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INTEREST RATE BARRIER OPTIONS

��������

 Less expensive than standard options, barrier options have become very popular in
recent years as useful hedging instruments for risk management strategies. Thus far
valuation approaches have largely focused on equity barrier options, where in certain
instances analytical expressions may be available.  In this paper we use Monte Carlo
procedure to value barrier options based on the Chan, Karolyi, Longstaff and Sanders
interest rate process.  By performing simulations with and without including the recently
suggested Sharp Large Deviations, we show that standard Monte Carlo procedure
substantially misprices barrier options.
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Barrier options have become increasingly popular in the over-the-counter market as

hedging instruments for risk management strategies.  The study of barrier options goes

back to Merton [1973] who provided a closed form solution for down-and-out options.

Since then closed form solutions for a variety of European barrier options have been

proposed.  Rubinstein and Reiner [1991] developed analytical expressions for standard

European barrier options.  Heynan and Kat   [1994] developed expressions for exotic

barrier such as rainbow barriers.  Kunitomo and Ikeda [1992] and Geman and Yor [1996]

developed expressions for double barrier options incorporating curved boundaries.

By in large published research has focused on valuing equity barrier options where it is

almost always assumed that the underlying asset price follows geometric Brownian

motion.  Empirical studies have indicated that stock prices are unlikely to be lognormally

distributed.  As a result several researchers have proposed numerical schemes for the

pricing of barrier options.  They have considered mainly two separate approaches –

lattice approach and Monte Carlo simulation.

Boyle and Lau[1994] investigate the suitability  of the binomial lattice to price barrier

options.  Their main findings indicated that convergence was poor unless the number of

time steps is chosen in such a way as to ensure that a barrier lies on a layer of horizontal

nodes in the tree.  Ritchken [1995] used trinomial lattice to value a range of barrier

options such as double barriers, curved barriers and rainbow barriers.  He used the extra

flexibility offered by trinomial lattices to ensure that tree nodes lined up with barriers.

However, like Boyle and Lau’s binomial method, Ritchken’s method still required a large

number of time steps if the initial stock price was close to a barrier.  Cheuk and Vorst
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[1996] further developed Ritchken’s method by introducing a time dependent shift in the

trinomial lattice.  Although Cheuk and Vorst’s method offered considerable improvement

over Ritchken’s method, it nevertheless still required a large number of time steps. Boyle

and Tian [1999] and Tian [1999] use the trinomial lattice to value barrier options where

the underlying asset follows the constant elasticity variance (CEV) process and general

diffusion process respectively.  Their particular contribution is to align grid points with

barriers by constructing a grid which lies right on the barrier by adjusting a stretch

parameter.  Figlewski and Gao [1999] and Ahn, Figlewski and Gao [1999] use the

trinomial lattice with an adaptive mesh.  Their approach is to use a fine mesh in regions

where it is required such as close to a barrier and then to graft the computed results from

this onto a coarser mesh, which is used in other regions.  Ahn et-al [1999] use Gao’s

[1997] Analytic High Order Trinomial (A-HOT) model in which the probabilities are

positive constants.  In the A-HOT model constant positive probabilities are achieved by

detrending the drift.  The detrending does not lead to constant positive probabilities in the

case of interest rate processes exhibiting mean reversion.  The probabilities vary from

node to node and indeed may become negative under certain circumstances.  In short the

A-HOT model successfully tackles the difficulties of valuing equity barrier options using

trinomial lattices; but cannot be adapted to value interest rate barrier options without

introducing difficulties associated with some of the earlier schemes.

Monte Carlo simulation is known for its high flexibility.  However, in the case of barrier

options it produces biased results for options, which depend on the continuously

monitored sample path of some stochastic variable.  In a Monte Carlo simulation, where

stochastic variable values can be sampled at discrete times, information is lost about the
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parts of the continuous time path that lie between the sampling dates.  Thus the discretely

observed minimum will be too high and the discretely observed maximum too low

compared with the real extremes of the continuous time process.  As an example in the

case of a knock-out option, this will mean the underestimation of the likelihood of the

option being knocked out and thus overestimate the options value and vice versa for

knock-in options. This bias in Monte Carlo simulation has been considered by Andersen

and Brotherton-Ratcliffe [1996] and Beaglehole, Dybvig and Zhou [1997].  Their

approach is to use the law of the maximum of the Brownian bridge in order to evaluate

the probability that the underlying asset price process hits the barrier during each step of

the simulation.  Unfortunately the above mentioned researchers are restricted to single

constant barriers.  Baldi, Caramellino and Iovino [1999] use Sharp Large Deviation

techniques to derive expressions for the exit probability in the context of single, double

and time dependent barrier options where the underlying asset price follows a general

diffusion process.

Numerical research into the pricing of barrier options using the lattice approach with the

exception of researchers such as Tian [1999]  have focused on equity options.  No Monte-

Carlo simulation scheme has been proposed to value interest rate barrier options.

The fixed income market is one of the largest sectors of the financial markets where

billions of dollars worth of assets are traded daily.  Over the years a variety of interest

rate models, both single-factor and multi-factors have been proposed which have formed

the basis for the valuation of fixed income instruments.  The most general of  the single-

factor interest rate models is that proposed by Chan, Karolyi, Longstaff and Sanders

(CKLS), [1992].  The CKLS model encloses many of the earlier single-factor models
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such as that proposed by Vasicek [1977] and Cox, Ingersoll and Ross [1985].  The main

advantage of one-factor models is their simplicity, as the entire yield curve is a function

of a single state variable.

In this paper we put forward a general Monte Carlo simulation to value barrier options

where the underlying stochastic process follows the CKLS process.  Our approach

involves incorporating the results of Baldi et-al [1999] to demonstrate that the standard

Monte Carlo simulation scheme can be successfully used to value a wide range of interest

rate barrier options, once the bias has been corrected.

In Section II, we provide a description of the general problem.  In Section III , we define

the CKLS process and develop the algorithm in depth to value interest rate barrier option.

In the final Section we summarise our results.

���	�
������	����	�������	�����
�

Barrier options differ from the conventional options due to the introduction of one or two

boundaries affecting the options prices.  These boundaries may be deterministic and time

dependent.  Furthermore the boundaries are contractually specified, and may nullify the

value of the option or pay a pre-agreed rebate if the boundaries are breached by the

underlying interest rate process.  For example, a knock-and-out double barrier interest

rate call option is equivalent to the corresponding standard call, provided that the

underlying  interest rate process does not hit either barrier, otherwise payoff is set to zero

or a rebate rate.  The pricing formula in a risk neutral world for a knock-and-out and

knock-and-in barrier options are respectively:
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where ( )��  denotes the payoff of the option at its expiry date. Σ denotes the first time

the interest rate process hits the boundaries.  As shown above for a knock-and-out option

�≥Σ  and for a knock-and-in option �<Σ .  Using the results of Baldi et-al [1999] we

set up Monte Carlo scheme to value interest rate barrier options which take into account

the possibility of breaching the barrier between successive intervals of time.  Our Monte

Carlo scheme works in the following way.  First we  partition the life of the derivative

security into � steps such that [ ]
�

����� <<<<= �210 , where ����
�

∆+= and the

length of each time step is given by:

�
��

�
−=∆ (3)

At each step �, the underlying interest rate process is simulated at time �� by means of a

suitable approximation scheme, giving the value �� (see Section III for details).  Since ��

and ���� may not have breached the barriers while �� had during the time interval (��, ����),

Σ∆t provides a rough and strongly biased estimate of the hitting time Σ, as it has been

pointed out by several authors (see e.g, Geman and Yor [1996] or also Baldi et-al

[1999]).  In particular, Σ turns out to be over estimated by �∆Σ  whenever the interest rate

process can be exactly simulated, giving an over estimate for knock-and-out options and

an under estimate for knock-and-in ones.  To account for this we calculate a sharp

approximation  �

�
	∆  of the probability that 

�
�  hits the barriers during the time interval
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[ )1, +��
��  given we know 

�
� and 1+�� .  Thus we can stop the simulation with a probability

�

�
	∆  and set �∆Σ  equal to 

�
� .  This procedure then provides an almost unbiased Monte

Carlo estimator, being really unbiased if one can exactly simulate the underlying interest

rate process and �

�
	∆  is the right exit probability as it does in some special case.

����		��
�������	���
�����
	��	���	����	����
���
	�������

Consider the following CKLS [1992] model in a risk neutral world where the

instantaneous short rat is pulled towards a long term mean of θ at a speed of adjustment κ

( ) �
������ γσθκ +−= (4)

In equation (4)  substituting specific values of γ yields specific interest rate models.  For

example 0=γ  yields the Vasicek [1977] model, 
2

1=γ  yields the Cox, Ingersoll and

Ross [1985] model and 1=γ yields the Brennan and Schwartz [1979] model.

The usual discretized version of equation  (4) is:

( ) �����
����

∆+−+=+ εσθκ γ
1 (5)

In equation (5) the Wiener process is usually approximated as ��
 ∆≈ ε , where ε  is a

normally ���
�� distributed random variable, however; this is only a first order

approximation.  It is possible to use a more accurate approximation of the Wiener

process,which exploits the information in the drift and the volatility further.  Observing

equation (5) we note that the drift term is linearly dependent on �, and the volatility term

is dependent  on an arbitrary power of �.  Thus both of these terms can  be easily

differentiated with respect to �.   For our analysis we choose the strong Taylor

approximation of  equation (5) due to Platen and Wagner (see Kloeden and Platen [1999],
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pp. 351).  By incorporating the derivatives of the drift and the volatility terms of equation

(5) this scheme ensures any extreme fluctuations in the interest rate paths are minimal.

Taking � as the drift function and � as the volatility function, Kloeden and Platen [1999]

scheme states:
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where 2, 1,  and 
��
εε  are independent normally ���
�� distributed random variables.

Further ����′���′′ ������′���′′   are evaluated at ��. � From equation (4) we have:

( )�� −= θκ

κ−=′�

0=′′�

γσ�� =

1−=′ γγσ��

( ) 21 −−=′′ γσγγ ��

Substituting equation (6) into equation (5) yields:
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For European bond options the maturity value is given by:
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where ( )���� ,,  is the price of a bond maturing at time � with � cash flows with payment

�
� at each cashflow.  The bond price is evaluated using the formula:

( ) ( )∑ ∫
= 





















−=

�

�

�

�

�

�

�������
1

exp,, ττ (8)

Except for specific cases such as 
2
1

 and 0 == γγ  no analytical function is available for

the discount function.  In such circumstances we can evaluate the discount function in

equation (8) using the trapezium rule.
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Assuming � simulations with 
�

Φ as the discounted payoff the option from the j-th

simulation, we have the mean discounted payoff as:

( ) ∑
=

Φ=Φ
�

�
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�

1

1
(10)
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Baldi et-al [1999] show that the only random element in the estimation of exit

probabilities enter through the volatility term and further this volatility is a denominator

term.  Thus a suitable transformation which converts the volatility term into a constant

will eliminate any singularities which may arise due to very low interest rates, in the

calculations of exit probabilities.  Hence in order to calculate the exit probabilities, we

use the transformation  of  Barone-Adesi, Dinenis and Sorwar [1997],  who show that the

CKLS process can be transformed in such a way that the volatility is independent of �.  In

particular we use:

νσφ γ =
∂
∂

�
�

(11)

for some positive constant ν.  This is equivalent to:

γ

σ
νφ −=

∂
∂

�
�

(12)

Thus the transformation is given by:

( )
1for   ln

1for  
1

1

==

≠
−

= −

γ
σ
νφ

γσ
νφ γ

�

�
(13)

Noting that the value of ν has no impact on the accuracy of the model, we choose ν = σ

for convenience.

The exit probability assuming a single upper barrier at � can be approximated as in Baldi

et-al  [1999]:

( ) ( )( ) ( )( )
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The exit probability assuming a single barrier at � can be approximated as in Baldi et-al

[1999]:
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The exit probability assuming a lower barrier at � and an upper barrier at � can be

approximated as in  Baldi et-al  [1999]:
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The correct Monte Carlo procedure works as follows: with probability equal to �

�
	∆  we

stop the simulation and set 
�

� as the hitting time �∆Σ ; with probability �

�
	 ∆−1  we carry on

the simulation.

In Table1 – Table 3, we compare option values calculated both using standard  Monte

Carlo simulation and corrected Monte Carlo simulation.  In each instance option prices

are obtained by 20,000 paths of the underlying interest rate process.   The time step size is

set equal to 1/3651.  The standard error is displayed in the brackets.  We focus solely on

2

1=γ , i.e. the CIR process, where analytical option prices are available in the case of no

barriers.  Our analysis holds for other values of γ .  All the options have one year to

expiry and are written on zero coupon bonds with five years to maturity.  The bond pays

$100 on maturity.  We value both call and put options across a wide range of strike prices

                                                          
1 This is also the time step chosen by Baldi et-al [1999].
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varying from 62 to 74.  For simplicity we assume zero rebate, in the instance of the

barrier being breached.

Table 1 contains up-and-out option values.  We find that the up-and-out option values are

lower than the corresponding option with no barriers.  This is due to the upper barrier

being close to the initial interest rate.  Further we also find that standard Monte Carlo

simulation overprices.  For example at a strike price of 62, standard Monte Carlo yields a

call price of  4.4706, whereas corrected Monte Carlo yields 4.1231, this is a reduction of

7.77% compared to the standard Monte Carlo price.

We observe the same trends in Table 2 as in Table 1.  In this case the down-and-out

options are closer to the option prices without any barriers; due to a larger difference

between the initial interest rate and the lower barrier.

In Table 3, we observe the most interesting  results. Corrected Monte Carlo prices are

significantly lower than standard Monte Carlo prices in the case of double knock-out

options.  For example at a strike price of 62, the standard Monte Carlo call option  price

is 0.5271, whereas corrected Monte Carlo price is 0.3511; this is a reduction of 33%

compared to the standard Monte Carlo price.

���	�
�����

We have used Monte Carlo simulation scheme to value barrier options based on

single factor interest rate models.  Further, we have incorporated the corrections terms of

Baldi et-al [1999]  into our scheme.  Our findings reinforces the existing results found in

options price literature, that standard Monte Carlo simulation produces biased barrier

option values.  In particular we find that that the standard Monte Carlo scheme overprices
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knock-out options and this bias becomes significant in the case of double barrier options.

For example at a strike price of 62, standard Monte Carlo overprices up-and-out call

option by 7.77% whereas it  overprices a double knock-out call option by 33%.
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3651

08.0,5.0,1.0,2.0,1.0 0

=∆
=====

�

�γθσκ

Price of 5 year bond = 68.4059

������	�����

��� !"��#$ �"����� �%��#$ 62 65 68 71 74

No barriers Call 12.1565 9.8779 7.7781 5.8922 4.2521

Standard M.C. Upper at  10% 4.4706

(0.0455)

3.7047

(0.0379)

2.9922

(0.0311)

2.3407

(0.0253)

1.7593

(0.0205)

Corrected M.C. 4.1231

(0.0439)

3.4224

(0.0367)

2.7720

(0.0302)

2.1788

(0.0247)

1.6474

(0.0200)

No barriers Put 0.9580 1.4475 2.1158 2.9980 4.1260

Standard M.C. Upper at  10% 0.3690

(0.0104)

0.5450

(0.0129)

0.7744

(0.0158)

1.0648

(0.0189)

1.4253

(0.0222)

Corrected M.C. 0.3560

(0.0102)

0.5239

(0.0127)

0.7421

(0.0154)

1.0174

(0.0185)

1.3545

(0.0218)
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3651

08.0,5.0,1.0,2.0,1.0 0

=∆
=====

�

�γθσκ

Price of 5 year bond = 68.4059

������	�����

��� !"��#$ �"����� �%��#$ 62 65 68 71 74

No barriers Call 12.1565 9.8779 7.7781 5.8922 4.2521

Standard M.C. Lower at  4% 7.0523

(0.0450)

5.7604

(0.0367)

4.5441

(0.0293)

3.4249

(0.0230)

2.4452

(0.0184)

Corrected M.C. 6.7898

(0.0457)

5.5522

(0.0373)

4.3891

(0.0297)

3.3168

(0.0235)

2.3763

(0.0188)

No barriers Put 0.9580 1.4475 2.1158 2.9980 4.1260

Standard M.C. Lower at 4% 0.3692

(0.0090)

0.5654

(0.013)

0.8374

(0.0140)

1.2064

(0.0169)

1.7149

(0.0199)

Corrected M.C. 0.3682

(0.0089)

0.5635

(0.0113)

0.8333

(0.0140)

1.1938

(0.0169)

1.6862

(0.0200)
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3651

08.0,5.0,1.0,2.0,1.0 0

=∆
=====

�

�γθσκ

Price of 5 year bond = 68.4059

������	�����

��� !"��#$ �"����� �%��#$ 62 65 68 71 74

No barriers Call 12.1565 9.8779 7.7781 5.8922 4.2521

Standard M.C. Upper at 10%

Lower at  4%

0.5271

(0.0185)

0.4172

(0.0146)

0.3074

(0.0108)

0.2001

(0.0070)

0.1069

(0.0038)

Corrected M.C. 0.3511

(0.0145)

0.2780

(0.0115)

0.2048

(0.0085)

0.1328

(0.0055)

0.0697

(0.0029)

No barriers Put 0.9580 1.4475 2.1158 2.9980 4.1260

Standard M.C. Upper at 10%

Lower at  4%

0.0000

(0.0000)

0.0000

(0.0000)

0.0000

(0.0000)

0.0025

(0.0003)

0.0192

(0.0012)

Corrected M.C. 0.0000

(0.0000)

0.0000

(0.0000)

0.0000

(0.0000)

0.0010

(0.0002)

0.0111

(0.0008)
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