correct and
links are quasi-reliable, (*) g eventually receive that message.

We now prove that for all groups in m.dest\ group(p) there exists at least one process r such that
there exists a time at which r adds m to PENDING, with m.stage = s at line 13. By (a), this
shows that m eventually transitions to stage s1 on all correct processes g € m.dest \ group(g).
Suppose, by way of contradiction, that there exists a group g € (m.dest \ group(p)) in which
no process adds m to PENDING at line 13. Consequently, because consensus instances are
executed inside groups, in g, no process adds m to PENDING or ADELIVERED. Therefore,
by (*) all processes in g eventually execute line 13, a contradiction.

e (c) We first prove that m eventually reaches stage s on q. If m.stage = s on p, then m reached stage

s1 on p before. Therefore by (b), m eventually reaches stage s; on all correct processes r € m.dest.
Therefore, r sends a (TS, m) message to all processes in m.dest \ group(r) and because there is at
least one correct process per group and links are quasi-reliable, all processes g € group(p) eventually
receive (TS, m) messages from every group different from group(p). As m reaches stage s2 on p, on
every correct process ¢ € group(p), line 35 evaluates to false, and m reaches stage so on all q.
Now suppose, by way of contradiction, that there exists a correct process s € group(p) that never
decides on m at line 18 such that m.stage = s2. Consequently, by Lemma A.2, and by the uniform
agreement and termination properties of consensus, no process in group(p) decides on m such that
m.stage = sy and none A-Delivers m. Therefore for all correct processes ¢ € group(p), m €
PENDING,; N m.stage = so holds forever. Let ¢ be the time after which all faulty processes have
crashed. Therefore, after ¢, (*) processes ¢ always propose a set of messages msgSet such that
m € msgSet A\ m.stage = so at line 16. By Lemma A.2 and the termination property of consensus,
processes g execute an infinite number of consensus instances. Therefore, by (*), and the uniform
integrity and uniform agreement properties of consensus, processes ¢ (including s) eventually decide
on m such that m.stage = so, a contradiction.

e (d) If there exists a time at which, on p, m € PENDING, such that m.stage = s, then by (b), on
all correct processes g € m.dest m reaches stage s and g executes line 24. Because there is at least
one correct process per group, links are quasi-reliable, and processes p and g are correct, g eventually
executes line 33. There are two cases to consider: on g, either (i) line 35 evaluates to true or (ii) not.

— In case (i), Lemma A.7-(d) trivially holds from the algorithm.

— In case (ii), m reaches stage ss on q. By (¢), ¢ eventually decide on m such that m.stage = so.
Therefore, m eventually reaches stage s3 at line 26. U

Lemma A.8 Forany message m and any correct process p, if there exists a time at whichm € PENDING,,
then m eventually reaches stage s3 on p.

Proof: There are two cases to consider, either (a) [m.dest| = 1, or (b) |m.dest| > 1:

e In case (a), p adds m to PENDING,, (a-i) at line 13 or (a-ii) at line 30.

18

— In case (a-i), by Lemma A.7-(a), all correct processes ¢ € group(p) (including p) eventually
decide on a consensus instance such that m € msgSet’ A m.stage = sg and on p, m.stage is
set to s3 at line 29.

— In case (a-ii), Lemma A.8 trivially holds from the algorithm.
e In case (b), p adds m to PENDING,, (b-i) at line 13 or (b-ii) at line 30.

— Incase (b-i), by Lemma A.7-(a), all correct processes in ¢ € group(p) eventually execute line 18
such that m € msgSet’ A m.stage = so. Because there exists at least one correct process in
each group, there is at least one correct process r € group(p) such that m reaches stage s at
line 23. Consequently, by Lemma A.7-(d), m reaches stage s3 on all correct processes in m.dest
(including p).

— Incase (b-ii), when p adds m to PENDING),,, either (b-ii-1) m.stage = s; or (b-ii-2) m.stage =
S3.
* In case (b-ii-1), by Lemma A.7-(d), on all correct processes ¢ € m.dest (including p), m
eventually reaches stage ss.
* In case (b-ii-2), Lemma A.8 holds.]

Lemma A.9 For any correct process p and any message m such that there exists a time at which m €
PENDING,, after m reaches stage s3 on p, p eventually stops adding messages m' to PENDING,, such
that m' ts < m.tsy?.

Proof: Message m reaches stage s3 at line 26, at line 29, or at line 36. In the three cases, from line 31, there
exist a time ¢ at which K, > m.tsp*. After ¢, p can add a message m/ to PENDING), either (a) at line 13
or (b) at line 30.

e In case (a), before adding m’ to PENDING,, m’.ts is set to K.

e In case (b), there are three subcases to consider, (c-i) |m’.dest| > 1 A m/.stage = s1, (c-ii)
|m/.dest| > 1 Am/.stage = s3, or (c-iii) |m/.dest| = 1.

— In cases (c-i) and (c-iii), m’.ts is set to K,

— In case (c-ii), suppose, by way of contradiction, that p adds an infinite number of messages m’ at
line 30 such that [m/.dest| > 1, m'.stage = s3, and m/.ts < m.ts;?. Therefore, by the uniform
integrity property of consensus and because |II| < oo, there exists a process r € group(p) that
proposes messages ' such that m’.stage = sg and m'.ts < m.ts;? an infinite number of times.
After such a message m’ is decided in consensus, m/’ transitions to stage s3. By Lemma A.4, m/
can do so at most once and consequently 7 adds an infinite number of different messages m” to
PENDING, such that m".stage = s A [m”.dest| > 1 A'm/.ts < m.ts3?, a contradiction to
(c-1). O

Proposition A.2 (Uniform Agreement) For any message m, if a process p A-Delivers m, then all correct
processes q € m.dest eventually A-Deliver m.

Proof: We first show that eventually m € PENDING,. There are two cases to consider, either (a)
|m.dest| = 1 or (b) |m.dest| > 1. In both cases, because p A-Delivers m, there exists a consensus

19

instance k such that p decides on m in k with m.stage = sg. By Lemma A.2 and by the uniform agree-
ment of consensus, all correct processes ¢ € group(p) eventually decide on m in k. Therefore, ¢ adds
m to PENDING, at line 30. This shows the claim for case (a). In case (b), because there is at least
one correct process per group, there exists at least one process r € group(p) that sends (TS, m) to all
processes in (m.dest \ group(p)) at line 24. Therefore, because links are quasi-reliable, all correct pro-
cesses ¢ € (m.dest \ group(p)) eventually receive that message and add m to PENDING, at line 13 if
m ¢ PENDING, U ADELIVERED,. Note that if m € PENDING,, then obviously there is a time at
which m € PENDING,.

By Lemma A.8, m eventually reaches stage s3 on q. By Lemma A.9, q eventually stops adding messages
m' to PENDING, such that m'.ts < m.ts}*. By Lemma A.8, all such messages m' eventually reach stage
s3 and are removed from PENDING,. Therefore, q eventually A-Delivers m. U

Proposition A.3 (Validity) If a correct process p A-MCasts m, then all correct processes q € m.dest
eventually A-Deliver m.

Proof: We first prove that ¢ eventually adds m to PENDING,. By the properties of Reliable Multicast
and because p is correct, all correct processes g € m.dest R-Deliver m and add m to PENDING, at
line 13 if m ¢ PENDING, U ADELIVERED,. Notice that if m €¢ ADELIVERED,, then obviously ¢
A-Delivered m and Proposition A.3 holds. By Lemma A.8, m eventually reaches stage s3 on ¢. By Lemma
A.9, q eventually stops adding messages m’ to PENDING, such that m'.ts < m.ts3*. By Lemma A.8, all
such messages m’ eventually get to stage s3 and are removed from PENDING,. Therefore, ¢ eventually
A-Delivers m. U

Lemma A.10 For any message m and any two processes p and q such that p and q A-Deliver m, m.tsp* =
m.ts33.
q

Proof: There are two cases to consider: either (a) |m.dest| = 1 or (b) |m.dest| > 1.

e In case (a), by the uniform agreement property of consensus and by Lemma A.4, all processes in p’s
group decide on m in the same consensus instance k and only in k. Therefore, p and ¢ set m.ts to the
same value at line 29.

e In case (b), by the uniform agreement of consensus and by Lemma A.4 for all groups g € m.dest, all
processes g in group g decide on m such that m.stage = s2 in the same and only consensus instance
k and send the same timestamp at line 24. Therefore, by line 35 and line 39, m.ts;? and m.tsg® are
set to the same value. U

Lemma A.11 For any two messages my and ma, mi < mg = (ml.tsff’,ml.id) < (mg.ts]‘?, ma.id).

Proof: Notice that in the proof below, we use the fact that, by definition, for any two messages m1 and mo,
mi.ts < mo.ts = (my.ts,my.id) < (ma.ts, ma.id). Let p be the process that A-Delivers m; before mao.
At the time m; is A-Delivered, either (a) mo € PENDING),, or (b) mg ¢ PENDING,,.

e Incase (a), (ma.ts;?, my.id) < (ma.tsy?, ma.id) holds trivially by the condition of line 4.

e In case (b), because mo is not in PENDING), at the time m, is A-Delivered, a message is removed
from this set only after it has been A-Delivered (line 7), and my is A-Delivered after my, (*) mg
has not yet been added to PENDING, either at line 13 or at line 30. Since K increases after each
consensus instance, if |ma.dest| = 1, my.tspd < ma.tsy?. If |ma.dest| > 1, before ms reaches stage
s3 on p, p executed line 18 such that my € msgSet’ A ma.stage = sy and mo transitions to stage s1
at line 23. Therefore, since K increases after each consensus instance and because of (*), at the time

20

mg reaches stage si, ml.tsff’ < ma.ts. By line 35 or line 39 we have that mz.tsf,?’ is equal to the
maximum of all timestamps received, therefore m, .tsf;” < mg.tsfj".

Lemma A.12 For any two processes p, q, and any two messages my, mg such that p,q € mj.dest N
ma.dest, if p A-Delivers my before mo and q A-Delivers mo, then q A-Delivers my before.

Proof: Because there is at least one correct process per group and by Proposition A.2, there exists a correct
process r € group(q) that A-Delivers m and mso. Let k1 and ko be the largest K such that group(q)
decides on m; in consensus instance k1 and on mgy in consensus instance ko respectively (the decision of
instance k; (k2) is such that mq’s (my’s) stage is either sp or s2). From the algorithm, k; = my.ts3.
By Lemma A.10, mq.ts;? = ml.ts;?*. By Lemma A.11 and because p A-Delivers m; before ms, (*)
(my.ts;2,my.id) < (ma.ts;?, ma.id), thus my.tsp® < ma.ts;®. By Lemma A.10, ma.tsp? = ma.ts;s.
From the algorithm, ko = ma.ts;3, therefore, (**) k1 < ko. Hence by Lemma A.1, g decides instance k
and thus, ¢ adds my to PENDING, at line 30 before A-Delivering my. There are two cases to consider,

either the decision of instance k; is such that m1’s stage is (a) sg or (b) sa.
e In case (a), there are two cases to consider, either (a-i) |m.dest| = 1 or (a-ii) |m.dest| > 1.

— In case (a-i), on g, m transitions to stage s3 before ¢ A-Delivers mo. Because k1 = ml.tsg?’ <
ko = ma.ts;?, by (*) and Lemma A.10, (ml.tSZS,ml.id) < (mg.tsff, ma.id). Therefore, from
the condition of line 4, ¢ A-Delivers m; before mo.

— In case (a-ii), on g, m; transitions to stage s; before g A-Delivers mo. Since ml.tsfll =Kk
and & is the last consensus instance in group(q) that decides on my, on g, after my transitions
to stage s1, m1’s timestamp does not change. By Lemma A.10, k1 = my.ts;® and ma.ts;? =
mg.t523 = ko. Hence, since k1 < ko, by (¥), ¢ A-Delivers m; before mo, otherwise from the
condition of line 4, ¢ would never A-Deliver ms.

e In case (b), the same argument as in (a-i) is used.]

Lemma A.13 For any two processes p and q and any time t, either Pp7q(SIt,) - Pp7q(Sé) or Pp,q(Sé) C
Pp7Q(SIt))'

Proof: We prove Lemma A.13 by showing that 3m; € Pp4(S)) : m1 & Pp4(S,) = Vma € Ppg(Sh) :
mg € Pp4(S}). Suppose, by way of contradiction, that Im; € P,4(S}) : m1 & Ppq(Si) A Img €
P,q(Sh) : ma & P, 4(Sh). Because there is at least one correct process per group and by Proposition A.2,
there exist correct processes r € group(p) and s € group(q) such that (*) r and s A-Deliver m; and ms.
There are two cases to consider, either (a) » A-Delivers m before my or (b) the opposite.

e In case (a), because mo € vaq(S;), by (*), and by Lemma A.12, ¢ A-Delivers m; before A-
Delivering 1mg and therefore m; € P, 4(S}), a contradiction.

e In case (b), because m; € Pp7q(Sf,), by (¥*), and by Lemma A.12, p A-Delivers mg before A-
Delivering 7 and therefore my € P, 4(S}), a contradiction. O

Proposition A.4 (Uniform Prefix Order) For any two processes p and q and any time t, either vaq(S;,) is
a prefix oprg(S;) or Pp7q(S;) is a prefix opr7q(S;,).
Proof: We proceed by induction on the length [of Ppﬂ(S;).

e Basestep (I = 0): Pp,q(S;) = e and since ¢ is a prefix of all sequences (including the empty sequence),

P,q(S}) is a prefix of P, 4(S?).

21

e Induction step: Suppose that Proposition A.12 holds for [— 1, we prove that Proposition A.12 holds
for I. We do so by showing that ~(P,(S}) is a prefix of P, 4(S})) = P,4(S}) is a prefix of

P
P,.4(S}). Suppose, by way of contradiction, that (*) (P, 4(S}) is a prefix of Py 4(Sh)) A =(Pp,q(Sh)

p

is a prefix of P, 4(S})). By the induction hypothesis, either (a) 3o : P, 4(S},) ® o = P, 4(S}) or
(b) 33 : Pp7q(5’é) 0= P;,,,q(*S*f)li1). We now show that (a) and (b) lead to a contradiction.

- Incase (a), Ppq(S),) = {m1,...my_1}, Ppq(Sy) = {m1,..,my},and P, 4(S) = {ma,..,m_1}®

/. There are two cases to consider, (a-i) o/ = € or (a-ii) o/ # .
* In case (a-i), o/ = e and thus P, 4(S},) = Pp,q(S}). Consequently, P, 4(S) is a prefix of
P,4(S}), a contradiction to (¥).

* In case (a-ii), because —(P,4(S}) is a prefix of P, 4(S%)), my is not the first message in
o, let m, be that message. Hence, P, 4(S}) € Ppq(S%) and P, 4(Sh) € Ppq(Sh). a
contradiction to Lemma A.13.

— Incase (b), 33 : P, q(Sh) ® B = P, 4(S],

AN L1 q
contradiction to (¥).

) and therefore P, 4(S%) is a prefix of P, 4(S}). a
U

A.3.2 The Proof of Algorithm .42

Definition A.3 We define msgs ToADel;C as the value of set msgsToADel, after process p executed line 18
when K, = k. If process p does not execute line 18 when K,, = k, msgsToADel;f = 1.

Lemma A.14 For any k, any two processes p and q such that group(p) = group(q) and any two messages
(k, msgSet,,) and (k, msgSet,) respectively sent by p and q at line 15, msgSet,, = msgSet,.

Proof: Follows directly from the uniform agreement property of consensus. (|

Lemma A.15 For any two processes p and q and any k, if p and q execute line 18 when K, = K, = k,
then msgsToADel;f = msgsTOADelé“.

Proof: From the condition of line 16, p and q received a message (k, -) from a process in each group different
from group(p) and group(q). By Lemma A.14, each two messages (k, msgSet,) and (k, msgSet.) coming
from processes r and s that are in the same group are such that msgSet,. = msgSet.. There are two cases to
consider, either (a) group(p) = group(q) or (b) not.

e In case (a), by the uniform agreement property of consensus, p and ¢ add the same set of messages to
Msgs at line 17. Therefore, msgsToADelI’f = msgsToADelé‘.

e In case (b), let msgS et; and msgSet(’I be the set of messages that p and q respectively add to Msgs at
line 17. By the condition of line 16, p received a message (k, msgSet;) from a process in group(q)
and ¢ received a message (k, msgSetz) from a process in group(p). Because processes send the same
set of messages at line 15 that they add to Msgs at line 17, by Lemma A.14, msgSetI’) = msgSety and
msgSet, = msgSet;. Therefore, msgsToADel]f = msgsToADelé“. O

Proposition A.5 (Uniform Integrity) For any process p and any message m, (a) p A-Delivers m at most
once and (b) only if m was previously A-BCast.

Proof:

P, q4(St,_) denotes the prefix of P, ,(S}) of length [— 1.

Pr—1

22

e (a) Let £ be the value of K, the first time p A-Delivers m. Consequently, m € msgs ToADel;f when
K, = k at line 18 (notice that m can only appear once in msgsToADel because it is a set). By
Lemma A.15, all processes ¢ that execute line 18 when K, = k are such that m € msgsT oADelé“.
Consequently, since processes add m to ADELIVERED at line 20 after A-Delivering m, no process
proposes m to a consensus instance k' > k. Therefore, there exists no ¥’ > k such that m €
msgs ToADelZ’f/ and p never A-delivers m again.

e (b) Follows directly from the algorithm. U

Lemma A.16 For any process p and any k,
e (a) if p decides in consensus instance k, then all correct processes q eventually decide in instance k.
e (b) p does not wait forever at line 16 when K, = k.

Proof: We proceed by simultaneous induction on (a) and (b).
e Base step (k = 1):

— (a) There are two cases to consider: either (a-1) ¢ € group(p) or (a-ii) not.

* (a-1) Variable K is initialized to 1. Therefore by the uniform agreement property of con-
sensus, all correct processes q eventually decide in instance 1.

* (a-2) By (a-1) and because there is at least one correct process per group, there is at least one
correct process r € group(p) that sends a message (1, -) to all processes ¢ ¢ group(p) at
line 15. Because 7 is correct and links are quasi-reliable, all correct processes ¢ eventually
receive that message. Thus, eventually, Barrier, > 1. Consequently, ¢ proposes a value
in instance 1 (if ¢ has not decided yet in instance 1) and by the termination property of
consensus, g eventually decides in instance 1.

— (b) Suppose, by way of contradiction, that p waits forever at line 16. Consequently, p is correct.
By (a), all correct processes g eventually decide in instance 1. After deciding in instance 1,
correct processes ¢ send a (1, -) message to all processes not in group(q). Because there is at
least one correct process per group, p is correct, and links are quasi-reliable, p eventually receive
this message from a process in every group different from group(p) and stops waiting at line 16,
a contradiction.

e Induction step: Suppose that (a) and (b) hold for £ — 1 we prove that they hold for &.

— (a) There are two cases to consider either (a-1) ¢ € group(p) or (a-ii) not.

* (a-1) From the induction hypotheses, ¢ eventually decides in instance k& — 1. Thus, even-
tually, K, = k. Therefore by the uniform agreement property of consensus, ¢ eventually
decide in instance k.

* (a-2) By (a-1) and because there is at least one correct process per group, there is at least
one correct process r € group(p) that sends a message (k, -) to all processes g &€ group(p)
at line 15. Because r is correct and links are quasi-reliable, all correct processes ¢ eventu-
ally receive that message. Thus, eventually, Barrier, > k. By the induction hypotheses, ¢
decides in instance £ — 1 and does not wait forever at line 16 when K, = k£ — 1. Conse-
quently, g proposes a value in instance & (if ¢ has not decided yet in instance k) and by the
termination property of consensus, q eventually decides in instance k.

— (b) The same argument as in the base step of (b) is used, where every occurrence of “1” is
replaced by “k”. U

23

Proposition A.6 (Uniform Agreement) For any message m, if a process p A-Delivers m, then all correct
processes q eventually A-Deliver m.

Proof: If p A-Delivers m, then there exists a k£ such that m € msgs Tt oADelI’f. Thus, p decided in consensus
instance k. By Lemma A.16, every correct process g eventually decides in consensus instance k and executes
line 18 when K, = k. By Lemma A.15, m € msgs ToADeléC and therefore ¢ A-Delivers m. O

Lemma A.17 For any group g and any message m, if there is a time after which all correct processes p in
g are such that m € RDELIVERED,, then all correct processes eventually A-Deliver m.

Proof: Suppose, by way of contradiction, that there exists a correct process that never A-Delivers m. By
Proposition A.6, no correct process A-Delivers m. Therefore, m € RDELIVERED, \ ADELIVERED,,
eventually forever. Consequently, by the termination property of consensus and Lemma A.16, processes
p execute an infinite number of consensus instances. Let ¢ be the time at which all faulty processes have
crashed. After ¢, consensus proposals in g always contain m, and thus, by the uniform integrity and uniform
agreement properties of consensus, processes p eventually decide on m in an instance k.

Consequently, (*) processes p send a (k, msgSet;)) message such that m € msgS etz’,. Because there is at
least one correct process in each group and links are quasi-reliable, all correct processes r € II eventually
receive that message and eventually Barrier, > k. By the termination property of consensus and by
Lemma A.16, there exists a time at which processes r have executed line 18 when K, = k. Therefore, by
the condition of line 16 and (*), m € msgsToADel* and thus, all correct processes eventually A-Deliver
m, a contradiction. 0

Proposition A.7 (Validity) If a correct process p A-BCasts m, then all correct processes eventually A-
Deliver m.

Proof: By the validity property of reliable multicast, all correct processes ¢ in group(p) eventually R-Deliver
m and add m to RDELIVERED,. Therefore, by Lemma A.17, all correct processes eventually A-Deliver
m. O

Definition A.4 We define the round of a message m as the value k such that there exists a process p with
m € msgsToADel];. If m is never A-Delivered by any process, round(m) = L.1°

Lemma A.18 For any process p and any two messages my and mg such that round(my) # L, round(ms) #
1, and round(my) < round(ms), if p A-Delivers my then p A-Delivers my before.

Proof: If p A-Delivers my, then there exists a time at which K, = round(mz). Because K, is monotoni-
cally increasing with time and since round(m;) < round(mz), p executes line 19 when K, = round(m)
before executing the same line when K, = round(mz). Therefore, p A-Delivers m; before mo.]

Proposition A.8 (Uniform Prefix Order) For any two processes p and q and any time t, either Pp,q(Sf)
a prefix Oanq(Sé) or Pp,q(sé) is a prefix Opr,q(Sf,).

Proof: Note that since for any message m, m.dest = T', instead of writing P, (S}) and P, 4(S,), we simply
write S}, and S}, respectively. We proceed by induction on the length [of S}

) is

e Base step (I = 0): SI'; = e and since ¢ is a prefix of all sequences (including the empty sequence), S,
is a prefix of Sy.

!Note that by Proposition A.5 and Lemma A.15, for any message m, round(m) is uniquely defined.

24

e Induction step: Suppose that Proposition A.8 holds for z = [— 1, we prove that Proposition A.8 holds
. t s t ts t
for [. We do so by showing that (S, is a prefix of S) = S, is a prefix of S},. Suppose, by way of
contradiction, that (*) (S}, is a prefix of S%) A =(S{, is a prefix of S})). By the induction hypothesis,
either (a) Jov : S;;Fl O o= Sé or (b) 43 : S; ®p= 52171.11 We now show that (a) and (b) lead to a
contradiction.

- Incase (a), S, . = {my,..,mi_1}, S}, = {ma,..,m},and S}, = {my,..,m_1} ® o'. There
are two cases to consider, (a-i) o/ = € or (a-ii) o/ # e.

x In case (a-1), S; = Sé. Thus, Sé is a prefix of S¢, a contradiction to (¥).

-1

* In case (a-ii), because —|(Szt, is a prefix of Sé), my is not the first message in o, let m, be

that message. Let k and &’ be the values of round(m;) and round(m,) respectively. There
are three cases to consider: (a-ii-1) k < &/, (a-ii-2) k = &/, or (a-ii-3) k& > &'

- In case (a-ii-1), by Lemma A.18, m; € S;Fl

my € S;;l_l. Therefore, p A-Delivers m; twice, a contradiction to Proposition A.S.

and thus because S;F . is a prefix of St

- In case (a-ii-2), by Lemma A.15, msgsToADelI]f = msgs ToADelé“. When processes
A-Deliver messages of msgsToA Del in some deterministic order, either (a-ii-2-*) m;
appears before m, or (a-ii-2-**) the opposite. In case (a-ii-2-*), using the same argu-
ment as (a-ii-1), we conclude that p A-Delivers m; twice, a contradiction to Propo-
sition A.5. In case (a-ii-2-*%), m, € S}, and because S}, is a prefix of S,

L1
mg € an_l. Therefore, g A-Delivers m, twice, a contradiction to Proposition A.5.

- In case (a-ii-3), by Lemma A.18, m, € Sztnq and thus, because S},Fl is a prefix of S,
Mg € SéH. Therefore, ¢ A-Delivers m, twice, a contradiction to Proposition A.5.

- Incase (b), 33 : S, ® 3 =S}, | and therefore S} is a prefix of S}, a contradiction to (¥). [

Lemma A.19 If there exists a time after which no message is A-BCast, then for any correct process p,
eventually (RDELIVERED,, \ ADELIVERED,) = () forever.

Proof: If there exists a time after which no message is A-BCast, then there exists a time ¢ after which no
message is R-MCast. Therefore, by the uniform integrity of reliable multicast, p only R-Delivers a finite
number of messages and thus, there exists a time after which no message is added to RDELIVERED,,.
We now prove that for any message m € RDELIVERED,, eventually m € ADELIVERED,. Since
m € RDELIVERED,, p R-Delivered m. By the agreement property of reliable multicast and because p is
correct, all correct processes ¢ € group(p) eventually R-Deliver m. By Lemma A.17, all correct processes
eventually A-Deliver m and therefore eventually m € ADELIVERED,,. (|

Lemma A.20 [fthere exists a time after which no message is A-BCast, then there exists a Barrierq, such
that for all correct processes p, Barrier, < Barrieryqz.

Proof: By Lemma A.19, for all correct processes p, eventually (RDELIVERED, \ ADELIVERED,)) = ()
forever. Let ¢, be the earliest time at which p executes line 20 such that after executing line 20,
(RDELIVERED, \ ADELIVERED,,) = () forever, and let k, be the value of K, at time ¢,. We first
prove that there exists a k& such that for all p, k, = k. Suppose, by way of contradiction, that there exist
correct processes ¢, r such that £, > k.. Let m be the last message g A-Delivers in instance k, (such
an m exists by the definition of k,). Before A-Delivering m, ¢ sends a message (kq, msgSet;) such that
m € msgSeté to all. Because g and r are correct and links are quasi-reliable, r eventually receives this
message and thus eventually Barrier, > k4. By the termination property of consensus and Lemma A.16,

llst

Pr—1

denotes the prefix of S}, of length I — 1.

25

r eventually decides in consensus instance k4. Consequently, r eventually executes line 18 when K, = k,.
By Proposition A.5, r A-Delivers m only once and therefore k, > kg, a contradiction.

Now suppose, by way of contradiction, that there exists a process ¢ such that Barrier, keeps on increasing.
Variable Barrier, is increased either (a) at line 23 or (b) line 10.

e From the definition of £, for every & > k,, such that msgsT oADel]; %+ 1, msgsToADel]; = 0.
Therefore, g does not increase Barrier, at line 23 when K, > k,,, a contradiction.

e From (a), there exists no process r such that Barrier, > k, + 1, and thus ¢ does not receive a (k, -)
message at line 8 such that & > k, + 1, a contradiction. g

Proposition A.9 (Quiescence) If there exists a time after which no message is A-BCast, then eventually all
processes stop sending messages.

Proof: Messages are sent either (a) at line 5 (reliable multicast), (b) at line 12 (consensus), or (c) at line 15
(send). Obviously, only correct processes can send messages forever. Consequently, proving that eventually
all correct processes stop executing these lines is enough to show that eventually processes stop sending

messages.12

e (a) If there exists a time after which no message is A-BCast, eventually no (correct) process executes
line 5 anymore.

e (b) From Lemmata A.19 and A.20, for every process p, the condition of line 11 eventually evaluates
to false forever. Therefore, p only executes a finite number of times line 12.

e (c) From (b) and the uniform integrity of consensus, p decides in only a finite number of consensus
instances and therefore p executes a finite number of times line 15.]

2Notice that we here consider consensus and reliable multicast algorithms that are halting, i.e., in all runs of the algorithms,
there is a time after which all processes stop taking steps and thus only a finite number of messages is sent. Halting algorithms for
consensus and reliable multicast can be found in [11] and [6] respectively.

26

