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                                                     Abstract

An investor with quadratic utility invests amounts changing with his perceptions of
risk and expected return in a market with changing risk. Optimal investment policies
are derived under several hypotheses for expected returns. These policies are
combined in a Bayesian framework to yield a policy that  performs better than the
‘buy and hold’ policy in our tests, except in the case of the FTSE index.



Does Volatility Pay?

Introduction. A major focus of the  literature in financial economics is the
predictability of excess stock returns. Variables such as interest rates and dividend
yields appear to predict to some degree the variation of expected returns over time.

Ferson and Harvey (1991) and Evans (1994) ascribe most of this variation to
variations in risk premia. Other authors, including Campbell (1987),Glosten,
Jagannathan and Runkle (1993) and Whitelaw (1994) try to explain changing market
risk premiums with changing volatility.  They link market volatility to explanatory
variables, such as interest rates.However the link between changing volatility and
expected return is elusive.

To cast  more light on market risk premia He, Kan, Ng and Zhang (1996) model
conditional covariances as well as reward-to-volatility variables. They find that
reward-to-covariances variables change with economic conditions. Their results are
supported by the findings of  Li (1998), based on  aggregate returns on the stock and
bond markets. Changing reward-to-risk variables seem to dominate changing risk as
explanatory variables because they capture a larger fraction of  predictable excess
returns.

If  changing risk is not a good explanatory variable for changing expected return an
obvious question is whether it pays an investor interested only in mean and variance
to be in the market at times of high risk. To answer this question we consider the
problem of an investor with constant proportional risk aversion that invests in a
market with changing risk. The optimal investment policies we derive change with
risk perceptions through time.

It is well known that high risk periods can be predicted by time-series models. Black
(1976), Bollerslev (1986) and Engle and Ng (1993) present  models of changing
volatility based on available information. Our methodology is closely related to
Bollerslev and  Engle and Ng because we focus on modelling risk. Rather than
attempting to link changes in expected returns to risk  we simply measure the impact
of changing risk on financial performance. We find that the link between risk and
expected return is weak, but there is some evidence that higher  expected returns
accompany higher risk.

To exploit changing reward-to-risk ratios we consider the optimal investment policies
under two competing hypotheses. That leads us to try to improve  performance  by
investing more in the risky asset when its expected volatility is low and shifting to the
riskless asset when expected volatility is high. Three stock indices from the major
international markets are tested in a variety of ways to assess the robustness of our
findings.



Models.  Volatilities are modeled as an AGARCH process of the first order:

                                          σt
2

 =β σt-1
2+α(εt-1+γ)2+ψ

(1)

Therefore the volatility tomorrow is a function of the volatility today plus the square
of the daily residual return, ε, added to a constant, γ, that introduces an asymmetric
response of volatility to residual returns. Estimates of the constant ψ are not
significant and are neglected henceforth.

The AGARCH model assumes that the distribution of ε is normal:

                                                      εt~N(0,σt)                                                               (2)

This is generally not true in financial markets, resulting into a loss of efficiency in the
model estimation procedures. In keeping with the common practice in the literature
the daily expected return is ignored in the computation of ε, that is set to be therefore
equal  to the daily return, r.

In our tests we use the volatility forecast from equation (1) to rank or partition index
returns over time. Our purpose is to test whether expected index returns change with
changing volatility. Our model for this relationship is:

                                                          E(rt)=c + dσt                                                       (3)

If the chosen index proxies the market portfolio, market equilibrium considerations
suggest that c be equal to the risk-free rate. A first testable hypothesis is therefore:

                             H0:                         c = rF                                                                                                  (4)

The reward for taking risk can be expressed by the Sharpe ratio,SRt :

                                                          SRt  = E(rt-rF)/σt                                                                           (5)

Substituting equations 3 and 4 into equation 5 it follows that under the Sharpe-Lintner
hypothesis the Sharpe ratio is constant:

                                                            SRt=d                                                               (6)
An investor interested in mean and variance only would solve the following
optimization problem:

                                                Max( xtE(rt-r F)-pxt
2σt

2)                                               (7)
                                                    xt

where xt is the instantaneous leverage (the percentage of wealth invested in the risky
asset) and p is a risk aversion parameter, assumed to be constant.



Substituting equations (5) and (6) into equation (7) we find that the optimal leverage
ratio for our investor is given by:
                                                      x*t=d/2pσt                                                            (8)

To evaluate performance, we will set  d/2p=σ initially, where σ is the unconditional
volatility. That implies no loss of generality, because other values would multiply x*t
by a constant, with no other effect on its evolution through time.

If equation 6 is verified excess returns for taking risk are proportional to the risks
being taken, that is the reward for taking risk is constant. In this case the optimal
policy, described in equation (8), is to have a leverage ratio inversely related to the
current volatility.

 An alternative policy stems from the special case of equation(5) in which the excess
return is constant, that is

                               H1:                   E(rt-rF)=c’                                                             (9)

The hypothesis H1 is consistent with investors ignoring short term fluctuations in
volatility, possibly because transaction costs and misspecifications in the model make
dynamic policies ineffective.

If the expected return is constant, the reward for taking risk is inversely related to
volatility:

                                                          SRt  = c’/σt                                                                                     (10)

An investor interested in mean and variance could then attempt to improve her
performance by shifting from risky into riskless assets when the forecast volatility is
high. The optimal policy then finds the instantaneous optimal leverage ratio, xt , that
maximizes expected utility. Under a quadratic utility function the investor’s problem
is now:
                                                       Max( xtc’-pxt

2σt
2)                                               (11)

                                                         xt

. A convenient value of p  is c’/2σ2. The same value of p would be obtained from the
market clearing condition applied to the unconditional moments of market return, c
and σ2 . However our constant risk aversion policies are not sufficient to achieve
market clearing. Therefore c’/2σ2 is just a convenient choice.With this value of p the
optimal policy invests in the index with a leverage ratio:

                                                             xt=σ2
/σt

2                                                                        (12)

Naturally, if equation 9 is true and also:

                                                               c’ > 0                                                           (13)



it follows that to reduce market exposure  when forecast volatility is high implies for
our portfolios a sacrifice of expected return to reduce risk. It remains to be checked
whether the risk reduction compensates for the loss of expected return.

Note that both of our optimal policies depart from the buy-and-hold policy. In our
framework, an investor with constant proportional risk aversion would find buy-and-
hold to be optimal only if  excess expected returns increase proportionally with the
variance of return.

Data Analysis

To evaluate the proposed models we collected data on three of the main stock indices,
the Dow Jones Industrials, the FTSE 100 and the Nikkei from January 1993 to
January 1999.  To ensure comparability all of our tests begin October 21 1993.

 The behavior of the returns of the three indices is shown in Figures 1 to 3. There is
some evidence of clustering of large returns, especially in the later period for the Dow
Jones. This clustering is pointing to the presence of GARCH effects.

The statistics of the three indices are summarized in Table 1.  The three indices have
average annualized returns ranging from  18% to –6%. Their average annualized
volatilities range from 14% to 20. Histograms of the three indices in Figures 4 to 6
reveal that their unconditional distributions are  leptokurtic.

Table 2 shows the autocorrelations of  the squared daily returns of the three indices. If
the return distributions were stationary these  autocorrelations  would be zero.
The estimates in Table 2 suggest that GARCH effects  play an important role in the
dynamics of our indices. These effects were modeled following the BFGS methodolo-
gy.  GARCH parameter estimates for the three indices are summarized in Table 3.
Plugging these estimates into equation 1 leads to the ranges of volatility shown in
Figures 7 to 9. Volatility for the Dow and the FTSE increases to about 25% annuali-
zed through time, while the Nikkei volatility ranges up to 35% throughout our test
period.

The daily series of returns and estimated volatilities allow us to test for the existence
of linkages between expected return and volatility. To explore these linkages we plot
return against volatility in Figures 10 to 12. The dispersion of returns is higher for the
higher volatility estimates on the right of these figures, confirming the ability of our
volatility estimates to explain the changing variability of index returns.

An important question to be answered is whether investors are compensated for taking
higher risk. To answer this question we regress returns on GARCH volatilities . All
the slope estimates in Table 4 are positive, but their t-statistics show that there is no
reliable linkage between volatility and expected returns. We cannot reject the



hypothesis of constant expected returns introduced in equation 7. Therefore there is
some evidence that the ratios of  risk to expected reward for our indices change
through time. It may be possible to exploit these changes to improve portfolio
performance.

A breakdown of average returns at different volatility levels is provided in Table 5.
The erratic relationship between volatility and return is confirmed, with low volatility
being associated with the highest average returns for the Dow Jones and the lowest
returns for the FTSE. The highest average returns for our three indices are found in
the first, the second and the fourth volatility quartiles respectively.

Trading strategies. The weak evidence of  compensation for volatility risk found in
the previous section suggests that policies different from buy and hold may produce
superior performances. In fact under our hypothesis Ho  the optimal policy invests in
the index with investment weights inversely related to the forecast standard deviation.
That contrasts with the optimal policy under the hypothesis H1, to use investment
weights proportional to forecast variance.

The results of the trading strategies implied by our hypotheses H0 and H1 are
summarized in Tables 6 and 7 respectively. Estimated volatilities and returns for our
strategies are generally lower than the corresponding indices values, only the H1
strategy return for the Dow and the average volatility in Japan under H1 depart from
this trend.

Results for the Dow suggest that it is possible to exploit information on market
volatility to predict returns. However the evidence for the FTSE and the Nikkei does
not support that. Results for the FTSE and the Nikkei may be influenced by their
abnormally low returns associated with low GARCH volatilities within our sample.
These returns are levered under our optimal investment policies, receiving a higher
weight than returns associated with higher GARCH volatilities.

Our two hypotheses, H0 and H1, are not nested. Both of them introduce one constraint
on the parameters of equation (3). Their likelihood ratio can be interpreted as odds
ratios in a Bayesian setting. We use the normal model and diffuse prior distributions
to compute the odds ratios:

                                                 H0 / H1 =(σ1 /σ0)n                                                             (14)

where σ1 and σ0  refer to the standard deviations of residuals of  the regression in
equation (3) under the two hypotheses and n is the number of observations used in the
regression. The odds ratios for the three indices, in Table 8, show that Ho is slightly
more likely for the Dow and the Ftse, while H1 is more likely for the Nikkei.

 Because of the modest values of the estimated odds ratios, we consider  also the
combined optimal policy. This policy combines the two optimal policies according to
their odds ratios. It is important to recognize that it is necessary to scale the two
policies before combining them. In fact  earlier we found to be convenient to set p to
be equal to d/2σ to test Ho and to be equal to c’/2σ2 under H1, where d=0. The two
expressions for p are not consistent and cannot be used simultaneously. To remedy



that it is necessary to use an arbitrary common value of  p under the two hypotheses.
The combined optimal policy can then be written as:

                                        x*t=(yd/σt+(1-y)c’/σ2
t)/2p                                                 (15)

where y/(1-y) represents the odds ratio of the two models. Because the optimal
leverage is linear in the risk aversion parameter p, choosing an arbitrary value for it
does not affect the evolution of our optimal policy except through a scale factor.

It is easy to verify that  setting y = 0.5 corresponds to the optimal policy derived from
the unconstrained form of equation (3).  Therefore equation (15) uses the odds ratio to
introduce a bias in favor of  either of our hypotheses to improve out-of-sample
performance of our combined policy.  A graphic representation of  the hypotheses on
which our policies are based is shown in Fig. 13.

The results for the policy described in equation  (15) are also reported in Table  8.
This table is constructed setting p=1/2. Statistics corresponding to more realistic
values of  p , such as 3 or 5, can be obtained by setting  p to the new value of  the risk
aversion parameter. It appears that our combined policy outperforms the Dow and the
Nikkei, but not the FTSE.  The result from the Sharpe ratios is confirmed by the
regressions of excess policy return on excess index return:

                                               E(rt-rF)= βE(rMt-rF)+ω                                                (16)

In equation (16) the constant ω measures the performance of the optimal policy
relative to the index. The values of  ω for the Dow and the Nikkei are positive, but the
FTSE has a marginally negative value, corresponding to a yearly underperformance of
20 basis points for our combined policy.

In summary it appears that it was possible to outperform the Dow and the Nikkei
during our testing period, but not the FTSE. The different result is due to the very low
average returns of the FTSE at low volatility levels, that are levered up by our optimal
policies. Our policies were developed to maximize performance in the mean-variance
space. They do not necessarily produce better performance within any given period.

Our combined policy relies on estimates of parameters, such as the excess market
return, that are likely to fluctuate substantially over time. To have a first assessment of
the performance of our policy out-of –sample we divided our test period in two
subperiods. The first subperiod was used to estimate our policy parameters, the
second to measure performance. Results, in Table 9, mirror the pattern of Table 8,
with the combined policy outperforming the index for the Dow and the Nikkei, but
not the FTSE. Therefore our policy does not appear to be unduly sensitive to its
estimation period.

Summary statistics for the returns of the three indices and our combined policy in
Table 10 show that our policy reduces substantially the kurtosis of  the distribution of
daily returns for two indices, mitigating the risk due to the fat tails of  security returns.
Minimum, maximum returns and ranges are comparable only by taking the
differences in variances into account, because our combined policy was computed for
a very low value of the investor’s risk aversion parameter . The results for skewness



are more mixed, but overall there is no evidence that improvements in mean-variance
performance have come at the expense of  other dimensions of risk.

Conclusion

We have shown that changing risk implies that investors with quadratic utility
function will not find buy and hold policies to be optimal. Only a risk premium
changing proportionally to variance through time would lead investors to follow buy
and hold policies.

The optimal policy for our investor depends on parameters, such as the excess market
return, that are difficult to estimate precisely. To overcome that we have introduced a
Bayesian policy that weights alternatives according to their likelihoods. The
preliminary tests in this paper suggest that this policy is fairly robust and it leads to
better performance for two of our three tested indices. Further research will be
necessary  to investigate more thoroughly the performance of our investment policies
through time as well as their implementation in practice, possibly using index futures
to reduce transaction costs.
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Table1
         Statistics of the Stock Indices
Dow Jones FTSE Nikkei

Average daily
return

0.000715 0.000528 -0.000173

Standard
deviation

0.008623 0.008588 0.012882

t-statistics 3.281769 2.435186 -0.530508

       Table2
         First Order Autocorrelations of Squared Returns

Dow Jones         FTSE Nikkei
Autocorrelation 0.255898 0.164598 0.140074
t-statistics 10.15507 6.540946 5.570133

                                       Table3
                          AGARCH Parameters

α

β

γ

Dow Jones

0.073213
    (4.14)
0.899317
    (31.98)
-0.004379
     (-3.23)

    FTSE

0.047208
    (6.39)
0.922799
   (83.24)
-0.007026
   (-6.48)

   Nikkei

0.060762
    (4.63)
0.918815
   (54.54)
-0.007062
   (-6.04)

  t-statistics in parentheses

Table4
Regressions of returns on AGARCH volatilities

Dow Jones coefficient st. error t-statistics p-value
Intercept -0.0002086 0.000898 -0.23226 0.816368
slope 0.00768842 0.007079 1.086112 0.277614

FTSE
Intercept -0.000030 0.000893 -0.03388 0.972976
slope 0.004709 0.006829 0.689644 0.490531
Nikkei
Intercept -0.002323 1.310769 -1.77223 0.076571
slope 0.101321 6.411859 1.58022 0.11428



Table 5
Volatility Dow Jones FTSE Nikkei
quartiles Av. Volatility Average Return Av. Volatility   Average Return Av.  Volatility   Average

Return
First 0.087325 0.000963 0.094296 0.000214 0.136281 -0.000661
Second 0.108313 0.000298 0.110259 0.000687 0.176220 -0.000885
Third 0.128731 0.000725 0.129049 0.000415 0.211324 -0.000452
Fourth 0.170270 0.000947 0.175870 0.000683 0.273094 0.000633

                                       Table 6
Optimal policy under H0

    Dow                   FTSE Nikkei
Av. excess ret. 0.000559 0.000243 -0.000353
st.dev. of return 0.008417 0.008414 0.013615
av. index ex. ret 0.000558 0.000273 -0.000189
std. of index
return

0.009139 0.009034 0.014529

Sharpe r. policy 0.066466 0.028982 -0.025984
Sharpe r. index 0.061056 0.030304 -0.013070

                                      Table 7
    Optimal Policy under H1

Dow               FTSE Nikkei
Av. excess ret. 0.000624 0.000222 -0.000521
std. of return 0.009044 0.009031 0.014751
av.index ex. ret 0.000558 0.000273 -0.000189
std. of index ret. 0.009139 0.009034 0.014529
Sharpe r. policy 0.069081 0.024626 -0.035367
Sharpe r. index 0.061056 0.030304 -0.013070



Table 8
               Combined Policy
Dow FTSE Nikkei

odds ratio                   5:3             11:9                  6:7
Av. Ex. Ret 0.002603 0.000514 0.000355
St. deviation 0.037658 0.020302 0.010059
t-statistic 2.494541 0.913752 1.273632
Sharpe R. 0.069132 0.025323 0.035297
Index S.R. 0.061056 0.030304 -0.013070

          ω 0.000598 -0.000008 0.000241

Table 9
Combined Policy:robustness
Dow FTSE Nikkei

Av. Ex.Ret 0.001838     0.000603 0.000282
St. deviation 0.034478 0.020169 0.010034
t-statistic 1.361418 1.079897 1.015235
Sharpe R. 0.053317 0.029928 0.028135
Index S.R. 0.052434 0.039147 -0.033606



Table10
Index excess return Strategy excess return

Dow FTSE Nikkei Dow FTSE Nikkei

Mean 0.000553 0.000235 -0.00019 Mean 0.002581 0.000458 0.000355
Standard Error 0.000253 0.00025 0.000403 Standard

Error
0.001044 0.000563 0.000279

Median 0.000763 0.000478 -8.1E-05 Median 0.003092 0.001258 3.86E-05
Standard
Deviation

0.009147 0.009013 0.01453 Standard
Deviation

0.037699 0.020317 0.01006

Sample Variance 8.37E-05 8.12E-05 0.000211 Sample
Variance

0.001421 0.000413 0.000101

Kurtosis 7.16029 2.105816 3.051328 Kurtosis 2.334275 0.827886 4.313889
Skewness -0.61325 -0.06188 0.222877 Skewness -0.43572 -0.18637 -0.1488
Range 0.121644 0.080349 0.148013 Range 0.372302 0.166914 0.141269
Minimum -0.07204 -0.03619 -0.06844 Minimum -0.23247 -0.09097 -0.07479
Maximum 0.049606 0.044159 0.079575 Maximum 0.139827 0.075943 0.066475
Sum 0.720422 0.30605 -0.24746 Sum 3.363629 0.597333 0.462679
Count 1303 1303 1303 Count 1303 1303 1303





Figure 1: Dow Jones Return
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Figure 3: Nikkei Return
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Figure 2: FTSE Return
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Figure 4:Histogram of Dow Jones Return
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Figure 5: Histogram of FTSE return
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Figure 6:Histogram of Nikkei Return
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Figure 9:Volatility of Nikkei
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Figure 7:Volatility of Dow Jones
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Figure 8: Volatility of FTSE
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Figure 11: FTSE Volatility and Return
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Figure 12:Nikkei Volatility and Return
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Figure 10: Dow Volatility and Return
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