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1. Introduction

The “oil shock” in the 1970s had a dramatic effect on the value of firms.
Investors forced to liquidate portfolios representing a significant portion of
their assets at lower than expected stock prices had to reduce their con-
sumption for the rest of their lives. Davis (1995) reports, for example, that
Britons who retired in 1974 and had contribution-based pensions without
a minimum guarantee received an income for the remainder of their lives
which was worth only half that of individuals who retired before the 1973
shock. In countries such as Germany, where savings are mostly held with
intermediaries (banks, insurance companies, pension funds), individuals did
not lose as much wealth as their counterparts in the US or the UK. In the
1980s the situation was reversed due to booming stock markets.

The effect of the oil shock on financial markets is considered to be a
non-diversifiable risk. The example suggests, however, that the timing of
such risks can be crucial for individuals. We call these risks in individuals’
optimal planning longitudinal risks. Traditional finance lacks methods for
reducing or hedging such risks. Instead, theory focuses on the efficient
sharing of risks through exchange (cross-sectional risk sharing). To show
the importance of non-diversifiable risk for individuals, let us consider the
following exercise.

Insert Figure 1 about here

We assume that individuals start saving 20 years before they retire. To
simplify matters, let us say they invest their wealth either in a risk-free as-
set with 5 percent return per year or in a risky asset based on all assets on
the NYSE, Nasdaq and AMEX. Figure 1 shows the average growth rate of
wealth for each generation up to the time of retirement. Two major observa-
tions are immediate. Due to booming stock markets in the 90s, individuals
who started investing in the stock market twenty years before will outper-
form by a wide margin those individuals who invested in risk-free assets in
the same period. By contrast, most individuals who retired in the 70s and
had invested in stocks – although broadly diversified – underperformed the
risk-free investment.

It is often argued that for increasing time horizons, the investment dan-
ger shown in Figure 1 vanishes. For this purpose, let us consider individ-
uals with an 18, 20, 22 and 24-year investment horizon before retirement.
Again. from Figure 1, we see that wealth at retirement is by no means pro-
portional to the investment periods. In other words, even for generations
that are very close to each other, wealth on retirement depends on a risk
factor which cannot be diversified using common stocks or derivatives on
stocks. This example illustrates that longitudinal risks are crucial for in-
dividuals. Furthermore, any theoretical solution to this problem cannot be
based on “averages” (e.g. average wealth distribution and average over the
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duration of the saving period) since, as shown in Figure 2, any solution
based on “averages” is not satisfactory for the agents.

Insert Figure 2 about here

In this paper we expand upon the traditional approach by consider-
ing optimal decision-making on the part of individuals and intermediaries
where cross-sectional and longitudinal risk sharing is allowed. Two types
of agents are considered: The first agent is an individual who maximizes
expected utility within a finite time horizon, while at the same time financ-
ing her optimal consumption path. The second agent is an intermediary
who maximizes expected utility within an infinite time horizon, while at the
same time offering intertemporal smoothing of consumption and incentive-
compatible risk-sharing contracts to the first type of agents.

Risks which cannot be diversified away at a given point in time, can
nevertheless be averaged over time in a way that reduces their impact on
individual welfare. One could think of a complicated contracting system
between individuals of the same generation and between individuals of dif-
ferent generations, where some crucial points in time (such as retirement)
are at a different distance in time for different individuals. Bodie et al.
(1992) argue, for example, that younger workers should bias their invest-
ment towards equities on the grounds that – unlike older workers – they
can offset equity losses by working harder later. Although this complicated
intra- and inter-generational longitudinal risk-sharing contract may be effi-
cient, the inherent asymmetric information problems make such a solution
of the non-diversifiable risk problem highly implausible. A more convinc-
ing mental exercise is the introduction of a new player: an intermediary with
the promise to redistribute the longitudinal risks between the individuals in
the form of bilateral contracts.

One of the characteristic features of the intermediary is that a sudden
fall in asset values does not imply losses that cannot be offset over time.
Two provisions are sufficient to achieve this goal: a persistent income from
the individuals and a buffer stock that is used as a capital cushion in order
to absorb the impact of longitudinal risk.

A possible design of the provision is given by bilateral risk-sharing
contracts with the individuals of each generation. Allen and Gale (1997)
present a two-period overlapping generation model (OLG) and prove the
existence of a stationary Markov equilibrium in which the price of the risky
asset is constant and the demand for the risk-free asset is zero; i.e., in equi-
librium the risk-free asset is not necessary in order to hedge against the
uncertainty of the risky asset’s return. Within their parameters, they show
the existence of feasible allocations that almost entirely eliminate risk in
the long run. In summary, Allen and Gale (1997) first prove that market
incompleteness leads to the absence of intertemporal smoothing and then
show how a financial system with intermediaries can indeed eliminate the
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resulting inefficiencies. In their model the OLG structure is a metaphor
for the incomplete market; the preferences of the intermediary defining in-
tertemporal smoothing are just averaged individual preferences, the optimal
risk-sharing contracts are not determined, and the interplay between cross-
sectional diversification and intertemporal smoothing is not analyzed. Our
model addresses some of these issues. It is based on the following exten-
sions:

• A truly incomplete financial market is considered. In addition to
the risk-free asset there are two risky assets. In consequence, the
interplay between cross-sectional risk sharing and intertemporal
smoothing can be analyzed. Both types of agents – intermediary
and individuals – are in the same financial market and arbitrage is
excluded.

• The intermediary is a firm with its own preference structure. The
optimization of expected utility is done under the condition of
intertemporal smoothing, budget constraint, and the risk-sharing
contract participation constraint for the individuals.

• The risk-sharing contracts are agreements between the intermedi-
ary and representative agent of each generation. Hence, there is an
infinite number of individuals in our model who choose their best
policy: agents, born at each time n and living for a finite number
of years, and the intermediary, which lives for ever.

Aside from these extensions, there is also an important restriction compared
to Allen and Gale (1997): We work in a partial equilibrium framework. This
framework allows for the analysis of the following problems:

• Optimal individual behavior: What is the impact of varying initial
wealth of the individuals on the acceptance of the offered risk-
sharing contract? How does a variation in the time horizon af-
fect the willingness of the individuals to accept the risk-sharing
contract? How does risk sharing affect the cross-sectional diver-
sification? Under what conditions can market incompleteness be
overcome by an agent’s self-insurance possibilities?

• Optimal behavior of the intermediary: What are the optimal risk-
sharing conditions, and what is a reasonable model of intertempo-
ral smoothing of consumption?

• Application to pension fund economics: What is the impact of
voluntary risk-sharing compared to its compulsory counterpart? Is
there a rationale for the existence of security funds and “fund-of-
fund” systems?

The paper is organized as follows. In Section Two we present the model
and compare it with the model of Allen and Gale (1997). In Section Three
the individual behavior is analyzed. Section Four considers the optimal
behavior of the intermediary, and in Section Five we discuss the our results.
The proofs of the propositions are given in appendices.
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2. The Model

Our model focuses on some aspects of the overlapping generation model
of Allen and Gale (1997). Contrary to their assumption, in our model the
agents act as price takers. Therefore, only a partial equilibrium will be an-
alyzed. This simplification allows us to enrich their model in the following
way: the risk-sharing mechanism is modeled and a primary goal is to deter-
mine the optimal contracts in an imperfect financial market.

We first describe our model and at the end of the section discuss its
relationship to the model to Allen and Gale (1997).

The OLG model serves as a vehicle for the analysis of intertemporal risk
smoothing. Time is divided into a finite number of datesn = 1, 2, . . ., and a
new generation is born at each daten. Since we assume that each generation
consists of an equal number of identical agents, there is no loss of generality
in considering a representative agent of each generation. Initially, there is
one old generation that lives for just one period; each subsequent generation
lives for two periods. We rule out the possibility that the agents can self
insure themselves (cf. Schechtman [1976]). The agents can consume a
single goodcn in periodn, and agents born at the beginning of periodn
have an endowmentWn but no endowment inn + 1. This mimics the life
cycle.

A second agent, the intermediary, lives forever. The intermediary max-
imizes its utility function under a number of constraints to be described be-
low. Before proceeding with the definition of the model for different agents,
we first consider the structure of the financial market. There are two types
of general tradeable assets, a safe assetBn with a constant, deterministic
interest rater, and two risky assetsS(1)

n andS(2)
n . We use two risky assets,

since one of our goals is to analyze cross-sectional (diversifiable) risk in
addition to intertemporal smoothing of risk (non-diversifiable risk). We as-
sume the existence of four states of the worldωk. Hence, the payoff-matrix
for the agent of generationn reads:

Hn+1 =


Bn+1 (ω1) S

(1)
n+1 (ω1) S

(2)
n+1 (ω1)

Bn+1 (ω2) S
(1)
n+1 (ω2) S

(2)
n+1 (ω2)

Bn+1 (ω3) S
(1)
n+1 (ω3) S

(2)
n+1 (ω3)

Bn+1 (ω4) S
(1)
n+1 (ω4) S

(2)
n+1 (ω4)

 .

The objective probabilityP is strictly positive, i.e.,P (ω) > 0 ∀ω ∈ Ω.

ASSUMPTION1. We assume that there are no arbitrage opportunities
and that the financial market is incomplete. The set of risk neutral proba-
bility measuresQ is assumed to be one-dimensional.

Without loss of generality, we consider two linear independent vectors
Q1 andQ2 in the closureQ of Q, such that each element ofQ can be
written as a linear combination of these two vectors, where the weights
(coordinates) can be arbitrary, but have to add up to one.
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In addition to these three securities, there is a fourth security consisting
of a pair

(fn, Tn+1)
′ ≡
(
fn, T

(
S

(1)
n+1, S

(2)
n+1

))′
∈ R2.

The first component is a deterministic payment from the young agent of
generationn to the intermediary, whereTn+1 is a contingent payment from
the intermediary to the old agent of generationn at timen+1. This security
reflects a contract between two parties, where the young transfers wealth to
the intermediary for a contingent transfer at a later point in time.

ASSUMPTION2. We assume that the intermediary holds the bargaining
power, i.e., the contract(fn, Tn+1)

′ is a take-it or leave-it contract open to
all individuals.

The contingent component of the contract influences the financial mar-
ket structure as follows:

ASSUMPTION3. The augmented payoff matrix̃Hn, which is the matrix
Hn augmented by the vectorTn, is of full rank for alln ∈ N.

Therefore, there are two reasons why such a transfer is beneficial to an
agent. First, the contract completes the financial market for the agent living
in n, i.e., all contingent claims are marketable and cross-sectional risk can
be eliminated. Second, with a “guarantee” from the financial intermediary
(the exact meaning will be discussed below), the contract can eliminate non-
diversifiable risk too, i.e., intertemporal risk smoothing across generations
is achieved.

V (Wn, n, (fn, Tn+1)
′) denotes the value function of the individual born

on daten with initial wealthWn and a financial contract(fn, Tn+1)
′. J (A0)

is the value function of the intermediary with initial capitalA0. The utility
functionsu of the individuals andv of the intermediary are assumed to be
twice continuously differentiable, increasing and strictly concave. Further-
more, the Inada conditionlim

c→0
u′ (c) = +∞ holds for the individuals, im-

plying that the constraintc ≥ 0 is never binding. The intermediary solves
the problem (see Figure 2 for illustration and the appendices for a definition
of the presented formulae)

(2.1) J(A0) = max
ψ,y,f,T

E

[
∞∑
n=0

βnv(yn)

]
subject to

An = An−1 + 〈ψn−1,∆Sn〉+ fn − Tn − yn , A0 given, An ≥ 0

η ≥

∣∣∣∣∣∑
n∈Λ1

V (Wn, n, (fn, Tn+1)
′)−

∑
m∈Λ2

V (Wm,m, (fm, Tm+1)
′)

∣∣∣∣∣(ISC)

∀Λ1,Λ2 ⊂ N : |Λ1| = |Λ2|
(PC) V (Wn, n, (fn, Tn+1)

′) ≥ V (Wn, n, (0, 0)′) , ∀n ∈ N
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where∆Sn =
(
Bn −Bn−1, S

(1)
n − S

(1)
n−1, S

(2)
n − S

(2)
n−1

)′
, 〈x, y〉 denotes the

scalar product of the vectorsx andy andβ is the rate of time preference.

The investment strategiesψn =
(
ψn, ψ

(1)
n , ψ

(2)
n

)′
∈ R3 denote the invest-

ment in the risk-free asset and the two risky assets, where short selling for
the intermediary is allowed.

The optimization problem implies that the intermediary maximizes its
lifetime utility by choosing strategiesψn, contract pricesfn, contingent pay-
mentsTn+1, andyn in an optimal way. This optimization is done under var-
ious constraints: the budget constraint, the intertemporal smoothing con-
straint (ISC), and the participation constraint (PC). The form of the budget
constraint implies that only self-financing strategies are feasible. The par-
ticipation constraint assures that each individual is better off accepting the
contract proposed by the intermediary than choosing to invest solely in the
incomplete financial market. Hence, (PC) for agentn corresponds to the
optimization problem

(PC)
V (Wn, n, (fn, Tn+1)

′) = max
cn,φn∈Xcon,n

{u(cn − c̄n) + βE [u (cn+1 − c̄n+1) |Fn]}

≥ max
c̃n,φ̃n∈Xn

{u (c̃n − ˜̄cn) + βE [u(c̃n+1 − ˜̄cn+1) |Fn]}

= V (Wn, n, (0, 0)′) ,

whereφn =
(
φn, φ

(1)
n , φ

(2)
n

)′
∈ R3,+ denotes the investment in the various

financial assets and{Fn}n∈N the filtration assumed to be generated by the
prices of the risky assets. The reference level pathc̄n is exogenously given,
reflecting the basic finding that humans are often more sensitive to how an
outcome differs from some reference outcome than to the absolute value of
the outcome itself. The constraint setXcon,n of cn, cn+1 and the investment
strategyφn is such that the budget constraints hold

(PC)
cn + 〈φn, Sn〉 = Wn − fn

Tn+1 + 〈φn+1, Sn+1〉 = cn+1 .

The conditions definingXn are similar to the ones given in (PC).

With (PC) the intermediary guarantees the individual’s participation.
The criterion for participation – (conditional) expected utility – is, however,
not adequate for the consideration of intertemporal smoothing. Therefore
(ISC) is introduced as an additional condition in the intermediary’s opti-
mization problem. This condition compares the value functions of two sets
of generations living at different calendar dates and ensures that the sum
of the values of the two sets of generations cannot fluctuate in an arbitrary
way: These fluctuations are bounded by a constantη. A short mental exer-
cise is in order. Let us assume two sets of generations,A andB, separated
in time, and that the financial market performs poorly during the lifetime
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of B. Without the intermediary, individuals inB would be unable to con-
sume as much as their counterparts inA. Therefore, the sum of their value
functions would be smaller than for those inA. With the presence of an in-
termediary and (ISC), the discrepancies cannot exceed the valueη. This can
be achieved by choosing the risk-sharing contracts for generationsA andB
appropriately, i.e. the generations inB, will be able to consume more than
they would without the intermediary. The extra resources provided to them
by the intermediary are taken from the buffer stock which had previously
been accumulated by the individuals inA. This is established by the as-
sumption of a net inflow for the intermediary due to the absence of shocks.
Clearly, if stocks are underperforming all the time, intertemporal smoothing
of consumption by an intermediary is not feasible. Therefore, an initial crit-
ical phase during which the buffer stock is accumulated has to be mastered
first. Condition (ISC) thus separates the performance of an individual born
at a specific date from the financial market fluctuations during his life. In
other words, the decisions of the individual are time invariant, which is the
essence of removing longitudinal risk.

We refer the interested reader to the book by Hernandez and Lassere
(1996) for necessary and sufficient conditions for a solution of the problem
presented above. Basically, the problem can be reduced to the compactness
of the feasible set of decisions. Given the compactness of the feasible set
and some other technical conditions, the crucial measurable selection con-
ditions hold (cf. Hernandez and Lassere [1996], Chapter III), and can be
solved with the aid of the Bellman equation (at least theoretically). Since
we are interested in explicit expressions, the general functions need to be
approximated. We restrict our analysis to first-order approximations, since
the expressions become rather involved in second-order approximations.
Hence, if, for example, the utility function of individuals is approximated,
only marginal utility matters for the result, and the curve of the utility func-
tion is ignored. In order to carry out the analysis, we assume that all func-
tions are real-analytic, i.e., that they possess a Taylor series expansion which
represents the function.

Clearly, if we do the approximations and solve the resulting model, the
solution is not that of the original model. But under suitable technical condi-
tions, the original model has a solution (cf. Hernandez and Lassere [1996],
Chapter III), and the same holds true for each approximation model to all
orders in a Taylor series expansion. Hence, we have a solutions∗ of the
original model and a sequence(sn), n = 1, . . . , N , of solutions of the ap-
proximation models. First, one has to show that the sequence converges.
We can use the so-called policy iteration procedure for this. Second, us-
ing successive approximations and a properly defined measurable selection
condition, one can show that the limit of the sequence is equal tos∗. Since a
detailed analysis of these technical issues is beyond the scope of this paper,
we leave it for future research.
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How is our model related to the model of Allen and Gale (1997)? Most
importantly, their model is an equilibrium model, while in our partial equi-
librium model the equilibrium is the solution of the optimization problem
outlined above, since there are no prices. The decision to work in a partial
equilibrium framework is due to the authors’ focus to analyze and character-
ize as explicitly as possible a solution of the “time-diversification” problem.
Hence, the goal is not to derive a rationale as Allen and Gale did for the ex-
istence of an intermediary, but to assume the equilibrium properties and
investigate upon the properties of the partial equilibrium. The loss of gener-
ality is compensated for by the possibility of characterizing more explicitly
than in the general setup the behavior of agents and of the intermediary.

The basic conditions, which we claim are a reasonable approximate of
the basic characteristics of the equilibrium model are (ISC) and (PC). The
former, which captures the intuition of intertemporal smoothing that ex-
pected utilities of different generations are not ”too different” from one
another, requires some explanation. So far, nothing has been said about
(i) why it is rational for an intermediary to use such a constraint in the
optimization program, and (ii) whether the proposed formulation of the in-
tertemporal smoothing condition is a natural one. To answer the first ques-
tion, let us look at Figure 4. It shows the optimality conditions for the in-
termediary and the agents: The risk-sharing contract is the chosen variable
of the intermediary, and the agents choose consumption. It follows from
Proposition 5 and (A.3) that if no (ISC) is considered, the optimality ratios
∂v
∂vfn

/ ∂v
∂vTn+1

and ∂u
∂vcn

/ ∂v
∂vcn+1

are the same (pointA) on the optimal con-

tracting lineh (this also follows from Proposition 5 and (A.2) and (A.2)).
Therefore, in the case where only participation constraints are considered,
the intermediary cannot be distinguished from the agents. By contrast, if
(ISC) holds, the intermediary’s optimal contract offered to the agent is at
time n generically either on the lineg (decreasing buffer stock) or on the
line f (increasing buffer stock, see again Proposition 5 and the following
discussion). Hence, in caseg the intermediary is better off if (ISC) does
not bind, but is worse off in casef . Hence, the intermediary is indifferent
to whether (ISC) is used in the program or not. At this point, an expecta-
tion about future moves in market prices matter. This also demonstrates the
limitations of intermediaries as redistributors of wealth between different
generations. If one expects that the average return on assets is positive in
the long run, the intermediary will be able to choose contracts on the lineg
most of the time. Therefore, on average it is rational to use the (ISC) con-
dition. If on the contrary, average returns on risky assets are supposed to
be negative (more precisely: lower than the return on the risk-free asset), it
does not pay for an intermediary to offer intertemporal smoothing. This also
highlights when the danger of default of intermediaries is greatest (pension
funds for example): a long period where risky asset returns are low or even
negative.
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Insert Figure 3 about here

The form of the ISC condition is by no means a unique one, but it is a
rather general condition, and as we see below, it turns the qualitative equi-
librium results of Allen and Gale (1997) into intuitive quantitative results.
Instead of working with the value function of the agents, one could also
state the smoothing objective directly in terms of the agent’s consumption.
This simplifies some calculations, but the agents are considered risk neutral
if the intermediary chooses the optimal contracts. If the individual’s value
function is replaced by averages, the problem also becomes much simpler.
But in this case, we basically do not remove longitudinal risk, since an av-
eraging criterion as shown in the introduction can be disastrous.

In summary, it is rational for the intermediary to use (ISC) if on average
the risky asset price returns are expected to be positive in the long run. This
intuition captures the equilibrium results of Allen and Gale (1997). There,
an initial phase of positive price returns is also needed to set up the buffer
stock. Otherwise, the existence of an intermediary does not remove any
inefficiencies due the incomplete financial market.

3. Optimal Behavior of the Individuals

We first analyze the individual’s participation constraints. To simplify
the notation we useEn[·] to denote the conditional expectationE[·|Fn].

PROPOSITION 4. The individual born at timen accepts the contract
(fn, Tn+1)

′ up to first-order (i.e., up too(|cn|), o(|cn+1|)) if, and only if,

(PC) cn − c̄n ≥ β̃nEn[cn+1 − c̄n+1],

where

β̃n := β
u′ (c̄n+1)

u′ (c̄n)

and o denotes the Landau symbol. The consumption sequence(cn) is op-
timal if the offered contract is accepted, whereas(c̄n) corresponds to the
optimal consumption sequence without risk-sharing contracts.

PROOF. Appendix A. �

The participation constraint (PC) can be interpreted as follows. Con-
sider an agentA who is poor when young and who has a large quantity of
highly non-tradable human capital. It is evident that tomorrow the individ-
ual expects to have transformed his human capital into income in such a
way that the consumption̄cn+1 > c̄n exceeds today’s possible consump-
tion. By contrast, letB be a satiated individual with consumption levelc̄,
i.e., we interpretB as a rich individual and̄cn+1 ∼ c̄n. In all other respects,
individualB is identical toA. (PC) then implies that individualA is more
likely to accept a contract than individualB.
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A natural generalization of the individual’s situation outlined above is
to consider agents living for more than two periods. This situation intro-
duces the possibility of self-insurance of the agents over time. Schechtman
(1976) proved that by considering large time horizons individuals may be
able to considerably reduce risk on their own. In our model we are able
to consider how the two different effects – self-insurance and risk sharing
with an intermediary – interact. The model for the intermediary remains the
same as in Section 2, but the agent born at timen maximizes the expected
utility

(PC) En

[
n+M∑
j=n

βju(cj)

]
,

if the agents live forM periods. Using the martingale approach, we obtain
for the budget constraint the case in which it pays to accept the contract

(PC) EQ,n

[
n+M∑
j=n

u (cj)

Bj

− Tk
Bk

]
= Wn − fn , n < k ≤ n+M ,

with Q being the risk-neutral probability (the market is complete in this
case). Equation (PC) can be interpreted in a way such that the agent pays
a feefn at timen against a stochastic payoffTk at timek, which may be
realized beforeM + n.

The contracting possibilities remain the same, but the possibility of self-
insurance is introduced into the model. In the agent’s optimization, if it does
not pay to accept the contract, the individual adopts the same objective func-
tion (PC), but the budget constraint is replaced by a number of restrictions
equal to the number of probability measures spanning the set of risk neu-
tral probability measures. A necessary condition for the agent to accept a
contract (up to the first-order in consumption) is

cn − c̄n ≥ κmn,M(β)En[cm − c̄m] m > n ,

where

κmn,M(β) := (M − 1)βn−1(1− β)M−nu
′ (c̄m)

u′ (c̄n)

andm is the minimum time period such that

cm − c̄m ≤ ck − c̄k ∀k ∈ {n+ 1, . . . , n+M}.

For M → ∞, the incentive to share risks with the intermediary van-
ishes. This re-expresses the finding of Schechtman (1976) and the intuition
that if agents live infinitely long, non-diversifiable risk due to market incom-
pleteness can be overcome by the agent’s self-insurance possibilities. This
also fits the research called “time diversification” (cf. Jorion [1999]) which
considers the impact of a varying time horizon on optimal decision-making.
If n → M , i.e. the decision time comes closer and closer to the final deci-
sion, the right-hand side of (PC) converges to zero, i.e., the contract will be



OPTIMAL DECISION-MAKING WITH TIME DIVERSIFICATION 11

accepted by any agent. This captures the intuition that it is difficult to self-
insure against a global drop in risky security prices if no time for recovery
is left.

Insert Figure 4 about here

In Figure 4 consumption todaycn and consumption tomorrowcn+1 of
an individual born at timen are displayed on the axis. The four regions
A,B,C,D represent different investments in the two risky assetsS

(1)
n and

S
(2)
n of the individual if he accepts the offered risk-sharing contract relative

to the case where there is no such contract (i.e., the financial market is
incomplete). The magnitude of the optimal consumption depends on (i) the
individual’s preferences and (ii) initial wealth. Suppose that the preferences
are thesamefor all individuals. RegionA can then be classified as the
poor andC as the rich individuals. As shown in the appendix, in regionA
the individual will invest more in both risky assets if an intermediary exists
compared to the case without an intermediary. On the other hand, in region
C there will be less investment in both risky assets compared to the case
without the possibility of sharing risks with other generations through the
intermediary. In regionsB andD, more is invested in one risky asset and
less in the other one.

Therefore, if preferences are the same for all individuals and an inter-
mediary exists, it is optimal for the poor to have a larger risk exposure than
they would without an intermediary. For the rich, by contrast, it pays to
invest more in the risk-free asset than in the case of an imperfect financial
market. This shows that the statement “intermediaries allow the investors
to bear more risk” should be used with caution, since the extent of the risk
exposure depends crucially on preferences and the initial wealth of the in-
dividuals.

4. Optimal Behavior of the Intermediary

In the last section we analyzed the individual participation constraint
of accepting a risk-sharing contract offered by the intermediary. Using the
above results, we solve the problem of the intermediary in this section. The
problem reads

(PC) J(A0) = max
ψ,y,f,T

E

[
∞∑
n=0

βnv(yn)

]
subject to

An = An−1 + 〈ψn−1,∆Sn〉+ fn − Tn − yn, A0 given, An ≥ 0

η ≥

∣∣∣∣∣∑
n∈Λ1

V (Wn, n, (fn, Tn+1)
′)−

∑
m∈Λ2

V (Wm,m, (fm, Tm+1)
′)

∣∣∣∣∣(ISC)
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∀Λ1,Λ2 ⊂ N : |Λ1| = |Λ2|,

(foPC)
γn
e

EQ,n

[
Tn+1

Bn+1

]
≥ γn

e
fn − ζn + β̃nEQ,n[ξn],

where

γn = I ′(λ̄)

(
d0

e

)
− β̃nEQ,n

[
I ′
(
αnd0

e

)
αn

]
,

ζn = I

(
d0

e

)
− I ′(λ̄)

(
d0

e

)
d0

e
− I (λ1 + λ2)

ξn = I(λ̄)

(
αn
d0

e

)
− I ′(λ̄)

(
αn
d0

e

)
αn
d0

e
− I (αnλ1 + αnλ2) .

The first-order participation constraint (foPC) is obtained by entering the
optimal consumption values in (PC). We call it the first-order participation
constraint since first-order approximations were used in the calculations of
Proposition 4. The next step in the solution of the optimization problem for
the intermediary is to replace (ISC) by a condition better suited to mathe-
matical analysis. To find a manageable approximation of (ISC), while at the
same time maintaining the main features, we first write the value function
Vn := V (Wn, n, (fn, Tn+1)

′) of an individual born at timen as

Vn = Xn + Ωnd1

where

Ωn =
1

e

(
u′(c̄n)I

′(λ̄) + βu′(c̄n+1)EP

[
I ′
(
αλ̄
)])

and

Xn = d0Ωn + λ̄Ωn − 2 (u′(c̄n)I
′ (c̄n) + βu′ (c̄n+1) EP [c̄n+1])

+ u(c̄n) + βu(c̄n+1).

Since value functions of two different groups of generations are com-
pared in (ISC), we proceed in the following way to obtain an approximation.
Let zm ≡ (Wm,m, (fm, Tm+1)

′) and letm = n+ k. Then∑
m∈Λ2

V (zm) =
∑

n+k∈Λ2

V (zn + zn+k − zn)

=
∑

n+k∈Λ2

V (zn) + 〈∇V (yn), yn+k − yn〉+ o(‖yn+k − yn‖)

and∑
n∈Λ1

V (zn)−
∑
m∈Λ2

V (zm) =
∑

n+k∈Λ2

〈∇V (yn), yn+k− yn〉+ o(‖yn+k− yn‖)

using the fact that for fixed arguments the value function is invariant under
time translation. For arbitraryk andΛ such that|Λ| = |Λ1|, we obtain∑
n∈Λ1

V (yn)−
∑
m∈Λ2

V (ym) =
∑
n∈Λ

〈∇V (yn), yn+k − yn〉+ o(‖yn+k − yn‖)
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implying the first-order intertemporal smoothing condition (foISC)

(foISC) η ≥

∣∣∣∣∣∑
n∈Λ

〈∇V (Wn, n, fn, Tn+1) ,Wn,m〉

∣∣∣∣∣
for all m = 1, 2, . . . and

η ≥

∣∣∣∣∣∑
n∈Λ

Ωn (fm,n + Tm,n)

∣∣∣∣∣ ,
where we have setfm,n := fm − fn, Tm,n := Tm+1 − Tn+1, and where
Λ denotes a subset of the natural numbers with cardinalityq > 0. The
intermediary’s optimization problem finally reads

(4.2) J(A0) = max
ψ,y,f,T

E

[
∞∑
n=0

βnv(yn)

]
subject to

An = An−1 + 〈ψn−1,∆Sn〉+ fn − Tn − yn , A0 given, An ≥ 0

η ≥

∣∣∣∣∣∑
n∈Λ

Ωn (fm,n + Tm,n+1)

∣∣∣∣∣ ∀n ≤ m,m = 1, 2, . . .

γn
e

EQ,n

[
Tn+1

Bn+1

]
≥ γn

e
fn − ζn + β̃EQ,n[ξn], ∀n ∈ N .

As a first step in the solution of (4.2), we consider the implications for
the optimal risk-sharing contract while neglecting the optimal choice foryn.
Although (4.2) is a single agent optimization problem, it is not a standard
problem since the number of constraints is infinite. This is due to the in-
tertemporal smoothing constraint and the infinite number of individuals that
the intermediary considers in the program.

PROPOSITION5. Assume that the technical conditions T.1-T.3 in Ap-
pendix B hold. A necessary condition for an optimal risk-sharing contract
(fn, Tn+1)

′ to be offered by the intermediary at timen is

(4.3) v′fn
ηnCn = v′nn

Cn +An

with

An =
ηn − 1

βn

1

q
(〈vn〉−n − 〈vf〉−n)(4.4)

Cn = 1− ηn − 1

ηn
Ωnq −

ηn − 1

qη2
n

(4.5)

〈vf〉(−n) =
∞∑

s=0,s 6=n

βs

η2
s

v′fs

ηn = En

[
Ln+1Bn

LnBn+1

]
(4.6)
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wherevf = ∂v
∂f
, vn = ∂v

∂T
, vfn = ∂v

∂fn
, vnn = ∂v

∂Tn
.

PROOF. Appendix B �

From a structural point of view, (4.3) deviates from standard first-order
conditions since the optimal choice of the contract components at any time
n depends not only on the respective marginal utilities, but also on the dif-
ference between the marginal utilities at all past and future times (the ex-
pressionAn). An is therefore interpreted as a measure for the buffer stock
used for intertemporal smoothing of consumption across the generations.
A second unusual feature of (4.3) is the factorηn which weights the mar-
ginal utility of contractfn. This factor reflects the costs the agents would
face if the intermediary did not exist. If the financial markets are complete,
ηn = 1

Bn+1
. The interaction of local and global features in the optimality

condition (4.3) is due to the participation and the intertemporal smoothing
condition.

To start with the economic implications of Proposition 5, we first con-
siderAn. LetAn < 0 or equivalently〈vn〉(−n) < 〈vf〉(−n). An < 0 can
be interpreted as a growing buffer stock. Sinceηn andCn are both positive,
it follows thatv′fn

< v′nn
. Hence, if for each time n the averaged marginal

utilities of the risky component of the contracts for all other generations are
smaller than the corresponding average of the risk-free componentf•, then
the individual born at timen will be compensated. On the other hand, if
〈vn〉(−n) > 〈vf〉(−n), the individual born at timen has to pay for the ex-
cess (expected) costs of the intermediary’s payments to generations before
and aftern. This simple consideration highlights the interaction between
generations.

We next consider the change in marginal utilities of the intermediary in
(4.3) due to changes in the parameters.

∂v′fn

∂Ωn

=
1

ηn
An

q

C2
nηn

{
> 0 ⇔ An > 0
≤ 0 ⇔ An < 0

(4.7)

In order to interpret (4.7) we note that an increasing marginal utilityu′ of the
individuals is a sufficient condition forΩ to increase. Therefore, whether a
variation in the marginal utility of a single investor is positive or negative
does not determine the impact of a variation on the intermediary’s marginal
utility – it is the aggregate over all past and future generations that deter-
mines the sign. This fact again captures the intuitive insight that if we link
all generations in the intermediary’s decision process, the single agent’s
characteristics are of little importance to the intermediary’s performance.
The impact of the market incompleteness measureηn is

∂v′fn

∂ηn
= − 1

η2
n

v′nn
−AnZn,
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where

Zn =
1

η2
n

1

Cn
+

1

ηnC2
n

(
1

η2
n (1 + q)

)
> 0 .

This implies that forAn > 0,
∂v′fn

∂ηn
< 0. An increase ofηn might be due to a

lower risk free interest rate and/or an increasing expected state price density.
It thus becomes more attractive for the agents to enter into a risk-sharing
contract. The increase inηn has a reverse impact on the behavior of the
intermediary, which faces the same financial market as the agents. The net
positive cash flow is reduced, as a decreased risk-free interest rate implies
higher future contingent paymentsTn. Therefore, for each additional dollar
obtained at timen− 1 in the risk-sharing contract, the intermediary expects
to pay more to the individuals than in the case whereηn is not increasing.

In the model considered so far, the individuals can voluntarily decide
whether to accept or to reject the risk-sharing contract offered by the inter-
mediary. In reality – especially in Europe – we observe compulsory mem-
bership of pension funds. Which system is superior is a notorious political
issue. The compulsory membership model is presented in (2.1), but with-
out the participation condition. If we let̃v denote the utility function of the
intermediary in the compulsory model, it follows from (B.1) and (B.2) in
Appendix B that

ṽ′fn
= ṽ′nn

(4.8)

is the optimality condition for the risk-sharing contract. Therefore, neither
intertemporal smoothing nor the ratio between the state price densities and
the risk-free interest rate matters. If we assume thatṽ′nn

= v′nn
holds, the

optimality conditions imply

ṽ′fn
= v′fn

ηn −
An

Cn
.

SupposeAn > 0, i.e., the buffer stock is increasing in size. Then

(4.9) ṽ′fn
< v′fn

ηn .

Sinceηn is decreasing – the denominator grows with(1 + r)n and the nom-
inator is bounded – the marginal utility for the intermediaryv′fn

has to in-
crease in order to maintain the inequality (4.9). Hence, in the caseAn > 0,
the intermediary is better off in the voluntary system. IfAn < 0, that is,
where net payoffs are negative in the voluntary systems, it follows from con-
dition 4.3 thatv′fn

is decreasing, i.e., the gap in the inequalityṽ′fn
> v′fn

ηn is
increasing over time. The discussion shows that the question “Which pen-
sion fund system - voluntary or compulsory - is more efficient” is contingent
on the performance of the financial markets. This is theoretical evidence
for the observation that in the oil-shock period the German system outper-
formed the US system, while in the 90s booming stock markets made US
residents better off (cf. Allen and Gale [1997] for a detailed discussion of
the comparisons between Germany and the US). Since the performance of
the stock markets is not known ex-ante, for a single pension fund the answer
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to the question of whether voluntary or compulsory membership is more ef-
ficient depends on the performance of equities. One solution, which would
allow us to answer the question independently of stock market develop-
ments, is to consider more pension funds or security funds (fund-of-funds).

To illustrate some general results derived so far, we consider an exam-
ple. We assume that all agents possess logarithmic utility of consumption
and that the intermediary is characterized by a HARA-type utilitycp−1

p
, 0 <

p < 1. Solving the participation constraint for the individuals born at time
n andn+ 1, we get for optimal consumption

cn − c̃n =
Wn

1 + βEQ,n[
Ln+1

Ln
]
+
EQ,n[

Tn+1

Bn+1
]− fn

1 + βEQ,n[
Ln+1

Ln
]
=: Mn,n+1(4.10)

cn+1 − c̃n+1 = βBn+1
Ln+1

Ln
Mn,n+1 =: Nn,n+1Mn,n+1 .

It follows that the agents consume more (less) compared to the case without
risk sharing if, and only if, the expected benefit of the contingent intermedi-
ary payment at retirement is larger than the deterministic payment when the
agent is young. This result is in keeping with intuition. It follows from the
expressions that the important qualitative factor - aside from the hitherto
unspecified risk-sharing contracts - is the ratio of the state price densities
at successive time periods. The next step is to apply these results in the
intermediary’s optimization problem. To simplify the calculations, we as-
sume that the number of generations in the two poolsΛ1,Λ2 is the same and
equalsq and that the setΛ2 is k generations away fromΛ2. Therefore, for
generationn ∈ Λ1 there is a unique generation born atn+k in Λ2. Without
loss of generality, we assume that in (ISC) the inequality

η ≥
∑
n=1

(1 + β) (EQ,n[Nn,n+1]Mn,n+1 − EQ,k+n[Nk+n,k+n+1]Mk+n,k+n+1)

holds. In other words, an early generation inΛ1 is expected to be more
wealthy than a corresponding later one. If the assumption is reversed, all
following statements are reversed too. It is then possible to derive suffi-
cient optimality conditions for the intermediary. We recall that the choice
variables are the two contract components and the investment strategy in
the assets. We do not write the explicit optimality conditions, but merge
the optimality conditions forfn andfk+n, which eliminate the Lagrange
multiplier of the ISC. We get
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An+1 − An + 〈ψn−1,∆Sn〉︸ ︷︷ ︸
∆nM-P

+ fn − Tn︸ ︷︷ ︸
∆nRS-P

= − (An+k+1 − An+k + 〈ψn+k−1,∆Sn+k〉+ fn+k − Tn+k)

×
(

β

1 + β

) k
p−1

(
1 + βEQ,n[

Ln+1

Ln
]

1 + βEQ,k+n[
Lk+n+1

Lk+n
]

) 1
p−1

︸ ︷︷ ︸
=:Hn,n+k

.

We denote by∆nM-P (∆nRS-P) the pure change in wealth of the in-
termediary due to the financial marketn (change in wealth due to the risk-
sharing contract at timen). Hence, the optimality conditions enforce for
the optimal contracts the following relationship between the agents in the
different pools:

∆nM-P + ∆nRS-P= − (∆n+kM-P−∆n+kRS-P)×Hn,n+k .

This equation shows the essence of intertemporal smoothing: For dif-
ferent generations, the market risk and the longitudinal risk are equalized
for the generations, which then defines the optimal risk-sharing contract.
The “discount factor” H is based on the time preference rate of the interme-
diary, the temporal distance between the two pools of generations, and the
state price density process. We only mention another characteristic of the
optimality condition. Suppose thatk →∞, i.e., the number of generations
in each pool increases to infinity. Then the optimality condition for each
generationn is in the limit

An+1 − An + 〈ψn−1,∆Sn〉+ fn − Tn = 0 .

Hence, no risk sharing between the generations follows. A result that is
in line with intuition.

We now discuss the full optimization problem (4.2) for the intermediary.
Since we are interested in quantitative results too, we choose an explicit
utility function u given by

u(y) = a0 + a1y −
1

2
a2y

2 , ai > 0 i = 0, 1, 2.(4.11)

The utility function is only meaningful for values ofy smaller than the
satiating value. As a reminder, the no-arbitrage condition holds true, and
we consider only self-financing strategies.

PROPOSITION6. Consider problem(4.2)with utility function(4.11)for
the intermediary. For the optimal shadow price of wealth it follows that

λ =

∞∑
k=0

EQ

[
a1Nk

a2Bk
− fk−Tk

Bk

]
− A0

1
a2

EQ

[
∞∑
k=0

Nk

βkBk

]
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withNn = EP [L|Fn]
Bn

. Furthermore

(4.12)
∂λ

∂A0

< 0 ,
∂λ

∂fk
< 0 ,

∂λ

∂Tk
> 0 , ∀k ∈ N.

If we assume that the (foISC) and the (foPC) do not bind, the optimal choice
of y is the satiating valuêy = a1

a2
.

PROOF. Appendix C. �

The inequalities in (4.12) are again in line with intuition. The fact that
the optimal choicey equals the satiating valuea1

a2
if the constraints (foPC)

and (foISC) are not binding can be interpreted as follows. With no limi-
tations on the intermediary’s debt capacity, there is a rational incentive to
reduce the difference in value due to partial intertemporal smoothing and
the willingness of the agents to enter into the risk-sharing contract with a
nonbinding participation constraint. In other words, the intermediary uses
the agent’s willingness to enter into the contract as an infinite, determin-
istic income stream, and the possible risk-sharing repayment can either be
financed as it arises given the intermediary’s wealth, or the intermediary
borrows the necessary amount. Therefore a limitation of the intermediary’s
ability to borrow –An > 0 for example – is crucial for the individuals in a
pension fund system. Otherwise, the possibility that the intermediary will
be highly indebted is a source of large systemic risks.

The last issue we consider is the determination of the optimal risk-
sharing contract componentTn+1. We assume thatTn+1 is a function of
the risky assetsS(1)

n andS(2)
n . This implies that payments are contingent on

the realization of the risky assets. Taking the derivatives of the optimal con-
ditions with respect toS(k)

n and eliminating the Lagrange multipliers using
the first-order conditions of the intermediary’s problem (2.1)1 we get

∂T

∂S
(k)
n

=
u′φ

(k)
n

u′′
+ ηψ

(k)
n

v′′

v′

η v
′′

v′
− (1− η) u′

u′′

, k = 1, 2 .(4.15)

1We use the full problem to analyze this question since the results are simpler than
those where the constraints are replaced by their first-order approximations. In this case by
taking the derivative of (B.1) and (B.2) in Appendix B with respect to the risky asset we
getS(k):

(1− η)
(
ψ(k) +

1
η

v′

v′′
1
C

∂C

∂S(k)

)
=

∂T

∂S(k)
, k = 1, 2 .(4.13)

Finally, using the expression forC given in Equation (4.18) and calculating the derivative
with respect to the risky asset implies

(4.14)
∂T

∂S
(k)
n

=
u′(cn)I′φ(k)

n

Ω + ηψ
(k)
n

v′′

v′

η v′′

v′ − (1− η)u′(cn)
Ω

, k = 1, 2 .
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If we choose a specific utility function, (4.15) can be integrated and the
optimal T ∗ follows. As a result, for risk-neutral individuals and a risk-
neutral intermediary,

∂T

∂S
(k)
n

= 0,

i.e., optimal payment is a constant and not a contingent claim. The optimal
contract does not depend on any risk-neutrality assumption whatsoever.

RI andRA denote the Arrow-Pratt measures of risk aversion of the in-
termediary and of the individuals, respectively. Forηn = 1,

∂Tn

∂S
(k)
n

= ψ(k)
n + φ(k)

n

1

RARI

, k = 1, 2(4.16)

and forηn → 0

∂Tn

∂S
(k)
n

→ −φ(k)
n , k = 1, 2 .(4.17)

Therefore, if the present value of the incomplete market measure vanishes,
the slope of the optimal contract as a function of the asset prices is nega-
tive; the larger the risk exposure of the individual, the steeper the optimal
contract. Note thatηn → 0 for n → ∞. Hence, in the long run the opti-
mal contracting payment depends solely on the respective individual’s risk
exposure.

5. Discussion

Starting with the OLG model of Allen and Gale (1997), we extend it to
cope with an intermediary that is also a utility maximizer. This extension
allows us to analyze questions related to the optimal behavior of individu-
als and of an intermediary in an overlapping generational framework. The
model implies that the initial wealth distribution of each generation is a cru-
cial determinant of the individual participation at the intergenerational risk-
sharing contract. It turns out that poor individuals have a stronger incentive
to share risks across the generations than rich ones. We then show that as the
individual time horizon increases, the importance of risk-sharing contracts
decreases. Both results are in line with intuition, and the latter confirms
the findings of Schechtman (1976) on self-insurance. The last finding re-
garding individual behavior was related to the feedback of a risk-sharing
contract on the individual’s investment strategy in the financial market. The
risk exposure will therefore not increase for all individuals, but again the
level of consumption determined by initial wealth and individual prefer-
ences determines the optimal risk exposure. Poor individuals will typically
invest more in both risky assets, whereas the rich prefer to invest in the
safe asset. Therefore, risk sharing has a positive impact on cross-sectional
diversification for poor individuals.
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The optimization problem implied for the intermediary shows that the
optimal risk-sharing contract equation possesses features which are not stan-
dard: For any point in time, the optimal contracts are not only functions of
the individual born at the respective time, but also depend on the genera-
tions before and after the specific time. The first analysis of the optimality
equations was done within the context of pension funds, in which we an-
alyzed whether the intermediary is better off in a voluntary membership
system or a compulsory one. The answer is contingent on the growth or
decline of the buffer stock used to accomplish intertemporal smoothing of
consumption over generations. If the reserves are growing, the voluntary
system dominates. If the buffer stock is decreasing in size, the compulsory
system is better for the intermediary. The last issue was a derivation of the
optimal, explicit risk-sharing contracts as a function of the underlying stock
price dynamics of the imperfect financial markets. An explicit system of
differential equations was derived, which can be solved after specification
of the preferences.

Appendix A. Proof of Proposition 4

Since we are interested in the optimal consumption paths, the martingale
approach (see Pliska (1997) or Karatzas and Shreve (1998)) is used. We
first consider the case in which it pays to accept the contract offered by the
intermediary. By the martingale approach

u(cn − c̄n) + βEn [u(cn+1 − c̄n+1)]

has to be maximized under the condition

(A.1) (cn − c̄n) + EQ,n

[
1

Bn+1

(cn+1 − c̄n+1 − Tn+1)

]
= Wn − fn

where the expectation is taken with respect to the risk neutral probabilityQ.
If we denote byλ the Lagrange multiplier for (A.1), we obtain the necessary
conditions

u′ (cn − c̄n) = λ(A.2)

βu′ (cn+1 − c̄n+1) = λ
Ln+1

Bn+1Ln
.(A.3)

The random variableLn = dQn

dPn
is the so-called state price density, assumed

to exist for alln ∈ N . Pn andQn denote the restrictions ofP andQ onFn
respectively and are assumed to be locally equivalent (cf. Shiryaev (1999)
for precise definitions).Ln has to be introduced, since the expectation of
the utility is taken with respect to the objective probabilityP , whereas con-
dition (A.1) is written using the risk neutral probabilityQ. By assumption,
u is strictly increasing and strictly concave; therefore,I = (u′)−1 is well
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defined. (A.2) and (A.3) then imply for the optimal consumption of an in-
dividual born at timen

c∗n = I(λ) + c̄n(A.4)

c∗n+1 = I

(
λ

Ln
βBn+1Ln+1

)
+ c̄n+1 .(A.5)

Inserting (A.4) and (A.5) into (A.1) determinesλ, i.e.

(A.6) I(λ) + EQ,n

[
1

Bn+1

(
I

(
λLn

βBn+1Ln+1

)
− Tn+1

)]
= Wn − fn.

The implicit solution of the last equation is then reentered into (A.4) and
(A.5) which finally yields the optimal consumption. The investment strate-
gies can be calculated in a second step. To solve (A.6) at least approxi-
mately, we expandI up to first order around̄λ:

I(λ) = I(λ̄) + I ′(λ̄)(λ− λ̄) + o
(
|λ− λ̄|

)
and

I(λαn) = I(λ̄αn) + αn(λ− λ̄)I ′(λ̄αn) + o
(
|αn(λ− λ̄)|

)
in order to obtain (equalities are meant to hold up to first order)

(A.7) λ =
d

e

with

d := −
(
c̄n +

c̄n+1

Bn+1

)
+ I(λ̄)− λ̄I ′(λ̄)−Wn + EQ,n

[
αn
Bn+1

(Ĩ0 − I ′(λ̄))

]
︸ ︷︷ ︸

d0

+ fn − EQ,n

[
Tn+1

Bn+1

]
︸ ︷︷ ︸

d1

e := I ′(λ̄) + EQ,n

[
αn
Bn+1

(
Ĩ0 − I ′(λ̄)

)]
, αn :=

1

β

Ln+1

LnBn+1

, Ĩ0(y) = I(αny).

We next consider the individual in the case in which it pays for him not to
accept the risk sharing contract. Then, the financial market is incomplete
and we assumed that two risk neutral probabilitiesQ1 andQ2 in the closure
of the set of risk neutral probabilities are a basis in the set of martingale
measures. If we optimize the utility of the individual in this incomplete
financial market using the martingale method, we have to consider two re-
strictions of the same type as (A.1), i.e.

(A.8) cn − c̄n + EQi,n

[
1

Bn+1

(cn+1 − c̄n+1)

]
= Wn , i = 1, 2.
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Therefore two Lagrange multipliersλi, i = 1, 2 appear, but the analysis is
identical and the expansion can be done around the same value as in the
case of complete markets for both multipliers. We get

λ1 =
d2e2 − d1e4
e1e4 − e2e3

, λ2 =
d1e3 − d2e1
e1e4 − e2e3

where

di = −
(
c̄n +

c̄n+1

Bn+1

)
+ I0 − I ′0λ̄−Wn + EQi,n

[
α

Bn+1

(Ĩ(λ̄)− I ′(λ̄))

]
,

ej = I ′(λ̄) + EQ1,n

[
α

(j)
n

Bn+1

(
Ĩ(λ̄)− I ′(λ̄)

)]
, j = 1, 2

ek = I ′(λ̄) + EQ2,n

[
α

(k)
n

Bn+1

(
Ĩ(λ̄)− I ′(λ̄)

)]
, k = 3, 4

and

α(1)
n :=

L
(1)
n

βBn+1

α(2)
n :=

L
(2)
n

βBn+1

.

Inserting the Lagrange multipliers into the first order conditions deter-
mines the optimal consumption path(cn) while accepting the risk sharing
contract and the path(c̃n) which is optimal in the incomplete financial mar-
ket without the contract. Inserting the optimal Lagrange multipliers into the
participation constraint (A.4) in Section 2 and expanding the constraint up
to first order implies the formula given in Proposition 4.

Appendix B. Proof of Proposition 5

To prove Proposition 5, we first insert the budget constraint into the
utility function of the intermediary, and then the first order conditions for
the risk sharing contract are derived. Necessary conditions for the first order
conditions to hold are

0 = −βnv′fn
+ λn

m

e
+

∞∑
s=0

νsΩs − νnΩnq , ∀ω(B.1)

0 = βnv′nn
+ En

[
λn

Nn

Bn+1

]
m

e
+

∞∑
s=0

νsΩs − νnΩnq , ∀ω ,(B.2)

wherem is the shorthand notation for

γn,n+1 = I ′0

(
d0

e

)
− β̃nEQ,n

[
I ′
(
αd0

e

)
α

]
andNn = EP [L|Fn]

Bn
. The sequence of Lagrange multipliers(λn) is associated

with (foPC) and the sequence(νn) with (foISC). Equations (B.1) and (B.2)
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have to hold for all statesω and they imply

v′fn
= v′nn

+ En

[(
Nn

Bn+1

− 1

)]
λnm

eβn
, ∀ω .(B.3)

Solving (B.1) with respect toλn and inserting the result into (B.2) implies

Un + ηn

(
νnΩnq −

∞∑
s=0

νsΩs

)
= 0, ∀ω(B.4)

with Un = ηnβ
nv′fn

+ βnv′nn
andηn = En

[
Nn

Bn+1

]
. The last equation can be

written for alln as an infinite-dimensional linear system, i.e.

(B.5) U = Mν,

whereUn andνn are vectorsn = 0, 1, 2, . . . andM is the matrix

(M)i,j =

{
xiyi , i 6= j
axibi , i = j

i, j = 0, 1, 2, . . .

wherexi, yi anda are given by

ASSUMPTIONT.1.

xi = ηi , y
i = Ωi and a = 1− q .

The intuition for this assumption can be gained from the explicit expres-
sions forηj andΩj. Sinceηj inhibits the growth dynamics of the riskless
asset times the bounded measure of market incompletenessE[L|Fn], the
power law assumption is reasonable, and forΩj the power law assumption
implies that we assume HARA-type utility functions for all the individuals.
It is well known that this class of functions is large enough to contain vari-
ous well known specific types of utility functions. The infinite dimensional
linear system (B.5) is defined as the limit of finite dimensional systems
where the matrices in each finite dimensional system have zero entries fol-
lowing an indexN . We proceed as follows: First, we formally manipulate
the system (B.5) and further operator equations below, and in a second step
we define the mathematical setup which ex-post justifies the formal manip-
ulations.

Assuming that the inverse operatorM−1 exists, we get

ν = M−1U

for the sequence of Lagrange multipliers. Inserting this in the solution of
(1) with respect toλn, i.e.

λ =
(
νΩq + βv′f − 〈ν,Ω〉

) e
m

(B.6)

with

β = (1, β, β2, . . .) , v′f =
(
v′f0 , v

′
f1
, v′f2 , . . .

)
,
e

m
=

(
e0
γ0

,
e1
γ1

,
e2
γ2

, . . .

)
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andxy = (x1y1, x2y2, x3y3, . . .), we get

λ =
(
M−1UΩq + βv′f − 〈M−1U ,Ω〉

) e
m
.

By passing to the first order conditions,

v′f = v′n + ηλ
m

eβ
− λ

m

eβ
(B.7)

= v′n + (η − 1)
(
M−1UΩq + βv′f − 〈M−1U ,Ω〉

) e
m

m

eβ

= v′n + (η − 1) v′f +
(η − 1)

β
UΩq − η − 1

β
〈M−1U ,Ω〉.

ReplacingU by the explicit expression we finally get

v′f (η − (η − 1) Ωq) +
η − 1

β

〈
M−1βv′f ,Ω

〉
= v′n

(
1 +

η − 1

η
Ωq

)
− η − 1

β

〈
M−1β

η
v′n,Ω

〉
.

We next analyze in which sense the infinite matrixM and its inverse are
well-defined. Therefore we first solve the system B.5 for a sub-system of
dimensionN , i.e. all entries in the vectors and the matrices are non-trivial
for the firstN orN×N components and zero in the remaining components
respectively. The operatorM is then a finite rank operator. The finite rank
matrixMN is invertible and the inverse matrix is

(B.8)
(
MN,−1

)
kl

=

{
N−3+a

N−2+(N−2)a+a2
1

xkyk = bN
aN

1
xkyl , k = l

1
aN

1
xkyl , k 6= l

k, l = 0, 1, 2, . . . , N . Given the finite rank expression for the inverse opera-
tor, we have to analyze first in which sense the infinite dimensional operator
M−1 is well-defined and second, what is an explicit expression for this op-
erator. Therefore, we first determine the conditions such thatM−1 is a trace
class operator and note that

AN =
N∑

k,l=0

|γ−1
kl | =

N∑
k=l

|γ−1
kl |+

N∑
k 6=l

|γ−1
kl |

(B.9)

=
bN
aN

1−
(

1
xy

)N+1

1− 1
xy

+
1

aN

1−
(

1
x

)N+1

1− 1
x

1−
(

1
y

)N+1

1− 1
y

−
1−

(
1
xy

)N+1

1− 1
xy

 .

ASSUMPTIONT.2. If we assume
∣∣ 1
x

∣∣ < 1 ,
∣∣∣ 1y ∣∣∣ < 1 and all vectors are

square summable, then the limit

lim
N→∞

AN =
1

1 + a

1

1− 1
xy
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exists and the operatorM−1 is a trace class operator (see Gohberg et al.
(1990) for properties of trace class operators).

Given this setup, we can calculate the scalar products in (B.7):

(B.10)

〈M−1βv′f ,Ω〉 =
∞∑
s=0

∞∑
j=0

m−1
sj β

jv′fj
Ωsδsj

=
∞∑
s=0

m−1
ss β

sv′fs
Ωs =

1

q

∞∑
s=0

(
β

x

)s
v′fs

.

If we finally assume the growth condition for the marginal utilities

ASSUMPTIONT.3.

|v′fs
| ≤ const, |v′ns

| ≤ cs, c > 0,∀s ,
∣∣∣∣βcx
∣∣∣∣ < 1 ,

then 1
q

∑∞
s=0

(
β
x

)s
v′fs

converges.

Using this assumption, we decompose the scalar products into a time
n-term and the remaining ones, i.e.

(B.11)

〈
M−1βv′f ,Ω

〉
=

1

q

∞∑
s=0,s 6=n

(
β

x

)s
v′fs

+
1

q

(
β

x

)n
v′fn

=
1

q
〈vf〉(−n) +

1

q

(
β

x

)n
v′fn

(B.12)

〈
M−1β

η
v′n,Ω

〉
=

1

q

∞∑
s=0,s 6=n

(
β

x2

)s
v′fs

+
1

q

(
β

x2

)n
v′fn

=
1

q
〈vn〉−n +

1

q

(
β

x2

)n
v′fn

.

Inserting (B.12) and (B.13) into (B.8) implies after some algebra

(B.13) v′fn
ηnCn = v′nn

Cn +An

An =
ηn − 1

βn

1

q
(〈vn〉−n − 〈vf〉−n)

Cn = 1− ηn − 1

ηn
Ωnq −

ηn − 1

qη2
n

.

This proves Proposition 5.

Appendix C. Proof of Proposition 6

The first step in the proof is to rewrite the budget constraint in a suitable
form in order to apply the martingale approach. We write

An+1

Bn+1

= A0 +G∗
n+1 −

t∑
k=0

yn − Tk + fk
Bk

(C.1)
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with

G∗
n =

t∑
s=1

2∑
n=1

ψn(s)S
∗(s)

being the gain process andS∗(n) = S(n)
B(n)

the normalized prices. SinceAn =

A0+G∗
n is aQ-martingale and since we are interested only in self-financing

strategies, it follows that (see Pliska (1997), Chapter V, for example)

A0 = EQ

[
∞∑
k=0

yn − Tk + fk
Bk

]
.(C.2)

ASSUMPTIONT.4. We assume that the integral

EQ

[
∞∑
k=0

yn − Tk + fk
Bk

]
converges in theL2 norm withn→∞.

In the problem (4.4) we replace the budget constraint by (C.2) while
the objective function, the (foISC) and the (foPC) remain unchanged. A
sufficient condition for the first order condition for the intermediary with
the quadratic utility function is

(C.3) a1 − a2yn = β−tλ
Nn

Bn

,

with Nn = EP [L|{n]
Bn

andλ the Lagrange multiplies associated with (C.2).
Solving (C.3) with respect toyn and inserting the solution into (C.2) deter-
mines the Lagrange multiplier

λ =

∞∑
k=0

EQ

[
a1Nk

a2Bk
− fk−Tk

Bk

]
− A0

1
a2

EQ

[
∞∑
k=0

Nk

βkBk

](C.4)

where again the integrals are assumed to converge in theL2 sense. The
derivatives in Proposition 7 trivially follow from (C.3) and (C.4). If we as-
sume that (foISC) and (foPC) do not bind, then by slackness, the sequences
of Lagrange multipliers for these conditions are equal to0, which in turn
impliesλ = 0. But then the optimal choice iŝy = a1

a2
. �
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FIGURE 1. The figure shows the average growth rate for a
holding period of 18, 20, 22 and 24 years. Each genera-
tion invests either in the risk free asset (assumed to yield
5 percent p.a.) or in the risky asset. The risky asset re-
turn is the value-weighted return on all NYSE, AMEX, and
NASDAQ stocks.Source of data: Kenneth R. French web-
page,http://mba.tuck.dartmouth.edu/pages/
faculty/ken.french/datalibrary.html.
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FIGURE 2. The figure illustrates the risk sharing mecha-
nism across the generations accomplished by an intermedi-
ary. Three representative individuals of three different gener-
ations are shown. Generation 2 is hit by a shock and the fig-
ure shows the losses in life time consumption for the individ-
ual of generation 2 without a risk-sharing contract (dashed
lines). In contrast, the consumption path with risk-sharing
contracts is shown. The smoothing of consumption is due to
the buffer stock, i.e. contributions of generations earlier than
2 and expected contributions of generations after 2 are used
to smooth consumption of the unlucky generation 2.
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FIGURE 4. Today’s consumptioncn and tomorrow’s con-
sumptioncn+1 of an individual born at timen are displayed
on the axis. The four regionsA,B,C,D represent differ-
ent investments into the two risky assetsS

(1)
n andS(2)

n of the
individual if he accepts the offered risk sharing contract rel-
ative to the case without such a contract.


