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Abstract

Prices or returns of financial assets are most often collected in local times of the trading
markets. The need to synchronize multivariate time series of financial prices or returns is
motivated by the fact that information continues to flow for closed markets while others are
still open. We propose here a synchronization technique which takes this into account.

Besides the nice interpretation of synchronization, the method potentially increases the
predictive performance of any reasonable model and is more appropriate for the calculation
of portfolio risk measures such as for example the expected shortfall. We found empirically
that this was the case for the CCC-GARCH(1,1) model for a 7-dimensional time series of
daily exchange rate returns. Since multivariate analysis is generally important for analyzing
time-changing portfolios and for better portfolio predictions (even when portfolio weights
are time-constant), synchronization is a valuable technique for a variety of problems with
multivariate financial data.

Keywords. CCC-GARCH model, Expected shortfall, Multivariate time series, Likelihood
estimation, Value at Risk.

1 Introduction

The time of measurement of daily financial data, typically the closing time, is often different
in markets which do not have the same trading hours. For example, between US and Japan
there are no common open hours and between US and Europe there is only partial overlap.
Therefore, the value of real global portfolios constructed on daily data across different markets
is never known at a fixed point in time and consequently the calculation of risk measures such
as the Value at Risk (quantile of the Profit-and-Loss distribution of a given portfolio over a
prescribed holding period) and the conditional Value at Risk or expected shortfall (the expected
loss given that the loss exceeds VaR) could give misleading results. A consequence of using such
asynchronous data is the fact that correlations across the assets are often small, see Burns et
al. (1998). This may lead to inaccurate (estimated) risk calculations such as VaR or expected
shortfall.

We propose here a synchronization of daily data in real global portfolios. Proceeding as in
Burns et al. (1998), our general approach recognizes that even when markets are closed, the
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asset values may change before the market reopens. Synchronizing data involves estimates of
asset values at a specified (synchronization) time point in every day; we always use the closing
time of the New York stock exchange, i.e. 4 pm local New York time, as the synchronization time
point. The estimated asset values at the same synchronization time across markets are called
synchronized. Having constructed synchronized data, we then propose to use any reasonable
multivariate model for the synchronized data. This is different from Burns et al. (1998) which do
not model the obtained synchronized data any further. We consider here the CCC-GARCH(1,1)
model (Bollerslev, 1990) with time varying conditional variances and covariances but constant
conditional correlations for synchronized data which represents a different and new model for
the original asynchronous data. This new model is called synchronous CCC-GARCH(1,1) and
is presented in Section 2.

In Section 3, we compare empirically the performance of the results obtained with syn-
chronized and asynchronized data, using the same multivariate CCC-GARCH(1,1) model. The
analysis is for a real global portfolio with negative daily log-returns (in percentages) X;; =
—100 - log % of seven indices all over the world, where S; ; denotes the price of the asset ¢ at

day ¢ (time synchronized or asynchronized, respectively). In Section 5, we discuss the influence
of synchronization on the calculation of risk measures such as VaR and expected shortfall.

The resulting gains when using synchronous data are sometimes considerable, depending
on how we measure performance. We argue in Section 4 that these relevant gains are not due
to strong model-misspecification of the volatilities in the CCC-GARCH(1,1) model with asyn-
chronous data. More sophisticated threshold models with asynchronous data like the multivari-
ate extension of the univariate tree-structured GARCH model (Audrino and Biithlmann, 2001),
which constructs a potentially high dimensional approximation of a general non-parametric CCC
model, yields only marginal improvements over the standard CCC-GARCH(1,1) model. Thus,
it emphasizes the power of synchronizing data in a first step.

Our empirical comparisons in Sections 3 and 5 also include univariate approaches for a
portfolio index price

b = Z%’St,z‘ (1.1)

modelled by previous P;_1, P;_s,---. Note that in the more realistic case where the weights «o; =
ot ; are depending (deterministically) on ¢, stationarity of all {S;;}+ is not implying stationarity
of the portfolio prices {P;};; but a multivariate analysis of {{St,z‘}t; i=1,--- ,M} still yields
the (conditional) distribution of P, (given the past). It turns out that even when focusing on a
time-constant portfolio index as in (1.1), multivariate approaches are better than sophisticated
univariate modelling of P; based on P;_1, P;_o,---, which is exposed to an information loss by
averaging previous individual prices.
Summarizing, we collect strong empirical evidence that:

1. the multivariate modelling approach is superior over univariate models for a portfolio index
as in (1.1). In particular, we find that univariate modelling yields estimates which are too
conservative.

2. synchronizing data, proposed here as a novelty, leads to further improvements in multivari-
ate modelling and in calculating risk measures.



2 The synchronous CCC-GARCH(1,1) model

2.1 Synchronization of the data

Consider a global portfolio including stocks traded in New York and London. At the closing time
of the trading in New York, the value of the portfolio should be measured with an estimate of
the value of the London stocks at the closing time in New York. For example, to take the closing
prices of the London stocks at one day when the US market goes down 1 percent (after London
closes) for pricing the portfolio at New York closing time is highly unrealistic. It will follow
that the US share of the portfolio declines today while the London share declines tomorrow. We
associate with synchronization some estimates of the prices of the share traded in London at
the closing time in New York (from the viewpoint of a British investor, the data could also be
synchronized at the closing time in London).

We denote by S;;, 7 =1,--- M the continuous time price of an asset j. The time ¢ is here
always measured as New York local time (in units of days) and ¢ € N corresponds to 4:00 pm
New York local time on day ¢. For example, 51,1 denotes the price of an asset of the NYSE at
4:00 pm New York local time on the first day. Since 4:00 pm corresponds to 9:00 pm in London
and since London closes at 5:00 pm, 4 hours before New York closes, the observed closing price
of an asset in London on the first day would be denoted by Spg32. This is also illustrated by
the following Figure.

closing time closing time

of London asset of London asset

at day 1 at day 2

@] 0.83 1 1.83 2 NY local time
closing time closing time

of NYSE asset of NYSE asset

at day 1 at day 2

Generally, the observed data is taken at closing times of different markets. It has the structure

S5 =1,---,M), where
tj:tl—Cj (OSCjél), j:2,,M

We always synchronize to the closing time ¢; (in New York) of asset j = 1, where t; €
{1,2,---,T}. The goal is to construct synchronized prices S;; with t € {1,2,.-- T} for all j.
These prices, or returns thereof, are more appropriate for many multivariate discrete time series
models.

We define the synchronized prices Si; by

log( f,j) = E{log (Sm-) | ]:t], where F; = {StN- st <t g=1,... ,M}. (2.1)



The logarithms are used to be consistent with continuously compounded returns, and F; is the
complete information of all recorded prices up to time t. We usually only need S? j for discrete
teN={1,2,...}.

Clearly, if the closing price S is observed at time ¢ € N, then its conditional expectation
given F; is the observed price. This is the case for the stocks from New York. If the market
closes before t, then its past prices and all the other markets are potentially useful in predicting
S at time t.

As a simplifying but reasonable approximation, we assume that, given the information F;,
the best predicted log-prices at ¢ and at the nearest succeeding closing time ¢; + 1 remain the
same, saying that future changes up to ¢; + 1 are unpredictable

log (S;,) = E[log (Si;) | ft} - E[log (St15) | ft}, t<t<t;+1(teN). (22

The first equality holds by definition in (2.1). Thus, given the information at time ¢, the
next predicted future values are given by the log-transformed synchronized prices.

Now, denote the vector of negative log-returns (in percentages), in different markets and at
various time points on day t as Xg,

S 3
log (5,57)
X = —100 - : =100 (log (S¢) — log (S-1)). (2.3)
St M
log (Stwj\il,]vl)
where t = (¢1,t9,--- ,tp) is a multi-index.

We define the synchronized returns as the change in the logarithms of the synchronized prices

X5 = 100 - : = ~100- (log (S7) — log (Si_1) ), t € N. (2.4)

The synchronized returns are depending on unknown conditional expectations and have to be
modelled (and estimated). We assume a simple “auxiliary” multivariate AR(1) model for the
synchronization, given by

Xi=A-Xi_1+ ¢ s (25)

with errors €; such that Ele; | F;—1] =0, and A a M x M matrix. Contrary to the approach of
Burns et al. (1998) which propose a first order vector moving average, we choose a synchroniza-
tion which is somewhat simpler since E[X¢|F;—1] in (2.5) depends only on the previous X¢_1
(as in a Markovian model). As we will show in (2.6), the synchronized returns with (2.5) are
then functions of Xy and X¢_1 only and not of unobservable innovations €; (or infinitely many
lagged variables X¢_1,X¢_2,... as in Burns et al. (1998)

Substituting (2.2), (2.3) and (2.5) into (2.4) gives the synchronized returns as

X5 = —100 - (log (S5) - log (sg,l)) = —100- (E log (Se41) | 7] — E [log (St) | fH])

- 100 - <E llog (S¢+1) — log (St) | 7] — E [log (S¢) — log (S¢—1) | Fi—1] + log (Sst >>

=E X¢p1 | A —E [Xe | o] + Xe =X+ A4- X — A X g,



and thus
X=Xy + A (Xt - XH) . (2.6)

Clearly, if A is the zero matrix, Xj = X and the data are already synchronized. Since the New
York market data are already synchronized, the row of A corresponding to the New York stocks
is a zero row.

Computing synchronized returns from (2.6) boils down to estimation of A in model (2.5) or
a more specific version. The estimation procedure is described in Section 2.3.

2.2 The model

For the synchronized returns, we consider the standard CCC-GARCH(1,1) model, introduced
by Bollerslev (1990):

Xi=p+e=pw+3 2 (eZ),

X;=X¢+ A (Xe—Xgo1) = (I + A) Xy — A Xy, (2.7)
where we make the following assumptions:

(A1) (Z¢)iez is a sequence of i.i.d. multivariate innovation variables with spherical distribution
(e.g. the multivariate normal or the multivariate t distribution) with zero mean, covariance
matrix Cov(Z;) = Iy and Z; independent from {X7 , k < t};

(A2) (CCC construction) X§(Xf) = H; is almost surely positive definite for all ¢, where the
typical element of Hf is hf;, = p5; (S, b3, )7, for i, =1,..., M;

(A3) (GARCH(L,1) part) i,y = (07,) = af + o’ (Xiy,)? + 89 (07.1,)7 , with af,af,
@ >0fori=1,...,M;

(Ad) pi = EX} | Fic1]) = (Unw + A) EX¢ | Fioa] — A X1, EXe | Fioa] = A X
(as in (2.5)).

We call this the synchronous CCC-GARCH(1,1) model. Note that p;; in (A2) equals the constant

conditional correlation Corr(Xzi, ij | .7-},1).

Proposition 1.
Assume that the matriz (Ing+ A) is invertible. Then, the synchronous CCC-GARCH(1,1) model
(2.7) can be represented with asynchronized returns Xg:

Xe=A-Xg 1+ Iy +A)71 25 Z (2.8)
where the matriz ¥ has the same CCC-GARCH(1,1) structure as defined in (2.7).

Proposition 1 implies that the synchronous CCC-GARCH(1,1) model is still a constant
conditional correlation model (in terms of asynchronized data). Moreover, we should view it as
a super-model of the classical CCC-GARCH(1,1): setting A = 0 yields the classical sub-model.
Generally A is a sparse parameter matrix whose structure will be estimated from data, see
Section 2.3.

Proof of Proposition 1. Using (2.6) and the fact that X¢_1 € F;_1, we calculate the conditional
mean of the synchronized returns as

s :E[Xf | ft,l} :E[(IM +A) X | ft,l} —E[A-XH | ft,l} -
= (Inr+ A) “E[Xq | Fra| = A Xeoa = (I + A) iy = A Xyq =
=(In+A) A Xgq1—A Xg1 =A% X1 .



It follows that (2.7) is equivalent to ~ X§ = A%-X;_ 1+ %f Z¢. By (2.6), we obtain the assertion:

Xi=(In+A4) Xe—A-Xg1 =A% X1+ 3§ Zs
= Xo=(In+A) A+ 4 Xea+ (In+A)7 55 Z
= Xe=A X+ (I +A) 725 Zg

2.3 Estimating the model

Model structure. The synchronous CCC-GARCH(1,1) involves the matrix A: we insist on sparse-
ness by setting some elements (to be selected from the data) to zero. This is important to reduce
the number of parameters in the case of high-dimensional portfolios with dozens up to hundreds
of assets. We proceed with a computationally fast and feasible procedure for estimating the
structure (the non-zero elements) of the matrix A; the actual values of A will then be estimated
by maximum likelihood in the working model in (2.7).

Step 1. Find the estimates for the M? parameters of the matrix A and for the matrix
Y using the Yule-Walker estimator. The Yule-Walkers covariance relations for a multivariate
AR(1) model are given by

RO)=R(-1)-A+Y=RQ1)-A+3%
R(1) = R(0)- A", where R(k)=E[X; k- X¢] .

For more details about the Yule-Walker estimator, see Brockwell and Davis (1991) or Reinsel
(1991).

Calculate some model-based standard errors of the estimated elements of A using a bootstrap
strategy, i.e. an i.i.d. resampling of the residuals estimated from our working model (2.7) with
full matrix A and recursively generating a time series using the fitted parameters in model (2.7);
this is called a semiparametric model-based bootstrap, for more details see Efron and Tibshirani

(1993)
B _
s.e.(ﬁij) = \/\m = ﬁ Z (2:] ®) ~ A\*ij)Z)

b=1

where A\*ij = % Z{il A\:] () A\:] ®) is the estimate of the ij-th element of the matrix A in the
b-th bootstrap iteration and B is the number of bootstrap iterations.

Step 2. Set A;; = 0 if the t-ratio

~

tij = Y| <1.96 (5% significance level)

s.e.(Aij
and Ay; = 0 for all j corresponding to the New York stocks.

Parameter estimation. The parameters A, oz(()j), agj), B9, Py (j = 1,--- ,M) in the syn-
chronous CCC-GARCH(1,1) model can be estimated with the maximum likelihood method.
We usually assume the innovations Z; to be multivariate ¢, distributed with zero mean and



covariance matrix Cov(Z;) = Ips, where the degrees of freedom v have to be estimated as well,
i.e. Zy ~ t,(0,1p). The negative log-likelihood is then given by

M+v T
—1(0;X3) = glog(mx)—Tlog (F(Té))) +§1Og\RS | +Z<longf | >+
t=1
v L SV (RS)~1es
+M;' Z(]og(l—i-%))—T]og(’(IM—i—A)’), (2.9)
t=2

where H} = D;R°D; and from the CCC-construction, D; a diagonal M x M matrix with
diagonal-elements o7, ...,07,,, R® = ['ij]lgi,jSM and € = (D§)~1(X§ — pf); 0 denotes the
vector of all parameters involved and X; = X; + A(X; — X;_1) as before. Also, we use the
sparse structure of the matrix A as described above.

For preliminary R® = I,;, we estimate the remaining parameters A, oz(J ) ag '), £) (j =
1,..., M) by minimizing the negative log-likelihood in (2.9). This yields estimates i} = (ii; 1, - -, I M)
and 67;, j =1,..., M. Then, we construct the estimate for the correlation matrix R* as follows:

build the residuals

gtd (Xt] :&f,])/o-t]a = T

and define
AS -1 Z €t€t s <€t €t71, ce ,ét7M)T. (210)

We can then iterate (once) by minimizing the negative log-likelihood in (2.9) using R* from
(2.10).

3 Numerical results

We consider a real global portfolio of seven market indices: US Dow Jones Industrial Average
(DJIA), French CAC40 Index, German Deutsche Aktien (DAX), Italian BCI General Index,
Dutch CBS All-Share, UK FT-SE-A All-Share Index (FTAS) and Japanese NIKKEI 225 Average
(NIK). The daily data is from the time period between January 17, 1990 and June 22, 1994,
corresponding to 1000 days without holidays in the different countries. The closing times of the
seven market indices are given in the following Table. We use here (negative) relative difference

Index Closing local time | Closing NY local time
NIKKEI 3:00 PM 2:00 AM
CBS 5:30 PM 11:30 AM
BCI 5:30 PM 11:30 AM
CAC40 5:30 PM 11:30 AM
FTAS 5:00 PM 12:00 PM
DAX 8:00 PM 2:00 PM
DJIA 4:00 PM 4:00 PM

. St;,i=St:—1,5 .
returns (in percentages) Xy, ; = —100 - Jst]fljj, where Sy ; denotes the price of the asset



J at the local closing time t; of the day ¢, because they are close approximations of the log-
returns and because they allow for much simpler portfolio and risk computations; see Section
3.3 for more details on the construction of the negative portfolio returns. Nevertheless, we still
synchronize such relative difference returns as in (2.6).

The aim is to support empirically the effect of synchronization and to compare the syn-
chronous CCC-GARCH(1,1) model in (2.7) with the asynchronous classical CCC-GARCH(1,1)
model. For the numerical optimization, we use a quasi-Newton method.

3.1 Estimate of A and synchronization

We examine here first the effect of synchronization from a descriptive point of view. The
parsimoniously estimated matrix A is obtained from the procedure for structure determination
illustrated in Section 2.3 and from maximum likelihood in (2.9):

0 0 0 0 0 0 0
0.2223 0 0.0189 0.0212 0 0 -0.0663
0.3012 0.0873 -0.0086 0 0 0 -0.0916
A= 0.2883 0 0 0 -0.0107  0.0970 -0.0164 | , (3.1)
0.2493 0 -0.0033 0 0 0 -0.0401
0.1749 0 0 0.0073 0 0.0412 -0.0507
0.3168  0.0510 0 0 0 0 0

where the variables are ordered as DJIA, CAC40, DAX, BCI, CBS, FTAS, NIK. The column
with the largest coefficients corresponds to the DJIA: there is substantial predictability of all
other markets from the DJIA at the previous day. Besides a major determining effect of the
US market for the financial world, the observed pattern is natural since the exchange in New
York closes last. There seems to be also predictability of all other markets from the Japanese
returns (NIK), although in this case, the coefficients are small and negative. The negative sign,
which seems to work as a kind of correction impulse for the European indices, could be explained
by some joint effect from the DJIA and the NIK index and could be a consequence of the big
impact of the US on the Japanese market. The German DAX and the British FTAS seem
also to be autocorrelated. The coeflicients which correspond to the three markets which close
simultaneously (French, Italian and Dutch) are all equal to zero except for two which are still
close to zero but have t-ratios (from Section 2.1) smaller than 2.3. All the other coefficients have
t-ratios greater than 3 except the three negative coefficients in Germany and the —0.0164 and
—0.0401 in Japan.

Using A from (3.1) and the synchronization formula (2.6), we obtain the synchronized returns
)Aif . The effect of synchronization in terms of empirical correlations is described in Table 3.1:
synchronized data often exhibit larger instantaneous correlations between different returns from
indices at the same day.

TABLE 3.1 ABOUT HERE.

The empirical correlations are typically too small for highly asynchronous markets. This is the
case for example of the US and the Japanese markets: the empirical correlation between DJIA
and NIK is much bigger when synchronizing (0.328 vs. 0.189). Of course, there is no reason to
believe that synchronization generally yields higher correlations. This result is consistent and
similar to the analysis in Burns et al. (1998).



3.2 Estimates for the synchronous CCC-GARCH(1,1) model and its perfor-
mance

The parameters are estimated by maximum likelihood as in Section 2.3. For quantifying the
goodness of fit of the models, we consider the following statistics:

the AIC statistic : — 2 log-likelihood + 2 # parameters
the outsample — log-likelihood : — log-likelihood (ilT, A, v, R?, {a((]j), agj)ﬁ@; j=1,--- ,M})

where Xip = )~(1, ceey )~(T are new test data and the parameter estimates, equipped with hats, are
from the training sample X' = X;,...X,,. The likelihood itself is given in (2.9). Both quantities
are measures for out-sample performance: their values (low is better) indicate closeness to the
true data generating model with respect to the Kullback-Leibler divergence. In our analysis, we
take n = 1000 and the test set values X7 = XZI?OO are the next 500 consecutive observations
(days between June 23, 1994 and September 9, 1996). We take T' = 500 (little more than two
years), because it seems a reasonable time period where the multivariate return series of the
seven indices are believed to be (at least approximately) stationary.

The resulting values for the AIC and the out-of-sample negative log-likelihood statistic are
19058.6 and 4235.798 respectively using the synchronous CCC-GARCH(1,1) model and are
19136.796 and 4284.736 respectively using the classical CCC-GARCH(1,1) model without syn-
chronization. The synchronous CCC-GARCH(1,1) model is better than the asynchronous CCC-
GARCH(1,1) model with respect to both goodness of fit statistics, although the difference is
small (in order of 1 percent). Such small differences could be obscured by low signal to noise
ratio. It is often useful to consider differences of performance terms and use the concept of
hypothesis testing, rather than quantifying differences in terms of percentages.

We consider the differences of each term in the out-of-sample negative log-likelihood,

D; = Ut;sync - Ut;asynca t=1,---,T,

where
T

Z ﬁt;model = outsample — log-likelihood .
t=1

Note that, up to a change of signs, lA)t is the difference between deviance residuals, see McCullagh
and Nelder (1989). We are now testing the null hypothesis that the differences ﬁt have mean
zero against the alternative of mean less than zero, i.e. the estimates from the synchronous CCC-
GARCH(1,1) are better than the ones from the asynchronous classical CCC-GARCH(1,1). For
this purpose, we use versions of the t-test and sign-test, adapted to the case of dependent
observations. The t-type test statistic is

D 1 &
VT — , whereD:T ;Dt. (3.2)

O D;co

In (3.2), 8%;00 = (277)]%(0), where J%(O) is a smoothed periodogram estimate at frequency

zero, based on ]31, ..., Dp; see for example Brockwell and Davis (1991). The motivation for this
estimate is based on the assumption that {D;}, is stationary and satisfies suitable dependence



conditions, e.g. mixing. Then

ﬁ(ﬁ_ E[ﬁt]) = N(O’ 02D;oo) (T - OO) >

+o0o
0ho = Y Cov[Do, Di] = (27)f5(0), (3.3)

k=—00

where fﬁ(O) is the spectral density at zero of {D;};.
Thus, using (3.3) for the test statistic in (3.2)

NG — N(0,1) (T — o) (3.4)

OD;c0

under the nullhypothesis. The observed value for the test statistic (3.2) equals —1.7077 with
a corresponding P-value of 0.044 indicating at the 5% significance level that the synchronous
model is better.

The version of the sign test is based on the number of negative differences

—

Wt:I{ﬁtSO}’ t=1,...,7T,
for the null hypothesis that the negative differences /Wt have mean % against the alternative of

mean bigger than % The test statistic is given by

w-1 1
T 2, where W = — :
VT F— where W T ;Wt (3.5)

and 8124,;00 as in (3.2) but based on Wl, e ,WT. As in the derivation of the t-type test above,

we have .

\/T?_E:N(O,l) (T — o) (3.6)

OW ;00

under the nullhypothesis. There are 307 negative differences (of total ' = 500) and the observed
value of the test statistic is 1.661 with a corresponding P-value of 0.048. Therefore, this test
leads to the rejection of the null hypothesis at the 5% significance level, implying a preference
of the synchronous over the asynchronous CCC-GARCH(1,1) model.

Finally, we illustrate the resulting estimates of the synchronized returns obtained from the
synchronous CCC-GARCH(1,1) model.

FIGURE 3.1 ABOUT HERE.

Figure 3.1 indicates that synchronization has primarily an effect on returns of small or medium
absolute size. In spite of this, if we consider a sample of the synchronized returns on a day (for
example May 8, 1990) with an extreme negative return we see that synchronization increases the
value (in absolute terms) of the negative asynchronized returns (6.614 vs. 6.143 for the CAC40
index, 7.111 vs. 6.515 for the DAX index, 3.833 vs. 3.240 for the NIKKEI index and so on)
implying that the losses will be underestimated when using the asynchronized returns for the
calculation of the portfolio value at New York closing time.

10



3.3 Estimating the performance at the portfolio level

We now examine the effect of synchronization for the estimation of volatility in a portfolio.
Denote by P; the price of a portfolio at day ¢

7
Pt:ZOéi Stﬁ' tzl,...,m. (37)
=1

This portfolio employs a constant asset division. For illustrative purposes, we use the data S; ;
from before and choose a; = 0.4, as = ... = ag = 0.08 and a7 = 0.2, corresponding to the
volumes of the different stock exchanges. We also translate all the prices to US dollars, using
daily currencies. It is known that the (negative) portfolio returns A; at day t become then a
linear combination of the individual (negative) asset returns Xy

P — P

Ay = —100 - =f6,_1X
t ( Pt—l ) ﬁt—l t
St—1
1=y tooi=1,...,7 3.8
i =i 5 (35)

Our general model for Ay is
Ay = pp + € = py.p + o, pZy,

where 1y p € R and o p € Rt are measurable functions of 71 (see (2.1)).

We compare portfolio volatility estimates from multivariate synchronous and asynchronous
CCC-GARCH(1,1) models with the ones from a classical GARCH(1,1) univariate analysis (and
extensions thereof) for the portfolio returns A;: all give rise to different p; p and o p above.
Note that in the more realistic case, the weights o; = a;; are depending on ¢. As a consequence,
the univariate analysis of the returns A; is inappropriate, because the returns of portfolio prices
would typically be far from stationary. For univariate analyses based on returns A, we always
assume the model

Ay =y p+ e = dN—1 +or.p Zt, (3.9)

where o p is a measurable function of previous returns A;_1,A;—o,... and ii.d. innovations
Zy ~ /(v —2)/vt,. The scaling factor \/(v — 2)/v is used so that Var(Z;) = 1. The univariate
GARCH(1,1) specification is

2 2 2
opp =aotai€_y + 0oy p, €1 = A1 — A9,

where ag, 1,3 > 0. The negative log-likelihood, conditioned on the first observation A; and
some starting value o1 p, (e.g. the square root of the sample variance) is then

t=2

c(v)orp

c(v) = (v —2)/v)"/2, (3.10)

where f;, denotes the density of the univariate ¢, distribution. Minimizing the negative log-
likelihood yields estimates iy p = QASAt,l and Etzp =qp + ale%_l + 30}2_1 p-

With the multivariate synchronized CCC—GARCH(I,I) model, we calculate estimates of the
portfolio conditional means fi; p and variances 3? p, t=1,...,n as follows. We always take
the innovations Z¢ of the model in (2.7) or (2.8) to be multivariate ¢, distributed (v unknown)

11



with zero mean and covariance matrix Cov(Z) = Ip;. Using the representation in Proposition
1, assuming that (Ip; + A)~! exists, it follows that the asynchronized returns X given the
information up to time ¢ — 1 are multivariate ¢, distributed

Xe | Fror~ty(AXeor, I+ A7 S (I +A)71 E5)).

Now, using a nice property of elliptical distributions (see Fang et al., 1990) we find that the
portfolio return A; given the information up to time ¢ — 1 is univariate t,, distributed with the
following mean and variance:

Ap| For ~ b (Boy A Xeor, By (I + A)7HSF (B (I + A) 7 5))),
where the vector of coefficients (3;_1 is given in (3.8). Thus, we calculate

fop=0_1 AXea and
oip=0_1 (In +A)TIE (B U+ AR

where A and if are the maximum likelihood estimates in the model (2.8). The estimates from

the classical asynchronous CCC-GARCH(1,1) model are of the same form, but with A = 0 and
itasynch.‘

The predicted portfolio conditional mean and variance estimates with the synchronous and
the asynchronous CCC-GARCH(1,1) and the univariate GARCH(1,1) model are plotted in Fig-
ure 3.2.

FIGURE 3.2 ABOUT HERE.

The predicted volatilities are substantially larger when using the univariate approach. The differ-
ences between the two multivariate methods are (visually) much smaller. The conditional mean
in the synchronized model is small (relative to the magnitude of the square root of conditional
variance).

Now, we test the goodness of the residuals

A —a
Zy=2tBOP g T (3.11)

0t P
in different models. Here A, is from new test set data Ani1, .- Anisoo over the next 500 days;
fir.p and 0y p are from the different models, estimated with the training data Ay,..., A, but of

course evaluated using the immediate lagged values in the test set.

We are particularly interested in the null hypothesis that the dynamics of the (negative)
portfolio returns follow model (3.9) against the alternative of a misspecified model. Under
the null hypothesis, the statistic v/7Z is standard normally distributed. The observed values,
and the corresponding P-values (given in parenthesis), of the test for the synchronous CCC-
GARCH(1,1), the asynchronous CCC-GARCH(1,1) and the univariate model are —1.859 (0.063),
—2.201 (0.0277) and — 1.534 (0.125), respectively. It shows that the model assumed for the
portfolio returns is rejected only by the asynchronous CCC-GARCH(1,1) model.

For quantifying the goodness of fit of the models, we consider again the outsample log-
likelihood performance

portfolio outsample negative log-likelihood: — log-likelihood (5{, Lt:p, Ot Py ’1)),
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where, as in (3.11), 5{ = AZI?OO are new test set data and [, p,0; p are estimated from the
training data. The log-likelihood is from (3.10). In addition, we also consider the following
statistics:
n
IS-PL; = Z | 32}3 — (A — ﬁt7p)2 ', i =1,2, (in-sample prediction loss),
t=1

T
OS-PL; = Z | 3?,P - (ﬁt - ﬁt,p)2 ', i = 1,2, (out-sample prediction loss).
t=1

The OS-PL statistics and the portfolio outsample log-likelihood are measures for predictive
performance. For this reason, we consider them as more important than the in-sample IS-PL
statistics.

These statistics are given in Table 3.2 for the multivariate synchronous and asynchronous

CCC-GARCH(1,1) model and for the univariate GARCH(1,1) model.
TABLE 3.2 ABOUT HERE.

Analogously to the results obtained in the Section 3.2, we also find at the portfolio level that the
synchronous CCC-GARCH(1,1) model is better (with respect to all goodness of fit measures)
than the asynchronous classical CCC-GARCH(1,1) model and than the univariate approach.
We can also see that the improvement in this case is more relevant than at the multivariate
level, in particular with respect to the OS-PL performances (5-10% less). Also, multivariate
modelling shows substantial advantages over the univariate GARCH(1,1) analysis, even without
using synchronization.

As mentioned in Section 3.2, more impressive gains may be masked by a low signal to noise
ratio. Similar t- and sign-type tests to the ones in (3.2)-(3.4) and (3.5)-(3.6) can be done for the
goodness of fit statistics at the portfolio level. The results are given in Table 3.3.

TABLE 3.3 ABOUT HERE.

As we can see from Table 3.3, the t-type test never yields significant differences between the
models. This may be just a fact of low power due to non-Gaussian observations. On the
other hand, the sign-type test which is robust against deviations from Gaussianity yields very
significant results: the synchronous is better than the asynchronous CCC-GARCH(1,1) model,
and multivariate is better than univariate modelling.

3.4 More sophisticated asynchronous models as another source for improve-
ments?

We question here, whether the improvements with the synchronous CCC-GARCH(1,1) model
could also be achieved or even surpassed by more sophisticated models for volatilities or con-
ditional means. Of course, the synchronous CCC-GARCH(1,1) model is also a more complex
model for asynchronous data (see Proposition 1), but motivated from the view of synchronization
with a simple linear transform.

The first extension of the asynchronous classical GARCH(1,1) model is to include a condi-
tional mean term

Xt = pr + 2y Zg (tEZ),
Mt :B'Xt_l, B:diag(bl,...,bM), (3.12)

where Z¢ and ¥, are exactly as in the model (2.7).
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The model in (3.12) can then be further extended to more complex, potentially high di-
mensional parameterizations for approximating more general volatility functions, such as for
example piecewise linear functions. Fitting “best” piecewise linear functions is computationally
prohibitive. A tree-structured (sub-optimal) technique for univariate series has been proposed
by Audrino and Biithlmann (2001). The same idea can also be used for every individual series
in the multivariate set-up.

Considering the same goodness of fit measures already introduced in this paper for the model
in (3.12) and its extensions, we see that the main implication is that more sophisticated models
(not being of synchronization type) do not show worthwhile improvements (for example for the
model (3.12) we find a value of 472.4394 for the portfolio out-of-sample negative log-likelihood
statistic and a value of 243.4545 for the OS-PLy statistic). Hence, synchronization seems to
play a more substantial effect than trying to improve the model-dynamics as in (3.12) or its
extensions.

4 Estimating risk measures

We consider here the effect of volatility estimates for conditional (dynamical) risk measures for
negative returns A; from a portfolio as in (3.8)-(3.9) given the information F;_; from previous
prices. The most popular risk measures are the Value at Risk (VaR) given F;_;

Sh=inf{6 €R: Fp, 7 ,(6) >q}, 0<qg<1,

where Fu,|7,_,(-) denotes the cumulative distribution function of A; given ;. This is the
quantile of the predictive distribution of the negative portfolio return over the next day. Another
measure of risk is the expected shortfall given F;_q

St=FE[A| A >0, Fi1], 0<g<Ll.

We typically choose g € {0.90,0.95,0.99} (note that we consider negative returns). Unlike VaR,
the expected shortfall is coherent and satisfies a sub-additivity requirement, see Artzner et al.
(1999). The illustrations are for the real global portfolio already introduced in Section 3.3.

4.1 The estimates

We assume that the dynamics of the negative asynchronized portfolio returns Ay (t € Z) are
given by (3.9). Since

5—,Ut,P> ’

FAt‘]’—tfl(&) = P[/‘@P +op ) | ‘7:15*1] = FZ( o p
t,

the risk measures can then be written as

(5(tIZMt7P+O't7qu, 0<g<1and
Sy=pp+oup BlZ|Z>2)], 0<q<]l,

where z, is the g-th quantile of Fz(-) which by assumption does not depend on time t.

Now, estimates for the VaR and for the expected shortfall are constructed using the assump-
tion of scaled t, distributed innovations Z; in (3.9), i.e. Z; ~ /(v — 2)/v t,. Thus, an estimate
for the VaR is given by

~ v—2

t —~ ~ ~
5q = M, P + ot,p D3 2qs
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and an estimate of the expected shortfall is given by

~ v—2 1 v Z,
St—f,p+5 ( _ 1+ e
q = Mt,p+orp 1_qCV_1( + >

v
where the constant ¢ equals I'((V + 1))/1“(%)(3%)_1/2, Zq is the g-th quantile of a standard ¢,
distributed random variable and 7 the maximum likelihood estimate from the multivariate or
univariate models as before. As an alternative method, one could use extreme value theory to
model the tails of Fz(-); for a detailed description, see Embrechts et al. (1997).

We only show here estimates of the conditional expected shortfall, for illustrative purposes.
The results, using the multivariate synchronous and asynchronous CCC-GARCH(1,1) and the
univariate GARCH(1,1) model are shown in Figure 4.1 (note that we consider negative returns).

FIGURE 4.1 ABOUT HERE.

The multivariate models produce more progressive estimates; and the synchronous model ex-
hibits more small scale fluctuations. Also, the results from Section 3 support that the multivari-
ate models are better. Putting together we gain evidence that the more progressive behavior
is appropriate. The better performance of the synchronized model in Section 3 also suggests
that the small scale movements of the corresponding estimate of the expected shortfall, which
wiggles more, is a good feature.

4.2 Backtesting

Backtesting the results for the expected shortfall is generally very difficult since a tail phe-
nomenon is involved. As a descriptive tool, rather than a formal test, we show boxplots of
residuals

R = A= Iia>6)- (4.1)
otp t%
in Figure 4.2.
FIGURE 4.2 ABOUT HERE.

Under our model assumptions (3.9) and ignoring estimation effects, we can easily show that
these (theoretical) residuals are an i.i.d. sequence with expected value zero. Figure 4.2 yields
then additional evidence that the estimate from the univariate model is too conservative (too
low values of residuals) and it favors the more progressive behavior of the multivariate models.

5 Conclusions

The need to synchronize multivariate financial time series is strongly motivated by the fact that
information continues to flow for closed markets while others are still open. Besides the nice
interpretative structure of synchronization, we found empirically that it improved the predictive
performance of the CCC-GARCH(1,1) model for a 7-dimensional time series of daily exchange
rate returns. The predictive gain with synchronization seems also much more prominent than
extending the GARCH to a more complex model for approximating more general functions of
volatility.

For analyzing returns of a univariate portfolio, multivariate analysis of the individual re-
turns still plays a key role. If the portfolio weights change over time, which is most often the
case in practice, only the multivariate framework allows to treat such a time-changing portfolio,
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assuming that the individual returns are stationary. But even for a time-constant portfolio,
there is a substantial gain when using a multivariate CCC-GARCH(1,1) model for individual
returns instead of a univariate GARCH(1,1) model for portfolio returns. Moreover, the uni-
variate analysis of the portfolio returns seems to be too conservative for the calculation of risk
measures (such as for example the expected shortfall) if confronted with the risk estimates from
our multivariate synchronous CCC-GARCH(1,1) model. It emphasizes the importance of the
multivariate approach in general and the wide range of applications where synchronization can
be very valuable.

Acknowledgements: We thank Michel Dacorogna for some interesting remarks. The data

was provided by Olsen & Associates, Ziirich.
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Figure 3.1: Asynchronized returns Xy, ; against estimated synchronized returns )?fz from the

synchronous CCC-GARCH(1,1) model (using A in (3.1)) for the French CAC40, the German
DAX, the Italian BCI, the Dutch CBS, the British FTAS and the Japanese NIKKEI index.
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Figure 3.2: Predicted portfolio conditional variances 82 p (top) and means fi; p (center and
bottom) for the test data days between June 23, 1994 and September 9, 1996 (500 days) using
the univariate GARCH(1,1) model (3.9) for the negative portfolio returns (solid line), the syn-

chronous CCC-GARCH(1,1) model (dotted line) and the standard CCC-GARCH(1,1) model
without synchronization (dashed line).
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Figure 4.1: The expected shortfall for the portfolio returns A, for the test data days beginning
on June 23, 1994 and ending on September 9, 1996. The estimates §f for ¢ = 0.95 (top)
and ¢ = 0.99 (bottom) are obtained using the univariate GARCH(1,1) model (solid line), the
synchronous CCC-GARCH(1,1) model (dotted line) and the standard CCC-GARCH(1,1) model
without synchronization (dashed line).
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Figure 4.2: Boxplots of residuals R, in (4.1) for test data with ¢ = 0.95 (top) and ¢ = 0.90 (bot-
tom) from the synchronous CCC-GARCH(1,1) model (left), the standard CCC-GARCH(1,1)
model without synchronization (center) and the univariate GARCH(1,1) model (right). The
number of violations A; > 5}; is given in parenthesis.
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DJIA | CAC40 | DAX BCI CBS FTAS NIK
DJIA 1 0.26569 | 0.23928 | 0.11794 | 0.13863 | 0.21754 | 0.18972

CAC40 | 0.26569 1 0.75794 | 0.51368 | 0.76965 | 0.70239 | 0.31629
DAX 0.23928 | 0.75794 1 0.55304 | 0.76055 | 0.59974 | 0.32281
BCI 0.11794 | 0.51368 | 0.55304 1 0.56079 | 0.47805 | 0.25427
CBS 0.13863 | 0.76965 | 0.76055 | 0.56079 1 0.73521 | 0.29812

FTAS 0.21754 | 0.70239 | 0.59974 | 0.47805 | 0.73521 1 0.30296
NIK 0.18972 | 0.31629 | 0.32281 | 0.25427 | 0.29812 | 0.30296 1

DJIA | CAC40 | DAX BCI CBS FTAS NIK
DJIA 1 0.36616 | 0.38101 | 0.27009 | 0.29308 | 0.31922 | 0.32770

CAC40 | 0.36616 1 0.80167 | 0.56694 | 0.78070 | 0.70587 | 0.31191
DAX 0.38101 | 0.80167 1 0.57977 | 0.77477 | 0.62009 | 0.28068
BCI 0.27009 | 0.56694 | 0.57977 1 0.58814 | 0.53707 | 0.28324
CBS 0.29308 | 0.78070 | 0.77477 | 0.58814 1 0.73965 | 0.28781

FTAS 0.31922 | 0.70587 | 0.62009 | 0.53707 | 0.73965 1 0.28548
NIK 0.32770 | 0.31191 | 0.28068 | 0.28324 | 0.28781 | 0.28548 1

Table 3.1: Top: instantaneous empirical correlations between components of asynchronized
returns X¢. Bottom: instantaneous empirical correlations between components of estimated
synchronized returns X7 using the synchronous CCC-GARCH(1,1) model with Agynenr. in (3.1).
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synchronous CCC-GARCH(1,1) Univariate
CCC-GARCH(1,1) | without synchronization | approach
IS-P1; 534.0402 573.9434 546.91
IS-PLo 1424.506 1732.441 1606.679
0OS-PL4 185.2044 195.5282 185.9926
OS-PL, 227.3589 240.7812 244.8054
Portfolio out. log-likelihood 460.8094 470.5776 474.4924

Table 3.2: Goodness of fit for the synchronous CCC-GARCH(1,1) model, the CCC-GARCH(1,1)
model without synchronization and the univariate model defined in (3.9) for the portfolio intro-
duced in Section 3.
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Model 1

Model 2

Performance measure

Portfolio out. log-likelihood

OS-PL»

Synchronous

CCC-GARCH(1,1)

Asynchronous

CCC-GARCH(1,1)

-1.3177 (0.094)

-1.2956 (0.098)

Synchronous

CCC-GARCH(1,1)

Univariate approach

-0.7659 (0.222)

-1.4904 (0.068)

Asynchronous

CCC-GARCH(1,1)

Univariate approach

0.5207 (0.301)

0.6143 (0.270)

Model 1

Model 2

Performance measure

Portfolio out. log-likelihood

OS-PLs

Synchronous

CCC-GARCH(1,1)

Asynchronous

CCC-GARCH(1,1)

4.386 (6-1079)

5.043 (2-1077)

Synchronous

CCC-GARCH(1,1)

Univariate approach

6.835 (4-10712)

10.95 (3-10-%%)

Asynchronous

CCC-GARCH(1,1)

Univariate approach

4.054 (3-1079)

13.54 (5-10742)

Table 3.3: Testing differences of performance on the portfolio level. Given are the values of
test statistics and corresponding P-values (in parenthesis). Top: t-type test (analogously to

(3.2)-(3.4)). Bottom: sign-type test (analogously to (3.5) and (3.6)).
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