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Introduction

With transaction data becoming more widely available, considerable interest has recently
been devoted to the use of high frequency data for measuring and forecasting volatility: the
so called realized volatility approach. The thesis concerns the developments of new realized
volatility measures and models with the aim to better understand and forecast the dynamics
of market volatility.

Untill, recently the prevailing approach employed (at most) daily data and considered
volatility as an unobservable variable. Modelling the unobserved conditional variance led
to the vast ARCH-GARCH and stochastic volatility literature. This work focus instead
on a nonparametric volatility approach which fully exploits intraday information to develop
observable proxies for the ex-post volatility: the realized volatility measure.

In its standard form realized volatility is nothing more than the square root of the sum
of squared high-frequency returns over a given non-vanishing time interval, i.e. the second
uncentered sample moment of the high-frequency returns. Under very general conditions the
sum of intraday squared returns converges (as the number of intraday return increases) to the
relevant notion of volatility of the interval. Thus, realized volatility provides us, in principle,
with a consistent nonparametric measure of volatility.

A model-free and error-free estimation of volatility would allow us to treat volatility as an
observable variable, rather than a latent one, as in the GARCH(1,1) model for example. This
would open the possibility to directly analyze, model, and forecast volatility itself. Therefore,
more sophisticated dynamic models can be directly estimated and optimized without having
to rely on the complicated estimation procedures needed when volatility is assumed to be un-
observed. For forecasting purposes, moreover, a better estimate of the target function allows
to better extract the real underlying signal and then improve the forecasting performance.

Unfortunately, because of market microstructures effects, the assumption that log asset
prices evolve as a diffusion process becomes less realistic as the time scale reduces. At the

tick time scale, the empirical data differ from the frictionless continuous-time price process



2 INTRODUCTION

assumed in the standard theory of realized volatility. Thus, simple realized volatility measures
computed with very short time intervals are no longer unbiased and consistent estimators of
daily volatilities

The first purpose of this thesis is to develop new realized volatility estimators which, while
fully exploiting all the available information contained in very high frequency data, are able
to effectively correct for the bias induced by microstructure effects. The second purpose is
to develop, by building on such highly accurate realized volatility measures, new conditional
volatility models able to provide superior and easy-to-implement volatility forecasts. The
thesis consists of four main chapters.

In the first chapter the definition of realized volatility is first introduced. Then the impact
of the presence of different sources of microstructure effects on realized volatility estimation
is explained and quantified.

The second chapter reviews and proposes realized volatility measures which are able to
deal with the challenge posed by the presence of microstructure effects on the basis of a
simple structural model for the tick-by-tick price process that seems to well accommodates
the empirical properties of the data. First, a simple filter, which attempt to remove the
cause of the bias from the raw tick-by-tick time series, is presented. This filter consists in an
adaptive exponential moving average (EMA), calibrated on the autocorrelation structure of
past tick-by-tick returns. The result is an effective reduction of the realized volatility bias for
FX data, particularly for the most liquid currencies. However, this type of EMA filter, is a
non-local estimator which adapts only slowly to changes in the properties of the pricing error
component. Moreover, the EMA filter corrects only for the bias deriving from the first lag of
the return autocorrelation function, while it is sensitive to significant higher lags coefficients.
When, as it often happen on real data, a significant autocorrelation at lags length greater
than one is present and the autocorrelation structures dynamically change over time, the
filtering problem become much more complex.

Then, new realized volatility measures based on Multi-Scale regression and Discrete Sine
Transform (DST) approaches are presented in order to deal with these more challenging cases.
We show that Multi-Scales estimators similar to that recently proposed by Zhang (2004) can
be constructed within a simple regression based approach by exploiting the linear relation
existing between the market microstructure bias and the realized volatilities computed at dif-
ferent frequencies. These regression based estimators can be further improved and robustified
by using the DST approach to prefilter market microstructure noise. The motivation for the
DST approach rests on its ability to diagonalize MA type of processes which arise naturally

in discrete time models of tick-by-tick returns with market microstructure noise. Hence, the



DST provides a natural orthonormal basis decomposition of observed returns which permits
to optimally disentangle the volatility signal of the underlying price process from the market
microstructure noise. Robustness of the DST approach with respect to more general depen-
dent structure of the microstructure noise is also analytically shown. Then, the combination
of such Multi-Scale regression approach with the DST gives us a Multi-Scales DST realized
volatility estimator which is robust against a wide class of noise contaminations and model
misspecifications. Thanks to the DST orthogonalization which also allows us to analytically
derive closed form expressions for the Cramer-Rao bounds of MA(1) processes, an evaluation
of the absolute efficiency of volatility estimators under the i.i.d. noise assumption becomes
available, indicating that the Multi-Scales DST estimator possesses a finite sample variance

very close to the optimal Cramer-Rao bounds.

Monte Carlo simulations based on a realistic model for microstructure effects and volatility
dynamics, show the superiority of DST estimators compared to alternative local volatility
proxies. DST estimators result to be the most accurate daily volatility measures for every level
of the noise to signal ratio, and highly robust against the presence of significant autocorrelation
at lags greater than one in the return process. The empirical analysis based on six years of
tick-by-tick data for S&P 500 index-future, FIB 30, and 30 years U.S. Tresaury Bond future
seems to confirm Monte Carlo results.

The third chapter deals with realized volatility modelling. We employ the realized volatil-
ity measures computed from tick-by-tick data to directly analyze, model and forecast the
time series behavior of volatility. The purpose is to reproduce the long memory property
of volatility with a simple and parsimonious realized volatility model. Inspired by the Het-
erogeneous Market Hypothesis (Miiller et al. 1993) and by the asymmetric propagation of
volatility between long and short time horizons, we propose an additive cascade of different
volatility components generated by the actions of different types of market participants. This
additive volatility cascade leads to a simple AR-type model in the realized volatility with the
feature of considering volatilities realized over different time horizons. We term this model,
Heterogeneous Autoregressive model of Realized Volatility (HAR-RV). In spite of the simplic-
ity of its structure, simulation results, seem to confirm that the HAR-RV model successfully
achieves the purpose of reproducing the main empirical features of volatility (long memory,
fat tail, self-similarity) in a very simple and parsimoniously way. Results on the estimation
and forecast of the HAR-RV model on USD/CHF data, show remarkably good out of sam-
ple forecasting performance which seems to steadily and substantially outperform those of
standard models. Moreover, by extending the Heterogeneous Market Hypothesis idea to the

leverage effect, we propose an asymmetric version of the HAR-RV model which considers
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asymmetric responses of the realized volatility not only to previous daily returns but also to
past weekly and monthly returns.

In the final chapter we extend the approach of directly using all the available tick-by-
tick data to the realized covariance and realized correlation estimation. As for the realized
volatility, the presence of market microstructure (although of a different nature) can induce
significant bias in standard realized covariance measures computed with artificially regularly
spaced returns. Contrary to these standard approaches, we propose a simple and unbiased
realized covariance estimator which does not resort on the construction of a regular grid, but
directly and efficiently employs the raw tick-by-tick returns of the two series. Montecarlo
simulations show that this simple tick-by-tick covariance estimator posses no bias and the
smallest dispersion, resulting to be the best performing measure among the covariance esti-
mators considered in the study. Combining the proposed covariance together with the DST
volatility estimator we obtain a realized correlation measure where both the volatilities and
the covariances are computed from tick-by-tick data. In the empirical analysis performed
on S&P 500 and US bond data we apply the HAR model to the tick-by-tick correlation
measure, obtaining highly significant coefficients for the heterogeneous components and re-
markably good out of sample forecasting performance. We then suggest the use of a shrinkage
approach with a newly proposed shrinkage target for the construction of a definite positive
and more accurate correlation matrix. Finally, possible multivariate extensions of the HAR

volatilty model are briefly outlined.



Chapter 1

Realized Volatility and

Microstructure effects

1.1 Introduction

Asset returns volatility is a central feature of many prominent financial problems such as asset
allocation, risk management and option pricing. For instance, in risk assessment, due to the
increasing role played by the Value-at-Risk (VaR) approach, it is becoming more important
to have a good measure and forecast of short-term volatility, mainly at the one to ten day
horizon. Intuitively, the volatility measures how much a random process jitters. But despite
its importance, volatility is still an ambiguous term for which there is no unique, universally
accepted definition, and several volatility concept along this simple idea can be written down.

In a frictionless continuous-time no arbitrage price process framework, three different

conditional volatility concepts can be defined!:
(i) the Notional, Actual or Integrated ex-post volatility over a non-vanishing interval,
(ii) the ex-ante Expected volatility over a non-vanishing interval and

(iii) the Instantaneous volatility.

The notional volatility refers to the ex-post cumulative sample-path return variability over a
discrete time interval which under very general conditions corresponds to the increments in

the quadratic variation of the return process.

!See Andersen, Bollerslev and Diebold (2005).
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In practice, the approaches for empirically quantifying the concept of volatility fall into

two distinct types of categories:

e estimation of Parametric models,

e direct Nonparametric methods.

So far, most of the studies have focused on the parametric approach considering volatility as
an unobservable variable and using a fully specified functional model for the ex-ante expected
volatility?. Modelling the unobserved conditional variance was one of the most prolific topics
in the financial literature which led to all ARCH-GARCH models and stochastic volatility
models. In the ARCH models only the most recent conditional volatility is not observable,
while in the stochastic volatility ones, the whole history of the conditional variance is assumed
unobservable. In general this kind of models suffer from a twofold weakness: first, they are not
able to replicate main empirical features of financial data; second, the estimation procedures
required are often rather complex (especially in the case of stochastic volatility models). This
study focus instead on a nonparametric approach to develop ex-post observable proxies for
the notional volatility (rather than the expected one) through new methodologies which fully
exploits intraday information.

Within the class of nonparametric methods we can distinguish between the Realized volatil-
ity Filter or Smoothers and the Realized Volatility Measures. The first heavily rely on the
continuous sample paths assumption on the price process in order to evaluate the instanta-
neous volatility. Filters exploit only the information contained in past returns while smoothers
also use ex-post future returns (thus they can be seen as two-sided filters). These instanta-
neous volatility measures require that as the length of the time interval goes to zero the
number of observations tends to infinity. However this strong condition (which implies a
double limit theory and excludes jumps from both return and volatility process) are virtually

never fulfilled in empirical data, making this approach unfeasible in practice.

1.2 Realized Volatility

Contrary to the ARCH filters, realized volatility affords the empirical measurement of the
latent notional volatility on the discrete time interval [t — h, ], with h a strictly positive non-

vanishing quantity (typically one day). Similarly to the instantaneous volatility measures,

2 Also the Implied Volatility approaches can be included in this category since they are based on a parametric

model for the returns together with an option pricing model.
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realized volatilities may be classified according to whether the estimation of the notional
volatility only exploits returns observations falling in the interval [t — h,t], which we call
Local, or also incorporates returns outside [t — h,t]. Local measurements have the advantage
to be asymptotically unbiased and fast adapting but the disadvantage to neglect potentially
useful information contained in adjacent intervals. The most obvious local measure for daily
volatility is the daily absolute return. However, as clearly shown by Andersen and Bollerslev
(1998) this proxy can be extremely noisy. The inadequacy of volatility proxies obtained with
daily observations clearly suggests the use of intraday data to obtain more accurate volatility
estimates. In fact, in its standard form realized volatility is nothing more than the square
root of the sum of squared high-frequency returns over a given time interval [t — h, t], i.e. the
square root of the second uncentered sample moment of the high-frequency returns.

This idea traces back to the seminal work of Merton (1980) who showed that the integrated
variance of a Brownian motion can be approximated to an arbitrary precision using the sum
of intraday squared returns. His intuition was that higher frequencies are not useful for the
mean but essential for the variance. This is deeply rooted in that, for a random walk, a
minimal exhaustive statistics for the mean is given by the start and end point of the walk,
whereas a minimal exhaustive statistics for the volatility is essentially given by the full set of
increments.

Yet only recently this idea has started to be exploited with intraday data. Earlier stud-
ies are: Taylor and Xu (1997) who rely on 5-minute returns in the measurement of daily
exchange rate volatilities, Schwert (1998) which utilizes 15-minute returns to estimate daily
stock market volatilities, while Dacorogna, Miiller, Dav, Olsen and Pictet (1998) use 1-hour
returns to compute a 1-day volatility benchmark for other volatility forecasting models.

More recently a series of breakthrough papers (Andersen, Bollerslev, Diebold and Labys
2001, 2003 and Barndorff-Nielsen and Shephard 2001, 2002a 2002b, 2005 and Comte and Re-
nault 1998) has formalized and generalized this important intuition by applying the quadratic
variation theory to the broad class of special (finite mean) semimartingales. This very general
class encompasses processes used in standard arbitrage-free asset pricing applications, such
as Ito diffusions, jump processes, and mixed jump diffusions. They showed that, for this vast
class of processes and under very general conditions, the sum of intraday squared returns
converges (as the maximal length of returns go to zero) to the notional volatility over the
fixed time interval [t — h,t]. Thus, as the sampling frequency from a diffusion is increased,
realized volatility provides us, in principle, with a consistent nonparametric measure of the
notional volatility.

To illustrate this property more formally and establish the notation of these different
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concepts of volatility, lets consider the following stochastic volatility process?

dp(t) = p(t)dt + o (t)dW (t) (1.1)

where p(t) is the logarithm of instantaneous price, 1(t) is a continuos, finite variation process,
dW (t) is a standard Brownian motion, and o(t) is a stochastic process independent of dW (¢).
For this diffusion process, the integrated variance associated with day ¢, is the integral of
the instantaneous variance over the one day interval [t — 1d,t], where a full 24 hours day is

represented by the time interval 1d,

t
v = / o2 (w)dw. (1.2)
t—1d

Some authors refer to this quantity as integrated volatility, while we will devote this term to
the square root of the integrated variance, i.e. in our notation, the integrated volatility is
J§d) _ (I‘/;(d))l/Q.

As shown by Andersen, Bollerslev, Diebold and Labys 2001a,b and Barndorff-Nielsen and
Shephard 2001a,b 2002a,b, the integrated variance I Vt(d) can be approximated to an arbitrary
precision using the sum of intraday squared returns. Hence, the standard definition (for an

equally spaced returns series) of the realized volatility over a time interval of one day is

(1.3)

where A = 1d/M and r4_j o =p(t—7-A)—p(t—(j+1)-A) defines continuously compounded
A-frequency returns, that is, intraday returns sampled at time interval A (here, the subscript
t indexes the day while j indexes the time within the day t).

In the following, we will also consider latent integrated volatility and realized volatility
viewed over different time horizons longer than one day. These multi-period volatilities will
simply be normalized sums of the one-period realized volatilities (i.e. a simple average of the
daily quantities). For example, in our notation, a weekly realized volatility at time ¢ will be

given by the average

w 1
RV = (R0 4 RV 4 (79,2). (14

In particular we will make use of weekly and monthly aggregation periods. Indicating the

aggregation period as an upper script, the notation for weekly integrated and realized volatility

3We use (t) to denote instantaneous variables and subscripts ¢ to denote discrete quantities.
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will be respectively agw) and RV't(w) while a monthly aggregation will be denoted as at(m)
and RVt(m). In the following, in respect of their actual frequency, all return and volatility
quantities are intended to be annualized.

Under very broad assumptions, the ex-post realized volatility is an unbiased volatility
estimator. Moreover, as the sampling frequency from a diffusion (even with non zero mean
process) is increased, realized volatility provides a consistent nonparametric measure of the
integrated volatility over the fixed time interval®: plim,, . RVt(d) = U,Ed). This convergence
property of the volatility is very appealing, in theory: under those assumptions, the mesaure-
ment error of the integrated volatility could be arbitrarily reduced by simply increasing the
sampling frequency of returns.

An error-free estimation of volatility would allow us to treat realized volatility as an
observable, rather than a latent variable as with a GARCH(1,1) model for example. This
opens the possibility to directly analyze, model, forecast and optimize volatility itself. Hence,
more sophisticated dynamic models can be directly estimated without having to rely on the
complicated estimation procedures needed when the volatility is assumed to be unobserved
(e.g. log-likelihood for the ARCH-type models or indirect methods for SV models). For
forecasting purposes, a better estimate of the target function allows to better extract the real
underlying signal and to improve forecasting performance (Andersen and Bollerslev 1998).
There is, in fact, a fast growing literature on directly analysing, modelling and forecasting
observed realized volatility time series. Some examples are: Andersen, Bollerslev, Diebold
and Labys (2003), Oomen (2002), Maheu and McCurdy (2002), Thomakos and Wang (2002),
Martens and Zein (2002), Corsi (2003) and others.

Notice that the definition of realized volatility (as any other definition of historical volatil-
ity) involves two time parameters, the intraday return interval A and the aggregation period
1d. In order to have a statistically reliable measure of volatility, the parameters must be such
that the aggregation period 1d is much greater than A.

For example, for a Gaussian random walk with constant variance o2, the order of mag-
nitude of the statistical error of the variance estimator can be computed. For this model,
the sum of square returns has a chi-square distribution with degree of freedom equal to the
number of terms in the sum X%\/l' Setting the mean to zero, the root mean square error
(RMSE) for a x2, distribution is given by 02,/2/M. Hence, for a Gaussian random walk,

4For the unbiased property, formally the zero mean assumption should be made, but the results remains
approximately true for stochastically evolving mean process, while for its consistency this assumption is not
required. See Andersen et al. (2005).
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typical values for the RMSE of the 24 hours daily variance measured with return at different

time intervals A are:

RMSE [A =1d] = 141.4% o?
RMSE [A =1h] = 28.8% o?
RMSE [A=1] = 3.7%o?
RMSE [A=1"] = 0.5% o>

These numbers clearly show the advantage of taking returns at the highest frequency in order
to measure the daily volatility.

Much more general results for the asymptotic distribution of the realized variance, realized
volatility and log realized volatility has been derived by Barndorff-Nielsen and Shephard
(2005) and Barndorff-Nielsen, Graversen, Jacod, Podolskij and Shephard (2005). They also
show that the measurement errors of realized volatilities computed over consecutive periods
are approximately uncorrelated. This property will turns out to be very convenient for the

time series modelling of realized volatility.

1.3 Market Microstructure

1.3.1 Scaling analysis of the realized volatility

In practice, however, empirical data differs in many ways from the frictionless continuous-
time price process assumed in those theoretical studies. Beside the obvious consideration
that a continuous record of prices is not available, other reasons prevent the applications
of the limit theory necessary to achieve consistency of the realized volatility estimator. In
fact, because of market microstructure effects®, the assumption that log asset prices evolve
as a diffusion process becomes less and less realistic as the time scale reduces. At the tick
time scale, the empirical data differs from the simple theoretical model, and the volatility
computed with very short time intervals is no longer an unbiased and consistent estimator of
the daily volatility computed with daily returns.

This effect can be empirically verified by studying the unconditional expectation of the
squared returns® E[r?(A)] as a function of the returns frequency A (because E[c?(A)] =
E[r?(A)] up to finite sample effects that are negligible). Since returns r(A) are intended to

For a good empirically oriented overview of market microstructure effects, see Hasbrouck (1996).

SHere, the time subscript is dropped in order to simplify the notation.
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Figure 1.1: Scaling of the annualized volatilities E[rQ(A)] for A ranging from 1 minute to 1
week. The dotted lines are error bounds assuming independant returns. Two FX rates, USD/JPY
and USD/CHF, and two stock indices, Standard & Poors 500 and Dow Jones Industrial Average,

are investigated.

be already annualized, for an uncorrelated diffusion process, £ [7’2(A)] should be independent
of A.

As an example, figure 1.1 shows the scaling behavior of E[r?(A)] for two currencies and
two stock indices. In order to ease the comparison between assets, the empirical average
has been normalized such that E[rz(ld)] = 1. The horizontal line at 1 corresponds to the
expected volatility of an i.i.d. diffusion process. Clearly, the unconditional expectation of the
variance computed with returns taken at small time intervals is not equal to the volatility

obtained with daily returns:
E[r*(A)] # E[r*(1d)] and  E[c*(A)] # E[o*(1d)].

The variance estimator computed at a short time interval is strongly biased as compared to

the mean squared daily return. We use the term bias because for a majority of the agents
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operating on financial markets, the relevant variable of interest is the daily return or the
“one-day risk”. Because of widely available daily data, the de facto time horizon of reference
is one day. These agents are neither interested in the detailed price behavior happening at
very short time intervals nor in the volatility observed at a 5-minutes time horizon. The use of
high-frequency returns to compute the daily volatility is merely a measurement issue: short-
term returns are used because we want to improve the estimation of volatility, rather than
being interested in risks existing at the extremely short time frames. Therefore, tolerating
this bias would lead to distorted daily risk measures when using high-frequency data instead
of daily data.

The size of this bias is directly measured by the vertical distance between the theoretical
i.i.d. horizontal line and the empirical one depicted in figure 1.1. From a study of many

assets, the general behavior of the bias can be summarized as follow:
e FX: strong positive bias. At the 1-minute level, it ranges from 30% to about 80%.
e Futures and individual stock: positive bias.
e Stock indices: negative bias.

In general, the bias tends to be higher for assets with lower liquidity (for example USD/ITL
has a bias of more than 80% at 3-minute level) than that of assets which exhibit higher
liquidity.

However, a point of caution should be mentioned here: these results are fairly sensitive
to the type of linear interpolation scheme chosen to convert the original time inhomogeneous
(i.e. unequally spaced) tick-by-tick series of prices into a time homogeneous (equally spaced)
price series. When two subsequent ticks are separated by a length of time longer than that
of the time interval of the grid, linear interpolation implicitly assumes a minimum volatility
in this interval, and introduces an artificial correlation between the subsequent returns of the
generated regular time series. This leads to a systematic underestimation of volatility, that
becomes larger as the tick frequency decreases and the number of empty intervals without
ticks increases. This could explain the negative bias reported by some authors for less liquid
FX rates, whereas, with a different interpolation scheme (previous-tick), we always found a
positive bias for FX rates.

For these reasons, when generating a synthetic regular time series for volatility estimation
purposes, it is more appropriate to use the “previous-tick interpolation” scheme, in which
each tick remains valid until a new tick arrives. This interpolation scheme does not generate

an underestimation of volatilities, nor a distortion of the autocorrelation. Using previous-tick
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interpolation on FX data, we found significant evidences of large biases at 30-20-minutes
level, even for major exchange rates. In our analysis, the return interval at which the bias
on FX data is no longer significant occurs only at the level of some hours. This means that
even for the most liquid FX rates, the shortest return interval to obtain an unbiased volatility
measure is of the order of 2-3 hours, leading to only 8-12 observations per day. Furthermore,
this “unbiased return interval” considerably changes from asset to asset. Therefore, under
these circumstances, without any specific treatment of the bias, the stochastic error of the
volatility measure cannot be essentially reduced and cannot be computed with the same
return interval for all instruments. Hence, if we want to have a general and homogeneous
volatility estimation of optimal precision, an explicit treatment of the bias is required. The
first step in this direction is to better understand the origin of the bias, which is the subject

of the next two sections.

1.3.2 Autocorrelation analysis

The anomalous scaling of the second moment can only be explained by a non-zero autocorre-
lation p(k) of the returns i.e. E[0?(A)] # E[o?(1d)] if and only if p(k) # 0 for some lags k.
In short, returns must be not i.i.d. at short time scales. This can be derived by the following
computations. From the return at high frequency Ajp, the return at a time scale m times
longer Ay = m Aq, can simply be computed by aggregation (with an overall multiplication
factor 1/y/m to take care of the annualization). Then the variances computed with returns

at scale A1 and Ay can be related. After some algebra, we find

)_n

—1m—

> p(k (1.5)
1 1=1
m—1

= 142
k=

3

UQ(AQ) =

S\H
i

—_

where p(k) is the autocorrelation function of the return r(A;) at lag k- A;. We can use this
formula to compute the scaling of the mean volatility given the autocorrelation function of

the returns. Qualitatively, we can have one of the three following cases:
e no autocorrelation p = 0 implies 02(A) = ¢2(1d), i.e. no anomalous scaling
e negative autocorrelation p < 0 implies 02(A) > ¢2(1d), i.e. positive anomalous scaling

e positive autocorrelation; p > 0 implies 02(A) < 02(1d), i.e. negative anomalous scaling
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We then expect a positive autocorrelation for stock indices and a negative one for FX, stocks
and futures. To confirm those expectations, we performed an intraday autocorrelation study
of the returns for several stock indices and FX returns. For this computation, synthetic
regular time series of price are generated, where “regular” is meant according to different

time scales:
e The physical time scale. This is the usual physical time (including weekend).

e The tick time scale. This clock moves by one unit for every incoming tick. When
computing the autocorrelation of tick returns on this scale, we ignore the varying time

intervals between ticks.

e The dynamic J-time scale. The ¥-time scale is a sophisticated business time scale
designed to remove intraday and intraweek seasonalities by compressing periods of in-
activity while expanding periods of higher activity (Dacorogna, Miiller, Nagler, Olsen
and Pictet 1993, Breymann, Zumbach, Dacorogna and Miiller 2000). It is essentially an
intraday generalization of the usual daily business time scale that omits weekends and

holidays.

The results are plotted in figure 1.2. The most evident result is the very strongly negative
first-lag autocorrelation for FX computed in tick time, with a value around -40%. This
contrasts with some mildly negative first-order autocorrelations reported in older studies on
high-frequency FX data (Goodhart 1989, Goodhart 1991). Let us emphasize that the bid-
ask bounce “a la Roll” cannot be invoked, since logarithmic middle prices are used in these
computations. The bid-ask bouncing as described in Roll (1984) is due to the random hitting
of the transactions at the bid or ask quotes, for a fixed bid and ask prices. Roll’s explanation
of the short-term bouncing thus exclusively applies to time series of transaction prices and
not to those of middle prices as used in the present computations.

Compared to the autocorrelation evaluated in physical time and 9J-time, the one computed
in tick time presents a strongly negative value at the first lag, about twice as large. The decay
at subsequent lags is faster. These differences between the autocorrelation in tick time and in
the other time scales can be understood by considering the time deformation induced by the
transformation of the tick time scale into a physical or ¥-time scale. For example, figure 1.3
shows the probability density function (pdf) of the time intervals between ticks measured
in physical time for 10 years of USD/CHF. Computing the autocorrelation function of, say,

one-minute returns in physical time would imply that:
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Figure 1.2: Returns autocorrelations for FX (top panels) and stock indices (bottom ones).

If many ticks are in the same one-minute interval, most of them are ignored in the
computation of one-minute returns, and the returns are determined more by the true

process and less by microstructural effects.

If the time interval between two ticks is (much) larger than one minute, the previous-tick
interpolation leads to zero returns in one or more one-minute intervals. Zero returns
dampen lagged covariances, but the overall expectation of squared returns is not affected
by a change of time scale. Since the autocorrelation is the quotient of lagged covariance
and variance of returns, the result is a reduced autocorrelation at lag one. Beside,
two returns separated by a string of empty one minute intervals share the incoherent
component (see the model in the next section). In this case, the strongly negative first-
lag autocorrelation in tick time directly affects two distant one-minute intervals, leading

to the slow decay at larger lags of the correlation.
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Figure 1.3: Probability density function (pdf) of the time intervals between ticks (semi-logarithmic scale)
for USD/CHF. The data sample ranges from 1.1.1990 to 1.1.2000.

All these effects contribute to the empirically found behavior, notably the attenuated auto-
correlation at the first lag.

The existence of a very pronounced mean-reverting behavior of the FX quotes is also
revealed by a closer visual inspection of the price dynamics as displayed in figure 1.4. Thus,
the considerable anomalous scaling of FX volatility is entirely due to the strong negative

correlation occurring between subsequent returns.

1.3.3 Sources of microstructure effects

So far, no economic explanation has been presented to account for those statistical properties.
In order to develop a microscopic model for the price, the real structure of the market must be
taken into account as the return autocorrelation is directly related to microstructure effects
arising from the price formation process.

The two main universal sources of microstructure effects are the bid-ask spread and price
discreteness. Studies on the bid-ask spread are largely developed within the framework of
quote-driven markets. However, the bid-ask spread is not unique to the dealer markets:
Cohen et al. (1981) establish the existence of the bid-ask spread in a limit-order market
when investors face transaction costs in assessing information, monitoring the market, and
conveying orders to the market; Glosten (1994) shows that limit-order markets have a positive
bid-ask spread arising from the possibility of trading on private information. On the effects
of the bid-ask spread on the price process, already during the '80s, Roll (1984) and Blume
and Stambaugh (1983), analysing the statistical properties of tick-by-tick returns, showed
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Figure 1.4: A sample price dynamics for the USD/CHF exchange rate. The data are from Reuters, the
06.04.2000, with GMT time.

that in general bid-ask spreads produce negative first-order autocovariances in observed price
changes.

Similarly, if one makes the assumption that observed prices are obtained by rounding
underlying true values, Glottlieb and Kalay (1985) and Harris (1990) showed that price dis-
creteness induces negative serial covariance in the observed returns. A significant negative
autocorrelation induces a bias of positive sign, which increases with the sampling frequency.

This two general microstructure effects are the one responsible for the negative autocor-
relation (and hence positive bias) observed in the high frequency returns of individual stocks
and future prices.

For the FX, however, since the data employed are not transaction prices but rather the
mid point of a bid-ask quote, the bid-ask spread can not be invoke to explain the very large
positive bias found in the scaling analysis. Nonetheless, the size of the bias remain too large
to be completely attributable to price discreteness effects only. We attribute such strong
mean-reverting behavior of the FX quotes to the presence of an “incoherence” effect in the
price formation originating from the multiple contributor structure of the FX spot market.
A large part of the FX market is in fact an over-the-counter market where all dealers publish

their own price quotes. Some consequences of the multiple contributor structure are:

e Disagreement on what the “true price” should be, due to the fact that opinions on
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public information, strategies of individual contributors, and private information sets

are not uniform.

o Market maker bias towards bid or ask prices. Depending on their inventory position,
market makers have preferences for either selling or buying. Hence to attract traders to
deal in the desired direction they publish new quotes so that either the bid or the ask is
competitive. The other price of the bid-ask pair, being pushed far away, influences the
level of the (logarithmic) middle price, inducing a very short-term random bouncing of
it.

e Fighting-screen effects for advertising purposes. In order to maintain their name on
the data suppliers’ screens (such as those of Reuters, Bloomberg or Bridge), some con-
tributors keep publishing fake quotes generated by computer programs that randomly

modify the most recent quotes (or a moving average of them).

e Delayed quotes. Trader interviews, comparisons to transaction data from electronic
trading systems and lead-lag correlation studies show that many contributors release

quotes with a considerable time delay (in some cases larger than a minute).

While individual agents follow their different strategies in a coherent way, the whole market
generates an incoherent component due to the price formation process that is responsible for
the strong negative autocorrelation of FX returns. Note again that the random hitting of bid
or ask prices by transactions as describe in Roll (1984) can not be considered here because it
does not affect the logarithmic middle price.

For stock indices, on the contrary, we find a large significant positive autocorrelation that
lasts up to few hours’?, as already reported by many other authors (G.Hawawini 1980, Con-
rad and Kaul 1988, Lo and MacKinlay 1988). This positive lagged correlation, pervasive
across the three different time scales, sample periods and countries, can be explained by the
so-called lagged adjustment model (Holden and Subrahamanyam 1992, Breymann, Jegadeesh
and Swaminathan 1993). According to this model, among the stocks that compose the in-
dices, there are “leading” stocks that react quickly to new information whereas others stocks
partially adjust or adjust with a certain delay, due to either information transmission, non-
trading or lower volume. Since the lagged covariance of a portfolio is a weighted average of
the lagged cross-covariance between the stocks composing it, a positive autocorrelation results

and hence a negative bias arises.

"While no positive autocorrelation is found in stocks returns themselves or in futures contracts on indices
(Ahn, Boudoukh, Richardson and Whitelaw 1999).



1.4. CONCLUSIONS 19

1.4 Conclusions

Summarizing, market microstructure generates a transitory effect on the dynamics of the
informationally efficient price. Perturbations of the underlying price induces a non-zero auto-
correlation in the returns process which makes no longer true that the variance of the sum is
the sum of the variances. This autocorrelation of returns is not negligible at short time scales
(usually less than an hour), causing the volatility scaling to strongly deviate from that of a
standard i.i.d. process. Thus, the volatility computed with short time intervals becomes a po-
tentially highly biased estimator of the daily volatility. A significant negative autocorrelation
induces a bias of positive sign, i.e. the expectation of daily realized volatility computed with
high frequency returns is systematically larger than the volatility of the true unobservable
process. On the contrary, a relatively long lasting persistence of stock index returns gives rise
to a positive slope of the scaling function (i.e. a negative bias). Such biases increase with the
sampling frequency.

Therefore, a trade-off arises: on one hand, efficiency considerations suggest to use a very
high number of return observations to reduce the stochastic error of volatility estimation. On
the other hand, market microstructure introduces a bias that grows as the sampling frequency
increases. Therefore, without any explicit treatment of the bias, the stochastic error of the
volatility measure cannot be substantially reduced. A solution to this trade-off which directly
try to correct for the microstructure effects at the tick-by-tick level, would permits to fully

exploit all the information contained in the high frequency data.
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Chapter 2

Measuring Realized Volatility

2.1 Introduction

The previous chapter has shown how, in the standard estimation of realized volatility, a bias-
variance trade-off arises: on one hand, variance reduction considerations suggest to use very
high frequency returns while on the other hand, the bias generated by microstructure effects
imposes a reduction of the sampling frequency.

Given such a trade-off between efficiency and bias, a simple approach to overcome this
problem is to choose, for each financial instrument, the shortest return interval at which
the resulting volatility is still not significantly affected by the bias; that is, to find that
frequency wich strike an optimal (usually in mean square sense) compromise between bias and
variance. This approach exploits the different aggregation properties between the integrated
process of the efficient price and the non-scaling behaviour of the pricing error term. As
the aggregation of returns increases the impact of the transitory component on the volatility
decreases, reducing the size of the bias. This approach is simple, fully nonparamentric and
robust to any source of microstructure effects. On the other hand, in practice this “unbiased
return frequency” turns out to be fairly low', leaving us with only few return observations
per day.

A better solution to this trade-off which permits to fully exploit the information contained
in high frequency data, is to have an explicit treatment of the bias trying to correct for the

microstructure effects at the tick-by-tick level. The purpose of this chapter is to present some

1The answer to this question also depends on the interpolation scheme employed when a regular time series

is constructed.

21
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alternative definitions of realized volatility that make use of very high-frequency data, without
suffering from the aforementioned systematic deviation. In order to motivate and describe
such alternative realized volatility definitions we first briefly review a standard discrete time

model for the tick-by-tick price process.

2.2 Price process with microstructure effects

As described in Hasbrouk (1993, 1996), a general way to model the impact of various sources
of microstructure effects is to decompose the observed price into the sum of two unobservable
components: a martingale component representing the informationally efficient price process
and a stationary pricing error component expressing the discrepancy between the efficient
price and the observed one. The dynamics of the true latent price can be modelled as a

general continuous time Stochastic Volatility (SV) process 2

dp(t) = p(t)dt + o (t)dW (t) (2.1)

where p(t) is the logarithm of the true instantaneous price, u(t) is the finite variation process
of the drift, dW (t) is a standard Brownian motion, and o(¢) is the instantaneous volatility.
For this diffusion, the notional or actual variance is equivalent to the integrated variance for
the day ¢ (IV;)® which is the integral of the instantaneous variance of the underling true
process o2(t) over the one day interval [t — 1;¢], i.e. IV; = ftt_l o2 (w)dw.

The observed (logarithmic) price, being recorded only at certain intraday sampling times
and contaminated by market microstructure effects, is instead a discrete time process de-

scribed in the “intrinsic transaction time” or ”tick time”*

denoted with the integer index
n:
Ptn = ﬁt,n + TtWt n (22)

where p;, is the unobserved true price at intraday sampling time n in day t and mwy
represents the pricing error component with 7; the size of the perturbation. Depending on the

structure imposed on the pricing error component, many structural models for microstructure

2 Alternatively, a pure jump process as the compound Poisson process proposed by Oomen (2005) could be

employed to model the dynamics of the true price process.
3We use the notation (t) to indicate instantaneous variable while subscript ¢ denote daily quantities.

4That is, a time scale having the number of trades as its directing process (here we don’t make the distinction

between tick time and transaction time).



2.2. PRICE PROCESS WITH MICROSTRUCTURE EFFECTS 23

effects could be recovered. Here we take a more statistical perspective assuming w to simply
be a zero mean nuisance component independent of the price process. In this section the
assumption of an i.i.d. noise process for w is made while it will be relaxed to allow for more
general dependence structure in section 2.4.6 .

According to the Mixture of Distribution Hypothesis originally proposed by Clark (1973)
and extended and refined in numerous subsequent works, the price process observed under
the appropriate transaction time should appear as a diffusion with constant volatility. A
Brownian motion in tick time is, in fact, a subordinate stochastic process which has been
shown to properly accommodate for many empirical regularities. In other words, in tick time
even a simple constant volatility process can reproduce stylized facts observed in physical time
such as heteroskedasticity, volatility clustering, fat tails and others. Hence, the hypothesis of
homoskedastic processes in tick time is far less restrictive compared to the same hypothesis
made for processes defined in physical time (where this assumption would be clearly violated
by the empirical data). Finally, the robustness of the different volatility measures against
violation of the assumption of homoskedasticity in tick time is checked in the simulation
study by explicitly employing an heteroskedastic DGP for the true tick-by-tick price process.

Computing daily volatility in tick or transaction time also presents several practical advan-
tages (see Oomen 2005 for a detailed comparison of different sampling schemes). Intuitively,
in tick time all observations are used so that no information is wasted. The interpolation er-
ror and noise arising from the construction of the artificial regular grid is avoided. Moreover,
using a tick time grid the underlying price process tends to be sampled more frequently when
the market is more active, that is, when it is needed more because the price moves more.

The observed tick-by-tick return r; ,, of day ¢ at time n can then be decomposed as

Ttn = O€rn + M (Wi — Wen—1) (2.3)

where the unobserved innovation of the efficient price €, and the pricing error wy,, are
independent IID (0,1) processes. Hence, for each day the tick-by-tick return process is a

MA(1) with E (r¢,) = 0 and autocovariance function given by

o + 2n2 forh=0
E [Tt,nrt,nfh] = — 77,52 for h=1 (24)
0 for h > 2

where o7 represents the tick-by-tick variance of the unobserved true price for day ¢ and 7 the

extra variance in the observed returns coming from the market microstructure noise observed
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during that day. Under these assumptions, the integrated variance of day ¢ simply becomes
IV, = Nta?, with V¢ the number of ticks occurred in day t.

According to this model, the observed variance is equal to the “true integrated variance”
(the variance of the process describing the dynamics of the true price) plus an additional
term coming from the microstructure effects. This last term is responsible for the observed
bias of the volatility. As long as the length of the return interval is sufficiently long (say a
number of ticks equivalent to one day or one week in physical time) the contribution of the
microstructure noise is negligible and so is the bias of the volatility estimation. But when
high-frequency data are used the contribution of the additional component increases and the
size of the bias is no longer negligible.

Equation (2.4) also implies —0.5 < p(1) < 0. Where the lower bound —0.5 is reached when
o? is completely negligible compared to n?, and the return is the lag one difference of a noise.
An empirical autocorrelation around —0.4, as observed for the USD/JPY and USD/CHF,
implies 77 ~ 202. This indicates that at tick-by-tick level the volatility originating from
the microstructure effects is largely predominant. Therefore, this effect should be carefully
considered before using data at very high frequency.

The model can easily be extended for stock indices by introducing an autoregressive

structure in the true return 7 ,:

Tt = Ot Ttm—1 + €tn (2.5)

with € ~ i.i.d.(0, 02). Then the autocovariance structure of the model becomes

o2 +2n? forh=0
Elrenrin—n] = § ¢pro? —n? for h=1 (2.6)

Pho? for h > 2

with 07 = 0627t /(1—¢?). This lagged correlation replicates the empirical data for stock indices
as shown on figure 1.2, where a small incoherent effect at lag one is present.

Thus, this simple model is capable of reproducing the main empirical evidences found for
financial data. In particular it is able to replicate the strong negative first-lag autocorrelation
of tick-by-tick returns and the observed anomalous scaling of realized volatility. Recently, this
model (in some cases without the i.i.d assumption on the noise) as been employed to study in
a more formal setting the impact of the microstructure noise on the realized volatility measure
as in Hansen and Lunde (2004), Bandi and Russel (2004), Ait-Sahalia, Mykland and Zhang
(2005), among others.
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2.3 A simple EMA filter

On the basis of the above model, it is then possible to design high-frequency estimators
for volatility that appropriately discount for the bias induced by the microstructure effects.
Surprisingly, until recently, only very few studies has pursued along this line.

According to equation (2.4) the simplest approach is to applied a first order serial covari-
ance correction as first proposed, outside the realized volatility literature but for a similar
problem, by French and Roll 1986, Harris 1990 and Zhou 1996 and recently revived in the
contest of realized volatility literature by Oomen (2005) and Hansen and Lunde (2005). Essen-
tially, in this approach, the standard estimator which has expectation of o2 4 2n? is corrected
by twice the sum of cross products of adjacent returns which on average should be equal to
—2n? (here and in the following, since we will compute the Realized Volatility for each day
separately, the daily subscript ¢ is suppressed to simplify the notation).

However, this variance estimator, beside being very noisy due to the instability of the
(local) covariance correction, suffers from the serious problem of having the possibility to
become negative (because of the large cancellation between the two estimators for the variance
and lag one covariance). The non positivity of this definition is a serious drawback, which
become particularly manifest when the number of ticks in the interval is not large enough.
To overcame those problems Corsi, Zumbach, Miiller and Dacorogna (2001) has proposed a
simple exponential moving average (EMA) filtering of the tick-by-tick price process.

The basic idea behind this simple estimator starts from the observation that r, has a

MA(1) representation
Tn = Wy — Owy—1 = (1 — 0L)w, (2.7)

with w,, = i.i.d(0, Q?(o,7n)) and # = f(o,n). This representation can then be inverted to give
w=(1-60L)"'r (2.8)

the (1 — L)™' operator is related to an exponential moving average (EMA) defined by the

iterative equation

EMAI0; 7], = 0 EMA[O;7]5—1 + (1 — 0)ry,. (2.9)

When iterating the EMA definition, we obtain

EMA[G;r], = (1—0){ry+0r_1+6*r,o+--}
= {1-0@-6L)""r} . (2.10)
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Therefore, the white noise term w can be computed by a simple EMA in tick time®
w= (1—6)"'EMA[#;7]. (2.11)

Furthermore, as E[EMA[¢;7]?] = (1 — 0)*E[w?] = 62, the EMA filtering does not change the
volatility. The appropriate parameters 6 can be estimated from the first-lag autocorrelation
of the return in tick time. Using the representation 2.7, the first-lag correlation is

—0

p(1) = T5e2 (2.12)

and solving for 6 gives

h— -1 (1 - W) . (2.13)

2p(1)

Because the EMA operator is linear, filtering the return is equivalent to filtering the price.
Therefore, a tick-by-tick price time series, filtered from the incoherent component, is defined
by

F(x) = EMA[0; z]. (2.14)

Then, a regular time series can be computed and the realized volatility estimated using the
definitions 1.3. We will call this volatility estimator the EMA-filtered realized volatility . The
parameter 6 must be estimated from the first-lag correlation p(1) of the returns and equation
(2.13). Since the bias component, though dynamically changing, is relatively stable over short
time periods on FX data, we can estimate the first-lag correlation on a moving window longer
than one day. The choice of the length and the kernel of the moving window only has a
moderate influence on results. The procedure behaves well over a wide range of choices; our
choice is a window length of the order of two weeks. With a moving window of 7' days ending
at the time ¢ to filter the price at ¢, we have a causal estimate where the information ahead
of the current time of the price filtering procedure is not used.

Having the moving estimate for the lag one correlation p[T](t), the parameter 0(t) can
be obtained using equation (2.13), and the filtered price computed with F(z) = EMAf; z]
where 6 is now a time series.

To summarize, the EMA-filtered realized volatility is computed as follows:

e estimate the first-lag autocorrelations of tick returns on a moving sample,

e compute é(t), using equation (2.13),

5In this context, this is equivalent to the application of a Kalman filter since it can be shown that the EMA

is the steady-state solution of this particular model. See (Harvey 1989) pag. 175.
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e filter the log-price time series with an EMA in tick time with parameter é(t),
e compute the return and volatility at the desired frequency in a given time scale.

Let us emphasize that the filtering is a non local one i.e. it employs information outside the
estimation interval of the realized volatility. However it is causal, namely the parameter of
the filter is evaluated only on past data. Therefore, this filtering technique can be applied in
real time, and not only to historical data. Moreover, it is “computationally cheap” since only

the computations of EMAs are required.
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Figure 2.1: Results on tick time autocorrelations (top panels) and volatility scaling (bottom ones) of the
application of the EMA-filter to tick-by-tick price series of USD/JPY and USD/CHF. The sample covers 11
years from January 1, 1990, to January 1, 2001. The first-lag correlation is evaluated on a moving sample
of length 20 days.

The results of this EMA filtering to several tick-by-tick FX series are reported in figure 2.1
and table 1. The top panels of figure 2.1 display the autocorrelation structures in tick time of
the original and filtered return series of USD/JPY and USD/CHF rates. The bottom panels
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E[At] p(1) p(1)

f-time [min] | original filtered
USD/JPY 0.74 -41.5% 0.78%
USD/CHF 0.82° -42.0% 0.95%
GBP/USD 0.88’ -40.0% -0.17%
EUR/USD 0.25° -41.4% -1.28%
EUR/GBP 1.9’ -29.8% -4.66%
USD/ITL 1.6° -35.0% -3.15%
USD/DKK 2.3 -36.0% -1.38%
GBP/JPY 6.86’ -46.9% 4.8%

Table 2.1: Reduction of the first order autocorrelation of tick-by-tick returns obtained with the EMA-filter.

show the scaling behavior of original and filtered volatility. Clearly, removing the strong
negative first-order autocorrelation, considerably reduces the volatility bias. We report in
table 1 values of the first-order autocorrelation with and without the application of the EMA-
filter for different FX rates. Though not always perfect, the reduction of p(1) is remarkable.

2.4 The Discrete Sine Transform Approach

Though effective in reducing the bias (especially on highly liquid data), the EMA filter is a
non-local estimator which adapts only slowly to changes in the properties of the pricing error
component. Moreover, all the estimators based on the first order covariance, correct only for

the bias deriving from the first lag of the return autocorrelation function, while they are very
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sensitive to non zero higher lag coefficients.

The presence of significant autocorrelation at lags length greater than one and the pos-
sibility that each trading day may be characterized by different autocorrelation structures,
makes the filtering problem rather complex. In theory, this problem could be tackled by a
fully parametric approach where several ARMA models are first estimated every day. Then
the best model is chosen on the basis of some loss criteria and finally an estimate for the
daily volatility could be obtained from the residuals of the selected model. This paramet-
ric higher order covariance correction has been proposed, for instance, by Bollen and Inder
(2002) which makes use of a series of AR models selected on the basis of the Schwarz BIC
criteria and by Hansen and Lunde (2004) which employ MA(q) filters where ¢ changes with
the returns frequency so to keep the time spanned by the autocorrelation window constant.
However, such fully parametric approach, beside being asset dependent and sensitive to the
loss criteria chosen, relies on the estimation of a large number of parameters, conveying the
estimation errors of those parameters to the volatility estimator substantially amplifying its
variance. Moreover, Bustos and Yohai (1986) show how even very few outlying observations
can largely increase the variance of the estimated residuals. Recently, Barndorff-Nielsen,
Hansen, Lunde and Shephard (2004) proposed a modified kernel-based estimator which is
asymptotically optimal. Concurrently, Zhang, Mykland and Ait-Sahalia (2005) proposed an
estimator based on overlapping subsampling schemes and an appropriate combinantion of
two realized volatilities computed at two different time scales. More recently, Zhang (2004)
has generalized the Two Scales estimator to a multiple time scales estimator that combines
realized volatilities computed at more than two return frequencies and reaches the same as-
ymptotic efficiency of the kernel-based estimator. Our approach will follow the direction of
this Multi-Scales methodology®.

In this section new alternative Multi-Scales realized volatility measures based on linear re-
gression approach and Discrete Sine Transform (DST) are presented (Curci and Corsi 2003).
Multi-Scales estimators similar to that recently proposed by Zhang (2004) can, in fact, be
constructed within a simple regression based approach by exploiting the linear relation ex-
isting between the market microstructure bias and realized volatilities computed at different
frequencies. These regression based estimators can be further improved and robustified by
using the DST approach to filtering out most of the market microstructure noise. The mo-

tivation for the employment of the DST approach rests on its ability to decorrelate signal

SBarndorff-Nielsen et al. (2004) show that a direct link between the Multi-Scales and the kernel-based

estimators exists.
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for data exhibiting MA type of behaviour which arises naturally in discrete time models of
tick-by-tick returns. In fact, we show that the DST diagonalizes exactly MA(1) processes
and approximately MA(q) ones. Hence, this nonparametric DST approach, turns out to be
very convenient as it provides an orthonormal basis which permits to optimally” extract the
volatility signal hidden in the noisy tick-by-tick return series. As a result, new nonparametric
realized volatility estimators which fully exploit all the available information contained in
high frequency data can be constructed. We also show that this approach produces robust
and accurate results also in the presence of not i.i.d. microstructure noise which leads to more
general MA(q) processes for the tick-by-tick returns. It is then robust against a wide class of

noise contaminations and model misspecifications.

Moreover, thanks to this result we derive closed form expression for the score, the Fischer
information matrix and the Cramer-Rao bounds of MA(1) processes and provide an efficient
numerical procedure for the likelihood maximization.

Finally, although for the ease of exposition we will describe the model having the effi-
cient price which follows a Brownian motion in tick time, the actual implementation of DST
approach would only need to assume the volatility in tick time to be constant over a small
window of very few ticks (20 or 30), so that the already weak and realistic assumptions of

homoskedasticity in tick time is additionally weakened.

2.4.1 Discrete Sine Transform

Considering the vector of M tick-by-tick observed returns R (M, n) = [ r, 7p_1 -+ Tn_ni1 ]T,

8

we develop a Principal Component Analysis® of the associated variance-covariance

matrix QM) =F <R (M,n) R (M, n)T), which is a tridiagonal matrix of the form:

[ o2 + 2172 —n2
Qo) _ 2 o2 + 22

"In a linear sense.

8 Also known as Karhunen-Loéve expansion or Hotelling transformation.
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By solving the eigenvalue equation Q(M)gog,iw) = AW%@%M’ with m = 1,2,..., M, it can be

shown that the eigenvalues of Q) are given by

m™m

(M) — 52 4 492 sin?
A 0”4 4n”sin S £ 1)

(2.15)

with 0 < )\gM) < )\(QM) << )\S\]/y). Therefore, the eigenvalues of the DST components are

ordered, separated and all non degenerate. The corresponding eigenvectors are

2 Tmmk
M) () =/ i E=1,2....M 2.1
(pm ( ) M + 1 s11 M + 1 ) ) ) ( 6)

The remarkable fact is that, unlike common situations, the eigenvectors (gp%vj )) of a MA (1)

process are universal and they coincide with the orthonormal basis used in the Discrete Sine
Transform (DST). Given that such nonparametric orthogonalization represents the optimal
solution to a linear filtering problem, it can be very useful for the analysis of high frequency
return data as it provides an universal basis to optimally decorrelate the price signal from

market microstructure noise.

2.4.2 The Minimal DST estimator

According to the Principal Component Analysis, the simple and computationally fast DST

of the returns y
D (n) =D @B (k) okt
k=1

acts as a projector of the signal into its principal components. The variance of the DST

components are directly the eigenvalues of the variance-covariance matrix:

.
(M) (M) — (M) (M) (M) _ (M) _ ;2 202 M
E (i () el () = (1) QMDD = XID = 0% + P sin s

Since we are interested in the permanent component of volatility the idea is to consider the
projection of the returns on the minimal principal component which is the one less con-
taminated by the transient volatility coming from the microstructure noise. Therefore, an
asymptotically unbiased estimator of the average variance per tick o2 is given by the mean

value of the square of the DST component associated with the minimal eigenvalue of the

correlation matrix (C%T)L) in the limit of a large window M

(A1)
min

o2 = Var {c } = 02 + 4n? sin® (2.17)

2 (M +1)
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2

2 . 2 2 T

since for large M the effect of the price error vanishes as 0%,

This clearly shows how the aggregation on the minimal component decreases the impact of
the pricing error at a much higher speed compared with the standard aggregation of returns.
In fact, in this second case, the bias is reduced at the rate M while on the minimal DST
component the bias is cut down at rate M?, allowing to substantially increase the “unbiased
return frequency” and then improving the precision of the volatility estimation.

It is important to note that throughout the paper, in order to reduce estimation errors
and assure consistency of the estimators, the computation of any variance estimator at any
level of aggregation, is always performed by adopting a full overlapping scheme i.e. (using
the terminology introduced by Zhang et al. 2004) by subsampling and averaging. Having an
estimate of the average volatility of the tick-by-tick returns for a given day, the corresponding
daily volatility is readily obtained by rescaling o with the number of ticks occurred in that

day. We term this volatility measure the Minimal DST estimator.

2.4.3 The Multi-Scales Least Square estimator

Recently Zhang, Mykland and Ait-Sahalia (2004) have introduced the “Two-Scales” estimator
while Zhang (2004) has generalized this approach to a “Multi-Scales” estimator that combine
realized volatilities computed at more than two return frequencies. Here, we present a different
approach to the construction of realized volatility estimators computed with multiple time
scales.

Under the assumption of i.i.d. noise the conditional expectation of the daily realized

variance RV (%) computed with observed returns of different tick-lengths k; is?
E [RV(’“J')] = IV + 2N(®) 42 (2.18)

where N %) is the number of kj-returns in the day. Hence, a consistent and unbiased estimator
can be obtained by computing the realized variance at different frequencies k; and then
estimating IV and 72 by means of a simple OLS, WLS or GLS linear regression of RV (k)
on N®*3i). Moreover, in order to relax the i.i.d. assumption for the noise, those frequencies
k; could be selected by choosing only those on the linear part of the plot (analogous to the
volatility signature plot) of E [RV(kj)] against the number of observations N%i)). We will

denote this class of estimators as Multi-Scales Least Square estimators.

9As aforementioned, for returns with a length in ticks k; > 1, subsampling and averaging (i.e. a full

overlapping scheme) is adopted.
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It is interesting to note that applying this Multi-Scales Least Square approach to only two
different frequencies ki and ko, one gets a very simple linear system of two equations in two

unknowns (I'V and 7?) which can be directly solved, giving as estimator of IV

(k2) _ (k1)
75 = 2BV — 1RV (2.19)

where o« = N*1) /N(*2) ig the ratio between the number of returns sampled at the “base”

frequency k1 and that obtained by sampling at the lower “auxiliary” frequency ko.

Equation (2.19) is exactly the expression of the Two-Scales estimator for serially dependent
noise (with the small sample bias correction) recently proposed by Ait-Sahalia, Mykland and
Zhang (2005) as an extention of the Zhang et al. (2005) estimators. Therefore, this alternative
“Jack Knife style” derivation of the Ait-Sahalia et al. (2005) estimator shows that the Multi-
Scales Least Square approach can be seen as another natural generalization of the Two-Scales

estimator to more than just two sampling frequencies.

2.4.4 The Multi-Scales DST estimator

The idea of exploiting linear relations among realized volatility measures computed at different
aggregation frequencies by means of simple linear regressions, could also be extended to the
DST estimators. Hence, regression based Multi-Scales estimators can be further improved
and robustified by using the DST approach to prefilter market microstructure noise. The idea
is to exploit the linear relation existing between the realized variance of the minimal principal
(M) (i.e. the Minimal DST estimator) and the window length of the PCA M.

1D

In fact, denoting RV — Vicmin

min

component c

| we have:

B[RV = 0%+ 2N 00 (2.20)
where N'(M) = 4 gin? m

Therefore, a more effective way of employing the DST decomposition is to evaluate the
Minimal DST estimator er(n]z\'{zj) for different values of M; and then perform a simple linear
regression. Then the intercept is an unbiased (not only asymptotically but also in finite
sample) and consistent estimator of the tick-by-tick volatility o2, while the slope is an estimate
of n?. Once appropriately rescaled by the number of ticks per day, the resulting IV estimator

will be called the Multi-Scales DST estimator.
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2.4.5 Exact MA(1) Likelihood, Cramer-Rao bounds and absolute efficiency

Thanks to the previous results on the universality of the eigenvectors, we can obtain a diag-
onalization of the variance-covariance matrix of MA(1) processes which does not depend on
the parameters to be estimated.

Collecting the M eigenvectors of Q in the MxM characteristic matrix ¥ = [p1¢2..., ],
we can project the return vector onto the orthogonal space of the principal component C'=
UTR, which is a Mx1 vector distributed as C ~ N(0,A), where A is the MxM diagonal
matrix containing the M eigenvalues of the tridiagonal matrix Q0. Therefore, the likelihood

function of R can be rewritten in terms of the principal components vector C' as

M
1 1 1 1 2
vl oo |52 ]
M 2 M M 2 n
20 det A VenM I A ot
and
M M
M 1 I
Then, from the linear equation (2.15) we readily obtain
An 1 2An
86:< 9 ) and E; 7 =0 for 4,k=1,2
8 4 sin m 8 18 k

and hence, we are now able to analytically derive the equations for the Score and the Hessian

dln fo (C) 1% 2 1\0\,  9Infy(C) :_i A1\
06; 96:00, 00; 00y,

00; 2

A2\,

X2

n=1 n=1

Therefore, thanks to equation (2.15) and (2.16) we are able to explicitly compute the Fisher

Information matrix of an MA(1) process, which reads

7 — g (PIF(C)) _1§n 1 0N
" 00:00; ) — 2 = X2 00; 00,

With each element of the matrix given by

1L 1 Mo ™m Mo .
Tin=2Y s T22=8Y —wsin? (), Tin=T51=2) sin®(
=52 =83 e <2(M+1)>’ 0 =Tar =23 i <2<M+1>>

n=1

In fact, E[CCT] =E[¢"RR"¥] = U 'E[RR"|¥ = ¥ QU = A.
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Then the Cramer-Rao bounds of 62 and 7? can now be given in closed form as

oo .9 1
>——= __ and var >
T Ty — I3, (i) T11 T — I3,

These results, which are original to our knowledge, have two important implications. First

var (&2)

they obviously permit to evaluate the absolute efficiency of volatility estimators. Second
numerical optimization of the exact likelihood is greatly simplified. In fact, given that the
principal components do not depend on the parameter, the orthogonalization of the returns
process needs to be done only once rather then at each iteration as it occurs using Cholesky
factorization (see Hamilton 1994).

From simulations (Table 2.2) it turns out that the Multi-Scales DST estimator for o>
possesses a variance very close to the Cramer-Rao bounds. Moreover, if desired, this small
loss of efficiency could be easily eliminated by using the Multi-Scales DST estimator as initial
value in ML numerical optimization performed with the Newton-Raphson method. It is
well known, in fact, that in order for the Newton-Raphson method to be stable and quickly
converge, good starting points are required. The Multi-Scales DST estimator seems to be
the most appropriate starting point as it guarantees the convergence of the Newton-Raphson
algorithm in less than 10 iterations (usually even only 3-4 iterations are enough). Then the
combination of the Multi-Scales DST estimator with the Newton-Raphson algorithm (MS-
DST + NR) would quickly lead to the fully efficient ML estimator.

2.4.6 Stability and robustness

To judge the stability and robustness of the DST filter with respect to more general speci-
fications of the nuisance component, this section relaxes the i.i.d. assumption for the noise
structure which leads to more general MA(q) processes for the observed returns.

It should be noted however, that the presence of a dependent noise process could, in some
cases, be an artificial result of the construction of the equidistant series in physical time. In
fact, the time deformation induced by the transformation from a tick time scale to a physical
one, can transform an MA(1) process into an MA(q) or ARMA(p, ¢). In other words, the time
deformation induced by the equidistant grid construction could have the effect of spreading
the mass of the first autocorrelation lag onto higher order lags''. This possible artificial
increase of the autocorrelation order induced by the regular grid construction is, in fact, an
additional important reason to favor, in the computation of the realized volatility, the use of

a tick time scale instead of the commonly used regular grid in physical time.

'1See Corsi et al. (2001) for an empirical example and Oomen (2005) for a detailed theoretical analysis.
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o? n? std(o?) std(n?)
True values & 1 4 00951 0.1698
Cramer-Rao bounds
MS-DST 0.9964 4.0045 0.0957 0.2036
MS-DST + NR 0.9982 4.0001 0.0939 0.1685

Table 2.2: Evaluation of the absolute efficiency of the Multi-Scales DST estimator and the Multi-Scales
DST estimator + Newton-Raphson algorithm (MS-DST + NR) with true volatility of 1, noise to signal
ratio ” = 2, 2048 observations per day and 5,000 simulations.

In the presence of dependence in the noise process, the observed returns in tick time

become an MA(q) process which can be written as

q
_ NSO ON
Tn O€p + ; ;i (wn wn_z>

with €, ~ IID (0, 1) and w,(f) ~ IID (0,1). It can be shown that in this more general case the

variance of the Minimal DST component is given by

q
o3r = E (e (n) el (n)) = 0* + > n?F (M, 1)
i=1

where F'(M,i) = M+1 [M+ 1—(M+1—1i)cos 1\4711 — cot 3/ sin M”}rl]

Because F (M,i) can be approximated as F (M,i) = w2 Ai;Q 212 o s (1+2 - l) +

0 (]\%)7 when M/q — oo, we obtain that o2, ~ % + = M2 Z (in;)? which indicates that
also the bias coming from higher order autocorrelations is cut down at the same rate M2,

guaranteeing the robustness of the DST estimators respect to a wide class of noise contami-

nations and model misspecifications.
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2.5 Monte Carlo Simulations

The DGP used in the simulations is a combination of the Heston (1993) SV model for the
dynamics of the true price process and the model proposed by Hasbrouck (1999) for the
microstructure effects.

In the Heston model the true log price assumes the following continuous time dynamics

dp(t) = (p—v(t)/2)dt +o(t)dB(t) (2.21)
do(t) = k(a—u(t))dt +~v(t)2dW (t) (2.22)

where v = ¢? and the initial value v(0) is drawn from the unconditional Gamma distribution
of v. The value of the parameters are the same as in Zhang et al. (2005), which in annualized
terms are: u = 5%, k =5, a = 0.04 corresponding to an expected annualized volatility of 20%,
~ = 0.5 and the correlation coefficient between the two Brownian motions p = —0.5. Those
parameters, who are reasonable for stocks, will be held constant throughout the simulations.
The continuous time model of the true price is simulated at the usual Euler clock of one
second.

To this SV model for the dynamics of the true price, we add the Hasbrouck bid-ask
model for the observed price. The Hasbrouck model views the discrete bid and ask quotes
as arising from the efficient price plus the quote-exposure costs (information and processing
costs). Then the bid price is the efficient price less the bid cost rounded down to the next
tick and the ask quote is the efficient price plus the ask cost rounded up to the next tick. As
in Alizadeh et al. (2002) the model is simplified by assuming that the bid cost and the ask
cost are both equal to the minimum tick size.

Then, according to the Hasbrouck model the bid and ask prices are respectively
B, =A {PH/A - 1J and A, =A [ﬁn/A + 1} (2.23)

where A represents the tick size, [z] is the floor function, [z] the ceiling one and the unob-
served efficient price is P, = ePn.

Hence, the observed price is given by the following bid-ask model
Py = Bugn + An (1 —gn) (2.24)

with g, ~ Bernoulli (1/2). Therefore, the observed logarithmic return can be written as

Pn—l N |7Pn—l/A+H

lpn/A — 1J
[Pn/A+1]

| Pr—1/A — 1]

t gl Una/j2— -
it [Po_1/A +1]

—qn-1ln (225)

rn = In
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which would be an MA(1) process in case the true price followed a Brownian motion. Notice
that, by adopting the Heston model for the dynamics of the true price, the observed prices
do not follow an MA(1) process anymore, making the DST approach formally misspecified.
We choose this misspecified simulation setting expressly to show the robustness of the DST
approach against more general heteroskedastic process in tick time as discussed in section 77?.

We first follow Hasbrouck and Alizadeh et al. and choose parameter values which imply
a high level of the noise to signal ratio: A = 1/16 and Py = 45. These values, together with
the average annualized volatility of 20% given by the Heston model for the true price, induce
an average noise to signal ratio of about 3.5'2. Such high level of noise manifests itself as a
strong price fluctuation between bid and ask quotes, which generates a highly negative first
order-autocorrelation p(1) ~ —48% for the tick-by-tick returns r,.

This noise to signal ratio reflects a microstructure impact on the return process which is
remarkably large and rarely observed on real data. However, such an extreme setting provides
a useful stress test for realized volatility measures and hardens the competition versus daily
range-based estimators which are favored under these circumstances.

We simulate one-day sample paths of 6.5 hours (the typical opening time for stock markets)
for 25,000 days. The simulation is repeated for two different values of the total number of
price observations per day: M = 390 which corresponds to an average intertrade duration of
one minute, and M = 4,680 which corresponds to an average tick arrival time of 5 seconds.

The competing estimators are:

e the two DST estimators: the Minimal DST (Min-DST) is computed with a window
length of 30 ticks, while, for the Multi-Scales DST (MS-DST), we construct a series of
minimal DST estimator using a sequence of M; ranging from 2 to 20 ticks and then fit
equation (2.20) through simple OLS.

e three “simple” Multi-Scales estimators: two Two-Scales estimators with frequency ratio
a of 5 and 10, denoted respectively TS(5) and TS(10), and the Multi-Scales Least
Square (MS-LS) estimator. The values chosen for the frequency ratio «, are just two
representative values among those who seem to give the best results across the different

settings considered in this analysis;

2Following (Oomen 2006) we define the noise to signal ratio as the standard deviation of the noise divided
by the average standard deviation per tick of the true price process. This standardization has been chosen
first because it seems reasonable to normalize both the noise and signal standard deviation respect to the same
time interval and second because doing that at the tick-by-tick level facilitates comparison across different

assets and over time, being such ratio not affected by the different market activity.
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n/o = 3.5, observation frequency = 1 min n/o = 3.5, observation frequency = 5 sec
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Figure 2.2: Comparison of the pdf of the estimation errors on the annualized percentage volatility (on

average 20%) obtained with an average observation frequency of 1 minute (left panel) and 5 seconds (right

panel) and a noise to signal ratio 2 =3.5.

e the local EMA filter (i.e. calibrated on a single day), which then simply corresponds
a daily MA(1) filter;

e two standard realized volatility measures both computed with 5 minute returns but one

sampled with an overlapping scheme and then averaged;

e the daily range, as proposed by Parkinson (1980) and recently advocated by Alizadeh

et al. (2002) in the contest of SV models estimation'? .

We first consider the case of having 390 observations per day (corresponding to an average
one minute frequency) and a noise to signal ratio of 3.5. Table 2.3 reports the mean, standard

deviation and Root Mean Square Error (RMSE) of the estimation errors on the annualized

volatility (express as a percentage). Figure 2.2 shows the probability density functions

those volatility estimation errors.

to

of

13Comparison with the recently proposed high frequency range, the so called ”Realized Range-based Vari-

ance” will be deferred to future research.
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VOLATILITIES ESTIMATES WITH g =3.5

1 min 5 sec
mean std RMSE mean std RMSE
MS-DST -0.0524 3.1033  3.1037 0.0904 0.8910 0.8955
Min-DST 1.1831 3.2068 3.4181 1.2957 1.1135 1.7084
MS-LS 0.0806  4.8183  4.8190 0.0669 0.9095 0.9119
TS(5) -0.5610 5.9293  5.9557 0.1483 1.7775 1.7837
TS(10) -0.3715  3.7116  3.7302 0.0904 1.0410 1.0449

EMA Filter  0.3930 12.4018 12.4080 -0.0181 5.2224 5.2225
daily Range  2.2526  5.9256  6.3393 0.1492 5.9072 5.9091
5 min avg 27.7033 5.3758  28.2201 3.7356  2.3190 4.3969
5 min sparse 27.7525  4.6204  28.1345 3.7242  1.8551 4.1607

Table 2.3: The table report the mean, standard deviation and RMSE of the estimation errors on the
annualized percentage volatility (on average 20%) obtained with an average observation frequency of 1
minute (left panel) and 5 seconds (right panel), and a noise to signal ratio 2 = 3.5.

Given the high level of noise and the relatively small number of observations per day,
the estimation of the first order autocorrelation required to calibrate the EMA filter, is very
noisy and does not always satisfy the theoretical bound for MA(1) process | p(1) |[< 1/2 (in
the 30% of the cases), leading to a complex MA(1) coefficient #. In such cases, the EMA
filter would fail and we are then forced to impose an artificial floor to p(1). But, besides its
arbitrariness, this procedure induces unreasonably low volatility estimates (responsible for
the left bump presents in the EMA estimator pdf on the left panel of Figure 2.2). Moreover,
under these conditions, the variance of the estimator is extremely large. For the 5 minute
realized volatility, the fact that the aggregation from 1 to 5 minute returns is not able to
eliminate all the negative autocorrelation, makes this estimator strongly upward biased. In
the case of the Minimal DST estimator instead, the aggregation works much better but, due
to a relatively low window length of 30 ticks, a small upward bias is still present. Even the
daily range suffers from a significant bias but it also has a much larger variance (both, the

bias and the variance, are about two times those of the Minimal DST one). Among the
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three simple Multi-Scales estimators the TS(5) and TS(10) have small negative biases while
the MS-LS is virtually unbiased. However, the variance and the RMSE of the T'S(10) are
lower than the other two simple multi-frequency estimators. Under this extreme setting, the
only measure which is still able to remain unbiased and sufficiently precise is the MS-DST
estimator, which has, in fact, the lowest RMSE. Moreover, comparing the realized volatility
estimators with the one based on the daily range shows that, even in the most unfavorable
setting for the realized volatilities, they remain much more accurate than the daily range: the
best realized volatility estimator, the MS-DST, possesses, in fact, a RMSE 48% smaller than
that of the daily range.

Keeping the same level of noise, we repeat the simulation at 5 second frequency (which
means 4,680 observations per day). With twelve times more data the realized volatility
measures are much more precise: the local EMA filter has less failings (5%) and lower vari-
ance, while the 5 minute realized volatilities (thanks to the longer aggregation period) have
smaller, but still significant, biases. Although smaller than the biases of the 5 minute realized
volatilities, the Minimal DST still shows a bias with this high level of noise. The Zhang et
al. estimators become both unbiased with the TS(10) having a smaller variance than the
TS(5). The MS-DST and the MS-LS estimators are both unbiased and equally very accurate,
remaining the best choices among the estimators considered.

In practice, however, financial time series present a noise to signal ratio at tick-by-tick
level that usually lies between 0.5 and 2. But, even with such a moderate level of noise, a
naive high frequency realized volatility measure would be from one to three times the actual
one. We then repeat the simulation with a more realistic noise to signal ratio of 1.5 for both
observation frequencies. Table 2.4 and Figure 2.3 summarize the results.

At the 1 minute frequency the daily range and the local EMA filter are unbiased but
quite inaccurate while the realized volatilities based on 5 minutes have again a large bias.
The MS-DST and the other Multi-Scales estimators are the most accurate with the MS-LS
having a slightly smaller bias and variance than the others.

At the 5 second frequency, with a moderate level of noise and a large number of data, the
EMA filter starts to have a much lower variance and the 5 minute measures much lower biases.
Nevertheless, they can still not compete with the MS-DST and the three other Multi-Scales
estimators which become extremely precise and accurate under this setting.

Empirical studies on the autocorrelation of tick-by-tick data often show significant values
not only for the first order but also for higher order lags (though, usually, of much smaller
amplitude). A possible explanation, and way to model it, is by relaxing the assumption of

i.i.d. microstructure noise by introducing a correlation in the sequence at which bid and ask
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Figure 2.3: Comparison of the pdf of the estimation errors on the annualized percentage volatility (on
average 20%) obtained with an average observation frequency of 1 minute (left panel) and 5 seconds (right

i i 0 1 —
panel) and a noise to signal ratio 2 = 1.5.
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Figure 2.4: Comparison of the pdf of the estimation errors on the annualized percentage volatility (on
average 20%) obtained with an average observation frequency of 1 minute (left panel) and 5 seconds (right

panel), a noise to signal ratio 2 = 1.5 and a biased Bernoulli process with bias b = —0.1.
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VOLATILITIES ESTIMATES WITH % = 1.5

Unbiased Bernoulli

1 min 5 sec

mean std RMSE mean std RMSE

MS-DST -0.2200 2.2131 2.2240 -0.0124 0.6270 0.6271
Min-DST -0.2263 3.0683 3.0767 0.2101 0.8992 0.9234
MS-LS -0.0969 2.0306 2.0329 -0.0287 0.7119 0.7125
TS(5) -0.2077 2.1551 2.1651 -0.0043 0.6128 0.6128
TS(10) -0.2380 2.2127 2.2254 -0.0130 0.6255 0.6257

EMA Filter -0.2969 4.0460 4.0569 -0.0308 1.2683 1.2687
daily Range -0.0096 5.9989 5.9989 -0.4718 5.8244 5.8435
5 min avg 7.1261  2.9711 7.7206 0.7326  1.7042 1.8550
5 min sparse 7.1217 2.5285 7.5572 0.7006 1.3455 1.5170

Biased Bernoulli

1 min 5 sec
MS-DST 0.3894 2.2340 2.2677 0.6751 0.7170 0.9848
Min-DST -0.1534 3.0779 3.0817 0.3293 0.9049 0.9630
MS-LS 1.7224  2.0709 2.6935 0.8317 0.8174 1.1662
TS(5) 1.8883 2.1509 2.8622 2.2000 1.0817 2.4516
TS(10) 0.7261 2.2142 2.3302 1.0239 0.7912 1.2940

EMA Filter  5.4676 3.1365 6.3034 5.8407 1.9792 6.1670
daily Range -0.1283 5.8236 5.8250 -0.4573  5.9265 5.9441
5 min avg 7.1038 2.9780 7.7028 0.7540 1.7418 1.8980
5 min sparse  7.1053  2.5490 7.5487 0.7195 1.3707 1.5480

Table 2.4: The table reports the mean, standard deviation and RMSE of the estimation errors on the
annualized percentage volatility (on average 20%) obtained with an average observation frequency of 1
minute (left panel) and 5 seconds (right panel), a noise to signal ratio 2 = 1.5 and, for the bottom panel,
a biased Bernoulli process with bias b = —0.1.
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prices arrive'. Hence, instead of having an “unbiased” Bernoulli(1/2) for the g, process, we
construct a Bernoulli process which produces autocorrelation in ¢,. This “biased” Bernoulli
is obtained by taking ¢, = Bernoulli (1/2+ 1) if ¢,—1 = 1 and ¢, = Bernoulli (1/2 —b) if

gn—1 = 0. We choose b = —0.10 which induces a second order autocorrelation of about —6%.

Now, in the presence of not i.i.d. microstructure noise, the local EMA filter, which was
unbiased, becomes highly biased at both frequencies (see Figure 2.4). Also the TS and MS-
LS estimators are now showing a positive bias. Among all the realized volatility estimators
the DST measures are the ones with the smallest bias and smallest RMSE, showing a high
degree of robustness against more general microstructure noise contaminations (as analytically

described in the previous section).

Summarizing the results of the simulation study, we can draw the following conclusions.
The daily range estimator is always inferior to the realized volatility ones. The realized
volatilities with 5 minute returns are often significantly biased and inaccurate. The local
EMA filter gives satisfactory results only in the presence of a high number of observations
and a low level of i.i.d. noise. Although more precise in general, similar considerations can
be made for the simple MS estimators (TS and MS-LS). When the microstructure noise is
moderate and i.i.d. the simple MS estimators are almost as accurate as the MS-DST and
hence close to the optimal Cramer-Rao efficiency bound (since, as shown in section 2.4.5, the
MS-DST is very close to the full efficiency of the Cramer-Rao bounds). In particular, the MS-
LS seems to be particularly efficient in exploiting the information contained in the data when
a relatively small number of observations is available (perhaps due to its ability to extract
information from many frequencies), while the TS(5) and TS(10) are at their best when the
number of observations increases. However, when the microstructure noise increases and
deviations from the i.i.d. structure arise, the discrepancy between the simple MS estimators
and the MS-DST starts to increase due to a higher level of robustness of the DST approach.
Therefore, the overall winner that seems to arise from this volatility estimation “horse race”
is the MS-DST which shows the highest level of precision and robustness across a wide range

of microstructure noise contaminations.

MHasbrouck and Ho (1987) suggest that positive autocorrelation at lag lengths greater than one may be
the result of traders working an order: “a trader may distribute purchases or sales over time”. However also

significant negative autocorrelation at lag two are often observed.
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2.6 Empirical application

To verify the behavior of volatility estimators when the microstructure noise is not an i.i.d.
process, we analyze six years of tick-by-tick data (from January 1998 to October 2003) for the
following three future contracts: the S&P 500 stock index future, the 30 years U.S. Treasury
Bond future and the Italian stock index future FIB 30. In a base asset mapping approach (as
the one of RiskMetrics), those three major future contracts can be seen as the reference liquid
base assets for, respectively, the US stock and bond market and the Italian stock market.

In order to analyse the dependence structure of the microstructure noise in those series,
we investigate the behaviour of the autocorrelation of tick-by-tick returns. This tick-time
autocorrelation analysis shows significant departure from the standard i.i.d. assumption for
the microstructure noise. In fact, more complex structures than that of a simple MA(1)
expected under the standard i.i.d. assumption, were found in all the three series. These
patterns are independent of the inclusion or censoring of all zero trade-by-trade returns which,
in all the three assets, usually represent only a small percentage of the total number of trade-
by-trade returns.

Such autocorrelation patterns of the tick-by-tick returns are instead consistant with more
complex ARMA structure for the microstructure noise. In fact, simulating the Hasbrouck
model with those ARMA structures for the noise, leads to exactly the same autocorrelation
functions observed in the data. In particular, those patterns are consistent with a microstruc-
ture noise having an MA(1) structure for the FIB, an MA(2) (at least) for the S&P and a
strong oscillatory AR(1) for the US bond!® (see Figure 2.5).

To overcome the problem of a complex ARMA structure in the autocorrelation of tick-by-
tick returns of the S&P and US bond, we first notice that, in both cases, a simple aggregation
of two ticks returns almost restore the MA(1) autocorrelation pattern typical of the i.i.d.
assumption for the microstructure noise (see Figure 2.6). Therefore, applying the MS-DST
estimator to the two-ticks returns of the S&P and US bond series, we can still obtain a highly
precise evaluation of the realized volatilities of the two assets and closely follow their time
series dynamics (see Figure 2.7).

Obviously, in empirical analysis the true volatility is not observable, hence no direct
evaluation criteria of the quality of the volatility estimators exist. However, general indirect

criteria can be employed.

15The analysis of the market microstructure determinants and specific institutional constraints that would

lead to such empirical evidences is beyond the scope of the present study.
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Figure 2.5: Sample path of the tick-by-tick price process (dotted line) with its two ticks moving average
(solid line) for the S&P 500 (top panel) and US Bond (bottom panel) future.
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Figure 2.6: Sample autocorrelation of S&P (top) and US Bond (middle) for tick-by-tick returns (left) and
2-ticks returns (right) together with the tick-by-tick autocorrelation of FIB30 (bottom). All autocorrelation

functions are computed over the six year sample, from 1998 to 2003.
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Annualized daily RV of S&P500 from 1998 to 2003
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Figure 2.7: Time series of the annualize realized volatility computed with the MS-DST estimator on the
two ticks returns for the S&P 500 (top panel) and US Bond (bottom panel) futures from 1998 to 2003.

First of all, the unconditional mean of daily volatilities obtained with high frequency esti-
mators should not be significantly different from the unconditional mean volatility obtained
with lower frequency returns. We asses this property for the MS-DST estimator by comput-
ing its volatility signature plot. Figure 2.8 shows the volatility signature plot of the standard
and MS-DST realized volatility measures for the three assets, averaged over the whole six
years period. Ideally, for estimators which are robust against microstructure effects the scal-
ing should appear as a flat line in the volatility signature plot. The top panel of Figure 2.8
refers to the scaling of S&P 500 future showing a moderate but clear impact of the market
microstructure on the standard realized volatility measure and the presence of a mild lower
frequency autocorrelation. The MS-DST estimator correctly discounts market microstructure
effects on volatility while it retains the residual lower frequency autocorrelation which is re-
sponsible for its scaling behavior to be not completely flat. The middle and bottom panels are
respectively the FIB 30 and U.S. Bond future. In both cases market microstructure noise has
a strong impact on the standard measure of realized volatility inducing larger biases as the
frequency increases while the MS-DST estimator, remaining reasonably flat at any frequency,

confirms its ability to properly filter out market microstructure effects.

Under the hypothesis of an underlying continuous time diffusion process for the logarithm
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Signature plot of S&P daily RV from 1998 to 2003

49

24

23

22

21F""
20

=

(o=
19
i8
17

16

— MS—DST
e Standard RV

I

15
10°

107
= 8sec to 1000 ticks = 134min

10*
A tin n° of ticks: from 1 tick

Signature plot of FIB30 daily RV from 1998 to 2003

10°

34
32
30

28

RV

26

24

22

20

—— MS—-DST

Standard RV ||

18
10°

162
1 tick = 9sec to 1000 ticks = 154min

10"
A tin n° of ticks: from

10

20
is8
16

14

RV

12

10

Signature plot of US Bond daily RV from 1998 to 2003

— MS—-DST
Standard RV

A tin n° of ticks: from 1 tick

= 18sec to 1000 ticks = 292min

Figure 2.8: Signature Plot in semilog scale of the standard (dotted) and DST (solid) realized volatility
for S&P 500, FIB 30 and US Bond from January 1998 to October 2003.
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price, another indirect criterion can be considered to asses the quality of realized volatility
measures in empirical applications. In fact, if the log-price follows a SV diffusion the model
for daily returns could be written as r, = o3z where z; ~ ii.d. N(0,1). Hence, the 1-day
return would be conditionally Gaussian with variance equal to the integrated variance. The
normality of z; is justified by appealing to the Central Limit Theorem for mixing process
aggregated over a reasonable length of time (such as daily for highly traded assets). There-
fore, if a volatility measure adequately estimates the integrated volatility, the corresponding
standardized returns should be normally distributed. We test this condition using the Jarque-
Bera normality test on returns standardized by the 30 minute realized volatility'®, MS-DST
realized volatility and the daily range!”.

Table 2.5 reports the results. In all three cases, daily raw returns are highly leptocurktic
as expected, while returns standardized by daily ranges become highly thin tailed and remain
far from normal. Returns standardized by 30 minute realized volatilities become excessively
thin tailed for the S&P and US Bond while remaining too fat tailed for the FIB 30 and clearly
failing the Jarque-Bera tests in all the three cases. Whereas for the MS-DST standardized
returns, Jarque-Bera test cannot be rejected for both the stock index future S&P and FIB.
However, for the US Bond future, even though among the three competing estimators the MS-
DST standardized returns remain by far the closest to the standard normal, the Jarque-Bera
test is rejected. The rejection is due to a value of the kurtosis excessively smaller than three,
meaning that the MS-DST measure tends to overestimate the “true” integrated volatility
of the Bond future process. However, since the realized volatility consistently estimates
the quadratic variation (which includes the contributions of jumps) and not the integrated
volatility (which only considers the contribution of the continuous part), such overestimation
could be due to the presence of a large jump components in the Bond future series. Indeed, the
fact that the relative contribution of jumps is higher in bond series compared to stock indices,

has been recently found by Andersen Bollerslev and Diebold (2003) and is consistent with the

16This choice of a somewhat lower frequency of 30 minutes instead of an higher one, is motivated by the

need of having an unbiased estimator of the daily volatility.

1"The EMA filter estimator has not been included here because, as shown in the simulations, it is sensitive
to the presence of significant higher order autocorrelation in the tick-by-tick returns which results to be
significantly different from zero in all the three series considered here. While, on this kind of data, the simple
MS estimators give results that under these weak empirical tests are almost indistinguishable from the ones of
the MS-DST, thus confirming the results of the Monte Carlo simulations where the MS-DST and the simple
MS estimators were all very close when the level of noise were moderate and the number of observations

relatively high.
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Std. Dev  Kurtosis Skewness Jarque-Bera Probability

S&P 500

Raw returns 19.3959 6.5403 -0.0106 734.8280 0.0000
MS-DST-std. returns 1.0249 2.7642 0.0190 3.3448 0.1878
30 min-std. returns 1.0663 2.4325 -0.0266 19.0443 0.0001
Range-std. returns 0.9223 1.7542 -0.0372 91.3168 0.0000
FIB 30

Raw returns 24.4786 6.8536 -0.2368 829.1147 0.0000
MS-DST-std. returns 1.1069 2.8901 0.1464 5.3702 0.0682
30 min-std. returns 1.5778 4.1715 -0.0365 75.7205 0.0000
Range-std. returns 0.9120 1.7520 0.0493 86.1375 0.0000
US Bond

Raw returns 8.6578 4.1011 -0.4231 113.0565 0.0000
MS-DST-std. returns 0.9664 2.5179 -0.1101 16.4640 0.0003
30 min-std. returns 1.0001 2.2831 -0.0941 32.2116 0.0000
Range-std. returns 0.8877 1.7664 -0.0948 91.3266 0.0000

Table 2.5: Comparison of sample distribution properties of daily raw and standardized returns of FIB
30, S&P 500 and thirty years Bond futures from 1998 to 2003. Standardized returns are computed using
MS-DST, 30 minute realized volatility and daily range.

empirical evidence of the fixed income market being the most responsive to macroeconomic

news announcements (Andersen, Bollerslev, Diebold and Vega 2003).

In summary, the analysis conducted on the empirical data confirms the ability of the MS-
DST estimators to accurately and reliably estimate daily realized volatility, thus confirming

the results obtained in the Monte Carlo simulation analysis.



52 CHAPTER 2. MEASURING REALIZED VOLATILITY
2.7 Conclusions

The autocorrelation induced by microstructure effects represents a challenging problem for
realized volatility measures. It makes the naive realized volatility computed at short time
intervals highly biased, while filters based on first order covariance correction become prone
to misspecification (due to the frequent significance of higher order lags) and to the unpleasant
possibility of becoming negative.

In this study new realized volatility measures based on Multi-Scale regression and Discrete
Sine Transform (DST) approaches are presented. We show that Multi-Scales estimators sim-
ilar to that recently proposed by Zhang (2004) can be constructed within a simple regression
based approach by exploiting the linear relation existing between the market microstructure
bias and the realized volatilities computed at different frequencies. These regression based
estimators can be further improved and robustified by using the DST approach to filter mar-
ket microstructure noise. This approach is justified by the theoretical result regarding the
ability of the DST to diagonalize exactly an MA(1) process and approximately an MA(q)
one. Hence, we utilize the DST orthonormal basis decomposition to optimally disentangle
the underlying efficient price signal from the time-varying nuisance component contained in
tick-by-tick return series. The robustness of the DST approach with respect to more general
dependent structures of the microstructure noise is also analytically shown.

The combination of such a Multi-Scale regression approach with the DST gives us a Multi-
Scales DST realized volatility estimator which is then robust against a wide class of noise
contaminations and model misspecifications. Thanks to the DST orthogonalization, which
also allows us to analytically derive closed form expressions for the Cramer-Rao bounds of
MA (1) processes, an evaluation of the absolute efficiency of volatility estimators under the
i.i.d. noise assumption becomes available, indicating that the Multi-Scales DST estimator
possesses a finite sample variance very close to the optimal Cramer-Rao bounds.

Monte Carlo simulations based on a realistic model for microstructure effects and volatility
dynamics, show the superiority of MS-DST estimators compared to alternative local volatility
proxies such as the TS and MS-LS estimators, the daily range, the EMA filter and 5 minute
realized volatilities. The MS-DST estimator results to be the most accurate and robust across
a wide range of noise to signal ratios and types of microstructure noise contaminations. The
empirical analysis based on six years of tick-by-tick data for S&P 500 index-future, FIB 30,
and 30 years U.S. Tresaury Bond future, seems to confirm Monte Carlo results.

Both empirical and simulation results show that the DST approach is a powerful non-

parametric method able to cope with very general and time-varying microstructure noise,
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providing robust and accurate volatility estimates under a wide set of realistic conditions.

Moreover, its computational efficiency, makes it well suitable for real-time analysis of tick-by-

tick data.
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Chapter 3

Modelling Realized Volatility

3.1 Introduction

The main purpose of this chapter is to obtain a conditional volatility model based on realized
volatility which is able to account for all the main empirical features observed in the data
and, at the same time, which remains parsimonious and easy to estimate.

Inspired by the Heterogeneous Market Hypothesis (Miiller et al. 1993, Dacorogna et al.
2001) which led to the HARCH model of Miiller et al. (1997) and Dacorogna et al. (1998)
and by the asymmetric propagation of volatility between long and short time horizons, we
propose an additive cascade model of different volatility components each of which generated
by the actions of different types of market participants. This additive volatility cascade leads
to a simple AR-type model in the realized volatility with the feature of considering volatilities
realized over different time horizons. We thus term this model, Heterogeneous Autoregressive
model of Realized Volatility (HAR-RV). Surprisingly, in spite of its simplicity and the fact
that it does not formally belong to the class of long memory models, the HAR-RV model is
able to reproduce the same memory persistence observed in volatility as well as many of the

other main stylized facts of financial data.

3.2 Stylized Facts of Financial Data

Summarizing the vast literature on the empirical analysis of financial markets, the main

characteristics of financial data are:

1. Fat tails: the kurtosis of the returns is much higher than that of a normal distribution

at intraday frequency and tends to decrease as the return length increases. Thus return

55
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pdf are leptokurtic with shapes depending on the time scale and presenting a very slow
convergence of the Central Limit Theorem to the normal distribution. For instance, for
USD/CHF the kurtosis of hourly returns is 15.58, for daily return is 4.72 and 3.78 at

the weekly horizons.

2. Long memory in the volatility: although the autocorrelation of the returns is insignif-
icant at all scales, the autocorrelation of the square and absolute returns shows very
strong persistence which lasts for long time interval. This persistence reflects on the
hyperbolic autocorrelation of realized volatilities from which the long memory of the
process becomes even more evident. For example, the autocorrelation of USD/CHF
realized volatility remain very significant for at least 6 months. This result holds true

for realized volatilities aggregated at all frequencies (hourly, daily, weekly and monthly).

3. Distributional properties of realized volatility: the unconditional distributions of real-
ized variances possess high level of skewness and kurtosis which decrease with temporal
aggregation but remain far from normal even at monthly scale. Realized volatility and

logarithmic realized volatility are instead much closer to normal distributions.

4. Scaling and multiscaling: computing the power spectrum of logarithmic prices often
result in an approximated straight line in the relative log-log plot which is consistent
with the power law behavior of scaling processes. Moreover, structure function analysis

also shows strong evidences of multifractality in financial data (as we will later discuss).

3.3 Some desired properties of a volatility model

Standard GARCH and SV models are not able to reproduce the features described above.
Observed data contains noticeable fluctuations in the size of price changes at all time scales
while standard GARCH and SV short memory models appear like white noise once aggregated
over longer time periods. For instance, in the GARCH(1,1) models there is a stringent trade-
off between the possibility of having sharp changes in the short term volatility (high value of
the parameter ) and the ability to capture the long memory behavior of volatility (through
high values of ). Moreover, even with high value of 8 < 1 GARCH models are subject
to exponential decline in the autocorrelation, which is at odds with the observed hyperbolic
decline observed in the data. Hence, the recent interest in long memory processes.

Long memory volatility is usually obtained by employing fractional difference operators
like in the FIGARCH models of returns or ARFIMA models of realized volatility. Frac-
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tional integration achieves long memory in a parsimonious way by imposing a set of infinite-
dimensional restrictions on the infinite variable lags. Those restrictions are transmitted by the
fractional difference operators. However fractionally integrated models also pose some prob-
lems. Fractional integration is a convenient mathematical trick but completely lacks a clear
economic interpretation. The use of the fractional difference operator (1 — L)¢ may destroy
some useful information on the process and may happen to be not flexible enough to capture
the real structure of the data (especially if this structure is dynamically changing in time).
Fractionally integrated models are often non trivial to estimate and not easily extendible to
multivariate processes. These shortcomings are evident in the FIGARCH case. But also for
ARFIMA models it has been shown that the heuristic method of estimating d separately (via
a Geweke, Porter-Hudak method, for instance), gives notably biased and inefficient estimates
especially in the presence of large AR or MA roots (which seems to be our case). Joint ML
estimation of all the parameters in ARFIMA (p,d,q) models, would then be necessary, making
the estimation procedure more complex and even more difficult to extend to the multivari-
ate case. Moreover, the application of the fractional difference operator requires a very long
build up period which results in a loss of many observations. Finally, these kind of models are
able to reproduce only the unifractal (or monofractal) type of scaling but not the empirical
multifractal behavior found in many recent works.
Formally, a random process X (t¢) is said to be fractal or self-similar if it satisfies the
following scaling rule:
E[| X(t) |7] = ct¢@ (3.1)

where ¢ is a constant, ¢ > 0 is the order of the moment and ((g) the scaling function or

<o)
.
For wunifractal processes ((q) is linear and then fully determined by its unique parameter

structure function exponent which is linked to the Hélder exponent! simply by H(q) =

H(q) = H, hence the terminology unifractal or monofractal. Multifractal processes, on the
contrary are characterized by continuously changing H(q) and this leads to a nonlinear (con-
cave) ((q) function.

In practice, the scaling function ((q) of financial data is estimated by studying the scal-
ing behavior of the moments of returns computed at different scale, the so called empirical
structure (or partition) function S(At, q). If the price process p(t) is scaling, then:

int[T/At]
S(At.g)= > |plt+At)—p(t) | ~ AW, (3.2)

t=1

! A generalization of the Hurst exponent.
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Estimation of ((gq) is then obtained by regressing S(At, q) on At in log-log plots for different
values of q.

Structure function analysis can then be seen as a study of “generalized” average volatilities
(since only moments of order 1 and 2 are usually employed to define volatility) computed at
different scales At. For this reason structure function has been already implicitly studied
in the financial literature without explicitly referring to the structure function and scaling
formalism. In fact, variability of the scaling exponent H for various powers of the returns
has been already found to be a pervasive feature of financial data: Ding, Granger and Engle
(1993), Lux (1996), Mills (1996), Andersen and Bollerslev (1997), Lobato and Savin (1998).
Although the above authors did not refer to the concepts of multifractality in their papers,
their findings identify the existence of multifractal processes in financial data. Their basic
message is, therefore, the same as that of recent contributions from physicists (Schmitt,
Schertzer and Lovejoy 1999, Vandewalle and Ausloos 1998a, Vandewalle and Ausloos 1998b,
Pasquini and Serva 2000).

Formally, any additive process can be shown to have only linear ((q) or constant H(q)?.
Hence, theoretically, only multiplicative processes can lead to multifractal behavior. It is
in fact often stated, mainly by physicists, that only random multiplicative cascade models,
as those encountered in turbulent flows analysis and fragmentation processes, are able to
reproduce the long memory and multifractal properties found in the empirical financial data.
Does this mean that we should refrain to continue to employ additive models and resign
ourself to use multiplicative cascade processes which will be extremely difficult to identify
and estimate?

The crucial point is that the long memory and multiscaling features observed in the data
could also be only an apparent behavior generated from a process which is not really long
memory or multiscaling. In fact, if the aggregation level is not large enough compared to the
lowest frequency component of the model, truly asymptotic short memory and monoscaling
models can be mistaken for long memory and multiscaling ones. In other words, the usual tests
employed on the empirical data can indicate the presence of long memory and multiscaling
even when none exists, just because the largest aggregation level that we are able to consider

is actually not large enough. This means that the set of stochastic processes able to generate

*For Brownian motion for instance we have ((¢q) = £ which implies H(q) = 4. More generally for fractional
Brownian motion with an order of fractional integration of d, {(q) = q¢(d — %) = gH. It has been shown
numerically that ARCH-GARCH process quickly converge to giving ((g) = %. Even in the case of more exotic
Lévy flight (additive process with Lévy noise) and truncated Lévy flight the behavior of ((g) is still linear.
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the stylized facts found in the data is much larger than commonly thought. In particular,
LeBaron (2001) shows that a very simple additive model defined as the sum of only three
different linear processes (AR(1) processes) each operating on a different time frames can
display hyperbolic decaying memory and multiscaling, provided that the longest component
has a half life that is long relative to the tested aggregation ranges. The appearance of long
memory as a combination of short memory processes is not surprising given the result of
Granger (1980) which shows that the sum of an infinite number of short memory processes
can give rise to long memory. However, what is surprising is that those results can be obtained
with only three different time scales.

As a result, it would be empirically impossible to statistically discern between true multi-
plicative processes and simple additive models with more than one (but far from infinite) time
scales. Since it would be desirable to have a volatility model which, in addition to replicate
the main stylized facts, is also simple to estimate and possibly possesses a clear economic
justification and interpretation, it seems reasonable to go in the direction of simple additive
volatility models with a small number of components rather than in that of complicated

multiplicative systems.

3.4 Background ideas

In the light of the above considerations, we will propose a multi-component volatility model
with an additive hierarchical structure which will lead to a very simple additive time series
model of the realized volatility.

The basic idea stems from the so called “Heterogeneous Market Hypothesis”presented by
Miiller et al. 1993 , which recognizes the presence of heterogeneity in the traders. This view
of financial markets can be easily related with the “Fractal Market Hypothesis” of Peters
(1994) and the “Interacting Agent View” of Lux and Marchesi (1999). The idea of a presence
of multiple components in the volatility process has been also suggested by Andersen and
Bollerslev (1997) in their “mixture of distribution” hypothesis. Yet in this latter view the
multi-component structure stems from the heterogeneous nature of the information arrivals
rather than from the heterogeneity of the agents.

The Heterogeneous Market Hypothesis tries to explain the empirical observation of a
strong positive correlation between volatility and market presence. In fact, in a homogeneous
market framework where all the participants are identical, the more agents are presents, the
faster the price should converge to its real market value on which all agents agreed. Thus, the

volatility should be negatively correlated with market presence and activity. On the contrary,
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in an heterogeneous market, different actors are likely to settle for different prices and decide

to execute their transactions in different market situations, hence they create volatility.

The heterogeneity of the agents may arise from various reasons: differences in the en-
dowments, degree of information, prior beliefs, institutional constraints, temporal horizons,
geographical locations, risk profiles and so on. Here we concentrate on the heterogeneity
which originates from the difference in the time horizons. Typically a financial market is
composed by participants having a large spectrum of dealing frequency. On one side of the
dealing spectrum we have dealers, market makers and intraday speculator, with very high in-
traday frequency, on the other side there are central banks, commercial organization and, for
example, pension fund investors with their currency hedging. Each such participant has dif-
ferent reaction times to news, related to his time horizon and characteristic dealing frequency.
The basic idea is that agents with different time horizons perceive, react and cause different
types of volatility components. Simplifying a bit, we can identify three primary volatility
components: the short-term with daily or higher dealing frequency, the medium-term typi-
cally made of portfolio manager who rebalance their positions weekly, and the long-term with

a characteristic time of one or more months.

Although this categorization finds its justification in the simple observation of financial
markets and has a clear and appealing economic interpretation, it has been mainly overlooked
in financial modelling. A noteworthy exception is the HARCH model of Miiller et al. (1997)
and Dacorogna et al. (1998). The HARCH process belongs to the wide ARCH family but dif-
fers from all other ARCH-type processes in the unique property of considering squared returns
aggregated over different intervals. The equation of the latent variance is then a linear com-
bination of the squared returns aggregated over different time horizons. The heterogeneous
set of return interval sizes leads to the name HARCH for ”Heterogeneous interval ARCH”
(but the first ”H” may also stand for ”Heterogeneous market”). Because of the long memory
of volatility, the HARCH process in its initial formulation requires a large number of returns
measured at different frequency, making the log-likelihood optimization very difficult and
computationally demanding. To overcome these problems Dacorogna et al. (1998) propose
a new formulation of the HARCH process in terms of exponential moving averages (EMA):
the EMA-HARCH process. The idea is to keep in the variance equation only a handful of
representative interval sizes instead of having all of them, and replace the influence of the
neighboring interval sizes by an exponential moving average of the few representative returns.
This introduces a sort of GARCH-type elements in the HARCH process. In fact, broadly
speaking, the variance equation of the EMA-HARCH process can be seen as a combination

of several IGARCH processes defined over square returns aggregated at different frequencies.
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Each IGARCH component can be regarded as the contribution of the corresponding market
component to the the total market volatility and is hence termed partial volatility .

Studying the interrelations of volatility measured over different time horizons, permits to
reveal the dynamics of the different market components. It has been recently observed that
volatility over longer time intervals has stronger influence on those over shorter time intervals
than conversely. This asymmetric behavior of the volatility has been found with different
statistical tools. Miiller et al. (1997) employ a lead lag correlation analysis of ”fine” and
”coarse” volatility to investigate causal relation in the sense of Granger, while Arneodo, Muzy
and Sornette (1998) and Gencay and Selcuk (2004) perform a wavelets analysis. Recently,
Zumbach and Lynch (2001) clearly visualize the asymmetric propagation of volatility by
plotting the level of the correlation between the volatility first difference and the realized
volatility for a grid of many different frequencies. These correlations measure the response
function (in terms of induced volatility) of a given market component to changes of volatilities
at various time scales.

The overall pattern that emerges is a volatility cascade from low frequencies to high
frequencies. This can be economically explained by noticing that for short-term traders the
level of long term volatility matters because it determines the expected future size of trends
and risk. Then, on the one hand, short term traders react to changes in long term volatility
by revising their trading behavior and so causing short term volatility. On the other hand,
the level of short-term volatility does not affect the trading strategies of long-term traders.
This hierarchical structure has induced some authors to propose formal analogy between FX
dynamics and the motion of turbulent fluid where a energy cascade from large to small spatial
scales is present. Then, borrowing from the Kolmogorov model of hydrodynamic turbulence,
multiplicative cascade processes for volatility have been proposed (Ghashaghaie et al. 1999,
Muzy et al. 2000 and Breymann et al. 2000). Although these types of models are able in
theory to reproduce the main features of the financial data, their empirical estimation still
remains an open question. Moreover, Kolmogorov model refers to the so called homogeneous
cascade where the energy is homogeneously dissipated over an infinite number of scales; while
in financial markets, only a limited number of scales (corresponding to the predominant
components of the market) are the carriers of the financial turbulence (Lynch 2000).

Motivated by previous consideration on the ability of simple additive stochastic models to
replicate equally well in practice the empirical behavior of the data, and from the observation
that heterogeneous market structure generate an heterogeneous cascade with only few rele-
vant time scales, we propose a stochastic additive cascade model of the volatility with three

components.
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3.5 The HAR-RV model

Defining the latent partial volatility 5" as the volatility generated by a certain market compo-
nent, the proposed model can be described as an additive cascade of partial volatilities, each
of them having an “almost AR(1) structure”®. We assume a hierarchical process where at
each level of the cascade the future partial volatility depends on the past volatility experienced
at that time scale (the “AR(1)” component) and on the partial volatility at the next higher
level of the cascade i.e. the next longer horizons volatility (the hierarchical component). To
simplify, we consider a hierarchical model with only 3 volatility components corresponding to

(d)

time horizons of one day (1d), one week (lw) and one month (1m) denoted respectively &, ",
5 and 5™
t t

We assume that the market dynamics is completely determined by the behavior of the

dealers. Hence the high frequency return process is determined by the highest frequency

volatility component in the cascade (the daily one in this simplified case) with 5§d) = agd) the
daily integrated volatility. Then the return process is
Ty = crgd)et (3.3)

with e ~ NI1D(0,1).

The model for the unobserved partial volatility processes &0

at each level of the cascade
(or time scale), is assumed to be a function of the past realized volatility experienced at the
same time scale and, due to the asymmetric propagation of volatility, of the expectation of the
next period values of the longer term partial volatilities. For the longest time scale (monthly)

only the ”AR(1)” structure remains. Then the model reads:

5 = e RV 450, (3.4)
Gt = oW RV 1R a6, (3.5)
Gt = D+ DRVY DR 5 )+ o (3.6)

Where R\/;(d), RVt(uo, and R‘/;(m) are respectively the daily, weekly and monthly (ex post) ob-

served Realized Volatilities as previously described, while the volatility innovations d)t(fl)m, Cut(qﬁw

3Since on the right hand side there won’t be the lagged latent volatility itself but the corresponding realized
volatility, strictly speaking the process is not a true AR(1), but the fact that the realized volatility is a close
proxy for the latent one, makes this process similar to an AR(1). More formally, this model could be classified
in the broad class of Hidden Markov Models.
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and dzﬁ)l 4 are contemporaneously and serially independent zero mean nuisance variates with
appropriately truncated left tail to guarantee the positivity of partial volatilities?.

The economic interpretation is that to each volatility component in the cascade corre-
sponds a market component which forms expectation for the next period volatility based on
the observation of the current realized volatility and on the expectation for the longer horizon
volatility (which is known to affect the future level of their relevant volatility).

By straightforward recursive substitutions of the partial volatilities, such cascade model

can be simply written as
oDy = e+ BORVY + g RV + B RV 4 50, (3.7)

Equation (3.7) can be seen as a three factor stochastic volatility model, where the factors
are directly the past realized volatilities viewed at different frequency. From this process for
the latent volatility it is easy to derive the functional form for a time series model in terms

of realized volatilities by simply noticing that, ex-post, O't(jl_)l 4 can be written as
@  _ (d) (d)
Opia = Vg twiiig (3.8)
(d)

where w,; ’ represent latent daily volatility measurement as well as estimation errors. Equa-
tion (3.8) makes clear that we are not treating realized volatility as an error-free measure of
latent volatility. Here the importance of a proper treatment of microstructure effect in the
computation of the realized volatility measures (as discussed in section 2.2) becomes appar-
ent. The consistency of the realized volatility (which is directly valid for a broad class of
processes) is not enough to state that w§d) is a mean zero error term. Unbiased estimators
of latent volatilities are needed. Equation (3.8) links our ex post volatility estimate RVt(fg d
to the contemporaneous measure of daily latent volatility aﬁ_)l 4 Substituting equation (3.8)
in equation (3.7) and recalling that measurement errors on the dependent variable can be
absorbed into the disturbance term of the regression, we obtain a very simple time series

representation of the proposed cascade model:

RV, = c+ DRV + 8 RV™ 4 s RV 4y (3.9)

. ~(d) d
with wyp14 = w§+1d — w£+)1d.

Equation (3.9) has a simple autoregressive structure in the realized volatility. In general,

denoting [ and h respectively the lowest and highest frequency in the cascade, equation (3.9) is

4An alternative way to ensure positiveness of the partial volatilities would be to write the model in terms
of the log of RV.
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an AR(%) model reparametrized in a parsimonious way by imposing economically meaningful
restrictions. In other words, equation (3.9) is an AR-type process but with the feature of
considering volatilities realized over different interval sizes; it could than be labeled as an
Heterogeneous Autoregressive model for the Realized Volatility (HAR-RV).

3.6 Simulation results

In spite of its simplicity the proposed model is able to produce rich dynamics for the returns
and the volatility which closely resemble the empirical ones. These dynamics are generated by
the heterogeneous reaction of the different market components to a given price change which
in turns affect the future size of price changes. This causes a complex process by which the
market reacts to its own price history with different reaction times. Thus market volatilities
feed on themselves®.

To asses the ability of the model to replicate the main stylized facts of the empirical data,
we compare the time series returns and volatilities produced by the simulation with those of
twelve years of USD/CHF. In order to give the model the time to unfold its dynamics at daily
level, the HAR-RV(3) process is simulated at the frequency of 2 hours (2h). The simulated

model then reads:

NETRT N (3.10)
Uzgi)2h = ¢+ DRV 4 @RV 4 g RY™ + wzgi)2h' (3.11)

The parameters of the model (8()) are just hand made calibrated to obtain realistic results.

The analysis begins with a simple visual inspection of the two time series for the returns
(figure 3.1) and the realized volatilities (figure 3.2). In both figures 3.1 and 3.2, the upper
panels show the empirical data for USD/CHF from December ’89 to July ’01, while the lower
panels display a sample realization of the simulated process for a similar period. From the
visual inspection alone is difficult to discern much difference.

Figure 3.3 summarizes the character of the simulated and actual return distribution for
1,5 and 20 day interval. In these and the subsequent comparison figures, the number of obser-
vations for the real and simulated data is very different. The twelve years of USD/CHF gives
3001 daily observations, while the HAR-RV(3) process is simulated (at 2 hours frequency) for

a period corresponding to approximately 600 years i.e. 150,000 daily observations.

5This mechanism is sometimes called “price-driven volatility” in contrast to the “event-driven volatility”

consistent with the EMH and the “error-driven volatility” due to over and under reaction of the market to
incoming informations.
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Figure 3.1: Comparison of actual (top) and simulated (bottom) daily returns series.
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Figure 3.2: Comparison of actual (top) and simulated (bottom) daily RV series.
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Figure 3.3: Comparison of actual (dotted) and simulated (solid) PDF of returns for different time horizons.
Respectively from left to right: daily, weekly and monthly.

Kurtosis daily returns | weekly returns | monthly returns

USD/CHF 4.72 3.78 3.04

HAR-RV(3) 4.89 3.90 3.50

Table 3.1: Comparison of actual and simulated kurtosis of returns for different time horizons.

Table 3.1 reports the values of the kurtosis of those distributions for the three aggregation
interval. This Table clearly shows how the simple HAR model for the realized volatility is
able to reproduce not only the excess of kurtosis of the daily returns, but also the empirical
cross-over from fat tail to thin tail distributions as the aggregation interval increases.

But what we are mainly interested in, is the ability of the model to reproduce the volatil-
ity persistence of empirical data. Figure 3.4 shows the actual autocorrelation function of
USD/CHF daily realized volatility together with the autocorrelation of HAR daily realized
volatility simulated over a period corresponding to 600 years. This figure shows that the
purpose of reproducing the long memory of empirical volatility seems to be very well ful-
filled. It is important to remark that theoretically the HAR model for volatility is a short
memory process which asymptotically should not exhibit hyperbolic decay of the autocorrela-
tion. However, for the aggregation interval considered, the simulated model shows a volatility

memory which is at least as long as that of actual data (actually it could be even much longer
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for different choices of the parameters). Also the partial autocorrelation functions show quite
good agreement.

In figure 3.6 we also compare the distribution of the daily realized volatility, finding
reasonable agreement between the real data and the simulated one.

Finally, we investigate the scaling behavior of the real and simulated data. In figure 3.7
the periodogram of the daily returns for the two series is plotted in a log-log plane. Again,
real data cover a period of twelve years while the simulation is performed for a virtual period
of more than 600 years. Both series display high degree of linearity as the one expected for

true self-similar process.

3.7 Estimation and Forecast

3.7.1 The data

Our data set consists in almost 12 years (from December '89 to July 2001) of tick-by-tick
logarithmic middle prices of several FX rates. Log mid prices are computed as averages of
the logarithmic bid and ask quotes obtained from the Reuters FXFX screen. The whole data
set amounts to millions of quotes kindly provided by Olsen&Associates. In the following
univariate analysis we will concentrate on the USD/CHF exchange rate (as a proxy for the
USD/EUR).

In order to avoid to explicitly model the seasonal behavior of trading activity induced by
the weekend we exclude all the realized volatility taking place from Friday 21:00 GMT to
Sunday 22:00 GMT. Moreover, a confounding influence comes from low trading days asso-
ciated to fixed and moving holidays. Since the FX market is a world market, it is not easy
to identify on the calendar the relevant holidays which affect such a global market. We then
decided to use a more flexible approach by deleting those days presenting a number of ticks
smaller than a certain threshold. Highly liquid rates such as USD/CHF have an average daily
quotes number on the sample period of approximately 2,800. For this rate we choose a con-
servative threshold of 200 ticks per day. With this criteria 41 days (partially corresponding
to the major US holidays) have been removed leaving us with a final sample of 3,001 full
working days. The realized volatility estimates are aggregated at different scales in order
to have realized volatility measures of the integrated volatility over different periods: daily,
weekly and monthly.

Given that the true volatility is not observable there is no direct evaluation criteria of

the quality of the volatility estimators. However, as we have already discussed in section 2.6
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Figure 3.4: Comparison of actual (dotted) and simulated (solid) autocorrelation of daily realized volatility.
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Figure 3.6: Comparison of actual (dotted) and simulated (solid) distribution of daily realized volatility.

log—log Periodogram
USD/CHF
20 T T

10 » .

Simulation
35 T

10 I I I I I I I I I
~12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2
log cycles
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Mean | Std. Dev | Kurtosis | Jarque-Bera | Probability

Raw returns 0.0005 | 0.1425 4.7262 382.89 0.0000

RV-std. returns | 0.018 1.0191 2.9951 0.2464 0.8840

Table 3.2: Comparison of daily raw and RV-standardized return distributions.

general benchmark criteria can be easily constructed under the hypothesis of an underlying
continuous time diffusion process for the logarithm price. In fact if the log-price follows a
stochastic volatility diffusion as in (1.1) with a negligible conditional mean dynamics, the
model for daily returns could be written as rid) = agd)et where ¢; ~ iid N(0,1). Hence the
1-day return is conditionally Gaussian with variance equal to the integrated variance. The
normality of €, is justified by appealing to the Central Limit Theorem for mixing process to
argue that the returns over a reasonable aggregation time (such as daily for highly traded
assets) should tend towards normality. Then if RV (@ adequately estimates the integrated
volatility 0@, the RV-standardized returns should be normally distributed with a variance

of unity. Table 3.2 shows that this is exactly the case for our realized volatility estimator.

3.7.2 Estimation

Following the recent literature on the realized volatility, we can consider all the terms in (3.9)
as observed and then easily estimate its parameters 3() by applying simple linear regres-
sion. Standard OLS regression are consistent and normally distributed, but when multi-step
ahead forecast are considered, the presence of regressors which overlap, makes the usual in-
ference no longer appropriate. We then employ the Newey-West covariance correction with a
conservative number of lags equal to 20.

Since the uses of intraday measures of realized volatility poses problems either of measure-
ment accuracy and strong intraday seasonalities, we choose to estimate the variance equation
(3.9) at daily frequency®. Table 3.3 reports the results of the estimation of the HAR-RV model

5A point of caution should be considered here. As for the GARCH, the ﬁ(‘) parameters of the variance
equation (3.9) have a time frequency dimension; i.e. they are defined for a certain time frequency which is
the frequency at which the model is estimated. The parameters will then have different values consistent with

the time frequency employed and, in general, for the HAR-RV model time aggregation will tend to reduce the
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for twelve years of USD/CHF daily realized volatilities. From the values of t-statistic and
their associated probabilities it is very clear how all the three realized volatilities aggregated
over the three different horizons are all highly significant.

It is worth noticing that if we are ready to believe that realized volatilities aggregated over
different horizons are reasonable proxies for volatilities generated by the corresponding market
components, an interesting byproduct of this simple OLS regression is a direct estimate of the
market components weights, that is, a readily evaluation of the contribution of each market
component to the overall market activity. For the USD/CHF considered here, it seems that
the importance of the market components decreases with the horizon of the aggregation.
Moreover, if a moving window regression is performed, a time series evolution of such weights
is easily attained as well.

As we have already seen, the HAR-RV process is an autoregressive model reparametrized
in a parsimonious way by imposing economically meaningful restrictions. We can then evalu-
ate if those restrictions are valid by comparing the restricted HAR model with the unrestricted
AR one. Since the HAR model considered here employs monthly realized volatility (which
corresponds to 20 working days) the corresponding unrestricted autoregressive model is an
AR(20). A multiple hypothesis test based on the difference between restricted and unre-
stricted residual sums of squares is then computed. The result of this F-test is 2.48 which is
significant. Looking at the information criteria, instead, gives less clear results: on the basis
of the AIC, the unrestricted AR(20) model would be slightly preferred, while on the basis of
the SIC (which imposes larger penalty for additional coefficients) the HAR-RV is preferred.

3.7.3 Forecast

The in-sample 1 day ahead forecasts of the model are shown if figure 3.8 and in Table 3.4 and
3.5. These forecasts are obtained by first estimating the parameters of the models on the full
sample and then performing a series of static one-step ahead forecasts. The visual impression
of a quite accurate forecast shown in the top panel of figure 3.8 is confirmed by the remarkably
high R? of the regression of 45%. From the bottom panel of figure 3.8, which displays the time
series of the forecasting errors, the presence of a significant heteroskedasticity in the residuals
is apparent. This observation has led Corsi, Kretschmer and Pigorsch (2005) to consider more
sophisticated estimation procedures that, being able to take in to account this GARCH effect

in the volatility residuals, may increases the estimation efficiency of the HAR-RV model.

impact of shorter realized volatilities and increases that of longer horizons.
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HAR-RV(3) ESTIMATION
Included observations: 3000 after adjusting endpoints

Newey-West Standard Errors and Covariance (lag=20)

Variable | Coefficient | Std. Error | t - Statistic | Probability

C 0.017845 0.002824 6.319572 0.00000
RVt(_d} 0.369542 0.028449 12.98979 0.00000
th(j"l) 0.265822 0.041865 6.349472 0.00000
RVt(ﬁ) 0.215011 0.037637 5.712704 0.00000

R-squared 0.45592 || Mean dependent var | 0.12764
Adjusted R-squared | 0.45538 || S.D. dependent var 0.04081
S.E. of regression 0.03012 || Akaike info criter -4.16567
Sum squared resid 2.71869 || Schwarz criterion -4.15766

Table 3.3:  In sample estimation results of the least squares regression of HAR-RV(3) model for the
USD/CHF exchange data from December '89 to July 2001.
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Figure 3.8: Top: comparison of actual (dotted) and in sample prediction (solid) of the HAR model for
daily realized volatilities of USD/CHF exchange data from December '89 to July 2001. Bottom: residuals

of the prediction.
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For comparison purposes other models are added: the standard GARCH(1,1) and J.P.
Morgan’s RiskMetrics, together with an AR(1) and AR(3) model of the realized volatility.
Moreover a fractionally integrated model for the realized volatility as employed by Andersen
et al. 2002 is considered. They propose a fractional differentiation of the realized volatility
series with a fractional coefficient estimated on the full sample with the GPH algorithm
(which gives d = 0.401) followed by an AR(5) fit. Hence the model is an ARFIMA(5, 0.401,
0) estimated with a two steps procedure.

In Table 3.4 the forecasting performance are evaluated on the basis of Root Mean Square
Errors (RMSE), Mean Absolut Error (MAE), Mean Absolute Percentege Error and Theil’s
Inequality coefficient. Following the analysis of Andersen and Bollerslev (1998) Table 3.5
reports the results of the Mincer-Zarnowitz regressions of the ex-post realized volatility on a

constant and the various model forecasts based on time ¢ — 1 information. That is
RV = by + iy [(RV)] + error. (3.12)

In both Tables the difference in forecasting performance between the standard models and
the ones based on realized volatility is evident.

But what we are mainly interested in, is to compare the models on the basis of truly out
of sample forecasts. Figure 3.9 and Table 3.6 and 3.7 report the results for out of sample
forecast of the realized volatility in which the models are daily reestimated on a moving
window of 1000 observations’. An exception is made for the ARFIMA model for which the
fractional difference operator requires a longer build up period equal to the cut off of its
Taylor expansion. We choose the standard cut off limits of 1000 which for a value of d of
0.401 induces a cut off error of 4.2%. After fractional differentiation, the optimal length of
the moving window used in the estimation of the AR parameters turns out to be of about 250
days. The forecasting performances are compared over three different time horizons: 1 day, 1
week and 2 weeks. The multi-step ahead forecasts are evaluated considering the aggregated
volatility realized and predicted over the multi-period horizon. For a h steps ahead forecast

the target function is then Z?:o RVt(_f; and the Mincer-Zarnowitz regression becomes:

R h
STRVY = b+ 0By | YRV + error (3.13)
j=0 Jj=0

It turns out that, out of sample, the parsimonious HAR(3) model steadily outperforms the

others at all the three time horizons considered (1 day, 1 week and 2 weeks). Moreover, the

"Hence, these results refer only to the last 2000 observations of the sample and are, therefore, not directly
comparable with those in Table 3.4 and 3.5.
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IN SAMPLE PERFORMANCE

GARCH RM AR(1) | AR(3) | ARFIMA | HAR(3)
RMSE x 100 3.6579 3.6789 | 3.1600 | 3.0706 3.0787 3.0041
MAE x 100 2.8299 2.7742 2.1978 2.1214 2.0593 2.0577
MAPE % 25.24% | 23.54% | 17.87% | 17.11% | 15.80% 16.57%
Theil Inequality | 13.238 13.293 | 11.958 | 11.610 11.882 11.355
coeflicient.x100
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Table 3.4: Comparison of the in-sample performances of the 1 day ahead forecast of GARCH, RiskMetrics,
AR(1), AR(3), ARFIMA(5,0.401,0) and HAR(3) RV models for 12 years of USD/CHF.

Table 3.5:

IN SAMPLE MINCER-ZARNOWITZ REGRESSION

b() bl R2

GARCH -0.027631 1.101517 0.3055
(-0.0361, -0.0192) | (1.0420, 1.1610)

RM 0.032200 0.688880 0.3254
(0.0271, 0.0373) | (0.6534, 0.7244)

AR(1) -0.000339 1.002469 0.4007
(-0.0061, 0.0054) | (0.9586, 1.0464)

AR(3) -0.000553 1.004037 0.4341
(-0.0059, 0.0048) | (0.9630, 1.0451)

ARFIMA 0.005210 1.002926 0.4496
(0.0002, 0.0102) | (0.9632, 1.0427)

HAR(3) -0.000861 1.006168 0.4589
(-0.0060, 0.0043) | (0.9669, 1.0454)

In-sample Mincer-Zarnowitz regression for the GARCH, RiskMetrics, AR(1),

AR(3),

ARFIMA(5,0.401,0) and HAR(3) model for the 1 day ahead realized volatility of USD/CHF (95% con-
fidence interval in parentesis).
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HAR(3) model is the only one always presenting the values of 0 and 1 falling in the confidence
interval of respectively by and b; (the sufficient condition for unbiased forecasts).

It is noteworthy noticing that though the superior performance of the ARFIMA and
HAR(3) were already apparent at daily horizon, it becomes striking at weekly and biweekly
horizons. The reason is that the other models have a memory which is too short compared
to the forecasting horizon (AR(1) and AR(3)) or they adjust too late to the movements of
the realized volatility (RiskMetrics). This explanation is confirmed by figures 3.10 and 3.11
which compare the dynamic behavior of the forecasts of the different models for one week and
two weeks periods ahead. For these time horizons the importance of long memory becomes
manifest. What is surprising is the ability of the HAR-RV model to attain these results with

only few parameters.

3.8 The Asymmetric HAR-RV model

So far no asymmetric volatility effect has been considered. It is well known, however, that
equities often exhibit the so called “leverage effect”, meaning that the volatility tends to
increase more after a negative shock than after a positive shock of the same magnitude. In
a regression style approach as the one in the HAR model, the introduction of this type of
asymmetric effect simply amounts to add returns as new explanatory variables in to equation
(3.9). Moreover, by extending the Heterogeneous Market Hypothesis idea to the leverage
effect, we consider asymmetric responses of the realized volatility not only to previous daily
returns but also to past weekly and monthly returns as a result of the activities and reactions of
trading subjects operating at those frequencies. Positivity concerns on the resulting volatility
would suggest to express the HAR model in terms of logarithms of the realized volatilities.
So the Asymmetric-HAR(3) model for realized volatility reads

RV = ¢+ BORVY 4 g@RVM 4 gIRY™ (3.14)

+ 7(_d)r(fl)t + 7(_7“”)7“(,1‘,’1 + 7(_m)r(f?2 +

(d)._(d) (w). () (m). (m)

iy s Ty Ty oan

where RV, = log(RV;) and r(_d?t, 7"(_d7)t and 7“(_d7)t are daily, weekly and monthly negative returns
ie. TS),t = I(T(') < 0), while the rf,)t, rSjt and rg)t are the positive ones.

We apply the Asymmetric-HAR-RV(3) model to twelve years of realized volatility series
for the S&P 500 and US Bond future. These daily realized volatilities are computed with the

Fitted DST estimator applied on the two-ticks return series as described in section 2.6.
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Figure 3.9: Top: comparison of actual (dotted) and out of sample prediction (solid) of the HAR(3) model
for daily realized volatilities. Middle: residuals. Bottom: time evolution of the regression coeffiecients

which according to the model represent market component weights.
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OUT OF SAMPLE PERFORMANCE

RM AR(1) | AR(3) | ARFIMA | HAR(3)

1 | RMSE x 100 3.5945 | 2.9404 2.9088 2.8916 2.8472
D | MAE x 100 2.6786 | 2.0520 2.0061 1.9842 1.9477
A | MAPE % 24.01% | 17.55% | 16.91% 16.90% 16.27%
Y | Theil Inequality | 13.901 | 11.741 | 11.619 11.682 11.384

coefficient.x100
1 | RMSE x 100 3.0065 | 2.7788 | 2.4372 2.7864 2.2939
W | MAE x 100 2.3426 | 2.1324 | 1.8089 2.0589 1.6403
E | MAPE % 22.08% | 19.19% | 16.074% | 18.05% 14.15%
E | Theil Inequality | 11.601 | 11.124 9.774 11.258 9.205
K | coefficient.x100
2
W | RMSE x 100 2.9734 | 2.8111 | 2.4660 2.3743 2.1713
E | MAE x 100 2.4254 | 2.3004 1.9254 1.7728 1.6339
E | MAPE % 23.28% | 21.46% | 17.91% 15.76% 14.47%
K | Theil Inequality | 11.421 | 11.212 9.880 9.593 8.722
S | coefficient.x100

Table 3.6: Comparison of the out of sample performances of the RiskMetrics, AR(1), AR(3), ARFIMA(5,
0.401, 0) and HAR(3) RV model of 12 years of USD/CHF for 1 day, 1 week and 2 weeks ahead aggregated
realized volatility of USD/CHF.
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Table 3.7:

OUT OF SAMPLE MINCER-ZARNOWITZ REGRESSION

bo by R?

RM 0.044168 0.580141 0.2552
1 (0.0384, 0.0500) (0.5367, 0.6236)

AR(1) 0.002169 0.977008 0.3764
D (-0.0051, 0.0095) | (0.9179, 1.0361)

A AR(3) 0.004260 0.961717 0.3896
Y (-0.0027, 0.0113) | ( 0.9052, 1.0182)

ARFIMA 0.010049 0.916610 0.3982
(0.0035, 0.0166) (0.8637, 0.9695)

HAR(3) 0.002030 0.982624 0.4150
(-0.0047, 0.0088) | (0.9278, 1.0374)

RM 0.048970 0.536633 0.1333
1 (0.0410, 0.0570) (0.4705, 0.5929)

AR(1) -0.021963 1.164388 0.0801
W (-0.0448, 0.0009) | (0.9786, 1.3502)

E AR(3) -0.055300 1.444399 0.3196
E (-0.0675, -0.0431) | (1.3452, 1.5436)

K | ARFIMA 0.007047 0.938308 0.3569
(-0.0002, 0.0143) | (0.8790, 0.9976)

HAR(3) 0.000191 0.997471 0.3692
(-0.0073, 0.0077) | (0.9361, 1.0588)

2 RM 0.072274 0.370246 0.0371
(0.0614, 0.0831) (0.2901, 0.4504)

W AR(1) 0.148271 -0.229492 0.0063
E (0.1323, 0.1642) | (-0.3562, -0.1028)

E | AR®3) -0.027788 1.214038 0.1142
K (-0.0474, -0.0082) | (1.0544, 1.3737)

S | ARFIMA 0.006737 0.939015 0.2969
(-0.0016, 0.0151) | (0.8708, 1.0072)

HAR(3) 0.002461 0.978118 0.3079
(-0.0060 0.0109) (1 0.9089 1.0474)

Out of sample Mincer-Zarnowitz regression for the RiskMetrics,

AR(1),

79

AR(3),

ARFIMA(5,0.401,0) and HAR(3) model for the 1 day, 1 week and 2 weeks ahead aggregated realized
volatility of USD/CHF (95% confidence interval in parentesis).
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Figure 3.10: Comparison of out of sample 1 week aggregated volatility predictions for respectivly from
top to bottom, GARCH, RiskMetrics, AR(3) and HAR(3) model. The continuos line is the prediction while
the dotted line is the ex-post realized volatility over a 1 week period.
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IN SAMPLE GARCH 2 WEEKS AHEAD
T T T

T
“oon actual
— GARCH

L L L L L L L L
%60 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
OUT OF SAMPLE RISKMETRICS 2 WEEKS AHEAD
o0.26 T T T T T T T
oo actual
= RiskMetrics
0.24 - —

1000 1200 1400 1600 1800 2000

2200

2400

2600 2800 3000

OUT OF SAMPLE AR(3) 2 WEEKS AHEAD
o.ze T T T T T T T T
T actual
—_— ARG)
0.24 — = hul

L L L L il L L
%00 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
OUT OF SAMPLE HAR(3) 2 WEEKS AHEAD
o.26 T T T T T T T T
T actual
HAR(3)
0.24 - —

0.0

6

L - L L L L
1000 1200 1400 1600 1800 2000

L=
2400

L L
2600 2800 3000

81

Figure 3.11: Comparison of out of sample 2 weeks aggregated volatility predictions for, respectivly from
top to bottom, GARCH, RiskMetrics, AR(3) and HAR(3) model. The continuos line is the prediction while
the dotted line is the ex-post realized volatility over a 2 weeks period.
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Asymmetric-HAR-RV(3) ESTIMATED ON THE S&P 500 FUTURE
Newey-West Standard Errors and Covariance (n° lags = 5)
Included observations: 3391
R-squared = 0.7365

Variable | Coeflicient | t - Statistic | Probability

constant | 0.243174 | 5.328021 0.000000
RV 0.237635 | 9.095454 0.000000
RV | 0.341790 | 8.849822 0.000000
RV | 0.293096 | 9.328244 0.000000

r'd -0.000100 | -0.218239 | 0.827256
(@ -0.005573 | -9.815596 | 0.000000
P 120000824 | -0.833938 | 0.404375

)] -0.005691 | -4.474479 | 0.000008
P71 0.008099 | 3.550714 | 0.000389
P 1 0.008046 | -2.833695 | 0.004629

IN SAMPLE MINCER-ZARNOWITZ REGRESSION
bo b1 R?

Asymmetric HAR(3) -0.024257 1.009447 0.7427
(-0.0750, 0.0265) | (0.9894, 1.0295)

Table 3.8: In sample estimation results of the Newey-West adjusted heteroscedastic-serial consistent
least-squares regression of Asymmetric-HAR-RV(3) model for the S&P 500 from 1990 to 2003.



3.8. THE ASYMMETRIC HAR-RV MODEL 83
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Figure 3.12: Annualized daily realized volatility of S&P 500 (top panel) and US Bond (bottom panel)
future from 1990 to 2003.

The results of the estimation of the Asymmetric-HAR-RV(3) on the S&P data are reported
in Table 3.8. All the three realized volatility component are again highly significant as for
the FX data, but with a slightly less weight on the daily component and more on the weekly

and monthly ones.

The most interesting result, however, is the strong significance (with the expected sign)
of the negative returns at all the daily, weekly and monthly frequencies which unveils an
heterogeneous component structure also in the leverage effect; i.e. not only the negative sign
of the past day return affects the next day volatility (as well documented) but also the sign
of the returns of the past week and past month have an impact on the volatility of tomorrow,
which is over and above that of the previous day. This means that, also for the leverage effect,
the market posses not only a daily memory but also a weekly and monthly one, observing and

reacting to price trends happened in the past week and month. To our knowledge this is a



84 CHAPTER 3. MODELLING REALIZED VOLATILITY

novel empirical finding that further confirm the view of the Heterogeneous Market Hypothesis.

It is also interesting to note that for the positive returns the significance increases with the
length of the aggregation period, being insignificant at daily and weekly level while becoming
significant at monthly level.

The performance of the one day ahead in sample prediction of the Asymmetric-HAR(3)
model on the S&P series is quite remarkable reaching an R? of 74% for the log realized volatil-
ity and one of 70% for the realized volatility itself. Figure 3.13 visualizes this notable fit and
shows the time series of the residuals that clearly exhibits significant degree of heteroskedas-
ticity which would justify, also for the S&P, more sophisticated estimation procedures robust
to GARCH effects on volatility resiudals, as proposed in Corsi, Kretschmer and Pigorsch
(2005).

Before analyising the estimation results of the Asymmetric-HAR(3) on the US bond data,
it should be noted how the time series of US bond realized volatility seems to show a higher
level of noise than that of the S&P. This is confirmed by the comparations of the autocorre-
lation function of the two series shown in figure 3.14. The much lower level and faster decay
of the autocorrelation function of US bond indicate the presence of a weaker signal and hence
a lower degree of predictability and higher level of noise in the series.

This higher level of noise in the realized volatility series of the bond maybe due to a less
precise measurement of the daily volatility. In fact, the tick frequency of the bond is already
more than two times lower than that of the S&P with an average of about 3.3 ticks per
minute for the bond against 7.5 ticks per minute for index future. But the real problem with
the tick-by-tick data set of the bond is that due to the strong oscillatory AR(1) structure of
the observed price (described in section 2.6), the actual number of ticks containing some real
information on the dynamics of the true price process is much lower than the total number
of ticks. In fact, a simple two ticks average of the bond prices cleary showed (see figure
2.5 in section 2.6) how most of the tick-by-tick returns are just bouncing of the observed
price between the same bid and ask quotes. As a consequence the effective number of useful
observations can be many times smaller than what would appear from a simple count of the
number of ticks.

Accordingly to that high level of the noise to signal ratio in the bond realized volatility
series, the R? of the estimation of the Asymmetric-HAR(3) model is much lower, remaining
below 25%. Moreover, the noisy estimation of the daily realized volatility could be responsible
for the lack of significance of the daily volatility component. The weekly and monthly realized
volatility, however, being averages over longer periods, arguably contain less noise and more

information on the volatility process and, hence, they receive higher weights from the model
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Asymmetric HAR(3) in sample prediction of S&P from 1990 to 2003
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Figure 3.13: Asymmetric-HAR-RV(3) in sample prediction of annualized daily realized volatility of S&P
500 (top panel) and associated residuals (bottom panel) from 1990 to 2003.
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autocorrelation comparation of S&P and US bond
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Figure 3.14: Comparation of the autocorrelation function of the S&P 500 (upper line) and US bond
(lower line) realized volatility computed on the full sample 1990-2003.

(with the monthly weight even higher than the weekly one).
Interestingly, the three negative returns remain again significant at the 5% level for all
the horizons, confirming, also for the US bond (Table 3.9) , the existence of heterogeneous

components in the leverage effect.

3.9 Conclusions

The additive volatility cascade inspired by the Heterogeneous Market Hypothesis leads to a
simple AR-type model in the realized volatility which has the feature of considering volatilities
realized over different time intervals. We term this model, Heterogeneous Autoregressive
model of the Realized Volatility (HAR-RV). The new HAR-RV model seems to successfully
achieve the purpose of modelling the long memory behavior of volatility in a very simple
and parsimonious way. In spite of the simplicity of its structure and estimation, the HAR-
RV model shows remarkably good in sample and out of sample forecasting performance.
Moreover, by extending the Heterogeneous Market Hypothesis idea to the leverage effect, we

propose an asymmetric version of the HAR-RV model which considers asymmetric responses
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Asymmetric-HAR-RV(3) ESTIMATED ON THE US BOND FUTURE
Included observations: 3391 after adjusting endpoints
Newey-West Standard Errors and Covariance (lag=>5)

R-squared = 0.2464

Variable | Coeflicient | t - Statistic | Probability

constant | 0.328425 | 4.991717 | 0.000001
RV | -0.000052 | -0.001973 | 0.998426
RV®) | 0.374297 | 7.650972 0.000000
RV | 0.412192 | 8.240982 0.000000

PP 10003799 | 2.861930 | 0.004237
r(@ -0.006080 | -4.547667 | 0.000006
P01 0.002356 | 0.705351 | 0.480640

)| 0006422 | -2.026643 | 0.042777
P 10016449 | 2642759 | 0.008261
P 20.009393 | -1.974038 | 0.048459

IN SAMPLE MINCER-ZARNOWITZ REGRESSION
bo b1 R?

Asymmetric HAR(3) -0.027279 1.013589 0.2472
(-0.1471, 0.0926) | (-0.1471, 0.0926)

Table 3.9: In sample estimation results of the Newey-West adjusted heteroscedastic-serial consistent
least-squares regression of Asymmetric-HAR-RV(3) model for the US bond from 1990 to 2003.
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Asymmetric HAR(3) in sample prediction US Bond from 1990 to 2003
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Figure 3.15: Asymmetric-HAR-RV(3) in sample prediction of annualized daily realized volatility of US
bond (top panel) and associated residuals (bottom panel) from 1990 to 2003.
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of the realized volatility not only to previous daily returns but also to past weekly and
monthly returns. The significance (with the expected sign) of the negative returns at all
the three frequencies unveils the presence of an heterogeneous component structure arising
from the activities and reactions of trading subjects operating at different frequencies, also in
the leverage effect. This novel empirical finding seems to further confirm the validity of the

Heterogeneous Market Hypothesis.
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Chapter 4

Realized Correlations

4.1 Introduction

Asset returns cross correlations are pivotal to many prominent financial problems such as
asset allocation, risk management and option pricing. As for the realized volatility approach,
the idea of employing high frequency data in the computation of covariances and correlations
between two assets leads to the analogous concept of realized covariance (or covariation) and
realized correlation .

However, also the standard realized covariance measures are highly sensitive to the pres-
ence of market microstructure effects inducing a bias which increases with the sampling
frequency. Therefore, as for the volatility, the frequency of the cross product returns used in
the computation of the standard realized covariance is usually reduced to avoid the impact
of microstructure effects. Instead, in this chapter, we propose a realized correlation mea-
sure constructed from realized volatility and realized covariance both computed using all the
tick-by-tick data available.

4.2 Realized Covariance tick-by-tick

The standard way to compute the realized covariance is to first choose a time interval, con-
struct an artificially regularly spaced time series by means of some interpolation scheme and
then take the contemporaneous sample covariance of those regularly spaced returns. But sim-
ulations and empirical studies indicate that such covariance measure presents a bias toward
zero which rapidly increases with the reduction of the time length of the fix interval chosen.

As for the realized volatility, the presence of market microstructure can induce significant

91
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bias in standard realized covariance measure. However, the microstructure effects responsible
for this bias are different. In fact, bid-ask bouncing, which is the major source of bias for
the realized volatility, will just increase the variance of the covariance estimator but it will
not induce any bias. On the contrary, the so called non-synchronous trading effect (Lo and
MacKinlay 1990) strongly affects the estimation of the realized covariance and correlation.
In fact, since the sampling from the underlying stochastic process is different for different as-
sets, assuming that two time series are sampled simultaneously when, indeed, the sampling is
nonsynchrounos gives rise to the non-synchronous trading effect. As a result, covariances and
correlations measured with high frequency data will posses a bias toward zero which increases
as the sampling frequency increases. This effect of a dramatic drop of the absolute value of
correlations among stocks when increasing the sampling frequency was first reported by Epps
(1979) and hence called ”"the Epps effect”. Since then, the Epps effect has been confirmed
on real data and simulations by many other authors, such as Dacorogna and Lundin (1999)
René (2003) and Martens (2004), among others.

Existing empirical work on realized covariance usually compute the sample covariance
based on the 5 or 30 minutes return interval. Such frequencies are heuristically chosen to
try to avoid the bias and market microstructure effects. In some cases, a numbers of leads
and lags covariance are added to reduce the remaining bias. However this type of correction
will increase the variance of the estimator. Though the optimal choice of the frequency of
the returns and the number of lead and lags would substantially lowers the RMSE compared
to the heuristic choices, this optimal values are unknown in empirical application (Martens
2004).

Intuitively, the reason why the non-synchronous trading effect biases the usual covariance
estimator based on fixed interval returns can be seen as twofold. First, the absence of trading
on one asset in a certain interval produce a zero returns for that interval and then artificially
imposes a zero value to the cross product of returns inducing a bias toward zero in the realized
covariance (which, in its standard version, is simply the sum of those cross products).

Secondly, the construction of a regular grid, depending on the frequency of tick arrivals,
affects the computation of the realized covariance. For the more liquid assets with higher
average arrival rates, the last tick falling in a certain grid interval is typically much closer to
the end point of the grid compared to that of a less liquid asset. Any difference in the time
stamps between these last ticks in grid for the two assets, will correspond to a portion of the
cross product returns which will not be accounted for in the computation of the covariance.
This is because for the more liquid asset, the (unobserved) returns corresponding to this time

difference will be imputed to the current grid interval while for the less liquid asset such
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portion of returns will be ascribed to the next grid interval, so that the two will be no longer
matched and their contribution to the cross products sum will be lost. This lost portion of
covariance in each interval also induces a downward bias in the realized covariance computed
with a regular grid; a bias which will also increase with the number of intervals and hence
with the frequency.

Contrary to these approaches the simple realized covariance estimator adopted here does
not resort on the construction of a regular grid. Instead, following the general statistical prin-
ciples which tells us to never ”throw data away”, we analyse an unbiased realized covariance
measure directly built on the raw tick-by-tick data series (Corsi 2005). In this way, both
source of bias (the presence of zero returns and the lost portion of cross products) of the
realized covariance, are avoided.

Under the assumption of no true leads and lags cross-covariance, an unbiased covariance
estimator can be computed by simply summing all the cross products of returns which have a
non zero overlapping of their respective time span. In other words, a given tick-by-tick return
on one asset is multiplied with any other tick-by-tick returns of the other asset which has
a non zero overlap in time, i.e. which share (even for a very small fraction) the same time
interval.

Analytically, this tick-by-tick Realized Covariance estimator can be defined as

Mo Mj,¢

RCt = Z Z Ti,s Tjq I(T(Ls > 0) (41)

s=1 g=1

with I(-) the indicator function and
Tq,s = max(0, min(nsy1, ng+1 — max(ng, ng)) (4.2)

being the overlap in time between any two tick-by-tick returns r; s and r; 4.

The simplest way to intuitively show the unbiasedness of this estimator, is by assuming
an underling discrete time process, with arbitrary clock time interval §. In this setting,
the expectation of the cross product of two overlapping tick-by-tick returns r; s, ;4 can be
expressed as a linear combination of the cross-covariances y(h) = Cov(rss, 7js—h.5). But,
being all the cross-covariances with h # 0 equal to zero, it reduces to E [r; s 754 = 74.57(0).

Therefore, the expectation of the tick-by-tick covariance estimator RCY, is

M; ¢ Mj ¢ M; ¢ Mj ¢

E[RC] = |> ) risriqlrgs > 0)| =3 > 75:(0). (4.3)

s=1 g=1 s=1 g=1
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and given that the sum of all the overlapping intervals 7, in a day is the whole trading day
itself, we can conclude that RCY is an unbiased estimator of the daily covariance.

Hence, loosely speaking, this estimator is unbiased because no portion of covariance will be
lost while the portion of cross product which does not overlap will have zero mean. Moreover,
avoiding the noise and the discarding of price observations caused by the regular grid inter-
polation, will considerably reduce its variance. However, in the presence of a fix ammount of
market microstructure noise, this estimator will not be consistent because, although unbiased,

his variance will diverge as the number of observations tends to infinity.

4.3 Simulations

In this section we evaluate the performance of different covariance estimators in a simulation
environment based on the Lo and MacKinlay’s (1990) non-synchronous trading model. In
this model the true return of any asset ¢ is given by a single factor model. Considering only

two assets, the two return series are then given by
Tig = i + Bift +€ig 1=1,2 (4.4)

where (3; is the factor loadings of asset 4, €;; represents the idiosyncratic noise of asset 7 and
ft is the zero mean common factor.

Under the assumptions that the idiosyncratic noise €1 and €2 ; are mutually uncorrelated
and both uncorrelated with the common factor f;, the true covariance between the two assets

is simply

012 = 15207, (4.5)

where U%t is the variance of the common factor f;.

In the Lo and MacKinlay’s model the common factor f is assumed to be a simple ho-
moskedastic process and, hence, the variance of f is a constant JJ%. As a consequence, also the
true covariance remains constant. In the version adopted here, however, in order to give more
dynamics and realism to the DGP, the common factor f is assumed to follow the stochastic
volatility model of Heston (1993) so that, also the true covariance will dynamically change
through time.

Therefore, the dynamics of the common factor is given by the following continuous time

process

&) = (p—v(t)/2)dt + of(t)dB(t) (4.6)
do(t) = k(a—u(t))dt +~v(t)2dW (t) (4.7)
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where v = UJ% and the initial value v(0) is drawn from the unconditional Gamma distribution
of v.

The values of the parameters are chosen so to have a process with zero mean, expected
annualized volatility of 15% and satisfying the Feller’s condition 2ka = v2. Thus, the following
annualized values for the parameter are chosen: © =0, k = 8, a = 0.0225, v = 0.5 and a
correlation coefficient between the two Brownian motions of p = —0.5. Those parameter
values, will remain constant throughout the simulations. The Heston model for the factor
and the true returns process of the two assets will be simulated at the usual Euler clock of
one second.

In the Lo and MacKinlay’s model the prices are assumed to be observed with a certain
probability 1—m;, where 7; is the so called non-trading probability. We found more convenient
to express the frequency of the price observations in terms of the corresponding average
intertrade duration between ticks! 7.

Each time a price is observed we simulate market microstructure noise by randomly adding
or subtracting half of the spread to the true price. The size of the spread is chosen so to obtain
an average level of the noise to signal ratio of the observed returns process equal to one.

In addition to the proposed tick-by-tick estimator, the other covariance measures included

for comparison in the simulation are:

e The standard realized covariance computed with an interpolated regular grid of 1 minute

returns.
e The standard realized covariance computed with a fix returns time interval of 5 minutes.

e The Scholes and William (1977) covariance estimator, which add to the contempora-
neous sample covariance of fix interval returns, one lead and lag cross covariance. To
improve the performance of this estimator we chose the frequency of the fix interval
returns which seems to provide the best results given the observation frequency of the

two assets.

e The estimator proposed by Cohen et al. (1983), which is a simple generalization of
the Scholes and Williams estimator where more than one leads and lags are considered.
Here, as in Bollerslev and Zhang (2003) we compute the Cohen et al. estimators with
12 leads and lags and at the frequency which seems to be the best performing given the

corresponding simulation set up.

!For example a non-trading probability of 90% corresponds to an exponential distribution of the intertrade

duration with a mean value of 10 seconds.
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e The Lo and MacKinlay’s estimator given by

1 — 77
1—#1)(1 —72)

O12 = ( Cov [r]4,75] (4.8)
where Cov [rit, 7“‘29715] is the covariance between the observed 1 second returns r7;. Con-
trary to the highly noisy non-trading probability estimation proposed by Lo and MacKin-
lay’s where 711 = Cov [rit,ritﬂ] /Cov [Tit,T;’t] and analogously for 72, we estimate
those probabilities by simply counting the observed number of ticks in each day and

dividing it by the total number of seconds in the day.

We first simulate 25,000 paths at a moderate observation frequency of 71 = 30 seconds
and 7o = 1 minute. With the factor loadings £; = 0.8 and B3 = 1.25, and an average value
for the volatility of the common factor of 15% per annum, the true covariance is, on average,
2.25% per annum, which together with the volatilities of the idiosyncratic noises o1 = 0.16
and o2 = 0.16535 implied an average correlation of 45%. Given the relatively low frequency
of the two series we compute the Scholes and Williams estimator with 3 minutes returns and
the Cohen et al., which is able to correct for higher level of bias, at the 20 seconds interval
(i.e. at the average frequency of the more liquid asset). The results are reported in figure 4.1
and in the left panel of table 4.1.

With those observation frequencies the 1 minute realized covariance is highly biased: on
average it would correspond to a 20% correlation against the true value of 45%. Under these
conditions, the 5 minutes realized covariance gives better results both in terms of dispersion
and in terms of bias (though a significant bias still exists being the implied correlation equal
to 37.5%). Despite the direct estimation of the non-trading probabilities the Lo and MacKin-
lay’s estimator (though unbiased) is extremely inaccurate probably because of the significant
presence of market microstructure noise. With the carefully chosen frequency both the Scholes
and Williams and the Cohen et al. estimators are almost unbiased and reasonably accurate.
However, the best estimator is clearly the proposed one (termed “All-Ticks” in figures and
tables) with no bias and the smallest dispersion.

We repeat the simulation with a higher observation frequency for the two assets, choosing
71 = b seconds and 7o = 10 seconds. Now, the return frequency for the Scholes and Williams
estimator is chosen at 30 seconds and that of Cohen et al. at 5 seconds. Figure 4.2 and the
right panel of table 4.1 report the results.

The 1 minute realized covariance, though less disperse now, is still significantly bias with
an implied average correlation of about 39%. The 5 minutes realized covariance, instead, is

unbiased but with a large variance. The higher number of price observations seems to be of
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Estimation error on the annualized covariance (avg 2.25%), T1=20 sec, T, = 1 min
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—— 1 min no correction
5 min no correction
—— All ticks
3 min Scholes—Williams
20 sec Cohen 12 leads-lags
—— LoMac—Kinlay
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Figure 4.1: Comparison of the pdf of the covariance estimation errors with noise to signal one and average

observation frequencies 7y = 30 seconds and 75 = 1 minute.

Estimation error on the annualized covariance (avg 2.25%) 1,=5, sec r2=10 sec.

1.5

0.5

T T
—— 1 min no correction
5 min no correction
—— All ticks
30 sec Scholes—Williams
5 sec Cohen 12 leads—lags
—— LoMac—Kinlay

0]
-3 -2 -1 (0]

1 2 3

Figure 4.2: Comparison of the pdf of the covariance estimation errors with noise to signal one and average

observation frequencies 7y = 5 seconds and 7 = 10 seconds.
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COVARIANCE ESTIMATION RESULTS

71 = 30 sec, 79 = 1 min 71 = 9 sec, 7o = 10 min

bias std RMSE bias std RMSE

1 min no correction -1.2438 1.1592 1.7002 -0.2921 0.4352 0.5241
5 min no correction -0.3786 0.8783 0.9564 -0.0599 0.7233 0.7258
All-Ticks 0.0095 0.6930 0.6931 0.0057 0.2988 0.2988
Scholes-Williams -0.0685 1.0148 1.0171 -0.0168 0.4229 0.4233
Cohen 12 leads-lags -0.0795 0.9925 0.9957 -0.0121 0.4919 0.4920
LoMac-Kinlay -0.0074 7.8983 7.8983 0.0143 1.4013 1.4014

Table 4.1: The table reports the mean, standard deviation and RMSE of the estimation errors on the
annualized covariance (on average 2.25%) obtained at different observation frequencies for the two assets
and a noise to signal ratio equal to one.

little help for the performance of the Lo and MacKinlay’s estimator in the presence of market
microstructure noise. As before, at the chosen frequencies both the Scholes and Williams
and the Cohen et al. estimators are almost unbiased, with the second one being slightly
more precise. But, again, the tick-by-tick covariance estimator remain unbiased and the most
precise among the estimators considered.

Summarizing the results of this simulation study, the simple tick-by-tick estimator pro-
posed, results to be the best performing for both choices of trading frequencies of the two
assets. Surprisingly, it also performs favorably compared to the Scholes and Williams and
the Cohen et al. estimators even if their return frequency has been chosen according to the
simulation settings to give the best results. The proposed tick-by-tick estimator, however,
does not require any choice of return frequency or interpolation scheme since it can be directly

applied to the raw tick-returns series of any two assets, always providing unbiased results.

4.4 Empirical application

We apply the proposed tick-by-tick covariance estimator to the bivariate series of S&P 500
and 30 years US Treasury Bond futures from 1990 to 2003.

Unfortunately, since the time stamps of the data in our disposal, are rounded at the 1
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minute level, the proposed estimator can not be directly implemented in such a simple way
but it requires a slightly different scheme. In fact, the rounding of the seconds to the minute,
precludes the knowledge of the correct time ordering among the ticks of the two series inside
the 1 minute interval, which is necessary for the application of the tick-by-tick estimator. To
overcome this problem, we construct the tick-by-tick estimator by simply considering only the
firsts and lasts ticks of each 1 minute interval. This version will hence be termed ” First-Last”

tick-by-tick estimator.

Using a subsample of the total number of ticks employed by the “All-Ticks” estimator,
we expect the “First-Last” to be less efficient. In order to evaluate this loss of efficiency
of the modified tick-by-tick estimator on this type of data, we perform a simulation study
which tries to reproduce as much as possible the econometric properties of the two empirical
series, i.e. the parameters of the simulation will be chosen to match as closely as possible the
empirical observation frequencies, level of volatilities, noise structure and intensities and so

on.

Therefore, with asset 1 mimicking the S&P and asset 2 the US bond, the following config-
uration of the parameters are chosen: 71 = 8 seconds, 75 = 18 seconds, an average annualized
volatility of about 20% for asset 1 and 10% for asset 2 and with a correlation of 30% . As
describe in section 2.6 the noise structure is closely reproduced by assuming more complex
ARMA structures for the market microstructure component: an MA(2) for the asset 1 (S&P)
with 6; = 0.85, 62 = 0.25 and a noise to signal of 0.45, and a strong oscillatory AR(1) with
¢1 = —0.6 and noise to signal of 0.6 for the asset 2 (US bond).

Figure 4.3 and table 4.2 reports the results of the 25,000 simulations. As expected, the
First-Last estimator results to be less precise than the All-Ticks, however this loss of efficiency
due to the lower number of ticks employed, is contained and the First-Last remain the best

performing measure compared to the other covariance estimators.

Applying to the S&P 500 and US bond series the First-Last estimator we obtain the
realized covariance time series shown in figure 4.4. To better appreciate the remarkable
difference between the tick-by-tick realized covariance and the standard cross product of
daily returns (the usual proxy for daily covariance in standard multivariate volatility models)

both measures are plotted together on the same scale.

Combining the First-Last covariance measure together with the Fitted DST volatility
estimator we are now able to obtain a realized correlation measure where both the volatilities

and the covariance are computed from tick-by-tick data. Figure 4.5 shows the time series of
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Covariance estimation error on "simulated" S&P and US bond
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Figure 4.3: Comparison of the pdf of the covariance estimation errors for a simulation set up which
reproduces the statistical properties of the S&P 500 and US bond future data.

3,391 daily tick-by-tick correlations from 1990 to 20032.

Simply looking at the correlation dynamics, there seems to be an important change of
regime around the end of October 1997. Before that date, the correlation between the two
series seems to oscillate around a positive stable value of about 20% until '94 and around 40%
from ’94 to ’97, while after end of '97 the correlation start to exhibit a stronger dynamics and
becomes predominantly negative.

This structural change in the dynamics of the correlation between S&P and US bond
is also apparent from the different behaviour of the autocorrelation function computed on
the '90-’97 sample and the '98-°03 one (figure 4.6). In the first sample the level of the
autocorrelation for the firsts 100 lags is much lower and the decay of the firsts 50 lags is
much faster. After the end of 97 the memory of the process, in particular the short and
medium ones, sharply increases. It is also interesting to note how the structural change
affects the global autocorrelation function computed on the full sample inducing an artificially

high persistence in the autocorrelation coefficients. Nonetheless, even without this structural

*In two days (out of 3,391) the estimated realized correlation resulted to be outside the [-1, 1] correlation

boundary, in those two cases we set the correlation absolute value to 0.9999.
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Covariance between S&P and US bond from 1990 to 2003

1000 : : 1

500

(0]

—500

—1000

T

—1500

T

Cov with daily returns
—— Daily Realized Cov

—-2000f » , .

1990 1992 1994 1996 1998 2000 2002

Figure 4.4: Time series of tick-by-tick realized covariance and the daily cross product returns of S&P 500
- US bond from 1990 to 2003.
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Figure 4.5: Time series of tick-by-tick realized correlation of S&P 500 - US bond from 1990 to 2003.
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COVARIANCE ESTIMATION RESULTS

bias std RMSE

1 min no correction -0.1746 0.2729 0.3240
5 min no correction -0.0382 0.3385 0.3406
Scholes and Williams Cov  -0.0076 0.2625 0.2626
10 sec Cohen 12 leads-lags -0.0061 0.2751 0.2752
First-Last Tick -0.0009 0.2018 0.2018
All Ticks 0.0019 0.1580 0.1581

Table 4.2: The table report the mean, standard deviation and RMSE of the estimation errors on the

annualized covariance for a simulation set up which reproduces the statistical properties of the S&P 500
and US bond future data.

break effect, the autocorrelation function of the realized correlation remain highly persistent

as shown by the two separated sub sample autocorrelations.

4.4.1 Modelling Realized Correlation with the HAR model

This empirical evidence on the high degree of persistence of correlations, suggests that the
parsimonious HAR model could also be successfully applied to model the time series of realized
correlations. Therefore, we first estimate the realized correlation HAR model (HAR-RC) on
the full sample. Table 4.3 reports the results of this in sample estimation and 1 day ahead
prediction on the full period showing the remarkable R? and the high significance level of
the three heterogeneous components also for the correlation process. Then, in order to study
the time evolution of the weights of the three different market components, we estimate the
HAR-RC(3) model on a moving window of 1000 days (making 1 day ahead prediction at each
step). Looking at the bottom panel of figure 4.7 shows how from the beginning of the sample
(which is now 1994 because the first 4 years are used in the burn in of the 1000 days rolling
window) the weight of the daily component steadily increases until 2002 going from about
10% (the smallest one of the three) to the about 40% (the highest one). Such increment is
only partially compensated by a decline in the weekly component (from 40% to 30%), while
the monthly one remains substantial the same in the two sub samples. The growth of the daily

component weight could be responsible for the increase in the short period memory observed
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HAR-RC(3) ESTIMATED ON THE S&P - US BOND CORRELATION

Included observations: 3391
Newey-West Standard Errors and Covariance (lag=5)
R-squared = 0.8141

Variable | Coefficient | t - Statistic | Probability

constant | 0.000193 0.070422 0.943862
RC@ 0.266740 9.744576 0.000000
RC™) | 0.364659 8.904585 0.000000
RC™) | 0.348939 9.185706 0.000000

IN SAMPLE MINCER-ZARNOWITZ REGRESSION

bo

b1

R2

HAR-RC(3)

-0.000025

(-0.0053, 0.0053)

1.000008 0.8143
(0.9839 1.0161)

Table 4.3: In sample estimation results of the Newey-West adjusted least-squares regression of HAR-

RC(3) model for the S&P - US Bond realized correlation from 1990 to 2003.
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Autocorrelation functions of the S&P—-US bond correlation
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Figure 4.6: Autocorrelation functions of the S&P 500 US bond correlation for the full sample 1990-2003
and the two sub samples 1990-1997 and 1998-2003.

in the autocorrelation function of the second part of the sample. This analysis shows how the
identification of the different market components and the study of their dynamics, which is
made possible by the HAR model, can help in explain (and maybe also predict) interesting

properties and dynamics of financial data.

4.5 Realized Correlation matrix

Since the realized estimators described so far are consistent even in the presence of market
microstructure noise, the resulting covariance or correlation matrix will be, asymptotically,
definite positive.

However, in small sample, when the number of ticks is much smaller than the one re-
quired for asymptotic convergence, realized quantities might also carry a significant amount
of measurement error. Measurement errors on the elements of the covariance or correlation
matrix implies that the largest sample eigenvalues of the matrix are biased upwards, while
the smallest ones are biased downwards. Then in some cases the smallest eigenvalues can
become negative so that the matrix will no longer be definite positive.

A general and convenient way to address this problem would be through the so called
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Figure 4.7: Top: comparison of actual (dotted) and out of sample prediction (solid) of the HAR-RC(3)
model for daily realized correlations. Middle: residuals. Bottom: time evolution of the regression co-

effiecients whi

ch, according to the model, represent market component weights.
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shrinkage estimator proposed by Frost and Savarino (1986) and Ledoit and Wolf (2003,
2004b) for the covariance matrix and by Audrino and Barone-Adesi (2004) for the condi-
tional correlation matrix. The problem of the sample eigenvalues being more dispersed than
true ones, can in fact be addressed by shrinking the sample eigenvalues towards their cross-
sectional mean. This eigenvalue shrinkage can be achieved by a simple linear combination of
the sample covariance or correlation matrix with that of a structured model.

Moreover, the shrinkage idea can also be interpreted as a way to balance the trade-off be-
tween the bias of the highly structured matrix and the variance of the sample estimator. This
balance is achieved by appropriately choosing the weight given to the structured model, the
so called shrinkage intensity or shrinkage constant. Hence, by combining these two ‘extreme’
estimators is possible to reduce the estimation error of the covariance or correlation matrix,
obtaining a ‘compromise’ estimator that performs better than either extremes. Therefore,
the application of the shrinkage technique is always beneficial even when the positiveness of
the estimated matrix is not a concern.

In implementing the shrinkage procedure, two key choices has to be made: first, toward
which structural model to shrink, i.e. choosing the shrinkage target and second, how intensely,
that is, determining the value of the shrinkage constant.

The shrinkage target should fulfill two different requirements: posses small or no estima-
tion error (that is, having a lot of structure) but also reflects important characteristics of the
unknown quantity being estimated. Ledoit and Wolf (2004b) suggest the identity matrix,
Ledoit and Wolf (2004a) and Audrino and Barone-Adesi (2004) recommend the constant cor-
relation matrix®, while Frost and Savarino (1986) and Ledoit and Wolf (2003) propose the
single-factor matrix of Sharpe (1963) as shrinkage target. The single factor model has the
advantage to be more flexible and able to capture the main feature of financial data but it
requires the knowledge of the nature and dynamics of the factor and the time series estimation
of the factor loadings.

Here we propose an alternative shrinking target for the sample realized correlation matrix
which try to combine the greater flexibility of the one factor model with the easy of estimation
and implementation of the constant correlation and identity matrix. The idea stems directly
from the observation that the one factor model applied to standardized residual of the returns

of either the assets €; = 7;/0; and the factor ey =r¢/0y

git = Bicpi + eiy (4.9)

3A covariance matrix where all the pairwise correlations are identical and equal to the cross sectional

average of all the sample correlations.
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has a variance-covariance matrix of the form

1 Bif2 ... Bifn
o B21 1 ... [(2fN

BNB1 BNB2 ... 1

since Var(e;) = (2 + 02, = 1 by construction and Cov(g;e;) = 3;3;, therefore, it does not
depends on the underling factor. This structure suggests the possibility to estimate the vector
of factor loadings (8 by simply minimazing the difference between any generic off diagonal
elements of the matrix F' with the corresponding elements of the sample realized correlation

matrix S, that is:

N
g = argminz Z(ﬂzﬂj —5i4)° st. B <1 Vi (4.10)
B =1 g

with s; ; the generic element of S. Hence, the estimation of the factor loadings is carried out
without any knowledge of the nature and dynamic of the underling factor. The minimization
algorithm in (4.10) projects the sample correlation matrix into the space spanned by single
factor models for standardized residual by searching for the one factor model correlation
matrix which is closest (in a mean square sense) to the observed realized correlation matrix
at day t. With this approach is then possible to impose a single factor structure to the
shrinkage target of the correlation remaining completely agnostic on the identification and

estimation of that factor.
The shrinkage target F will then be a symmetric matrix with diagonal of ones and the
generic off diagonal element equals to BZ ﬁj. With this shrinkage target the shrinkage estimator

becomes
R=aF +(1-a)S (4.11)

where a represents the shrinkage constant.

The second step is to choose the shrinkage intensity . Ledoit and Wolf (2003a), minimiz-
ing the Frobineus distance between the shrinkage estimator and the true covariance matrix,
derive the expression for the optimal shrinkage intensity in the form oo = k/T with k being a
constant and 7' the number of observations. They also provide a way to consistently estimate
the constant k£ directly from the data.

Expressing the optimal shrinkage constant in the form of this ratio, makes explicit the

dependence of the shrinkage intensity « from T'. In fact, the shrinkage intensity depends,
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among other things, on the estimation error contained in the sample estimator. So, when
the number of observations is higher the shrinkage intensity will tend to be smaller. This
representation of « is especially convenient in our framework since (contrary to the case
considered in Ledoit and Wolf where daily returns are used) the employment of tick-by-tick
data makes the values of T changes from asset to asset depending on their liquidity. In general,
we will need to shrink more the realized correlation obtained with less observations than
those computed from highly liquid assets. Therefore, instead of applying the same shrinkage
constant k/T to all the elements of the correlation matrix, we construct a ”weightening”
matrix I' having a generic elements I'; ; = 1/min(7},7}), with T; the number of ticks for the
asset 1.

So, the correlation shrinkage estimator with the optimal shrinkage matrix I' would have

the form
R:J%FOFJF(M’—I%P)OS (4.12)

where ¢ is a vector of ones of length N and o the element by element Hadamard product.

This shrinkage procedure will substantially increase the efficiency of the estimator and
reduce the probability of having a negative definite correlation matrix but formally does not
guarantee the estimated correlation to be always definite positive. However, even in the rare
cases when the optimal shrinkage intensity produces a negative definite matrix, the positivity
of the shrinkage target guarantees that it is always possible to obtain a definite positive
correlation matrix by appropriately increasing the shrinkage intensity. In such cases, the
definite positiveness of the correlation matrix would come at the cost of some efficiency loss.

Preliminary simulations results on the estimation of the realized correlation matrix (table
4.4) show that in the presence of highly liquid assets, when the realized correlation matrix is
already precise and the probability to be negative definitive minor, the shrinkage intensity is
very small and the difference between the shrinkage estimator and the sample one is negligible.
But, when the average numbers of observations per day decreases, the optimal shrinkage
becomes very helpful and effective in reducing the estimation error and the probability of
getting a negative definite matrix. Moreover, even in such rare cases when the optimal
shrinkage still gives a negative definite matrix, the required increase in the shrinkage intensity
to obtain a definite positive matrix is usually quite small, so that the efficiency loss remain
also small.

Having constructed an appropriate realized correlation matrix we can now extend the

univariate HAR model for a single correlation to the multivariate case. The simplest way is
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CORRELATION MATRIX ESTIMATION

) . ) optimal
Number of tick per day 5-min all ticks .
shrinkage
1800-2200 1.1068  0.5028 0.4957

(0%)  (0%) (0%)

1200-800 11374 0.7297  0.6931
(0%)  (0%) (0%)

400-600 1.2537 1.035 0.883
0%) (1.2%)  (0%)

200-300 1.463 1.503 1.274
(34%) (22.4%)  (0.4%)

Table 4.4: Average Frobenious distance from the true correlation matrix and percentage of failings (in
parethesis) for estimated correlation matricies computed with 5 minutes returns, all tick-by-tick returns and
its optimal shrinkage correction. The simulation is repeated 500 times for 10 assets having noise to signal
ratios of 0.6.

to apply the HAR model to the realized correlation matrix so that
Ry =C+B9DoRY 4 B® o g™ 4 plm) o RI™ (4.13)

where R,Ed), R,Ew), and Rgm) are respectively the daily, weekly and monthly realized correlation
matrix, the C, B@, B®) and B(™) are NxN matrix of coefficients and o is the Hadamard
product. Since we have achieved the positivity of Rt(d) (and consequently that of Rtw) and
Rgm)) through the shrinkage procedure, Rt+1 will be definite positive as long as C', B(4), B®)
and B(™) will also be definite positive. Moreover, to ensure the forecast matrix Rt+1 to be, not
only definite positive, but also a true correlation matrix, it is necessary that for each individual
correlation equation the corresponding parameters satisfy Cj; ; + Bi(flj) + Bi(f]'.}) + Bi(?) <1
Many extensions of this simple model can be envisage: include realized volatilities at

different frequencies as explanatory variables for correlations or add matrices of cross-product
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returns measured over the three different horizons with possibly different coefficients for the

positive and negative values to account for asymmetric effects.

4.6 Conclusions and directions for future research

In this chapter we have extended the approach of directly using all the available tick-by-
tick data to the realized covariance and realized correlation estimation. As for the realized
volatility, the presence of market microstructure (although of a different nature) can induce
significant bias in standard realized covariance measure computed with artificially regularly
spaced returns. Contrary to these standard approaches we propose a very simple and unbi-
ased realized covariance estimator which does not resort on the construction of a regular grid,
but directly and efficiently employs the raw tick-by-tick returns of the two series. Montecarlo
simulations show that this simple tick-by-tick covariance posses no bias and the smallest
dispersion, resulting to be the best performing measure among the covariance estimators con-
sidered in the study. Combining the Firs-Last covariance together with the DST volatility
estimator we obtain a realized correlation measure where both the volatilities and the covari-
ances are computed from tick-by-tick data. In the empirical analysis performed on S&P 500
and US bond data we apply the HAR model to the tick-by-tick correlation measure obtain-
ing highly significant coefficients for all the three heterogeneous components and remarkably
good out of sample forecasting performance. We then suggest the use of a shrinkage approach
with a newly proposed shrinkage target for the construction of a definite positive and more
accurate correlation matrix.

These promising results on the volatility and correlations modelling together with its sim-
plicity and easy of estimation, makes the HAR model susceptible to be readily extended to
the multivariate setting. Its autoregressive structure would suggest that a natural multivari-
ate extension could be the development of a Vector-HAR analogously to the standard VAR
model. However, due to the curse of dimensionality, a general Vector-HAR type of model
would quickly become intractable as soon as the dimension of the portfolio increases even
to moderate sizes. A standard simplifying assumption made in many multivariate GARCH
model (including the recent DCC of Engle 2002) to deal with this problem is to assume that
each conditional volatility and pairwise correlation depends only on its own history and not
on that of the other series (although this dependence can be fitted with a different set of
parameters for each series).

Under this assumption, a relatively parsimonious Multivariate-HAR model could be ob-

tained combining, the Asymmetric-HAR model for the volatilities (3.14) with that for corre-
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lations (4.13) through the usual volatility-correlation decomposition of the covariance matrix.
In this way, we would obtain a DCC style Multivariate-AsymmetriccHAR (MAHAR) model
for realized variations. This MAHAR model would combine the flexibility of a DCC structure
with the precision of realized variation measures and the easy of estimation of HAR models
since only OLS regressions equation by equation would be required to estimate the whole
multivariate model.

Then, following Barone-Adesi, Bourgoin, and Giannopoulos (1998) and Barone-Adesi,
Engle and Mancini (2004) the HAR and MAHAR model could be used in the Filtered Histor-
ical Simulation method to estimate more accurate portfolio risk measures or compute option

prices under incomplete markets framework.
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