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Abstract

In the first part of this work, some of the most known VaR esti-
mation methods are described. In such a description we try to focus
mainly on the application problems of each approach, which are mod-
ified to take into account non-linear positions. In particular, some
generalizations of the standard historical simulation and of the filtered
historical simulation methods are shown. The second part is devoted
to measuring the performances of the different estimation methods by
testing them on the last two years data (including the recent NAS-
DAQ crash). The observed variables are the number of times that the
loss exceeds VaR and the mean of the ratio between the losses which
exceed VaR and the VaR itself. For linear portfolios all the meth-
ods give quite accurate results, while for portfolios containing options
the best performances are given by the non-parametric and the semi-
parametric methods. The main contribution of this paper is to show
how the generalized historical simulation methods perform better than
the standard ones during high volatility periods.
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PREFACE

Since the first half of 90’s, Value at Risk has been an important tool
to control market risk. Its diffusion, mainly due by the popularity of JP
Morgan’s RiskMetrics, doesn’t fail to affect also the decisions of Basel Com-
mittee which, with the 1996 amendment of the Capital Accord of July 1988,
has allowed financial institutions to use internal models to measure market
risk.

In such a setting Banca del Gottardo decided to enforce its first method
to systematically measure market risk. In 1996 a first instrument for this
task was introduced and since that date the evolution has never interrupted
till to generate a widely diffuse internal culture on market risk control.

This work represent only a further effort on this direction. A greater and
greater part of the portfolio of many institutions is invested in non linear
instruments such as options. Banca del Gottardo is not an exception and
its interest on this matter has increased during the last years.

Moreover, recent crashes on the high technology markets drastically
raised the attention on how the different VaR estimation methods work
in an extreme setting. Indeed a large market movement and the presence
of large non linear leveraged positions in the portfolio can be considered a
dangerous mixture for a financial institution.

The will of Banca del Gottardo is to be on the safe side also in such
extreme scenarios. To this aim a deep knowledge of the instruments to
measure market risk represents the first necessary step.

The present work is the most recent effort to increase the knowledge
on the risk held during a market activity. However, the will of Banca del
Gottardo to know everyday a little bit more on market risk enables us to
say that this surely will not be the last effort on this direction.

Alberto Saracino
Head of Risk Management
Banca del Gottardo

Lugano, November 2001
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1 Introduction

The increase in the dimension of the traded portfolio and the rise of the
market volatility have made the market risk measurement a more and more
important issue for a financial institution. In recent years Value at Risk
(VaR) has become one of the most used instrument to measure such a risk
both for regulatory purposes and internal control motivations. Defined as
the maximum portfolio loss that we expect to have with a certain probability
and within a time interval, VaR has the attractive feature to summarize a
complex market risk exposure with a single number.

Different methods are in general used to estimate the VaR. Many of this
methods are based on some assumptions on the asset returns distribution,
the so called parametric methods, while some others give a sort of non-
parametric VaR estimate. There is a long literature that tries to evaluate
the accuracy of the different methods, especially for equity portfolios. Maybe
Hendricks [14] and Pritsker [20] are the most famous paper on this subject.

Neither the first kind of models nor the second one can be considered
free of drawbacks. Indeed, the parametric methods are strongly dependent
on the assumptions made on the returns distribution. As formerly noted by
Mandelbrot [17] and Fama [11] the normality assumption is unrealistic since
the return distribution seems to be more fat-tailed than the normal. As doc-
umented by a wide literature! the fat tail problem produce an underestimate
of VaR.

The above problems increase when the portfolio contains positions such
as options. Indeed, in such a situation the relation between the derivative
price and the underlying price is not linear and it is not clear, given the
distribution of the underlying, what the distribution of the option returns
is.

On the other hand, the non parametric approaches have the implicit
assumptions that the returns are identically and independently distributed
(iid). Also such an assumption is violated by the evidences that the volatil-
ity changes over time. The wrong assumption of iid returns leads to an
inconsistent estimate of VaR.

Some techniques are used to reduce the problem. In the first one we relax
the standard assumption that all the past returns have the same probability
to occur again. By putting an higher probability to occur to the most
recent observations, we should have a VaR estimate more sensitive to sudden
changes on market risk.

Moreover, Barone-Adesi, Bourgoin and Giannopoulos [3] face the non
iid problem by a semi-parametric method. The main idea is to standardize
the returns by assuming a model for the volatility so to have an iid series
of standard residuals. Inside the series a bootstrap is done to obtain a

!See Duffie and Pan [9] for an overview on the subject.
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simulated distribution for returns.

The bootstrap is usually done by assuming that all the standardized
residuals have the same probability to occur. This would have been the best
thing to do if the volatility model had been correctly specified. If we take
into account a possible misspecification of the volatility model, it will be
better to give a higher probability to occur to the most recent observations.

Another problem of the non-parametric methods is that a time series of
option prices with the same characteristics is in general not available. The
problem is decided by evaluating the option price by using the historical or
the simulated underlying prices in the Black-Scholes formula and then by
introducing the Black-Scholes assumptions which partially reduce the main
benefits of the non parametric approach.

The aim of this work is to show how some of the most known VaR
estimation methods can be enforced and modified to take into account non
linear positions. The different methods which we are going to describe will
be applied to portfolios containing equities and options. To measure the
performances of the estimation methods, they will be tested on the last two
years, a period that includes the recent crash of the NASDAQ.

The choice of such a period was not made by chance. Indeed, our atten-
tion is also on the VaR sensitivity to sudden changes of risk due to market
crashes. It seems natural to require this kind of risk sensitivity to the used
risk measure but, as we will see, not all the estimation methods supply this
feature.

In section 2 there is a general definition of portfolio VaR, while sections
3 to 5 are devoted to describe the different methods that are applied. In
particular, in section 3 a parametric method based on the quadratic approx-
imation of the non-linear assets is shown.

In section 4 we describe the non-parametric method based on historical
data, the so called historical simulation. To face the risk sensitivity problem,
in the same section a generalization of the standard historical simulation is
presented. The filtered historical simulation method described in section 5
has the aim to face the inconsistency in VaR estimate due to the unrealistic
assumption of identically and independently distributed returns.

In section 6 the portfolios which are considered during the analysis are
described while in section 7 there is a first glance on the VaR estimation.
By this first results we can already have an intuition on the dimension of the
VaR for the different portfolios. Section 8 is devoted to test the accuracy of
the VaR estimate during the last two years.

Comments and conclusions are in section 9. To make the reading “smooth”
the most tedious subjects are placed in the appendixes.
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2 A general definition of portfolio VaR

In a portfolio composed by n assets, let Xy := [X;14, Xo4,...,Xpn) be the
vector of the asset prices such that X; € R". Moreover let us define ¢ € Z"
the vector of the number of the assets in the portfolio between ¢ and ¢ + At
and V; the price of the portfolio at time ¢ such that V; = ¢’X;. We define
the vector @ € R" as the vector of the weights of each asset. For the i-th
asset the weight a; is equal to q’?)i”

If « is the accepted loss probability the VaR measure between ¢ and

t + At will be defined in the following way:
Py[Vigar — Vi < =VaRy] = a,

or with another notation

P, [‘/th—I—At < —VaRt] =, (1)
or again
VaR
Pt | Reyar < — ?/t =,
t

where Ry is the portfolio return i.e. the weighted average of the single
asset returns a’' Ry Ay where

D !
Riint :=[Riprae, Rotvnt, - Rogvnd]
and
Xitrar — Xiyg .
Ripynr = ——F—- X : i=1,2,....,n.
it

3

By the above definition, it is clear that VaR depends on the available
information in ¢, the horizon At, the portfolio allocation a (that is assumed
constant during all the horizon) and the accepted loss probability a.

In particular the horizon that we will consider is the one day horizon
(At = 1). Indeed, one of the problem to use longer time interval is that the
assumption of a constant portfolio allocation becomes unrealistic. Moreover,
as we will see in section 8, a longer horizon reduces drastically the power of
the tests for the accuracy of the VaR estimation.

Note that the vector Rt+1 is the vector of the portfolio assets returns.
Many times, instead to consider directly all the assets returns, it is conve-
nient to regard only the variations of few risk factors. A risk factor can be
defined as an index, a rate, a stock or a commodity that strongly affects the
fluctuation of the assets. Typical risk factors are the interest rate for a bond
or the variations of the market index for a stock return.
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In the situation described above, it is necessary to define a relation be-
tween each asset return and the corresponding risk factor (or risk factors)
return. Let Ryy; € R™ be the m-vector of risk factors returns where m < n.
A generic function g : R™ — R" can be defined such that

Rt+1 = Q(Rtﬂ) .

For a stock belonging to a well diversified portfolio the function g(.) can be
approximated with the Ross APT relation. In such a way, the stock returns
are

Ri,t+1%71f+/61"(Rt+1_5m71f) i:1,2,...,n* s

where n* is the number of positions belonging to a well diversified portfolio,
7y is the risk free rate, s, = [1,1,...,1]" is a m-dimension unit vector and
Bi € R™ is the vector of the stock sensitivity to each risk factor.

For all the n* assets the above equation becomes

Rip1 =~ Sprf+ 5'(Rt+1 — SmTf)
or equivalently

Rit1 = (sn — B'sm)rs + B R

= (2)
::K+,3Rt+1 s

where the columns of S are the vectors of the stock sensitivity to each risk
factor and s,, is a n*-dimension unit vector.

Example 2.1 Let us assume that the asset returns are jointly normally
distributed

Ry ~ N, 5)

where p; € R" is the vector of asset mean returns and ¥; € R" " is a
positive definite symmetric matrix?. Then, the distribution of the portfolio
return will be

Rit1 = d' Ryy1 ~ N(d'py, 07)
where

0,52 = vary(Ry11) = vary(a’'Ryy1) = a'S4a
such that the daily VaR is

VaR, = —d'py — V,@ ' (a)oy

3
Vi (1 — a)oy | ®)

2 . . . . .
Note that, due to the choice of one day as time horizon, means, variances and covari-
ances are expressed on a daily basis.
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where @ !(.) is the inverse of the standard normal distribution function.
By using equation (2) and assuming that the risk factor returns is jointly
normally distributed

Rip1 ~ N(ji, )

where ji; € R™ is the vector of risk factor mean returns and f]t € Rm>m ig
a positive definite symmetric matrix.
In such a situation the portfolio return has the following distribution:

Riy1 ~ N(v1,57) ,
where

vi = B[R] =dK+dp

67 = vary(Ri1) = vary(a'8'Ryy1) = d' 'S Ba |
such that the daily VaR is

VaR, = —v; + Vi@ Y1 — )5y

4
= —dK—df i +V,® 11 —-a)s; . )

|

Once we accept the APT assumptions, the above relation gives no prob-
lem. Indeed, it is linear in the risk factors. If we consider portfolios con-
taining options the function ¢(.) is no longer linear in the risk factor (the
underlying).

For the estimate of the VaR in a portfolio containing a relevant position
in non-linear assets, we have to face two kind problems:

e the first one is the non normality of the returns formerly noted by
Mandelbrot [17] and Fama [11]. Figure 1 shows how the standardized
returns of the Swiss Market Index and the Standard & Poor 500 cannot
be considered normally distributed. The evidence accrues mostly by
the QQ-plot where the plot diverges from the dashed line especially on
the tails. This phenomenon is sometimes called heavy-tails or fat-tails
problem and induces on a VaR underestimate also in portfolios with
linear positions only.

e The second one due to the non-linearity of some positions. This makes
difficult to understand what the distribution of the portfolio returns
is and it increases the difficulty in the application of any analytical
approach to estimate VaR.

To solve the last problem some methods can be used. Among them we
can distinguish those based on approximation of the non-linear function g(.)
from those based on the simulations and a full valuation of the non-linear
positions.
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Figure 1: Frequency plot compared with the standard normal density and QQ-plot of
the same historical distribution with respect to the standard normal distribution. The
sample is composed by the standardized log-return of the Standard & Poor 500 (above)
and of the Swiss Market Index (below) from May 1993 to May 2001. Source: Datastream.

3 The quadratic approximation

As in example 2.1 the parametric approach is based on some assumptions
on the return distribution. The most used hypothesis is to assume that the
returns are jointly normally distributed. In spite of such an assumption,
when there are option positions in the portfolio it is not clear where the
portfolio return distribution is and then how to estimate VaR.

A widely used way to face the problem is to substitute the non-linear re-
lation between the option returns and the underlying returns by a quadratic
approximation of the function g(.).

3.1 The derivation of the approach

To make the notation easy, we will consider during all this section a portfolio
composed by an option written on an underlying asset only. The multidi-
mensional case will be considered in the following sections.

Let assume to have in the market an asset S;, a risk free zero coupon
bond B; and an option X; written on S;. The asset and the bond have the
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following dynamics:

dSt = MStdt + OSthJt s
dBt = rthdt,

where r¢, 1 and o are constant parameters and w; is a standard Brownian
motion.

In such a simplified world the underlying asset is the only risk factor of
the option.

Let us consider a small and discrete time interval At. By using a second
order Taylor series expansion around S; we can write the return on the
derivative as a quadratic function of the return of the underlying asset:

0X 10%2X
Xiy1 = Xo + =5 (St — Sp) + 2952

BXS (Sp11 — Si)* +0s(2) ,

or in the same way
Xip1 =Xy 510X [ Sp1 = S n
Xy X; 0S8 Sy

187 *X (Spy1— S
2 X; 052 Sy

(5)

)2—1-05(2).

The ratios 83—)5{ and G;T)Z( are called respectively delta and gamma, while the

last term is the error made by the approximation.
In the following the asset return and the risk factor return will be noted
respectively with R; 1 and Ryy;.

Remark 3.1 In the delta approach the Taylor series expansion is arrested
at the first order. The advantage is that if we assume that the underlying
return are normally distributed, also the distribution of the derivative return
will be normal.

In spite of the analytical tractability, the assumptions in the delta-normal
approach are very unrealistic. Indeed, both the normality of the return and
the linearity of X; with respect to S; contribute to reduce the accuracy of
the results.

More exactly for a long option position, we can say that the linear func-
tion with which we try to approximate the convex option function, always
lies below the latter such to get a strongly overestimated VaR. On the other
hand, for a short position the option function is concave and the linear
approximation always lies above it such to get a strongly underestimated
VaR.

For such a reasons we will not consider the delta-normal methodology
in our analysis. O
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Remark 3.2 In the delta-gamma approach we are replacing the option
function with a quadratic one. For such a substitution we expect to have
an underestimated VaR for long option positions and an overestimated VaR
for short option positions. O

Another way to obtain the same result is by applying the Ito’s lemma
to the option price X; such that

0X 10%°X 0X
dX <at+2as2aS)dt+anS (6)
dX 0X 192X , 5\ 1 0X S dS
X <E+§W" 5 ) x4t 55X s (@)

where % is called the theta of the call.

Note that in the delta approximation we assume that
X 19°X
— + 25028 =0
ot 2052
while in the delta-gamma approximation we assume theta equal to zero such
that

dx 12X 1 5 ,, 08X SdS
X - 30 x Pt o5x S (8)
dX _ 0X SdS  10°X §? (dS\ )
X @ 9SX S 208%2 X S

where equation (9) is equivalent to equation (5) if we consider an infinitesi-
mal variation of the underlying price.

Remark 3.3 Relaxing the assumption that theta is equal to zero, equation
(9) becomes

dX 90X SdS 102X 52 <d8)2 0X
i =)+ =at,

X " osxs 2092x\S) "o
and by rearranging the term we obtain again equation (7).

The above equation is the starting point of the so called delta-gamma-
theta approach. Note, however, that the equality is right only instanta-
neously i.e. for infinitesimal variations of the underlying. For large variation
the equality is no longer true. O

All the above equations are true (or approximately true) in a neigh-
borhood of S;. When we face large variations they are no longer true and
moreover they are not in general a good approximation. Intuitively the
problem is that by estimating VaR we are interested in large variations on
the risk factor while the approximation is near to be true for small ones.
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3.2 The distribution of the option returns

Also by assuming the conditional normality of the underlying returns, from
equation (5) we cannot easily say anything about the distribution of the
derivative returns. The most common ways to take into account the non
normality of the derivatives returns are three:

Cornish-Fisher Expansion The expansion corrects the normal critical
value of the a-percentile to deal with the kurtosis and the skewness of
the option return distribution. The use of this approach is explained
in Zangari [23].

Johnson Transformations The approach is based on the matching of the
option return first four moments with a distribution belonging to the
Johnson distributions family. The use of this approach is summarized
in Zangari [24].

Fourier Transform The last approach is based on the inversion of the
characteristic function of the approximated derivative returns. By
the inversion of the Fourier transform, we can get the distribution of
derivative return and obtain the required quantile.

In what follows the used approach is the last one. The advantage is
that by Fourier inversion we get the exact distribution of approximated
option returns. Moreover, some recent papers show the superiority of this
methodology among the others?.

3.3 The multivariate framework
Let us define the risk factor return vector as
Rt+1 = Rl,t+1, RQ,t—I—la e aRm,t—l—l] .

By equation (5) the portfolio return can be approximated in the following
way:

Rip1 = d' Ry
a'CRH_l + R;JrlalARt_H s

Q

where C € R"™™ ig the matrix of the first term approximation coefficients,
A € R"™™ ig the matrix of the second term approximation coefficients and
a € R"™™ is a matrix formed by the portfolio weights. The construction of
the above matrixes will be clear in section 3.3.1.

3See among others Mina and Ulmer [19].
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To be more general let us introduce a constant term in the above ap-
proximation such that?

Riyy =a'K +a'CRyyy + Rj, @ ARy | (10)
where K € R” is a vector of constants.

Remark 3.4 Note that when the portfolio return does not depend on the
squared risk factor return, i.e. the portfolio is linear with respect to the risk
factor, equation (10) becomes similar to equation (2):

Rt+1 = a'K + aICRt+1 .
Hence we can say that equation (2) is a special case of the more general

equation (10). O

With a more compact notation we can write the above equation in the
following way:

R, = Iﬁ?—i—CIRt—i-R;BRt , (11)
where k := d'K, ¢ := C'a and B := a’ A. We assume that B is symmetric.

Remark 3.5 Note that if m = n, the portfolio is composed only by plain
vanilla options and the risk factors are the corresponding underlying assets,
the matrixes C, A and a will be diagonal. More exactly

diag < St 0Xiy Sop 0Xoy Sn.t aXn’t)
Xy &S’u’ Xoy 0524 R Xt S, 4 ;
A = 1 di S%,t 82X1’t S%,t aQXQ’t S,,Ql’t 62Xn,t
2 N\ X1, 057, ' Xay 0S8, Xy 052, )

C

while ¢ = diag(ay,as,...,a,) and K = 0,. This is no longer true when
m < n. Moreover, when the portfolio is composed also by equities and we
decide to use an APT approximation, we can see from equation (2) that
K #0,. O

Let us assume as usual that the returns of the risk factors follow a
multivariate conditional normal distribution

Riy1 ~N(0,%)

where Y. € R™*"™ ig a positive definite symmetric matrix. The assumption
of a zero mean is not so strong for a one day horizon. Moreover, for some
authors such an approximation performs better than an estimate based on
historical data®.

“Note that to simplify the reading, in all the section we will use the equality by ne-
glecting the error term.
See among others Figlewski [13].
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Definition 3.1 Let Y be a random variable and u a real number, we call
characteristic function of Y the expected value of ™Y . O

If we assume that R;,; is a continuous random variable with probability
density function f(r), the characteristic function can be written as
. oo
prlu) = Bl = [ firyar
—00
where the last integral is called the Fourier transform.
Proposition 3.1 If we assume that Ryy1 has a multivariate normal distri-

bution with mean zero and covariance matriz X3, then the random wvariable
Ry+1 will have the following characteristic function

1
or(u) = D72 exp [ium - §UQC'D_IZC , (12)

where

D:=1-2u¥B .

See appendix A for a proof.

Remark 3.6 When B = O,, i.e. when the assets are linear with respect to
the risk factors, the above characteristic function becomes

1
wr(u) = exp [ium — §u2c'2c] ,

where ¢’Yc is the portfolio variance. Note that, as expected, in this frame-
work we obtain the characteristic function of a multivariate normal distri-
bution. O

The probability density function f(r) of the random variable R,y can
be get by the result of the Fourier inversion theorem

1 [t .
f(r)= %/Oo e ""op(u)du .
Moreover, we can also obtain the distribution function F(r) of the same
variable by the following theorem.

Theorem 3.1 Let f(r) and pr(u) be Labesgue-integrable, if the mean and
variance of the random wvariable Ryyq exist, then its distribution function
F(r) will be

F(r)zl—l/oooRe [M] du | (13)

3%

where Re[g(u)] means the real part of g(u). 0
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For more details see appendix while for a proof see Shephart [22].
Recalling that F'(r) = P;[Ry+1 < r], we can guess that if F((r) = a then
7 will be equal to — V“}tR. From what above, we can obtain the portfolio VaR

by numerically solving the following equation:

1 1 [ 1 VaR
- — —/ Re [— exp <zu a ) @R(u)] du =« . (14)
2 wJy (X7

3.3.1 How to construct K. C, A and a

For a stock, the elements of the vector K are obtained by the first part of
the equation (2), while for an option they are zero.

The construction of the matrixes C', A and a is a bit more complicated.
Indeed, with the exception of the framework in Remark 3.5, the three ma-
trixes are not square and the coefficient cannot be placed on the diagonal.

A general rule is to put the coefficients of the i-th asset which depends on
the j-th risk factor on the element 4, j of each matrix. Hence, the coefficients
of the assets written on the same risk factor will be on the same column.

Moreover, the linear part of the portfolio has to be a zero coefficient in
both the matrix A and a. In the following example there is an application
of such a rule.

Example 3.1 Let consider a portfolio composed by three options and a
stock. Two of the options (the first and the third) are written on the S&P
500 Index, while the other on the NASDAQ 100 Index. Both indexes can
be taken as risk factors for the stock such that n =4 and m = 2.

The portfolio return can be approximated as in equation (10) where

- St 92Xy
Sn g X asp 0
0 So X 1 0 S3 92X,
_ X3 05 - = Xz 852
C = S1 X5 20 2 A = 5 & o 2 0S5
X5 051 =% 0
X3 052
B B2 i
- 0 0
[ al 0
0 = 0 a9
as 0
0 o0

where S7 and Sy are the prices at time ¢ of the S&P 500 Index and of the
NASDAQ 100 Index, X7, X5 and X3 are the prices of the options while ;
and [y are respectively the sensitivity of the stock to the first and second
index.
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By substituting the above matrixes in equation (10) and multiplying we
have the following approximation for the portfolio return:

510X - 152 82X, -
Rip1=a X, 95, — R ta 2X11 957 ferit
Sy OX> - 152 92X, -
T2y 5s, 35, fear1 Ta 2X2 852 55 Bant
510X 152 92X; -
X, 85, R”+1+“32X3 952 Tt

+ a1 K + as(BiRi1 + foRoyi)

that is what we expect to have. O

With the data of the above example the matrix B is symmetric. This is
always true when each option price depends on a risk factor only. When
this is not true, the symmetry is no longer ensured. In such a situation we
can approximate the non symmetric matrix B with the symmetric matrix

(B +B').

3.3.2 Some other application issues

As explained above, to find the VaR we have to numerically solve equation
(14). To perform this task we can use an algorithm such as the Gauss-
Newton one.

The problem is that on the left part of the equation there is an integral
that we have to solve numerically. Hence, we need a method able to give
quite accurate results in a short time®. For such a reason all the simulation
based methods cannot be considered.

For our analysis we employed the Gauss-Laguerre approximation formula
that is easy to apply for integrals defined in the interval (0, c0) and gives an
error of order 2p — 1 where p is the degree of the used Laguerre polynomial.
In our application the Laguerre polynomial of degree 14 is considered.

The portfolios of section 6 contain short positions which can be con-
sidered by taking negative weights for them. Moreover, our portfolios are
investment portfolios i.e. they have long total position or in an other way,
the sum of all the weights has to be equal to one.

With a short total position i.e. where the sum of all the weights is equal
to minus one the same approach cannot in general be applied. Indeed, in
such a situation we have to consider the right tail instead of the left one.
Intuitively, we can say that the VaR estimation in both situations would be
equal only if the return distribution was symmetric. To make the issue clear
let us show the following trivial example.

SRemember that, once solved, the integral has to take place in an other numerical
procedure.
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Example 3.2 Let us consider two portfolios. The first one is composed
by a long position on a stock while the second by a short position on the
same stock. The price of the stock at time ¢ is X; such as the values of the
portfolios are respectively V;; = X; and Vo ; = —X;.

Let F(r) be the stock return distribution function. The VaR for the first
portfolio is

Pt [‘/t+1 - ‘/t < —V(lRl] =«
P, [Rt—l—l < —VaRl/Xt] =«

such that
VaR = —XtF’l(a) ,

where F~!(a) is the a-quantile of the distribution function F(r).
For the second portfolio the VaR is

Py [Vig1 — Vi < —=VaRy] = «

Py [— (Xip1 — Xy) < —VaRs] =«
[
[

~

t Xt+1—Xt<VaR2]:1—oz
P Rt+1 < VaRg/Xt] =1—-«

such that
VaRy = X;,F7'(1 - a) ,

that is equal to VaR; only if F~!'(1 — a) = —F~!(a) i.e. if the probability
density function of the stock returns is symmetric. O

4 Non parametric method based on historical
simulations

By taking a time series of data of dimension ¢ as a sample of the whole
population it is possible to get a empirical distribution of the portfolio.
Indeed, at every date of the sample the past risk factor returns are used to
revalue the portfolio and to get the empirical distribution of its return.

To avoid the misspecification problem of the function g(.), we will use
directly the prices of the assets instead of the risk factors. While it is not so
difficult for the stocks it becomes quite infeasible for options. Indeed a time
series of the price of the options with the same strike price and the same
maturity is not in general available. To face the problem the most common
approach is to use the Black-Scholes formula to evaluate the option price at
each simulated underlying value. Some problems due to this approach will
be considered later on.
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However, once we have the time series of the portfolio returns, we can
get an empirical distribution. The VaR estimate is taken as the a-quantile
of such a distribution. The idea is to replace in equation (1) the theoretical
probability by an empirical frequency:

¢

1

n E 1vir,_yj1<—vary = @,
k=1

such that VaR can be get by the following minimization problem:

¢ 2
— . 1
VaR; = arg {/Hal}zl l(z Z 1{(Vthk+1+VaR)>0}> - 04] > (15)
k=1
that has, in general, no closed form solution.
We can see equation (15) as a non-linear last square regression

a=1{ (V,R_y41+VaR)>0} T Et—k k=1,2,...,1
where VaR is now the true VaR and ¢; j ~ iid(0, o). Summing and divid-
ing by the sample dimension we get

¢ t
1 1
a= + Z 1{—(Vth—k+1+VaR)>0} + 7 Z&?t,k .

k=1 k=1

Note that the last term on the above equation go to zero if and only if all the
error terms are independently and identically distributed with mean zero.
Moreover, the distribution of ¢;_; depends on the distribution from what
the sample is drown. The consequence is that if we want to get a consistent
estimator we have to assume that the returns are iid.

Remark 4.1 Sometimes to smooth the returns distribution the indicator
function is replaced by a Gaussian kernel such that equation (15) becomes

. 2
VaR, = arg min { i kzl P [—E(WRt—k—l—l + VGR)] - a} ;

where ®(.) is the normal distribution function and A is the bandwidth. The
latter is a measure of the accuracy of the approximation such that the smaller
is the bandwidth the higher will be the precision in using ®(.) to approximate
the indicator.

Another function to approximate the indicator is the following:

1 1 n 1 " (m)
A~ — + —arctan ( —
x>0 9 T rctan L)
such that equation (15) becomes

——

t 2
.1 1 1
VaR; = arg min {5 + o kgl arctan [_E(VthkH + VaR)] - a} , (16)

where h has the same meanings than before. O
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4.1 Some hidden drawbacks

The easiness of the implementation and the absence of explicit model as-
sumption on the risk factors returns are the main benefits of the approach.
There are some drawback, though. The most relevant ones are the following;:

e How to evaluate the options? It is necessary to introduce some as-
sumptions in the underlying returns distribution that partially reduce
one of the two main benefits.

e A lot of data have to be used (one year of daily data or more), otherwise
the empirical distribution is not properly defined on the tails. This
drawback is common to all the methodology based on simulations.

e An implicit assumption of the method is that in sample returns are
iid. This assumption is violated by the evidence that the volatility
changes over time. This causes an inconsistent estimation of VaR”.

e Moreover, the iid assumption allows us to say that every realized re-
turn has the same probability to occur again. By giving the same
probability to occur for each return we are reducing the sensibility of
VaR to the changes of risk due to market crashes.

To face the last two problems some methods can be used. In the next section
a short description of the Boudoukh, Richardson and Whitelaw [7] method
is given. In section 5 a filtered historical simulation method is described.

4.2 Generalized historical simulation method

As previously said, one of the drawbacks of the standard historical simula-
tion method is the assumption of iid returns. This enables us to say that
every realized return has the same probability to occur again. As noted by
Pritsker [21], this reduces the sensibility of the VaR measure to the changes
of risk due to market crashes.

To face the problem Boudoukh, Richardson and Whitelaw [7] suggest to
give different weights to different realized returns such that equation (15)
becomes

t 2
VaR, = arg min [(kz:lpk 1{(Vthk+1+VaR)>0}> - 04] ; (17)

where pyg is the weight and ZZ pr = 1.

"The same idea is discussed by Hendricks [14] and by McNeil and Frey [18].
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In particular they suggest to give a higher weight to the most recent
realizations by using a weight that decays with time

¢ -1
P = (Z )\11) )\k*l
i=1

1—X
= 1_AtA’H k=1,2,....t

where A € (0,1) is called the decay factor. Note that for A equal to one we
have equation (15).

Moreover, we can say that Ap, = prp_1 This shows that the lower X is
the higher the decay effect on the weights associated with far returns will
be. This should increase the VaR sensibility to market crashes or in general
to risk raises.

5 Filtered historical simulation

In previous sections we described the historical simulation approach. The
assumption was of iid return. Such an assumption is violated by volatility
changing over time. As noted above this leads to an inconsistent estimate
of VaR.

Barone-Adesi, Bourgoin and Giannopoulos [3] introduced a method to
face the problem. The approach is based on historical data. Indeed, the aim
is to have a sort of independence from the assumptions on the risk factors
distribution. The main idea is to obtain iid returns by standardizing them
i.e. by dividing them by their volatility. Such a volatility can be estimated
by assuming a model for the return with, say, some GARCH(1,1) errors.

Let us describe the idea of the method in the one dimension framework.
For the j-th asset we can assume the following model:

Rji=c¢€jy j=12,....m,
where
gjp ~ N(0,hj) 5
and
hji = ap + a1R?,t71 +aghjs 1, (18)
To implement the methodology one has to consider the following steps:
1. collect a set of observed daily returns R;; for ¢ =1,2,...,T;

2. estimate equation (18) to have the estimated variance izjyt for each
time ¢;
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3. define the standardized residuals in the following way:

Rj;

b

€jt = t=1,2,...,T

4. pick randomly (with replacement) one of the T' standardized residuals
(let us define it e*);

5. forecast the variance of the period T + 1 by equation (18);

6. define the simulated innovation forecast for time 7'+ 1 as

* kT
Ziry1 =€\ hjr

7. define the T + 1 simulated risk factor price as

;,T-I-l = Sr(l+ z;,T-H)

8. by using 57, and ﬁj7T+1 calculate the simulated portfolio price and
then the simulated portfolio returns.

By repeating the procedure from step 4 to step 8 we can obtain a simulated
probability density function for the one day returns that may be used to
calculate the VaR of the portfolio.

5.1 The model misspecification

In the step 4 the bootstrap from the sample can be done by assuming that
all the standard residuals are equally probable. Therefore, the random date
can be picked from a uniform distribution. Indeed, the use of a uniform
distribution is the best thing to do since we are sure that the standardized
residuals are iid, or, in an other way, that the model (18) is the true model
for the market volatility.

If we consider the possibility that the model could be misspecified, we
will not be sure about the iid of the standardized residuals. In such a
situation, to use a uniform distribution could not be the best way to sample
the random date. As in sections 4.2, to increase the sensibility of the VaR
measure to risk changes, we can impute an higher probability of occurrence
to the standard residuals obtained by the most recent returns. This can
be done by extracting the random date from an exponential instead of a
uniform distribution.
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5.2 The multivariate framework

In the multivariate extension of the above method no variance-covariance
matrix is used. Indeed, the bootstrap is done not directly on the residual re-
turns, but on the past states of the world. A state of the world is represented
by the m risk factor returns observed at a certain date.

In particular, we construct an ¢ X m matrix where in the column there
are the time series of the each risk factor return. The returns have to be
standardized with the procedure described above.

The bootstrap is done by picking randomly a row vector from the stan-
dardized return matrix. Now e is an m-vector and it is used to generate the
simulated innovation as in step 6.

The portfolio is revalued for each randomly picked state of the world
such to obtain an empirical distribution. From the empirical distribution
the VaR estimate is obtained by the same techniques which are used for the
historical simulation.

6 The considered portfolios

We will consider four portfolios which consist of the same kind of assets (eq-
uities and options on index) but with different composition rates. A certain
percentage of equities are diversified inside the American biotechnological
industry. The choice of this industry is motivated by the will to consider an
high volatility portfolio whose stocks are quoted in a market that suffered by
some strong crashes in the recent past. It enable us to observe the sensibility
of the VaR estimate to an increase of risk due to a market crash.

Moreover, in some portfolios there is also a group of less volatile stocks
traded in the NYSE.

In two of the four portfolios there are option positions. In particular,
the options are four months at the money European calls and puts written
on the S&P 500 Index and on the NASDAQ 100.

Later on, the different compositions of the four portfolios are shortly
described. The percentages are expressed with respect to the market price
of the assets.

Portfolio A All the portfolio is represented by the biotech equities such
that only linear positions are considered.

The idea is to show what the error made by neglecting the firm specific
risk is. Indeed, two measures of VaR for the parametric method will
be calculated. The first one is got by using directly the asset returns
while in the second one an APT approximation as in equation (2) will
be used.

The difference between the two estimate should give a measure of the
error made by considering only the market risk.
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Portfolio B The 63% of the portfolio is represented by the biotech equities
while the residual 37% by other stocks.

We will make an analysis equivalent to what above. The aim is to show
the effect of the introduction of new equities with a reduced correlation
with the former portfolio.

Portfolio C The biotech stocks are the 56% of the total portfolio while the
12% is represented by long positions in the S&P 500 Index European
put options and in the NASDAQ 100 Index European put options. In
the residual part there are other stocks.

Both the options are in the money. Their function is to reduce the
market risk of the equity portfolio. Indeed, the number of put options
and the strike price are chosen to reduce, in the next four month, the
probability of a loss for more than the 95% of the equity portfolio.
The aim is to show how such a hedging strategy can change the VaR
estimate.

Portfolio D The biotech stocks are the 56% of the total portfolio while the
7% 1is represented by short positions in the S&P 500 Index European
call options and in the NASDAQ 100 Index European call options. In
the residual part there are other stocks.

Both the options are out of the money and are not used for hedging
purposes but for a sort of speculative aim such to increase the portfolio
profitability. This kind of behavior strongly increases the portfolio risk
and the aim is to show how the different VaR methods are able to
detect such a rise.

The exact composition of the portfolios is in appendix E.

7 A first glance on the empirical results

The different VaR estimates at 30.05.2001 are summarized in table 1 and 2
respectively for the accepted loss probability of 1% and 5%.

In the application of the parametric approach for the linear portfolios
A and B the assumption is only that the returns are normally distributed,?
while for portfolio C and D a delta-gamma approximation is done.

For the portfolio A the only risk factor considered for the APT approxi-
mation is the NASDAQ Biotechnology Index. Moreover, the used betas are
not exactly the estimated ones. Indeed, estimated betas are corrected when
their R? ratio is lower than 0.4. By satisfying a prudential aim, in such a

8For both portfolios equations (3) and (4) are used respectively for the method 1 and
2.
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Table 1: VaR estimated by the methods described in the previous sections for the four
considered portfolios. The accepted loss probability is 1% (a = 0.01) and the horizon is
one day. The VaR is expressed in percentage with respect to the portfolio price at time ¢.

Portfolios
A B C D
1) Parametric VaR 7.50% 6.06% 3.92% 19.76%
2) Parametric VaR (APT) 9.15% 6.84% 2.11% 20.92%
3) Standard Historical Simulation 10.11% 7.41% 5.41% 10.10%
4) Weighted H. S. (A = 0.99) 9.24% 7.40% 4.95% 10.77%
5) Weighted H. S. (A = 0.97) 716% 6.24% A17%  10.09%
6) Filtered H. S. (Uniform) 9.32% 6.90% 8.57% 16.58%
7) Filtered H. S. (Exponential) 7.75%  5.93% 8.79% 16.53%

Table 2: VaR estimated by the methods described in the previous sections for the four
considered portfolios. The accepted loss probability is 5% (a = 0.05) and the horizon is
one day. The VaR is expressed in percentage with respect to the portfolio price at time ¢.

Portfolios
A B C D
1) Parametric VaR 5.30% 4.28% 2.62% 12.55%
2) Parametric VaR (APT) 6.47% 4.83% 1.38% 16.47%
3) Standard Historical Simulation 5.88% 4.44% 3.39%  6.79%
4) Weighted H. S. (A = 0.99) 6.35% 4.69% 3.51%  6.89%
5) Weighted H. S. (A = 0.97) 473% 453% 2.23%  5.52%
6) Filtered H. S. (Uniform) 5.22% 4.34% 5.72% 10.55%
7) Filtered H. S. (Exponential) 4.34% 4.11% 4.88%  9.73%

situation the corrected beta is set equal to 1 when the estimated beta is
lower than 1.1 and equal to 2 when it is higher than 1.1.

For the portfolios B, C and D four indexes are used as risk factors in the
APT approximation: the NASDAQ Biotechnology Index, the NASDAQ 100
Index, the S&P 500 Index and the NYSE Financials Index. The choice of
the above indexes is justified by the portfolio composition. Here the betas
are not corrected. Indeed, the R? ratio is higher than in previous situation.

The variance-covariance matrixes are estimated by the so called Orthog-
onal GARCH(1,1). A short description of the methodology and some ref-
erences are in the appendix C. The parameters of the GARCH model are
estimated by using 300 daily observations.

Figure 2 shows the conditional probability density function of the return
of the portfolios C and D compared with a normal distribution. Such a
probability density function is obtained by assuming the normality of the
risk factors return and by using a quadratic approximation for the options
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Figure 2: Conditional probability density function of the return of the portfolios C
(above) and D (below) compared with a normal distribution (shaded line).

return. The asymmetric shape of the probability function due to the non
linear positions inside the portfolio.

The historical simulations are done by using equation (16) with 500
past daily returns and a bandwidth equal to 0.01. We decided to use an
approximation instead of the equation (15), because it works better in the
minimization problem.

In portfolio C and D the options are revalued by using the Black-Scholes
formula with a constant volatility equal to the implied volatility at date ¢.

The weighted historical simulation approach is performed by using two
different decay factors. The first one (0.99) gives a lower decay effect than
the second one (0.97). The latter yields a VaR estimate more sensitive to
the changes in market risk.

In the filtered historical simulation method, the sample used is of 400
past observations. To reduce the impact on the arbitrary choice of the
starting point on the volatility path, once estimated the GARCH(1,1) we
let it run from 100 days before the furthest date.

Within the sample the standardized residuals are picked randomly 5000
times. The bootstrap is done either by picking randomly a date from a
uniform distribution or by using an exponential distribution with parameter
A equal to 0.99.
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Table 3: Number of failures 2 and their proportion $ with respect to the whole sample
of 500 observations (from 07.06.1999 to 30.05.2001). The accepted loss probability is 1%
(@ =0.01) and the horizon is one day.

Portfolios
A B C D

p z p z p z p
1.2% 5 1.0% 27 54% 5 1.0%
1.2% 10 2.0% 42 84% 3 0.6%
1.6% 9 1.8% 13 2.6% 12 24%
1.8% 10 2.0% 9 1.8% 6 1.2%
1.8% 10 2.0% 12 24% 10 2.0%
14% 7 14% 8 16% 7 1.4%
1.6% 8 1.6% 7 14% 8 1.6%

1) Param. VaR
2) Param. VaR (APT)
3) S.H.S.
4) W.H.S. (A = 0.99)
5) W.H.S. (A =0.97)
6) F.H.S. (Uniform)

)

7

0 ~J © © 0w S DR

F.H.S. (Exp.)

8 Testing the VaR estimations

To verify the accuracy in VaR estimate one of the most used methods is the
so called reality check test based on the observation of the VaR performances
during a period of time.

The observed variable is the number of VaR failures. We have a VaR
failure when we observe a loss higher than the estimated VaR. The percent-
age of failure with respect to the total of the considered observations, say p,
should be as near as possible to the defined loss probability «.

Table 3 and 4 show the number of failures and their proportion with
respect to the whole sample respectively for the accepted loss probability of
1% and 5%. They are obtained by estimating VaR for the different portfolios
during a period of 500 days from June 1999 to May 2001. The obtained VaR
is compared with the loss of the day after. If the latter is greater than VaR,
we will have a failure.

By using a likelihood ratio statistic, a test can be done to decide whether
to reject the null hypothesis that the probability of failure p is equal to a.

The starting point is to assume that the sample is drawn from a Bernoulli
population where we can have two possible events: the VaR can cover the
loss or the VaR is not sufficient to cover the loss. If the Bernoulli random
variables are independent the probability to have z failure in a sample of
size n will be given by a binomial distribution:

n T _ n—x _
P(X =z) = <x)p(1 D) forz=0,1,...,n
0 elsewhere

For the null hypothesis p = « and assuming that z is the observed number
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Table 4: Number of failures and their proportion (in brackets) with respect to the whole
sample of 500 observations (from 07.06.1999 to 30.05.2001). The accepted loss probability
is 5% (a = 0.05) and the horizon is one day.

Portfolios

A B C D

£ p £ p L p L p

1) Param. VaR 24 4.8% 23 46% 41 82% 10 2.0%
2) Param. VaR (APT) 15 3.0% 32 6.4% 70 14.0% 8 1.6%
3) S.H.S. 52 104% 50 10.0% 45 9.0% 33 6.6%
4) WHS. (A=0.99) 32 64% 32 64% 30 6.0% 29 5.8%
5) WHS. (A=0.97) 28 56% 28 56% 27 54% 28 b5.6%
6) F.H.S. (Uniform) 40 8.0% 39 7.8% 30 6.0% 27 5.4%
)

7) F.H.S. (Exp.) 25 52% 24 48% 25 50% 26 5.2%

of failures, the likelihood ratio can be defined in the following way:

W(z,a) = =2In[a"(1 —a)" *] +2In [(p)° (1 —-p)""] ,
where p is equal to .
Under the null hypothesis, the test statistic W (z,a) is asymptotically
distributed as a x? such that if we accept a first kind error equal to 5% the
rejection region will be

{z : W(z,a)>coos5} ,

where ¢g.g5 is the 0.05 quantile of the X% distribution that is equal to 3.841.

By solving the inequality inside the brackets with sample size of 500
observations, we have that the non rejection region is approximately equal
to

1<z<10 if aa=0.01
16 <z <35 if aa=0.05.

According to the Neyman-Pearson theorem, the likelihood ratio test is
the uniformly most powerful test against simple alternative hypothesis. Ta-
ble 5 shows the power of the test for different alternative hypothesis. To
increase the power of such a test a wider sample is necessary. This is one of
the reasons why we chose a one day horizon.

Let us consider the accepted loss probability of 1%. For the first method
the results that we obtain for the two portfolios, which contain linear po-
sitions only, are quite the same. For both portfolios such a method seems
to work quite well. The APT approximation works definitely better for the
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Table 5: Power of the likelihood ratio statistic for a sample size of 500 observations.

Null Hypothesis p=0.01 Null Hypothesis p=0.05

Alternative Hypothesis Power Alternative Hypothesis Power

0.020  0.443 0.060 0.181

0.030  0.899 0.075 0.671

0.040  0.992 0.100  0.991

Parametric Parametric (APT)
0.1 1 0.1
0.05 il 0.05
0 0
-0.05 -0.05
-0.1 1 -0.1
100 200 300 400 500 100 200 300 400 500
Standard H. S. Weighted H. S. (0.97)
0.1 1 0.1
0.05 N 0.05
0 0
-0.05 -0.05
-0.1 -0.1
100 200 300 400 500 100 200 300 400 500
Filtered H. S. (Uniform) Filtered H. S. (Exp.)
0.1 1 0.1
0.05 il 0.05
0 0
~0.05 d -0.05f

-0.1 1 -0.1

100 200 300 400 500 100 200 300 400 500

Figure 3: Protfolio B returns of the period from June 1999 to May 2001 compared with
the 1% VaR.

portfolio A than for portfolio B. The reason is that for the first portfolio we
made a prudential correction of the betas.

On the other hand, the delta-gamma approach, with or without APT
approximation, seems to perform badly for both the portfolios containing
options. As expected, the quadratic approximation underestimates the risk
for a long position while overestimates the risk for a short position.

This is also evident from table 1 where the VaR estimated by the delta-
gamma, approach is two times the value obtained by the historical simula-
tions. The conclusion is that for the portfolio C the value of the variable z is
on the rejection region while the test suggests to accept the null hypothesis
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Parametric Parametric (APT)

0.1 0.1
0.05 0.05
0 0
-0.05 -0.05
-0.1 -0.1

100 200 300 400 500 100 200 300 400 500

Standard H. S. Weighted H. S. (0.97)

0.1 1 0.1
0.05 N 0.05
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-0.05 7 -0.05
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100 200 300 400 500 100 200 300 400 500

Filtered H. S. (Uniform) Filtered H. S. (Exp.)

0.1 1 0.1
0.05 N 0.05
0 0
-0.05 -0.05
-0.1 -0.1

100 200 300 400 500 100 200 300 400 500

Figure 4: Protfolio B returns of the period from June 1999 to May 2001 compared with
the 5% VaR.

for the portfolio D. The same results are confirmed for the accepted loss
probability of 5%.

For the two equity portfolios, the number of failures obtained by using
the historical simulation methods is inside the non rejection region. For 1%
accepted loss probability the three non-parametric methods give quite the
same results, while the filtered historical simulations seems to work slightly
better.

The results are different for both the non linear portfolios. Indeed, in
such a situation the standard historical simulation perform very poorly. This
is due to the lack of sensibility of the method with respect to changes in mar-
ket risk. Indeed, from figure 5 we can see the weak reaction of the standard
historical simulation VaR to the recent NASDAQ crash. As expected, the
weighted methods seems to work better during a market crash.

For the accepted loss probability of 5% the lack of sensibility of the
standard historical simulation gives poor performances also for the equity
portfolios. Figure 4 shows how the VaR estimated by using this method go
through all the losses during the crash period.

The semi-parametric method of the filtered historical simulation gives
some quite accurate results for each portfolio. Due to the GARCH forecast
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Parametric Parametric (APT)
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Figure 5: Protfolio C returns of the period from June 1999 to May 2001 compared with
the 1% VaR.

of the variance, the semi-parametric methods are very sensitive to market
crashes. This is evident in figure 5 and 6 where it is possible to note that
the sensitivity is higher for the modified semi-parametric approach than for
the standard one. For such a reason, the modified method performs slightly
better for the accepted loss probability of 5%.

To have an intuition on the tails beyond VaR, one can observe the losses
which exceed the VaR. The measure that can be used as an indicator of the
exceeding losses is the mean of the ratio between the losses which exceed
VaR and the VaR itself. Table 6 and 7 show such a ratio for the different
methods considered. With the same aim, in the table there is also the
maximum of such a ratio.

First of all, we can say that the mean ratio is always higher than what
we expected to have under the normality of the portfolio returns. Indeed,
the values of the ratio under the normality assumption® are 1.146 for an
accepted loss probability of 1% and 1.254 for an accepted loss probability of

5%.

9In appendix D is briefly described how to reach this result.
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Parametric Parametric (APT)
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Figure 6: Protfolio C returns of the period from June 1999 to May 2001 compared with
the 5% VaR.

Moreover, the conclusion that we can get is that, once again, while for eq-
uity portfolios the performances of the seven methods are quite the same, for
the non linear portfolios the historical simulation approaches work definitely
better than the delta-gamma approximation. Indeed, for the two parametric
methods both the mean and the maximum of the ratio are higher than the
same ratio obtained for the historical simulation methods.

9 Conclusion

In the first part of this work some of the most known VaR estimation meth-
ods are described. In such a description we try to focus mainly on the
application problems of each approach, which are modified to take into ac-
count non linear positions.

The second part is devoted to measuring the performances of the different
estimation methods, by testing them on the last two years. The observed
variable is the number of times that the loss exceed VaR. To have an idea on
what the returns behavior beyond the quantile is, we consider also the mean
ratio between the losses which exceed VaR and the VaR itself. The sample
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Table 6: Mean value and maximum value of the ratio between the losses which exceed
VaR and the VaR itself (from 07.06.1999 to 30.05.2001). The accepted loss probability is
1% (o = 0.01) and the horizon is one day.

Portfolios
A B C D
mean max Imean Imax Imnean InaxX Inean Inax
Param. 1.30 1.77 1.26 1.90 1.45 3.56 1.96 2.42
Param. (APT) 1.17 1.33 1.23  1.57 1.42  3.42 1.92 2.60
S.H.S. 147 1.81 1.40 1.92 1.36 2.61 1.35 2.50

W.H.S. (0.99) 1.37 1.60 1.26  1.49 1.36 1.75 1.31 1.93
W.H.S. (0.97) 1.32 1.67 134 1.66 1.27  1.62 1.33 1.88
F.H.S. (Unif.) 1.39 1.74 1.23  1.63 1.29 1.76 1.34 1.96
F.H.S. (Exp.) 1.31 1.87 131 1.50 1.31 1.57 135 1.90

period considered for the test includes the recent crash of the NASDAQ.

The conclusions are quite different for the different portfolios considered.
Indeed, for linear portfolios all the methods give quite accurate results while
the best performance are obtained by the parametric method with a covari-
ance matrix estimated by the Orthogonal GARCH. Unfortunately, most of
the financial institutions have portfolios with strong positions on options or
other non linear instruments.

The results are visibly different for portfolios which contain non-linear
positions. Indeed the increase of volatility due to the leverage effect of option
positions, reduces the accuracy of some methods. Here the performances are
very different among the approaches and, unlike to the former results, the
worst performances are obtained by the parametric method. As expected the
quadratic approximation underestimates the risk on long option positions
while it overestimates the short option positions.

The generalization of the standard historical simulation strongly im-
proves the accuracy on VaR estimate and, particularly, its sensitivity to
crashes of the market. This is evident from figure 3 and figure 5 but also
from the lower ratio of failure with both the accepted loss probability.

The best performance is got by the semi-parametric method of the fil-
tered historical simulations. The standardization of the returns reduce the
non iid problem while the bootstrap enable us to have a well defined sim-
ulated distribution. In the standard approach the assumption is that the
volatility model is correctly specified. By accounting a possible model mis-
specification, the modified filtered historical simulation method seems to
perform better for the accepted loss probability of 5%.

Note, however, that the filtered historical simulation method is compu-
tationally more time consuming than the other approaches, such that no
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Table 7: Mean value and maximum value of the ratio between the losses which exceed
VaR and the VaR itself (from 07.06.1999 to 30.05.2001). The accepted loss probability is
5% (@ = 0.05) and the horizon is one day.

Portfolios
A B C D
mean max mean InaxX Imean INax Inean Inax
Param. 1.35 2.50 1.31 2.68 1.55 4.28 1.43 4.25
Param. (APT) 1.32 1.87 1.33  2.22 1.52 4.22 1.53 4.61
S.H.S. 1.56 2.22 1.50 3.56 1.51 3.74 1.59 3.74

W.H.S. (0.99) 1.51 3.81 1.51 3.38 1.53 3.15 1.50 3.24
W.H.S. (0.97) 1.42  2.75 1.44  2.55 1.47 2.67 1.47 3.00
F.H.S. (Unif.) 1.46 2.85 1.39 2.80 142 2.80 1.42 2.92
F.H.S. (Exp.) 1.46 2.62 1.40 2.16 141 237 140 227

one of the method can be considered the best from all the perspectives.

The concluding remark is that while the first three methods give strongly
inaccurate results in the considered framework, by the last four methods
we may have more accurate performances. However, among these it is not
possible to define the best method but only to describe the trade-off between
estimation accuracy and computational time.
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A Proof of the Proposition 3.1

By the properties of the positive definite matrixes we can decompose ¥ as

Y= HH',
such that
Ry =HZq

where Z;11 is an m x 1 vector of independent standard normal variables.
By using the above notation, equation (11) can be written as

Riyn=rk+dHZyy+ Z,\HBHZ, .

From the assumption that B is symmetric also H'BH will be symmetric
such that

H'BH = PAP',

where A = diag(A1, g, . . ., Ay ) is the diagonal matrix formed from the eigen-
values of H' BH, while P is the matrix of the orthogonal and normalized
eigenvectors of H' BH. Note that for the symmetry of H' BH we can say
that all the eigenvalues are real. The portfolio return takes the following
form:

Riy1v = 6+ dHPP'Zyy + Z; PAP' Zy 44
= k4121 + 2 My
where
n = PHc,
Zyy1 = P'Zy .
The vector Z; = [Zl,t, 227,5, ... ,Zmit,] also consists of independent standard

normal variables. The above equation can be written as
m
Ry =k + Z (anj,t—i—l + Ajzit+l) .
j=1

Moreover, let us consider the random variable
X;=h+n;Zj+ NZ; i=12,...,m

where h = . To have a more clear notation, later on we will leave the

subscript j out.
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The characteristic function of X is

px(u) = B[]

eiuh oo . ) P

= 5/ exp [iu(nz + Az%)] exp [—E} dz
e’iuh o9 1

= ) exp [—5 (2%(1 — 26u)) — 2iunz)] dz

u2n?

- wh — — 1

P [“‘ 201 — 2z'u)\)] %

1 [ 1 : iun 2
X —— 22V = 2N — —— ) | d
V2 /oo exp[ 2 <Z v \/1—2éu>\> ] ?

by defining the variable y as

y=2V1—2u\,
we can solve the above integral in the following way:

ox(u) = ;exp iuh — —— 1T | x
V1 —25u\ 2(1 — 21u)\)

/ exp[ < \/%)2] dz

u-n
= 7@( iuh — ——— | .
NAET [ 201 — Zzu)\)]
By the above result we can say that
m
vr(u) = E |exp iuZXj
1 — usn;
exp(iuk) —
p( H\/l—Qzu)\ 2],211—2210\]-
N T
= exp(iur)|I — 2iul| "% exp —3 Z %

j=1
Moreover, we can show that
|I —2iuA] = |P(P'IP —2iuP'AP)P'|
= |(I — 2iuP'AP)|
= |(I —2iuH'BH)|
= |H'[(H)'H™! - 2iuB]H|
= |37 - 2uB|
= |I-2iuXB|,
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while the last expression of the above equation can be written as

J ! : —1
———— = ([ —2iul) 7y
j; 1 — 2iul;
= ¢'P'P(I - 2iul)~'P'Py
= o'P'[P(I - 2iud)P']"' Py
= ¢H(I -2uH'BH)'H'c
= J( ' —2uB) e
= (I -2iuxB) 3¢,
such that

1
or(u) = |(I - 2iuSB)|""? exp |iur — §u20'(I — 2uXB)" 'Y

B Some notes on Theorem 3.1

Theorem B.1 Let f(y) and @y (u) be Labesgue-integrable, if the mean and
variance of the random variable Y exist, then its cumulative density function

F(y) will be

F(y):%—% OOOAU [%] du , (19)
where Ayg(u) = g(u) + g(—u). O

For a proof see Shephart [22].
Here we have to proof that equation (19) and equation (13) are equal or
equivalently that

[ [ gy L[ [Tt =),

21U 2 U

Let us consider equation (13). By the definition of the characteristic function
we can write

o0 1 . +oo

/ Re [,—e_“‘y/ e f(z) dw] du
0 [ —00
o0 1 +oo

/ Re [—/ eHue=uy) £ () dm] du ,
0 W) o
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where f(z) is the probability density function. By applying Eulero’s rule we

have
/°° Re [/+°° cos(ux - uy) f(z) in +
0

s 1

. /+°° sin(uz — uy)f () dx] "

u

— o0

/Ooo [/:o sin(uz —uuy)f(fE d:c] du .

On the other hand, equation (19) can be written as

00 +0o0o i .
%/0 % |:/ <6z(ux—uy) o e—z(um—uy)) f(m) d$:| du .

oo

By applying again Eulero’s rule

1/00" [/+°° cos(uz — uy) Tisin(um - uy)f(x) B

2 oo 1
_ cos(uz — uy) - isin(uz — uy) @) dm] s
T+ sin(ux — uy)
/0 [/_oo — f(z) dz| du .

C The Orthogonal GARCH

One of the most important drawbacks of the GARCH method is the difficulty
to have an estimate in a multivariate framework. Indeed, in such a situation,
the number of GARCH parameters is very high. A possible solution is to
restrict the dimension of the parameter space by the introduction of some
simplifying assumptions. The problem of many of such simplifications is
that they may get a non-positive definite covariance matrix.

Orthogonal GARCH is an estimation method based on the principal
component analysis (PCA). By using the PCA we can extract the most
important uncorrelated sources of information contained in the data and
use them to construct a positive semi-definite covariance matrix.

Let us define X; the T' x n matrix whose columns are the time series of
the n asset returns at time ¢. The principal components matrix at the same
time, P, is defined as

P, = X,W, (20)

where W is the orthogonal matrix of the normalized eigenvectors of X;X;.
The column inside the matrix W; are ordered according to the size of the
corresponding eigenvalue (the first eigenvector corresponds to the highest
eigenvalue and so on).

From what above, we can note that:
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1. each principal component is a linear combination of the columns on
the matrix Xy;

2. the weights of such a linear combination are the eigenvectors of the
matrix X;X;;

3. the explanation power of the principal components is structured so
that the first one accounts for the maximum amount of the total vari-
ation in X;, the second one accounts for the maximum amount of the
remaining variation, and so on;

4. the principal components are uncorrelated with each other.

To show the last statement let as define A; the diagonal matrix of the eigen-
values of XX, such that

PP, = W/ X, X,W; = WIW,A,W[W, = A, .

Since Ay is diagonal the columns of P; are incorrelated.
By inverting equation (20) we have

X, = P,W,,
such that
var(X;) = var(P,W,) = W, D,W/ |

where D; is the diagonal matrix of the principal component variances, that
can be estimated by a GARCH model.

The advantage is that, due to the non-correlation of the principal com-
ponents, we have to estimate only n variances (recall that the matrix D,
is diagonal). This can be done also by estimating the coefficients indepen-
dently from each other with no risk to obtain a negative definite matrix.

For more details on the method the work of Alexander [1] can be seen.
In Bystrom [8] there is an application to Nordic stock market during the
Asian financial crisis.

D Ratio between losses and VaR for a normally
distributed random variable

Let Z be a standard normally distributed random variable. The expected
value of the ratio between losses which exceed VaR and the VaR itself is

1 [t
= VaR/ 2P(Z = 2|1Z < —VaR)dz . (21)
—00
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The above conditional probability can be written as

P(Z =2 Z < —VaR)
P(Z < —VaR) '

P(Z = 2|Z < —=VaR) =

where

0 se z > —VaR
P(Z=2) sez<—-VaR
P(Z < —VaR) = «.

P(Z = 2,7Z < —VaR) =

Under the normality assumption, equation (21) can be written as
1 1 [VeR 12

X = —/——— “5 d
VaRa |_ z\/27r6 z

11 /+°° 12
= — z e 2 dz.
VaR o VaR 27
Moreover, being Z a standard normal random variable, the VaR will be
equal to the critical value to obtain the « quantile, say —z,, such that

1 2

1 +o0 22
X=—-— ze" 2 dz = ——F—=e€" 2 ,
o ZoV2T /Za a zZo V2T
that is equal to 1.146 for « = 0.01 and to 1.254 for a = 0.05.
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E Portfolios composition

The compositoin of the portfolios is the following:

Portfolios

Assets A B C D

Advanced Tissue Sciences 3.15%  2.00% 1.76%  2.30%
Alexion Pharmaceuticals 4.99%  3.16%  2.79%  3.64%
Amgen 10.32% 6.54% 5.76% 7.53%
Applera Biosystems Graup  2.82%  1.79%  1.58%  2.06%
Aradigm 227%  144%  1.2™%  1.66%
Atrix Labs 3.05% 1.93% 1.70% 2.23%
Avigen 3.60% 2.28% 2.01% 2.62%
Aviron 9.99% 6.33% 5.58% 7.29%
Cell Genesys 11.17%  7.08%  6.24%  8.15%
Chiron 6.68%  4.23% 3.73%  4.87T%
Cortex Pharmaceuticals 4.31%  2.13%  241%  3.14%
Diversa 3.63% 2.30% 2.03% 2.65%
Genome Therapeutics 2.68% 1.70% 1.50%  1.96%
Genzime-GENL Division 6.75%  4.28%  3.77%  4.93%
Human Genome Sciences 8.52%  5.40%  4.76%  6.21%
Immunex 2.01% 1.27% 1.12%  1.46%
Medimmune 5.10% 3.23% 2.85% 3.72%
Myriad Genetics 4.06%  2.57%  2.26%  2.96%
Sciclone Pharmaceuticals 257%  1.63% 1.43% 1.8T%
Valentis 2.34%  1.48%  1.30% 1.70%
Intel - 8.80% 7.76% 10.14%
Cisco - 7.86% 6.93% 9.05%
Lucent Technologies - 0.67% 0.59%  0.78%
General Electrics - 4.06%  3.58%  4.67%
Wells Fargo & Co - 11.59% 10.22%  13.35%
US Bancorp - 3.66%  3.22%  4.21%
S&P 500 put option - - 38™% -
NASDAQ 100 put option - - 7.99% -
S&P 500 call option - - - -9.43%
NASDAQ 100 call option - - - -5.72%

39
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