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Robust GMM Tests for Structural Breaks*

Abstract

We propose a class of new robust GMM tests for endogenous structural breaks. The tests are based
on supremum, average and exponential functionals derived from robust GMM estimators with bounded
influence function. We study the theoretical local robustness properties of the new tests and show that
they imply a uniformly bounded asymptotic sensitivity of size and power under general local deviations
from a reference model. We then analyze the finite sample performance of the new robust tests in some
Monte Carlo simulations, and compare it with that of classical GMM tests for structural breaks. In
large samples, we find that the performance of classical asymptotic GMM tests can be quite unstable
already under slight departures from some given reference distribution. In particular, the loss in power
can be substantial in some models. Robust asymptotic tests for structural breaks yield important power
improvements already under slight local departures from the reference model. This holds both in exactly
identified and overidentified model settings. In small samples, bootstrapped versions of both the classical
and the robust GMM tests provide a very accurate and very stable empirical size also for quite small
sample sizes. However, bootstrapped robust GMM tests are found to provide again a higher finite sample
efficiency.
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1 Introduction

We propose a class of new Generalized Method of Moments (GMM, Hansen (1982)) tests for
endogenous structural breaks that ensure a uniformly bounded asymptotic sensitivity of level and
power under general local departures from a reference model.

GMM based test statistics defining tests for structural breaks are typically obtained as the
supremum, the average or some related functional of sequences of quadratic GMM statistics, each
being asymptotically chi-square distributed under the null of no break! (see e.g. Andrews and Fair
(1988), Ghysels and Hall (1990), Andrews (1993), Andrews and Ploberger (1994), Ghysels, Guay
and Hall (1997)). Such GMM functionals are evaluated at some GMM model parameter estimates,
conditionally on a given break date. A general GMM statistical functional (as for instance a GMM
estimator or the level/power of a GMM test) has a bounded asymptotic sensitivity under local
model perturbations if and only if it is based on a GMM model with a bounded orthogonality
function. Moreover, GMM statistics with unbounded asymptotic sensitivity can be robustified by
applying a weighted orthogonality function that bounds the influence of general local departures
from a given reference model (see Ronchetti and Trojani (2001)). This defines locally robust
GMM (RGMM) estimation and testing procedures of simple parametric hypotheses in a fairly
general GMM setting. In this paper, we propose a class of RGMM tests for structural breaks,
which are defined as functionals of sequences of quadratic RGMM statistics based on a bounded
orthogonality function.

The need for robust statistical procedures in estimation and testing has been stressed by many
authors and is now widely recognized; see for instance, Hampel (1974), Koenker and Bassett
(1978), Huber (1981), Peracchi (1990, 1991), Heritier and Ronchetti (1994), Krishnakumar and
Ronchetti (1997), Ronchetti and Trojani (2001), Genton and Ronchetti (2003). From a general

viewpoint, the goal of robust testing procedures is to construct test statistics that maintain a

1 Asymptotic critical values for GMM tests of endogeneous structural breaks are derived by the Functional
Central Limit Theorem and have typically to be computed by simulation; see for instance Andrews (1993) and
Andrews (2003). Analytical approximations have been proposed in Hansen (1997).



uniformly satisfactory level and power behavior under general local distributional departures from
some given reference model. This is achieved by working with smooth test functionals that are
asymptotically stable under departures from the given reference point. In particular, in the GMM
setting, a necessary asymptotic robustness/stability requirement for a GMM test based on an
asymptotically chi-square distributed statistic is a bounded influence function (Hampel (1974)) of
the GMM estimator defining the statistic. Therefore, we define a new class of tests for breaks using
sequences of RGMM statistics with bounded influence function. A bounded influence function of
a GMM test statistic is equivalent to the boundedness of the given orthogonality function. This is
why RGMM statistics can be obtained by truncating appropriately the unbounded orthogonality
function of a nonrobust GMM model setting.

We study the theoretical properties of our robust testing procedures for structural breaks
and analyze their empirical performance in some Monte Carlo experiments of a few GMM model
settings. To our knowledge, this issue has been so far largely unexplored in the literature. For
the estimation problem, Fiteni (2002) derived the asymptotic properties of a robust break date
estimator defined through the supremum functional over a sequence of robustified loss functions.
These results apply to a standard linear regression model setting. We propose a class of general
RGMM tests for breaks that apply to linear and nonlinear model settings.

We first show theoretically that RGMM tests for breaks imply a uniformly bounded asymptotic
sensitivity of level and power under general local deviations from a reference model. This ensures
a uniform quality of the asymptotic approximation to the finite sample distribution of a RGMM
statistic over a relevant neighborhood of slightly different model distributions. We then compare
via Monte Carlo simulation the performance of GMM and RGMM tests for breaks, using both
standard asymptotic critical values and bootstrapped versions of the tests.

In large samples, we find that the performance of classical asymptotic GMM tests can be quite
unstable already under slight departures from some given reference distribution. In particular,

the power under departure from conditional normality can be quite low in some models. Robust



asymptotic tests for structural breaks yield important power improvements already under slight
local departures from the reference model. This holds both in exactly identified and overidentified
model settings.

In small samples, bootstrapped versions of both the classical and the robust GMM tests pro-
vide a very accurate and very stable empirical size also for quite small sample sizes. However,
bootstrapped robust GMM tests are found to provide again a higher finite sample power.

The remaining of the paper is organized as follows. Section 2 reviews GMM tests for structural
breaks. Section 3 introduces robust GMM tests for structural breaks and studies formally their
local stability properties in neighborhoods of a reference model. Section 4 analyzes by Monte
Carlo simulations the empirical properties of the new robust tests in linear and nonlinear GMM

testing settings, while Section 5 concludes and gives suggestions for further developments.
2 GMM tests for structural breaks

We briefly review GMM tests for structural breaks - by focusing on Andrews (1993) setting -
and write the relevant statistics as functionals on a suitable set of probability distributions. This
formalism will allow us to analyze in Section 3 the asymptotic local stability properties of GMM
tests for structural breaks. We first discuss in Section 2.1 the different hypotheses of structural
change, and then introduce GMM estimators in Section 2.2. In Section 2.3 we define the GMM
test statistics for structural breaks which are relevant for our exposition.

In the following we adopt the symbol = to denote weak convergence in the sense of Pollard
(1984, pp. 64-66) for sequences of random elements of a space of bounded Euclidean valued cadlag
functions on II C [0,1], equipped by the supremum norm topology and by the corresponding
Borel sigma algebra. The symbol —,; denotes convergence in distribution, V denotes the gradient

operator, B (R¥) is the Borel sigma algebra on R¥, ||| is the Euclidean norm.



2.1 Hypotheses of structural changes

We consider a parametric model indexed by parameters (8;,09) € © = B x A C R? x RY, for

t =1,2,... and test the null hypothesis of parameter stability:
Hy:B,=py forallt>1andsome 8, BCRF . (1)

Several alternative hypotheses may be of interest in the present setting. The simple one time

change alternative with known change point?> 7 € IT C (0, 1) is given by:

By(w) fort=1,..Trw
Hyr (7) : By = : (2)
By (m) fort=Tnr+1,.T
for some constant vectors (3, (w), By () € B. A natural alternative where the change point

m eIl C (0,1) is unknown is:

HA (H) = U HlT(ﬂ')

In this case one tests for the presence of a break in the known interval II. Finally, when applying

tests for structural breaks as general diagnostic tools, a natural alternative may be
H,:B,# B, forsomes,t>1

Although this hypothesis is more general than Uy (o,1)H 4 (IT) the robust GMM tests for structural

breaks considered in this paper have power also against H;.

2.2 GMM estimators

Let W = {W; : t > 1} be a stochastic process with values in W C R¥, defined on a measurable
space (Q,F), and let m : R¥ x © — RV be an orthogonality function. A GMM estimator 0 =

’ ~/ /
<B , 0 ) is the asymptotic functional solution of a quadratic minimization problem:

6(P) = arg inf Q(P.6)

2 For technical reasons II is assumed to be a closed set.



where P is a probability measure on (2, F) and

’

Q(P,0) = (11_{20—ZEP (W, 0 ]) QP (1%—ZEP (W, 0 ]) ; (3)

for some positive definite deterministic v x v matrix Q = Q (P) that can depend on P.

In the following it will be convenient to work with the finite dimensional distributions P; of
W,, defined by P; (A) := P (W, € A), for any A € B(R*) and ¢ > 1. Defining Py = + iPt,
we ensure existence of a limit P, for the sequence {?T 2T > 1} by means of the foll(;vving
assumption.

Assumption 1 There exists a probability measure P, on (Rk , B (R"”‘)) such that P, is the weak
limit of {?T T > 1}: Pr — ?Oo, weakly as T — oo.

If the functional Q — Eg [m (W, 3,9)] is weakly continuous® for any (3,9) € O, then

lim — ZEP (Wi, 8,0)] = E5_ [m (W, 3,6)]

T—oo T

In addition, let us assume that matrix € is a functional of P, = Q(P4). Then the GMM
estimator itself can be written as a functional of P

0(Poc) = arg jnf. B [m (W,6)] O(Poc)Ep_ [ (W, )], ®)
for any suitable P.. If the GMM model is correctly specified and identified under P, i.e. if
EBp _[m(W,0)]=0 , (5)

for a unique 6 € ©, then the solution of (5) and the GMM estimator (4) coincide. More generally,
(5) can have several solutions or no solution under P. In this case, only the solution of the
minimization problem in (4) defines the asymptotic functional structure of 0.

To define the finite sample GMM estimator associated with a sample W :={W; : 1 <t < T}

let Pyy, := % Zthl Ow, be the empirical distribution of Wy, where dyy, is the measure with point

3 A sufficient condition for the weak continuity of Q — Eq [m (W, 3,6)] is the boundedness of the orthogonality
function m. Boundedness of m is the condition required to ensure the local robustness of a general GMM statistic;
see Section 3 below.



mass at W;. Under standard regularity conditions one has Pyy,. — P, weakly, P-almost surely,
as T — oo. The finite sample GMM estimator is 07 := (B;«,SIT)I = (E (ﬁWT)I ,g(ﬁwT)/>/,
i.e. the solution of the minimization problem in (4) for Pyy,.. Under the correct specification and
identification hypothesis (5), and standard regularity conditions (see for instance Hansen (1982)),
the finite sample GMM estimator §T converges a.s. as 1T’ — 0o to the unique solution [ (?oo) in
(5), and is asymptotically normally distributed. When {m (Wt,g (?OO)) it > 1} is a martingale

difference sequence under P, the optimal weighting matrix 2 is:
_ _ o N
QO (Po) = S(Poo) ™t = (Eﬁw [m (W, 0 (Poo)> m (W,9 (Poo)) D . (6)
The next section introduces GMM tests for parameter stability. They are obtained from the above

GMM estimators.

2.3 Test statistics

Some consistent, asymptotically equivalent, GMM test statistics for testing Hy against Hip (7)
are Wald-type, Lagrange Multiplier-type (LM) or Likelihood ratio-type statistics. Without loss
of generality we focus on LM test functionals® and assume a choice of the weighting matrix as in

(6). A LM test can be defined by means of the statistic

Ly (7) = = LM () = = Ur () Ur (x) .
where
Ur () = nH (Po)/? % S o (wi0r)
with h
H((Px) = S(Po) M (Pu)S (Poo) M (Pa) S (P) ™,
2(Pw) = [M (ﬁm)s(ﬁm)‘lM(ﬁm)}‘l . M (Px) = Ep_[Vam (W,0(P))].

4 An alternative way that could be also pursued in a RGMM testing approach for breaks is to use quadratic
GMM statistics as proposed in Ghysels, Guay and Hall (1997). It can be seen from the exposition in Section 3 how
such a RGMM inference approach can be applied to that setting.



Consistent estimators of S (Ps) and M (Ps) are given by S (P, ) and M(Pyy,.), respectively.
The LM statistic LM 7 () is particularly simple to compute, since it requires only the computation
of a single GMM estimator. This is a clear advantage when working with RGMM statistics, because
RGMM estimators for time series are typically more computationally intensive than classical GMM
estimators, as can be seen from the description of the RGMM algorithms in the Appendices.

In order to discuss the asymptotic functional structure of U (.), we introduce a stronger version

of Assumption 1.

Assumption 2 For any 7 € Il, there exists a probability measure P (1) on (R’ﬂB (]R"”')) such
that: Tiﬂ f:Tl P, — P (7), weakly as T — oo, uniformly in = € II.

In particular, with the above notation we have Po = P(1). Moreover, =- ;fl Sw, — P (7)
weakly as T' — oo, P almost surely. If the functional @ — Eg [m (W, 3,0)] is weakly continuous,
this implies an asymptotic functional structure U of Up of the form:

1/2 o

U (r, P) = 7H (Poc) "’ Bpiy [m (W8 (Pw))| (7)

In particular, functional U (7, P) depends on P through the finite dimensional measures P ()
and P, defined on B (R*) . Hence, the asymptotic functional structure LM (m,.) of LMy () is
given by

LM (r,P)=U (x,P) U (x,P) . 8)

. ~sup ~ave . ~exp -
In this paper we focus on a class of supremum (£, ), average (£, ) and exponential (£, ) statistics

to test Hy against alternatives of the form H4 (IT) or Hy. The test statistic EST“" is defined by

/f\;:lp .= sup LM (m) . 9)
well
~ave
The test statistic £, is defined by
v / LMy (1) d\(7) (10)
I

where A is the Lebesgue measure on II. Similarly, the test statistic g;xp is defined by

~exp

Ep = log/Hexp (%I/J\\/[T (77)) d\(m) . (11)



—~ave

The asymptotic functional structure of E;:Jp, & and ?}Xp is completely determined by functional
LM in (8). In particular, (9), (10) and (11) imply that the asymptotic stability properties of Esup,
?VQ and ?Xp are determined by those of the functional U in (7). Therefore, one can expect to
obtain a class of tests for structural breaks with better local stability properties when working with
quadratic functionals based on a robust functional U. This in turn requires working with GMM
test statistics and estimators based on a GMM setting with a bounded orthogonality function m.
Section 3 below provides a more detailed discussion of these issues.

In a likelihood setting, statistics of the form (10) and (11) define an optimal test in terms of a
weighted average power criterion based on a uniform prior for the break date m € II. Specifically,
average type tests can be interpreted as the optimal test for structural breaks in the case of
alternative hypotheses very near to the null. Similarly, the exponential test is the optimal test for
testing more distant alternatives (see Andrews and Ploberger (1994)). When constructing robust
tests for structural breaks in a likelihood setting we can therefore expect robust versions of the
?Tv C, EC;I) statistics to produce a higher power, when compared with robust versions of ?Tup.

The asymptotic distribution of LM 7 (+) as a process indexed by 7, which implies the distribu-

~ave

tion of test statistics Z;:lp, &p and ?;‘p in (9), (10) and (11) by means of the Functional Central

Limit theorem, can be studied under the following general assumption.

Assumption 3 The model probability P satisfies the following condition:

| VT S8 B [m (W8 (Pao)) | = () .,
B\ Vs S B [ (3 (Po)] — s )| T "

for some bounded R -valued functions iy, py defined on II.
We may distinguish two cases for the interpretation of this assumption. When model P satisfies

the null hypothesis Hy of parameter stability in (1):

Ep (m (Wt, 9 (POO))> -0, forallt,

then condition (12) is satisfied with pq (7) = py () = 0, for all 7 € II. When instead either

function g, or function p, is different from zero, then model P satisfies a local alternative hypoth-



esis, which is equivalent to Assumption 1-LP in Andrews (1993, p. 841). In addition, condition

(12) implies the correct specification hypothesis Ep_ (m (Wt,é? (Poo))> = 0. The asymptotic

e ~sup ~ave ~exp L
distribution of {7, £ and {1 is characterized in the next theorem.

Theorem 1 Under Assumption 8 and regularity conditions on (©,m, P) (see Andrews (1993),
Assumption 1 p. 830 and Assumption 8 p. 835) it follows:

1. LMy (1) = @Qp(-) as a process indexed by 7 € II, where

Q () 1= = U (1) + () (U () + b)) T,

Jp (.) is a Brownian Bridge process, that is J,(7) = By, (m)—7nB, (1), with B, (-) a p—dimensio-
nal standard Brownian motion on [0,1], and vector b is given by:

b(r) =7 (1—7) H (Poc)/? [y (m) = po(m)] . me€IL

2. 61" =g sup,ey Qp (1) under P.
~ave

3. &p —a [ Qp (m)dX () under P.

4- E;Ip —q log [ exp (3Qp (7)) dX () under P.

. .. . . ~sup -—ave ~exp .
Based on this result, critical values for test statistics £, €p , & can be computed by simu-

lation of process J,(m) J,(7)/7 (1 — 7), © € II. Under local alternatives, the power of the test is

characterized by the noncentrality vector b (7), m € II.

3 Robust GMM tests for structural breaks

The goal of robust statistics is to provide estimation and inference procedures which are locally
stable in a nonparametric neighbourhood of relevant distributions around a given reference model.
In other words, those procedures are not excessively sensitive to small deviations from a reference
model. Therefore, statistical robustness deals with inference procedures that are based on smooth
statistical functionals. A minimal robustness requirement is continuity of such functionals. A

second stronger requirement is their Fréchet differentiability® (see for instance Bednarski (1993),

% Let M be the linear space of finite measures on (R, B(R¥)), equipped with a norm ||.|. A functional U(P)
defined on M is Fréchet differentiable at P if there exists a bounded linear operator DU(P,.) such that:

U(Q)-U(P)=DUP,Q—-P)+o(lQ—Pl).
DU(P,.) is called Fréchet derivative of U at P.



p. 27). From (9), (10) and (11) we can expect the power and level functionals of robust tests
for breaks to satisfy the first or the second requirement if the statistical functional U in (7) does
it. Therefore, a first focus is on GMM settings where such statistical functionals are Fréchet

differentiable.

3.1 Fréchet differentiability

Boundedness of the orthogonality function m is a necessary condition for a general GMM statistic
like the GMM estimator # in (4) or the functional U in (7) to be Fréchet differentiable. More
specifically, an orthogonality function m is unbounded if and only if the influence function (Hampel
(1974)) of a GMM statistic is unbounded. Unboundedness of the influence function in turn implies
an unbounded asymptotic sensitivity of a GMM statistic in a neighborhood of P, a fact that
is not compatible with Fréchet differentiability (see for instance Heritier and Ronchetti (1994)).
Therefore, for the rest of the paper we consider a GMM setting based on a bounded orthogonality

function m.
Assumption 4 The orthogonality function m is such that

[m| = sup [m(w,0)] <oo
(w,0)EW X O

Under Assumption 4 and further regularity conditions, Fréchet differentiability of the GMM func-
tionals  and U can be ensured (see for instance Clarke (1986), Bednarski (1993), Heritier and
Ronchetti (1994)). We assume in the sequel the Fréchet differentiability of such functionals® .

Assumption 5 The functionals 0 and U are Fréchet differentiable.

The important property of Fréchet differentiable testing functionals for robust inference purposes is
their uniform convergence in distribution over asymptotic neighborhoods of the reference model.
This feature provides a way to compute uniform asymptotic expansions where the linearized
asymptotic sensitivity of the level and the power of the test can be uniformly bounded over

neighborhoods of the reference model. In the next section we define asymptotic neighbourhoods

6 The Fréchet derivative of functionals 6 and U are computed in Appendix 1 in the proof of Theorem 2.
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of the reference model. Then, we address (Sections 3.3 and 3.4) the issue of uniform convergence of

robust tests for structural breaks and the uniform expansion of their level and power functionals.

3.2 Asymptotic neighbourhoods

Let P be a probability measure on (2, F). This will be the reference model in our robust setting.

The next assumption is imposed on the reference model.

Assumption 6 Under the reference model P, condition (12) is satisfied.

In particular, recall that under Assumption 6 the reference model satisfies the correct specification
hypothesis (5).

In order to study the local stability of GMM tests for structural breaks we now introduce
asymptotic neighbourhoods of the reference model P. Without loss of generality we work in the
sequel with asymptotic e—contaminated neighbourhoods. Let M, be a set of measures satisfying

Assumption 2:

Tr
1 _
My = {Q : () is a probability measure and o E Q: — Q (m) weakly as T — oo,
T

t=1

uniformly in 7 € H}

For such measures the uniform weak limit of m Y i—rni1 @t as T — oo also exists, and is

denoted by @ (7), m € II. An e—contaminated local neighbourhood U 1 of P is defined by:

ug,T—{Q"’T_( ;T)P+%Q:Q6Mmandn<a} . (13)

Neighbourhood U, 7 represents a set of relevant process distributions close to the reference model
P, over which the econometrician desires a smooth behaviour of test statistics for structural
breaks. Depending on whether the reference model P satisfies condition (12) with zero or non-
zero [iq, [1o functions, set U v represents an asymptotic neighbourhood of a model satisfying the
null hypothesis of structural stability, or a neighborhood of a local alternative model, respectively.

We emphasize that U, 7 is a nonparametric neighbourhood of distributions, since virtually no

11



parametric assumption is imposed on the local deviation directions ). The only restriction is that
any Q"1 € U. r is a mixture of distributions .

It is important to notice that, in an overidentified setting, for any finite sample size T, local
deviations Q"1 € U. 7 may or may not admit the existence of a solution for the corresponding
finite sample population moment conditions. In the second case, a GMM local misspecification
in the sense of Hall and Inoue (2003) arises. In particular, local robustness of our RGMM test
statistics for structural breaks ensures automatically stability of level and power under possible
local GMM misspecifications.

We conclude this section by presenting a restricted class of local contamination directions @,
in order to provide some more insight into the structure of partial sample asymptotic measures
@(77), 7 € II, in applied examples. This class will be useful later on to illustrate in a simple

setting some of our results. It is characterized by the following Assumption.

Assumption 7 Measure Q) € M, satisfies:
Egn, [m (W,b’ (Eo))} = () Eg_ {m (W,'é (?oo))} . mell,

for some continuous function v(.) defined on II.

If Assumption 7 holds, we will always assume that local deviation directions () spanning neigh-
bourhood U 1 satisfy such assumption.

The class of measures ) satisfying Assumption 7 includes several relevant cases of practical
interest. For instance, time homogeneous local deviations @, such that Q(7) = @, for all
7 € II, correspond to the case y(m) = 1, for all # € II. Assumption 7 is also satisfied for time

non-homogeneous local deviations () for which only a fraction of the sample is contaminated, as

illustrated in the following example.

Example 1 In this example we consider local deviations involving replacement outliers. Let draws
from measure Q be obtained by replacing with probability n* coordinates Wy of draws from P with
independent draws from a distribution P* € B(RF), for 7 = t/T < mo, where 7o € (0,1). Then

" In particular, when we have a setting with a (1 — €) percentage of clean data, it is possible to show that such
local deviations can be represented as in (13); see Kiinsch (1984), p. 486.

12



under @ :

Q . Wt ~ Pt7 u S 0,
’ WtN(l—n*)Pt+77*P*, ™ > TQ.
It can be verified that:
B W.0 (P ; o,
a [ (W0 (Po))] = { izt [m (W0 (Pw))] > mo.
Hence, this example satisfies Assumption 7 with v (w) = 0 for 7 < my and v (7w) = % for

m < mg. Similarly, convex combinations of measures of this kind with different break dates mg, or
measures where only the first portion g of the sample is contaminated, also satisfy Assumption 7.
Finally, the limit case g = 0 corresponds to a time homogeneous local deviation with replacement
outliers.

Local contaminations of the form in Example 1 are relevant in applications. As an illustration, one
can consider the situation where a structural break in the parametric part of the model - due for
instance to a change in economic policy or a change in the institutional context - is associated with
isolated, abrupt movements in the series, caused by some instability in financial markets. These
movements correspond to general changes in the distribution of the process, which typically cannot
be fully incorporated in the parametric part of the model. In such a situation, it is important to
ensure that tests for structural breaks still maintain their power against breaks in the parametric

(structural) part of the model.

3.3 Uniform convergence

In this section we provide a uniform convergence result for robust GMM test statistics for structural

breaks. The motivation for this result is that uniform convergence ensures a uniform quality

of the asymptotic approximation over a relevant set of slightly different model distributions. In

particular, uniform convergence gives us a way to control uniformly the stability of the asymptotic
3 ~sup ~ave ~exp T

level and power functionals of £, & and &, under sequences of local departures Q7 , T > 1,

from the reference model. We first define uniform weak convergence of process Ur (+) as a process

indexed by 7.

Definition 1 The sequence {Ur () : T > 1} converges weakly as a process indexed by m to Jp (-),
uniformly over the asymptotic neighborhood U, = {Uz 7 : T > 1}, if

£ (VT (Ur () = U (,.Q"7)) ) = Jp () (T = o)

13



uniformly in Q"7 € U, where LT is the process distribution under Q™1 whereas J, (+) is the
Brownian Bridge process in Theorem 1.

Note that Definition 1 applies independently of whether P satisfies the null hypothesis Hy of no
break or the alternative hypothesis H 4 (IT).

Given the Fréchet differentiability Assumption 5, we can assume uniform convergence in dis-
tribution of the sequence {Ur (-) : T > 1} (see Clarke (1986) and Heritier and Ronchetti (1994)
for more details on the relation between Fréchet differentiability and uniform convergence in dis-

tribution).

Assumption 8 The sequence {Ur (-) : T > 1} converges weakly as a process indexed by 7 to Jp (+),
uniformly over the asymptotic neighborhood U .

The Fréchet differentiability Assumption 5 and the uniform convergence Assumption 8 imply the
following uniform convergence of the RGMM test statistics for breaks over asymptotic neighbor-

hoods of the reference model.
Theorem 2 Under Assumptions 4, 5, 6, 8 it follows that:
1. I/J\\/[T ()= Q, (.) as a process indexed by m € 11, uniformly in Q"1 € U 1, where

1

P ) (Jp(m) + 07 (7)) (Jp(7) + 07 (7)),

@y (m) =

with:
1/2

b () =7 (L—m) H (Poo) "~ (17 (m) — p3(m))

and:

pi(7) = i (%) + 1By (m (W0 (Pc)) ) s 113(m) = pa(m) + nEqeey (m (W,0 (Pc)) ) -
2. ?;p —a SUp,ey @ (), uniformly in Q"' € Ue .

8. &p —a Jg @ (m) dX(w), uniformly in Q" € Ue .

4. E;w —4 log fn exp (%Q; (7?)) d (), uniformly in Q"T € U 1.
Proof. See Appendiz 1. m

o o e . . 2SUD ~ave ~exp
The local contamination direction () affects the asymptotic distribution of statistics {1 ,&p &

in particular their asymptotic level and power, through the additional term

nr(l—7)H (?00)1/2 {Ea(ﬂ) (m (VV,@V (?oo)>) — EQ(?T) (m (VV,E (?oo))>}
R ) i 0 (1) (W)}

14



in the non-centrality vector b* (7). This term involves the difference between the moment con-
ditions computed on a portion of the sample and the moment conditions computed on the full
sample, evaluated at the reference model parameter 0 (ﬁoo). In general, time non-homogeneous
local deviation directions () such that E@(Tr) (m (VV, 0 (?OO))> varies with 7 affect asymptotically
the level and the power of test statistics for structural breaks. Conversely, time homogeneous local
deviations @ such that Q(7) = Q,, m € II, have no asymptotic impact. This is a consequence
of the fact that functional U (., Q) in (7) is equal to zero for all measures such that Q(7) = Q,
7w € II. We emphasize that Theorem 2 provides uniform convergence results over neighbourhoods
of the reference model, which guarantee the stability of level and power of the RGMM test statis-
tics for structural breaks uniformly over small local deviations from the reference model. For
instance, Theorem 2 implies that time homogeneous local deviations do not affect asymptotically
size and power of test statistics, uniformly in a neighbourhood of P. It is important to stress
that this result only holds under Assumption 4 of a bounded orthogonality function m. With an
unbounded m function, these convergence results can hold only pointwise with respect to local
deviation directions @™T. This implies that, for any fixed sample size T, the distortion of the
level and power of test statistics based on unbounded orthogonality functions m may become
arbitrary large for some local deviation Q"7 very close (in distribution) to the reference model
P. Therefore, in finite samples we expect more stable level and power properties across different
local deviations for GMM test statistics based on a bounded orthogonality function m.

When the local deviation direction @) satisfies Assumption 7, the non-centrality vector b* gets

the more explicit representation:

1/2

b (m) =7 (L—m) H (Poo) "~ [ty (7) = po(m)] + 1 [y (7) = 1] d (P, Q)

where

A (Poc Qo) = H (P)"* By (m (W.0 (Pwc))).
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In this particular case, a time non-homogeneous local deviation @) can affect asymptotically the
level or the power of statistics for structural breaks if and only if an (m (VV,Aé (ﬁoo))) £ 0,

that is if the orthogonality conditions at [ (ﬁoo) are not satisfied under Q..

3.4 Asymptotic expansions of level and power functionals

In this section we provide a uniform expansion for small contamination amounts & of the asymp-
totic level and power functionals of robust GMM tests for structural breaks, over asymptotic
neighborhoods of the reference model P.

Let us first consider the level functional. In this case the reference model P satisfies Assumption

6 with p; = gy =0 in (12). The asymptotic level functional is defined by:

Jim o (@) = Jim " (& > &),
where ET is any of the supremum, average or exponential statistics (9), (10) or (11), respectively,
and &, is the corresponding critical value for a given nominal size «g, computed from Theorem
1 (or Theorem 2) with b = 0 (b* = 0, respectively). From Theorem 2 it follows that the level
converges to L£* (£,), where £* (.) is the cumulative distribution function of the limit variables in
points 2., 3., or 4. of Theorem 2, uniformly in Q"7 € U, 7. The general analysis of level distortions
induced by local deviations follows the line of the discussion of Theorem 2. In some particular
settings, it is possible to give a more precise characterizations of such level distortions. This is
the case for instance when Assumption 7 is satisfied. Since the direction of the noncentrality

parameter b* (m) does not depend on 7 (Theorem 2), and:
* 2 2 — — 2
16 (M) = 7 [L = (m)]" [|d (Pos, Quo) ||+
the distribution of stochastic process Q;() depends on local deviation direction @ only through®

n? Hd<ﬁoo7§oo)“2- Denote by Q3 (m,n? ||d(ﬁoo,§w)H2), m € II, a process with such a distri-

bution. We provide a theorem for the asymptotic level expansion of the robust GMM statistics

8 As in the standard argument for the distribution of a chi-square variable, we use the fact that there exists a
!

rotation matrix R such that Q; (1) = (RJp(m) + Rb* (7)) (RJp(m) + Rb* (m)), Rb* (m) = [|b* ()| (1,0, .,.O)l and
R - Jp is a Brownian Bridge.
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for structural breaks under small contamination amounts €. We focus in the exposition on the

average statistic, the case of supremum or exponential statistics being completely similar.

Theorem 3 Under Assumptions 4-8 it follows that, for any n < e:
Jim (@) = ao - (P, Q) 0 7).

uniformly in QT € Ue 1, where p = —0L (£4,Y) /Oyly=o , L (-,y) is the cumulative distribution
function of the random variable

/ Q (7, y) dA ().
II

and: o A
d(Px,Qy) = H (Ps)

Proof. See Appendiz 2. m

By {m (W,@(?OO)H . (14)

It is possible to provide the corresponding theorem for the asymptotic expansion of the power

functional, defined by:

lim 7w (Q"’T) = Tlggo QM (ZT > fo) )

T—o0
where now the reference model P satisfies Assumption 6 with some given non-zero functions g, 5.

Let Q¥ (m,y) denote the random variable Q¥ (m,y) = (Jp(r) + b(, y))/ (Jp(m) + b(m,y)), where

b(m,y) =7 (1= 1) H (Poo) " [y () — po(m)]) + 7 [y (1) = 1]y, y € R,

Then, we have the following power counterpart of Theorem 3.

Theorem 4 Under Assumptions 4-8 it follows that, for any n < e:

lim 7 (Q"’T) =7 (?oo) + 77114/ -d (?oo@oc) +o(n),

T—o0

uniformly in QT € U1, where p = —9L (&y,y) /0Yly=0, L (.,y) is the cumulative distribution
function of the random variable

/H QF (m,y) dA (),

and d (Poo, Qo) is given in (14).
Proof. See Appendiz 2. m

Versions of Theorems 3 and 4 for the supremum and exponential statistics are completely similar,

with £(.,y) the cumulative distribution function of the random variables sup, . Qj (7,y) and
log [;; exp (%Q; (m,y)) dX (), a = *, #, respectively.
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Theorems 3 and 4 show that the asymptotic linearized distortion in the level and power of
tests for structural breaks is proportional to Hd (ﬁm,@m) H2 and d (ﬁoo,aoo), respectively. In
particular, if m is bounded, for any given function v in Assumption 7 the distortion in the level or
power of supremum, average and exponential tests for breaks is uniformly bounded over asymptotic
neighborhoods of the reference model. In this setting, this implies the robustness of GMM tests
for breaks based on bounded orthogonality functions.

Theorem 3 can be used to give uniform asymptotic bounds on the maximal sensitivity in the
level of tests based on a bounded orthogonality function. In particular, an orthogonality function
such that

sup  |m(w,0) H (Po) m(w,0)] < ¢ : (15)
(w,0)EW X ©

for some constant ¢ > /v, implies up to terms of uniform order o (n?):

lim « (Q"’T) - ao‘ <n*u-c* . (16)

— 00

The tuning constant ¢ of our RGMM estimators determines their degree of robustness. In ap-
plications ¢ has to be determined by the econometrician, for instance on the basis of some prior
information about a maximal realistic extent 7 of deviation from the reference model which can
be expected in the data. A lower constant ¢ implies a higher robustness under a departure from
the reference model. For testing purposes, the bounds (16) can be used to choose the constant ¢
in dependence of the maximal amount of contamination expected (¢) and the maximal distortion
in the asymptotic level which a researcher is willing to accept. In this case, the derivatives p will

have to be computed numerically, by simulating the distribution of

sy [ Qi o e (5Qm0)ae)

mell
for several values of y in a neighborhood of 0. For instance, the local robustness of the level of tests
for structural breaks could be studied in dependence of ¢, thereby producing information about

the degree of asymptotic local stability in the level required for a particular model setting. Notice
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that in the case where IT = {m} and A = d, (the Dirac distribution at 7y) the above tests collapse
to a test for a break at a known break date. In this case Theorem 3 and Theorem 4 coincide with
Theorem 1 and Theorem 3 in Ronchetti and Trojani (2001), where the local robustness of the level
and power functionals for standard Maximum Likelihood-type GMM tests has been characterized.
Since in this case the distribution of the random variable @), (70, y) is noncentral chi-square with
noncentrality parameter y, full analytical expressions for p become available.

The bound (15) is satisfied by RGMM estimators with bounded self-standardized sensitivity,
i.e. such that’
-1

sup ’m(w,ﬁ)/S (Ps)

e o m(w,ﬁ)‘<62 . (17)
w,b)e X

An analogous result applies for the power of RGMM tests for structural breaks based on a bounded
orthogonality function m satisfying (17). Therefore, we consider supremum, average and exponen-
tial tests for breaks based on such RGMM estimators and their orthogonality functions. Details on
the definition and the computation of such RGMM estimators and their orthogonality functions

in a general GMM setting are provided in Ronchetti and Trojani (2001), p. 45-48.

4 Monte Carlo simulations

Having presented in the last section the theoretical background of RGMM tests for structural
breaks, in this section we report a series of Monte Carlo simulations in order to evaluate their finite
sample level and power properties across different model settings. We compare the performance of
RGMM tests with the one of classical GMM tests by focusing on the stability of power and level
under local departures from a given reference model. We first provide results for relatively large
samples sizes using standard asymptotic critical values. In a second step, we also present results
for bootstrapped versions of the tests in small samples. It is known that bootstrap procedures can

provide very accurate refinements of the finite sample distribution of classical tests for structural

9 This follows from the orthogonal projection property of the matrix

S (Poo)? H (P) S (Poc)?
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breaks; see for instance Diebold and Chen (1996) for such an evidence in a simple linear model
setting. Our simulations investigate how far bootstrapping RGMM statistics for structural breaks

can help providing a uniform bootstrap performance over a relevant model neighbourhood.

4.1 Testing for structural breaks in a linear regression model

We first consider tests for a break in the slope coefficient of a linear regression model with an

autoregressive regressor. The model is given by:

Ye =¥+ By + ouy
Tt = O+ pTi—1 + OcEt

where:

By, fort=1,..,Tmg
Bt = 9
By, fort=Tmng+1,..,T

for some 7y € II. The error term &; in the process x; is i.i.d. N (0, 1) distributed. For the error
term wu¢ in the linear regression model (18) we simulate a set of different distributions according

to Model la-le below. Specifically, we set:

e Model 1a: u; ~i.d.d. N(0,1),

Model 1b: wu; ~ i.4.d. t5/+/5/3,

Model 1c: u; ~ i.i.d. t3/v/3,

Model 1d: u; ~ i.i.d. CN (0.05,0,3) /v/1.4,

e Model le: u; ~i.i.d. CN (0.1,0,3) /v/13,

where t,, is a Student distribution with n degrees of freedom and CN (z, 0, 3) is a standard normal
distribution contaminated with probability = by a further zero mean normal distribution having
standard deviation 3. All error distributions have been standardized. The standard orthogonality

conditions for a least squares estimation of the linear regression model (18) are based on an
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orthogonality function given by

wl(Wt,B)é) (yt _fy_/th)
w(Wtaﬂad) = = Ty ,

Vo (We, B,6)
(ye = — Bwr)* Jo? =1
where W; = (yt,mt)/, 0 = (%02)/. Classical GMM estimators are obtained by using such or-
thogonality conditions. In particular, the model is exactly identified and under a Gaussian error
distribution the estimating function v defines the maximum likelihood estimator of 8. Therefore,
under Gaussianity of the error distributions we can expect classical tests based on the average or
the exponential statistics to provide the highest power (see again Andrews and Ploberger (1994)).
However, since 9 is unbounded, maximum likelihood estimators and tests based on such an es-

timating function are not robust. RGMM estimators of (18) can be constructed by applying

orthogonality conditions based on a truncated orthogonality function given by

my (W, B,6) A1 (W, B, 0)we, (Ax [901 (W, B,0)])
m(Wt, ﬁ, (S) = =

mQ(Wt7 ﬂa 6) A2 [¢2(Wt7 B? 6) - 7—2] We, (AQ [wQ(th 67 6) - 7—2])
19)

where w.(z) := min(1, ¢/ ||z||) defines a set of Huber’s weights that downweight observations which
are influential (in terms of asymptotic bias) for a classical least squares estimation of the model;
see also Hampel et al. (1986), Section 4.4., for more details. The constants ¢; > V2, ¢ > 1
are tuning constants that control the amount of robustness in the estimation of (v, B)' and o2,
respectively. The matrix A; € R%2*2 and the scalars Ay, 7o are determined as the solution of the

implicit equations'® :

0 = Ep [m(Wt’ﬁov(SO)] ) (20)

I = EPO [m(Wtaﬁ0750)m(Wt760550)/:| ) (21)

10 Shift factor T2 is introduced to ensure Fisher consistency at the reference model Py, see equation (20). In
particular, no such shift factor in needed for orthogonality function mq, since 1; is a symmetric random variable
under Pp. Matrix A; and scalar Ag are normalization factors, which ensure that the self-standardized sensitivity

of the RGMM estimator is bounded by ¢ := c% + c%; see also equation (17).
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where Py is the reference model distribution of a linear regression model (18) with normally
distributed!! error terms u;, that is Model 1a, and 6 = Aé(Po).

We emphasize that the reference model distribution Py is used in the definition of RGMM
statistics only to define a truncated GMM orthogonality condition which, by virtue of the uniform
asymptotic results in Theorem 12, 13 and 14 , ensures a uniform asymptotic behavior of the
statistics Z;Pp, E?e, ZQTXP under local departure from model Fy. In particular, when we simulate -
for instance - under a student ¢; or t5 distribution in Model 1b or 1c, the student ¢ distribution
is by no way used to define the RGMM moment conditions in such model setting. Instead, the
robustified bounded orthogonality function m is still computed using only the structure of the
given reference Py, according to (20), (21).

In addition to Models la-le, we also consider a further model of local contamination, where
replacement outliers invalidate for any finite sample size T the population moment conditions

evaluated at the solution Aé(Pg) implied by the reference model P,y. Specifically, we study the

effects of the following time homogeneous outliers replacement model:

e Model 1f: the observations of a sample y;, t = 1,..., T from model 1a are replaced with

probability 0.05 with an outlier y; ~ 3N (0,1).

Model 1f corresponds to a time homogeneous local deviation as in Example 1 with m¢ = 0. Since
the GMM moment conditions are exactly identified, no GMM misspecification is induced.

In the given setting, RGMM tests based on the bounded orthogonality function m will suffer
an efficiency loss under an exact Gaussian distribution for u;. However, already under slight
departures from Gaussianity they can provide a higher power of inferences on structural breaks.
In the next subsections, we study these issues by simulation for the above Models 1a-1f of local

departure from a conditionally Gaussian linear regression model.

1 Specifically, since under Py the random variable (y: — g —ﬁoxt)2 Jo? is X2 distributed, irrespectively of
(Bgs00), the correction constants Aa, 72 have to be computed only once, before starting the robust estimation
algorithm.
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4.1.1 Asymptotic tests

Tables la-1f report the results of our Monte Carlo simulations for Models 1a-1f in the given linear
regression setting. The break date is fixed at tg = 0.5 - T, where T' = 100, 200,300, respectively.
In the simulations for 7' = 200 we have set « =y =0, 5, =1, 8, =1,1.1,1.2,1.3, 0, = 0. = 1,
p = 0.512 . In the simulations for the other sample sizes the values of 3, — 3, applied for T = 200
have been multiplied by a factor \/W in order to obtain comparable local alternatives across
the different sample sizes. We also fixed II = [pg, 1 — pg], where py = 0.25. We provide the
results for the supremum and average classical GMM statistics, and for the corresponding RGMM
statistics using the bounded orthogonality function (19). Though available on request, we omit
the results for the exponential statistics, since they are very close to those of the average statistics

across all designs. Finally, the tuning constants for the RGMM test have been set at ¢; = 3,¢co = 3.
Tables 1a-1f about here

Table 1a shows that the power loss under normality of supremum and average RGMM tests for
breaks is moderate, with losses relatively to the classical GMM tests that are typically below 10%.
As expected, the power of classical and robust average tests is above the one of tests based on the
supremum functional. Table 1b shows that already under a t5 error distribution the power curves
of classical and robust GMM tests are very similar. In Table 1c, under a t3 error distribution,
these issues are more pronounced with a clearly higher power of robust GMM tests relatively
to standard procedures. In this model setting some oversize of classical average tests arises. For
example, the empirical sizes of the classical GMM tests are above 8.5% for T' = 100. Table 1d shows
similar patterns as for a t5 distribution when simulating under a C'N (0.05, 0, 3) error distribution:
the power curves of classical and robust GMM tests under such a setting are very similar and the
classical average test shows a tendency to a slight oversize when T' = 100. Under the CN (0.1, 0, 3)

setting in Table le this last pattern is more pronounced, and RGMM tests improve on the power

12 Simulations for more extreme autocorrelation coefficients p = 0.2,0.8 give similar findings as for p = 0.5.
These results are available from the authors on request.
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of classical GMM procedures.

Finally Table 1f shows that the empirical size of GMM and RGMM statistics under replacement
outliers is for T' = 300 quite accurate. At the same time, RGMM tests provide for T = 300 a
higher power, both for the supremum and the average statistics. For moderate sample sizes
T = 100,200, RGMM tests based on the average statistics still perform satisfactorily. On the
other hand, classical GMM tests based on the average tend to produce a slight oversize which
induces an "artificial" power increase. This pattern is confirmed by our bootstrap results for
sample size T = 50, presented in the next section. GMM and RGMM results for the supremum
tests and sample sizes T' = 100, 200, show that all statistics produce an undersize which reduces
uniformly the finite sample power of the tests. This pattern is slightly more pronounced for the
robust tests. Moreover, it seems to be due to a pure finite sample effect which disappears when
applying bootstrap resampling methods that provide a more accurate finite sample inference. This
is confirmed by our bootstrap results for sample size T' = 50, presented in the next section.

The observed stability of level and power of RGMM statistics - in particular those based on
the average functional - across different local deviations from the Gaussian reference model is a
consequence of their uniform convergence (see Theorem 2 and the discussion thereafter). Uniform
convergence implies that, for any finite sample size T', the distortion of level and power is bounded
uniformly across local deviations from the reference model, whereas they can be arbitrarily large

in some direction for the classical GMM statistics.

4.1.2 Bootstrap tests

The two last panels of Tables la-1f present for a sample size T' = 50 the results implied by GMM
and RGMM tests for breaks based on (i) standard asymptotic critical values and (ii) bootstrapped
versions of the relevant GMM statistics. In all simulations we used 1000 bootstrap samples. Gen-
erally, from these results we see that the finite sample size of GMM and RGMM asymptotic

tests based on the supremum functional can be quite biased relatively to the given nominal level.
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Indeed, for basically all Models 1a-1f we observe an empirical size of such tests which is systemat-
ically below the correct nominal level of 5%. Similarly, classical asymptotic GMM tests based on
the average tend to produce a clear oversize relatively to the correct nominal level. By contrast,
RGMM tests based on the average seem to control quite well the empirical sizes across all Models
la-1f. Bootstrapped versions of GMM and RGMM tests for T = 50 are found to provide very
accurate finite sample sizes, thus correcting the distortion observed for the asymptotic tests dis-
cussed previously. This is consistent with the findings of Diebold and Chen (1996). However, more
strikingly, it appears that bootstrapped versions of the RGMM tests tend to produce a uniformly
higher power across all Models 1a-1f. For instance, the power of bootstrapped RGMM tests under
Model 1a for 8, = 1.3 is not smaller than the one of bootstrapped classical GMM tests for both
the supremum and the average statistics. Under local deviations from Gaussianity of the errors
in the regression model (Table 1b-1f) such power increases appear to be often quite substantial,

as for instance under a student ¢3 error distribution in Table 1lc.

4.2 Testing for structural breaks in an ARCH model

In order to investigate the properties of classical and robust GMM tests for structural breaks
in a nonlinear model, we now consider an ARCH model setting (Engle (1982)). Specifically we
analyze tests for breaks in the autoregressive coefficient of the conditional variance equation in an
ARCH(1) model.

The model specification is given by:

Yt = OtlUg,
_ + 2
Oy = QT Q1tY;_q,

where

ay, fort=1,..,Tnrg
Q¢ = )
ag, fort=Tmng+1,..,T

for some mg € II. For u; we simulate again a set of distributions near to a standard normal one,
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according to Models 2a-2e below:

e Model 2a: u; ~ i.i.d. N (0,1),

Model 2b: u; ~ i.i.d. t-/\/T/5

Model 2c: u; ~ i.i.d. t5/+/5/3

Model 2d: u; ~ i.i.d. CN (0.05,0,3) //1.4

Model 2e: u; ~ i.i.d. CN (0.1,0,3) /+/1.8

All error distributions have been standardized. As for the previous section, we also consider
replacement outliers which destroy the structure of the model by distorting the GMM parameter

estimate which satisfies the population orthogonality conditions for a finite sample size T":

e Model 2f: the observations from a sample y;, t = 1,..., T, of model 2a are replaced with

probability 0.025 with an outlier y; ~ N(0,4+/cp/(1 — 1))

The orthogonality conditions for a classical GMM estimation of the model are defined by an

orthogonality function given by:

1 2
w(Wtaﬂad): LQ <y_t21> ’

O
Yi—1
where 0?2 = ag + a1y? 1, Wi = (Y, 9e-1), B = a1, § = ap. Similarly to the previous simula-
tion setting, under a Gaussian error distribution 1 defines a maximum-likelihood estimator of 6.
However, this orthogonality function is unbounded, so that the implied GMM estimators are not

robust. The orthogonality function for a robust GMM estimation of the model is given by:

m(Wtaﬁa 6) =A [w(WtaBa 5) -7 (ytfl)} We (A [w(Wta 6)5) -7 (ytfl)D ) (22)

for some tuning constant ¢ > v/2. The matrix A € R*>*? and the vector function 7 are defined by
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the implicit equations'? :

0= Ep, {m(WuﬁoaéO) | M] )

(23)

1= Ep, [m(Wi, By, 60)m(Wi, 8, 00) |

where Py is the reference model distribution of an ARCH(1) model with conditionally normally
distributed error terms u; (Model 2a). The shift factors 7 (y:—1), t = 1,...,T, can be computed
by using an analytical Laplace approximation of the integrals involved in the solution of (23), as
proposed in Mancini, Ronchetti and Trojani (2003). This avoids the numerical computation of
such integrals and largely reduces the computation time of robust GMM estimators in the present
and related settings. Details on the computation of 7 (y;—1) and the corresponding robust GMM

estimator for the moment conditions (23) are given in Appendix 3.

4.2.1 Asymptotic tests

Tables 2a-2f present the results of our Monte Carlo simulations for Models 2a-2f in the given
ARCH(1) model setting. The break date is fixed at to = 0.5 T, where T' = 250, 500, 1000. In the
simulations for 7" = 1000 we have set g = 0.01, 3 = 0.6, a3 = 0.6,0.7,0.8,0.9. In the simulations
for the other sample sizes the values of as — a7 applied for 7' = 1000 have been multiplied by a
factor \/W in order to obtain comparable local alternatives across the different sample sizes.
The tuning constants for the RGMM test have been set at ¢ = 6.18. We also fixed IT = [pg, 1 — po],

where py = 0.45. The nominal level of the test is 5%.
Tables 2a-2f about here

Table 2a shows that the power loss under normality of average and exponential RGMM test
for breaks is moderate and always below 10%. Moreover, even under normality, the power of
RGMM supremum tests is above the one of classical GMM procedures. As expected, the power of

classical and robust average and exponential tests is above the one of tests based on the supremum

13 Similarly to the previous simulation setting, shift vectors 7 (y¢—1), t = 2,...,T, ensure conditional Fisher
consistency of RGMM estimators for ARCH models at the reference model Py. The normalization matrix A
ensures that the self-standardized sensitivity of the RGMM estimator is bounded by ¢; see also equation (17).
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functional. Table 2b shows that under a t; error distribution the gain in power of RGMM tests
based on the supremum is very large, with relative increases that are sometimes around 80%-100%.
Also in the case of the average and exponential statistics RGMM procedures do produce clear power
increases in this setting. Such patterns are even more apparent in Table 2¢, under a t5 distribution,
where average and supremum RGMM statistics yield very large power improvements. The results
in Tables 2d and 2e (for a CN (0.05,0,3) and a CN (0.1, 0, 3) error distribution, respectively) are
qualitatively similar to those of Table 2b and 2c, with effects that are however quantitatively even
larger than in the case of a Student ¢ error distribution. Finally, Table 2f shows the results under
the outlier replacement Model 2f. These findings further confirm the large power improvement of

RGMM tests.

4.2.2 Bootstrap tests

The last two panels of Tables 2a-2f present for a sample size T" = 125 the results implied by GMM
and RGMM tests for breaks based on (i) standard asymptotic critical values and (ii) bootstrapped
versions of the relevant GMM statistics. Generally, from these results we see that the finite sample
size of GMM and RGMM asymptotic tests for all Model 2a-2f can be quite biased downwards
relatively to the given nominal level.

Bootstrapped versions of GMM and RGMM tests for T = 125 provide very accurate finite
sample sizes, thus correcting very well the bias observed for all asymptotic tests discussed pre-
viously. Similarly to the previous section, we observe that bootstrapped versions of the RGMM
tests tend to produce a uniformly higher power across all Models 2a-2f. Under local deviations
from conditional Gaussianity in the ARCH(1) model such power increases appear to be often quite

substantial, as for instance under the contaminated normal model in Table 2e.

4.3 Testing for structural breaks in overidentified models

In this last section we investigate the properties of classical and robust GMM tests for structural

breaks in an overidentified model. Such models are important for applications, since they are
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the basis of many structural economic specifications, such as for instance regression models with
more instruments than endogenous variables or intertemporal models with more Euler equations
than structural parameters. As it is well-known, a major concern with GMM inference in overi-
dentified models is the finite sample performance of GMM estimators and tests, especially when
the number of orthogonality conditions is large (see for instance Altonji and Segal (1996), Burn-
side and Eichenbaum (1996) and Hansen, Heaton and Yaron (1996)). In order to address this
point, we consider testing for structural breaks in a standard specification from the literature on
finite sample properties of GMM, proposed by Burnside and Eichenbaum (1996). The model is

characterized by the orthogonality conditions:

E [Wt — ,BtL] = O,
where Wy = (Wi, ..., Wd,t)/ is a d-dimensional vector of independent random variables, d = 10,
t=(1,...,1) € R% and B, is a scalar parameter such that:

By, fort=1,..,Tmg
Bt = 9
By, fort=Tmg+1,..,T
for some mg € II. We test therefore for a break in the common mean S of a set of variables

Wity ..., Wa . For each component W; ; we simulate a set of distributions close to the chi-square

distribution with one degree of freedom:
_ 2
Wi = Biuiy,
according to the following models:

e Model 3a: u;; ~d.3.d. N(0,1),

Model 3b: u;; ~i.i.d. t7/4/7/5,

Model 3c: u; ¢ ~ i.3.d. t5/1/5/3,

Model 3d: u;; ~ i.i.d. CN (0.05,0,3) /v/14,
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e Model 3e: u;; ~i.i.d. CN (0.1,0,3) /V1.8.
The orthogonality function in Burnside and Eichenbaum (1996) model is given by:

,(/J (thﬁ) = Wt - /61"

and is unbounded, implying nonrobust GMM statistics. Moreover, even under a Gaussian dis-
tribution for w; s, the GMM estimator implied by 1 is not a maximum likelihood estimator. A

RGMM estimator can be constructed by truncating the orthogonality conditions:
m (W, B) = AWy — Bu— 1) we (AW, — Bu— 7)),
for some tuning constant c¢. Vector 7 and matrix A are defined by the implicit equations:

0 = Ep(J [m(WtaﬂO)} ’

I = Ep, [m(Wt,ﬂo)m(Wuﬂo),] )

where Py is the reference model distribution'* corresponding to a chi-square distribution x?(1) for
the variables W; /8,. All above models of departure from a Gaussian distribution for u; satisfy
the moment conditions implied by the orthogonality function 1.

Finally, we consider local models of contamination which invalidate for any finite sample size T'
the population moment conditions implied by the orthogonality function 1. Specifically, we study

the effect of the two following outlier replacement models:

e Model 3f: the observations of components ¢ = 1,...,5 of a sample W, t =1,...,T from

model 3a are replaced with probability 0.05 by an outlier Wy, ~ (3N (0,1))°.

e Model 3g: the observations of components i = 1,...,5 of a sample Wiy, t = 1,...,T from

model 3a are replaced with probability 1 by an outlier Wy, ~ (3N (0,1))? for t = 1,...,0.5T.

14 Ag in section 4.1 vector 7 ensures Fisher consistency at the reference model and has to be computed only
once, before starting the robust estimation algorithm. Matrix A is computed in the robust estimation algorithm,
using an empirical version of the second implicit equation, and ensures a self-standardized sensitivity of the RGMM
estimator bounded by ¢; see again equation (17).
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Models 3f and 3g represent local deviations which induce a local GMM model misspecification
in the sense of Hall and Inoue (2003). More specifically, Model 3f implies a time homogeneous
local departure from the reference model Fy. Model 3g, instead, is a time non-homogeneous local
deviation. It represents a shift in the distribution of W;;, which cannot be exhausted by a break
in the structural parameter 5 only. In particular, local deviations in Model 3f and 3g are of the

type considered in Example 1 and satisfy Assumption 7.

4.3.1 Asymptotic tests

Tables 3a-3g present the results of our Monte Carlo simulations for Models 3a-3g in Burnside and
Eichenbaum’s (1996) model. The break date is fixed at ¢y = 0.5 - T, where T' = 100,200 ' . In
the simulations for 7" = 200 we have set 5, = 1,8, = 1,1.1,1.2,1.3. In the simulations for the
other sample sizes the values of 8, — B, applied for T = 200 have been multiplied by a factor
\/W in order to obtain comparable local alternatives across the different sample sizes. The
tuning constants for the RGMM test have been set at ¢ = 4.18. We also fixed IT = [pg, 1 — po],

where pg = 0.25. The nominal level of the tests is 5%.
Tables 3a-3g about here

Table 3a shows that under the given reference model classical and robust GMM tests for breaks
perform very similarly. Finite sample sizes of all tests are quite near to their nominal levels.
Moreover, virtually no loss in power of RGMM tests is observed, relatively to their classical
counterparts. Under a student ¢7 or t5 distribution, in Tables 3b and 3c, RGMM tests provide
a clearly higher power than their classical counterparts. For instance, in Table 3c for T" = 200
the power of RGMM tests against the alternative 8, = 1.3 is about 46%, 53% and 52% for
the supremum, the average and the exponential statistics. The power obtained when applying
classical GMM tests is instead only about 34%, 41% and 40%, for the supremum, the average and

the exponential statistics.

15 Sample size T = 100 is used in Burnside and Eichenbaum (1996).
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The results in Tables 3d and 3e for the contaminated normal models are qualitatively similar to
those under a student ¢ distribution. However, the quantitative gains in power implied by RGMM
statistics are even larger, and are in some cases near to 50%, as for instance in the models with
By = 1.3 for T' = 200.

Finally, in Tables 3f and 3g it is shown that also under an outlier replacement model RGMM
tests for breaks provide a clearly higher efficiency of inferences on breaks than tests based on the
classical GMM. For instance, in Model 3f with 8, = 1.3 for T" = 200 the power of RGMM tests
is about 60%, 65% and 64% for the supremum, the average and the exponential statistics. This
is clearly above the power implied by classical GMM testing procedures. In Table 3g we compare
the power of GMM and RGMM tests under Model 3g for (3, — 3;) /22 = 0.3 and different
contamination probabilities n = 0.0,0.025,0.05,0.075. It is shown that RGMM statistics maintain
a higher power against structural breaks in the parametric part of the model, also in the presence

of time non-homogeneous local deviations (see again the discussion after example 1).

4.3.2 Bootstrap tests

The last two panels of Tables 3a-3g present for a sample size T' = 50 the results implied by GMM
and RGMM tests for breaks based on (i) standard asymptotic critical values and (ii) bootstrapped
versions of the relevant GMM statistics. Generally, from these results we see that the finite sample
sizes of GMM and RGMM asymptotic tests based on the supremum functional can be quite biased
downwards relatively to the given nominal level for all Model 3a-3g. By contrast, the empirical
sizes of both classical and robust GMM tests based on the average and the exponential seem to
be quite well controlled. However, for all statistics we observe again in all Models 3a-3g a larger
power of RGMM tests when compared with the classical ones. In some cases the power increase
is very substantial, as for instance in Table 3e for a contaminated normal distribution.

Bootstrapped versions of GMM and RGMM tests'® for T = 50 provide all accurate finite

16 They are based on the recentered bootstrap of Hall and Horowitz (1996) for overidentified models.
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sample sizes, thus correcting well the bias observed for the asymptotic tests based on the supremum
statistic discussed previously. Moreover, the power curves of bootstrapped GMM and RGMM tests
based on the average and the exponential are very similar to those obtained for the corresponding
asymptotic tests. This further confirms the good finite sample performances of such asymptotic
tests in the present model setting.

Similarly to the previous section, we finally observe that bootstrapped versions of the RGMM
tests tend to produce a uniformly higher power across all Models 3a-3g. Again, under local
deviations from the reference model, such power increases appear to be often quite substantial, as

is for instance illustrated by the results for the contaminated normal model in Table 3e.

5 Conclusions

We proposed a class of new supremum, average and exponential RGMM tests for structural breaks,
which imply a bounded sensitivity of level and power under local departures from a reference
model. Robustness of the new tests is obtained by computing the supremum, the average or
the exponential functionals over a sequence of GMM Lagrange Multiplier statistics in a setting
based on a bounded orthogonality function. Monte Carlo simulations showed that the new robust
GMM tests perform well across a quite broad set of model configurations, both in terms of the
efficiency and the robustness of the inference procedure, when compared with standard GMM tests
for structural breaks. Due to the intrinsic difficulties in the formulation and the identification of
econometric models that exactly describe the whole data distribution, it is expected that RGMM
tests for breaks can help in providing some more robust and consistent evidence on the presence

of breaks in the statistical analysis of economic data series.
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6 Appendix 1: Proof of Theorem 2

By Assumption 8 we have:

VIUr () = Jy (1) +a (),

uniformly over Q"7 € U, , where:
z(r) = lim VTU (m, Q"’T) , well
T—o00
Let us compute x. By Assumptions 5 and 6, a von Mises expansion up to terms O(n/v/T) gives:

VIU (r,Q"") = VTrH (Pu)? Bgor, [m(w,0@5)]

VTU (1, P) + qrH (Pay)? {Eﬁm [Ve/m(I/V, ’é(?w))} D(P.., Q.. — Po)

+ Bgmy [m(W,0(P))] }, (24)
where Dg(ﬁoo, Q. — Po) is the Fréchet derivative of 6 at Py in direction Q.. — Po. To compute
DE(?OO,@OO — P..) note first that the asymptotic estimating equation for 0 (ﬁoo) is

0=N (Po) @ (Pc) Bp_ (m (W.0(Px))) (25)
where

N (Px) = Bp_ (Vom (W,0 (Px)))

The directional derivative D@ (ﬁoo, Q. — ?oo) can be then computed by implicitly differentiating

(25) in the direction Q. — Po to get
0= N (Poc) @ (Poc) [N (Poc) DU(Poc, Qo = Poc) + By (m (W.0 (Pc)) )|
ie.

Di(Poc, Qoo Poc) = = (V' (Poc) 2 (Poc) N (Pec)) ' V' (Poc) @ (Poc) By (m (W.0 (Pc)))
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where we used that P satisfies (5). Inserting this expression into (24) gives up to uniform terms

of order o (n):

VIU (7,Q"T) = ﬁU(w,PHmH(ﬁm)%{E@m [m(7,0(Poc))]
R (o ()}
where :
R(Px) = N (Pu) (V' (P) 2 (Poc) N (P)) " N' (P) @ (Poc)

1/2

Moreover, since H (?oo) R (?Oo) =H (?Oo), we have H (?oo) R (?oo) =H (?00)1/2, and we

get:

VTU (7,Q"T) = VTU (,P)

D=

e H (Poc)? { Bgiay [m(W,0(P))| = Bq_ (m (W.0(Px))) }-

From Theorem 1 we have:

=

VTU (7, P) = 7 (1~ ) H (Poc)* [ () — pa(m)], T — oc.

Thus we get:

VTUr () = J, () +b*(),

uniformly in Q"7 € U, 7, where:

=

b(r) = a(l—m)H (Poo)?® 11 (1) — po(m)]

il (o) { gy [m(W,0(Po0))| = Bg_ (m (W0 (Pwo))) }
= 7 =m H (Po)* {1 (7) + 0By [m(W,0(Po0))]

—p13 (%) = nBqem [m(W,0(Pw))] }

where we used that Q,, = 7Q () + (1 — ) Q (7). Points 2., 3. and 4. follow by the Functional

Central Limit theorem.
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7 Appendix 2: Proof of Theorems 3 and 4

Let us prove Theorem 3. Let £ (., n? ||d (ﬁoo,@oo) ||2) , denote the cumulative distribution function

of
[ @5 (v 4 (Po@o) [) ar ()
II
‘We have:
Jim a (@) = lm QM > &)

= 1= £ (6P |4 (P 0)I)
= 1-L(£,0) — % (60:0) [|d (Poc, Qo) || m* + 0 (i)

oL —
= ao—8—y(£o,0)Hd(Pm,Qm)lfn%o(nQ),

uniformly over the asymptotic neighborhood U r, where g—g denotes the derivative of £ with

respect to the noncentrality parameter y = Hd (?Oo,@oo) ||2 n?. The proof of Theorem 4 is similar.

8 Appendix 3: Computation of the robust GMM estimator
of the ARCH(1) model

In this Appendix we discuss some computational issues involved with the computation of the
robust GMM estimator (oo, 541)/ in the ARCH(1) model of Section 4.2. The estimator (&, &1)/,
the shift factors 7 (y;—1), t = 1,...,T, and the normalization matrix A have to be computed by
an iterative algorithm. We first discuss the single steps necessary for computing 7 (y:—1), A and

’

(qw, 1) , respectively, and then present the complete algorithm.

8.1 The shift factors

The first condition in (23) is satisfied for 7 (y;—1) defined by

1 T* (yt—l)
T (Ye—1) = p)
t

yt2—17* (ye—1)
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if 7* (y4—1) is such that

Ep, [(“? —1=7" (1)) wi | ye1] =0 (26)

where
Az
Wt 1= We (U—Qt (U? —1-7 (ytl)))
t

/

and x; = (1, yfﬁl) . Equation (26) is equivalent to the implicit equation:

Ep, [(uf - 1) wy | yt71]
Ep, [wt | ye—1]

T (Y1) = (27)

Therefore, we can focus on iterative procedures for the computation of the numerator and the
’ 0 ~ .
denominator of 7* (y;—1). Let values (A A) %, 79 (3_1), t =1,...,T, be given on the RHS of

(27). Let further z; 4 < 29, denote the two solutions of the equation:

A0 ) z, (A A)° a, .
‘ 2t<2170(yt—1))H——t 5 ‘ZflfTo(yt_l)}:c,
0% o

’~0 . L. .
where 07 = 2;&. Then, if 21, < 0 < 23, =: d3,, as it is the case for any parameter choice we

have investigated, the denominator in (27) becomes:

coj

2 [es} 1
D (du)
\/ Ty (A/A)O Ty /d“ w1 =70 (ye)

When d, ; is large enough, the second integral can be approximated by a Laplace approximation

da,t
EPO [wt | yt—l} =2 / P (du) +
0

(see for instance Jensen (1995)). In any parameter choice we considered, this approximation
has shown to be very accurate and efficient. A similar analytical approximation can be used to
compute the numerator of (27). Using these approximations, from the RHS of (27) we get updated
values 71 (y;_1), t =1,...,T.

Similarly to above, from the second condition in (23), an updated estimate of A’A is given by:

-1

T
1 1 1 ' . 2
(A'A) = 7 E or_fw?xtxt (uf — 1 =7 (y4-1)) ,
t=1

where 02 = 2,a°, uy = yi /0, Wi = we (A% [uf —1 =70 (y;1)] Jo?).
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8.2 Robust GMM estimator as iterated WLS

The robust GMM estimator is the solution & = (@, @1) of the finite sample estimating equation

(147 (ye_1)) x;a] -0,

"1
L3 dn i
Ot
where o7 = x;a = ap+ a1y’ 4, a = (ag, 1) , wy = W, (A:L't [uf -1-7* (yt,l)] /O’%). The
solution & satisfies the implicit equation
-7
] Z wtwty? (28)

T

. 1 «

a= [Z Ly (147" (ye—1)) zy
t=1 "t

N
Given values @, 7 (y¢—1), t = 1,...,T, and (A A) , they can be inserted in the RHS of (28)

get an updated estimate &', which has the form of a WLS estimator

8.3 The robust GMM estimation algorithm
The algorithm for computing the robust GMM estimator in the ARCH(1) model is as follows

(yt—1) =0,t=1,..,T, and

1. Consider starting values o, 7

(A'4)" =

2 _ /~0 _
t—xaaut—yt/at

where o

Compute the weights:
Az .
: [“? —1-7 (%1)])

2.
Wi 1= We
(=
3. Compute the shift and normalization factors 7*! (y;_1), t = 1,...,T, and (A’A)1 by the
approach discussed above
1 (o) = Ep, [(uf — 1) wy | ye1]
- Ep, [we | yi—1] ’
T oy -1
2
fz_z;wti'txt R e (77 1)
5 Ot

38



4. Compute the GMM estimator:

T

1
~ 1 /
at = Z —we (1+ 7*0 (Y1-1)) mew, . Z

o
t=1 1t t=1

1

2
T Wt LYy
t

ag

5. Use 71 (y;_1), t = 1,..., T, (A’A)", @" as new starting values

Steps 2 to 5 are iterated until numerical convergence is obtained.
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Tables

Table 1la: GMM LM test results for Model la: u; « i.i.d.N (0,1). Parameters: a =
v=0,8, =1, 0, =0 =1, p=0.5. Break date: ty = 0.5 7. Tuning constant for
RGMM: ¢; = 3,¢5 = 3. pg = 0.25, 5000 Monte Carlo simulations. The nominal level

of the tests is ag = 5%.

T = 300 GMM RGMM T =200 GMM RGMM
(By—51) \/3/_2 sup ave | sup ave Ba—0B1 sup ave | sup ave
0.0 4.02 534 | 394 5.12 0.0 416 594 | 3.80 4.80
0.1 9.12 11.7 | 896 11.1 0.1 14.0 189 | 12.0 15.7
0.2 257 324 | 23.8 2838 0.2 444 54.6 | 404 483
0.3 534 61.6 | 49.1 554 0.3 81.0 86.3 | 76.0 81.5
T =100 GMM RGMM T =250 GMM RGMM
(By—51) \/1/_2 sup ave | sup ave || (By—P) \/1/_4 sup ave | sup  ave
0.0 3.92 5.84 | 348 5.06 0.0 292 6.72 | 2.70 4.46
0.1 8.10 12.7 | 6.72 9.74 0.1 5.86 12.6 | 4.90 8.04
0.2 214 31.1 | 182 254 0.2 15.6 295 | 13.2 22.0
0.3 44.6 58.1 | 39.0 50.3 0.3 34.6 544|291 429
T =50
GMM RGMM
Bootstrap

(By—=B1)\/1/4 | sup ave | sup ave

0.0 4.60 4.84 | 5.02 5.06
0.1 8.14 9.00 | 828 9.08
0.2 19.0 222 | 188 218
0.3 36.9 422 | 31.1 41.8
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Table 1b: GMM LM test results for Model 1b: wu; « i.4.d.t5/4/5/3. Parameters:
a=7=00,=1,0, =0.=1, p=0.5. Break date: t; = 0.5-7. Tuning constant
for RGMM: ¢; = 3,¢c2 = 3. po = 0.25, 5000 Monte Carlo simulations. The nominal

level of the tests is ag = 5%.

T = 300 GMM RGMM T =200 GMM RGMM

(By—=B1)\/3/2 | sup ave | sup ave Bs—0B4 sup ave | sup  ave

0.0 3.74 5.06 | 426 5.06 0.0 4.70 6.12 | 4.28 5.02
0.1 9.62 12.0 | 10.2 12.3 0.1 944 134 | 9.02 125
0.2 26.9 333 | 29.8 36.1 0.2 273 352 | 277 343
0.3 54.8 62.9 | 59.1 66.1 0.3 53.5 61.9 | 55.9 63.2

T =100 GMM RGMM T =50 GMM RGMM

(By=B1)\/1/2 | sup ave | sup ave || (By—B1)\/1/4 | sup ave | sup ave

0.0 3.16 6.26 | 3.14 4.90 0.0 324 7.62| 192 3.64
0.1 836 13.8 | 7.74 115 0.1 6.46 14.2 | 496 9.66
0.2 24.8 355 | 239 322 0.2 19.2 34.8 | 16.5 26.8
0.3 50.2 61.7 | 49.5 59.8 0.3 40.1 589 | 36.1 50.3
T =150
GMM RGMM
Bootstrap

(By—B1)\/1/4 | sup ave | sup ave

0.0 5.02 5.42 | 488 5.46
0.1 9.34 10.4 | 9.08 104
0.2 214 243 | 22.7 258
0.3 41.6 455 | 44.1 485
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Table 1c: GMM LM test results for Model 1c: uy - i.i.d.tg/\/g. Parameters: a =
v=0,6,=1 0, =0 =1, p=0.5. Break date: ty = 0.5- 7. Tuning constant for
RGMM: ¢; = 3,¢c2 = 3. pg = 0.25, 5000 Monte Carlo simulations. The nominal level

of the tests is ag = 5%.

T = 300 GMM RGMM T =200 GMM RGMM

(By—=B1)\/3/2 | sup ave | sup ave Bs—0B4 sup ave | sup  ave

0.0 5.34 6.60 | 442 5.16 0.0 4.76 8.14 | 3.80 4.96
0.1 11.7 15.1 | 12.4 16.6 0.1 13.5 182 | 12.8 16.4
0.2 33.6 40.5 | 41.0 479 0.2 35.1 43.2 | 39.6 473
0.3 63.5 69.2 | 76.2 81.0 0.3 63.8 71.1 | 73.0 79.4
T =100 GMM RGMM T =50 GMM RGMM

(By=B1)\/1/2 | sup ave | sup ave || (By—B1)\/1/4 | sup ave | sup ave

0.0 5.04 8.68 | 3.18 4.26 0.0 4.36 9.78 | 2.54 4.64
0.1 11.7 175 | 9.64 13.6 0.1 8.88 184 | 7.26 12.3
0.2 329 43.2 | 31.7 413 0.2 26.3 439 | 22.8 35.8
0.3 60.8 70.4 | 63.2 729 0.3 51.8 68.9 | 47.3 624
T =150
GMM RGMM
Bootstrap

(By—B1)\/1/4 | sup ave | sup ave

0.0 490 494 | 522 540
0.1 17.7 19.3 | 18.8 21.5
0.2 487 52.2 | 53.9 59.8
0.3 75.9 782 | 81.2 85.0
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Table 1d: GMM LM test results for Model 1d: u; « i...d.CN (0.05,0,3) /v/1.4.
Parameters: « = v =0, 5, =1, 0, = 0. = 1, p = 0.5. Break date: t, = 0.5 - 7.
Tuning constant for RGMM: ¢; = 3,¢3 = 3. pg = 0.25, 5000 Monte Carlo simulations.

The nominal level of the tests is ag = 5%.

T =300 GMM RGMM T =200 GMM RGMM
(By—51) \/3/_2 sup ave | sup ave Ba—051 sup ave | sup ave
0.0 4.72 598 | 444 5.12 0.0 4.00 5.48 | 4.00 4.70
0.1 10.5 14.2 | 10.1 128 0.1 8.54 12.1 | 874 11.7
0.2 28.1 349 | 29.6 35.8 0.2 26.3 34.7 | 26.4 339
0.3 56.0 63.3 | 59.6 66.6 0.3 54.1 634 | 55.3 63.5
T =100 GMM RGMM T =50 GMM RGMM
(By—51) \/1/_2 sup ave | sup ave || (O, —ﬂl)\/l/_ﬁl sup ave | sup ave
0.0 3.76  6.50 | 2.70  3.96 0.0 2.78 6.86 | 2.34 4.50
0.1 8.16 138 | 7.16 11.1 0.1 6.42 144 | 5.64 11.3
0.2 244 35.1 | 22.7 319 0.2 19.3 35.0 | 174 28.0
0.3 51.1 62.9 | 50.0 59.5 0.3 41.1 599 | 37.1 514
T =50
GMM RGMM
Bootstrap
(B,—PB1) \/1/_4 sup ave | sup  ave
0.0 4.58 4.92 | 4.30 4.46
0.1 134 16.1 | 144 17.0
0.2 39.5 43.8 | 42.7 48.7
0.3 68.6 72.6 | 71.4 764
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Table le: GMM LM test results for Model le: u; « i.i.d.CN (0.1,0,3) /v/1.8.
Parameters: « = v =0, 5, =1, 0, = 0. = 1, p = 0.5. Break date: t, = 0.5 - 7.
Tuning constant for RGMM: ¢; = 3,¢3 = 3. pg = 0.25, 5000 Monte Carlo simulations.

The nominal level of the tests is ag = 5%.

T =300 GMM RGMM T =200 GMM RGMM
(By—51) \/3/_2 sup ave | sup ave Ba—051 sup ave | sup ave
0.0 4.56  6.22 | 4.72 524 0.0 4.08 5.40 | 3.76 4.56
0.1 106 14.1 | 11.1 141 0.1 8.96 128 | 9.62 13.0
0.2 28.7 35.1 | 33.4 394 0.2 274 354 | 30.3 369
0.3 56.0 63.3 | 64.7 T71.0 0.3 56.1 649 | 61.3 68.5
T =100 GMM RGMM T =50 GMM RGMM
(By—51) \/1/_2 sup ave | sup ave || (O, —ﬂl)\/l/_ﬁl sup ave | sup ave
0.0 3.82 T7.12 | 272 4.38 0.0 3.12 742 | 240 4.22
0.1 8.92 153 | 7.66 11.9 0.1 770 154 | 6.08 119
0.2 26.2 369 | 26.0 35.3 0.2 22.7 377 | 19.2 30.0
0.3 52.8 64.5 | b4.4 64.1 0.3 445  61.8 | 404 55.0
T =50
GMM RGMM
Bootstrap
(B,—PB1) \/1/_4 sup ave | sup ave
0.0 4.58 5.48 | 4.40 4.74
0.1 11.0 11.3 | 11.3 125
0.2 269 29.3 | 30.0 339
0.3 50.0 54.0 | 56.1 61.0
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Table 1f: GMM LM test results for Model 1f: the observations from a sample of
Model la are replaced with probability 0.05 by an outlier y; «~~ N (0,3). Parameters:
a=v=0,8=1, 0, =0, =1. Break date: t; = 0.5-7. Tuning constant for RGMM:
c1 = 3,¢co = 3. pp = 0.25, 5000 Monte Carlo simulations. The nominal level of the

tests is ag = 5%.

T = 300 GMM RGMM T =200 GMM RGMM

(52—51) V 3/2 sup ave sup ave 52 —ﬂl sup ave sup ave

0.0 4.86 6.08 | 4.08 5.00 0.0 4.36 6.52 | 3.44 4.72
0.1 7.78 102 | 7.72  9.60 0.1 7.90 11.0 | 6.92 9.32
0.2 19.2 241 ] 20.2 252 0.2 18.0 239 | 184 24.0
0.3 37.3 43.8 | 414 49.0 0.3 36.5 43.5 | 39.0 47.0
T =100 GMM RGMM T =50 GMM RGMM

(By—=B1)\/1/2 | sup ave | sup ave || (By—S31)y/1/4 | sup ave | sup ave

0.0 3.52 6.84 | 2.56 4.10 0.0 3.92 9.14 | 244 4.48
0.1 7.26 11.3 | 5.60 8.52 0.1 572 12,5 | 3.78 6.64
0.2 16.9 249 | 146 22.1 0.2 11.6 234 | 9.76 16.4
0.3 34.3 457 | 33.0 441 0.3 216 36.2 | 19.5 31.2
T =150
GMM RGMM
Bootstrap

(By—=PB1)\/1/4 | sup ave | sup ave

0.0 532 590 | 5.16 5.14
0.1 8.06 9.32 | 9.18 9.86
0.2 18.1 21.0 | 20.6 23.8
0.3 33.3 375 | 39.6 438
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Table 2a: GMM LM test results for Model 2a: wu; « i.9.d.N (0,1). Parameters:

ap = 0.01, a; = 0.6. Break date: ty = 0.5-T. Tuning constant for RGMM: ¢ = 6.18.

po = 0.45, 5000 Monte Carlo simulations. The nominal level of the tests is 5%.
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T = 1000 T =500
GMM RGMM GMM RGMM
\/D‘ﬁ sup ave exp | sup ave exp || sup ave exp | sup ave  exp
0.0 2.60 530 448 | 4.06 4.80 4.60 || 1.82 448 3.82 | 3.40 448 4.20
0.1 6.90 129 113 ] 982 119 115 | 5.04 114 972 | 7.96 106 10.2
0.2 234 347 319 | 278 31.6 31.6 17.6 304 274 | 24.0 28.7 282
0.3 46.9 60.6 57.9 | 52.8 57.8 574 || 384 55.6 516 | 46.2 53.2 52.6
T = 250 T =125
GMM RGMM GMM RGMM
afﬁg/} sup ave exp | sup ave exp || sup ave exp | sup ave  exp
0.0 1.06 442 342 | 264 4.26 4.04 || 0.54 246 198 | 1.48 2.62 2.52
0.1 3.02 946 780 | 6.46 9.42 892 | 1.00 5.68 4.40 | 2.98 5.96 5.70
0.2 106 246 215 | 174 245 23.7 || 3.60 151 12.0 | 810 15.5 15.0
0.3 246 456 40.6 | 35.0 44.7 439 | 890 285 248 | 174 29.4 29.1
T = 125 Bootstrap
GMM RGMM
jﬁ sup ave exp | sup ave  exp
0.0 5.10 4.74 494 | 548 5.66 5.48
0.1 7.32 9.00 878 | 876 9.66 9.68
0.2 181 214 21.2 | 187 221 21.9
0.3 334 384 37.7 | 33.8 383 376




Table 2b: GMM LM test results for Model 2b: wu; « i.4.d.t7/4/7/5. Parameters:

ap = 0.01, a; = 0.6. Break date: ty = 0.5-7T. Tuning constant for RGMM: ¢ = 6.18.

po = 0.45, 5000 Monte Carlo simulations. The nominal level of the tests is 5%.
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T = 1000 T =500
GMM RGMM GMM RGMM
\/D‘ﬁ sup ave exp | sup ave exp || sup ave exp | sup ave  exp
0.0 1.68 426 348 | 3.46 386 3.80 || 1.44 4.04 3.26 | 3.34 428 4.26
0.1 3.66 8.08 6.82] 678 814 8.02 | 2.78 792 6.52 | 6.06 8.06 7.94
0.2 956 184 159 ] 16.3 196 19.0 | 7.20 16.5 14.4 | 13.8 17.7 17.3
0.3 19.9 345 31.2 | 31.7 36.7 36.2 || 15,5 30.0 26.7 | 264 324 318
T = 250 T =125
GMM RGMM GMM RGMM
afﬁg/} sup ave exp | sup ave exp || sup ave exp | sup ave  exp
0.0 0.64 3.22 240 | 224 3.62 3.36 || 042 1.72 1.30 | 1.40 2.54 2.46
0.1 1.30 542 4141 338 6.10 5.78 || 0.32 3.10 2.00 | 1.64 4.12 3.72
0.2 3.04 127 992 | 868 144 13.7 | 0.88 6.70 5.14 | 3.54 8.64 8.12
0.3 7.66 223 19.1 [ 183 25.6 24.9 1.98 123 9.20 | 7.20 154 14.8
T = 125 Bootstrap
GMM RGMM
jﬁ sup ave exp | sup ave  exp
0.0 4.88 498 494 | 526 5.06 4.96
0.1 590 7.08 6.86 | 6.40 7.66 7.34
0.2 11.0 13,5 133 | 13.0 149 14.6
0.3 18.0 21.7 21.1 | 198 234 23.0




Table 2c: GMM LM test results for Model 2¢: uy « i.i.d.t5/4/5/3. Parameters:

ap = 0.01, a; = 0.6. Break date: ty) = 0.5-7T. Tuning constant for RGMM: ¢ = 6.18.

po = 0.45, 5000 Monte Carlo simulations. The nominal level of the tests is 5%.
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T = 1000 T =500
GMM RGMM GMM RGMM
\/D‘ﬁ sup ave exp | sup ave exp || sup ave exp | sup ave  exp
0.0 1.54 418 3.06 | 3.76 4.60 4.40 || 1.16 3.94 298| 3.20 4.32 4.08
0.1 250 6.80 5.64|6.02 736 7.18 | 2.04 6.22 510|496 6.62 6.52
0.2 6.06 13.5 11.9 | 124 16.1 15.6 || 4.48 124 10.3 | 10.8 14.8 14.3
0.3 13.0 23.8 214|251 292 288 | 928 214 183 | 21.2 27.0 26.5
T = 250 T =125
GMM RGMM GMM RGMM
afﬁg/} sup ave exp | sup ave exp || sup ave exp | sup ave  exp
0.0 0.54 3.10 224 ) 284 416 3.72 | 0.34 152 1.10| 1.04 2.60 2.44
0.1 0.82 458 330 | 344 592 554 | 040 266 1.84 | 1.50 3.90 3.66
0.2 194 882 6.84 | 748 11.6 109 || 048 4.92 338|288 7.00 6.74
0.3 4.22 16.5 13.0 | 14.0 21.3 20.1 1.14 864 6.48 | 5.16 12.0 114
T = 125 Bootstrap
GMM RGMM
jﬁ sup ave exp | sup ave  exp
0.0 4.62 4.70 4.64 | 494 526 5.30
0.1 532 6.50 6.24 [ 5.56 6.52 6.52
0.2 824 105 10.2 ) 9.86 11.5 11.3
0.3 133 169 16.5 | 169 19.6 19.3




Table 2d: GMM LM test results for Model 2d: u; « i...d.CN (0.05,0,3) /v/1.4.

Parameters: ag = 0.01, a; = 0.6. Break date: ¢ty = 0.5-T. Tuning constant for

RGMM: ¢ = 6.18. py = 0.45, 5000 Monte Carlo simulations. The nominal level of the

tests is 5%.
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T = 1000 T =500
GMM RGMM GMM RGMM
\/D‘ﬁ sup ave exp | sup ave exp || sup ave exp | sup ave  exp
0.0 122 432 324 | 356 448 4.18 || 0.76 3.44 250 | 294 4.02 3.82
0.1 2.02 6.14 5.16 | 6.68 8.22 8.04 | 1.30 570 438|534 784 7.62
0.2 5.04 12.0 10.1 | 14.7 18.0 175 3.94 115 9.22 | 136 17.2 170
0.3 10.0 21.0 18.7 | 29.7 339 33.7 | 764 200 17.2 | 25.0 30.8 30.1
T = 250 T =125
GMM RGMM GMM RGMM
afﬁg/} sup ave exp | sup ave exp || sup ave exp | sup ave  exp
0.0 0.58 252 1.66 | 2.32 3.58 3.22 | 0.30 146 1.06 | 1.20 2.24 2.06
0.1 0.62 4.06 5.02 ] 3.66 6.02 5.62 | 040 232 156 | 1.54 4.14 3.90
0.2 198 9.04 6.48 | 892 139 133 | 0.56 4.78 3.56 | 3.50 7.78 7.40
0.3 442 16.0 129 | 17.3 24.7 238 1.56 898 6.88 [ 6.60 14.1 13.5
T = 125 Bootstrap
GMM RGMM
jﬁ sup ave exp | sup ave exp
0.0 4.56 4.56 4.70 | 4.62 4.38 4.50
0.1 5.62 6.60 6.40 [ 6.68 7.50 7.50
0.2 9.38 11.6 114 | 11.7 141 14.2
0.3 148 176 176 | 194 21.9 220




Table 2e: GMM LM test results for Model 2e: u; « i.i.d.CN (0.1,0,3) //1.8.

Parameters: ag = 0.01, a; = 0.6. Break date: ¢ty = 0.5-T. Tuning constant for

RGMM: ¢ = 6.18. py = 0.45, 5000 Monte Carlo simulations. The nominal level of the

tests is 5%.
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T = 1000 T =500
GMM RGMM GMM RGMM
\/D‘ﬁ sup ave exp | sup ave exp || sup ave exp | sup ave  exp
0.0 1.08 410 332|276 3.34 3.38 || 0.68 3.86 2.64 | 272 424 4.04
0.1 1.78 534 4.18 | 484 632 6.04 || 1.14 524 388 | 5.04 6.76 6.62
0.2 3.50 9.20 7.86 | 10.1 121 11.8 || 2.58 892 6.80 | 9.34 12.1 11.9
0.3 6.78 153 13.2 | 185 22.0 21.7 | 466 13.8 11.5 | 16.1 20.9 20.2
T = 250 T =125
GMM RGMM GMM RGMM
afﬁg/} sup ave exp | sup ave exp || sup ave exp | sup ave  exp
0.0 048 242 1.72 ) 230 340 3.16 || 0.28 1.44 1.12 | 1.32 2.76 2.54
0.1 0.58 330 3.30 | 286 4.88 458 | 0.38 1.50 1.16 | 1.38 3.14 3.02
0.2 1.00 5.38 5.38 | 5.50 858 820 | 042 2.70 1.86 | 2.22 544 5.14
0.3 1.74 880 8.80 | 9.26 14.8 144 || 0.52 4.36 3.10 | 3.28 8.64 8.28
T = 125 Bootstrap
GMM RGMM
jﬁ sup ave exp | sup ave exp
0.0 4.66 4.54 454 | 470 4.66 4.62
0.1 4.98 5.50 5.50 | 5.28 6.02 6.00
0.2 6.02 T7.54 734824 10.2 9.90
0.3 892 11.2 11.0 | 13.0 152 148




Table 2f: GMM LM test results for Model 2f: the observations from a sample

of Model 1la are replaced with probability 0.025 by an outlier y; «~ 4N (0,0.01/0.4).

Parameters: ag = 0.01, a; = 0.6. Break date: ¢ty = 0.5-7. Tuning constant for

RGMM: ¢ = 6.18. py = 0.45, 5000 Monte Carlo simulations. Nominal size is 5%.

o1

T = 1000 T =500
GMM RGMM GMM RGMM
jﬁ sup ave exp | sup ave exp | sup ave exp | sup ave exp
0.0 194 534 4.08 | 394 470 458 || 1.46 438 3.30 | 3.16 3.78 3.76
0.1 296 802 698 | 7.36 886 884 | 220 6.78 5.62 | 6.16 838 7.88
0.2 7.60 143 12.8 | 188 22.6 22.1 || 6.70 14.5 12.7 | 15.8 204 19.9
0.3 154 259 235 | 379 427 424 | 13.6 251 228 | 32.1 38.0 375
T = 250 T =125
GMM RGMM GMM RGMM
\/D‘ﬁ sup ave exp | sup ave exp || sup ave exp | sup ave exp
0.0 0.84 3.70 264|242 374 358 | 092 254 202 | 1.62 298 282
0.1 1.76 7.02 550 | 472 760 7.20 || 0.92 4.32 348 | 270 548 5.38
0.2 5.04 145 122 | 11.8 143 16.0 1.10 9.72 7.80 | 6.18 12.1 11.7
0.3 11.1 25.6 221 | 22.7 305 29.6 || 416 16.7 13.5 | 12.1 21.1 20.8
T = 125 Bootstrap
GMM RGMM
jﬁ sup ave exp | sup ave exp
0.0 5.10 5.06 5.08 [ 4.58 4.58 4.50
0.1 728 886 870 | 7.60 8.72 8.84
0.2 13.3 159 156 | 142 169 16.6
0.3 240 273 271|251 285 28.1




Table 3a: GMM LM test results for Model 3a: w;; « .4.d.N(0.1). Parameter:

B, = 1. Break date: ¢ty = 0.5- 7. Tuning constant for RGMM: ¢ = 4.18. py = 0.25,

5000 Monte Carlo simulations. The nominal level of the tests is ag = 5%.

T =100 GMM RGMM T = 200 GMM RGMM
Ba—01 sup ave exp | sup ave exp || (B2—04) - V2| sup  ave exp | sup  ave exp
0.0 442 490 5.08 | 4.14 5.00 5.22 0.0 4.04 494 514 | 432 5.00 5.14
0.1 11.3 143 146 | 11.5 144 147 0.1 12.1 152 149 | 126 152 14.8
0.2 30.1 382 36.7 | 319 393 383 0.2 373 438 429 | 37.3 43.8 429
0.3 57.3 659 64.6 | 59.7 67.6 67.0 0.3 69.5 758 755 | 69.0 750 745
T =50
T =50 GMM RGMM GMM RGMM
Bootstrap
EZJ—EBL sup ave exp | sup ave  exp ﬁz\;——fL sup ave exp | sup ave exp
0.0 3.28 5.22 494 | 3.18 498 4.94 0.0 4.72 450 454 | 5.10 4.90 5.02
0.1 7.36 122 114 | 816 12.9 125 0.1 104 114 11.1 | 10.7 123 11.7
0.2 21.1 29.7 289 | 234 328 31.7 0.2 259 29.2 281|276 314 299
0.3 39.7 51.1 49.8 | 446 559 55.0 0.3 471 51.0 49.5 | 494 544 527
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Table 3b: GMM LM test results for Model 3a: w;; « 4.i.d.t;/+/7/5. Parameter:

B, = 1. Break date: ¢ty = 0.5- 7. Tuning constant for RGMM: ¢ = 4.18. py = 0.25,

5000 Monte Carlo simulations. The nominal level of the tests is ag = 5%.

T =100 GMM RGMM T = 200 GMM RGMM
Ba—01 sup ave exp | sup ave exp || (B2—04) - V2| sup  ave exp | sup  ave exp
0.0 344 482 484 ) 3.84 4.62 4.40 0.0 4.08 496 494 | 3.90 4.60 4.54
0.1 6.94 954 940 | 842 115 11.1 0.1 8.48 104 10.3 | 10.1 126 123
0.2 18.3 24.8 23.6 | 23.2 29.5 29.0 0.2 224 2777 26.7 | 276 27.6 31.8
0.3 35.9 446 43.6 | 44.2 55.1 50.7 0.3 44.2  51.5 50.6 | 52.9 52.9 58.8
T =50
T =50 GMM RGMM GMM RGMM
Bootstrap
EZJ—EBL sup ave exp | sup ave  exp ﬁz\;——fL sup ave exp | sup ave exp
0.0 2.68 4.20 440 | 2.88 4.32 4.44 0.0 5.28 542 514 | 476 5.14 4.86
0.1 5.50 8.80 8.74 | 6.12 9.78 9.66 0.1 9.84 103 103 | 9.08 9.88 9.62
0.2 13.2  20.0 19.0 [ 16.7 249 23.8 0.2 199 214 21.0 | 21.8 245 24.0
0.3 25,6 354 34.0 | 325 43.5 426 0.3 326 36.5 349 | 39.7 433 426
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Table 3c: GMM LM test results for Model 3a: u;; «~ i.4.d.t5/+/5/3. Parameter:

B, = 1. Break date: ¢ty = 0.5- 7. Tuning constant for RGMM: ¢ = 4.18. py = 0.25,

5000 Monte Carlo simulations. The nominal level of the tests is ag = 5%.

T =100 GMM RGMM T = 200 GMM RGMM
Ba—01 sup ave exp | sup ave exp || (B2—04) - V2| sup  ave exp | sup  ave exp
0.0 340 494 4.74 ) 3.70 442 4.76 0.0 426 5.22 5.00 | 4.36 5.00 5.20
0.1 6.52 9.44 9.24 | 816 11.0 10.7 0.1 7.78 948 9.54 | 9.22 11.3 11.3
0.2 15.4 20.8 20.3 | 206 25.8 252 0.2 18.0 223 21.3 | 245 29.1 28.1
0.3 30.2 38.0 373 | 39.1 470 459 0.3 33.9 40.7 39.6 | 46.3 53.3 524
T =50
T =50 GMM RGMM GMM RGMM
Bootstrap
EZJ—EBL sup ave exp | sup ave  exp ﬁz\;——fL sup ave exp | sup ave exp
0.0 3.42 492 478 | 344 5.16 5.16 0.0 5.52 550 5.64 [ 5.28 5.64 5.28
0.1 5.70 824 796 | 6.56 9.82 9.88 0.1 8.24 856 8.08 | 894 9.82 9.46
0.2 11.8 176 174 | 159 224 21.6 0.2 156 17.8 173 | 187 21.3 20.1
0.3 215 30.5 29.6 | 29.1 382 37.0 0.3 266 29.3 286 | 326 373 354
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Table 3d: GMM LM test results for Model 3a: w;; « i.6.d.CN (0.05,0,3) /v1.4.

Parameter: 3; = 1. Break date: tp = 0.5 - 7. Tuning constant for RGMM: ¢ = 4.18.

po = 0.25, 5000 Monte Carlo simulations. The nominal level of the tests is ay = 5%.

T =100 GMM RGMM T = 200 GMM RGMM
Ba—01 sup ave exp | sup ave exp || (B2—04) - V2| sup  ave exp | sup  ave exp
0.0 4.08 5.34 534|436 546 5.50 0.0 4.38 5.08 5.26 | 4.12 5.12 5.06
0.1 6.96 9.14 9301 932 11.7 114 0.1 6.82 838 834 | 103 122 12.2
0.2 15.1  20.0 19.6 | 24.2 29.7 29.0 0.2 15.9 20.7 20.1 | 28.1 335 322
0.3 29.3 36.8 35.7 | 46.1 53.4 527 0.3 30.7 376 36.7 | 54.1 60.6 59.7
T =50
T =50 GMM RGMM GMM RGMM
Bootstrap
éz\;—iﬂL sup ave exp | sup ave  exp éz\;—EBL sup ave exp | sup ave  exp
0.0 3.30 5.32 5.06 | 3.32 5.20 5.22 0.0 4.54 4.64 482 | 472 522 5.06
0.1 556 882 862|724 104 104 0.1 7.86 832 816 | 10.3 11.7 11.2
0.2 125 18.1 18.0 | 17.5 242 23.7 0.2 16.7 189 179 | 23.3 26.3 25.2
0.3 229 32.8 31.7 | 325 427 416 0.3 294 325 313 | 404 457 436
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Table 3e: GMM LM test results for Model 3a: u;; « i.t.d.CN (0.1,0,3) /v1.8.

Parameter: 3; = 1. Break date: tp = 0.5 - 7. Tuning constant for RGMM: ¢ = 4.18.

po = 0.25, 5000 Monte Carlo simulations. The nominal level of the tests is ay = 5%.

T =100 GMM RGMM T = 200 GMM RGMM
Bo—P1 | sup ave exp | sup ave exp || (By3—51)- V2 | sup  ave exp | sup ave exp
0.0 3.92 522 522|444 534 5.58 0.0 430 5.04 5.18 ) 4.26 5.08 5.12
0.1 592 T7.70 7.66 | 8.26 10.6 10.3 0.1 6.02 8.00 7.50 | 848 10.6 10.2
0.2 11.6  15.7 152 | 189 23.8 229 0.2 12.7 159 156 | 22.2 26.3 255
0.3 20.8 26.7 26.0 | 35.7 43.0 42.1 0.3 223 28.0 26.8 | 426 485 48.1
T =50
T =50 GMM RGMM GMM RGMM
Bootstrap
'62;\/;1 sup ave exp | sup ave exp 52;\/5’61 sup ave exp | sup ave exp
0.0 3.28 5.52 540 | 3.68 5.58 5.26 0.0 4.46 436 430 | 4.72 5.18 5.18
0.1 4.56 7.72 7.70 | 6.22 9.10 8.82 0.1 6.46 6.50 6.60 | 8.70 9.86 9.36
0.2 9.48 14.2 13.7 | 139 198 194 0.2 12.0 13.0 126 | 184 20.8 19.9
0.3 16.2  22.7 223 | 254 348 34.0 0.3 199 222 218 | 32.3 36.3 34.5
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Table 3f: GMM LM test results for Model 3f: the observations of components
i=1,..., 5 from a sample of model 1a are replaced with probability 0.05 by an outlier
Wit ~ (3-N(0,1))>. Parameter: 3, = 1. Break date: t; = 0.5 - T. Tuning constant
for RGMM: ¢ = 4.18. py = 0.25, 5000 Monte Carlo simulations. The nominal level of

the tests is ag = 5%.

T =100 GMM RGMM T =200 GMM RGMM
Bo—By | sup ave exp | sup ave exp || (By—B1) V2 | sup ave exp | sup ave exp
0.0 3.76  5.04 5.18 | 3.76 5.12 5.02 0.0 4.06 5.10 4.82 | 4.28 526 5.14
0.1 938 122 119 | 10.1 13.6 13.1 0.1 9.03 119 114 ) 11.2 13.7 133
0.2 22.8 299 288 | 275 344 335 0.2 249 31.0 299 | 31.1 36.6 36.0
0.3 44.3 534 52.6 | 51.5 59.7 58.5 0.3 49.1 56.2 553 | 59.7 654 64.4
T =50
T =50 GMM RGMM GMM RGMM
Bootstrap
52;\/;1 sup ave exp | sup ave  exp ﬁ"';\/;l sup ave exp | sup ave  exp
0.0 3.40 5.34 5.22 | 3.46 5.10 5.54 0.0 5.04 5.08 5.22 | 482 4.70 4.72
0.1 6.46 104 996 | 7.50 114 11.1 0.1 9.26 9.92 986 | 104 12.0 11.5
0.2 172 24.7 239 | 19.3 27.7 26.8 0.2 20.6  23.6 22.7 | 247 276 26.5
0.3 32.3 44.0 43.0 | 38.1 49.0 48.8 0.3 37.2 40.8 40.0 | 44.1 48.5 46.9
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Table 3g: GMM LM test results for Model 3g: the observations of components
i = 1,..., b from a sample of model la are replaced with probability 1 by an outlier
W; ¢ such that W, ~ (3- N(0, 1))2 for t = 1,...,0.5 - T. Parameter: 8; = 1. Break
date: tg = 0.5-7. Tuning constant for RGMM: ¢ = 4.18. py = 0.25, 5000 Monte Carlo

simulations. The nominal level of the tests is ag = 5%.

T =100 GMM RGMM T =200 GMM RGMM
n sup ave exp | sup ave  exp n sup ave exp | sup ave  exp
0.0 573 65.9 64.6 | 59.7 67.6 67.0 0.0 69.5 75.8 755 | 69.0 750 745
0.025 414 492 483 | 44.7 533 524 0.025 39.5 469 45.7 | 474 541 53.0
0.05 278 354 348 | 31.8 392 383 0.05 225 27.8 273|292 357 346
0.075 184 249 239 | 20.1 26.7 257 0.075 13.5 172 169 | 16.5 20.3 19.8
T =50
T =50 GMM RGMM GMM RGMM
Bootstrap
n sup ave exp | sup ave  exp n sup ave exp | sup ave  exp
0.0 39.7 51.1 49.8 | 446 559 55.0 0.0 47.1 51.0 49.5 | 494 544 52.7
0.025 30.3 421 409 | 344 456 444 0.025 39.1 426 41.4 | 41.3 459 443
0.05 244 344 335|266 36.8 36.0 0.05 30.6 33.8 332|330 36.7 352
0.075 194 285 273|205 293 283 0.075 25.3 28.0 273 | 25.1 28.7 279
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