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1 Introduction

We know since Mandelbrot (1963) and Fama (1965) that speculative log-
returns are uncorrelated, not independent with leptokurtic distribution and
conditional variance changing randomly over time. A good model for option
pricing should capture the empirical evidence retaining the simplicity of the
Black and Scholes (1973) model. Keeping the linearity of the drift and the
diffusion components of the underlying asset, stochastic volatility models
can generate log-returns with such characteristics.

In the sequel we assume the Hull and White (1987) framework. The
extended model, defined on a filtered probability space (2, F, F, P), is given
by two dimensional stochastic differential equations (SDE),

dS; = aS;dt + \/V;S,dB; (1)

where S; is the underlying process, V; is the latent process for the instanta-
neous squared volatility of dS;/S; and By and Wy are standard Brownian mo-
tions. Different SDE’s have been proposed for the V; process: the geometric
Brownian motion (Hull and White, 1987), the Cox-Ingersoll-Ross process
(Hull and White (1988), Heston 1993), the exponential of the Ornstein-
Uhlenbeck process (Scott (1987), Stein and Stein (1991), Chesney and Scott
1989).

Unfortunately, it is difficult to derive analytical results for these models.
Here we focus on models for foreign exchange options. These important
finacial markets are characterised by quite symmetric volatility smiles', with
convexity increasing when time to maturities decrease. Stochastic volatility
models imply symmetric volatility smiles when underlying and volatility
processes are uncorrelated.

Using the Hull and White (1987) option pricing formula, Taylor and
Xu (1994) derive an approximation for the theoretical implied volatility of
foreign exchange options which allows to compare theoretical and empir-
ical volatility surfaces. The approximation involves the conditional mean
and variance of the integrated volatility over the time to maturity. These
moments have been derived only for few processes.

In this paper we assume that the squared volatility of the underlying
asset is driven by an inverse gamma process and we derive the conditional
mean and variance of the integrated volatility over the time to maturity to
study implied volatility surfaces.

Sircar and Papanicolaou (1999), Fouque, Sircar and Papanicolaou (2000)
and Zhu and Avellaneda (1998) derive similar results for equity and index

!See for instance, Bollerslev and Zhou (2001), Taylor and Xu (1994) and references
therein.



options?. Sircar and Papanicolaou results apply also to foreign exchange

options. However, they assume that the volatility process is almost constant
with infinitesimal stochastic variations.

The remaining of the paper is structured as follows: in section 2 we in-
troduce the model, in section 3 we derive the conditional mean and variance
of the integrated volatility over the time to maturity and in section 4 we
study the implied volatility surface. Finally, section 5 concludes.

2 The model

We assume that the squared volatility of the underlying asset is driven by an
inverse gamma process, i.e. a mean reverting geometric Brownian motion,

dVy = (c1 — o Vi) dt + c3 Vi dWy, (3)

where c;,co > 0 and 2c¢o /c% > 1 to ensure that the V; process is mean
reverting and with finite second moment. We assume that the underlying
and the volatility process are uncorrelated. The initial time? is ¢ = 0. When
the V; process starts according to its stationary distribution,

e the stationary distribution of V; is the inverse gamma distribution with
parameters 1 + 2co/c3 and ¢2/2cq, i.e. 1/V) ~ T(1 + 2¢2/c3, c3/2¢1).
The inverse gamma distribution has finite moments up to order r if
and only if 7 < 1+ 2cy/c3.

e Given Vj, the unique strong solution of the SDE (2) is

v, = V, 6—(02+%c§)t+03Wt

t
+ cl/ elez+3eR)(s=0) +ealWi=Ws) g (4)
0

If Vo > 0 then V; > 0.

e For allt, ¢t >0,
EV; | Vo) = &+ <V0 - C—l) 5)
C2 C2
Equation (5) and the stationarity of the V; process imply

py = E[Vi] = — (6)

2Usually, implied volatilities for equity and index options are asymmetric with respect
to strike prices. To model this behaviour underlying and volatility processes are assumed
correlated.

3The reference scales of the parameters are [c1] = 1/To?, [co] = 1/To, [c3] = 1/VTo
where Tj is the unit time interval, one year.



and

E[Vo V] = E[Vo B[V | Vol] = e~ VarVy + (c1/¢)?. (7)

e The conditional and unconditional variance of the V; process, Vt > 0,

are
VarlVy | Vo] = ”7"2
2c0/c% —1
oot 20v (Vo — pv)
cat 8
e cafc3 —1 ®)
- e (1 = )
(202}t [yr2 _ _2Vokv
te [ L c2/cy
N % ]
(1 —c3/2¢2)(1 = c/c2)
and
2 1
=VarV, = ————. 9
oy arvg 262/C§ 1 ( )

The V;, process is mean reverting, c¢;/cy is the run mean value and ¢y is the
reversion rate. For ‘small’ ¢y the mean reversion is weak and V; tends to
stay above (or below) the run mean value for long periods, i.e. to volatility
cluster. For estimation purposes we will need the dynamic and the moments
of the In Sy process. The model (1)-(3) implies

dlnS; = <oz - %) dt + /VidB; (10)
dVy = (01 — CQVt)dt + c3VidWy. (11)

The two dimensional diffusion process (In Sy, V;) is a Markov process (see
Genon-Catalot, Jeantheau and Laredo, 1998). For a given time interval®
A > 0 we define

1A
Zi = / dlnSs = lnS’iA - lnS(i,l)A,
Gi—DA

iA
M; .= (a - E) ds,
(i-1)A 2

A
Zi = / Vs dS,
(i—-1)A

*For daily log-returns A = 1/250 when the unit time interval is one year.




where 1 = 1,..., N, N is the sample size and Z1,...,Zy the sequence of
log-returns. The unconditional distribution of the Z; process is not known
but, given o{Vs, s € [0,4|}, Z; ~ N(M;,3;). For simplicity, we assume
that the drift of the log returns is zero, i.e. M; = 0, Vi. This implies the
following moment conditions, Vi # j

E[Z;] =0,

E[ZF ZF] =0, V¥p odd,

(COU(ZZ', Zj) = 0, (12)
Vaer == E[El] == (61/62) A, (13)

VarZ? = E[Z}] - E[Z%)? = 3E[2?] — (c1/c2)? A?
6(caA — 14 e~2) (c1/c2)?

= 2 (01/02)2A2 + C% : (202/03) 1 (14)
_(=e 2B (a/er)?
COU(va Z22) - c% ' (262/63) 1 (15)

and

—c2A (c1/c2)?
(1 —e )2(2621/0‘5)_1

2
203A2 + 6(caA — 1 4 e=28) 7(2(;1//55_1

Corr(27,23) =

Observation 2.1 Equations (12) and (15) imply that Z;’s are uncorrelated
but not independent.

The excess-kurtosis of the stationary distribution of the Z; process is given
by

EZ{
K(Z)) = ——as—3
(EZ7)?
6(coA — 1 + e~ 5) 1
= A2 »— > 0. (16)
c5 (2¢2/c5) — 1
Moreover,
c? .
o2
Corr(Z3,73) < 2 Cf% = Sz .
2 + 3 202—03 2cz—c§ + 3

When 2cy/c3 — 17, the kurtosis tends to infinity and Corr(Z%,Z3) ap-
proaches the upper limit 1/3.

The moment conditions (13), (15) and (16) can be used for the estimation
of the parameters ¢, ¢y and cs.



Remark 2.1 If the V; process follows a Cox-Ingersoll-Ross process its sta-
tionary distribution is a gamma distribution. Hence, the Z; process has
moments of any order, the excess-kurtosis is at most 3 and the correlation
between Z? and Z2 is at most 1/5. The gamma distribution of Z; can be
only moderately heavy-tailed in contrast with the empirical evidence. The
same objection does not apply to the inverse gamma model where heavy
tails are obtained by choosing ¢ closer to 2cs.

3 Financial applications

3.1 The Taylor and Xu approximation

Empirical studies® show that implied volatilities are higher for in-the-money
and out-of-the-money options than for at-the-money options. Traders are
aware of shortcomings of the Black and Scholes model® but adverse to re-
nounce to its simple formula. Assigning different implied volatilities to op-
tions with the same underlying and time to maturity but different strike
prices, they answer to the imperfections of the model using the model itself.
The different implied volatilities express their market views.

The dependence of implied volatilities on strike prices is referred to as
‘the volatility smile’. The shape depends on underlying assets and in foreign
exchange options it is quite symmetric’.

Stochastic volatility models have been proposed to account for volatility
smiles.

Assume the model (1)-(2) where the market price of risk is zero and the
volatility process is uncorrelated with the underlying process. Let C be the
option price for a European call option with time to maturity 7" and strike
price K. Under these assumptions, Hull and White derive the option price
C7

C = Eppy, [Css (K, V)] (17)
- /O Cps (K. V) £(V | Vo) dV,

where Cpg is the Black and Scholes option price, V is the integrated volatil-
ity over the time to maturity 7', i.e.

1 (T
= _ dt 1
7 T/th (18)

and f(V | Vo) is the conditional density function of V. The model implies
symmetric volatility smiles with respect to strike prices. This result is in

5See Hull and White 1987 and references therein.

SFor instance, rare events are more likely than that allowed by the model assumptions.

"The term ‘smirk’ characterizes asymmetric implied volatilities decreasing monotoni-
cally with strike prices.



qualitative agreement with volatility smiles observed in foreign exchange
option markets.

In this framework Taylor and Xu (1994) derive an approximation for the
theoretical implied volatility (o.,,) induced by stochastic volatility models.
The approximation allows to compare theoretical and empirical volatility
smiles. It is based on the Hull and White option pricing formula and on the
implied volatility equation

C = Cps (K; o (19)

imp) -

Let us to denote

By, = E[V | Vo] and UQVIVO = VarlV | Vi].
Using a first order Taylor expansion of Cpg around fiyy; in equation (19)
and a second order Taylor expansion of Cpg in equation (17), Taylor and
Xu derive

2 2 . 1.2 2
Ty, [ F/K) = g T — ai, T

4NV|VO MV|V0T

2

Uimp(K) ~ NV|V0+

(20)

where F is the forward price of the underlying asset®. When T tends to
infinity, the approximation improves because V — B v for the ergodicity
property of the V; process. Notice that the minimum of o, is for K = F.

Observation 3.1 The quadratic term In? (F/K) predicts a symmetric smile
whatever is the specification for the V; process. This result is due to the
assumption of uncorrelated Brownian motions in the model (1) - (2).

Let us to define the relative height of the smile h := 0y (K)/0imp(F).
Using equation (20) we have the following approximation for h

B |14 (F/K) % 5 ! . (21)
mre T [ 485, — 0, (R T/4)
If the second term in the squared root is “small”, h simplifies to
~ o2
hi=1+In*(F/K) # (22)
Hvo

We will use equations (21) and (22) to study volatility smiles implied by the
model (1)-(3).

8To ensure ofmp > 0 py and 027 have to satisfy 027 < %‘ Usually, the inequality
is verified for finacial data.



3.2 The conditional mean and variance of V'

The Taylor and Xu approximation involves the first two conditional mo-
ments of the integrated volatility over the time to maturity V. So far, these
moments have been calculated analytically only for few processes:

1. the Cox-Ingersoll-Ross process by Bollerslev and Zhou (2002),

2. the mean reverting Ornstein-Uhlenbeck process by Cox and Miller
(1972, Sec. 5.8),

3. the geometric Brownian motion by Hull and White (1987).

Unfortunately these models have some drawbacks when applied to real fi-
nancial data. In the Cox-Ingersoll-Ross process the log-returns have finite
moments of any order and the distribution can be only moderately heavy-
tailed (see remark 2.1, p. 5). In the mean reverting Ornstein-Uhlenbeck
process V; has Gaussian density and the model can not be used to drive
positive volatility processes. In the geometric Brownian motion the V; pro-
cess is not mean reverting and implies ‘term structure patterns’ of volatility
smiles which do not match the empirical evidence. Indeed, volatility smiles
are more convex for short time to maturity than for long ones while the
model predicts the opposite (see appendix A).

Taylor and Xu (1994) assume that In \/V; follows a mean reverting Ornstein-
Uhlenbeck process and use approximations (21) and (22) to study implied
volatility surfaces. They have no analytical results for In+/V; and they use
its discrete version to compute conditional moments of V. They show that
theoretical volatility smiles follow empirical term structure patterns but the
theoretical convexity is approximately a half of the empirical one.

In the following, we give the conditional mean and variance of V' when
V; follows the inverse gamma process in equation (3). We recall that the
integrated volatility is

— 1 (T 1.2
V = = Vo e~ (c2at35 c3)t+eaWy
T Jo

C1
T Jo

eleats ) (s—t)+es (We=Wo) g

_l’_
Proposition 3.1 Assume the V; process follows the SDE in (3). Given Vj,
the conditional mean of V is

1 —e T

T (23)

1y, = BV [ Vo] = pv + [Vo — pv]

The conditional variance of V is



2 Var[V | Vo] =

JV|V0 T
12y
c2T 2cy/c2—1
+ 1 [ Ve v Vo
(e2T)? | 2ca/c3—1 2cp/c3—1

4 ‘u%/(5+3(262/63)2717/2(262/63))]

(1—c2/c3)(2¢c2/c3—1)2
+ e—c2T |:4MVVO_4M%/]
coT 1762/6%
—coT [ 2V02 dpy VO(CQ/C%) *4#%/ ]

(24)

1—ca/c} (1—c2/c3)? (1—ca/c3)?
~ Gy Mo—wl'+
-
(c2T)? (c%/cz—l)(c§/2022—1)
2 Vi o
t @aigpe T T <c§/c2_1>2<vc§/2c2—1>2] :

The proof of the results are available from the authors on request.

Remark 3.1 If ¢; = 0 the process (3) reduces to the log normal process
and equations (23) and (24) give the mean and variance of V' derived by
Hull and White (1987) (see appendix A).

Equation (23) shows some properties of the integrated volatility implied by
the inverse Gamma process:

* Ly, does not depend on the parameter cs,
e when the time to maturity 1" goes to zero 1y v, = o,
e when T is large 1 vy = BV

e E[V] = Eluy|v,] = v as expected from the ergodicity of the V; pro-
cess.

Moreover, equation (23) shows that ¢y controls ‘the reversion rate’ of By v,

to E[V]. We recall that ¢y controls also the reversion rate of the V; process
to py.

4 The implied volatility surface

The analytical derivation of the conditional mean and variance of V derived
in proposition 3.1 allows us to use the Taylor and Xu approximation to study
volatility surfaces implied by the model (1) - (3).

To verify if the theoretical volatility surface is in qualitative and quanti-
tative agreement with the empirical evidence, we consider the relative height
of volatility smiles of Mark-Dollar call options estimated by Taylor and Xu
(1994). The option prices cover the period 1985-1994. Figure 1 shows the
relative height of volatility smiles for time to maturities of 30, 40, 50 and 60
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Figure 1: Relative height of volatility smiles of Mark-Dollar call options (1985-1992)

days®. Clearly, the volatility smiles are quite symmetric and more convex
for short maturities.

To derive theoretical volatility surfaces we use the approximation of the
height of the smile in equation (21). Unfortunately, we do not yet estimate
the model. We choose reasonable parameters for the process V; in accordance
with the empirical evidence on log-returns. Specifically, we fix ¢; = 0.2,
co =23, c3 =5 and Vy = E[V1] = 0.01. This implies

1. Var[Zl] = E[Vl] = 61/62 == 001,
2. half life'® for the V; process equals to 11 days;
3. kurtosis of Z; equals to 7.

Figure 2 shows the volatility surface for these parameters and time to matu-
rities between 0 and 150 days. Figure 3 shows the relative height of volatility
smiles for time to maturities of 30, 40, 50 and 60 days.

In qualitative agreement with the empirical evidence, the volatility sur-
face convexity increases when the time to maturity decreases.

Finally, we study how the volatility surface convexity depends on pa-
rameters under the following reasonable assumptions:

9Taylor and Xu find similar volatility smiles for others foreign exchange call options
(Pound-Dollar, Yen-Dollar, Swiss-Dollar).

0The half life h is the time necessary to half the deviation of V; from its run mean
value given that there are no more random shocks. For the inverse gamma process h is
equal In2/cy
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Figure 2: Relative height of smile. dV =0.2 —23V dt + 5V dW; V; = 0.01

e the initial value of the V; process is equal to the run mean value
Vo = E[Vi] =c1/eo
and!!

o T > 1.

Conditional moments (23) and (24) simplify to

By vy BV, (25)
1 202
2 - PV 26
UV|V0 CQT 262/63’ -1 ( )
and
~ 2
o1y I/K ! (27)

T2  4c1(2e2/c3 —1)

From equation (27) we deduce that

" The second assumption is verified for fast mean reverting V; process and/or long
maturities.

10
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Figure 3: Relative height of smile (30-60 days). dV = 0.2 — 23V dt + 5V dW;
Vo = 0.01

e the relative height of smile is an increasing function of ¢3 and a de-
creasing function of ¢; and c¢y. Indeed, given In? (F/K)/ T?,

oh  In?(F/K) ~1

e 2 2 2 <0,

ey T 4cf (2c/c5—1)

Oh I (F/K) —2/c2 “0

Ocy T2 4cp (2c2/c3 —1)2 ’

Oh  In*(F/K) 2y =0
oz T? 42 (3)? (2c2/c2 — 1)2 '

e When 2¢y/c2 — 1T the convexity of  increases.

Notice that for fast mean reverting V; process the excess kurtosis (16)
can be approximated as

1

K(Zl) ~ 7(202/03) — 1

Hence, heavy tailed log-returns imply h sharply convex, as expected.

e Given In? (F/K), the volatility surface becomes more convex when the
time to maturity goes to zero.

11



5 Concluding remarks

We derive the conditional mean and variance of the integrated volatility over
the time to maturity when the squared volatility follows the inverse gamma
process. The analitical results allow us to study implied volatility surfaces
using the Taylor and Xu approximation. We find qualitative agreement
between theoretical and empirical term structure patterns. Moreover, we
show that for fast mean reverting volatility processes and/or long time to
maturities, the convexity of implied volatilities increases when the kurtosis
increases and/or the reversion rate decreases. The next step will be the
model estimation, using Mark-Dollar exchange rates.

12



A Implied volatility surface with log normal pro-
cess

We study implied volatility patterns when the squared volatility is driven
by the log-normal process

dV, = & Vi dt + ¢3 Vi dW,. (28)

We consider separately the case ¢a = 0 (log normal process without drift)
and the case ¢3 # 0 (log normal process with drift).

1. Case ¢o = 0 and ¢3 # 0. Hull and White derive

:U‘V|V0 = Vb? (29)
9 o e T —G* T -1 1
=4 = 2V -—1. 30
The asymptotic behaviour of UQVIVO is the following:
~2 ~4 2
2 ~ 2| C3 T C3 T ~9 )
v, Vo [ 3 + B ] —0, ¢c3°T — 0 (31)
2 2 &' ~2
JV|VO =~ 2V0 6’34? — oo, C3 T > 1. (32)

In the first case (32T — 0), substituting the approximation (31) in
equation (22), we get

= In® (F/K) [&*  &'T

hael4 ———= | = . 33
+ Vo 24 96 (33)

The approximation (33) shows that the smile convexity increases as the

time to maturity increases, in contrast with the empirical evidence!?.

Figure 4 is obtained using equation (21) with exact moments (29) and
(30) and confirms the result.

In the second case (cN;),2 T > 1), the Taylor and Xu approximation does
not apply because 02V|VO — oo. However, relevant time to maturities

are less than or equal to one year.

2Gesser and Poncet (1997) find empirical evidence of this inconsistency using Dol-
lar/Mark call options traded in February 1996.

13
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Figure 4: Relative height of volatility smiles. dV = 2VdW (same parameters for the
Vi process used in Hull and White 1987).

2. Case ¢ #0, ¢3 € R\ {¢y, —2¢,}. Conditional moments are

el 1
IU‘V|V0 = Vb |: EQT :| ) (34)
~ ~9 ~
02_ _ 5 26(202+03 )T B 62 co T (35)
vive (% + ) (c” +26,)T?  &T?

o (57%) ~am (505
aT*\&G*+06) T \&*+28/]

When T'— 0
o2 ~ Vi [&T + ¢ [5¢ + 6% T%] /3

and, using these approximations in equation (22),

In? (F/K)

ha1+ 2T 3% + &% (52 + &%) T] . (37)
As in the previous case, equation (33) shows that the smile convexity
increases with the time to maturity. Figure 5, obtained using equation

(21) and exacts moments (34) and (35), confirms the result.
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Figure 5: Relative height of volatility smiles. dV = —13Vdt + 3VdW .

When T — oo and 26, + 632 < 0,

~2
2 —4
2~ — 0. 38
VBT +26,) (38)

ag

When T — oo and 26, + 32 > 0,

90(282+63°)T

2
V(G + &) (6% +28)T?

o — 00.

In the first case (2¢ + & < 0) the Taylor and Xu approximation
holds and the equation (22) implies

65),2

83V} [c3° + 26

. (39)

The equation (39) shows that the smile convexity decreases as the time
to maturity increases. Unfortunately, there are no traded options with
time maturity 7" > 1 year.

In the second case (2¢ + é32 > 0) the Taylor and Xu approximation
does not apply because 027 — 0.

15



Finally, when t — oo V;, — 0 or V; — oo (exponentially). Indeed, given Vj,
the solution of the equation (28) is given by

V=V, e(C2—T/2)t+E3 Wy

For the iterated logarithm law and the large number law (Karatzas and
Shreve 1988), we have

1. if ¢ < &3/2,

lim V; =0 a.s.
t—00

2. if & > ¢2/2,

lim V; = o0 a.s
t—00

3. if ey =¢3/2,

inf V;=0 a.s,
0<t<oco

SUPg<i<oo Vi = 00 a.s

This is in contrast with the mean reverting trend of the historical volatility'3.

13We recall that the historical volatility is used for estimation purposes assuming a
constant risk premium.
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