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1 Introduction

It is a well-known characteristic of intertemporal control problems maximizing
some version of an expected utility functional to imply optimality conditions
that are difficult to solve in closed form. Existence of closed form solutions
depends typically on assumptions regarding the class of utility functions used,
the functional form of the dynamics for the underlying state variables, existence
of intermediate consumption, and further related aspects.

In his seminal work in the late sixties Robert Merton (1969, 1971) solved
in closed form some intertemporal consumption / investment control problems
maximizing the expected utility implied by an hyperbolic absolute risk aversion
utility function and a geometric Brownian Motion dynamics. However, due to
the complexity of the arising optimality conditions it has been clear already
since Merton’s work that finding analytical solutions for this class of problems
would happen to be the exception rather than the rule!.

In this paper we focus on some max-min robust versions of the original
Merton’s problem, that have been recently proposed by Anderson, Hansen and
Sargent (2000) (AHS (2000)) to model an aversion to misspecification via a pref-
erence for robustness in intertemporal optimal decision making. For this class
of models no analytical solutions are known, even for the simplest model set-
ting with Constant Relative Risk Aversion utilities of current consumption and
geometric Brownian Motion dynamics. Indeed, it turns out that AHS (2000)’s
model implies value functions and Hamilton Jacobi Bellman (HJB) equations
that are even more difficult to solve than in the standard (non robust) case
because of some intrinsic inhomogeneities. Thus, the analysis of this class of
models has been so far limited to providing numerical descriptions of the implied
value functions and optimal policies.

This paper makes use of perturbation theory to solve analytically the robust
control problems implied by AHS (2000) model of a preference for robustness?.
Specifically, we compute for the constant opportunity set case (i) asymptotic
expressions that characterize to any order in perturbation theory the implied
value function, (ii) closed form expressions for the solution up to second order,
and (iii) parameter constraints that ensure convergence of the whole perturba-
tion series and existence of a classical solution. Despite the non homogenous
structure of the robust HJB equations, the constructive procedure adopted to
write the candidate solution as a perturbation series shows that the control
problems implied by AHS (2000) robustness specification have some strong in-
trinsic symmetries which can be in principle exploited to solve the model also
for more general settings than the pure constant opportunity set case.

1Some examples of papers providing closed form solutions for some versions of the original
Merton’s problem are Cox and Huang (1989), Kim and Omberg (1996), Liu (1998), Cuoco
(1997) and Wachter (1998).

2For a discussion on the distinction between models based on robust control theory (as
in AHS (1998, 2000), Hansen et. al (2001) and Hansen, Sargent and Tallarini (1999)) and
intertemporal ambiguity models extending the atemporal setting of Gilboa and Schmeidler
(1989), see Chen and Epstein (2000).



Recently, perturbation theory has been shown in Kogan and Uppal (2000)
to be a powerful tool that naturally provides finite-order approximations for the
relevant quantities in standard (non robust) Merton’s models with intermediate
consumption, state dependent opportunity sets and portfolio constraints. This
paper considers robust versions of a Merton (1969, 1971) consumption/portfolio
optmization problem, that are characterized by the solution of a more general
max-min stochastic game. Specifically, we compute a perturbative solution
for the value functions implied by these models to any order in perturbation
theory. Moreover, we fully characterize convergence of the perturbation series
to a classical solution of the robust optimization problem in dependence of
the given model parameters. This provides a sound motivation for applying
perturbative approaches in such model settings, beyond the one implied by a
pure formal use of perturbation theory.

The paper is organized as follows. Section 2 defines the robust control prob-
lem implied by AHS (2000) specification of a preference for robustness. Exis-
tence of a viscosity solution is discussed in Section 3. Some first and second
order perturbative solutions are presented in Section 4. In Section 5, the per-
turbative solution of the AHS (2000) robust control problem is computed to all
orders in perturbation theory and the issue of convergence of the whole per-
turbation series to a solution of the robust optimization problem is considered.
Section 6 summarizes and concludes.

2 A Robust Merton’s Model

There are two assets, a risk free asset with price B; at time ¢ and a risky asset
with price P; at time ¢t whose dynamics are given by

dBt = ’I"Btdt )
dPt = aPtdt + UPtdZt ) (QO) (1)

for given By, Py and a Qo-Brownian motion (Z;). The drift, volatility and risk-
less rate a, o, are constant. We consider agents with time preference parameter
p > 0 and power utility « () of current consumption ¢; given by

-1

u(c) = , <1
Y

For v — 0 the log utility case is obtained. Each agent allocates at each date ¢ a
fraction wy of current individual wealth W; to risky assets, yielding the current
wealth dynamics:

th = [tht (Oé - ’I") + TWt - Ct] dt + ’thtO'dZt - (2)

To introduce model misspecifications and preferences for robustness, we follow
AHS (2000). Model misspecifications are represented by absolutely continuous
measures (). This defines a process v via the Radon Nikodym derivative for any



pair of absolutely continuous measures 0y and @, i.e.

%(Pt):V(Pt) 5 tZO

Model discrepancy between ) and Q¢ is measured by the relative entropy pro-
cess I;(v) defined by

I (v) (s) = Eq, [v(P%) - log v(P;)|Po = 5]

To set up the optimization problem of a robust agent, we introduce the distorted
semigroups (T}) acting on suitable test functions ¢ by

T/ (¢) (s) := E(v (P) ¢ (P1) |[Po = 5) . (3)
The infinite horizon multiplier robust control problem in AHS (2000) and Hansen
et al. (2001) is defined by

TV = s int {Tg (/OOO exp (—pr) <u (cr) + %17 (1/)) drﬂ ,

for some ¥ > 0 and subject to (1), (2)3. The HIB differential equation for the
robust value function J (Wp) reads

. I, v

O:S;?E{U(C)—N+;r;%<5-f(V)+A J)} , (4)

where I )

, T t\V
I' (v) = lim = (5)

and v (] 7
AV = hm& (6)
t—0 t

is the infinitesimal generator of the distorted semigroup (7}), evaluated at J.

This equation characterizes the value function of the zero-sum game be-
tween a malevolent player (selecting a worst case model v*¢) and a robust agent
(choosing optimal consumption and investment rules ¢;, w) who is rationally
considering the possibility that the first agent will select a least favorable model
from the set of relevant model misspecifications?.

Generally, (5) and (6) are not easily computed. However, in the diffusion
setting it follows (cf. AHS (2000), p. 25) that solving (4) is equivalent to solving
the single agent HJB equation

v 1
0 = sup(c7 —pJ+ (WW(a—71)+rW —c¢)-Jw

c,w

1
+§w2W2a2 (JWW —19J3V)> . (7)

3The relationship between this model and the so-called ”constraint robust control problem”
is discussed in Hansen et al. (2001).

4Equation (4) is called an Isaacs-Bellman equation in stochastic game theory but we con-
tinue to call it in the sequel ”HJB equation”.



Thus, the optimal policies are

¢ = (Jw)i (8)
= - Tw (a—r
UOE T EW w0y @7 )

Inserting (8), (9) in (7) finally gives the optimality condition for the robust value
function

=y UwTI-1 1 (=) T
0 = . pJ QUQ(wa—ﬁ'J%/)+TWJW
= D,,(J(W)) , (10)

with D, ¢ the differential operator parameterized by the robustness parameter
¥ and the risk aversion index . The boundary condition for this differential
equation is

lim J(W) = Jiog(W) , (11)
v—0
where Jiog (W) is the known value function of a robust, log-utility investor.
The goal of the paper is to solve perturbatively (10) subject to the boundary
condition (11). This defines a robust intertemporal control problem of an agent
with risk aversion index v < 1 and robustness parameter ¥ > 0.

3 Existence of a Viscosity Solution

A sound mathematical foundation for the existence of a viscosity solution to the
two-player game (4) requires results in Fleming and Souganidis (1989), Sougani-
dis (1999, for the existence of the value function), Fleming and Soner (1993, for
growth conditions in infinite time horizon problems) and Yong and Zhou (1999,
for parametric problems). Before analyzing the HJB equation (7) using pertur-
bation theory, we thus first discuss some basic issues related to the existence of
a viscosity solution. We start by considering the wealth dynamics

th = [tht (Oé - 7") + TWt - Ct] dt + ’thtU dZt . (12)
~ v - v
::f(W,w,c) ::g(W7w)

A first condition to ensure existence of a viscosity solution is the existence of a
constant C' > 0 such that the bounds

lfwl < C, |gw| < C,
for the derivatives fw, gw, hold and such that the Lipschitz conditions

[fI < CA+ W]+ l(w, o)), lgl < COL+ W]+ [[(w, o)) (13)



hold, denoting by || - || the Euclidean norm. If |w| < M, i.e. short-selling and
borrowing are restricted, setting

Mla - 1
c = nmx{Mkv—H+rAAﬁ+Dr o= ] }

“r(M+1) (M +1)

implies (13). The next step is to ensure continuity of the utility index L(t,¢c) =
e Ptu(c) and to satisfy the growth condition

|L(t,c)| < Ci(1+|¢|*), k a constant .

If ¢ > 0 and C; = v, this growth condition is satisfied and the existence of a
viscosity solutions follows (see for example Theorem 5.4 in Souganidis (1999)).
Finally, we have to consider behavior of a solution to (10) in the limit v — 0, in
order to satisfy the boundary condition (11). Thus, further conditions need to
be satisfied. First, L, f, g have to be uniformly continuous in the state variable
W, the decision variables w,¢, and the parameter v. Second, the Lipschitz
conditions

|¢(t7W7 ¢, UJ) - ¢(t,W,C,U})| < O2|W - W| ) ¢(t707w70)| < 03 ) Vt,W,W
have to hold for ¢ = L, f,¢g. Finally, the limits

lim |¢’Y (ta W7 c, ’U}) - ¢’Y=0 (ta W7 c, ’U})| =0
v—0

have to hold uniformly in ¢,w, ¢ and uniformly in W on compact sets.

Given the above bounds for w, ¢, uniform and Lipschitz continuity of L, f, g,
in W, ¢, w follow. A bit more involved is the uniform continuity of L w.r.t. to
the parameter . After some calculations, we get

|L(v1) = L(v2)| < Calyr — 92l s

with Cy = max{1log(c)?,c(log(c) — 1) + 1}. Therefore, uniform continuity
follows if ¢ is bounded above and ¢ > 0. Summarizing, we thus have that for
w and ¢ bounded and for the constants C; defined above, a unique viscosity
solution to problem (10) subject to the boundary condition (11) exists.

4 Perturbative Solutions

Exact analytical solutions of (10) for the limit cases ¥ = 0 or v = 0 are well-
known (cf. Merton (1969, 1971) and Schroder and Skiadas (1999)). They are
given below for completeness, since they imply boundary conditions on the
candidate solution for the general case ¥ > 0, v < 1.

e Standard Merton’s Model (¥ — 0). The HIB equation is

1—7) (Jw)77 —1 2J3
(1=7) (Jw) _pJ_?]w

Y ww

0= +rWJw =: D%o(J(W)) s



where

(a—r)?
— 14
q 5oz (14)
and with solution
1 (e9oW) —1
Jomw) = e =1 (15)
p ¥
(v-1) < v <1 q r>>
gvo = In(p)+ In -+ - - .
"o (p) ¥ 1-y\y (v=1p »p

e Robust log utility investor (v — 0). The HIB equation is

9Ty

=-1 “1-pJ—— LW
0 n (Jw) pJ T — 02

+rWJw =:Dog(J(W)) ,
with solution

1
Jiog (W) = ;(IH(W)+90,19) ,
T
oo = In(p)—l+——t—c+ . (16)
p(1+3) *

To provide a solution to (10) we adopt a power series approach of the form

oo

J(W) = Z,—:J(i)(W) , W>0 . (17)

The functions (J(i) ) ieN

order term .J(®) which is the standard Merton’s solution (15). Inserting formally
this power series in the HJB equation (10) and ordering the result in powers
of the coefficients 1}, we get a an infinite hierarchy i = 1,2, ..., of differential
equations for the function J j =1,2,.... We proceed as follows:

are determined recursively, starting from the zeroth

e We first derive the hierarchy of equations. It turns out that for each i
an inhomogeneous Euler equation is obtained, whose homogeneous part is
independent of the stage ¢ of the hierarchy. Dependence on ¢ shows up in
the (complicated) inhomogeneous part.

e For each Euler equation appropriate boundary conditions are defined.

e We solve the hierarchy explicitly for ¢ = 1,2. These solutions provide us
with the first and second order robust corrections to the solution in the
standard Merton model and with exact comparative statics for the implied
robust optimal policies.

e Finally, we discuss convergence of the whole perturbation series and con-
struct the value function approximation of the robust Hamilton Jacobi
Bellman equation to any order.



We introduce the following notations which are used in Theorem 1 below. The
inhomogeneity of order k is defined by

R® =D, 4(S® (W) , k>0 ,

with the partial sums
(*) Zk L0
i (3
SV = A J , k>0
i=0

Finally, we define for any order k£ > 0 the boundary condition

. k
lim SO (1) = J) (W), (18)
where Jl(olc g) is the expansion of the solution (16) up to order k in the robustness

parameter ¢. These boundary conditions ensure that each order perturbation
theory converges to the corresponding asymptotic solution of a robust log-utility
investor. The next theorem characterizes the desired solutions and gives ana-
lytical expressions for the first order term.

Theorem 1 Assume that the differential equation (10) with the boundary con-
dition (11) has a classical solution® J(W).

1. For any k > 1 the function J*) in the power series (17) solves the inho-
mogeneous Euler differential equation

RE=D k!
0 = ——Fr—+r/®+ aWJE —a,w2g® . (19)
with
1

Y9v,0\ v—1 2

a; = (6 ’ )7 —r+ a ,GQZ%. (20)
p (v-1) (v=1)

2. For k =1 the Euler differential equation (19) reads
g‘y,OW Y 2
0 = —a (%) +pJ U 4o WIP —aW2 . (21)

3. The solution J) to the Euler differential equation (21) such that the
boundary condition (18) is satisfied for SU) is

(629"/,0 W2)‘Y
Ci ’

51.e. the solution is an at least twice continuously differentiable function of wealth.

JO W) =




where

a
Cr=p Y2y + 0 —1)+8) , 6= ——= 5=-L
as as
Hence, the solution to the robust HIB equation (10) up to O (192) 8
J=JO 4970 +0(9?) . (22)

The second order term in the approximation S(®) is more complicated than the
first order one. However, the proof of Theorem 1 already describes how it can
be computed. The result is the next corollary.

Corollary 2 The solution to the robust HJB equation (10) up to O (193) 8

2
J=JO 4950 4 %J@) +0 () (23)

where the zeroth and first order terms are given in (1) and Theorem 1, respec-
tively, and

_ W3’Y 1, a2tas
J@ = 1 +CWE ST 24
G +37(@e+ By —Da) 24

wit the constants q; given in the footnote belou®.

The second order term J(?) in the perturbation series is obtained by solving (19)
for k = 2 using the variation of constant formula and the explicit expression
for R in Theorem 1. Notice that the constant Cs is calculated using the
boundary condition (18) for k = 2. For the sake of brevity we omit the lengthy
calculations in the proof of Corollary 2.

5 First Order Asymptotics for Robust Optimal
Policies
Inserting the first order asymptotics (22) for the robust value function solu-

tion in (8), (9), the desired first order approximations of the robust optimum
consumption and investment policies are obtained”.

6

€797,0 €797,0
g = *EP,KOZ e , K1 = o
oo o Y(Kon) 7T + Koy (~2¢ + (7 — ).
2Ko (v — 1)
—4 (%K12(7 —1)%(Kov) 71 — Ko®K1v2q + L KoPy3q + K0K1273q)
= Ko?(y - 1)° ’
@ = ﬁ , q5 =1/(q2 — q4)? — 4q1qa.

C1, 9,0 and q are defined in Theorem 1 and in (14), respectively.
7Using Theorem 1, Corollary 2 and equations (8), (9), second order optimal policies can
be also easily derived.



Proposition 3 The first order asymptotics to the exact optimal policies (8),
(9), are:

1. For consumption,

eV9v.0 ‘YlTl ﬂp >
c= Wil—-—2 (e W) ) +0 (9?) .
(7)) 7w (1~ g ) 0 )

2. For the risky asset allocation,

a-—r1 ( C1 — 2v2p?

=Y ) p(1—7)Ci

(engOW)”> +0 (¥?) .

First order robust optimal consumption and risky allocation consist of the opti-
mal policy of a standard Merton investor and a further precautionary component
deriving because of a preference for robustness

Y9~,0 ’7%1 ¥ 79v.0 7711
(e ) W—ip (ey-y,OW)v <e , > W +0 (192) ,

o
I

p \(1 -7)Ch
Merto:lrl)olicy Robustness InduceIConsumption Term
(a—1) I G o\ (a=1) )
w = - (eI W)T [ — —2v%p +0 (¥7) .
o?(1=v) (1-=7C p o® (1 —7) (%)
MertorTPolicy Robustness Induced ifisky Allocation Term

By construction, for ¢ — 0 the robust rules converge to the standard optimal
consumption and investment policies of the classical Merton (1969, 1971) model

(a—r7)
o*(1—=7)’

On the other hand, for v — 0 the robust optimal policies converge to the first
order asymptotics for the optimal rules of a robust logarithmic investor which
are implied by the explicit solution (16):

e’Yg'y,O ~y—1
c—)( ) W, (@ —=0), w—o (¥ = 0)
P

c—>pW+O(192) , (v —=0) , w_}(a—r) (1—%)-}-0(192) , (v —0)

o2

(25)

Since for robust log utility investors optimal consumption is independent of

9, the first order consumption approximation in (25) coincides with the exact
optimal policy.

The robustness parameter ¢ affects directly both optimum consumption and
allocations to risky assets. Moreover, the impact of a preference for robustness
on the optimal rules is dependent on current wealth and risk aversion in a non
linear way. The exact comparative statics for the optimum consumption and

10



the optimal risky allocation policies are

ac p 910 - <6797.0>71

= = P __(etow W, y<l1

oY (1—7)01(6 ) p K

ow p p 7(01 2) (=)

o= P o) (22 = 4 <
59 Goa L ) ey

For given model parameters, the direction of the impact of robustness on optimal
consumption and investment is fully determined by the sign of the constants C
2 2
and Cl_cﬂ, which - computed explicitly - give
1

o () (5 )

—2~2)2 .
and a similar expression for Clc#. Therefore, the roots in v of the second

order polynomial equations C; = 0 and C; — 272p? = 0 characterize completely
the direction of the marginal impact of a preference for robustness as a function
of relative risk aversion.

Figures 1 and 28 illustrate the difference between the first order robust poli-
cies and the classical Merton policies in dependence of W and . For the given
parameter choice, we observe that the robust agent consumes more and invests
less in the risky asset than a comparable Merton’s investor. Moreover, as ex-
pected optimal robust consumption and risky investment are nonlinear functions
of current wealth W. Finally, notice that although the surfaces are smooth for
the plotted domain of 7y, singularities will arise on a broader parameter domain.
Such singularity issues will be discussed more precisely in the next sections.

6 First and Second Order Solutions: Some Nu-
merical Calculations

We illustrate the features of the above first and second order value function
approximations with some graphs based on the specific parameter choice used
in Figures 1 and 2. Figure 3 plots the value functions approximations for v = 0.1
and ¥ = 0.1. As expected, the zeroth-order solution is an upper bound for the
first and second order approximations. Moreover, for the given parameterization
the difference between the first and the second order terms is much smaller than
the one between the zeroth and the first order ones. This suggests that for the
given parameter choice the power series convergence is fast.

Figure 4 shows the joint dependence of the second order value function ap-
proximation on current wealth W and the risk aversion parameter v. We remark,
that the value function has for given wealth levels singularities w.r.t. - which
correspond to the roots of the equation Cy = 0. Therefore, the original robust

8The following parameters are chosen. The risk free rate r = 0.03, the volatility o = 0.2,
the time preference rate p = 0.04 and the expected return a = 0.1.

11



Consunption- Difference
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Figure 1: Difference between robust optimal consumption and the one of a
standard Merton investor.

optimization problem does not have a solution for all possible parameter choices
in the model. This indicates that a classical solution for the differential equation
(10) can only exist on a restricted parameter set. Indeed, in the next section
where we prove convergence of the perturbation series bounds on the parameter
values are needed to ensure convergence. Therefore, a viscosity solution of the
HJB (10) is not generally a classical solution on the whole parameter domain.

7 Perturbative Solutions to all Orders

In this section, we construct for any order k£ > 1 a solution of the HJB equation
(10) with boundary condition (11), by providing conditions for the convergence
of the perturbative series (17) to a smooth limit. The first step towards this
goal considers a O(9**2) asymptotics for the inhomogeneity R (19).

Lemma 4 For k > 1 the inhomogeneity of order k is given by
ﬁk-&-l
(k) — 2 (k) k+2
R = =M (7)) + 0 (947)
where the linear differential operator M is defined by

M (J0) = Mo ) — (M = M) i

12



Portfolio-Difference

Figure 2: Difference between robust optimal investment and the one of a stan-
dard Merton investor.

with constants My, My, M, given by

5
er9v.0 1 -1 3C) — 4v%p?
My = ——— (2 <—ew"’°> +q (7 )
(7—1)01< p p(y—1)
20e797.0
w, o= 2000
(v=-1)"C
Mo — P\ 2 (22— 1
2 v - 1 ev9v.,0 Cl p2

It turns out that the inhomogeneity of order k can be written, up to errors of
order O(9%1?), as a linear combination of the first two derivatives of J*). We
exploit this fact in the sequel together with the hierarchy of Euler equations for
J®) k> 1, given in Theorem 1. To clarify the structure of the argument let us
recall the homogeneous differential operator (cf. also (19))

D=p+aWow — as W20 (26)

where ay,as have been defined in Theorem 1. From the same Theorem and
Lemma 4 the hierarchy of equations implied by (19) reads

!
Dk _% RED = M (JED) 0 ), k21, 27)

13
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Figure 3: The value function J(® for the zeroth order approximation (upper
curve) in ¢, the first order one J(W) = J©O (W) 4+ 9JM (W) (lower curve) and
the second order one J(W) = JO (W) +9J1) (W) + 39272 (W) (middle curve)
(9 =0.1).

Since the homogeneous equation DJ*) = 0 has a known, k-independent, fun-

damental system, we can solve (27) using recursively k — 1-times the variation
of constant formula. For any k& > 1 this determines the k—th order value func-
tion approximation term J*) as a functional of the known zeroth order value
function term J(©. The resulting functionals have then to be summed over k
to analyze the convergence of the perturbation series to a (smooth) limit.

In order to write J*) as a corresponding functional of J(®) we first denote
the fundamental system of the homogenous equation DJ*) = 0 by (f1, f2) =
(We, W), where

10, — /01 — 1) — 40, 1— 6, + /(61 — 1)2 — 40,
a = 2 7b: )

and with d1,ds given in Theorem 1. Further, we adopt an adequate summation
notation to control for the number of arising terms when we solve recursively
J*) in terms of J(® with the variation of constant method. Specifically, for
A = {a,b} we define the sum ., , 4 g(ak,br) by

> glak,b) = gla,b) + g(b,a) .
(ak,bk)GA

14
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Figure 4: Plot of the second order value function as a function of wealth W and
the risk aversion index v (¢ = 0.1).

By applying the variation of constant method to (27), while using Lemma 4 and
the relevant boundary conditions in each order & > 1 of the recursion, we finally
can write

O EILEDY >y

(ar,br)EA (ar—1,br_1)EA (a1,b1)EA

x Wﬂk/W”kM(W“k—l/W”k—lM(
..M <Wa1 /W’“M (J(°>) dW) ) dW) dw . (28)

The functional dependence of J*) on .J(®) in (28) is too complicated to be used
for a direct convergence analysis of the given perturbation series. The next
Lemma provides a more manageable expression where J(*) is written as a linear
combination of powers of W.

15



Lemma 5 The k-th order value function reads
2 2 2
JB o Cpkeee Y Y Y Y Y
(ag,br)EA (ag—1,bp—1)EA (a1,b1)€EA =114 _1=1 i1=1

k k—1
Ry + 3 (an+bn)+ X mi, +k—1
n=0 n=0

€i1W
k m—1 m—1
I1 <h?1 + > bn m;, +m>
m=0 n=0 n=0
(29)
where
y fori, =1
m;, = .
vy—6 fori,=2
.. Y(Mo — Mi(y—1)) forii =1,
" yMo(y —1) fori; =2.
1O 2 forip =1 ‘
" 2v—6 forip =2

Lemma 5 immediately implies a set of characterizing conditions for the existence
of a twice continuously differentiable k-th order approximation term J*).

Corollary 6 The k-th order value function approzimation J*) is twice contin-
uously differentiable in W € (0,00) for any k > 1 if and only if

€1

; e #0 (30)
I1 <h?1+ b+ DY my, +m>
m=0 n=0 n=0
and
3]
ar >0, —>23-7), (31)
as

where the constants ai,as are given in Theorem 1.

Condition (30) in Corollary 6 guarantees that J*) has no singularities due to
model parameters. The second condition in (31) is technical, while the first one
can be interpreted economically. Indeed, the requirement a; > 0 is equivalent
to the condition

e79+,0 r
a—r )

a2(1—7) < a-—r (32)

Therefore, the admissible set of parameters must provide an optimal investment
strategy #__’"w in a standard (non robust) Merton’s model that is bounded by
the ratio of

671907,0 —r= (c_)v—l —-r, (33)



i.e., the difference between the marginal utility of the optimal consumption to
wealth ratio ¢*/W in the standard Merton’s model and the interest rate, and
the equity premium. We note that if we exclude the value W = 0, the value
function is infinitely differentiable in all wealth levels.

Lemma 5 also implies that to any order £ > 1 the k—th order value func-
tion term J) (W, ) is generically’ a continuous differentiable function on'®
(0,00) X (—00,1). Figure 4 illustrates the singularities arising in a a second
order approximation of the robust value function.

We can now finally analyze the existence of a power series representation of
the form

J(W) = i i—I:J(’“) (W), (35)

for the value function implied by the robust HJB equation (10). To this end, we
introduce the sequence of sets S*), k > 1, of k—th order singularities defined
by

k m—1
P - {(%p,a,g,r)eR5| H (27—6+an+m(7—6)+m>:0}

m=0 n=0

(36)

Thus -
S:=Js®
k=1

characterizes the set of model parameter values where at least a single value
function term J*) has a singularity. On the complement set S¢, no singularities
due to the model parameters in any order perturbation theory occur.

Further, notice that the proof of Lemma 5 implies that the second condition
in Corollary 6 - which gives the twice continuous differentiability of the k—th
order value function J*) - can be weakened to

a
a1>0,—1>

. k—H(9—27)—1—L(v—5)- (37)

kE+1

91.e. the set of parameter choices that leads to a discontinuous value function term in -y
and W has measure zero.

10This follows immediately from the denominator in (29), which determines the possible
singularities of J(¥). Indeed, when writing this term more explicitly we see that for any k > 1
the solution of the equation

k m—1
H<276+an+m(76)+m>0, (34)

m=0 n=0

defines the corresponding singularities set. The zero locus of (34) is a subspace of R5 spanned
by the parameters v, p, o, 0,7, and is a non-generic set.

17



This motivates introducing a set C(*) defined by

¢k .= {(7,p,a,a,r)€R5|a1>0,
@y b 9oy 1o F (2 5) hold true ﬂ(s<k>)c
as  k+1 v /7c-|-17 ’

which identifies the parameter values for which the value function approximation
S(®) is twice continuously differentiable. The set

C:= ﬁ c®)
k=1

then characterizes the subset of parameter values for which any k—th order
approximation term J®*) k > 1, is twice continuously differentiable. The next
Theorem gives the conditions for the convergence of the perturbation series (35)
to a classical solution of the HJB equation (10) with the boundary condition
(11).

Theorem 7 Consider the robust control problem (10) with the boundary con-
dition (11) and the formal perturbation series

TW)=>"
k=0

1. If (v,p,a,0,1) € C, then the formal perturbation series J(W) exists and
is twice continuously differentiable.

53

k
ST (W)

o

2. If the HIB equation (10) with the boundary condition (11) has a unique
twice continuously differentiable solution for a parameter domain D such
that D N C # 0, then the formal power series J(W) coincides with this
solution on the parameter set D N C.

8 Conclusions

We used perturbation theory to solve the robust control problem implied by AHS
(2000) definition of a preference for robustness up to all orders in perturbation
theory. We derived in closed form the first and second order approximation to
the robust Merton’s solution. We then computed comparative statics for the
optimal policies and characterized the sign of the marginal impact of a pref-
erence for robustness in terms of the model parameters. Further, we specified
conditions on the model parameters which guarantee the existence of a smooth
value function approximation to any order in perturbation theory. Finally, we
characterized the convergence of the formal perturbation series implied by the
obtained finite order approximations to a solution of the robust HJB equation.
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9 Appendix

In this appendix we provide the proofs to all propositions in the paper.

Proof. (Theorem 1) We have for k£ > 1 the recursion

w?"

(k) — g(k—1) (
S =85 +J 7

By definition, S®) is up to terms of order O (19’““) a solution of the k-th order
hierarchy equation

oo )T alsh)
g St 0 (5%)
+rWS‘(,€) , (38)

for any k > 1. We next expand (38) term by term in ¥. Using the expansion

(50) 77 = ()T g () T o o)

this gives for instance

oy (s)TT —) (8T - o
(1—7) ( ’I;V ) 1 _ (1-7) ( VI;/ ) 1 3 (J‘(/g))-y—l J$)19k_]:
+0 (19k+1) .

Doing similar expansions for all terms in (38) it follows

9] (19k+1) — R(kfl) (19)

2
1 (0) (J(O)) k
g )71 _ Jw (k) w ) |07
pJ® 4 ((JW) W+ 20 )JW q(J(O) )2JWW s
WWwW

ww
Hence, J‘(,I]ﬁ) is the solution of the inhomogeneous linear differential equation

k—1 o* k (0) = JI(/I(;) (k)
RED @) = dp® 4 (JW) =W 2= )
’ ww
W gk }
—-q 2Jww
ww
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Remark that the homogeneous part of this equation is invariant with respect to

k. Using the analytical expression for the zero order term J(©), this differential
equation reads more explicitly:

191@
REV @) = o (pI® +aWI — a2 y)

with aq,as given in Theorem 1. This proves part 1 of the theorem. To prove 2.,
we expand the inhomogeneity of order 0 in 9 to get:

R (9)

(1-7) (‘]53))ﬁ ! O q(‘lég))2
v (ngw 9. (J;3>)2)

Ca )T R ()

z R i
+0 (9?)
)2
) (JW)
R O +0 (%)
WWw

where we used that J(© satisfies the standard Merton’s differential equation.
Inserting the analytical expression for J(©) gives

o _ Y@-1r° 1 (o) )
RY = -3 (7_1)2< p >+O(19).

This proves part 2. To show the third claim we note that the general solution
JM) is (using the variation of constants method)

J A R ==
(e2oW2)” 1
TR S VR A

for some constants dy,ds. For v — 0 the following limits hold

ol 5220 2 o )

1
Y9y,0 \ ¥—1 2
(L) _7-+ q

(a=r)®
p (-1 * p—r—"—7
o= - = R
p \ p
62 = - (a—1)° — 62 =",
2(y—1)202
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implying

1674/ (67 —1)% 453 1-55+4/(61-1)2-45% 1
2 +do W 2

J(l) — J(l)* = d1W +?’
p?03

(v — 0).

As a consequence, to satisfy the boundary condition lim._,o S = Jl(olg), we

have to choose d; = d» = 0. This concludes the proof of Theorem 1. m

Proof. (Proposition 3) For the optimal consumption asymptotics it fol-
lows

¢ = (I +0) T +0 ()

(51 o) o

For the optimal allocation to risky assets we have

(a—r) Jw
L W (1-9- )

w o= -
o

(0) JOV (1)
(a—r) Jy w Jww | Iw 2
= w0 |V e w o || o)
Jww Jww Jww  Jw
The analytical expressions for J©, J(1) then imply
(a—r) < C1—29%p 7> 2
w = ——— |1+ ———— (e°'W + 0 (9°) .
7 (1= PRI R
[
Proof. (Lemma 4) By definition R*) is given by
1 2
(-7 (W) " -1 . ()
R®) = 5 —pS™) 4 rWS‘(,V) —q 5
N - . k k
— (58 -0+ (s)")
ACk) N _
o)

We expand R* term by term up to order O (19k+2). For any k£ > 1 it then
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follows using the definition of S(*)

(- (s9)"" 1

Ak —
y
B (k—1)\ 7T _ ) )
_ (1-9) (SW ) 1_(S(k_1))ﬁj(k)ﬁ
v w w k'
RS S (=) Caa (k)ﬁ ’ 2h+1
s ()T () row
vk =t .
= AR - (5)) T A +0 (0)
o o O 1 -1
_aqtk-n 9 o T ) )7 (1) (k)
= A w (W) - 7—1(JW) Tw' Tw
10 (9+2)
3 191@ ﬁ 19k+1 X
= AC 2 ()T - A 0 (949)

where A; is a function of J(© and J() only. For B*) we have
k k (k) k—1 o* k (k)
B = —ps®) 4y ws(p) = D 4 2 (—pJ< L )

Finally, after some computations

o _ (%)

o — 2 — k
(sh) +2s D%y

= — +0 (92F1)
k— k k k— k— k+1 k
St + 0 () s VY
— k=D
Dok (K WY (7)) _ 59 7(0) 7(k)
N QSI(,V)’;’C—!J‘(,V) A (SW) (JWW 201y, JW)
(1) 0\2 k! 2 1 ()2
S =0+ (1) (79w) (1+29 )
JWW JWW
+0 (9%+2)

= ¢c*=Y 4 op® _ g®) 4 O (9k+2) |

We now further expand the RHS of the last equality for C*) term by term. It
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first follows

(1) p* k)
Dk Sw i/
Sy, —v- (J(O))
(0

JW)ﬁk_J(k) -|-J( )19’“+1 JI(/I]ﬁ)

0 0 1
J£V>W —o- ()" - a0)

AT ot 7 ko
J(O) X —Jw +Di—— A +0 (19 ) ,
Ww

with D; defined accordingly. We also have for the remaining term
2
k) (0) ,(k 1
o (T - 200099 ()
k! 2 1) 70
(7)) (1+20 | 2 - L)
JWW JWW

ﬁ (%&9)2 J(k) _ﬁ (E J(k)_E J(k) )_‘_0(191@4.2)
k! (Jéyw)? ww — g (PrYw T B e )

E®)

with E7, Ey defined accordingly. Thus, by collecting terms we obtain

RrRF) = Rk-1)
(0)
9k o\ T J(O) . (JW ) .
e (7)) =W 2 | P - gL,
: Tww (J(O) )
wWw
gh+1 , ,
—— (4 + 2001 + B) 1Y) - B2y )
+0 (191»+2)
,19k+1 , ,
= ((A1 +2¢Dy + Ey) Ty — EQJWW) +0 (W2

using again Theorem 1. Computing Ay, D1, Ey, Es, explicitly it follows from
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the explicit form for J) in Theorem 1,

~

1 _ (1) o

L ;0N\ Jw 290 (1 1 )

A = — wo_ 2P [ 279400 Y9y, 0TI/ Y+
! =1 (JW) 7O T -0 \pf° e

0 1 0
g () =I) e  a
D, = W4 _ e <__L>Ww+1
Tiw (J53>W)2 (v-1)*\p* O
3 3
8, G
E, = 2( o )2 = ( )2 = ( 1)2evgw.owv+
JVI?W EeVﬂv,O W2v—4 Y —
P
and
o) (1 1) (7@)
v J£V>J§V)2_JWW (JV;,)
0 0
(7) (%)
__2pette sz_( p >3 2 (27(27—1) _L) ———
(y=1)°Cy v—1) e Ci p?
Summarizing, we thus obtain
k41
RF = —ﬂTM (J<k)) +0 (02

where M is the linear differential operator defined by
M(J) = (A1 +q@Di+E) Wy —q (RWH = BW=079) iy,

where the constants A;, Dy, Ej, are given explicitly above and
2per97.0 p \° 2 [2y(2y-1) 1
F1 = 72 5 F2 = — _2
(,Y _ 1) C, v — 1 e79~,0 Cl p

Proof. (Lemma 5) We first note that the action of the operator M on W#
for u € R is of the form

M (WH) = e; WYTH 4 e;, WITH6 (39)
with e;,, e;, defined in Lemma 5. The proof of the Lemma is then obtained by

induction starting from a ’correct guess’ for (29). Precisely, start by computing
M (J(©) in (28) using (39). Then, compute in the next step

W / WM (J(O)) AW
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and so on. By applying recursively this induction step to (28) the expression
(29) is then obtained. m

Proof. (Corollary 6) The exponent of W in (29) is positive after two
differentiations if and only if

(k+1)(1=6)+2y—6+k(y—6)+k—3>0, (40)

where we used the expressions for a,b given in Theorem 1 and the fact that
m;, = mo = 7 — 6. Rearranging terms and noting that as > 0 we get

n

ap 1

(9 —9~) —
a2>k+1( 7)

1— " (v—5).
1o

Since the right hand side is monotone in k, the proof follows by setting k = 1. =
Proof. (Theorem 7) We first consider the case W > 1. The assumptions

guarantee that there are no singularities for any J*), & > 1, and Lemma 5
implies:

[ 7(W)]
o] 2 2 2
ey Y Y LY Y YLy
k=0 (ar,br)EA (ar—1,br—1)EA (a1,b1)€A ip=11ip_1=1 ip=1
S SRV >)
h; + an+bn)+ mi, +k—1
9k e, W 1 w=o n=0
X F k m—1 m—1
[T (P2 + > but+ > mi, +m
m=0 n=0 n=0
o0 k
< V90 2221919_
- k!
k=0
04 3 (antba) b T
hi, + an+bn)+ > mi, +k—1
ei1W 1 =0 n=0
X max k -1 -1 ’
aj,bj,ij:j=1,... .k 0 m m
[ (W + 'S bt S mi, +m
m=0 n=0 n=0

where we used that there are 22* terms hidden in all summations apart for the
summation over k. Inserting the terms which lead to the maximum it follows

TW)| < eroo ig%ﬁ_k L el g (k1) (akb) ey
- =k (3y+b+k)k
< €190 ey, +eq,| i 22’”9_16_1 W2y (k+1) (atb)+ky
=k (3y+ bk
< €90 ey, + e, W2’Y+a+be419371+bW“+b+‘Y <o . (41)
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Therefore, the perturbation series converges for W > 1 under the given condi-
tions. For 0 < W <1 a similar bound can be derived, to get:

|J(W)]
— oor UF
V8.0 v
< Qe 2y
k=0
RO 4+ 32 (antb)t S k-1
i+ n+bn)+ mi, +k—
e, W R n=0
x b maxl k k m—1 m—1
aj,05,%5:=1,..,
H <h?1 + Z bn + E m;, +m>
m=0 n=0 n=0
oo k
< om0 22%19_ _ ety G4 (k1) (atb)+h(76)
= 25 By + b - 12)F
< M0 er, + 612|W2”’*6+““’e4’9t’erﬁWaerﬂi6 <00, (42)

The claims of the theorem follows from the W —exponent in Lemma 5 and
by noting that under the given conditions the power series of the first two
derivatives of J*¥) k> 1, can be bounded in a similar way. m

26



References

[1] Anderson, E., L.P. Hansen and T. Sargent, (1998). Risk and robustness
in geneal equilibrium, mimeo, University of Chicago.

[2] Anderson, E., L.P. Hansen and T. Sargent, (2000). Robustness, detection
and the price of risk, mimeo, University of Chicago.

[3] Chen, Z. and L. G. Epstein, (2000). Ambiguity, risk and asset returns in
continuous time, mimeo, University of Rochester.

[4] Cox, J. C. and C. Huang, (1989). Optional consumption and portfolio
policies when assets prices follow a diffusion process, Journal of Economic
Theory, 49, 33-83.

[5] Cuoco, D., (1997). Optimal consumption and equilibrium prices with port-
folio constraints and stochastic income, Journal of Economic Theory, 72,
33-73.

[6] Duffie, D. and L. G. Epstein, (1992). Stochastic differential utility, Econo-
metrica 60, 353-394.

[7] Fleming, W.H. and P.E. Souganidis, (1989). On the existence of value
functions of two-player, zero-sum stochastic differential games, Indiana
Univ. Math. Journal, 38, 293-314.

[8] Fleming, W.H. and H.M. Soner, (1992). Controlled Markov processes and
viscosity solutions, Springer-Verlag, New York.

[9] Gilboa, I. and D. Schmeidler, (1989). Maxmin expected utility with non-
unique prior, Journal of Mathematical Economics, 18, 141-153.

[10] Hansen, L. P., T. J. Sargent, and D. Tallarini, Jr., (1999) Robust Perma-
nent Income and Pricing, Review of Economic Studies, 66, 873-907.

[11] Hansen, L. P., T.J. Sargent, G. A. Turmuhambetova and N. Williams,
(2001). Robustness and uncertainty aversion, mimeo University of
Chicago.

[12] Kim, T. S. and E. Omberg, (1996). Dynamic nonmyopic portfolio behav-
ior, Review of Financial Studies 9, 141-161.

[13] Kogan and Uppal (2000). Risk aversion and optimal portfolio policies in
partial and general equilibrium economies, Preprint, University of British
Columbia, Vancouver.

[14] Liu, J., (1998). Portfolio selection in stochastic environments, Working
paper, Stanford University.

[15] Merton, R., (1969) . Lifetime portfolio selection under uncertainty: the
continuous time case, Review of Economics and Statistics, 51, 247-257.

27



[16]

[17]

[18]

[19]

[20]

Merton, R. C., (1971). Optimum consumption and portfolio rules in a
continuous time model, Journal of Economic Theory 3, 373-413.

Schroder, M. and C. Skiadas (1999) Optimal Consumption and Portfolio
Selection with Stochastic Differential Utility, Journal of Economic Theory,
89, No. 1, 68-126.

Souganidis, P.E., (1999). Two-player, zero-sum differential games and vis-
cosity solutions, in Stochastic Differential Games: Theory and Numerical
Methods, Bardi, M. et al. (editors), Annals of the International Society of
Dynamic Games, Birkhiuser, Boston.

Wachter, J., (1998). Portfolio and consumption decisions under mean-
reverting returns: An exact solution for complete markets, Working paper,
Harvard University.

Yong, J. and X.Y. Zhou, (1999). Stochastic controls: Hamilton systems
and HJB equations, Applications of Mathematics, Stochastic Modelling
and Applied Probability, vol. 43, Springer, New York.

28



