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Abstract

We propose filtering historical simulation by GARCH processes to model the future

distribution of assets and swap values.  Options’ price changes are computed by full re-

evaluation on the changing prices of underlying assets.  Our methodology takes implicitly

into account assets’ correlations without restricting their values over time or computing

them explicitly.  VaR values for portfolios of derivative securities are obtained without

linearising them. Historical simulation assigns equal probability to past returns,

neglecting current market conditions. Our methodology is a refinement of historical

simulation.

1 INTRODUCTION

Current methods of evaluating the risk of portfolios of derivative securities are

unsatisfactory. Delta-gamma hedging becomes unstable for large asset price changes or

for options at the money with short maturities (Allen 1997). Monte-Carlo simulations

assume a particular distributional form, imposing the structure of the risk that they were

supposed to investigate. Moreover, they often use factorisation techniques that are

sensitive to the ordering of the data. Historical simulations usually sample from past data

with equal probabilities. Therefore they are appropriate only if returns are i.i.d.

(independently and identically distributed), an assumption violated by volatilities

changing over time.This misspecification leads to inconsistent estimates of Value at

Risk,as documented by Hendricks (1996) and  Mc Neal and Frei (!998).

An overview of VaR (Value at Risk) estimation techniques is available in Davé and Stahl

(1997). They show the effects of ignoring non-normality and volatility clustering in the

computation of VaR. Even for the simple portfolios they consider current VaR

methodologies underestimate substantially the severity of losses. From their results they

infer that historical simulation modulated by a GARCH process is likely to be a better

method. Such a technique is implemented with good results by Barone-Adesi, Bourgoin

& Giannopoulos (1998) for a portfolio replicating a stock market index.

We propose to extend the recent methodology of Barone-Adesi, Bourgoin &

Giannopoulos (1998) to portfolios with changing weights that may also include
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derivative securities. Following them we model changes in asset prices to depend on

current asset volatilities. Asset volatilities are simulated to depend on the most recently

sampled portfolio returns. Our simulation is based on the combination of GARCH

modelling (parametric) and historical portfolio returns (non-parametric).  Historical

residual returns are adapted to current market conditions by scaling them by the ratio of

current over past conditional volatility. By dividing historical residual returns by this

volatility we standardise them for our simulation. These standardised residuals are then

scaled by a volatility forecast that reflects current market conditions.  Our simulated

returns are based on these residuals.

The simulated returns are the basis of our simulation. To simulate a pathway of returns

for each of a number of different assets over next 10 days we select randomly 10 past sets

or “strips” of returns, each return in a strip corresponding to an asset’s price change

which occurred on a day in the past. Thus each strip of returns represents a sample of the

co-movements between asset prices. We compute residual returns from the returns.   We

then iteratively construct the daily volatilities for each asset that each of these strips of

residuals imply according to the chosen GARCH model. We use ratio of these volatilities

over historical volatility to change the scale of each of our sampled residuals. The

resulting simulated asset returns therefore reflect current market conditions rather than

historical ones. Derivatives on the assets are simulated by full re-evaluation at each point

in time.

GARCH models are based on the assumption that residual asset returns follow a normal

distribution. If  residual returns are not normal GARCH estimates may be consistent but

inefficient. A better filter could then be selected. Following a large literature in financial

econometrics we will focus on GARCH.

In principle  any GARCH or other time series model is suitable for our methodology

provided it generates i.i.d residuals from our return series. Therefore residual diagnostics

as well as the Rsquare of the Pagan-Ullah regression are important criteria for our model

selection. The high t-statistics of our model parameters suggest that our models are well-

specified. Missspecification would result in poor predictions of conditional variances

leading to poor backtesting results.
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The core of our methodology is the historical returns of the data. The “raw” returns,

however,  are unsuitable for historical simulation because they do not fulfil the

properties1 necessary for reliable results.

Among others Mandelbrot (1963) found that most financial series contain volatility

clusters. In VaR analysis, volatility clusters imply that the probability of a specific loss

being incurred is not the same on each day. During days of higher volatility we will

expect larger than usual losses.

SIMULATING A SINGLE PATHWAY

In our simulation we do not impose any theoretical distribution on the data. We use the

empirical (historical) distribution of the return series. To render returns i.i.d. we need to

remove any serial correlation and volatility clusters present in the dataset. Serial

correlations can be removed by adding an MA term in the conditional mean equation. To

remove volatility clusters it is necessary to model the process that generates them. We

propose to capture volatility clusters by modelling returns as GARCH processes

(Bollerslev, 1986)2. When appropriate we insert a moving average (MA) term in the

conditional mean equation (1) to remove any serial dependency. As an example an

ARMA-GARCH(1,1) model can be written as:

rt   =  µ rt −1   +  θ ε t −1  + ε t ε t ~ N(0, ht) (1)

ht  =  ω  +  a ( )2

1 γε +−t +   βht-1 (2)

where µ is the AR(1) term, θ is the MA term, ω is a constant and ε t the random residual.

The GARCH(1,1) equation defines the volatility of ε t  as a function of the constant ω

plus two terms reflecting the contributions of the most recent surprise ε t −1  and the last

                                                          
1 For simulation, returns should be random numbers drawn from a stationary distribution  i.e. they should
be identically and independently distributed (i.i.d.).
2 The particular form of GARCH process used for a series was determined by statistical testing. Although
the GARCH(1,1) specification is suitable for most series it may not be adequate for all the assets in the
portfolio. Its failure may produce residuals that are not i.i.d. and do not satisfy the requirements of our
historical simulation. We are currently investigating, in a different study, the relevance of GARCH
mispecification on our VaR computations.
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period’s volatility ht-1 ,  respectively. The constants α and γ  determine the influence of

the last observation and its asymmetry.

To standardise residual returns we need to divide the estimated residual, ε
^

t  by the

corresponding daily volatility estimate, ht

^
3. Thus, the standardised residual return is

given as:

t

t
t

h
e

ˆ

ε
=

Under the GARCH hypothesis the set of standardised residuals are independently and

identically distributed (i.i.d.) and therefore suitable for historical simulation. Empirical

observations may depart from that to some degree.

As Barone-Adesi, Bourgoin and Giannopoulos (1998) have shown, historical

standardised innovations can be drawn randomly (with replacement) and after being

scaled with current volatility, may be used as innovations in the conditional mean (1) and

variance (2) equations to generate pathways for future prices and variances respectively.

Our methodology stands as follows:

• we draw standardised residual returns as a random vector ε t  of outcomes from a data
set Θ:

 

 e*   =  {
1

*

e ,
2

*

e ,..,
Te
* }

ie
* ∈ Θ where i = 1,....,10 days.                   (3)

 

• to get the innovation forecast (simulated) value for period t+1, zt+1
* ,  we draw a

random standardised residual return from the dataset T and scale it with the volatility

of period4 t+1 :

 

                                                          
3 Henceforth, simply  h and ε .
 4 The variance of period t+1  can be calculated at the end of period t as:

 ht+1  =  $ω + $α ε t
2 + $β ht, in which ε t  is the latest estimated residual return in (1).
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 zt+1
*  = e1

*
 . 1+th (4)

 

• we begin simulation of the pathway of the asset’s price from the currently known asset
price, at period t. The simulated price pt +1

*   for t+1 is given as

pt +1
*   =  pt  + pt ( $µ rt   +  θ̂ zt

*  +  zt +1
* ) (5)

where z*  is estimated as in (4).

For i = 2, 3...  the volatility is unknown and must be simulated from the randomly

selected re-scaled residuals.  In general ht i+
* , the (simulated) volatility estimate for

period t+i, is obtained as:

ht i+
*  =  $ $ $ *ω α β +  (z  )  +   t+ i-1

* 2 ht i+ −1    i ≥   2 (6)

where z*  is estimated as in (4).

New elements ε t
*  are drawn from the dataset T to form the simulated prices pt i+

*  as in

(5).

The “empirical” distribution of simulated prices at the chosen time horizon (e.g. i = 10)

for a single asset is obtained by replicating the above procedure a large number of times

e.g. 5000.

2 SIMULATING MULTIPLE PATHWAYS

To estimate risks for a portfolio of multiple assets we need to preserve the multivariate

properties of asset returns;  however, methodologies which use the correlation matrix of

asset returns encounter various problems with this.  The use of conditional multivariate

econometric models which allow for correlations to change over time is restricted to a

few series at a time.  The number of terms in a correlation matrix increases with the

square of the number of assets in the portfolio:  for large portfolios the number of

pairwise correlations becomes unmanageable.
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When estimating time-varying correlation coefficients independently from each other,

there is no guarantee that the resulting matrix satisfies the multivariate properties of the

data.  In fact the resulting matrix may not be positive definite.

Additionally, the estimation of VaR from the correlation matrix requires knowledge of

the probability distribution of each asset series.  However, empirical distributions may

not conform to any known distribution:  often the empirical histograms are smoothed and

forced to follow a known distribution convenient for the calculations.  VaR measures

which are based on arbitrary distributional assumptions may be unreliable;  preliminary

smoothing of data can cover up the non-normality of the data;  VaR estimation, which is

highly dependent on the good prediction of uncommon events, may be adversely affected

from smoothing the data.

Finally, correlations measured from daily returns can be demonstrated to be unstable.

Even their sign is ambiguous.  Estimated correlation coefficients can be the subject of

such great changes at any time, which even conditional models do not capture, that the

successful forecast of portfolio losses may be seriously inhibited.

Our approach does not employ a correlation matrix.  For a portfolio of multiple assets we

extend our simulation methodology5 to simulate multiple pathways.  We select a random

date from the dataset, which will have an associated set of residual returns.  This “strip”

of residual returns, derived at a common date in the past, is one sample from which we

begin modelling the co-movements between respective asset prices.

Thus for each asset for i = 1….10 days we have the sampled residuals denoted by

subscripts 1, 2, 3,....,  for the different assets.

Asset 1:  e1
*   =   { e 1, e 2,..., e T} 1 (7)

Asset 2:  e2
*   =   { e 1, e 2,..., e T} 2 (8)

Asset 3:  e3
*    =  { e 1, e 2,..., e T} 3 (9)

                                                          
5 Additional reading about the this methodology can be found in Efron and Tibshirani (1993).
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with  ei
* ∈Θ   and so on for all the assets in the dataset:  { }Θ Θ Θ= 1,..., N . From the

dataset Θ of historical standardised innovations, for i = 1, a date is randomly drawn and
hence the associated residuals e1

* , e2
* , e3

*   are selected.  At i = 2  another date is drawn,
with its corresponding residuals, and so on for i = 3, 4....etc.  Thus pathways for
variances, h , and prices, p , are constructed for each asset which reflect the co-
movements between asset prices:

For i = 1 to 10:

Asset 1: h t i1,
*

+  =  $ω 1 + $α 1( z t i1 1,
*

+ − )2 + $β 1 h t i1 1,
*

+ − (10)

p t i1,
*

+   =   p t i1 1,
*

+ −  + p t i1 1,
*

+ − ( $µ1 r t i1 1, + −   +  $θ1 z t i1 1,
*

+ −  +  z t i1,
*

+ ) (11)

Asset 2: h t i2,
*

+  =  $ω 2  + $α 2( z t i2 1,
*

+ − )2 + $β 2 h t i2 1,
*

+ − (12)

p t i2,
*

+   =   p t i2 1,
*

+ −  + p t i2 1,
*

+ − ( $µ2 r t i2 1, + −  +  $θ 2  z t i2 1,
*

+ −  +  z t i2,
*

+ )  (13)

Asset 3: h t i3,
*

+  =  $ω 3 + $α 3( z t i3 1,
*

+ − )2 + $β 3 h t i3, 1+ −
* (14)

p t i3,
*

+   =   p t i3 1,
*

+ −  + p t i3 1,
*

+ − ( $µ3 r t i3 1, + −   +  $θ 3  z t i3 1,
*

+ −  +  z t i3,
*

+ ) (15)

where z*  is estimated as in (4).

3 AN EMPIRICAL INVESTIGATION

We illustrate our methodology with a numerical example of a portfolio of three assets.

Our hypothetical portfolio is invested across three LIFFE futures contracts  and  a call

option on the Long Gilt future with net lots 2,-5, 10 and 7;  lot conversion factors for the

contracts are 2500, 500, 2500 and 500  respectively. Our historical data sets consists of

two years of daily6 prices, from 4 January 1994 until 27 December 1995, for three

                                                          
6 All three contracts are traded on the London International Futures Exchange (LIFFE) at different delivery
months.
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interest rate futures contracts, the 10-year German Government Bund (A), Long Gilt (G)

and the three-month EuroSwiss Franc (S) contracts7.

Given the daily price, pt  we obtain the daily returns rt  as

rt   =  ln (
p

p
t

t−1

) (16)

and then we form continuous series of historical returns by rolling a few days before the

expiration date to the next front month contract.

For each historical return series we fit the most suitable GARCH-ARMA  specification,

as in equations (1) and (2) to obtain i.i.d. residual returns. The parameter estimates

together with standard errors and the likelihood value are shown in table 1.

                                                          
7  The price of the LIFFE Euroswiss contract is derived by subtracting the appropriate forward-forward
interest rate from 100. Hence pathway calculations are made using 100 minus the quoted price.
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• Table 1: GARCH Estimates
 Series  ω  α  β  γ  µ  θ  R squared  ML
 A  0  0.07754  0.86421  -0.00292083  -0.431  0  0.381  -1383.99
 Std Error   0.023  0.033  0.000767  0.044    

 G  0  0.042527794  0.910057127  0.006027014   0  0.313  -1562.43
 Std Error   0.01286  0.02324  0.00098939     

 S  1.797378*10-5  0.123744  0.791801    0  0.324  -2026.21
 Std Error  8.914*10-6  0.0298  0.064      

 
 

 The low standard errors as well as the residual statistics (not reported) support our

parametrization choices. The equations are estimated in four steps. First by OLS to get

starting values, then by downhill simplex (because its robustness to bad starting values

and discontinuities). The BHHH algorithm was then used to refine convergence and

finally a quasi Newton method, the BFGS, was used to get reliable standard errors.

    As an example let the current close business be February 21, 1996; we want to estimate

the portfolio VaR over the next 2 business days.  The closing prices and annualised

volatilities for the three futures on that date are reported in table 2:

 

• Table 2: Close Prices and conditional volatility on 21&22 February
  Prices on Feb
21

  Return at Close of
Business

 Vol. p.a.(Feb21)  Vol. p.a.(Feb22)

 A  97.39  0.00446  0.10053  0.09347
 G  107.219   0.10086  0.09623
 S  97.48   0.37021  0.35436
 Call option (G)  0.67169    
 

 

 
 The conditional volatility of the next date, i.e. February 22, is calculated by substituting

the last trading date’s residual error and variance into equation (2). To simulate asset

prices for February 22 we draw a random (with replacement) row8 of  historical

                                                          
 8 A row contains the –standardised - innovations that occur on a random date from the past across all
contracts.
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(standardised) asset residual returns9 and re-scale them with the corresponding asset’s

volatility on February 22 to form a random surprise, εt , in equation (1). In this way we

generate parallel pathways for all linear assets in the portfolio without imposing the

degree of cross correlation between the assets. By taking a row of random residuals we

maintain the co-movement between the assets when we generate the simulated forecasts.

 Table 3 shows a sample of the standardised residuals for each asset used in our

simulation.

• Table 3. Historical Standardised Residuals
 Date  A  G  S
 05/01/94  0.00000  0.00000  0.00000
 06/01/94  -0.15123  0.08776  0.69159
 07/01/94  0.85533  1.25962  0.00000
 10/01/94  0.18241  -0.32852  0.96747
 11/01/94  -0.24443  -0.94479  -0.58417
 12/01/94  0.29110  0.27269  -0.41143
 13/01/94  -1.15592  -1.13077  0.86704
 14/01/94  -0.77676  -0.35823  0.65085
 17/01/94  -0.38586  0.27006  -0.22329
 18/01/94  0.32893  1.20579  -0.23623

 .  .  .  .
 13/11/95  0.93074  0.43796  -0.72107

 .  .  .  .
 21/02/96  0.40954  1.01243  0.085935

 

• Let us assume that the random set of standardised residuals are :  -1.15592,
 -1.13077 and 0.86704

 for A, G and S10 contracts respectively11. At the first simulation run, the one date ahead

re-scaled residuals, z* , for the three futures will be:

A: z*
1,t+1 = -1.15592* 

0 09347

252

.
= -0.00680612

                                                          
 9 Table 1 is an extract, for illustrative purposes, of standardised residual returns based on closing prices for
three futures over a two year period.  We can have as many columns of residual returns as there are assets,
or as in the case of swaps in a given currency, a set of columns of interest rate residual returns e.g. from 1
day to 10 years per currency, from which swap evaluations may be performed.
10 This set corresponds to the 13.01.94
11 As the random sampling is with replacement, we may draw the same date more than once during the
simulation process.
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where  h1,t+1 =
2

252

09347.0






=0.00003467

G: z*
2,t+1 =-1.13077*

0 09623

252

.
= -0.0068546

S: z*
3,t+1 =0.86704*

0 35436

252

.
= 0.019354571

These are also the innovations for equation (1). Recall from equation (5) the ith forecast

for 22 February is given by:

p*
i,t+τ= pi,t+pi,t( $µi rt + iθ̂ *z*

i,t+z*
i,t+1)

where ( $µi rt + iθ̂ *z*
i,t+z*

i,t+1) is the simulated return. This gives us:

A: p*
1,t+1 =  97.39 +97.39(-0.43084*0.00446+-0.00680612)

                   = 97.39+97.39(-0.00872862)
                   = 96.5399197

G:  p*
2,t+1= 107.219 +(107.219*-0.00685464)= 106.4840526

S:  p*
3,t+1= 100-(2.52+(2.52*0.019354571)=97.43122648

                  È Working price =100- 97.43122648 =2.56877

To produce the ith simulated volatility for the second date ahead we substitute εt-1 with

z t1 1,
*

+ , z t2 1,
*

+ , z t3 1,
*

+ , in (2).  Hence the simulated variance for February, 23 1996 for

contract A is:

h t1 2,
*

+  =  ω1 + α1( z t1 1,
*

+ +γ)2 + β1 h t1 1,
*

+

=  0 +0.07754(-0.00680612+ -0.00292083)2 +0.86421*0.00003467  = 0.0000373

Similarly we calculate the ith simulated variances for contracts G and S to be
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h z ht t t2 2 2 2 2 1 2
2

2 2 1,
*

,
*

,
*( )+ + += + + + =ϖ α γ β 0.0000405

h z ht t t3 2 3 3 3 1 3
2

3 3 1,
*

,
*

,
*( )+ + += + + + =ϖ α γ β 0.000458881

We repeat the above calculations to get the N days ahead forecasts of the variances and

prices for each of the three futures contracts. For example to obtain the 2 day ahead price

forecasts:  we randomly sample another row with historical standardised residuals,  for

each of the three contracts. Let us assume that this random set corresponds to November

13, 1995, and the values are  0.93074, 0.43796,  -0.72107, for A, G and S respectively.

When these random historical standardised residuals are re-scaled by the day 2 simulated

volatilities the following set of scaled residuals are produced:

A: z*
1,t+2= h t1 2 0 93074,

* * .+ =  0.006107194* 0.93074= 0.00568421

G: z*
2,t+2 = h t2 2 0 43796,

* * .+ = 0.006363858*0.4376 = 0.002787115

S: z*
3,t+2= h t3 2 0 72107,

* * .+ − = 0.021421503*-0.72107 =-0.015446403

Hence, z t1 2,
*

+ , z t2 2,
*

+ , z t3 2,
*

+  are the simulated residuals for February 23. Therefore, the

simulated set of prices for the same date will be:

A:  p*
1,t+2 =  96.5399197+96.5399197* ( -0.43084*-0.00872862+0.00568421)

                    = 97.45172459

G: p*
2,t+2 =  106.4840526+106.4840526*0.002787115

                    = 106.780836

S: p*
3,t+2=  100-(2.56877+2.56877* -0.015446403)

                 = 97.47090479

Note µ2 and µ3 = 0 so the AR term is absent in these equations.
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The above steps can be repeated to produce the entire set of, let us say 5000, simulated

values. Figure 1 illustrates examples of distributions of price pathways for 21.02.96,  for

the LIFFE German Bund financial futures contract.

1 Day ahead Empirical Distribution for Contract A
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Figure 1.  The 1-day ahead distribution of German Bund Futures Prices

Similarly, for longer VaR horizons our steps can be repeated to obtain a simulated

pathway for each date ahead.  Figure 2 shows the distribution of the 5000 simulation runs

for the 10th date ahead for the German Bund. The asymmetry of our simulated

distribution is apparent.
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Figure 2.  The 10-day ahead distribution of German Bund Futures Prices over 5000 runs

10 Day Ahead Empirical Distribution for Contract A
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3.1 Options

Options price paths are obtained from the corresponding asset price paths by using an

options pricing model applied to each asset price in the path and other relevant option

pricing parameters e.g. implied volatility, σ, strike price, x, time to expiry, T-t, and

interest rate, r .  For the present we keep the values of these other parameters equal to

their values at the start of simulation.

Thus the call option price is denoted c  = f( pt , X, σ, T-t, r) (17)

where pt  is the underlying asset price at current time t.  The price path for the call option

on a given asset is:

c t t t i, ,,+ +1
  =   f( pt , X, σ, T-t, r), f( pt +1 , X, σ, T-t+1, r),..., f( pt i+ , X, σ, T-t+i , r) (18)

Where pt ,..., pt i+  is the first vector (i.e. for the first asset) from (15).
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Additional option pathways use the asset prices from the corresponding asset price

vectors in (15).  Figure 3 illustrates an example of the ten day ahead distribution of prices

for an out-of-the money call option, for 5000 simulation runs on the LIFFE Long Gilt

futures contract. The time to expiry was one and a half months (expiry date 22/3/96), the

strike price was 108 points and the underlying futures price was 107.219. The option’s

market price was 0.670 and the ten-day median forecast price was 0.477. The minimum

price was 0.00018 and the maximum 4.82152 illustrating the non-linearity of option

pricing.

Using the Black ’76 model and the futures price path for contract G the following price

pathway was generated for the call option above.

Table 4: Option Pricing Model Input Values and Results

Close of Business One Day Ahead Two Days Ahead

Futures Price Path 107.219 106.4841 106.7808

Strike Price 108.00 108.00 108.00

Implied Volatility 0.08 0.08 0.08

Time to Expiry 0.087302 0.083333 0.079365

Call Path (generated

by Black ’76 model)

0.67169 0.40956 0.47953
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Figure 3

Empirical Distribution for Call G for April 1996
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3.2 Aggregating Asset Pathways to Obtain Portfolio Pathways

For the first simulation we select the asset pathways which correspond to the contracts in

the portfolio.  These are the vectors

p1, {t+τ} , p2, {t+τ} ,  p3, {t+τ} ,......,pn, {t+τ}  τ=0,1..i (19)

for n assets and a time horizon of i days. The position-weighted pathways in the portfolio

are the vectors:

w1p1, {t+τ}, w2p2, {t+τ}, w3p3, {t+τ},......, wnpn, {t+τ} τ=0,1..i (20)

where the scalars w1, w2, w3,....,wn  are the weights of contracts in the portfolio.
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The vectors of  pathways are added to form the portfolio path πt+τ

πt+τ  = w1p1, {t+τ} + w2p2, {t+τ} + w3p3, {t+τ} +,...,+ wnpn, {t+τ}   τ=0,1..i (21)

The price pathways above are modified by weights derived by multiplying together the
relevant number of lots, the lot conversion factor and the currency rate  (to Sterling). The
exchange rate from DM is taken to be constant at 2.24 and the exchange rate from Swiss
francs to Sterling taken constant at 1.82. The lot conversion factors are 2500 for the
Euroswiss and Bund contracts  and 500 for both Long Gilt contracts

A: w1p1{t,,t+1,t+2}=    1/(2.24)*2500*2[97.3900, 96.5399, 97.4517]
                                  = [£217388, £215491, £217526]

G: w2p2,{t,t+1,t+2} =  500*-5[107.2190, 106.4841, 106.7808]
                                =[-£268048, -£266210, -£266952]

Call Option on G = 500*7[0.6717, 0.4096, 0.4759]
                                  = [£2351, £1433, £1666]

S: w3p3,{t.t+1,1+2} = 1/(1.82)*2500*10[97.4800, 97.4312,97.4709]
                                 = [£1292, £788, £915]

Thus the portfolio path based on prices is
πt,t+1,t+2 = w1p1{t,,t+1,t+2}+ w2p2,{t,t+1,t+2}+ w3p3,{t.t+1,1+2}

      = [£217388,     £215491,  £217526]
        +[-£268048, -£266210, -£266952]
        + [£1292,       £788,        £915]
        + [£2351,       £1433,      £1666]

     = [-£47016, -£48498, -£46845]

The change in the portfolio’s value after 2 days from its closing value is

(-£46844.92496) -(-£47016.4787) = £171.5537 which in this (first) simulation path is a
gain in value.

By repeating the above procedure with different random values the empirical distribution

of portfolio values can be obtained.  The  representative “lowest value” of the portfolio

e.g. for the 99th percentile, can be compared to the value of the portfolio at the start of

simulation, to obtain the 99th percentile loss.  A ten-day ahead multi-contract portfolio
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example (a portfolio of futures and options in a variety of LIFFE contracts) is illustrated

in Figure 4:
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10-day ahead Portfolio Value Distribution over 5000 Simulations

Histogram for Sample Member Portfolio
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4 SWAPS

Our methodology can be applied to any type of asset.  We may have a portfolio

comprising exchange traded futures and options, interest rate and currency swaps and

swaptions.

For example a swap with three cash-flows remaining before it matures has its value

denoted by an appropriate swap valuation function of zero coupon interest rates:

s = g(ι1 ,ι2 , ι3 , φ) (22)

where φ represents parameters defined in the swap contract necessary to value it (e.g.

coupon, floating and fixed interest rates, notional principal amount, payment dates of the

cash-flows, maturity date, etc.); ι1 ,ι2 , andι3  are zero coupon interest rates (term
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structure) for dates corresponding to the future payment dates.  The value of a swap at a

given close of business will utilise the zero coupon rates (term structure) at this time.

We consider interest rate swaps to demonstrate how the methodology may be applied. A

pathway of swap values is obtained by simulating zero coupon interest rates curves.  For

the first scenario we simulate 10 zero coupon rates  for each day of the holding period.

This is replicated to obtain 5000 such simulations.   To simulate a zero coupon rate curve

we need to define how we create it from the source interest rates e.g. money market rates,

interest rate futures and quoted swap rates for various maturities e.g. to 10 years.  These

source rates, which could be depicted as a curve, allow a zero coupon rate curve to be

created12 from them;  the zero coupon rate curve is defined by points of constant maturity

which correspond to the maturities of the source rates.

We treat each of the source rates as an asset and simulate a single pathway for each

source rate, as described in the foregoing sections for futures pathways i.e. starting from

logarithmic returns from historical time series of (constant maturity) source interest rates.

We obtain a pathway for each source interest rate at the current close of business i.e. we

simulate the source interest rate curve for each day of the holding period (i=10).  For each

of these we apply the methodology, described by Hull (1997), to convert them to zero

coupon interest rate curves.  Replication of the process obtains 5000 zero coupon rate

curves defined by a small number (ten) constant maturity points.

Interest rate swaps are evaluated from each of the simulated yield curves.  This

necessitates interpolation between the constant maturity points.  During the simulation

process we use linear interpolation as we believe this to be sufficiently accurate for

simulation processes and much faster to compute than other methods (e.g. cubic splines),

given the number of simulations we require.

In this way we create pathways of swaps prices which correspond in order (a holding

period of 10 days over 5000 scenarios) to the futures and options pathways.  The 5000

simulated portfolio values for exchange traded instruments and interest rate derivatives

together can therefore be estimated, regardless of type or currency of instrument.

                                                          
12 The methodology for the creation of zero coupon rate curves is described  in “Options, Futures and Other
Derivatives”, by John C. Hull, Prentice Hall (1997).
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Figure 5 is an example of the term structure of interest rates out to 10 years for Sterling

prior to simulatation, produced by linear interpolation:

)LJXUH��

GBP Term Structure
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For simplicity, if we consider that the three asset (interest rate) pathways from equations

(11), (13) and (15) correspond to the cash-flow dates for our swap (no interpolation of

rates required), then writing ι*  for p* , we depict the 10 x 3 matrix:
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(23)

where i = 1 to 10 days.
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Each column of the matrix represents equations (11), (13) and (15) respectively i.e. they

are the asset pathways to 10 days. To obtain a swap value pathway we require a row from

the matrix for each day in the swap value path:

s t i+
* = g(ι1 1,

*
t + ,ι2 1,

*
t + ,ι3 1,

*
t+ ,..........,ι1,

*
t i+ ,ι2,

*
t i+ ,ι3,

*
t i+ , φ) (24)

For swap portfolios, the swap value pathways are aggregated as described generally for

any set of assets, in equations (19) to (21); the net positions wn for swaps can be

represented as +1 or -1 for each swap, to describe the payment or receipt of fixed interest

cash-flows respectively.  Furthermore, aggregated values for portfolios of swaps and

futures and options contracts may be obtained with no fundamental change to our

methodology.  5000 simulation runs may be performed for portfolios of swaps, futures

and options, from which worst case losses can be obtained.13

In figure 6, we simulate 5000 values of a random portfolio of “plain vanilla” interest rate

swaps in Sterling, over a 10 day holding period.  The 5000 portfolio values are obtained

from 5000 simulated interest rate term structures.

                                                          
13 Appropriate currency exchange rates for the given close of business are currently used in the simulations
where contracts are denominated in different currencies, to convert all values to a common currency.
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Random Swaps Portfolio Values over 10 day holding period for 5000 simulation runs (y-axis is the count of values in
each bar). Portfolio Values in Sterling

The distribution of portfolio values is shown in the histogram; the lowest value,

represented by 99th percentile, is compared to the median portfolio value. This is the

“worst” loss for the portfolio, equal to £1,087,421 and is the difference between the least

value at the 99th percentile of £4,280,410 and median value of £5,367,831.14

In Figure 7 we show the simulated linearly interpolated term structure from which the

99th percentile, 10 day holding period portfolio value is calculated.  This simulated term

structure is compared to the actual observed term structure 10 days on from the date at

which simulation was started.

                                                          
14 Alternatively the loss may be computed from the initial portfolio value as shown in the previous
example, rather than the median.  The two losses are the same in RiskMetrics because the median is
assumed to be equal to the initial value in that methodology.
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Sterling Interest Rate Term Structures:  actual and after 
simulation, at 99th percentile and 10 day holding period
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5 CONCLUSION

Our methodology simulates the returns of portfolios of derivative securities taking into

account information available on current market conditions.  We preserve the information

on historical non-normalities of security returns and their co-movements, without

introducing the complexities and the noise associated with the computation of  large

covariance matrices.

Our methodology leads to a fast evaluation of VaR.  That is possible because it requires a

simple historical simulation to be run each day through a preset time-series filter. The

number of our computations increases linearly with the number of assets.

 The reliability of our evaluation depends on the quality of the filters used in our time

series analysis. A better filter would by definition lead to a better assessment of risk.
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Therefore the adequacy of a particular filter in a given context needs to be verified

through backtesting. In any event, the necessity of meeting the requirements of historical

simulation must be recognised.
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