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Abstract Only afew intertemporal optimal consumption and portfolio problemsin partial
and general equilibrium can be solved explicitly. It isillustrated in the paper
that perturbation theory is a powerful tool for deriving approximate analytical
solutions for the desired optimal policies in problems where general state dy-
namics are admitted and a preference for robustness is present. Starting from the
perturbative approach proposed recently by Kogan and Uppal it is demonstrated
how robust equilibriafor some formulations of a preference for robustnessin the
literature can be solved. A crucial requirement for this approach isthe existence
of aknown functional form for the candidate model solutions, a condition which
is not satisfied by some models of a preference for robustness. For these cases,
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recent results by Trojani and Vanini can be used to obtain a perturbative solution
tothe Bellman equation of therelevant benchmark model and to give someformal
conditions under which the perturbative solution converges to the correct one.

Keywords: Financial Equilibrium, Merton's Model, Model Misspecification, Perturbation
Theory, Robust Decision Making.

1. Introduction

It is awell-known feature of financial models that only afew intertemporal
optimal portfolio problems on the single agent (partial equilibrium) level can
be solved explicitly. On the general equilibrium level even greater difficulties
arise, for instance when heterogeneous agents economies are considered.

The class of models that provide analytical solutions is characterized by as-
sumptions on agent’s utility functions (like for instant power utility), on the
dynamicsfor asset prices and state variables (asfor example ageometric Brow-
nian motion price process), on the existence of intermediate consumption, and
on further aspects, like for exampl e the presence of apreference for robustness
(cf. Anderson et a. (2000), AHS in the sequel). Typically, it is sufficient
to weaken one of these assumptions to loose closed form solutions. This is
due to the generic non-linear structure of the optimality conditions implied by
the given Hamilton-Jacobi-Bellman (HJIB) equation. As a consequence, exact
optimal solutions can be rarely obtained. However, both from a theoretical
and an applied point of view it is an important issue to characterize optimal
decision rules that arise when general dynamic laws for asset prices and state
variables are considered, and - for example - when some form of aversion to
model misspecification istaken into account by the agent’s optimal decisions.

The best that can be done when exact analytical solutions cannot be obtained
is to rely on approximation methods by which approximate analytical expres-
sionscan beachieved. Asfor thenatural sciences, it has been shown recently in
Kogan and Uppa (2000) within the setting of standard Merton’s (1969, 1971)
- type models, that perturbation theory is a powerful approximation method
for financial optimal decision making also. Clearly, perturbation theory is not
the only approximation technique that can be used in dynamic portfolio opti-
mization. A further one is the approach developed in Campbell (1993), which
is based on alog-linearization of the HIB equatiort. A crucial difference be-
tween perturbation theory and the log-linearization approach is that the first
yields analytical solutions. Further, perturbative approaches allow for a higher
generality of the analysis, permitting rich investment set specifications and ad-
mitting a quite large spectrum of portfolio constraints. Finally, alast advantage

1See also Campbell and Viceira (1998, 1999) and Chako and Viceira (1999).
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isthat they can be also used to solve general equilibria in heterogenous agents
economies where the opportunity set is endogenous rather than exogenously
given. On the other hand, for problems where the consumption to wealth ra-
tio is approximately constant (the assumption on which the log-linearizazion
approach is based) alog linearization of the HIB equation can produce more
precise approximations, as one would (at least) partly expect?.

The goal of this paper is to provide an introductory self-contained review
on perturbative approaches for solving continuous-time optimal portfolio prob-
lems and to illustrate their usefulness with a particular focus on robustness.
Control problems where the impact of an aversion to model misspecification
is described by a preference for robustness are a natural application field for
perturbation theory because there the implied value functions are characterized
by the solution of an HIB equation that is parameterized by a single parame-
ter. Indeed, formally many of these models are observationally equivalent to
stochastic differential utility (Duffie and Epstein (1992a, 1992b)). An open
guestion is how far perturbation theory can be applied to related approaches
like multiple priors recursive utility (Chen and Epstein (2000)) in cases where
value functions are characterized by the solution of some backward stochastic
differential equation.

Several formulations of a preference for robustness have been proposed re-
cently in the literature. In the sequel we will use the terminology ”Minimum
Entropy Robustness’ (MER, AHS (2000)), "Constrained Robustness’ (CR,
AHS(1998) , Hansen et a. (2001)) and "Homothetic Robustness’ (HR, Maen-
hout (1999)) to distinguish the different definitions. All these approaches to
robustness are based on the idea that economic agents have an approximate
benchmark model in mind by which they try to describe the probabilistic fea-
tures of some underlying state variables processes, like for instance some set of
security price processes. At the same time, agents consider in their decisions
the possibility that the benchmark model could be bad specified. However,
not all possible misspecifications are treated as being equally relevant. On the
contrary, model deviations that are viewed as particularly different from the
given reference model (typically measured using relative entropy as a measure
of discrepancy) are penalized in their impact on the final decision. In all these
models, the magnitude of this penalization is parameterized by aparameter that
isinterpreted as the strength of a preference for robustness.

Onaformal level, differencesbetween thethree aboveformulationsof robust-
ness arise essentially through the way by which model deviations are penalized

2Cf. Kogan and Uppal (2000) for a numerical comparison of the accuracy of approximations based on
perturbation theory and the log-linearization technique within the model of Chacko and Viceira (1999).

3A related approach adopted by Uppal and Wang (2001) and allowing for differences in the degree of
robustnessymodel ambiguity of economic agents is not discussed further in this review.
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in optimal decision making. MER penalizes deviations proportionally to their
relative entropy with respect to the reference model, while CR puts a maximal
bound on the relative entropy of a relevant candidate misspecification. How-
ever, as enlightened by Hansen et. al. (2001) MER and CR are closely related
by the Lagrange Multiplier Theorem, even if they induce different preference
orders*. An important economic difference between the two formulations is
that CR depicts aform of first order risk aversion while MER (as HR) mimics
second order risk aversion. Further, CR is recursive in the sense of Epstein
and Chen (2000). Viastatistical detection error probabilites AHS (2000) have
shown how to determineempirically plausibleamountsof therobustness param-
eter for MER and CR, an important issue for applications. Finally, aweakness
of MER and CR appears to be their low analytical tractability. Indeed, so far
exact partial and general equilibria have been computed in closed form only for
the simplest constant opportunity set Merton (1969, 1971) model using a CR
formulation (see Trojani and Vanini (2001)). Numerical partia equilibrium so-
lutions for astochastic opportunity set CR portfolio problem with predictability
areanayzedin Le (2001). While perturbation theory can be applied to handle
also CR-based models (cf. for instance Trojani and Vanini (2001b)), we focus
for brevity in our exposition on MER where no exact analytical solutions exist
aready for the smplest constant opportunity set model. Similarly to MER,
the HR formulation penalizes relative entropy of amodel deviation. However,
in away that is scaled by the current level of indirect utility and that makes
HR observationally equivalent to a well-known form of stochastic differential
utility®. A nice feature of the scaling factor defining HR is that it yields a
higher analytical tractability, because it imposes homogeneity of the implied
HJB equation. For instance, robust versions of models in Kim and Omberg
(1996) and Chacko Viceira (1999) can be solved explicitly, and the impact of a
robust motive for intertemporal hedging can be analyzed in detail.

In this review we demonstrate the usefulness of perturbation theory in deriv-
ing approximate analytical expressions for the optimal policies of intertemporal
consumption/portfolio problemswhere general state dynamics are admitted and
apreference for robustness is present. Starting from the perturbative approach
of Kogan and Uppal (2000), we explain how first order approximations for the
relevant optimal policies are obtained. That for we perturb the partial equi-
librium solution of alog utility investor who completely believes in the given
model dynamics (that is, an investor having no preference for robustness). In
general equilibrium, these approximations are derived by perturbing a bench-

4In fact, under regularity conditions the optimal controls implied by MER can be expressed in terms of the
solution to a corresponding CR problem, and vice versa

SMaenhout (1999) showsthat HR can beinterpreted asincreasing risk aversion, without changing preferences
for intertemporal substitution.
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mark economy where homogeneous log utility agents have no preference for
robustness. Hence, in our review we focus on applications and extensions of
Kogan and Uppal’s (2000) approach to situations where preferences for robust-
ness and the joint impact of aversion to risk and to model misspecification are
considered.

Asmentioned, HR imposes homotheticity of the arising value functioninthe
corresponding robust control problem. Therefore, it allows for adirect pertur-
bative solution where Kogan and Uppal’s (2000) approach is applied simply by
expanding the optimal policies with respect to the risk aversion and the robust-
nessparameter (rather than only with respect to thefirst one). Onthe other hand,
amore indirect approach is needed for the minimum entropy situation, where
no exact explicit expressions for the optimal consumption and portfolio policies
are known, even for the simplest constant opportunity set case. For this case
a perturbative approximation to the HIB equation for the relevant benchmark
model hasto be suppliedfirst. Thisfirst stepisachieved by resultsin Trojani and
Vanini (2001&). From an economic point of view this methodological exercise
yields analytical expressions for the impact of a preference for robustness on
partial and heterogeneous-agents general equilibria of models based on genera
state dynamics and including intermediate consumption. Indeed, the analytical
approximations obtained apply to abroader class of robust dynamic model sthan
those analyzed previoudly in the literature. For HR they permit the analysis of
more general partial equilibria than those explicitly solved in Maenhout (1999)
and they are useful for the analysis of heterogeneous agents continuous-time
robust general equilibria, atopic that has not been largely investigated so far.
For MER perturbation theory provides some first analytical partial and general
equilibrium descriptions of the fundamental properties of AHS' s model.

A successful rigorous perturbation theory for general financial problems has
to fulfill (at least) the following requirements:

» Theerrorsimplied by agiven approximation method must be (formally)
quantifiable,

= Convergence of perturbation theory up to al orders has to be (formally)
investigated in order to prove existence of a candidate solution.

This review focuses on an informal presentation of the basic ideas behind
perturbative approaches when applied to afew models of financial robust deci-
sionmaking. Therefore, aformal complete analysis of theseissuesisbehind the
goal of this paper®. However, based on resultsin Trojani and Vanini (2001a) we
discuss briefly some of these aspects in Section 3.5 (Theorem 3 and 4), within

6General resultsonthe convergenceof theapproximate sol ution to thetrue solution arenct currently available;
for adiscussion of issues related to convergence we refer to Judd (1996, 1998).
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the simplest (constant-opportunity-set) AHS model. For formal proofs of all
theorems and propositions in this review and for some more detailed economic
interpretation of robustness we refer to the original papers in the references.

The paper is organized as follows. Section 2 synthesizes the elegant and
ingenious approach of Kogan and Uppal (2000), while Section 3 introduces ro-
bustness into the analysis by describing first the direct extension of this method-
ology to HR. In asecond step, we present the perturbative approach in Trojani
and Vanini (2001a) which provides a solution way aso for the model by AHS
(2000). Section 4 presents perturbative solutions for ageneral equilibrium het-
erogeneous agents economy where risk aversion and preferences for robustness
interplay in determining assets prices, more details on this topic can be found
in Trojani and Vanini (2001b). Section 5 concludes and summarizes.

2. Standard Partial Equilibrium Problems

We start by presenting the basic ideas in Kogan and Uppal’s (2000) paper
that will be extended to take robustness into account.
2.1 Preferences and Objective Functions

Consider economic agents with constant relative risk aversion utility func-
tions u of current consumption G

Y _
uC) =" v<t (7.0

For y — O thelog utility caseis obtained

log(C) = Iimcty_ !

M= (7.2

Our god is to analyze the optimal intertemporal portfolio/consumption be-
haviour of investors with utilities of theform (7.1). For agiven time preference
rate 0 < p < 1 (measuring depreciation of utility of consumption over time) we
consider infinite horizon problems with objective functions of the form

Vy (W, X) =E [/Om e—PtC‘yT_ldt] . (7.3

Expectationsin (7.3) aretaken with respect to thejoint law of two state variables
processes (W, %)’ that are defined precisely below. Again, the corresponding
problem of alog-utility investor is obtained by letting y — 0.
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2.2 Opportunity Set

There are two assets, arisky and ariskless asset with price R and B; at time
t, respectively, defined by the dynamics

dB, = rBdt |, (7.4)
dR? = oRdt+oRdz . (75)

The drift and volatility oy = o (X;) and oy = 0 (X;) as well as the short rate
r. =r(X) definethe (stochastic) opportunity set of our agents, whichisassumed
to be generated by a state variable process’ (X;) with dynamics

dX = 7 (%) dt+& (%) dzX | (7.6)

where (%) and (Z) are both standard Brownian motions in R, having joint
covariation oxzdt = E (dZ*dz;), and { (%), & (%) € R. Wefurther denote by
Oxp = 0&07x7 the covariation of risky assets returns and state variables. Each
agent in the model allocates at each date t a fraction w of current individual
wealth W to risky assets, yielding the individual current wealth dynamics

dW = [WweW (ap —re) + (W — C)] dt + wWordZy . (7.7)

The next section introduces the standard consumption/portfolio optimization
problem of an investor in Merton’s (1969, 1971) model.

2.3 Single-Agent Optimization Problems

Let u be autility function of the form (7.1). Each agent in the model solves
the intertemporal optimization problem

. IWX) =supc  E[fg € Pu(G)dt]

P { st. (7.6) and (7.7) (7.8)

Hence, preferences and price processes on risky assets are exogenoudy given
for the investor, who acts as a price taker optimizing lifetime expected utility
of consumption. Defining by ¢ = va the consumption to wealth ratio, the HIB
equation for the value function J in (P) is

L {woy-1 923
0= %pr { 7y pJ+ Awd+ AxJI + \NVVO'xp—awaX R (7.9

“Prominent examples of such state variablesin the context of optimal portfolio choice are economic variables
describing the evolution of some potential risk factors.
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where Ay, Ax, arethe generators of the wealth and state dynamics (7.7), (7.6),
respectively,

B 0 1, 5 5 0

Ay = (r+w(a—r)—c)WW+§wchW . (7.10)
L0 1,07

Ax = Lo +35857 (7.12)

Clearly, appropriate boundary conditions on the value function have to be im-
posed in order to obtain well-defined solutions to (7.9). However, (P) can in
principle be solved by the following procedure:

m  Firgt, by formally differentiating (7.9), the optimal policy candidates ¢, w
arederived. Atthisstage, they are both functions of the unknown solution
J.

= Second, insert the optimal policy candidates into the HIB equation (7.9).
This leads to a non-linear partial differential equation for J (excluding
trivial cases).

= Third, the partial differential equation thereby obtained has to be solved
in order to obtain the value function solution J and the implied optimal
rules from the first step.

Asamatter of fact, thelast step in this procedure can be carried-out explicitly
only for avery limited class of problems.

24 Perturbative Solutions Approach

Thecrucial ideabehind the perturbative approach in Kogan and Uppal (2000)
for computing the optimal policiesimplied by (7.9) isasfollows. Suppose first
aconstant opportunity set. Homogeneity of the utility function (7.1) and of the
generator for the wealth-dynamics (7.7) implies that the functional form

JW)y==——~2_— | (7.12)

8A second remark concerns theimplicit differentiability assumptions. Suppose a sufficiently smooth candi-
date solution wasfound using theformal approach described above. Then, using the verification theorem, one
can proverigorously that the candidate solutionisindeed asolution. If thevaluefunctionisnot differentiable,
the formal approach is no longer meaningful. If this happens, one has to consider the viscosity solutions
approach. This case arises for example in financial applications where transaction costs are considered.
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is appropriate for solving (7.9)°. When the opportunity set is stochastic, homo-
geneity suggests a” state dependent” functional form for (7.12) given by

(9 W)Y — 1

J(W,X) = v

: (7.13)

Dl

where g isafunction thas hasto be determined. If we seek for an exact solution
of (7.8), thisfunctional form hasto beinserted inthe HIJB equation (7.9) in order
to start the formal procedure outlined above. However, theimplied differential
equation for the unknown function g ismost of the times not solvable explicitly.
Since g(y, X) can be not computed generally in closed form, Kogan and Uppal
(2000) propose to approximate the implied optimal policies by expanding g in
powers of a suitable parameter. In the present setup, a natural choice for this
parameter isthe risk aversion index y

a(y, X) = go(X) +yo1(X) + O(Y?) . (7.14)

Notice that by construction'® gq is implied by the value function solution for
the stochastic opportunity set problem (7.8) of alog-utility agent

Jeg(WLX) = S(InW) + (X)) (7.15)

At this point, not much seems to be gained. Even worse: it seems that we
now have to determine two functions @, gi, instead of a single function g.
However, the key point for the analysisto follow isthat g can be often obtained
analytically from the value function solution of a log utility agent!, while g
is of second order in y and therefore can be neglected in first order analysis.
To seethis, differentiate first the HIB equation (7.9) using the functional form

9Indeed, it can be easily verified (cf. also Merton (1969, 1971)) that (7.12) solves (7.9) for an appropriate
contant g(y).
Thisis easily implied by the limit:

(egw-x)w)v 1

- e%un(vvwgo(xn 7

Ol

asy— 0.
Bwhich istypically easier to compute than that of the original (power utility) problem.
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(7.13). This gives the policy candidates

1

c(X) = (% V9<V7X>>” : (7.16)
wx) = 2 9-r, v ogvX)oxe (7.17)

l1-y 02 1-y oX o2

Further, insert (7.14) in (7.16), (7.17), and expand the implied expressions up
tofirst order iny. It then follows

c(X) = P(1-¥(9(X)~In(p))+O(V) , (7.18)
_a-r 0go(X) Tpx
WX) = S (Y)Y o o) . (7.19)
This shows that g; does not contribute to the optimal policies up to first order

iny.

Asa consequence, it is sufficient to compute g in order to determine (7.18),
(7.19), completely. Sincethisfunctionisfully determined by the solution of the
log-utility version of (P), having determined the value function Jog(W, X) for
this problem already gives g (the last unknown in the approach) from (7.15).
Formally, Jiog is defined by

[ S E LT e log(Cdt
J'°9(W’X)_{ st (78 ad (77

Using the perturbed policies (7.18), (7.19), for alog utility agent (y = 0), to-
gether with the solution to the linear wealth dynamics (7.7) it then follows

Jog(W,X) = E[/Ome_ptln(pW)dt]

[*) t t
= E{/ eptm[p\/\/exp (/ Wsds+/ ¢'st5>] dt}
0 0 0

2
where Ws = — 2 +rs+ 3 (“50—;“) and ®s = 9. A final partial integration
identifies gg as
1 Oy — It 2
= dt . 7.20
e )] } (720)

2Notice that ¢ and w are wealth independent. Theterm
1 oxp d9(y,X)
1-y a2 oX
in(7.17) isastandard intertemporal hedging demand by which agents hedge against changesin the stochastic
opportunity set.

do(X)=In(p)—1+E {/Om e ™
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After having specified the state variables and risky asset price dynamics (7.6),
(7.5), explicitly, it isthen possible to evaluate (7.20) in some cases analytically.

Summarizing, the above perturbative approach for computing the desired
optimal policies works as follows.

1 Identify aset of parametersthat parameterize the problems under scrutiny
(the parameter y in the above discussion) and a specific parameter value
for which the value function solution is known explicitly (the parameter
value y = 0 in the above discussion).

2 Determineafunctional form for the solution candidate (expression (7.13)
above) such that to first order only functions of the solvable benchmark
model enter in the optimality conditions (the function g, above).

3 Computetheoptimal policiesfromthe optimality conditionsfor the given
problem using the functional form of step 2 (policies (7.16) and (7.17)).

4 Expand the implied optimal policies to first order, determine the value
function for the explicitly solvable model and compute the corresponding
expectations (expressions (7.18), (7.19), (7.20)).

Hence, two requisites are necessary for the above procedure:

m  Existence of an explicitly solvable model within the given model param-
eterization,

m Existence of afunctional form for the parameterized candidate model
solutions.

These restrictions can be rather severe. However, in some cases analytical
solutions are obtained for problems where otherwise only numerical solutions
are available.

3. Robust Partial Equilibrium Problems

We now consider situations where economic agents have some doubts on the
specification (7.5), (7.6), for asset prices and state variables dynamics. They
rather treat model (7.5), (7.6) as an approximate description of areality where
model deviations can always be present. In the sequel we will therefore call
(7.5), (7.6) the "reference model” of our robust agents.

Given this cautious perception of the reality, the goa in robust portfo-
lio/consumption decision making is to develop policies that perform well not
only at the given reference model but also across a set of competing relevant
specifications. This leads naturally to embed robust portfolio selection into
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some kind of max-min expected utility theory (cf. Gilboa and Schmeidler
(1989)) using optimization objectives of the form

o y
inf Eq [ / e—PtC‘—ldt] . (7.21)
QeQ 0 Y

These criteriaextend (7.3) to consider situations where model uncertainty inthe
form of aset Q of canditate relevant models (containing the reference model
probability) is present. Criterialike (7.21) appear as objective function also in
recursivemultiplepriorsutility (cf. Chenand Epstein (2000)) and robust control
theory. These two approaches are based on a similar motivation but differ cru-
cially inthe way by which Q is specified and in the corresponding behavioural
implications®. In the first one, Q is constructed explicitly through the defi-
nition of an appropriate (rectangular) set of density generators. In the second
approach Q is parameterized typically only implicitly, through some positive
penalty parameter that penalizesastatistical perturbation of the reference model
probability implied by (7.5), (7.6); see below. This parameter parameterizes
in a parsimonious way a (one parameter) set of model misspecifications with
quite rich alternative dynamics. As a consequence, robust control problems
are particulartly adequate for a perturbative solution approach that perturbs the
standard (non robust) model solution with respect to this parameter.

This review focuses on perturbative solutions of HIB equations implied by
some robust control problems that have been recently formulated for a few
models of robust intertemporal consumption/portfolio choice. Some specific
objects and definitions used in robust control theory are now shortly introduced.
Moredetailsare givenin Hansen, Sargent and Tallarini (1999), AHS (2000) and
Hansen et a. (2001) for the basic theory, and Maenhout (1999) and Trojani and
Vanini (2001) for the more specific optimal consumption-portfolio perspective.

31 Model Misspecifications and Measures of M odel
Discrepancy

For a positive random variable v such that E (v) = 1 denote by (g),~ the
martingale process obtained by setting g := E (v| F¢), the conditional expecta-
tion of v conditionally ontheinformation i generated by the current wealth and
state variables dynamics up to timet. By the Markov property wewrite without
loss of generality ¢ = ¢ (W, X;). Contaminations of the dynamics (7.5), (7.6)
are described by afamily (T,”)t>0 of conditional expectation operators defined

13While the preferences implied by multiple priorsrecursive utility are recursive those behind robust control
theory are not in the usual sense. They justify a recursive solution by relating a solution of a date zero
commitment game to a Markov perfect game in which the decision of both agents are functions of the
underlying state vector. See Chen and Epstein (2000), Epstein and Schneider (2001, 2001a) and Hansen et
a. (2001) for more details on this point.
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by the distortion law

T () (W, X) = E[GoW,X) Mo =W, X0 =X] , (7.22)

for suitable functions @: B2 — R. Hence, a contaminating model v consists
simply of an absolutely continuous change of measure with respect to theinitial
reference model probability. By Girsanov Theorem the class of dynamic mis-
specificationsinduced by model contaminations of theform (7.22) aretherefore
mispecifications of the drift in (7.5), (7.6)!4.

Naturally, model misspecifications that are a priori less easily detectable
should induce a more cautious behaviour of a robust economic agent. As
mentioned in the introduction, this aspect istaken into account in robust control
theory making use of relative entropy as a measure of discrepancy between the
reference model and amode! contamination'®. Given acandidate contaminated
model v, relative entropy | (v) at timet is defined by

It (V) (W, X) = E(G-log(q)Wo =W, X =X) . (7.23)

I; isnot ametric. However, it measuresthe discrepancy of thefinite dimensional
densities under scrutiny by the information inequality (cf. for instance White
(1996))%6.

3.2 Preferencesfor Robustness and Objective Functions

Preferences for robustness are modelled by introducing a pessimistic view
in the computation of the current certainty equivalent of future indirect utility
of consumption of arobust agent. Pessimism is embodied by a max-min ex-
pected utility approach where a malevolent player (nature, say) selects aworst
case model VW from the set of model misspecifications (7.22) that a robust
decision maker considers as relevant. The set of misspecifications relevant to
arobust decision maker is constrained by a (possibly state dependent) penal-
ization parameter that penalizes misspecifications v with ”particularly high”
relative entropy (7.23).

Specificaly, let ¢ : R — R" be a positively valued function and define
I{ (v) = 21; (v). We consider worst case (robust) objective functions (com-

14Under regularity conditions, explicit expressions for the drift under the misspecified model are obtained
by representing the process (g ;o as an exponential martingale.

15Thisincorporates an asymmetric trestment which embodyies the idea that arobust decision maker tenden-
tially believes to the given reference model.

1Further Iy (v) can beinterpreted asthe mean surprise experienced (over thetime period [0, t]) when believing
that (7.5), (7.6), describe the model dynamics and being informed that in fact these are described by a
contaminated model v; cf. Renyi (1961, 1971) for a deeper discussion of this point. Finally note that
ly(v) =0foralt>0if andonly if v isequal to 1 everywhere.
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pare also with (7.3)) of the form

Vo wx) = inf [ ([ exp(-p) (u@)+ i )at) |.
(7.24)

where
W= (Vo (W, X))

and expectations EY (-) are with respect to the joint law for wealth and state
variables induced by a model contamination v through (7.5), (7.6) and (7.22).
Theinfimumwith respect tov in (7.24) determines aworst case model V¢ and a
corresponding worst case (pessi mistic) expected utility of lifetime consumption.

In this formulation Yy depicts a (possibly state dependent) preference for
robustness. Choosing

B=9 , 9>0 , (7.25)

yields the minimum-entropy objective function

Vyo (W, X) = iUf [E" </Om e ™ <u(Q) + %It’ (v)> dt>] , (7.26)

in AHS (2000). In this case preferences for robustness are state independent.
The higher 9 the stronger the preference for robustness, respectively the higher
the aversion to model misspecification. Indeed, when 8 — oo the solution of
the infimization in (7.26) isa”worst case model” (W say) yielding the lowest

conditional expectation on future indirect utility over all possible absolutely
continuous contaminations (7.22) of the given reference model. On the other
hand, when & — 0 thisyields aworst case model with lowest possible relative
entropy. That is, amodel with transition densities that are equal to that of the
given reference model. Hence, (7.26) covers the objective function (7.3) as a
particular case which arises as the limit case @ — 0. Asdiscussed by Hansen
et. a (2001) the preferences represented by criteria of the type (7.26) are
recursive in a non-standard sense if a Bellman-Isaacs condition is satisfied” .

This condition defines a Bellman equation for a two-player zero-sum game
(between arobust agent and nature, say) in which both players decide at time
0 and recursively and it is needed to relate solutions of a date zero commitment
two-agents game to a Markov perfect game where the decision rules of both
agents are functions of the underlying state vector. For criteria of the type

17¢t. also Fleming and Souganidis (1989).
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(7.26) the Bellman-1saacs condition is equivalent to finding a solution for the
HJB equation (7.38) below in this review!®.
A scaled version of (7.26) is obtained by setting:

9

- , 9>0 . 7.27
Wy,S(W,Xt)‘i‘% g ( )

W

Thisformulation of apreference for robustness arises naturally if homogeneity
of theHJB equation for optimum consumption-investment problemswith power
utility functionsisimposed. At variance with the minimum entropy case above,
the homogeneity of the implied HIB equation permits to determine analytical
solutions for the value function of virtually al optimum portfolio problems
where explicit solutions for the standard (expected utility) formulation exist.
Therefore, HR is by construction analytically more tractable than MER. The
implied objective function is given by

P 1
Vs (W, X) = ir\}f [E" (/o g™ (u(Q) + %I{(v)) dt)] .
(7.28)

Here, apreference for robustness is state-dependent sinceit isinversely related
to the current level of lifetime indirect utility in the given state of the world.
Conditionally on the realized state, the interpretation of the parameter 3 is, on
a pure formal level, the same as for the non homothetic case above. Finally,
notice that while the interpretation of the parameter 8 in (7.28) is natural based
on the given functional form and compared to (7.26), a more detailed analysis
of the preference structure implied by objectives of thetype (7.28) has not been
pursued yet in the literature (to our knowledge). Specificaly, a discussion of
the sense by which these preferences can be recursive - inasimilar vain as for
instance in Hansen et a. (2001) - is absent!®.

18Ngtice that in general the value function implied by these stochastic control problems will satisfy the
given HIB equation in aweak viscosity sense (cf. Fleming and Souganidis (1989)). Existence of aclassica
solution will typically require specific arguments and model assumptions, as for instance for the MER
solutions obtained below in Theorem 3 and 4.

19A starting point to this problem could be to formulate a type of Bellman-lsaacs condition for the HR
formulation and to analyze if it is sufficient to relate solutions of a date zero commitment two-agents game
to a Markov perfect game in which the decision rules of both agents are functions of the underlying state
vector. However, a detailed discussion of these aspectsis clearly behind the goal of this review.
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3.3 Robust Single-Agent Optimization Problems

Each agent solves a worst case (robust) optimization problem of the form
(cf. dso problem (P))

{ J (W, X) = supg,,infy [EV (f(;” e Pt (u(Q) + ﬁl{(v)) dt)]
st. (76) and (7.7)
(7.29)

Hence, the HIB characterization of the value function J in continuous time
robust models reads

v _
0 = supinf {M—pJ+A\>)VJ+A)\éJ
C7Wv>0 y

23 1

m+w (J) It (V) } , (730)

+WWoxp

where A}, Ay arethe generators for the asset prices and state variables dynam-
ics under the law induced by (7.22)%°. This equation represents the zero-sum
game between a malevolent player (selecting the worst case model V¢) and a
robust agent (choosing optimal consumption and investment rules C, w) who
is rationally taking into account the possibility that the first agent will indeed
hurt her by selecting aleast favourable model from the set of relevant model
misspecifications.

Calculating Ay, Ay, (cf. also AHS (2000)) and solving for the implied
worst case model V¢, the HIB equation (7.30) is equivalent to the single agent
HJIB (cf. aso (7.9)):

B (W)Y — 1 923
0 = ?vt){ y pJ+AWJ+AXJ+\AANOXPaW6X

W) 0J\? 03\ ? 0J 8J
— ( (\M/Vc—aw> + <E—ax> +V\NV0XP——6X> } .
(7.32)

Given aset of appropriate boundary conditions, this equation can bein principle
solved using the procedure outlined at the end of Section 2.3. However, thisis
again explicitly possible only for a very limited number of special cases. We
therefore rely on perturbation theory to derive in the next sections approximate
solutions for the implied optimal rules.

2ORemember that by Girsanov Theorem the given model contaminations simply modify the drift of thejoint
process for asset prices and state variables.
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34 Perturbative Solutions Approach: Homothetic
Preferencesfor Robustness

Due to the homogeneity of the implied value function Kogan and Uppal’s
(2000) approach can be applied to solving the HR case with only afew dight
modifications. Indeed, homogeneity suggests that afunctiona form of the type
(7.13) should be appropriate to develop a perturbative approach similar to that
used for the standard (non robust) case. However, in the present situation the
class of problems under scrutiny is parameterized by two parameters (y and 9)
rather than by only one asin non robust problems. Therefore, the function gin
(7.13) hasto depend in the robust setting on both yand 3.

The HJIB equation (7.31) for the HR formulation reads (using subscripts to
denote partia derivatives with respect to the relevant argument)

0 - wp{myy‘l—pu(wa—r)ﬂrw—wm

W

2
—i—%WZWZGZ (JWW - Nﬂ) +23x
ARS o

1 933 9IwJ
+—E,2 Jxx — —Xl +wWWoxp | Ixw — Li( .
To start the perturbative approach, the homogeneity of J implies the following
functional form for a candidate solution
1 (e wW)Y —1
= L EW

p Y

As usua the exact optimal policies are obtained by the first order conditions
implied by the corresponding HJB equation, using (7.32)

(7.32)

c(W,X) = 5 , (7.33)
o 1 1 a-r y—Sag(y,S,X) Oxp
wW,X) = 1- % (1—y 02 1-y oX 02 )’

(7.34)

In the second step, g is expanded up tofirst order in the risk aversion parameter
y and the robustness parameter ©

9(X) =00 (X) +ye: (X) +9 () + O (IlvI?) . (7.39)
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0o (X) is again obtained from the value function of an agent with logarithmic
utility (y — 0) and no preference for robustness (8 — 0¥. Hence, the model
that isbeing perturbed isthe same asin the standard (non robust) case discussed
above. The next statement summarizes the result relevant for our exposition.

Theorem 2. The asymptotic expansions for the optimal policies of an homo-
thetically robust agent are:

cW.X) = p(L=y(do(X)=In(E))+O(I%:9I?) , (7.30
wwx) = STy 9y (-9 28X O
+o(lw9)I?) (7.37)

Notice that again only g, appears in the optimal rules. Hence, the choice of
the functional form (7.32) to develop a perturbative approach turns out to be
successful.

35 Perturbative Solutions Approach: Minimum Entropy
Preferencesfor Robustness

The HIB equation (7.31) for the minimum entropy formulation reads:

0 = wp{w\:_l—pJJr(V\AN(a—r)Jr(rW—c\N))M

W

—i—%WZWZO'Z(JWW -9 J\%,) +{JIx + %EZ(JXX — 19..])2()

—i—\MNO'xp(wa—sJ\NJx)} R (7.38)
with optimal robust policies
1
(Jw) ¥t
c = S (7.39)
o-—r o o
(1-9- 55 ) Wiy

2Thisis again easily implied by the limit:
y
g X)w) 1
1 (@rerw) -1

o y (In(W) +go(X))

Ol

asy,9 — 0.
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that follow as usual.

At variance with the HR case where explicit solutions are known for a few
models, for this nonlinear partial differential equation no explicit solutions are
currently known when y # 0, aready in the simplest constant opportunity set
situation?®. Specifically, the difficulty in finding a solution to this problem
derives from the fact that a candidate solution has to be nonhomogeneous in
current wealth W, implying that the functional form (7.32) is not adequate for
the setting of this section. To obtain afunctional form onwhich Kogan and Up-
pal’s (2000) approach can be applied in the minimum entropy situation we start
from resultsin Trojani and Vanini (2001a) which characterize the perturbative
solution of the HIB equation (7.38) for the simplest constant-opportunity-set
AHS (2000) model. Specifically, let

a=a , r=r , oG=0 |, (7.41)

be constant. This gives a constant-opportunity set version of the HIJB equation
(7.38) with candidate solution J, say. The perturbative solution approach to
this problem is based on a power series of the form:

J(W) = _i?—!iJ“) W) (7.42)

with a hierarchy (J), _; of functions that are determined recursively starting

from the zero order term J(©, the well-known solution in astandard (non robust)
Merton’s-type model. Theorem 1in Trojani and Vanini (2001a) showsthat each
function in the hierarchy (7.42) has to be a solution to a second order Euler
equation with an homogenous part that is invariant with respect to the stage i
of the hierarchy. Moreover, computing the first order term JV explicitly the
following result is obtained®.

Theorem 3. If a classical solution for the robust HIB equation (7.38) under
assumption (7.41) and under appropriate boundary conditions exists, itisgiven

by

J=J9493010(9?%) |, (7.43)
with .
M gy = EW)?

22For the log utility case the solution is a logarithmic function of wealth (as in the non robust case); cf.
Schroder and Skiadas (1999).

23Clearly, in order to obtain the result in Theorem 3 appropriate boundary conditions have to be imposed.
As a non-standard boundary condition we require that for any order i the candidate solution converges as
y — 0to the known explicit solution of the robust problem (7.38), (7.41), when agents are of the logarithmic

utility type.
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where
C = PPy(2y+d-1)+8) , &=-2 | 5H=-FP
=) ap
eY¥9v.0 yTll (a_r)Z
a = ( > _r+(y—1)02 ,
y-1 y (1 1 (a=r)> r
= Ine)+X—In| — |4 -5—2F——— ’
Oy,0 (p) y (1—V<V 202(V—1)p p
2
S (a—r)

2(y— 1)202

A main open guestion is wether the series (7.42) converges. Sufficient con-
ditions for that are implied by Theorem 4 in Trojani and Vanini (2001a); these
conditions are summarized by the next theorem.

Theorem 4. If

a>0 | (ii)y<:—§ , (iii)%(3+2—;>>1—fy ,

the power series (7.42) converges on compact subsets of (0, ).

Notice, that while condition (ii) isapure technical one, condition (i) implies
that for y — 0 one should have p > r. This further constraint isimplicit in the
conditions of Theorem 4.

Given the above functional form, the wealth-inhomogeneity of the value
function for the MER case is up to 9-first order proportional to J¥, afunction
behaving likeW?'. Therefore, in astate dependent situation anatural functional
form for the solution to (7.38) is

Y
J(W,X) = % (CCQ(L\;\M + 902 (v,X)W2V> +0(9%), (744
where
g(,X) = g(X)+ym(X)+0(Y) , (7.45)
R(,X) = G(X)+yga(X)+0(¥) (7.46)

for some g1 (X). Expanding the optimal rules (7.39), (7.40) and using the
functional form (7.44) together with (7.35) finally givesthe desired approximate
policies.
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Theorem 5. The asymptotic expansions for the optimal policies of a minimum
entropy robust agent are:

CW.X) = p(L=Y(go(X)~InE)+O(IWOIF), (747

ww,x) = T <1+y_ ﬁ) n (y— 9) 990 (X)  Oxp

o2 p o X o?
+0 (v 9IP). (7.48)

Again, only go appears in these optimal rules. Hence, the choice of the
functional form (7.44) to devel op aperturbative approach turnsout to successful .

3.6 Qualitative Discussion of the Robust Optimal Policies

The optimal policies for the homothetic and minimum entropy formulation
are of the form:

cW.X) = p(L-Y(go(X)~In())+O(I(w9)I) . (749

o—r . 000 (X) O
wwx) = STy 4 (-9 B0 O

+o(Iw9I7) (7.50)

where 8* = 3, %, in the HR and the MER case, respectively. We remark
the following distinguishing features of these first order asymptotics. First, the
functional form for optimum consumption isexactly the same asin the standard
non robust situation (cf. (7.18)). Hence, to (y,9)-first order a preference
for robustness does not affect optimum consumption planes directly. Second,
optimal alocations to risky assets are altered when a preference for robustness
ispresent. Indeed, ahigher effective risk aversion amounting to

1- (y_'a*) )

is obtained, compared to the standard expected utility situation. This enhanced
risk aversion affects both the myopic and the intertemporal hedging demands
for risky assets. Notice that anon standard hedging component arisesin (7.50),
which is purely driven by a preference for robustness. Indeed, the term

0go (X) oxp
oX o2 '’
isafirst order asymptotic for a hedging demand caused by a concern of aro-

bust agent for the quadratic variation of the underlying value function J. This
term disappears only when §* = 0, that is in the absence of a preference for

—9*
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robustness. Indeed, in the casey = 0 (that isalog utility investor) this hedging
component is still non-zero. Hence, stochastic opportunity sets generate non
myopic investment policies for log utility agents when robustness is present.
This point isimportant for the way of developing our asymptotic general equi-
librium analysis below. The sensitivity of the optimal risky allocations with
respect to the robustness and risk aversion parameters can be positive or nega
tive, depending on the sign of agg—)((x) . % Finally, notice that at variance with
the HR case in the MER formulation effective risk aversion is related to the
time preference parameter p.

4, Robust General Equilibrium Problems

Whileseveral authors have already dealt with the existence and the character-
ization of heterogeneous agents equilibria in standard (non robust) economies
(see for instance Duffie and Huang (1985), Duffie and Zame (1989), Duffie et
a. (1994), Dumas (1989), Karatzas et al. (1990) and Wang (1996)) only a
few of them have derived quantitative or qualitative predictions for the relevant
entities in a continuous time setting. Moreover, when quantitative predictions
have been derived either they were computed using humerical methods (Du-
mas (1989)) or they where obtained in closed form only for particular values
of the model parameters (Wang (1996)). Using perturbation theory, Kogan and
Uppa (2000) have been able to compute analytically the genera equilibria of
heterogenous non robust production and exchage economies where in excess
incomplete markets and borrowing constraints are allowed for.

To our knowledge only two papers have so far considered heterogeneous
agents general equilibriain continuous-time economies where model misspec-
ification is taken into account in optimal decision making. Epstein and Miao
(2001) have described in closed form equilibria for a complete model based
on recursive multiple priors utility using a martingale approact?*. That model
focus on heterogeneities in aversions to (model) ambiguity and leaves outside
heterogenities in agent’s attitutes to risk. On the other hand, Trojani and Vanini
(2001b) have solved by a perturbative approach a robust version of Dumas
(1989) and Wang (1996) models where heterogeneities arise both in aversions
torisk and preferencesfor robustness®. Inthissectionweillustratethismethod-
ology by computing the relevant quantities in arobust version of the complete
heterogenous-agents production economy of?® Dumas (1989).

24Since the martingale approach is based on market completeness, extensions of this model to allow for
incomplete markets are not immediate.

25 sfor standard non-robust economiesthe perturbative approach permitsthe analysis of incomplete markets
equilibria.

2 further reference relevant for this section is Anderson (1998).
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4.1 The General Equilibrium Economy

There are two groups of agents in the economy with utilities of current
consumption given by

_d-1
Y

preferences for homothetic/minimum entropy robustness’ ¢ > 0, 91 =0, and
identic time preferences p = pt. There further exists a single constant returns
to scale technology yielding the dynamics

d§ = (a§ -G ~G)dt +08dZ

for the aggregate capital stock, where a, ¢ > 0. The risky asset is a stock on
the production technology with cumulative return process (R) given by

u(G) , w(@)=log(C) , v<1 , (7.51)

dR = aRdt + oRdz

The number of shares in this economy is equal to the aggregate capital stock.
Theriskless asset is a short term bond with price dynamics

dBt = rtBtdt ’

where r; is a (possibly stochastic) interest rate that has to be determined in
equilibrium. The equilibrium definition used is given next.

Definition We call aprocess (S, i, W, w,C,Ct) such that:

= Theindividual portfolio and consumption rulesw, wt,C;,Cl are optimal
tofirst order, i.e they satisfy (7.49) and (7.50),

= Financial markets clear, i.e. aggregate wealth W +W? is completely
invested in the given production technology:

W 4 witwgt

TR =1 (7.52)

arobust equilibrium.
Remark that in this definition of equilibrium feed-backs between the sets of

model specifications relevant to each single (robust and non robust) agent in
the economy are excluded. Implicitly, it is assumed that the set of relevant

27For simplicity of notation just set 9 = %, for some 9* > 0in the MER case.
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model misspecifications is determined by agent specific characteristics (the pa-
rameter 9 depicting a preference for robustness) and hence it is not determined
endogenously by the equilibrium. We have basically two reasons to make use
of this assumption. First, we are not focusing on modelling game theoretical
issues where each agent is strategically planning to develop an optimal strategy,
given that he knows the set of model specifications relevant to her counterpart.
We are rather interested in equilibria were groups of "beliefs-takers’ develop
optimal consumption/portfolio plans in the presence of misspecifications and
where heterogenous aversions to risk and preferences for robustness interplay
in determining asset prices. Second, from amore methodological point of view
introducing feed-backs between agents beliefs necessitates to solve some kind
of multi-agents stochastic game where each robust agent interplays with the
malevolent player (the nature) and with each other agent in the economy in
determining the optimal policy of a max-min optimization problem. Solving
this problem is an highly nontrivial task; it is an open question how far pertur-
bation theory can be applied to compute analytical approximate solutions for
this kind of problems. A second important remark on the above equilibrium
definition is related to the question of why in the above economy agents do
have different model beliefs (that is different perceptions of the relevant model
mi sspecifications) despite observing acommon price process. Formal continu-
ous time model s that describe learning and that allow for the presence of model
ambiguity have not been largely developed yef®. However, the LLN result in
Marinacci (1999) for beliefs represented by a set of priors suggests that model
ambiguity will not disappear even asymptotically when agents learn about the
underlying data generating process. Indeed, in this setting the connection be-
tween empirical frequencies and asymptotic beliefs turns out to be weakened
to a degree that depends on the extent of diversity in prior beliefs. Therefore,
it is very well plausible that agents with different prior beliefs will still have
posterior different beliefs, even if they observe the same price process®.

4.2 Perturbative Solutions Approach

In genera equilibrium the function g in (7.49), (7.50) is now endogenous to
the economy, i.e. it depends onyand 9. However, it can befurther expanded in
aneighbourhood of the representative agent value function of an homogeneous
production economy with log utility non-robust investors (y =9 = 9 = 0):

9o (X) =go,0 (X) + Y901 (X) +9g02(X)+0O <||(V,19)||2> ;

28\Work in progress related to this topic is Epstein and Schneider (20014).
29¢Cf. also the discussion in Chen and Epstein (2000), Section 1.3.
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implying
cW.X) = p(L-y(go(X)~In()) +O (%))
ctW,X) = p,
WW,X) = Gc,_zr(l+v—8)+(y—a)ag%°>gx).%
+o(lwdIP) .
wh(W,X) = O‘o—zf

To characterize these rules completely we need to determine r and gy. Notice

that since gy iscompletely determined by the value function of arepresentative

log utility agent in the given production economy, it is a constant. For this

benchmark economy it followsin equilibriumthat a — ¢ istheimplied constant

interest rate. As aconseguence, (7.20) gives

a—0?/2
p

The equilibrium interest rate r in now completely determined by the market
clearing condition (7.52), that can be expressed as

W +w (1-w) =1,

with wy = V%W[l the cross-sectional wealth distribution in the given economy.
This gives the last result of the paper.

Goo =In(p) —1+ (7.53)

Theorem 6. In the above production economy equilibrium interest rates are
given by

rt:o(—02+02(y—19)wt+O(H(y,8)]|2) : (7.54)
Theindividual equilibrium optimal policies are

G =P , (7.55)

a = p-y(a-c%/2-p)+O(lOIF) .  (756)

W= 1-(y-9a+o(lw9) . (7.57)

W= 1+(y-9)(1-w)+O(|(w9)IF) (758)

Finally, the equilibrium cross-sectional wealth and capital stock dynamics are
given by

dax = yw(l-w)[(a—0%/2—p)|dt+(y—9)w (1-w)odZ
+0 (%)),
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and
d§ = [oa—p+y(a—0%/2—p)w] Sdt+08dZ+0(||(v,9)]?).

4.3 Qualitative Discussion of the Equilibrium Variables

In the sequel weillustrate for brevity the implications of Theorem 5 in the
casey> 3.

The asymptotics for the optimal policies in Proposition 6 show a basic dif-
ference between the pure risk averse (8 = 0) and the robust (8 > 0) solutions.
Indeed, we see that while risk aversion affects directly all decision variables of
the investor, the robustness parameter influences directly only optimal invest-
ment to risky assets. However, robustness still affects optimum consumption
indirectly, through the altered equilibrium process for cross-sectional wesalth.
Further, robustness tends to reduce heterogeneities in the individual portfolio
positions. Note that (asin Kogan and Uppal (2000)) no equilibrium intertem-
poral hedging position arises because the variance of the only relevant state

variablestotheinvestorsin thiseconomy (namely «) isof order O (|| (y,9) ||2> :

M oreover, robustnesslowersequilibriuminterest rates (by given cross-sectional
wealth distribution ). The arising equilibrium interest rate is between that of
an heterogeneous standard economy where no preference for robustness arises
and an heterogeneous robust economy with homogeneous log utility investors.

a—0?(1+9%w) <r <a-o%(1-yw)

Compared to standard economiesthis|ower interest ratereflectsal ower demand
for riskless assets (by given cross sectional wealth distribution ) caused by the
higher " effective’ risk aversion 1 —y+ 9 in the partial equilibrium asymptotics
(7.50) for the optimal portfolio strategy. In fact, the equilibrium open interest
in the bond market is:

1
Ol =3 (11-wl@+[1-w|(1-w)) =(y-Ha(l-a) ,
and is lower than in a non-robust economy.
Finally, robustness affects the cross sectional wealth distribution, through a
reduction of the volatility

(y-9)a(l-w)o ,

of (), but does not alter the corresponding drift which is given by

vuz(l—cq)<a—%2—p>
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This is because the impact of the optimal portfolio policies on the drift of ¢
is of order no less than two. In particular, (since equilibrium interest rates are
linearly linked to «y) lower volatilities of equilibrium interest rates, given by

cy-9)’m(l-w) ,

are obtained. Asin standard economies, the highest interest rate volatilities are
observed when aggregate wealth is evenly distributed across agents. Finally,
an important difference between HR and MER isthat in the latter case equilib-
rium interest rates, optimal portfolios and the volatily of cross-sectional wealth
depend on time preferences.

5. Conclusions

We demonstrated the usefulness of perturbation theory in deriving approxi-
mate analytical expressionsfor the optimal policies of intertempora consump-
tion/portfolio problems where general state dynamics are admitted and a pref-
erence for robustness is present. We illustrated the methodology proposed in
Kogan and Uppal (2000) within several economic settings, starting from partial
equilibrium standard expected utility economiesto general equilibrium models
where general stochastic opportunity sets are allowed for and an aversion to
model misspecification ispresent. The approach was applicable to alarge class
of models and the implied equilibrium characterizations were particularly sim-
ple. Moreover, an even larger class of models than those discussed here could
be easily handled by the methodology. For instance, robust intertemporal con-
sumption/portfolio problems with transaction costs can be solved in the same
general vain of Kogan and Uppal (2000) or models using further formulations
of a preference for robustness (specificaly, a constrained formulation) can be
analyzed analytically (see again Trojani and Vanini (2001b)).

Kogan and Uppal (2000) methodology is based essentially on two crucia
assumptions:

= Knowledgeof theexplicit solution of abenchmark model withinthegiven
parameterization,

m  Existenceof an appropriate functional form for acandidate valuefunction
solution.

Since for the MER formulation no benchmark exact explicit solution has
been derived yet, we used results on perturbative solutions of HIB equationsin
non-homothetic robust decision making (Trojani and Vanini (2001 a)) to guess
the appropriate functional form for a candidate value function. After this pre-
liminary step, Kogan and Uppal (2000) approach could be applied successfully
also to this case without further significant difficulties.
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